
Efficient Delaunay Tessellation through
K-D Tree Decomposition

Dmitriy Morozov
Lawrence Berkeley National Laboratory

1 Cyclotron Rd.
Berkeley CA 94720 USA

dmitriy@mrzv.org

Tom Peterka
Argonne National Laboratory

9700 S. Cass Ave.
Argonne IL 60439 USA

tpeterka@mcs.anl.gov

Abstract—Delaunay tessellations are fundamental data struc-
tures in computational geometry. They are important in data
analysis, where they can represent the geometry of a point set
or approximate its density. The algorithms for computing these
tessellations at scale perform poorly when the input data is
unbalanced. We investigate the use of k-d trees to evenly distribute
points among processes and compare two strategies for picking
split points between domain regions. Because resulting point
distributions no longer satisfy the assumptions of existing parallel
Delaunay algorithms, we develop a new parallel algorithm that
adapts to its input and prove its correctness. We evaluate the
new algorithm using two late-stage cosmology datasets. The new
running times are up to 50 times faster using k-d tree compared
with regular grid decomposition. Moreover, in the unbalanced
data sets, decomposing the domain into a k-d tree is up to five
times faster than decomposing it into a regular grid.

I. INTRODUCTION

Delaunay and Voronoi tessellations are fundamental geomet-
ric structures for converting a point set into a mesh. Point data
are common in simulations, for example, in N-body cosmology,
atomistic molecular dynamics, particle-in-cell plasma physics,
and finite-element models; and in sensor measurements such as
those from weather reporting stations, census data, or LIDAR
point clouds. For simplicity, in this paper we only talk about
Delaunay tessellations, but everything we say immediately
applies to Voronoi tessellations by duality.

Although expensive in both time and space, converting
a point set into a mesh yields many useful properties. The
mesh consists of cell elements, which fill the space. Given
a field defined on the points, it is straightforward to extend
it anywhere on the tessellation by interpolating the values in
the interiors of the cells—not possible directly in the points’
original discrete form. A Delaunay tessellation has the added
property that the mesh automatically adapts to the distribution
of the points: cells are smaller where points are closer together
and larger where points are farther apart. This property can
be used for accurate density estimation [1], [2], [3] or for
deriving geometric statistics about cells (volume, surface area,
connectivity) that further inform features such as clusters
and boundaries in the data [4]. Tessellations can even be
incorporated into the computation of N-body calculations, for
example alternating between particle and mesh representation
in hydrodynamics simulations [5].

The data sizes in the above applications—which can exceed
one trillion points—and the time and space requirements to
compute and store a mesh representation of those points,
demand a parallel tessellation algorithm designed for distributed-
memory high-performance computing (HPC). The parallel
efficiency of such algorithms depends primarily on load balance.
A perfectly balanced point distribution with the same number
of points per processor can achieve near perfect speedup,
while the worst possible distribution with all points on one
processor is essentially serial. The other effect of a balanced
point distribution is memory scalability. The ideal memory
usage of an algorithm is inversely proportional to the number
of processors, but actual memory usage depends on the load
balance. A skewed data distribution can easily cause an
algorithm to exceed available memory, and simply using more
processors cannot solve the problem.

We cannot control the nature of the input data, but we
can control its distribution to processors. Data distribution
involves two steps: the global domain is first decomposed
into 3D regions (blocks), and then the blocks are assigned to
processors. One approach is to decompose the domain into a
regular grid of blocks of uniform size. However, when a point
set is highly clustered, such a regular decomposition yields
blocks with widely varying numbers of points. This imbalance
can be compensated by assigning different numbers of blocks
to processors, but the granularity of this correction is only as
fine as the size of one block. The advantage of the regular grid
decomposition is that parallel algorithms that rely on it are
easier to implement because the connectivity of a block with
its neighbors is simple and consistent.

An alternative approach is to subdivide the global domain
into unequal size blocks whose extents contain an approximately
equal number of points, and then to assign equal number of
blocks to processors. Unlike in the regular grid decomposition,
the placement of the block boundaries—and hence, the load
balance—can be as accurate as desired, but parallel algorithms
are more difficult to develop because the connectivity of blocks
with their neighbors is more complicated.

In this paper, we implement a distributed k-d tree to
decompose a 3D domain into irregular size blocks by recursively
splitting alternating dimensions of the domain with approxi-
mately equal number of input points in each child block. We
evaluate two different methods for computing the approximate
median of the parent block’s points in order to determine where
to split the children: a histogram of the distribution of pointSC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 ©2016 IEEE

coordinates along the current dimension and a set of random
samples of points. The accuracy of the approximation can be
controlled by the number of histogram bins or the number of
samples.

Next, we develop a new parallel Delaunay tessellation
algorithm based on the k-d tree decomposition. The assumptions
of prior parallel Delaunay algorithms designed for regular
grid decompositions no longer hold for the k-d tree because
blocks and their neighbors are no longer connected in the
same way, and Delaunay tetrahedra can now easily extend
beyond the original neighborhood of a block. We prove the
correctness of our parallel algorithm; that is, we show that
the distributed tessellation it returns is globally Delaunay. We
evaluate the performance of our algorithms by comparing
the run time, scalability, and load balance of our tessellation
algorithm with previously published results based on a regular
grid decomposition. We break down the performance into the
time to build the k-d tree and the time to compute the Delaunay
tessellation and compare each of those components to building
and using a regular block decomposition.

Section II summarizes related literature. Section III reviews
an existing distributed Delaunay tessellation algorithm and
explains its main assumption on the point distribution. Sec-
tion IV covers the construction of the k-d tree—decomposing
the domain into blocks and exchanging the input points. To do
so, we develop a multi-round swap-reduce exchange algorithm
that sorts points into half-spaces in each round according to an
approximate median. The median can be determined in one of
two ways: histograms and random samples. Once the k-d tree
is built, a new adaptive neighborhood algorithm in Section V
computes the parallel tessellation without any restrictions on
neighborhood connectivity. In Section VI, we test the scalability
and performance of both building the k-d tree decomposition
and computing Delaunay tessellations of cosmological dark
matter particles at scales up to 40963 points and 128Ki MPI
processes on two supercomputing platforms.

To summarize, the contributions of this paper are:

• a distributed k-d tree decomposition using interleaved
swap- and merge-reductions with configurable methods
for computing the approximate median split coordinate;

• an adaptive neighborhood parallel Delaunay algorithm
with no restrictions on neighborhood connectivity and
a proof of its correctness;

• an evaluation of the new algorithm, including compar-
ison of its performance with an existing method.

II. RELATED WORK

Trees are often used as search structures to accelerate
query processing. The original k-d tree was invented by
Bentley in 1975 [6] to accelerate multidimensional queries
of k-dimensional records. A binary tree where the children at
level j+1 are split from the parent at level j along its median
in the dimension k mod j, k-d trees differ from regular spatial
subdivision hierarchies (such as octrees in 3D) in two respects.
For high-dimensional data, such as feature vectors in machine
learning [7], the width of the tree is controlled because the tree
is binary; it does not grow wider with increasing dimensionality.
The other property is more useful for our purposes: k-d trees

Fig. 1. Four levels of a k-d tree decomposition of a point set.

are load-balanced by definition. Figure 1 illustrates a k-d tree
on a planar point set.

When the data are spatial, for example 3D points, variants
of the k-d tree can be used for load-balancing spatial search.
This is the case for point or cell location in computer graphics.
For example, Garth and Joy [8] presented a celltree bounding
volume hierarchy similar to a k-d tree for searching for the
cell in a 3D mesh that contains a given point. Like a k-d
tree, celltrees featured a recursive splitting of the domain
in alternating dimensions; however, the split planes between
two children were allowed to overlap. Andrysco and Tricoche
implemented octrees and k-d trees for the same purpose using
sparse matrices to conserve memory [9]. Spatial k-d and
octrees are also used to compute force interactions in N-body
simulations using the Barnes–Hut algorithm [10] and Fast
Multipole Method [11].

Parallel k-d trees have appeared recently in the literature.
Aly et al. [12] implemented a distributed k-d tree over 2048
machines in a MapReduce cluster and used it to execute parallel
queries on an image database. Di Fatta and Pettinger [7] used
a distributed k-d tree for static and dynamic load balancing a k-
means clustering algorithm in a distributed-memory architecture.
Their implementation in Java was tested on a 128-node
cluster. Zhang et al. implemented several distributed trees, k-d
trees included, in up to 20,000 processors in a peer-to-peer
system [13]. Patwary et al. [14] used k-d tree decomposition
to implement a parallel DBSCAN algorithm.

Distributed trees other than k-d were also published.
Colbrook and Smythe devised a balanced search tree called
2P−2− 2P [15] for distributed-memory parallel machines, and
Colbrook et al. [16] introduced a variation of a distributed B-
tree for processes connected in a ring topology. Tu et al. [17]
used the same parallel octree and regular grid decomposition
for parallel volume rendering as was used to compute a
seismic finite-element simulation. A different approach was
taken by Larkins et al. [18], who developed Global Trees as a
general-purpose interface to creating and accessing distributed
trees in distributed-memory systems. Built on top of the
ARMCI [19] one-sided communication library, their work
enabled the programmer to have a logical global view of the
distributed tree. Dynamic load balancing was provided by the
Scioto library [20].

Serial algorithms for 3D Delaunay tessellations rely on
randomized incremental construction. We refer the reader
to works by Clarkson and Shor [21], Guibas et al. [22],
Edelsbrunner and Shah [23], and Barber et al. [24] for details.
As a practical matter, several libraries exist for computing
Delaunay tessellations in serial. In theory, our parallel algorithm
is independent of the underlying serial engine. In practice, we
include build options for using either Qhull,1 which implements
the algorithm of Barber et al. [24], or CGAL2 (Computational
Geometry Algorithms Library) [25], which implements a
numerically robust and efficient version of a serial Delaunay
algorithm. Our experiments in this paper use CGAL.

Parallel computational geometry algorithms have been
researched as well. Rycroft [26] published a parallel Voronoi
algorithm for shared memory. In 2D, Miller and Stout studied
parallel algorithms for 2D convex hulls [27]; Jeong [28] derived
a parallel 2D Voronoi diagram algorithm, and Blelloch et
al. [29] generated a 2D Delaunay triangulation on 8 processes.
In 3D, Dehne et al. [30] computed a parallel distributed-memory
3D convex hull, and Cignoni et al. [31] presented a parallel
3D Delaunay tessellation for 64 processes. The closest work to
ours is Peterka et. al [32] who, based on a 3D regular domain
decomposition, demonstrated parallel strong scaling efficiency
of up to 90% for 20483 points uniformly distributed over 128Ki
MPI processes. The efficiency dropped, however, to as low as
14% when dark matter particles from a late-stage cosmological
simulation were used as input because of their unbalanced
distribution.

III. BACKGROUND: PARALLEL DELAUNAY ALGORITHM

A Delaunay tessellation of a set of points is the collection of
tetrahedra, with vertices in the point set, whose circumspheres
contain no points in their interior. We are interested in com-
puting a distributed representation of the Delaunay tessellation.
We assume that all the points are partitioned between a set
of blocks (these initial points are local to the blocks), and
each block may replicate some points from other blocks. The
collection of Delaunay tessellations of the points within blocks
is a distributed representation of the full tessellation if the set
of tetrahedra incident on any local point in any block is exactly
equal to the set of tetrahedra incident on that point in the full
tessellation.

Peterka et al. [32] introduce Algorithm 1 to compute the
distributed Delaunay tessellation. The algorithm ensures that
the circumspheres of the tetrahedra incident on local points are
empty. It simplifies the naive approach that would send the local
Delaunay circumspheres to the neighbors they intersect and
wait to receive back the points that fall into those circumspheres.
Instead, it takes advantage of a symmetry in the tessellations.
Delaunay edges are undirected: if a point p needs to be
connected to a point q by a Delaunay edge, then q needs to be
connected to p. This symmetry allows the above algorithm to
exchange points directly, skipping the circumsphere exchange.

As Peterka et al. [32] show, the result of the above algorithm
is a distributed Delaunay tessellation. This result is guaranteed
to be correct under the following assumption.

1qhull.org
2cgal.org

Algorithm 1 Parallel Delaunay algorithm
1: decompose domain into regular blocks
2: sort points into the blocks
3: for each block b do . in parallel
4: compute the Delaunay tessellation of the points
5: for each circumsphere S of a Delaunay tetrahedron do
6: for each neighbor block b′ of the block b do
7: if S intersects b′ then
8: enqueue vertices of S to b′

9: enqueue points on the convex hull to all neighbors
10: exchange points
11: for each block b do
12: insert the newly received points into the tessellation

Fig. 2. Dark matter particles in cosmology simulations cluster into halos and
voids whose densities can vary by six orders of magnitude in late time steps.

Neighborhood assumption: no edge in the global Delaunay
tessellation leaves the neighborhood of a block containing one
of its vertices.

The assumption requires that for every point in the local
block, its Delaunay neighbors must be contained either in
the block or inside one of its neighbors. In the case of the
regular decomposition with periodic boundary conditions, the
assumption is satisfied in all the data sets we encounter in
applications: Delaunay neighbors are contained in one of the
26 neighboring blocks.

IV. K-D TREE DECOMPOSITION

Although the simplicity of regular domain decomposition
is appealing—both the decomposition and the above tessel-
lation algorithm are easy to implement—it suffers from load
imbalance if the data is not distributed evenly throughout the
domain. This situation is common in practice, for example, in
late-stage cosmological simulations, where dark matter clumps
into dense clusters called halos and vacates regions called voids
(Figure 2). In this case, the number of points that fall inside a
block of a regular decomposition varies by orders of magnitude
based on the number of clusters in the block. The situation is
exacerbated with increasing number of smaller blocks.

To cope with this problem, we can decompose the domain
into a k-d tree. A data structure commonly used for proximity
queries, a k-d tree is built from a point set by finding the
median of the points along the first coordinate, splitting the
data into two halves based on the median, and recursively

qhull.org
cgal.org

repeating the procedure on the two halves, cycling through the
coordinates used for splitting. By construction, the result is a
balanced tree, where every block at a given level has the same
number of points.

We decompose the domain in parallel into a prescribed
number of blocks (assumed to be a power of two). Our blocks
are 3D rectangular boxes containing a subset of the global input
points. In keeping with the block-parallel programming model,
the following discussion is presented in terms of blocks rather
than processes. It allows us to ignore the distinction of whether
a block is processed by an MPI rank or a thread. Readers
unfamiliar with this point of view may assume that an MPI
process has only one block and may substitute “process” or
“processor” for “block” and “MPI rank” for “block global ID
(gid)” in most instances below without changing the algorithm.

We initially assume that any block may contain points
anywhere in the domain. The computation interleaves two
types of rounds: median selection and point exchange. We
come back to median selection later. For point exchange, the
blocks are organized into groups based on what part of the
domain they may contain. Initially, there is a single group—all
blocks may contain points anywhere in the domain. Once the
first median is picked, each block whose global ID (gid) has the
least significant bit set to 0 sends its points above the median
threshold to its partner, the block with the same gid except for
the least significant bit set to 1. Vice versa, the latter block
sends to the former those points that lie below the median
threshold. Once all blocks complete this pairwise exchange,
we divide them into two groups: the first consists of those gids
with the least significant bit set to 0 (they contain the lower half
of the domain); the second has the bit set to 1 (upper half of the
domain). In subsequent iterations, the communication happens
only within the groups (with splitting decisions made based
on the second, third, and so on significant bits). Algorithm 2
summarizes the procedure.

It’s computationally expensive to pick the median exactly, so
we implement two approximation schemes: building a histogram
of the coordinate distribution and random sampling. In the
former case, each block computes a histogram of the coordinates
of its local points, the histograms are reduced to a designated
root block within the group (the histograms are added in pairs
along the way); the root picks the median from the histogram
and broadcasts it to the rest of the blocks in the group. In
the latter case, each block picks a random sample of its local
points, the samples are combined via a reduction to the root of
the group, the root picks the median of the combined sample
and broadcasts it to the rest of the blocks.

Links. The Delaunay tessellation algorithm needs to exchange
information between neighboring blocks. It is, therefore,
necessary for each block to keep track of which blocks it
intersects. We build up such neighbor links simultaneously
with the decomposition. Initially, each block has either an
empty set of links, if the domain is Euclidean, or it sets the
links to point to itself in all six directions, if we are working
with periodic boundary conditions. In the i-th iteration of the
k-d tree construction, after a median split is selected for a
group of blocks, each block sends to each one of its neighbors
(which at later rounds fall into different groups) the median split
value selected in its group. Once it gets the split values from its

Algorithm 2 K-d tree decomposition algorithm
1: for each block do . in parallel
2: points ← input points in the block
3: dim ← 0
4: group ← [0, b− 1] . b = number of blocks
5: gid ← global id of the block
6: for round i ∈ [0, log2 b) do
7: m ← select-median(points, group, dim)
8: i-bit ← 1 << i
9: partner ← gid XOR i-bit

10: points ← swap-points(partner, points,m)
11: group ← {x ∈ group |

x AND i-bit = gid AND i-bit}
12: exchange medians with neighbors
13: update links . details omitted for verbosity
14: dim← dim+ 1 mod 3

neighbors, the block has enough information to update the links.
It prunes those blocks that it no longer intersects. It updates the
i-th least significant bit in the gid of every neighbor to either
0 or 1 (or possibly both, adding an extra block to the link),
depending on its own and the neighbor’s split configuration.
Finally, it adds its partner block (with the same gid, except for
the inverted i-th bit) to its link.

Balance. Figure 3 illustrates the ratio of the maximum to the
average number of points in any block for varying number of
blocks in the decomposition, for both median approximation
schemes (we use 1024 histogram bins and 1024 samples per
block). We also show this ratio for the regular decomposition.
The dataset consists of 20483 dark matter particles from a late-
stage cosmological simulation. These particles are the input
points for our algorithm. As Figure 4 and the figures in Sec-
tion VI illustrate, the improved load balance is not only better
for the Delaunay tessellation algorithm, but it also improves the
time for the point distribution itself. Approximating the median
using histograms offers the best performance: it’s faster than
the regular decomposition and scales better than the sampling
approximation. For this reason, we use the histogram-based
approximation in the rest of the paper.

V. ADAPTIVE NEIGHBORHOOD ALGORITHM

The load balance of the k-d tree decomposition comes at a
price. Blocks in such a decomposition are not evenly spaced,
and a block may be very close to another block that it doesn’t
intersect. This means that the neighborhood assumption, stated
in Section III, can be violated. Figure 5 illustrates an example
of such a violation. The neighborhood of the top-left block is
highlighted in gray; it does not include the bottom-right block.
On the other hand, the triangle highlighted in the figure contains
points from both blocks. If the two don’t communicate with
each other, there is no way to construct the correct (distributed)
Delaunay tessellation.

Algorithm. To work around this problem, we adaptively grow
the blocks’ neighborhoods. The algorithm proceeds in rounds.
In each round, as in Algorithm 1, each block b iterates over
all the circumspheres of its current Delaunay tessellation. If a
circumsphere intersects a neighbor block b′, then we enqueue
to b′ those points on the boundary of the circumsphere that

256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki

100

101

102

6.6 8.07

14
18.62

27.38
42.18

72.49

140.13

1.47 1.5 1.75
2.47 2.9 3.07 2.95 3.04

1.02 1.03 1.03 1.05 1.07 1.08 1.1 1.23

Number of blocks

M
ax

/A
ve

ra
ge

Point balance (Nyx)

regular k-d tree (sample)
k-d tree (histogram)

Fig. 3. Point balance for regular vs k-d tree domain decomposition of 20483
points from a late-stage cosmological simulation.

256 512 1Ki 2Ki 4Ki 8Ki 16Ki 32Ki
100

101

102

Number of blocks

Se
co

nd
s

Decomposition time (Nyx)

regular k-d tree (sample)
k-d tree (histogram)

Fig. 4. Decomposition time for regular vs k-d tree domain decomposition of
20483 points from a late-stage cosmological simulation.

are local to block b, i.e., they were assigned to it in the initial
decomposition. (As a technical detail, the facets of the convex
hull are treated as infinite tetrahedra, whose circumspheres
degenerate into half-spaces.) In addition to the points, each
block enqueues information about all of its original neighbors
to every other neighbor.

How do we decide when to stop? As we prove below, it
suffices to stop once no block enqueues any points, which
happens when none of the circumspheres that contain local
points on their boundaries intersect any of the neighbor blocks
added in the prior round. That’s precisely the stopping condition
we use in Algorithm 3, which summarizes the above description.

Fig. 5. Edges of the highlighted triangle leave the 1-neighborhood of the top-
left block in the k-d tree decomposition of the points. So does its circumsphere.

Algorithm 3 Adaptive neighborhood algorithm
1: decompose domain using a k-d tree
2: for each block b do . in parallel
3: compute the Delaunay tessellation of the local points
4: original-nbrs ← initial block neighbors
5: nbrs ← original-nbrs
6: while not done do
7: for each circumsphere S do
8: for each neighbor b′ ∈ nbrs do
9: if S intersects b′ then

10: enqueue vertices of S (local to b) to b′

11: enqueue original-nbrs to nbrs

12: all-queued = all-add(number of points enqueued)
13: if all-queued = 0 then
14: break

15: exchange points

16: dequeue points, insert into the tessellation
17: dequeue new-neighbors, add to the neighborhood
18: nbrs ← new-neighbors

Correctness. As Peterka et al. [32] show, the distributed
Delaunay tessellation is correct once the circumsphere of
every tetrahedron that contains any of the block’s local
points is contained entirely in the neighborhood of the block.
Accordingly, to prove the correctness of Algorithm 3, we need
to prove correctness of our stopping condition. To do so, we
consider the dual graph of blocks: its vertices are the blocks;
two vertices are connected by an edge if and only if the two
blocks intersect; see Figure 6. We define the k-neighborhood of
a block to be the set of blocks at distance at most k in the dual
graph. We verify that if a circumsphere does not intersect any
blocks in the k-neighborhood of a given block, then it does not
intersect any block in the k′-neighborhood, for k′ > k. This
claim would be trivial in the regular decomposition, where the
block neighborhoods are convex, but it’s not immediate in the
k-d tree decomposition. As Figure 6 illustrates, a block in the
3-neighborhood may be closer to the given block than a block
in the 2-neighborhood.

Fortunately, because the circumspheres themselves are
convex, the stated claim is true in general; it’s the contrapositive
of the following lemma.

Fig. 6. Dual graph of the 1-neighborhood. 2-neighborhood in gray. Box from
the 3-neighborhood shown in red; a sphere may intersect it even if it doesn’t
intersect the box to its left in the 2-neighborhood.

0
. . . k + 11

Fig. 7. Boxes intersected by a line segment within a circumsphere.

Lemma 1. A sphere intersects k + 1-neighborhood of a block
only if it intersects the k-neighborhood of the block.

Proof: Suppose a sphere intersects both the original block
and a block at distance k + 1 away from it. Consider two
points, one in each block, and the line segment connecting
them, which by convexity falls inside the sphere; see Figure 7.
Let 0 = i0, i1, . . . , in = k + 1 be the graph distances from the
original block to the blocks intersected by the line segment, in
order of intersection. The adjacent integers in this sequence
differ by at most one because the blocks are neighbors in the
dual graph. We claim that k appears in the sequence. Let A
consist of all the indices in the sequence of values greater
than k, A = {j ∈ {0, . . . , n} | ij > k}. A is clearly not
empty, since in = k+1, and it does not contain all the indices
since i0 = 0 (we assume k to be positive). Let m = minA.
im = k+1, since if im > k+1, then im−1 > k, and m−1 ∈ A,
contradicting the definition of m. It follows that im−1 = k,
proving the claim.

Remark 2. The proof does not rely on the structure of k-d
tree decompositions. The claim is true in the general setting.

Because in each round we test circumspheres against only
the new neighbors, received in the previous round, we need to
verify that as we add more points to the Delaunay tessellation,
the circumspheres with local points on the boundary cannot
start intersecting a neighbor that we have previously dismissed.
This is true because, as the following lemma shows, a union
of circumspheres around a point can only shrink as we add
new points. Let Sσ denote a circumsphere of the Delaunay
tetrahedron σ, and let Sp =

⋃
σ|p∈σ

Sσ denote the union of

circumspheres that contain p on their boundary. (For points
on the convex hull, we treat the half-spaces supported by the
convex hull facets as infinite circumspheres.)

Lemma 3. If Sp is the union of circumspheres of tetrahedra
in the Delaunay tessellation DelP of a point set P , and S′p is
the same union in the Delaunay tessellation DelP ′ of point
set P ′ = P ∪ {q}, then Sp ⊇ S′p.

Proof: Suppose the statement is false. Then there is a
point x ∈ S′p such that x 6∈ Sp. Then there is a tetrahedron
σ ∈ DelP ′ such that x ∈ Sσ (with p ∈ σ). If q is not in
σ, then σ ∈ DelP , and we have a contradiction. Consider
Delaunay triangle σ − q; it contains point p. Let σ1 and σ2 be
two Delaunay tetrahedra in DelP that intersect in this triangle.
Any sphere that intersects this triangle and no other point in
P lies in the union of the two circumspheres, Sσ1

∪ Sσ2
. But

this means that so does Sσ , which contradicts the assumption
that x 6∈ Sp.

VI. EVALUATION

The experiments in this section were performed on Edison,
a Cray XC30 at the National Energy Research Scientific
Computing Center (NERSC), and on Mira, an IBM Blue
Gene/Q at the Argonne Leadership Computing Facility (ALCF).
Edison is a 2.57-petaflop machine with 5576 nodes, each node
with 24 cores (Intel Ivy Bridge 2.4 GHz) and 64 GB RAM.
Mira is a 10-petaflop system with 49,152 nodes, each node with
16 cores (PowerPC A2 1.6 GHz) and 16 GB RAM. We use
CGAL for the serial computation of Delaunay tessellations. All
experiments use periodic boundary conditions and one block
per MPI process (i.e., the number of blocks equals the number
of MPI processes). All k-d tree experiments in this section
use histogram median approximation scheme, as explained in
Section IV. All our source code is publicly available,3 under
BSD license.

A. Nyx Data

We used Edison to tessellate three outputs of cosmological
simulations performed by Nyx, an N-body and gas dynamics
code [33] written in C++ and Fortran 90, based on the BoxLib
framework4 for structured-grid adaptive mesh methods. Nyx
follows the evolution of dark matter particles gravitationally
coupled to a gas using a combination of multi-level particle-
mesh and shock-capturing Eulerian methods. High dynamic
range is achieved by applying adaptive mesh refinement to
both gas dynamics and gravity calculations. The multi-grid
method is used to solve the Poisson equation for self-gravity.
The mesh structure used to update fluid quantities also evolves
the particles via the particle-mesh method.

The three outputs, a subset of the simulations described by
Lukić et al. [34], were all saved at the same redshift, z = 2,
which corresponds to a late stage in the simulation, where
the matter is already clumped together. The three differ in the
number of particles (our input points), 10243, 20483, 40963,
and in the box size, 20, 40, 80 h−1Mpc, respectively. Figure 3
illustrates the load balance in the 20483 dataset, which we
define as the ratio of maximum number of points in any block
to the average, for the regular and k-d tree decompositions.
For the former, the ratio varies from 6.6 at 256 blocks to
225 for 64Ki blocks. For the latter, using histogram median

3github.com/diatomic/tess2
4ccse.lbl.gov/BoxLib

ccse.lbl.gov/BoxLib

2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki

101

102

103

412.49 361.63 327.49
242.73

14.74
9.1 10.26

7.85

825.86 765.67
586.92

47.95
29.78

16.52
11.99

53.67

31.05
19.4

Number of blocks

Se
co

nd
s

Total computation time (Nyx)

regular (10243) k-d tree (10243)
regular (20483) k-d tree (20483)
perfect scaling k-d tree (40963)

Fig. 8. Strong and weak scaling on a late snapshot of a Nyx simulation: total
computation time includes point exchange and multi-round computation of the
Delaunay tessellation.

approximation scheme, the load balance stays almost constant,
going from 1.02 for 256 blocks up to 1.23 for 64Ki blocks.

Figure 8 shows the overall computation time: both domain
decomposition (which includes point distribution) and the multi-
round Delaunay tessellation. As is evident from the figure, the
better load balance is responsible both for a significantly faster
overall computation time (up to a factor of 50) and for much
better scaling. At the higher end, on the 40963 data set, the
strong scaling efficiency of the computation built on the k-d
tree decomposition is 69%, going from 53.67 seconds on 32Ki
to 19.4 seconds on 128Ki blocks.

The running time of the adaptive algorithm is sensitive to
the number of rounds it takes to compute the correct tessellation.
In the k-d tree experiments all runs take three rounds, except
the 8Ki and 16Ki block runs on 10243 points, which take four
rounds each. The extra round is what explains the slowdown
evident in Figure 8 when going from 4Ki to 8Ki blocks on the
10243 point dataset.

Figure 9 breaks out the time it takes to exchange points
between blocks. Here, despite a more complicated computation
involved in the k-d tree construction (because of the extra rounds
to pick an approximate median), the better point balance is
responsible for roughly five times faster distribution time.

Figure 10 illustrates the memory used by the tessellation
code, as measured at the end of the execution by the high-
water mark, accessible through Linux’s /proc interface. The
advantage of the balanced point distribution is evident again.
In case of the k-d tree decomposition, the per-block memory
never exceeds 2GiB (which, conveniently, is below the 2.66 GiB
per-core limit on Edison) and scales down with the increasing
number of blocks. In case of the regular decomposition, for
20483 points, the memory use spikes to 29GiB. We do not

2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki

100

101

4.65 5.04

3.23

2.181.32

0.75

0.5
0.42

7.77 8.9

5.99

6.52

3.83

2.21

1.43

10.15

5.9

3.74

Number of blocks

Se
co

nd
s

Decomposition time (Nyx)

regular (10243) k-d tree (10243)
regular (20483) k-d tree (20483)

k-d tree (40963)

Fig. 9. Strong and weak scaling on a late snapshot of a Nyx simulation:
point exchange time for k-d tree vs regular decomposition.

2Ki 4Ki 8Ki 16Ki 32Ki 64Ki 128Ki
10−1

100

101

15.59 13.75 12.63
9.42

0.57
0.33

0.21
0.15

29.29 28.33 22.9

1.94
1.08

0.63
0.39

2
1.14

0.75

Number of blocks

G
ib

ib
yt

es

Memory usage (Nyx)

regular (10243) k-d tree (10243)
regular (20483) k-d tree (20483)

k-d tree (40963)

Fig. 10. Strong and weak scaling on a late snapshot of a Nyx simulation:
overall memory usage.

evaluate the 40963 data set with regular decomposition simply
because the computation ran out of memory.

B. HACC Data

Dark matter is thought to account for over 80% of the
universe and is the basis for large-scale structure in the
universe such as the formation of galaxies. The HACC code
framework [35] simulates the nonlinear time evolution of the
universe to high precision by using dark matter tracer particles.

1Ki 2Ki 4Ki 8Ki 16Ki

100

101

4.43

6.57

9.47
12.31

23.49

1.02 1.03 1.05 1.06 1.14

Number of blocks

M
ax

/A
ve

ra
ge

Point balance (HACC)

regular (10243) k-d tree (10243)

Fig. 11. Points balance for regular vs k-d tree domain decomposition of a
10243 points from a late snapshot of a HACC simulation.

HACC, or Hardware/Hybrid Accelerated Cosmology Code,
is a simulation framework for computing cosmological models
on various supercomputing architectures such as GPUs and
many-core CPUs. It solves the Vlasov–Poisson equation to
evolve the phase-space distribution function for particles in an
expanding universe. The solution method is based on N-body
techniques with three kinds of force solvers: direct particle
summation, tree/multipole expansion, and spectral particle-
mesh. HACC was one of the first scientific simulations to
attain a sustained performance of greater than 10 PFlops on
any architecture [36].

Large simulation sizes are required in order to compute
even a fraction of the observable sky. Hundreds of billions to
trillions of particles are required to track galaxy-scale mass
distributions correctly [37]. The resulting spatial dynamic range
of particle density is 106 : 1. HACC can easily generate data
sizes over 100 terabytes to several petabytes in a single run.

We used Mira to tessellate the particle positions from the
final time step (step 499 at redshift z = 0) of a simulation run
of 10243 particles conducted in 2014. The original simulation
ran using 512 blocks. To perform a strong scaling study, we
distributed the original particles into the desired number of
blocks—from 1Ki to 16Ki—decomposed into either a regular
or k-d tree decomposition.

Figure 11 illustrates the load balance, which as in the
Nyx case is defined as the ratio of the maximum number of
points in any block to the average, for the regular and k-d tree
decompositions using the histogram median splitting method.
The ratio varies from 4.4 at 1Ki blocks to 23.5 for 16Ki blocks
for the regular decomposition, while the ratio remains nearly
constant, between 1.02 and 1.14, for the k-d tree.

Figure 12 shows the overall computation time: both domain
decomposition (which includes point distribution) and the multi-
round Delaunay tessellation. As in the Nyx experiment, the
better load balance is responsible both for a faster overall
computation time (up to a factor of 3.5) and for better scaling.

1Ki 2Ki 4Ki 8Ki 16Ki

102

102.5

429.91

327.95

251.11

181.96 169.05176.16

110.9

76.1

51.46
63.68

Number of blocks

Se
co

nd
s

Total computation time (HACC)

regular (10243) k-d tree (10243)

Fig. 12. Strong scaling on a late snapshot of a HACC simulation: total
computation time includes point exchange and multi-round computation of the
Delaunay tessellation.

Between 1Ki and 8Ki blocks, the tessellation using the regular
grid scales at 30% strong scaling efficiency while the efficiency
using the k-d tree is 43%.

The upturn in the k-d tree curve from 8Ki to 16Ki blocks is
because the number of rounds needed to complete the adaptive
algorithm increased by one. From 1Ki through 8 Ki blocks,
the k-d tree algorithm ran in three rounds, but four rounds
were required for 16 Ki blocks. The regular decomposition
tessellation completed in 2 rounds for all block counts.

To better understand why the improvement using the k-d tree
over the regular decomposition with the HACC data was less
than with the Nyx data, we break down the total time further.
Figure 13 shows the decomposition time (building the regular or
k-d tree decomposition and distributing the points into it). The k-
d tree decomposition is nearly two times faster than the regular
one. Compared with the Nyx experiment, the point balance
in the HACC data (23 : 1) is closer than the point balance in
the Nyx data (72 : 1), which explains why the improvement
in decomposition time is smaller for the HACC data (k-d tree
is 1.8 times faster than regular decomposition) than for Nyx
(k-d tree is 3.5 times faster than regular decomposition). The
scalability of the HACC decomposition is relatively flat for
both the regular and k-d tree decompositions. Looking back
at the Nyx decomposition in Figure 9, the curves are also
roughly parallel, but more steeply inclined than the HACC
data. Based on the absolute times, the HACC points were more
expensive to redistribute on Mira, both into a regular and k-d
tree decomposition, than the Nyx points on Edison. We plan
to investigate further how much of this difference is caused by
the data sets and how much is due to the different machine
architectures.

Figure 14 shows the time to compute the Delaunay tessel-
lation after the decomposition has been completed. Similar to
Figure 12, the strong scaling efficiency for just the tessellation
computation is 32% for the regular decomposition versus 54%

1Ki 2Ki 4Ki 8Ki 16Ki

101.2

101.4
28.64 27.84 28.69

25.32 25.68

16.13

14.43 14.41 14.02 14.11

Number of blocks

Se
co

nd
s

Decomposition time (HACC)

regular (10243) k-d tree (10243)

Fig. 13. Strong scaling on a late snapshot of a HACC simulation: point
exchange time for k-d tree vs regular decomposition.

1Ki 2Ki 4Ki 8Ki 16Ki
101.5

102

102.5
401.27

300.11

222.42

156.64 143.38

160.03

96.47

61.69

37.44

49.57

Number of blocks

Se
co

nd
s

Delaunay time (HACC)

regular (10243) k-d tree (10243)

Fig. 14. Strong scaling on a late snapshot of a HACC simulation: Delaunay
tessellation time for k-d tree vs regular decomposition.

for the k-d tree. As in Figure 12, the upturn in the k-d tree
curve is caused by the extra round required at 16Ki blocks.

C. Data Balance

To understand the regime where we expect the regular
decomposition to perform better than the k-d tree decompo-
sition, we compare the two algorithms on balanced data —
specifically, the initial conditions of the Nyx simulation used
in Section VI-A. Figure 15 shows scaling of both regular and
k-d tree decomposition versions of the algorithm. Its message
is clear: in the balanced case, the two algorithms scale equally
well, but the overhead of the multiple rounds of the adaptive
neighborhood algorithm makes it almost twice as slow.

2Ki 4Ki 8Ki 16Ki 32Ki

101
11.31

6.4

3.85

2.13

15.35

8.85

5.61

3.4

39.95

23.05

12.45

6.67

53.1

30.85

18.85

11.67

Number of blocks

Se
co

nd
s

Total computation time (Nyx, balanced data)

regular (10243) k-d tree (10243)
regular (20483) k-d tree (20483)

Fig. 15. Strong and weak scaling on initial conditions of a Nyx simulation:
total computation time includes point exchange and multi-round computation
of the Delaunay tessellation.

Time step Round 1 Round 2 Round 3 Round 4

0 10.673 6.773 3.888 5.200
205 10.465 4.270 3.490 —
893 11.137 5.317 4.750 —

1839 11.604 7.582 6.798 —
TABLE I. INDIVIDUAL ROUND TIMES FOR 8KI BLOCKS.

Time step Round 1 Round 2 Round 3 Round 4

0 5.362 4.237 2.218 3.031
205 5.194 2.504 1.937 —
893 5.564 3.115 2.766 —

1839 5.918 4.275 4.241 —
TABLE II. INDIVIDUAL ROUND TIMES FOR 16KI BLOCKS.

We view this slowdown as a reasonable trade-off: even
if the adaptive neighborhood algorithm is twice slower at
the beginning of the simulation, it becomes 50 times faster
towards the end (and, moreover, allows us to process snapshots
whose Delaunay tessellations exhaust the memory of the regular
decomposition).

To understand the relationship between data balance and
computation time better, we take roughly every 100-th time
step of the Nyx simulation and plot its balance (with respect to
the regular decomposition) versus the running times of the two
algorithms. Figure 16 presents the results. Already by the 200-th
time step the k-d tree version of the algorithm performs better.
Even more significant is the further progress: the algorithm
operating on the regularly decomposed data slows down linearly
as a function of particle imbalance, while the adaptive algorithm
balances the data using the k-d tree decomposition and requires
roughly constant amount of time.

The speed-up of the algorithm operating on a k-d tree
decomposition, apparent in Figure 16, is due to the decreasing
number of rounds. Tables I and II give the individual round
times. To process the initial conditions data (0-th time step
in the tables), the adaptive neighborhood algorithm takes four
rounds. By the 205-th time step (the third data point on each

0 2 4 6 8 10 12 14 16 18 20

20

40

60

80

Balance of the regular decomposition (max/avg)

Se
co

nd
s

Total computation time vs balance (Nyx, 20483)

regular (8Ki blocks) k-d tree (8Ki blocks)
regular (16Ki blocks) k-d tree (16Ki blocks)

Fig. 16. Computation time on regular and k-d tree decompositions as
functions of particle balance. The points missing from the figure for the
regular decomposition, where the corresponding k-d tree points are present,
indicate that the computation ran out of memory.

curve in Figure 16), when the running time stabilizes, there are
only three rounds. Their times remain stable until the last data
point on the k-d tree curves in the figure (893-rd time step).
The individual round times increase only slightly by the late
stage snapshot (1839-th time step) used in Section VI-A.

VII. CONCLUSION

We have presented a parallel algorithm for computing dis-
tributed Delaunay tessellations. The algorithm adapts to the data
in two way: first, it sorts the points into a distributed k-d tree
to balance their distribution between the processes; second, it
grows the neighborhood of each block to guarantee that enough
information is exchanged for the resulting distributed Delaunay
tessellation to be correct. We have evaluated this algorithm on
densely clustered data from late-stage cosmological simulations.
Its performance and scalability are significantly better than that
of the existing algorithms.

In future work, we intend to investigate the behavior of
our algorithm on more types of data (including plasma physics
data and CAD finite-element data, which exhibit qualitatively
different distributions of points than cosmology). We also plan
to try a different neighborhood expansion scheme: growing
neighborhoods exponentially, rather than linearly, as done in
this work. Finally, we intend to investigate how to couple our
new algorithm with density estimation on a uniform grid—the
challenge here stems from the need to redistribute information
across different domain decompositions: k-d tree to a regular
grid decomposition.

ACKNOWLEDGEMENTS

We would like to thank Zarija Lukić for providing the Nyx
data, Salman Habib and Katrin Heitmann for the HACC data.
We are grateful to Janine Bennett for shepherding this paper.

This work was supported by Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under
Contracts DE-AC02-06CH11357 and DE-AC02-05CH11231.
Work is also supported by DOE with agreement No. DE-FC02-
06ER25777.

REFERENCES

[1] W. Schaap and R. van de Weygaert, “Continuous Fields and Discrete
Samples: Reconstruction Through Delaunay Tessellations,” Astronomy
and Astrophysics, vol. 363, pp. L29–L32, 2000.

[2] W. E. Schaap, DTFE: The Delaunay Tesselation Field Estimator,
University of Groningen, The Netherlands, 2007, Ph.D. Dissertation.

[3] T. Peterka, H. Croubois, N. Li, E. Rangel, and F. Cappello, “Self-
Adaptive Density Estimation of Particle Data,” SIAM Journal on
Scientific Computing SISC Special Edition on CSE’15: Software and
Big Data, 2016.

[4] S. Shandarin, S. Habib, and K. Heitmann, “Cosmic Web, Multistream
Flows, and Tessellations,” Physical Review D, vol. 85, p. 083005, Apr
2012. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevD.85.
083005

[5] V. Springel, “Hydrodynamic Simulations on a Moving Voronoi Mesh,”
ArXiv e-prints, Sept. 2011.

[6] J. L. Bentley, “Multidimensional Binary Search Trees Used for Asso-
ciative Searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[7] G. Di Fatta and D. Pettinger, “Dynamic Load Balancing in Parallel KD-
Tree K-Means,” in Computer and Information Technology (CIT), 2010
IEEE 10th International Conference on. IEEE, 2010, pp. 2478–2485.

[8] C. Garth and K. I. Joy, “Fast, Memory-Efficient Cell Location in
Unstructured Grids for Visualization,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 16, no. 6, pp. 1541–1550, 2010.

[9] N. Andrysco and X. Tricoche, “Matrix Trees,” in Computer Graphics
Forum, vol. 29, no. 3. Wiley Online Library, 2010, pp. 963–972.

[10] J. Barnes and P. Hut, “A Hierarchical O(N log N) Force-Calculation
Algorithm,” nature, vol. 324, no. 6096, pp. 446–449, 1986.

[11] J. Carrier, L. Greengard, and V. Rokhlin, “A Fast Adaptive Multipole
Algorithm for Particle Simulations,” SIAM journal on scientific and
statistical computing, vol. 9, no. 4, pp. 669–686, 1988.

[12] M. Aly, M. Munich, and P. Perona, “Distributed Kd-Trees for Retrieval
from Very Large Image Collections,” in Proceedings of the British
Machine Vision Conference (BMVC), 2011.

[13] C. Zhang, A. Krishnamurthy, and R. Y. Wang, “Brushwood: Distributed
Trees in Peer-to-Peer Systems,” in Peer-to-Peer Systems IV. Springer,
2005, pp. 47–57.

[14] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram,
Z. Lukić, V. Roytershteyn, M. J. Anderson, Y. Yao, Prabhat, and
P. Dubey, “Bd-cats: Big data clustering at trillion particle scale,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: ACM, 2015, pp. 6:1–6:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807616

[15] A. Colbrook and C. Smythe, “Efficient Implementations of Search Trees
on Parallel Distributed Memory Architectures,” Computers and Digital
Techniques, IEE Proceedings E, vol. 137, no. 5, pp. 394–400, 1990.

[16] A. Colbrook, E. A. Brewer, C. N. Dellarocas, and W. E. Weihl,
“Algorithms for Search Trees on Message Passing Architectures,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 7, no. 2, pp. 97–108,
1996.

[17] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and
D. R. O’hallaron, “From Mesh Generation to Scientific Visualization:
An End-to-End Approach to Parallel Supercomputing,” in Proceedings
of the 2006 ACM/IEEE conference on Supercomputing. ACM, 2006,
p. 91.

[18] D. B. Larkins, J. Dinan, S. Krishnamoorthy, S. Parthasarathy, A. Rountev,
and P. Sadayappan, “Global Trees: A Framework for Linked Data
Structures on Distributed Memory Parallel Systems,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008, p. 57.

[19] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time
Systems,” in Parallel and Distributed Processing. Springer, 1999, pp.
533–546.

[20] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sa-
dayappan, “Scioto: A Framework for Global-View Task Parallelism,” in

Parallel Processing, 2008. ICPP’08. 37th International Conference on.
IEEE, 2008, pp. 586–593.

[21] K. L. Clarkson and P. W. Shor, “Applications of Random Sampling
in Computational Geometry,” Discrete and Computational Geometry,
vol. 4, pp. 387–421, 1989.

[22] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized Incremental
Construction of Delaunay and Voronoi Diagrams,” Algorithmica, vol. 7,
pp. 381–413, 1992.

[23] H. Edelsbrunner and N. R. Shah, “Incremental Topological Flipping
Works for Regular Triangulations,” Algorithmica, vol. 15, pp. 223–241,
1996.

[24] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Trans. Math. Softw., vol. 22, pp.
469–483, Dec. 1996. [Online]. Available: http://doi.acm.org/10.1145/
235815.235821

[25] A. Fabri and S. Pion, “CGAL: the Computational Geometry Algorithms
Library,” in Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser. GIS
’09. New York, NY, USA: ACM, 2009, pp. 538–539. [Online].
Available: http://doi.acm.org/10.1145/1653771.1653865

[26] C. Rycroft, “Voro++: A Three-dimensional
Voronoi Cell Library in C++,” Tech. Rep., 2009,
http://www.osti.gov/energycitations/servlets/purl/946741-
A8FxbI/946741.pdf.

[27] R. Miller and Q. F. Stout, “Efficient Parallel Convex Hull Algorithms,”
IEEE Trans. Comput., vol. 37, no. 12, pp. 1605–1618, Dec. 1988.

[28] C.-S. Jeong, “An Improved Parallel Algorithm for Constructing Voronoi
Diagram on a Mesh-Connected Computer,” Parallel Computing, vol. 17,
no. 4, pp. 505–514, 1991.

[29] G. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor, “Design
and Implementation of a Practical Parallel Delaunay Algorithm,” AL-
GORITHMICA Special Issue on Coarse Grained Parallel Algorithms,
vol. 24, pp. 243–269, August 1999.

[30] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar,
“A Randomized Parallel 3D Convex Hull Algorithm for Coarse
Grained Multicomputers,” in Proceedings of the Seventh Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA ’95.
New York, NY, USA: ACM, 1995, pp. 27–33. [Online]. Available:
http://doi.acm.org/10.1145/215399.215410

[31] P. Cignoni, C. Montani, R. Perego, and R. Scopigno, “Parallel 3d
Delaunay Triangulation,” in Computer Graphics Forum, vol. 12, no. 3.
Wiley Online Library, 1993, pp. 129–142.

[32] T. Peterka, D. Morozov, and C. Phillips, “High-Performance Computation
of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
997–1007.

[33] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel,
“Nyx: A Massively Parallel AMR Code for Computational Cosmology,”
The Astrophysical Journal, vol. 765, pp. 39–52, 2013.

[34] Z. Lukić, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and
A. Almgren, “The lyman α-forest in optically thin hydrodynamical
simulations,” Monthly Notices of the Royal Astronomical Society,
vol. 446, no. 4, pp. 3697–3724, 2015. [Online]. Available:
http://mnras.oxfordjournals.org/content/446/4/3697.abstract

[35] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath,
Z. Lukić, S. Sehrish, and W. Liao, “HACC: Simulating Sky
Surveys on State-of-the-Art Supercomputing Architectures,” New
Astronomy, vol. 42, pp. 49 – 65, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138410761500069X

[36] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann,
“HACC: Extreme Scaling and Performance Across Diverse Architectures,”
in Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: ACM, 2013, pp. 6:1–6:10.

[37] K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon, “The
Coyote Universe. I. Precision Determination of the Nonlinear Matter
Power Spectrum,” Astrophysical Journal, vol. 715, pp. 104–121, May
2010.

http://link.aps.org/doi/10.1103/PhysRevD.85.083005
http://link.aps.org/doi/10.1103/PhysRevD.85.083005
http://doi.acm.org/10.1145/2807591.2807616
http://doi.acm.org/10.1145/235815.235821
http://doi.acm.org/10.1145/235815.235821
http://doi.acm.org/10.1145/1653771.1653865
http://doi.acm.org/10.1145/215399.215410
http://mnras.oxfordjournals.org/content/446/4/3697.abstract
http://www.sciencedirect.com/science/article/pii/S138410761500069X

	Introduction
	Related Work
	Background: Parallel Delaunay algorithm
	K-d Tree Decomposition
	Adaptive Neighborhood Algorithm
	Evaluation
	Nyx Data
	HACC Data
	Data Balance

	Conclusion
	References

