
Master of Puppets: Cooperative Multitasking
for In Situ Processing

Dmitriy Morozov
Lawrence Berkeley National Laboratory

dmitriy@mrzv.org

Zarija Lukić
Lawrence Berkeley National Laboratory

zarija@lbl.gov

ABSTRACT
Modern scientific and engineering simulations track the time
evolution of billions of elements. For such large runs, storing
most time steps for later analysis is not a viable strategy. It
is far more efficient to analyze the simulation data while it is
still in memory. In this paper, we present a novel design for
running multiple codes in situ: using coroutines and position-
independent executables we enable cooperative multitasking
between simulation and analysis, allowing the same executa-
bles to post-process simulation output, as well as to process
it on the fly, both in situ and in transit. We present Henson,1

an implementation of our design, and illustrate its versatility
by tackling analysis tasks with different computational re-
quirements. Our design differs significantly from the existing
frameworks and offers an efficient and robust approach to
integrating multiple codes on modern supercomputers. The
presented techniques can also be integrated into other in situ
frameworks.

1. INTRODUCTION
Many scientific fields rely on simulations to produce mod-

els and predictions. Typical examples are astrophysics and
cosmology, climate studies, plasma physics, and neural sim-
ulations, where the number of computational elements, for
example, dark matter particles or neural synapses, reaches
into the trillions. A single time snapshot from such runs is
tens of terabytes. In this regime, the traditional approach of
running a CPU-intensive simulation, saving many outputs
to disk, and analyzing them later is hopelessly inefficient.

To make matters worse, while there are several HPC cen-
ters around the world that allow scientists to obtain time
allocations large enough to produce such simulations, there
is virtually no way to apply for petabytes of disk storage
for their output. Therefore, a significant challenge for com-
putational science is how to efficiently run simulation and
analysis codes in situ, without saving (most of) the data to
disk. This problem is the main motivation of our work.

1https://github.com/mrzv/henson

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4314-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2907294.2907301

Even if there was disk space, it would be impractical to
save a large number of time steps — the slowdown due to
I/O would be high. At the same time, the data could be
analyzed while it’s still resident in memory: many forms of
analysis produce output orders of magnitude smaller than
the input — halo catalogs or light cones in cosmological simu-
lations; changes in average temperatures over time in climate
simulations; cumulative energy distributions for particles in
plasma simulations — making it both possible and sensible to
save the results of the analysis, while either abandoning the
simulation data completely, or storing only a few snapshots.

It may seem that the supercomputers’ restrictions and
the desire to share memory force simulation and analysis
codes to be tightly coupled by being compiled into a single
executable. In this paper we show that tight coupling is not
required. The codes can remain separate yet execute on the
same nodes. Crucially, they can share the same memory
and data without any changes to their memory management
facilities.

2. COOPERATIVE MULTITASKING
Our solution depends on two ingredients: position-inde-

pendent executables and coroutines.

Position-independent executables. To let multiple exe-
cutables share memory, as well as to avoid limitations of some
supercomputers, such as the absence of fork on IBM BG/Q
systems, we can compile our codes as position-independent
executables. The resulting binaries are both executables and
dynamic libraries.

If one compiles an analysis code as a position-independent
executable, one can launch it as a standalone process to
analyze a snapshot of a simulation saved on disk. But it also
becomes possible to load the code inside a different process,
using the dlopen/dlsym facilities of libdl to get the address
of its main. Listing 1 presents the relevant code snippet.

typedef int (* MainType)(int argc , char *argv []);
void* lib = dlopen(fn.c_str(), RTLD_LAZY);
MainType lib_main = (MainType) dlsym(lib , "main");

Listing 1: dlopen/dlsym example.

Loading simulation and analysis executables inside one
process has a significant advantage. All the routines share the
same address space — there is no process isolation enforced
by the operating system. Therefore, they can exchange data
by simply passing pointers to each other, without any changes
to their memory management facilities. Achieving such zero-
copy regime with executables running as separate processes
is considerably more complicated.

https://github.com/mrzv/henson
http://dx.doi.org/10.1145/2907294.2907301

Coroutines. Once the main functions are in memory, we
need to switch control between them. It is possible for the
simulation to call the analysis code directly, as a subroutine.
But this puts a restriction on the analysis, which wouldn’t
exist if we used separate processes: when returning back to
the simulation, the analysis would inevitably lose its state,
both the stack and the program counter.

What we face is a classical problem with subroutines: they
have a single entry point, and, when returning, they lose
their stack frame. This problem has an elegant solution.
Coroutines, a generalization of subroutines, described in
detail in the first volume of Knuth’s monograph [1, Section
1.4.2], maintain their state across invocations. Switching
from one coroutine to another changes the execution context,
including the stack pointer, program counter, registers, etc.
As a consequence, not only is the coroutine’s data preserved,
but when we switch back to it, the execution resumes exactly
where it left off.

There are C++ libraries that provide the coroutine func-
tionality. By default, Henson uses libcoro,2 included in its
distribution, which allows us to create an independent con-
text for each executable. The switches between contexts
happen cooperatively, when either simulation or analysis ex-
plicitly returns control via a yield function, described in
more detail in the next section.

3. HENSON
We now describe a system, Henson, built on the principles

of the previous section. Henson consists of three parts: the
application that controls the execution flow between the
different codes, referred to as puppets inside the application;
a small C library that the puppets must link (the library
wraps libcoro and provides functions to control execution
and data exchange); and auxiliary tools (as well as examples)
to simplify transition from in situ to in transit analysis
regimes.

Controller. henson, the application, controls execution.
The user specifies what codes to run and how to run them
in a script. A sample script appears in Listing 4. The first
lines define puppets used in the code. The text after the
equals sign is interpreted as a command line: the first word is
the executable, while the rest of the symbols are parsed and
passed to the main function. Once the puppets are loaded,
the script specifies how to alternate execution between them.

Puppets. Listing 2 gives an example of a puppet; it il-
lustrates a typical time step of a simulation. After the
computation is finished, the simulation exposes its data to
other puppets by calling henson_save_*, and yields control
back to henson by calling henson_yield. These functions are
provided by libhenson, the C library that all the puppets
must link.

Henson provides a shared table that maps strings to values.
When a puppet saves an array, it does not actually copy any
elements, but rather stores the pointer and array metadata
in the table. An array stores the address of its first element,
the size of individual elements, their number, and the stride
between elements; see Listing 2 for an example.

Having read this metadata, analysis code can access the
respective arrays directly. Listing 3 shows a skeleton of the
analysis code. Analysis itself may choose to yield execution

2http://software.schmorp.de/pkg/libcoro.html

to henson, for example, if its output may need to be processed
by another code.

double redshift; size_t count , dtype , stride;
float *x, *y, *z;
henson_load_double("redshift", &redshift);
henson_load_array("x", &x, &dtype , &count , &stride);
henson_load_array("y", &y, &dtype , &count , &stride);
henson_load_array("z", &z, &dtype , &count , &stride);
// analyze the data
henson_save_pointer("analysis -data", analysis_data);
henson_yield ();

Listing 3: Analysis skeleton.

Execution groups. Henson supports multiple execution
groups, each specified as a separate while-loop in the script.
Listing 4 defines two execution groups, producer and con-
sumer. When launching henson, a user may specify on the
command line how many processors to allocate to each exe-
cution group.

Henson supports multiple execution groups to allow in tran-
sit analysis, where data moves from one group to another,
running on a separate set of processors. To identify those
processors, group names are helpful inside puppets: a puppet
may request an MPI inter-communicator that connects the
processors of its local execution group with those of a re-
mote group by calling henson_get_intercomm(remote_group_
name). In Listing 4, group names (producer and consumer)
are passed to send and receive puppets precisely for this
reason.

MPI. Henson initializes MPI, so puppets should not repeat
the initialization individually. Similarly, each puppet should
restrict its communication to an MPI intra-communicator
within its execution group. The latter can be obtained with
an explicit call to henson_get_world, but libhenson also in-
cludes MPI wrappers (built on top of the PMPI interface).
These wrappers, when running under Henson, disable MPI
initialization and transparently replace MPI_COMM_WORLD by
the result of henson_get_world in all operations. These wrap-
pers allow the same codes to run independently or under
Henson, both with a single or multiple execution groups,
with no changes.

Data flow. Individual puppets don’t have to be simulation
or analysis codes, they can also be routines that exchange
data between execution groups. Henson includes two tools,
send and receive, which not only serve as examples of such
puppets, but are also useful for real applications. send looks
up the names in the shared table and sends their contents
to the remote group; receive receives the remote data and
inserts them into the local table. Both tools can commu-
nicate between execution groups with different numbers of
processors.

The two routines can be run in synchronous or asyn-
chronous mode; --async flag in Listing 4 indicates the latter.
In synchronous mode, the two routines wait for each other,
so each time step of the simulation is sent over to the analy-
sis. In the asynchronous mode, send checks if receive has
requested more data, in which case it fulfills the request.
When the temporal resolution of the simulation is finer than
what the analysis needs, the asynchronous mode has the
obvious advantage: simulation and analysis proceed at their
own pace, pausing to exchange data only when necessary.

The advantage of our design is that simulation and analysis
don’t require any changes to accommodate different execution

http://software.schmorp.de/pkg/libcoro.html

while (/* main time loop */)
{

// ... (simulation time step)
henson_save_double("redshift", z);
henson_save_array("x", &P[0]. Pos[0], sizeof(float), count , sizeof(struct particle_data));
henson_save_array("y", &P[0]. Pos[1], sizeof(float), count , sizeof(struct particle_data));
henson_save_array("z", &P[0]. Pos[2], sizeof(float), count , sizeof(struct particle_data));
henson_yield ();

}

Listing 2: Time step in a cosmological simulation puppet. Particle quantities are stored in struct particle_data. Our
analysis uses only positions; we set element size to sizeof(float), while using the size of particle_data as the stride.
count is the number of particles on the local processor.

sim = ../../L-Gadget3/L-Gadget3 $gadget_settings(gadget -defaultx256)
tess = ./tess -w _ _ _ _ _ 0. 0. 0. $max_x (100.) $max_y (100.) $max_z (100.)
entropy = ./ entropy _ $entropy_out(entropy -256. txt)
lightcone = ./ lightcone 1 1 1 0.524 lightcone.out

send = ../ henson/tools/send --async consumer x,y,z:array t:size_t redshift:double
receive = ../ henson/tools/receive --async producer x,y,z:array t:size_t redshift:double

producer while sim:
sim
lightcone
send

consumer while receive:
receive
*tess
entropy

Listing 4: Henson script to (asynchronously) exchange data between execution groups, producer and consumer. The
two while-loops execute in parallel; send and receive puppets move data between the processors on demand.

regimes: simulation posts pointers to data in a shared table,
analysis reads them from the table, but each one is oblivious
to what happens when they are not running. This allows
other puppets (like send and receive above) to move data
between different nodes, enabling the in transit analysis,
illustrated in Listing 4. At the same time, the simulation
and analysis codes require no changes to run in situ; the user
simply modifies the script to replace two execution groups
by one, as in Listing 5.

world while sim:
sim
lightcone
*tess
entropy

Listing 5: In situ version of the script in Listing 4, with
identical puppet definitions omitted.

4. EXPERIMENTS
To evaluate Henson, we conducted a series of experiments

at the National Energy Research Scientific Computing Center
(NERSC) on Edison, a Cray XC30 with 5,576 nodes, each
with 24 cores (Intel Ivy Bridge 2.4 GHz) and 64 GB RAM.

We ran several N-body simulations using Gadget [2], a
widely used code for modelling the evolution of cosmic struc-
ture, which we modified to save in Henson’s data table, after
every time step, several internal variables, including particle
positions and redshift, and to call henson_yield. Listing 2
shows all the necessary changes, copied directly from our
modified version of Gadget. For reference, it takes Gadget
approximately 8.5 seconds to save on disk all particle posi-
tions for a single time step, when using 4096 processors. The
simulation takes on average 0.6 seconds for a single time step
using 4096 processors.

Tessellation. Most our analysis uses Voronoi tessellations.
We use tess, a tessellation code that implements the algo-
rithm of Peterka et al. [3] In cosmology, Voronoi tessellations
can be used to estimate mass density from N-body simula-
tions, for example, as particle mass divided by its Voronoi
cell volume. After normalization, we can treat the result as
a probability density function and compute its information
entropy using entropy code.

We always run tess and entropy on the same nodes, but
we try two different regimes for placing the tess–entropy
pair and the simulation. In the first case, we run all three
in situ, on the same set of nodes, with all data transfers
between codes occurring by passing pointers using Henson
data facilities. Because the tess–entropy analysis of a single
time step takes a lot longer than the simulation, and because
we don’t need to analyze every time step, we try a fair
scheduling regime. An auxiliary puppet times how long tess–
entropy took to analyze the last time step. It then blocks
analysis until the simulation has run for at least as long. At
this point it transfers control back to analysis, timing its
performance.

The second regime is in transit. Simulation and tess–
entropy analysis are placed into two separate execution
groups, as shown in Listing 4. In this case, the total number
of processors is split evenly among them, but one can adjust
the split with a command-line parameter to henson. The
simulation and analysis communicate asynchronously using
send and receive tools: the analysis requests the data from
the simulation only when it’s ready to analyze it.

Light cone. We also use a particle filtering code, lightcone,
which constructs the cosmic structure as it would be observed
at a fixed space–time location. Light cones are traditionally
produced by saving enough time steps from a simulation and
then stacking them in redshift shells. Doing this in situ is

1024 2048 4096 8192
0

2,000

4,000

Number of ranks

S
ec

o
n
d
s

Init Simulation Lightcone

Tessellation Entropy

Figure 1: Gadget–tess–entropy pipeline run in situ. Init
and Lightcone times are so small that they are imperceptible
in the plot.

both more computationally efficient and more accurate, since
the resulting light cone has shells as fine as the simulation
time steps.

The analysis is simple: it requires a single pass over the
data and accumulates those particles that match a particular
criterion, saving them to disk once the simulation ends its
run. We run lightcone in situ with the simulation because it
requires little memory or time overhead. In this regime, less
than a second is spent on the analysis during an hour-long
simulation run.

Evaluation. Figure 1 shows the results of the (fair) in situ
runs, where Gadget simulates 2001 time steps. We note that
(1) Henson initialization is negligible, taking less than 25
seconds on 8192 cores; (2) the time spent in analysis (tess
and entropy) never exceeds the time in simulation, balance
achieved by the fair scheduling; and (3) more and more time
steps are analyzed in the time it takes to simulate 2001 time
steps, from 213 steps using 1024 cores to 353 steps using
8192 cores — analysis scales better than the simulation.

Figure 2 shows the results of in transit runs, where half
of the processors are dedicated to the simulation, and the
other half to the analysis. Again, Gadget simulates 2001
time steps. The first thing to note is that communication
on the simulation side (send time) is negligible: from 6.97
seconds for 1024 cores down to 1.60 seconds for 8192 cores. In
other words, in this regime Gadget has virtually no overhead;
the processors dedicated to it spend almost all of their time
simulating the universe. This makes scheduling predictable.

On the other hand, communication on the analysis side
(receive time) is significant: when analysis finishes, it returns
control to receive, which signals to the send that it is ready
for more data. Such a request is processed once the simulation
completes its current time step and passes control to send.
The wait times accumulate over the course of the simulation.

It may seem that in situ analysis is performing better since
more time steps get analyzed. But it also takes longer. To get
a meaningful comparison of the two, we estimate how long
the simulation and analysis would run in situ if they were to
analyze the same number of time steps as in transit (using
the same total number of cores). Specifically, we calculate
s+(t+e) ·(i2/i1), where s, t, and e are the in situ simulation,
tessellation, and entropy times, and i1 and i2 are the number
of steps analyzed in situ and in transit, respectively. We
compare the results to the total running time of the in transit
simulation (and, by construction, analysis); see Figure 3.

As the figure illustrates, despite the communication over-
head, in transit analysis performs better. Although surprising

1024 2048 4096 8192
0

2,000

4,000

Number of ranks

S
ec

o
n
d
s

Init Simulation Lightcone

Send/Receive Tess Entropy

Figure 2: Gadget–tess–entropy pipeline run in transit. Init,
Lightcone, and Send times are so small that they are imper-
ceptible in the plot.

1024 2048 4096 8192
0

2,000

4,000

Number of ranks

S
ec

o
n
d
s

In situ

In transit

Figure 3: Simulation and analysis scaling comparison in
situ vs. in transit. In situ analysis time is normalized to
match the number of steps analyzed in transit.

at first, there is a simple explanation: neither simulation, nor
analysis scale perfectly. When running in situ, both have to
use twice as many processors as they would in transit. The
higher overheads slow the execution. But in other examples,
like lightcone, in situ is more efficient. This highlights the
importance of a flexible system, like the one presented, that
seamlessly supports different execution regimes.

Acknowledgements
We would like to thank Matthew Wolf and Patrick O’Leary
for helpful discussions, and Wes Bethel for his support. We
are grateful to our colleagues, Wes Bethel, Peter Nugent,
Tom Peterka, and Rollin Thomas, for providing feedback on
draft versions of this paper. Calculations presented in this pa-
per used resources of the National Energy Research Scientific
Computing Center (NERSC). Both NERSC and the authors
were supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.
ZL was in part supported by the SciDAC program funded
by the U.S. Department of Energy.

5. REFERENCES
[1] D.E. Knuth. Fundamental Algorithms. The Art of

Computer Programming 1. Addison–Wesley, 1997.

[2] V. Springel. The Cosmological Simulation Code
GADGET-2. Monthly Notices of the Royal Astronomical
Society, 364:1105–1134, 2005.

[3] T. Peterka, D. Morozov, and C. Phillips.
High-Performance Computation of Distributed-Memory
Parallel 3D Voronoi and Delaunay Tessellation. In
Proceedings of the SC, pages 997–1007, 2014.

	Introduction
	Cooperative Multitasking
	Henson
	Experiments
	References

