
Fast Volume Visualization From Composited Two-
Pass Affine Image Transformations

Wes Bethel, Vince Beckner, Terry Ligocki
 Berkeley National Laboratory

-
l of

-

n

l-
e
ral

he

s,
-
p
es
d

ct

s-
h-

en-

re

s-

a

1.0 Abstract

As computing capacity advances, scientific computations
similarly increase in resolution producing more and more
data. Increasing capacity and resolution exacerbate the “fire-
hose of data” problem, elevating the issue of understanding
and analyzing data from academic to urgent. Visualization,
the process of creating images from abstract data suitable for
interpretation by humans, has been successfully used for fea-
ture “triage” as well as for detailed inspection of features
within data.

We present a method for visualizing large three-dimensional
volumes of data in a parallel computing environment. Our
method is an alternative “shear-warp-like” parallel volume
rendering algorithm. The primary design goal motivating our
work is the need to visualize large scientific datasets at inter-
active rates over a standard ethernet line to the desktop from
a one of a variety of multiprocessor architectures. Previous
work in parallel volume rendering has focused upon diffi-
cult-to-implement parallel versions of a particularly fast
serial algorithm. In contrast, our work outlines the develop-
ment of a serial volume visualization technique with the
important property that a parallel implementation is both
efficient and straightforward.

2.0 Introduction

Volume rendering is a visualization technique which has
been successfully used for creating images of three-dimen-
sional data. Volume visualization has the unique property
that the entire the dataset is rendered in toto. In contrast,
other visualization techniques extract a surface from the vol-
ume (isosurface) or take “slices” from a three-dimensional
array of data. Over the years, numerous approaches have
been evaluated for volume rendering. The various techniques
bifurcate into either image-order and object-order. Image-
order algorithms start from on-screen pixels and then inte-
grate back into the data, computing the contribution from
voxels to the screen pixel. Object order algorithms start from
the volume data itself, and scan convert from voxels to pix-
els.

For software implementations, the current “recognized
champion” for volume rendering is the Lacroute and Levoy
“shear-warp” algorithm [1]. Frame rates of 1 per second
using a desktop machine and data sizes of 256**3 were

reported in 1994. Shear-warping makes use of both image
space and object-space coherence to achieve a high leve
efficiency in software. A discussion of this algorithm, both in
serial and parallel implementations, will serve as the jump
ing-off point for our work.

Our work closely parallels that of the earlier shear-warp
implementations, but with some variations in parallelizatio
strategy as well alterations in the fundamental shear-warp
kernel. We had one primary goal in mind when beginning
this work: delivery of direct volume rendered images of rea
istic-sized scientific data to the desktop at interactive fram
rates over a standard ethernet connection from one of seve
different MP architectures.

3.0 The Serial Shear-Warp Formulation

The shear-warp method is based upon a factorization of t
viewing and transformation matrices in such a way that
slices of volume data are first sheared in three dimension
parallel to the line of sight, followed by an image composi
tion stage, then finally a single two-dimensional image war
(see Figure 1). The guiding observation is that parallel slic
of volume data remain parallel regardless of orientation, an
more importantly, remain parallel to each other with respe
to the viewer. Note that this volume rendering technique
works only upon structured meshes which are “well
behaved,” or, in other words, rectilinear.

4.0 The Parallel Shear-Warp

Lacroute [3] describes a parallel implementation of the
shear-warp algorithm on SMP-class machines. The discu
sions of load balancing and algorithm partitioning are wort
while for review, but the SMP architecture is unforutnately
inadequate in terms of meeting one of our design goals: r
dering of “very large” data. A distributed memory

architecture provides for higher memory capacities than a
currently available on SMP architectures.

Amin et. al. [2] present a shear-warp parallelization for a di
tributed-memory architecture. They propose to partition
work in “sheared volume” space as a compromise between
purely object-order or image-order decomposition. In the
sheared-volume space, the partitioning plane is parallel to
the line-of-sight. Each processor, or work unit, can “drive
1

e

i-
is

e

s

fil-

 a

he

l
e
e

rays” through its assigned volume segment. The result-
ing image fragments are disjoint and can be indepen-
dently warped, and since partial intermediate images are
disjoint, the corresponding partial warped images are
also disjoint. Because of this, no compositing is required
across processor boundaries. The principal overhead for
this partitioning scheme results from communication of
volume data when the volume is sheared. They also note
that their method works exclusively for parallel projec-
tions and preclassified volumes, as well as the fact that
parallelizing the shear-warp factorization “presents con-
siderable challenges.”

The challenge of parallelizing a perspective projection
version of the shear-warp lies in the fact that the per-
spective foreshortening effect induces non-uniform per-
slice voxel scaling. This has the effect of disrupting the
object-order partitioning of the parallel implementation
described in [2].

5.0 Compositions of Two-Pass Affine
Warps

With the existing shear-warp work in mind, we now
describe our effort. One departure from the classical
shear-composite-warp formulation is to perform the
shear and warp in one step, then perform the composi-
tion.

With this approach, we can implement a highly-efficient
two-pass image warping kernel of the form described by
Smith and Catmull in 1980 [4]. Such a warping kernel
has been shown to be highly efficient, with at least one
vendor implementing this image manipulation tool in

hardware1. An additional benefit of performing the

shear and warp prior to the composition phase is that
perspective projections can be performed “for free.” Th
non-uniform voxel scaling is trivially accomodated
using the image warping algorithm in the pre-compos
tion phase. Using the two-pass transformation, there
no benefit gained from separating the shear from the
warp. They can be performed at once for less than th
cost of performing them in separate stages.

5.1 The Two-Pass Kernel

The two-pass transformation was originally used for
performing object-order texture mapping operations in
early systems. The general motivation for its use follow
from the decomposition of a two-dimensional filtering
operation into two serial and separable (and simpler)
ters.

For the general warp of a bilinear patch, we start with
patch which is parameterized over two variables and
warp it into a new spatial location (Figure 2):

The general representation for the bilinear patch has t

representation

where a00=(x3-x2)-(x1-x0), a01=x1-x0, a10=(x2-x0),
and a11=x0. There are similar formulations for they
(andz) components of a bilinear patch. For our pur-
poses, since we are only warping one two-dimensiona
image into another two-dimensional image in the sam
plane, we can effectively ignore the z-coordinate in th

Image Projection Plane

Viewing Rays
Volume
Slices

Shear, Translate and Scale

Project and

Warp

Composite

Figure 1

1. “System for Spatially Transforming Images,” Philip
P. Bennett and Steve A. Gabriel, U.S. Patent Number
4,472,732. Assigned to Ampex Corporation.

u

v

P0 P1

P3P2

P0

P1

P3
P2

Two-pass Warp

Figure 2

x u v,() u 1
a00 a01

a10 a11

v

1
=

June 17, 1998 2

p

n-

s
e-

e
-

l
e

to
e
es

i-

h
m-
general two-pass affine transformation. The general
warp transformation is then represented as:

This formulation is separable into disjointx- andy-com-
ponent passes, such that we first warp horizontal then
vertical scanlines.

Two primary benefits are realized from the two-pass for-
mulation. First, a two-dimensional filter can be replaced
by two serial one-dimensional filters. Second, a broader
range of image transformations can be applied than
those described in Lacroute and Levoy. Most notably,
we get perspective projection “for free.” A third benefit
will be discussed when we discuss parallelization.

5.2 Performance Analysis of Serial
Implementation

The detailed analysis of the serial version of the two-
pass compositing volume renderer has been removed
from the abbreviated paper. A synopsis of the analysis is
as follows. The aggregate cost of the algorithm is a
function of:

• The cost of performing the two-pass transformation
upon a single slice of volume data, and

• The cost of compositing the resulting images
together.

The cost of the two-pass operation is a function of both
the size of the slice of volume data, as well as the size of
the image into which the volume data is “warped.” The
analysis captures this relationship. The cost of compos-
iting is a function of the size of the final warped image
(only). When the final image is smaller than the size of a
volume data slice, the cost of compositing is negligible
compared to the cost of the two-pass transformation.

We present a table showing the cost in MFLOPS of the
two-pass transformation, the image composition, and
then the entire volume rendering using varying parame-
ters for input volume data size and final image size.

From these tables, we can make the following observa-
tions:

• The “brute force” two-pass formulation of the shear
warp will render small datasets at a reasonable rate
of speed on a desktop workstation.

• The theoretical cost of the “brute force” two-pass
formulation is comparable to the original shear-war
algorithm. Consider the performance of the highly-
optimized shear warp algorithm when processing
extremely noisy data, i.e., data which has very few
zero-valued pixels and very short voxel runs.

• Increasing the size of the final image has a substa
tial effect upon cost.

• For the larger volumes, reasonable rendering time
are beyond the reach of any conventional or forese
able workstation. The only hope for near-interactiv
rendering rates is to make use of a large MPP sys
tem.

5.3 Parallel Implementation

An object-order decomposition is used in the parallel-
ization of the serial two-pass algorithm. Each PE will
operate upon some number of volume data slices, or
slice clusters. For slice within each cluster, the PE wil
perform the two-pass transformation upon a single slic
of volume data, then composite the resulting image in
an accumulation image. When all such slices within th
chunk are processed, at each PE, all the resulting imag
are composited together in a tree-like reconstruction
(Figure 3).

Like all volume rendering algorithms, composition [5]
must occur in front-to-back or back-to-front order. Sim
lar to the work described in [1], we also require three
copies of data, one for each of the principle viewing
axes.

In parallel projections, the time required to render eac
slice cluster is nearly the same (assuming the same nu

uv u v 1

a00 b00

a01 b01

a10 b10

a11 b11

(1)

Volume data decomposed into “slice clusters”.
Each slice of each cluster is warped and then
composited together. Finally, the intermediate
images are composited together to form a
final image.

Front-to-back order

Final Image

Figure 3
June 17, 1998 3

a-
-
t
e

of

r-

r-

le

-

ber of slices per cluster). In perspective projections,
using an identical number of slices per cluster induces a
load imbalance. This is due to the fact that slice clusters
closer to the viewer result in images which cover more
screen pixesl than those further away. The two-pass
image transformation kernel is run time is indeed sensi-
tive to final image size. Thus, future work on load bal-
ancing will take into account the perspective
foreshortening effect, and will compute the number of
slices per cluster in such a way as to achieve nearly
equal shear-warp time per slice. The present implemen-
tation assigns a nearly equal number of slices per clus-
ter, and in the perspective projection case, we have
observed an average 75% load balancing level.

5.4 Results

The table below shows various statistics for our implem-
tation as run on a 256x256x256 dataset (we’re presently
working on a 1024x1024x1024 dataset), and rendered at
256x256. Each row represents statistics collected for a
given number of processors. The statistics show elapsed
time in milliseconds for the shear-warp and image com-
position within a particular slice cluster (SW) and the
elapsed time for the image composition across all the
processors.: average run time across all PE’s for cost of
computing a finished image for that slice cluster (SW);
the average cost of performing the collective image
composition (Comm). An interesting observation is that

on the Cray T3E-900, that as more PE’s become
involved in communication, that the internal communi-
cation network becomes more efficient. We expect that
this trend will “bottom out” as the number of PE’s
increases. The performance of the two-pass kernel
scales nicely with increasing numbers of PE’s.

6.0 Conclusions

The serial implementation of our volume renderer,
based upon compositions of two-pass affine transform
tions, is not as “fast” as the classical shear-warp algo
rithm with all its optimizations. On the other hand, wha
we sacrifice in the serial implementation, we gain in th
potential to interactively visualize large datasets which
will not fit into primary memory on workstations or
SMP’s. Further optimizations which takes advantage
voxel runs, or skipping over transparent voxels, will
contribute to an overall improvement in algorithmic pe
formance.

7.0 Bibliography

1. “Fast Volume Rendering Using a Shear-Warp Facto
ization of the Viewing Transformation,” Computer
Graphics 28(3), Proceedings of Siggraph 1994.

2. “Fast Volume Rendering Using an Efficient, Scalab
Parallel Formulation of the Shear-Warp Algorithm,”
Minesh B. Amin, Anath Grama, Vineet Singh. 1995
Parallel Rendering Symposium, ACM Siggraph, Octo
ber 1995.

3. “Real-Time Volume Rendering on Shared Memory
Multiprocessors Using the Shear-Warp Factorization,”
Philippe Lacroute, Proceedings of the 1995 Parallel
Rendering Symposium.

4. “3-D Transformations of Images in Scanline Order,”
Ed Catmull and Alvy Ray Smith, Computer Graphics
12(3), Proceedings of Siggraph 1980.

5. “Compositing Digital Images,” Thomas Porter and
Tom Duff, Computer Graphics 18(3), Proceedings of
Siggraph 1984.

N
PE’s SW Comm

4 2497 247

8 1390 301

16 816 213

32 542 167

Figure 4

Shock Wave Propogation
June 17, 1998 4

	1.0 Abstract
	2.0 Introduction
	3.0 The Serial Shear-Warp Formulation
	4.0 The Parallel Shear-Warp
	5.0 Compositions of Two-Pass Affine Warps
	5.1 The Two-Pass Kernel
	5.2 Performance Analysis of Serial Implementation
	5.3 Parallel Implementation
	5.4 Results

	6.0 Conclusions
	7.0 Bibliography

