
The SENSEI Generic In Situ Interface

Utkarsh Ayachit1, Brad Whitlock3, Matthew Wolf2, Burlen Loring4, Berk Geveci1, David
Lonie1, and E. Wes Bethel4,

1Kitware Inc., USA
2Oak Ridge National Laboratory, USA

3Intelligent Light, USA
4Lawrence Berkeley National Laboratory, USA

November, 2016

i

Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through
the grant “Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge
Discovery,” program manager Dr. Lucy Nowell.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

ii

The SENSEI Generic In Situ Interface

Utkarsh Ayachit∗, Brad Whitlock†, Matthew Wolf‡, Burlen Loring§, Berk Geveci∗, David Lonie∗, E. Wes Bethel§¶
∗Kitware, Inc.
†Intelligent Light

‡Oak Ridge National Laboratory
§Lawrence Berkeley National Laboratory
¶Corresponding author: ewbethel@lbl.gov

Abstract—The SENSEI generic in situ interface is an API that
promotes code portability and reusability. From the simulation
view, a developer can instrument their code with the SENSEI API
and then make make use of any number of in situ infrastructures.
From the method view, a developer can write an in situ method
using the SENSEI API, then expect it to run in any number of
in situ infrastructures, or be invoked directly from a simulation
code, with little or no modification. This paper presents the design
principles underlying the SENSEI generic interface, along with
some simplified coding examples.

Index Terms—Application programming interfaces, Computer
aided analysis, High performance computing, Scientific comput-
ing

I. Introduction
For current extreme-scale computation environments, users

already frequently have to make choices on how they export
data from their simulation codes because of limitations of I/O
bandwidth. This is generally done with simple sampling in
time – rather than exporting data every 200 steps as they might
prefer to do, they would export at every 1,000 or 2,000 steps
so that the ratio of compute to I/O time stays at a reasonable
level. The introduction of in situ processing frameworks as
a way of reducing the quantity of data being output allows
the user to have more control over the temporal resolution of
the output data, for example by enabling automated feature
detection so that only the key features of interest are output
frequently, with the whole data volume only being output at
large time intervals.

However, it is difficult enough as a data analyst to determine
how to create new, scientifically relevant feature detection
and/or feature-aware compression routines. Adding to this
complexity when working in situ, though, is that each of the
runtimes and hardware choices seem to have a different set of
expectations and requirements, potentially causing one to write
and rewrite the same algorithm with many different interfaces
and choices. Addressing this problem, the multiplication of
implementations of the same algorithm, is the primary goal
for SENSEI.

A colloquial summary of the SENSEI infrastructure could
be write once, use everywhere. It brings together three different
in situ frameworks to explore the space of commonality
between them and to regularize their interfaces in support
of an ecosystem of end users. This introduces a number of
fundamental goals for the project. First, if a simulation is
instrumented with SENSEI, it should be able to use any of the
different runtimes seamlessly. Second, if an analysis routine
works with SENSEI, it should be portable, in the specific
sense that it should be a straight forward process to move

that piece of analytics to a different scientific simulation that
uses SENSEI. The porting concerns should be at the level of
data management (specifying the change in names of variable
arrays), instead of wholesale rewriting of code.

An additional goal for SENSEI is to simplify the creation
of in situ analysis for simulation scientists, data analysts, and
visualization experts. This is relevant to the portability goal,
but it is also worth pulling out separately. With multiple in situ
frameworks, each with their own capabilities, advantages, and
expected coding patterns, it is quite challenging for simulation
scientists to instrument their code to each of the frameworks
separately. The same can be true for analysis experts when
deciding which framework to write their analysis routine
under.

Our solution to achieve these goals is twofold. Firstly, we
identify a data model as a shared intermediate form for all
data that the infrastructure can process. Secondly, we define
an API for instrumenting simulation and analysis codes to
use within SENSEI. Instrumentation will typically involve
providing implementations for the API which comprises the
SENSEI interface (§II).

After describing these design aspects, we will discuss the
implementation of the SENSEI model using the different
infrastructures (§III). Following that, we will provide some
performance discussion of different components (§IV), before
concluding with an overview of related work and summary of
future directions.

II. Interface Design

Data Model: A key part of the design of the common
interface was a decision on a common data description model.
Our choice was to extend a variant on the VTK data model.
There were several reasons for this choice. The VTK data
model is already widely used in applications like VisIt[1]
and ParaView[2], which are important codes for the post-hoc
development of the sorts of analysis and visualization that
are required in situ. The VTK data model has native support
for a plethora of common scientific data structures, including
regular grids, curvilinear grids, unstructured grids, graphs,
tables, and AMR. There is also already a dedicated community
looking to carry forward VTK to exascale computing, so our
efforts can cross-leverage those.

Despite its many strengths, there were some key additions
we wanted for the SENSEI model. To minimize effort and
memory overhead when mapping memory layouts for data
arrays from applications to VTK, we extended the VTK data
model to support arbitrary layouts for multicomponent arrays
through a new API called generic arrays[3]. Through this
work, this capability has been back-ported to the core VTK
data model. VTK now natively supports the commonly en-ISAV16; Salt Lake City, Utah, USA; November 2016

1

countered structure-of-arrays and array-of-structures layouts
utilizing zero-copy memory techniques.

Interface: The SENSEI interface comprises of three
components: data adaptor that helps map sim data to VTK
data model, analysis adaptor that maps VTK data model for
analysis methods, and in situ bridge that links together the
data adaptor and the analysis adaptor, and provides the API
that the simulation uses to trigger the in situ analysis.

The data adaptor defines an API to access the simulation
data as VTK data objects. The analysis adaptor uses this
API to access the data to pass to the analysis method. To
instrument a simulation code for SENSEI, one has to provide
a concrete implementation for this data adaptor API. The API
treats connectivity and attribute array information separately,
providing specific API calls for requesting each. This helps to
avoid compute cycles needed to map the connectivity and/or
data attributes to the VTK data model unless needed by active
analysis methods. The main parts of the sensei::DataAdaptor
API are as follows:
namespace sensei {
class DataAdaptor : ... {
/// provide the mesh. if structure_only is true,
/// then only the container data object is
/// returned without geometry or topology
/// information.
vtkDataObject* GetMesh(bool structure_only);
/// add an attribute array to the mesh container ,
/// if not already added.
bool AddArray(vtkDataObject* mesh,

int association ,
const std::string& arrayname);

/// enquire about available attribute arrays.
unsigned int GetNumberOfArrays(int association);
std::string GetArrayName(int association ,

unsigned int index);
/// release data.
void ReleaseData();
}; }

The analysis adaptor’s role is to take the data adaptor and
pass the data to the analysis method, doing any transformations
as necessary. For a specific analysis method, the analysis
adaptor is provided the data adaptor in its Execute method.
Using the sensei::DataAdaptor API, the analysis adaptor can
obtain the mesh (geometry, and connectivity) and attribute or
field arrays necessary for the analysis method.
namespace sensei {
class AnalysisAdaptor : ... {
/// execute the analysis routine. this method is
/// called to execute the analysis routine per
/// simulation iteration.
bool Execute(DataAdaptor* data);
}; }

III. Coding and Usage Example
To better understand the steps involved in instrumenting a

simulation and analysis code with SENSEI, we present coding
examples showing how to use the SENSEI interface. We first
present a view from the simulation code (§III-A), where we
instrument that code to set up the “outbound” data bridge.
The simulation code is the mini-application from Ayachit et
al., 2016 [4], which is bulk-synchronous parallel computation
of time-varying oscillators on a 3D structured mesh. At each
timestep, this code invokes an in situ method to perform
some computations. We present two different views of the
in situ method. We present a view from the in situ method
(§III-B), where we set up the “inbound” data bridge. This in
situ method formulation can be thought of as the equivalent
of a “subroutine” call since there is no in situ infrastructure in
the picture. To round out the presentation, we discuss how the

SENSEI interface would be used to connect to three specific
in situ infrastructures (§III-C).

A. View from the Simulation Code
To instrument the miniapp, we started by defining the

SENSEI bridge API. The bridge is custom to the code being
instrumented. For the miniapp, the bridge uses four API calls
to initialize and finalize once during the sim life cycle and pass
data and request analysis per temporal iteration, as illustrated
by the code below:
int main(...) {
// ** initialize app, including domain decomposition
// and global data structures. **
bridge::initialize(...); //<- init SENSEI
for (int timestep=first; timestep < last; ++timestep) {
// ** advance simulation **
bridge::set_data(...); //<- pass arrays
bridge::analyze(...); //<- request analysis

}
bridge::finalize(...); //<- cleanup SENSEI
// ** cleanup app **

}

Next, we implemented a custom sensei::DataAdaptor sub-
class called oscillator::DataAdaptor, that maps the data gen-
erated by the miniapp to a VTK data object. In our case, this is
fairly straight forward since VTK already has a representation
called vtkImageData that maps to a uniform rectilinear grid.
We support arbitrary distribution across MPI ranks, we opted
to build a composite dataset (vtkMultiBlockDataSet) compris-
ing of block for each domain block. oscillators::DataAdaptor
has custom API global extents as well as extents for a specific
block along with data for the same which gets called in
bridge::initialize and bridge::set data.

B. View from the In Situ Method
When instrumenting for an in situ analysis method, one

has to provide a sensei::AnalysisAdaptor subclass that simply
implements the Execute(sensei::DataAdaptor*) method. In
the simplest case, the analysis method is already based on
the VTK data model. In which case, the AnalysisAdaptor
subclass simply obtains the VTK data object using the sen-
sei::DataAdaptor and does the necessary computation.
namespace sensei {
bool Histogram::Execute(sensei::DataAdaptor* data) {
...
// request light-weight mesh without connectivity info
vtkDataObject* mesh = data->GetMesh(/*structure_only*/true);
// request the array to histogram
data->AddArray(mesh, this->Association , this->ArrayName);
...
// * compute histogram using the array available on mesh
// * cell or point data locally and then reduce local
// * result across ranks using MPI Reduce.
} }

If the analysis method assumes a different data model, for
example, computes histogram for raw C/C++ arrays, then the
Histogram::Execute method needs to obtain the raw array
pointers from VTK data object and do any transformations
needed.

The sensei::AnalysisAdaptor, using sensei::DataAdaptor,
remains isolated from the data producer. Hence any simulation
code, that is instrumented to provide a sensei::DataAdaptor
implementation can easily invoke the analysis method.

C. Interfacing to Infrastructure: VisIt/Libsim, PV/Catalyst,
ADIOS

The sensei::AnalysisAdaptor enables bringing in arbitrary
analysis method within SENSEI. It also provides a convenient

2

abstraction to interface with any other in situ infrastructure.
Our implementation supports three of such infrastructures:
VisIt/Libsim, ParaView/Catalyst and ADIOS. Libsim and Cat-
alyst are both in situ visualization infrastructures while ADIOS
is an I/O framework with in situ capabilities. Interfacing with
the in situ visualization infrastructures entails providing access
to the data made available via sensei::DataAdaptor to these
for using analysis & visualization capabilities within these
infrastructures. For ADIOS, the AnalysisAdaptor serializes
the data provided by the DataAdaptor using ADIOS API.
Additionally, we implemented a analysis endpoint which can
read data using ADIOS API and provide a DataAdaptor
interface. Now, any analysis method (including Libsim and
Catalyst) can be added on to the analysis endpoint for posthoc
or staged execution.

The bridge described in §III-A is responsible for setting up
the AnalysisAdaptor for analysis to enable execution during a
simulation. To make that easily configurable, we use a simple
XML description:
<sensei>
<analysis type="histogram"
array="data" association="cell" bins="10" />
<analysis type="catalyst" pipeline="slice" ... />
<analysis type="libsim" plots="Pseudocolor" ... />
<analysis type="adios"
filename="oscillators.bp" method="FLEXPATH" />

</sensei>

In the following subsections, we discuss the details of the
AnalysisAdaptor implementation for the three infrastructures.

1) VisIt/Libsim: SENSEI was used to build an analysis
adaptor based on Libsim, which enables SENSEI to per-
form data analysis and rendering using VisIt. In this case,
the SENSEI autocorrelation mini-app was integrated with a
Libsim adaptor that could slice the incoming VTK data and
render images of the sliced data. SENSEI was integrated
with Libsim by subclassing sensei::AnalysisAdaptor to create
a new class called sensei::libsim::AnalysisAdaptor. The new
class implements a Libsim simulation adaptor, which couples
SENSEI to Libsim so that VTK datasets passed to the class
by SENSEI can be passed to Libsim via the typical Libsim
callback function mechanism. The class’ Execute() method
sets up visualizations and renders the plots to an image which
is then saved to disk. The analysis adaptor calls Libsim to set
up VisIt plots directly or indirectly using a pre-created VisIt
session file saved from the VisIt GUI.

The bulk of sensei::libsim::AnalysisAdaptor is devoted to
passing VTK data from sensei::DataAdaptor to Libsim so
VisIt can operate on the data. Both VisIt and SENSEI use
VTK as their base data model. However, since Libsim was
designed to interface with simulations using their own array-
based data structures, its interface requires meshes and fields
be specified using arrays instead of complete VTK datasets.
This means that SENSEI’s VTK datasets must be picked apart
so that their array data may be passed to Libsim. The arrays
are used inside VisIt to reconstitute VTK datasets, which are
in this case zero-copy (for the bulk data) facsimiles of the
SENSEI VTK datasets.

2) ParaView/Catalyst: When using Catalyst for in situ
analysis, one has initialize and use a singleton called vtkCP-
Processor, that sets up the ParaView/Catalyst engine, and add
visualization pipelines, using subclasses of vtkCPPipeline, to
it. The simulation is expected to pass a VTK data object
to the coprocessor on each iteration. The coprocessor then
executes relevant visualizations pipelines. Incorporating this
workflow within the sensei::AnalysisAdaptor subclass was
quite straight forward. The sensei::catalyst::AnalysisAdaptor
in its Execute(...) method first ensures that the vtkCPProcessor

is properly initialized and then passes it a vtkDataObject
obtained from the sensei::DataAdaptor. Since Catalyst has
mechanisms for a pipeline to only ask for specific arrays for
specific timesteps, the sensei::catalyst::AnalysisAdaptor can
leverage those to only ask the sensei::DataAdaptor for the
fields of interest for timesteps where the pipelines are to be
executed. Since Catalyst pipelines are already designed to
work with the VTK data model, no other data transformations
are needed.

The sensei::catalyst::AnalysisAdaptor also exposes an API
to add any visualization pipelines, including a custom C++
pipeline or a Python script generated using the ParaView
desktop application. To generate a slice and save a screenshot,
for example, we created a custom vtkCPPipeline subclass that
takes the input mesh and slices it using ParaView’s API to
create filters and then render it in a view.

3) ADIOS: As an in situ framework, ADIOS has a some-
what different approach from LibSim and Catalyst. Part of the
goal of the interface is to make it so that invoking in situ
processing and disk I/O look the same to the application; the
actual specification of what happens for the in situ processing
happens outside of the ADIOS layer itself. The processing is
carried out by a separate executable that could be launched on
the same core, the same node, or indeed a different node in the
same machine. This flexibility adds a little to the complexity
of the batch launch script that a user must use, but it fits
very well with the Adaptor+Bridge+Execute structure of the
SENSEI interface.

Within the ADIOS implementation of SENSEI, the key
component is managing the subset of the VTK data model that
we’re using in a self-consistent manner. ADIOS doesn’t na-
tively understand meshes; instead, it supports arbitrarily named
variable arrays, and the attachment of attributes (metadata) so
that the reader/consumer of the data can reconstruct your in-
tent. The ADIOS adaptor uses the introspection capabilities of
VTK to be able to walk the arrays and meshes that are part of
the passed-in object and labels all of the array, scalar variables,
and attributes using a fixed namespace mapping. For example,
the number of points in mesh #2 of a multi-patch mesh
representation in VTK would become “block2/numpoints” in
the ADIOS description.

The Adaptor thus mainly does clerical tasks or marshalling
data once SENSEI is invoked. The Execute function allows
ADIOS to then transmit data using one of several transports
that support in situ; our current work has been focused on
the FlexPath transport [5]. Because of the adaptor + endpoint
strategy, the ADIOS method can be used to transport data to
a different staging area (on node or off), where LibSim or
Catalyst can then be invoked as an in situ function within the
endpoint executable as a composite workflow.

IV. Results and Discussion

A. Performance Analysis
A natural question to ask is “how much overhead does use of

a unified in situ interface add compared to direct invocation?”
The answer to this question is the subject of a recent study by
Ayachit et al., 2016 [4]. The following paragraphs contain a
summary of the results and findings that are most relevant to
the main theme of this paper.

One set of tests involve looking at this very question by
running a bulk-synchronous parallel mini-application at vary-
ing levels of concurrency (812-, 6496-, 45440-way parallel). In
one configuration, the mini-application did direct invocation of
an autocorrelation computation, and in another configuration,
invoked that method via the SENSEI interface. That study
measured runtime performance and memory footprint. The

3

results there show no discernable difference between these two
configurations. In this case, the data models of data producer
and consumer were identical (3D, structured mesh), so the
SENSEI data bridge was able to broker zero-copy memory
access.

Ayachit et al., 2016 [4] also presents studies where the
SENSEI interface is used with three scientific applications,
one of which demonstrates in situ at greater than 1M-way
concurrency. Two of the examples are able to achieve zero-
copy memory access due to similar data models between the
simulation and the in situ methods and infrastructure. One
of the applications, an unstructured memory code, ends up
using zero-copy for mesh data but requires a deep copy for
mesh connectivity data. The performance analysis for that
application does a coarse-grained measure of the cost of in
situ, which includes the cost for in situ processing as well as
the cost of the SENSEI data bridge. While it is clear that a
deep copy involves greater cost than a zero-copy configuration,
future work would entail finer-grained instrumentation to shed
more light on these costs.

B. Portability
A more difficult thing to measure is “the cost of portability.”

One of the goals for the SENSEI project is to make it possible
write an in situ method once, then have it run in any of several
different in situ infrastructures with little, if any, modification.
The SENSEI project is still at an early stage in this regard,
though studies like Ayachit et al., 2016 [4] show that it is
possible to achieve, at least initially within a constrained set
of circumstances.

V. RelatedWork
The subject of in situ methods and infrastructure is a vibrant

research and development area, owing to the widening gap
between our ability to compute data and our ability to save it to
persistent storage. This topic was the subject of a 2016 EuroVis
State-of-the-Art report [6], which presents an in-depth survey
of previous work in this space, along with an assessment of
current research challenges. One of those research challenges,
namely the interface between simulation codes and in situ
methods and infrastructure is the subject of this paper.

In the area of in situ interfaces, there are two broad ap-
proaches that one might consider. One approach is an explicit
instrumentation, where the simulation code must be modified
with API calls that connect the simulation to the in situ method
or infrastructure. This is the approach is the one we are
taking with this work, and is also the approach used by Vis-
It/Libsim [1], ParaView/Catalyst [7], as well as other projects
like Damaris/Viz [8], Freeprocessing [9] and Strawman [10].
Damaris/Viz’s API has sharing semantics for arrays to be
safely used by both the simulation and the in situ application.
There, allocation is done through Damaris/Viz and works most
efficiently when double-buffering is used when updating the
simulation’s data structures during time-stepping. Strawman
supports Cartesian, rectilinear and unstructured grids and uses
Conduit’s [11] data model. It supports zero-copy arrays but
requires a matching array layout.

The SENSEI interface model provides a data bridge, which
serves to rectify differences between the data models of
the data producer (e.g., the simulation) and consumer (e.g.,
the in situ method or infrastructure). Zero-copy operation is
supported when the data models of each are closely aligned,
with shallow or deep copies required depending upon the
degree to which they are not aligned. In an application case
study bridging between an unstructured mesh code and Par-
aView/Catalyst, use of the SENSEI interface resulted in zero-
copy for mesh data but a deep copy of mesh connectivity [4].

Whereas many of these require that the simulation scientist
specify the in situ processing choices at compile time, another
approach is to utilize a more generic I/O interface that could
support I/O or in situ, which allows the user to make the choice
at run time. This is the approach taken by ADIOS [12], [5] and
GLEAN [13]. This can be used to support relatively complex
in situ deployments that can adapt their pipeline on the fly
based on resource issues [14]. In this use case, the SENSEI
interface has proven useful as the basis for having methods
work together, or in connecting multiple in situ infrastructures
in a chaining configuration [4].

VI. Conclusion and FutureWork
The SENSEI generic in situ interface promotes code porta-

bility and reuse in in situ processing environments. It accom-
plishes “write once, use everywhere” through the use of a
generic data model and user-definable mappings to/from that
generic data model, which can result in highly efficient, zero-
copy data access in many common use cases. The interface
simplifies simulation codes’ use of several different in situ
infrastructures by encapsulating the complexity of using those
infrastructures directly. From the simulation view, the result
is a simplified, portable, flexible, and low-cost entry to use
of in situ methods and infrastructure. This portability across
different infrastructures offers some unique benefits: one such
benefit we observed when doing scalability studies in Ayachit
et al., 2016 [4] was that, from the simulation view, it was
possible to switch from a strictly in situ approach to an in
transit approach with no modification to the simulation code:
we were able to swap out one in situ infrastructure for another
with no modifications to the simulation code.

When developers of in situ methods use a generic interface
that can be run in many in situ infrastructures, the result is an
increased likelihood of collaboration and sharing of methods.
Contrast this result with in situ approaches of the past, where
a method developed for one code would require modification,
potentially extensive, for use with a different code. Increased
sharing and collaboration is one of the essential ingredients
for fostering a community of developers and users within the
in situ space.

There remains a great deal of work to be done in the future.
One area that is highlighted by our performance discussion
is the nature of costs associated with mapping to/from the
generic data model and that used by simulation codes and
in situ methods and infrastructures. Specifically, when data
models are similar across all, then a zero-copy realization will
result in the best performance as no data is moved. When
data models diverge, then the cost will increase as a function
of the degree to which data needs to be reorganized. We have
not attemped to measure or quantify those costs, though we
know those costs do exist.

The source code for the SENSEI generic interface will
be released soon under an open source license, and will
be accessible from the SENSEI project website [15]. We
plan to also release code associated with the performance
studies of Ayachit et al., 2016 [4], which includes codes for
in situ methods (histogram, autocorrelation), as well as the
code associated with creating the connections to the Libsim,
Catalyst, and ADIOS in situ infrastructures.

Acknowledgment
This work was supported by the Director, Office of Science,

Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231, through the grant “Scalable Analysis Methods
and In Situ Infrastructure for Extreme Scale Knowledge Dis-
covery,” program manager Dr. Lucy Nowell. This research

4

used resources of the Argonne Leadership Computing Facil-
ity (ALCF), the Oak Ridge Leadership Computing Facility
(OLCF), and the National Energy Research Scientific Com-
puting Center (NERSC).

References
[1] “VisIt,” June 2015, http://visit.llnl.gov, last accessed August, 2016.

[Online]. Available: http://visit.llnl.gov
[2] Utkarsh Ayachit, The ParaView Guide: A parallel visualization applica-

tion. Kitware, Inc., 2015.
[3] David Lonie, “vtkArrayDispatch and Related Tools,” http://www.

vtk.org/doc/nightly/html/VTK-7-1-ArrayDispatch.html, last accessed
August, 2016. [Online]. Available: http://www.vtk.org/doc/nightly/html/
VTK-7-1-ArrayDispatch.html

[4] U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu,
K. Jansen, B. Loring, Z. Lukić, S. Menon, D. Morozov, P. O’Leary,
M. Rasquin, C. P. Stone, V. Vishwanath, G. H. Weber, B. Whitlock,
M. Wolf, K. J. Wu, and E. W. Bethel, “Performance Analysis, Design
Considerations, and Applications of Extreme-scale In Situ Infrastruc-
tures,” in Proceedings of SC16, Salt Lake City, UT, USA, Nov. 2016,
To appear.

[5] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based pub-
lish/subscribe system for large-scale science analytics,” in Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on. IEEE, 2014, pp. 246–255.

[6] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W.
Bethel, “In Situ Methods, Infrastructures, and Applications on High
Performance Computing Platforms, a State-of-the-art (STAR) Report,”
Computer Graphics Forum, Proceedings of Eurovis 2016, vol. 35, no. 3,
Jun. 2016, lBNL-1005709.

[7] A. C. Bauer, B. Geveci, and W. Schroeder, The ParaView Catalyst User’s
Guide v2.0. Kitware, Inc., 2015.

[8] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: a nonintrusive, adaptable and user-friendly in situ visual-
ization framework,” in Proceedings of the IEEE Symposium on Large-
Scale Data Analysis and Visualization (LDAV ’13), Oct. 2013, pp. 67–75.

[9] T. Fogal, F. Proch, A. Schiewe, O. Hasemann, A. Kempf, and J. Krüger,
“Freeprocessing: Transparent in situ visualization via data interception,”
in Eurographics Symposium on Parallel Graphics and Visualization:
EG PGV:[proceedings] sponsored by Eurographics Association in co-
operation with ACM SIGGRAPH. Eurographics Symposium on Parallel
Graphics and Visualization, vol. 2014. NIH Public Access, 2014, p. 49.

[10] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and
C. Harrison, “Strawman: A batch in situ visualization and analysis
infrastructure for multi-physics simulation codes,” in Proceedings
of the First Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ser. ISAV2015. New
York, NY, USA: ACM, 2015, pp. 30–35. [Online]. Available:
http://doi.acm.org/10.1145/2828612.2828625

[11] “Conduit website,” http://software.llnl.gov/conduit/, last accessed April,
2016. [Online]. Available: http://software.llnl.gov/conduit/

[12] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield et al., “Hello adios: the
challenges and lessons of developing leadership class i/o frameworks,”
Concurrency and Computation: Practice and Experience, vol. 26, no. 7,
pp. 1453–1473, 2014.

[13] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-
aware data movement and staging for I/O acceleration on Blue
Gene/P supercomputing systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 19:1–
19:11. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063409

[14] J. Dayal, J. Lofstead, G. Eisenhauer, K. Schwan, M. Wolf, H. Abbasi,
and S. Klasky, “Soda: Science-driven orchestration of data analytics,”
in e-Science (e-Science), 2015 IEEE 11th International Conference on.
IEEE, 2015, pp. 475–484.

[15] “SENSEI Project Website,” http://www.sensei-insitu.org, last accessed
August 2016.

5

