
0272-1716/00/$10.00 © 2000 IEEE

Here we explore the seemingly well-worn subject of
distance-based or remote visualization. Current

practices in remote visualization tend to clump into two
broad categories. One approach, called render-remote,
is to render an image remotely, then transmit the image
to the user. Another option, render-local, transfers raw
data to the user, where it is then rendered on the local
workstation.

With advances in networking and graphics technol-
ogy, we can explore a class of approaches from a new,
third category. With this third category, which we call
shared or “dot com” visualization, we stand to reap the
best of both worlds—minimized data transfers and
workstation-accelerated rendering.

This article describes Visapult, a prototype system cur-
rently under development at Lawrence Berkeley
National Laboratory (LBNL) that strikes such a balance,
achieving a blended, scalable visualization tool. Dot com
visualization means that remote and local resources col-
laborate and negotiate, combining capabilities to pro-
duce a final product.

Brute-force approaches
Consider the following common scenario: you and

your workstation on the West Coast need to look at your
data on the East Coast. What do you do? You could per-
form the visualization and rendering on the East Coast
and send an image to your workstation. Or, you could
move the data, all or a subset, to the West Coast.

In the render-remote approach, you win because only
a single image crosses the network. Presumably, you
could expect at least an order of magnitude reduction in
traffic when sending only the final image compared to
the cost of sending the raw data. The usability cost is the
loss of interaction on the local workstation due to the
sacrifice of local rendering capabilities. Here the work-
station plays the role of a passive image display device.

To achieve interactivity using the remote rendering
model requires a minimum of 10 frames per second,
potentially using upwards of 30 megabytes per second
of raw bandwidth (1024 × 1024 × 24-bit uncompressed
images). We’re making the generous assumption that,
on the remote host, it’s possible to perform visualization
and rendering 10 times per second.

Using the render-local approach, data is transferred

to the local workstation, where it is subsequently visu-
alized and rendered. We stand to gain the interactivity
lost in the render-remote model, assuming a reasonable
amount of local graphics and processing power.
Troublesome areas inherent in the render-local model
include potentially long download times, the possibili-
ty that a large data set simply cannot be stored on the
local workstation, and related issues.

What if we could combine the best of both approach-
es? In such a model we wouldn’t have to move poten-
tially large data volumes across the network, and we
could take advantage of local workstation graphics. A
blended model would facilitate the best use of resources.
For example, a large cluster performs computationally
expensive parallel software volume rendering while the
local workstation provides interactive graphics.

Visapult
Visapult, the LBNL prototype implementation, is a

visualization tool that implements distributed, shared,
and parallel visualization and rendering of large, time-
varying, scientific data sets. The ongoing research and
development focuses on three broad topics.

First, Visapult implements a framework that serves
as an application testbed for shared and parallel visual-
ization algorithmic development. The volume-render-
ing engine, described in the next section, uses a parallel,
shared rendering model that scales reasonably well to
accommodate large and hierarchical data volumes.

Second, Visapult provides a testbed suitable for use
with emerging technologies that implement “network
awareness.”

Finally, Visapult helps address a vexing but commonly
encountered problem—volume visualization of large,
remotely located, time varying, adaptive, hierarchical
scientific data that won’t fit onto a workstation.

Distributed, parallel, and shared
The Visapult volume-rendering engine is a parallel,

distributed implementation of Mueller et al.’s method,
Image Based Rendering Assisted Volume Rendering1—
IBRAVR for short. The IBRAVR method leverages image-
based rendering properties to achieve interactive,
limited-range transformations of volume visualization
on low-cost, commodity-grade graphics hardware.

Wes Bethel

Lawrence
Berkeley
National
Laboratory

Visualization Dot Com ______________________________

Visualization Viewpoints
Editors: Lloyd Treinish and

Theresa-Marie Rhyne

IEEE Computer Graphics and Applications 1

One of the many attractive properties of the IBRAVR
model is that it performs well on low-end workstation
graphics, or even software, but also runs in high-
performance, immersive, and stereo environments.
What makes this possible is the decoupling of a compu-
tational back-end that performs software volume ren-
dering from a front-end viewer that can run at
interactive rates.

In the IBRAVR model, a volume is decomposed into
some number of “slabs” (Figure 1). Each of these slabs
is separately volume rendered using whatever technique
is handy to produce a single image. The resulting image
is then used as raw texture data and applied to either
axis-aligned quads or quadmeshes. Quadmeshes, used
to create a “terrain-style” elevation map for each of the
textures, provide more depth cues than flat quadrilater-
als. The use of inexpensive 2D texture mapping enables
interactive rotation with workstation-grade hardware.

The IBRAVR method works well, but within a limited
range of rotation. Mueller et al. claim a rotation range of
about 32 degrees before visual degradation occurs,1

although this threshold may prove to be data-depen-
dent. Increasing the number of texture maps may
increase the threshold, while decreasing the number of
texture maps will decrease the threshold.

Distributed IBRAVR
The IBRAVR model maps nicely to an object-order

decomposition for parallel rendering.2 The primary dif-
ference between the IBRAVR method and traditional
object-order parallel software volume rendering lies in
the design of the partial image recombination, or gather
stage, of the parallel rendering operation. The interme-
diate images produced by each processor, each of which
renders a subset of a volume, must be composited togeth-
er in a specific order to produce a final image. Algorithms
for the image recombination stage of parallel software
volume rendering have been the subject of much study.2

Our IBRAVR implementation uses a pool of proces-
sors that perform object-order, parallel volume render-

ing in software. Rather than recombine the intermedi-
ate images in software, the partial images are combined
using low-cost graphics hardware that supports 2D tex-
ture mapping. By low cost I mean contemporary PC
graphics cards in the $100 to $250 price range.

One of the fundamental ideas behind IBRAVR is that
the image warping and depth-order compositing are
performed using inexpensive graphics hardware. The
image warping and interslice translation provided by
texture mapping represent the image-based rendering
aspect of the algorithm, while the depth-order render-
ing of semitransparent 2D textures represents the
image-gather and compositing stage of the traditional
object-order decomposition.

Visapult framework
Our prototype application consists of two logical ren-

dering components and one data component, all of which
may be separated by a wide-area network (WAN). A back-
end volume-rendering engine performs the object-order
parallel volume rendering in software. Written using MPI
(the Message Passing Interface standard, http://www
.mcs.anl.gov/mpi/), it runs on a variety of distributed
memory and shared memory machines.

The second component—a viewer—is a lightweight,
interactive rendering application built from an OpenGL-
based scene graph tool (see the RM Scene Graph
Programming Guide at http://www.r3vis.com/) that
manages data and rendering services. The viewer is also
a parallel application, built using Pthreads.3

The system’s third component is the scientific data and
its management. In some cases, this might be as simple
as a large disk farm connected directly to the volume-
rendering back-end. In other cases, the data may be scat-
tered across a WAN using a network cache such as that
implemented by a distriubuted parallel storage system
(DPSS).4

The volume renderer and the viewer communicate
over a custom interprocess communication (IPC) layer
built using transmission control protocol (TCP) sockets.
The protocol implemented by the prototype might be
considered a visualization communication protocol,
similar in some respects to the scene description and
payload model described by the Moving Pictures Expert
Group’s MPEG-4 specification (http://drogo.cselt.
stet.it/mpeg/standards/mpeg-4/mpeg-4.htm#E40E1).

For volume visualization, the payload between view-
er and software renderer consists of 2D texture maps
containing the intermediate results of partial volume
rendering. Our implementation uses a striped-socket
model, where multiple back-end processing elements
communicate with multiple threads in the viewer.
Figure 2 presents an example created by our distributed
IBRAVR prototype.

In general, the payload from the back-end and the
viewer consists of visualization data. The texture maps
and geometry in the current system combine on the
viewer side to implement the IBRAVR algorithm.
Arbitrary geometry can be used to represent the results
of other types of visualization, such as the representa-
tion of grids in Boxlib,5 an Adaptive Mesh Refinement
(AMR) multiresolution modeling framework. Figure 3

2 May/June 2000

1 IBRAVR task decomposition.
(a) Volume data is first subdivided,
with each processing element
assigned volume rendering of its
subset. (b) The results—an image
from each processing element
representing partial volume render-
ing—go to a viewer. (c) The viewer
uses 2D texture mapping to render
all partial images and provides for
interactive transformation.

Visualization Viewpoints

shows a set of adaptive grids from a scientific simula-
tion included with volume visualization.

The scene graph model plays an integral part in the
design of the communication framework as well as the
viewer architecture. We can think of the scene graph
model as a “data sink” and data arriving on a commu-
nication channel as a combination of scene layout and
scene data, or content. Each of the viewer-side listener
threads contributes to the scene graph in the form of
new texture data or new geometry.

Application of shared visualization
The prototype has proven useful in viewing large and

time-varying data sets produced by discipline scientists
in the fields of combustion and cosmology. It was demon-
strated at the Annual High-Performance Networking and
Computing Conference, SC99 (http://www.sc99.org/).
The prototype application defines a flexible framework
centered on the communication protocol between the
back-end and the viewer. As such, we have several types
of back-end renderers. One of these back-end engines
consumes data from a DPSS.

The prototype shown at SC99 performed interactive
rendering of a 50-Gbyte time-varying simulation, with
data located in Berkeley, California, the back-end
volume rendering engine located at Sandia National
Laboratory in Livermore, California, and the viewer
operating in Portland, Oregon.

A real and ongoing problem faced by scientific
researchers is the sheer size of data produced by simu-
lations and gathered by experiments. Data sets on the
order of hundreds of gigabytes are not uncommon.
Simply storing this much data can be problematic, and

IEEE Computer Graphics and Applications 3

2 IBRAVR applied to combustion simulation results. A data volume from a combustion simulation is decomposed into four slabs, and
each slab is volume rendered in parallel using a software compositing engine. The resulting images, shown on the left, are transmitted
across a WAN to a viewer that uses a scene-graph rendering engine and 2D texture mapping to produce the image on the right.
Except for the data transfer, both viewer and back-end rendering execute asynchronously.

3 IBRAVR and grid visualization.
Our distributed IBRAVR prototype
combines shared, parallel volume
rendering with traditional visualiza-
tion. In this case, the underlying
grids are adaptive and hierarchical.

moving it across a WAN often proves impractical. Our
goal with Visapult is to develop solutions for interactive
visualization on this scale. Three domains—data man-
agement, networks, and visualization technology—all
contribute to potential solutions.

Future work
I believe that network-based, shared rendering and

visualization offers a fruitful avenue for future research.
The application model presented uses a decomposition
that leverages current trends in technology: graphics,
networking, and data storage and management.

Low-cost graphics hardware for the PC continues to
become faster and more usable. Current commodity-
grade graphics accelerators match the rendering rates
of $100,000 machines of just a few years ago. Those
visualization tools that are cross-platform, and that per-
form well and scale through the continuum from the
desktop to the fully immersive environment, are eco-
nomically and socially attractive.

Network technology improvements can enhance the
basic “visualization dot com” model. Dynamic moni-
toring of quality-of-service parameters such as raw
bandwidth, error rate, latency, reliability, and priority
can all influence the system’s scheduling and perfor-
mance. Dynamic route discovery and modification could
potentially result in shorter and more reliable data
paths, either from the back-end to the viewer, or the data
source to the back-end. Changes in bit rate can be taken
into account to alter the resolution of data sent from the
back-end to the viewer. Bandwidth reservation will
assist in scheduling, so that “hero-sized” problems may
be smoothly executed. A “hero” problem would be one
in which a researcher wishes to perform visualization
of remote data that is tera-scale in size.

The prototype system discussed in this article is not
unique in its design. MPEG-4, for example, provides for a
scene description layer based on scene-graph technology,
includes support for dynamic video compression, and
supports audio (http://drogo.cselt.stet.it/mpeg/
standards/mpeg-4/mpeg-4.htm#E40E1). One design
goal of MPEG-4 is the possibility that the local viewer may
interact with objects in a 3D scene, but with scene con-
tent provided by a remote source.

Compression technology is integral to many network-
based applications. The fundamental trade-off is one of
time versus space. Compression algorithms can con-
sume a substantial amount of time, but can produce
highly compact and quickly transmitted data objects.
The cost of compression, which can be substantial for
video streams, is typically amortized by many down-
loads of a single video or audio stream. Visualization
tends to be an iterative process, hence the cost of video
stream compression is difficult to justify.

An alternative, or supplement, to payload compres-
sion is to approach the problem from a semantic, rather
than syntactic, perspective. We take this approach in

Visapult by using “high-level” descriptions of geometric
elements when possible. The box geometries used in
grid visualization are described with a minimum and
maximum coordinate, rather than specifying 8 box ver-
tices and 12 box edges. Similarly, the quadmeshes in the
IBRAVR implementation are specified with two coordi-
nates, two integers defining the mesh resolution, then a
stream of bytes defining offsets from the base plane for
each grid point.

Conclusion
The prototype application described here explores a

new approach to remote and large-scale visualization.
Shared and parallel visualization and rendering lie at
the center of the approach, with cooperative agents con-
tributing to the finished product. Visipult provides inter-
active visualization on the desktop of remotely located
data using remotely located resources, yet leverages the
increasingly powerful desktop graphics engine to
achieve interactive display rates.

While far from complete, Visapult affords glimpses of
future research and development activities in parallel
and remote visualization. �

Acknowledgment
This work was supported by the Director, Office of

Science, Office of Basic Energy Sciences, of the US
Department of Energy under Contract No. DE-AC03-
76SF00098.

References
1. K. Mueller et al., “IBR-Assisted Volume Rendering,” Proc.

IEEE Visualization 99, Late Breaking Hot Topics, ACM Press,
New York, 1999, pp. 5-8.

2. U. Neumann, “Communication Costs for Parallel Volume-
Rendering Algorithms,” IEEE Computer Graphics and Appli-
cations, Vol. 14, No. 4, July 1994, pp. 49-58.

3. D. Butenhof, Programming with Posix Threads, Addison-
Wesley, Reading, Mass., 1997.

4. B. Tierney et al., “A Network-Aware Distributed Storage
Cache for Data Intensive Environments,” Proc. IEEE High-
Performance Distributed Computing, Aug. 1999,
http://www-didc.lbl.gov/DPSS/.

5. C.A. Rendleman et al., “Parallelization of Structured, Hier-
archical Adaptive Mesh Refinement Algorithms,” to appear
in Computing and Visualization in Science, Vol. 3, No. 4,
2001.

Contact Bethel at Lawrence Berkeley National Labora-
tory, M/S 50F, University of California, Berkeley, Berkeley,
CA 94720, e-mail ewbethel@lbl.gov.

Contact the department editors by e-mail: Treinish at
lloydt@us.ibm.com and Rhyne at rhyne.theresa@epa.gov.

Visualization Viewpoints

4 May/June 2000

