
A multi-platform evaluation of the randomized CX
low-rank matrix factorization in Spark

Alex Gittens1, Jey Kottalam2, Jiyan Yang3, Michael F. Ringenburg4, Jatin Chhugani5,
Evan Racah6, Mohitdeep Singh7, Yushu Yao6, Curt Fischer8, Oliver Ruebel9, Benjamin
Bowen8, Norman Lewis10, Michael W. Mahoney1, Venkat Krishnamurthy4, Prabhat6

1ICSI and Department of Statistics, UC Berkeley; Emails: gittens@icsi.berkeley.edu,
mmahoney@stat.berkeley.edu

2Berkeley Institute for Data Science and EECS, UC Berkeley; Email: jey@berkeley.edu
3ICME, Stanford University; Email: jiyan@stanford.edu
4Cray Inc.; Emails: mikeri@cray.com, venkat@cray.com

5HiPerform Inc.; Email: jatinch@gmail.com
6NERSC Division, Lawrence Berkeley National Laboratory; Emails: eracah@lbl.gov, yyao@lbl.gov,

prabhat@lbl.gov
7Georgia Institute of Technology; Email: msingh84@gatech.edu

8Life Sciences Division, Lawrence Berkeley National Laboratory; Emails: crfischer@lbl.gov,
bpbowen@lbl.gov

9Computational Research Division, Lawrence Berkeley National Laboratory; Email: oruebel@lbl.gov
10Institute of Biological Chemistry, Washington State University; Email: lewisn@wsu.edu

May, 2016

i



Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This
research used resources of the National Energy Research Scientific Computing Center.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

ii



A multi-platform evaluation of the randomized CX low-rank matrix factorization in
Spark

Alex Gittens∗, Jey Kottalam†, Jiyan Yang‡, Michael F. Ringenburg§, Jatin Chhugani¶, Evan Racah‖,
Mohitdeep Singh∗∗, Yushu Yao‖, Curt Fischer††, Oliver Ruebel‡‡, Benjamin Bowen††, Norman G. Lewis

x
,

Michael W. Mahoney∗, Venkat Krishnamurthy§, Prabhat‖
∗ICSI and Department of Statistics, UC Berkeley; Emails: gittens@icsi.berkeley.edu, mmahoney@stat.berkeley.edu

†Berkeley Institute for Data Science and EECS, UC Berkeley; Email: jey@berkeley.edu
‡ICME, Stanford University; Email: jiyan@stanford.edu
§Cray Inc.; Emails: mikeri@cray.com, venkat@cray.com

¶HiPerform Inc.; Email: jatinch@gmail.com
‖NERSC Division, Lawrence Berkeley National Laboratory; Emails: eracah@lbl.gov, yyao@lbl.gov, prabhat@lbl.gov

∗∗Georgia Institute of Technology; Email: msingh84@gatech.edu
††Life Sciences Division, Lawrence Berkeley National Laboratory; Emails: crfischer@lbl.gov, bpbowen@lbl.gov

‡‡Computational Research Division, Lawrence Berkeley National Laboratory; Email: oruebel@lbl.gov
x
Institute of Biological Chemistry, Washington State University; Email: lewisn@wsu.edu

Abstract—We investigate the performance and scalability
of the randomized CX low-rank matrix factorization and
demonstrate its applicability through the analysis of a 1TB
mass spectrometry imaging (MSI) dataset, using Apache Spark
on an Amazon EC2 cluster, a Cray XC40 system, and an
experimental Cray cluster. We implemented this factorization
both as a parallelized C implementation with hand-tuned
optimizations and in Scala using the Apache Spark high-
level cluster computing framework. We obtained consistent
performance across the three platforms: using Spark we were
able to process the 1TB size dataset in under 30 minutes
with 960 cores on all systems, with the fastest times obtained
on the experimental Cray cluster. In comparison, the C
implementation was 21X faster on the Amazon EC2 system,
due to careful cache optimizations, bandwidth-friendly access
of matrices and vector computation using SIMD units. We
report these results and their implications on the hardware and
software issues arising in supporting data-centric workloads in
parallel and distributed environments.

Keywords-matrix factorization; data analytics; high perfor-
mance computing

I. INTRODUCTION

Matrix algorithms are increasingly important in many
large-scale data analysis applications. Essentially, the reason
is that matrices (i.e., sets of vectors in Euclidean spaces)
provide a convenient mathematical structure with which to
model data arising in a broad range of applications

In particular, the low-rank approximation to a data matrix
A that is provided by performing a truncated SVD (singular
value decomposition)—or PCA (principal component anal-
ysis) or CX/CUR decompositions—is a very complicated
object compared with what is conveniently supported by
traditional database operations [1]. Recall that PCA finds
mutually orthogonal directions that maximize the variance
captured by the factorization, and CX/CUR provides an

interpretable low-rank factorization by selecting a small
number of columns/rows from the original data matrix.
Described in more detail in Section II, these low-rank
approximation methods are popular in small- and medium-
scale machine learning and scientific data analysis applica-
tions for exploratory data analysis and for providing compact
and interpretable representations of complex matrix-based
data, but their implementation at scale remains a challenge.

In this paper, we address the following research questions:
• Can we successfully apply low rank matrix factoriza-

tion methods (such as CX) to a TB-scale scientific
dataset?

• Can we implement CX in a contemporary data analytics
framework such as Spark?

• What is the performance gap between a highly tuned
C, and a Spark-based CX implementation?

• How well does a Spark-based CX implementation scale
on modern HPC and data-center hardware platforms?

We start with a description of matrix factorization algo-
rithms in Section II, followed by single node and multi-
node implementation details in Section III. We review the
experimental setup for our performance tests in Section IV,
followed by results and discussion in Section V.

II. LOW-RANK MATRIX FACTORIZATION METHODS

Given an m×n data matrix A, low-rank matrix factoriza-
tion methods aim to find two smaller matrices whose product
is a good approximation to A. That is, they aim to find
matrices Y and Z such that

A
m×n

≈ Y
m×k
× Z

k×n
, (1)

where Y × Z is a rank-k approximation to the original
matrix A. Low-rank matrix factorization methods are an

1



important topic in linear algebra and numerical analysis, and
they find use in a variety of scientific fields and scientific
computing as well as in machine learning and data analysis
applications such as pattern recognition and personalized
recommendation.

Depending on the application, various low-rank factoriza-
tion techniques are of interest. Popular choices include the
singular value decomposition [2], principal component anal-
ysis [3], rank-revealing QR factorization [4], nonnegative
matrix factorization [5], and CUR/CX decompositions [6].
In this work, we consider using the SVD and CX de-
compositions for scalable and interpretable data analysis;
in the remainder of this section, we briefly describe these
decompositions. For an arbitrary matrix A, denote by ai its
i-th row, aj its j-th column and aij its (i, j)-th element.
Throughout, we assume A has size m× n and rank r.

A. SVD and PCA

The singular value decomposition (SVD) is the factoriza-
tion of A ∈ Rm×n into the product of three matrices UΣV T

where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns
and Σ ∈ Rr×r is a diagonal matrix with positive real entries.
The columns of U and V are called left and right singular
vectors and the diagonal entries of Σ are called singular
values. For notational convenience, we assume the singular
values are sorted such that σ1 ≥ · · · ≥ σr ≥ 0.

The SVD is of central interest because it provides the
“best” low-rank matrix approximation with respect to any
unitarily invariant matrix norm. In particular, for any target
rank k ≤ r, the SVD provides the minimizer of the
optimization problem

min
rank(Ã)=k

‖A− Ã‖F , (2)

where the Frobenius norm ‖ · ‖F is defined as ‖X‖2F =∑m
i=1

∑n
j=1X

2
ij . Specifically, the solution to (2) is given by

the truncated SVD, i.e., Ak = UkΣkV
T
k , where the columns

of Uk and Vk are the top k singular vectors, i.e., the first
k columns of U and V , respectively, and Σk is a diagonal
matrix containing the top-k singular values.

Principal component analysis (PCA) and SVD are closely
related. PCA aims to convert the original features into a set
of orthogonal directions called principal components that
capture most of the variance in the data points. The PCA
decomposition of A is given by the SVD of the matrix
formed by centering each column of A (i.e., removing
the mean of each column). When low-rank methods are
appropriate, the number of principal components needed to
preserve most of the information in A is far less than the
number of original features, and thus the goal of dimension
reduction is achieved.

B. Randomized SVD

The computation of the SVD (and thus of PCA) for a
data matrix A is expensive [2]. For example, to compute the

Algorithm 1 RANDOMIZEDSVD Algorithm

Input: A ∈ Rm×n, number of power iterations q ≥ 1,
target rank r > 0, slack ` ≥ 0, and let k = r + `.

Output: UΣV T ≈ THINSVD(A, r).
1: Initialize B ∈ Rn×k by sampling Bij ∼ N (0, 1).
2: for q times do
3: B ← MULTIPLYGRAMIAN(A,B)
4: (B, )← THINQR(B)
5: end for
6: Let Q be the first r columns of B.
7: Let C = MULTIPLY(A,Q).
8: Compute (U,Σ, Ṽ T ) = THINSVD(C).
9: Let V = QṼ .

truncated SVD with rank k using traditional deterministic
methods, the running time complexity is O(mnk), and
O(k) passes over the dataset are needed. This becomes
prohibitively expensive when dealing with datasets of even
moderately-large size, e.g., m = 106, n = 104 and
k = 20. To address these and related issues, recent work
in Randomized Linear Algebra (RLA) has focused on using
randomized approximation to perform scalable linear algebra
computations for large-scale data problems. For an overview
of the RLA area, see [7]; for a review of using RLA methods
for low-rank matrix approximation, see [8]; and for a review
of the theory underlying implementing RLA methods in
parallel/distributed environments, see [9].

Here, we will use an algorithm introduced in [10], [11]
that uses a random projection to construct a rank-k ap-
proximation to A which approximates A nearly as well as
Ak does. We refer the readers to [7], [8] for more details.
Importantly, the algorithm runs in O(mn log k) time, and the
algorithm needs only a constant number of passes over the
data matrix. These properties becomes extremely desirable
in many large-scale data analytics. This algorithm, which
we refer to as RANDOMIZEDSVD, is summarized in Al-
gorithm 1. (Algorithm 1 calls MULTIPLYGRAMIAN, which
is summarized in Algorithm 2, as well as three algorithms,
MULTIPLY, THINQR, and THINSVD, which are standard
in numerical linear algebra [2].) The running time cost
for RANDOMIZEDSVD is dominated by the matrix-matrix
multiplication, which involve passing over the entire data
matrix, appearing in Step 3 and Step 7 of Algorithm 1. These
steps can be parallelized, and hence RANDOMIZEDSVD is
amenable to distributed computing.

C. CX/CUR decompositions

In addition to developing improved algorithms for
PCA/SVD and related problems, work in RLA has also fo-
cused on so-called CX/CUR decompositions [6], [12]. As a
motivation, observe that singular vectors are eigenvectors of
the Gram matrix ATA, and thus they are linear combinations

2



Algorithm 2 MULTIPLYGRAMIAN Algorithm

Input: A ∈ Rm×n, B ∈ Rn×k.
Output: X = ATAB.

1: Initialize X = 0.
2: for each row a in A do
3: X ← X + aaTB.
4: end for

Algorithm 3 CXDECOMPOSITION

Input: A ∈ Rm×n, rank parameter k ≤ rank(A), number
of power iterations q.

Output: C.
1: Compute an approximation of the top-k right singular

vectors of A denoted by Ṽk, using RANDOMIZEDSVD
with q power iterations.

2: Let `i =
∑k

j=1 ṽ
2
ij , where ṽ2

ij is the (i, j)-th element
of Ṽk, for i = 1, . . . , n.

3: Define pi = `i/
∑d

j=1 `j for i = 1, . . . , n.
4: Randomly sample c columns from A in i.i.d. trials, using

the importance sampling distribution {pi}ni=1 .

of up to all of the original variables. A natural question
arises: can we reconstruct the matrix using a small number
of actual columns of A?

CX/CUR decompositions affirmatively answer this ques-
tion. That is, these are low-rank matrix decompositions that
are expressed in terms of a small number of actual column-
s/rows. As such, they have found applicability in scientific
applications where coupling analytical techniques with do-
main knowledge is at a premium, including genetics [13],
astronomy [14], and mass spectrometry imaging [15].

In more detail, CX decomposition factorizes an m × n
matrix A into two matrices C and X , where C is an m× c
matrix that consists of c actual columns of A, and X is a c×
n matrix such that A ≈ CX . (CUR decompositions further
choose X = UR, where R is a small number of actual rows
of A [6], [12].) For CX, using the same optimality criterion
defined in (2), we seek matrices C and X such that the
residual error ‖A− CX‖F is small.

The algorithm of [12] that computes a 1 ± ε relative-
error low-rank CX matrix approximation consists of three
basic steps: first, compute (exactly or approximately) the
statistical leverage scores of the columns of A; and second,
use those scores as a sampling distribution to select c
columns from A and form C; finally once the matrix C
is determined, the optimal matrix X with rank-k that mini-
mizes ‖A− CX‖F can be computed accordingly; see [12]
for detailed construction.

The algorithm for approximating the leverage scores is
provided in Algorithm 3. Let A = UΣV T be the SVD of
A. Given a target rank parameter k, for i = 1, . . . , n, the

i-th leverage score is defined as

`i =

k∑

j=1

v2
ij . (3)

These scores quantify the amount of “leverage” each column
of A exerts on the best rank-k approximation to A. For each
column of A, we have

ai =
r∑

j=1

(σjuj)vij ≈
k∑

j=1

(σjuj)vij .

That is, the i-th column of A can be expressed as a linear
combination of the basis of the dominant k-dimensional
left singular space with vij as the coefficients. If, for
i = 1, . . . , n, we define the normalized leverage scores as

pi =
`i∑n
j=1 `j

, (4)

where `i is defined in (3), and choose columns from A
according to those normalized leverage scores, then (by [6],
[12]) the selected columns are able to reconstruct the matrix
A nearly as well as Ak does.

The running time for CXDECOMPOSITION is determined
by the computation of the importance sampling distribution.
To compute the leverage scores based on (3), one needs to
compute the top k right-singular vectors Vk. This can be
prohibitive on large matrices. However, we can once again
use RANDOMIZEDSVD to compute approximate leverage
scores. This approach, originally proposed by Drineas et
al. [16], runs in “random projection time,” so requires fewer
FLOPS and fewer passes over the data matrix than determin-
istic algorithms that compute the leverage scores exactly.

III. HIGH PERFORMANCE IMPLEMENTATION

We undertake two classes of high performance imple-
mentations for the CX method. We start with a highly
optimized, close-to-the-metal C implementation that focuses
on obtaining peak efficiency from conventional multi-core
CPU chipsets and extend it to multiple nodes. Secondly, we
implement the CX method in Spark, an emerging standard
for parallel data analytics frameworks.

A. Single Node Implementation/Optimizations

We now focus on optimizing the CX implementation on
a single compute-node. We began by profiling our initial
scalar serial CX code and optimizing the steps in the order of
execution times. The most time is spent in computing sparse-
sparse-dense matrix multiplication (ATAB, Step 3, 90.6%),
followed by sparse-dense matrix multiplication (AQ, Step 7,
9.1%) and finally, QR decomposition (Step 4, 0.4%) for a
representative dataset that fits in main memory. These three
kernels account for more than 99.9% of the execution time.
Recall that A is a sparse matrix with dimensions m×n and
sparsity s, and B is a dense n× k matrix.

3



Figure 1: Data access pattern for computing Ci (left) and Resj (right) respectively.

1) Optimizing Res = ATAB: Optimizing sparse matrix-
matrix multiplication is an active area of research [17], [18];
state-of-the-art implementations are bound by the memory
bandwidth and heavily underutilize the compute resources.

For our application, we exploit the following three obser-
vations: (1) One of the sparse matrices is the transpose of
the other, (2) One of the matrices is a dense matrix, and (3)
n� k and sm� k.

Exploiting associativity of multiplication, we compute C
= AB, followed by Res = ATC. This reduces the run-time
complexity from O(n*(nsm)) to O(k*(nsm)). Furthermore,
we do not explicitly compute (or store) the transpose of A.
Consider the i th row, Ai. By definition, Ci = Ai · B. The
(j , l )th element of Res, Resj ,l = Σp(AT

j ,p x Cp,l ) = Σp(Ap,j

x Cp,l ). For p = i, this reduces to incrementing Resj ,l by
Ai,j x Ci,l . Thus, for each row i, having computed Ci , we
increment Resj ,l by Ai,j x Ci,l for j∈[1..n] and l∈[1..k].
We now describe how we parallelize to exploit data- and
thread-level parallelism and other relevant optimizations.

1. Exploiting SIMD: Refer to Figure 1. Consider element
Ai,j . To compute Ci , we need to scale each element of
Bj by Ai,j and add it to Ci (j∈[1..n]) (Ci += Ai,j x
Bj ). Note that there are k elements in Bj , which are also
stored consecutively (the matrix is stored in row-major
form). On modern computing platforms, the SIMD width
(number of simultaneous operations that can be performed)
is growing [19]. SSE can perform 4 single-precision floating
point computations in a single op, while AVX performs 8
ops. Let S denote the SIMD width (defined as the number
of double-precision floating point ops. per op – which is half
of the number of single-precision ops). The pseudo-code 1

for computing Ci (∀ Ai,j 6= 0) is
xmm a = vec load and splat(Ai,j );
for (z = 0; z < k; z += S)
{

xmm c = vec load (Cj + z);
xmm b = vec load (Bj + z);

1Exact syntax varies with the ISA and compiler version.

xmm ab = vec mul (xmm a, xmm b);
xmm c = vec add (xmm ab, xmm c);
vec store (xmm C, Cj + z);

}

As is evident from the code, for each Ai,j 6= 0 (the
number of nonzeros (nnz) in A), we execute (d kS e) add (and
mul) operations, taking a total of d 2∗nnz∗kS e ops, a potential
speedup of S.

We now describe the vectorization of X = ATC. As
explained above, this requires incrementing Xj by Ai,j x
Ci (both Xj and Ci have k elements each.) We use similar
code to perform this computation at a cost of d 2∗nnz∗kS e ops,
a speedup of S .

2. Exploiting multiple cores: As explained above, we
decompose matrix multiplication into two steps: we first
compute Ci (k elements), then update Resj for each row
j. The executed flops is proportional to the number of non-
zeros in the specific row of A. Thus a straightforward way
to divide work is to divide the rows such that each of the
cores work on the same number of nnz’s.

Thus each core (or thread) computes its starting and
ending row index, and for each assigned row i, computes Ci .
The next step is to update Res. Two possibilites exist. One
option is for each thread to maintain a local copy of Res, and
reduce the results at the end. However, even for moderately
sized datasets, (e.g. k = 32, n = 32K ∼ 4 MB/thread), the
working set exceeds the cache per core. A more efficient
approach is to maintain a single copy of Res shared by the
threads and updated using locks, as described next.

We initialize n locks, one for each row of the output
matrix (Res). Once an executing thread computes Ci , for
each Ai,j 6= 0, it grabs the j th lock, updates the row, and
releases the lock. For realistic datasets, for sparsity(s) (∼
0.001 – 0.005), there is a very low probability of two threads
blocking on a lock (∼1% even with C = 128).

3. Cache Blocking: For smaller values of n, our thread-
level parallelization scheme scales near-linearly with in-
creasing number of cores. However, for n > 64K, we started

4



noticing a drop in scaling. This is due to the working set
growing larger than the size of the last-level cache, and
thereby the computation becoming bound by the available
memory bandwidth. In contrast, if most of the memory
fetches can come from the caches, we can efficiently utilize
the floating point compute units on the node. We now de-
scribe the computation of the working set, and our algorithm
for performing cache-friendly updates.

During the execution of the algorithm, the matrix B is
accessed, which is shared between all the cores. Matrix A
is streamed from the memory, so does not contribute to
the working set. If each thread were to maintain its local
copy of the Res matrix, the total working set would occupy
8kn*(T + 1) bytes (T threads). For our system, the working
set would be around 1 GB, which is too large to fit in
the caches.2 Instead, maintaining a shared copy of the Res
matrix reduces the working set size to 8kn bytes, around 128
MB. Note that the total size is independent of the number of
cores, and thus future proofs our implementation. However,
the working set size would still depend on the number of
columns in A. We devise the following scheme to reduce it
further to a given cache size.

Instead of performing the computation for n columns, we
divide it into chunks of n′ columns, such that 2*8*k*n′

∼ C (the cache size). Hence, with C = 15 MB, n′∼ 64K
elements (we set n to be a multiple of n′). We thus perform
the computation in d n

n′ e rounds, updating the corresponding
rows ([rd n

n′ e..(r + 1)d n
n′ e] in round r). Recall from the

previous subsection that the number of flops executed per
nonzero element in A is d 4kS e. Since the non zeros elements
of A are stored consecutively, this may require loading each
element d n

n′ e times. Hence, the flops/byte of the computation
is around d 4kS e/d n

n′ e. Using our representative numbers, this
is around 16 flops/byte, which is greater than the peak
flops/byte of the platform (around 10 flops/byte), and hence
our application is not bound by memory bandwidth. With
large values of n, we might end up being bandwidth bound
– in which case we need to modify the way A is stored, by
storing it in chunks of columns that would be accessed in
each round. This format of representing A helps exploit the
complete computational power of the processor, and only
incurs a one-time cost for rearranging the elements of A.

4. Multi-socket Optimization: Multi-socket architectures
are increasing being used, wherein each socket has its own
compute and memory resources. All cross-socket traffic goes
through a cross-socket link, which has lower bandwidth than
access to local DRAM/caches. Hence, we need to optimize
for the amount of data transferred between sockets.

We divide the allocation of Res equally between the
sockets. For e.g., a CPU with 2 sockets, we divide the
number of rows (n) by 2, and allocate the memory for each
relevant part of the matrix on its individual socket. This

2In this discussion, caches refers to the last level cache.

ensures that each socket makes, on average, a similar number
of remote accesses. For our experiments, this provided a
boost of ∼5 – 10% to performance, but we expect the
optimizaton to be more beneficial with increasing number
of sockets.

2) Optimizing AB: This step refers to Step 7 in the
algorithm description in Algorithm 1. The data- and thread-
level parallelization optimizations described in the previous
subsection (optimizing ATAB) apply here, since there we
explicitly compute C = AB. As far as cache blocking is
concerned, since C does not have to be memory resident,
we now have to ensure that B is completely cache resident
(i.e. 8nk ≤ C). With increasing n, we again peform the
computation in multiple rounds, with each round operating
on n′ = C

8k rows of B. Finally, as far as multi-socket
optimizations are concerned, we divide the allocation of C,
the output matrix in this case, between the various sockets,
to reduce the amount of cross-socket memory traffic.

B. Multi-Node Implementation

Consider ATAB. Similar to the multi-core implementa-
tion, we achieve load balancing by dividing the rows such
that each node operates on the same number of nonzeros.
We perform this partitioning using a two step process. In
the first step, we equally divide the number of rows, and
each node reads in the corresponding part of the matrix, and
computes the number of non-zeros read. This is followed
by a redistribution step, where each node computes and
distributes the relevant rows. The amount of data transferred
between nodes is only a small fraction of the total input
size (measured to be < 0.01%), and this step is only
performed once during the execution of the algorithm. Each
node computes a local copy of Res, which is then reduced
globally to compute the final matrix. Note that Res consists
of n X k elements, which occupies a few MBs even for our
largest 1 TB datset (recall m � n).

As far as QR decompositon is concerned, given the small
size of the matrix (n X k), it is performed on a single-
node, but parallelized to exploit the multiple cores, with the
resultant matrix being broadcast to all other nodes at the end
of the computation. A similar work division scheme is used
to compute AB (Step 7) in a distributed fashion. The final
two steps (the ThinSVD and the small matrix multiplication)
are performed on a single-node.

C. CX Implementation in Spark

To support operating on datasets larger than can be
stored and processed on a single node, we implement
the algorithms using the Apache Spark cluster comput-
ing framework. Spark provides a high-level programming
model and execution engine for fault-tolerant parallel and
distributed computing, based on a core abstraction called
resilient distributed dataset (RDD). RDDs are immutable

5



lazily materialized distributed collections supporting func-
tional programming operations such as map, filter, and
reduce, each of which returns a new RDD. RDDs may be
loaded from a distributed file system, computed from other
RDDs, or created by parallelizing a collection created within
the user’s application. RDDs of key-value pairs may also
be treated as associative arrays, supporting operations such
as reduceByKey, join, and cogroup. Spark employs a
lazy evaluation strategy for efficiency. Another major benefit
of Spark over MapReduce is the use of in-memory caching
and storage so that data structures can be reused.

D. Multi-node Spark Implementation

The main consideration when implementing CX is effi-
cient implementations of operations involving the data ma-
trix A. All access of A by the CX algorithm occurs through
the RANDOMIZEDSVD routine. RANDOMIZEDSVD in turn
accesses A only through the MULTIPLYGRAMIAN and
MULTIPLY routines, with repeated invocations of MULTI-
PLYGRAMIAN accounting for the majority of the execution
time.

The matrix A is stored as an RDD containing one
IndexedRow per row of the input matrix, where each
IndexedRow consists of the row’s index and correspond-
ing data vector. This is a natural storage format for many
datasets stored on a distributed or shared file system, where
each row of the matrix is formed from one record of the
input dataset, thereby preserving locality by not requiring
data shuffling during construction of A.

We then express MULTIPLYGRAMIAN in a form
amenable to efficient distributed implementation by exploit-
ing the fact that the matrix product ATAB can be written
as a sum of outer products, as shown in Algorithm 2. This
allows for full parallelism across the rows of the matrix with
each row’s contribution computed independently, followed
by a summation step to accumulate the result. This approach
may be implemented in Spark as a map to form the outer
products followed by a reduce to accumulate the results:
def multiplyGramian(A: RowMatrix, B: LocalMatrix) =

A.rows.map(row => row * row.t * B).reduce(_ + _)

However, this approach forms 2m unnecessary temporary
matrices of same dimension as the output matrix n × k,
with one per row as the result of the map expression, and
the reduce is not done in-place so it too allocates a new
matrix per row. This results in high Garbage Collection
(GC) pressure and makes poor use of the CPU cache, so
we instead remedy this by accumulating the results in-
place by replacing the map and reduce with a single
treeAggregate. The treeAggregate operation is
equivalent to a map-reduce that executes in-place to accu-
mulate the contribution of a single worker node, followed
by a tree-structured reduction that efficiently aggregates the
results from each worker. The reduction is performed in
multiple stages using a tree topology to avoid creating a

single bottleneck at the driver node to accumulate the results
from each worker node. Each worker emits a relatively large
result with dimension n× k, so the communication latency
savings of having multiple reducer tasks is significant.
def multiplyGramian(A: RowMatrix, B: LocalMatrix) = {

A.rows.treeAggregate(LocalMatrix.zeros(n, k))(
seqOp = (X, row) => X += row * row.t * B,
combOp = (X, Y) => X += Y

)
}

IV. EXPERIMENTAL SETUP

A. MSI Dataset

Mass spectrometry imaging with ion-mobility: Mass
spectrometry measures ions that are derived from the
molecules present in a complex biological sample. These
spectra can be acquired at each location (pixel) of a
heterogeneous sample, allowing for collection of spatially
resolved mass spectra. This mode of analysis is known
as mass spectrometry imaging (MSI). The addition of ion-
mobility separation (IMS) to MSI adds another dimension,
drift time The combination of IMS with MSI is finding
increasing applications in the study of disease diagnostics,
plant engineering, and microbial interactions. Unfortunately,
the scale of MSI data and complexity of analysis presents
a significant challenge to scientists: a single 2D-image may
be many gigabytes and comparison of multiple images is
beyond the capabilities available to many scientists. The
addition of IMS exacerbates these problems.

Utility of CX in MSI: Dimensionality reduction tech-
niques can help reduce MSI datasets to more amenable sizes.
Typical approaches for dimensionality reduction include
PCA and NMF, but interpretation of the results is difficult
because the components extracted via these methods are
typically combinations of many hundreds or thousands of
features in the original data. CX decompositions circumvent
this problem by identifying small numbers of columns in
the original data that reliably explain a large portion of
the variation in the data. This facilitates rapidly pinpointing
important ions and locations in MSI applications.

In this paper, we analyze one of the largest (1TB sized)
mass-spec imaging datasets in the field. The sheer size of this
dataset has previously made complex analytics intractable.
This paper presents first-time science results from the suc-
cessful application of CX to TB-sized data.

B. Platforms

In order to assess the relative performance of CX matrix
factorization on various hardware, we choose the following
contemporary platforms:
• a Cray® XC40™ system [20], [21],
• an experimental Cray cluster, and
• an Amazon EC2 r3.8xlarge cluster.
For all platforms, we sized the Spark job to use 960

executor cores (except as otherwise noted). Table I shows

6



Platform Total Cores Core Frequency Interconnect DRAM SSDs

Amazon EC2 r3.8xlarge 960 (32 per-node) 2.5 GHz 10 Gigabit Ethernet 244 GiB 2 x 320 GB

Cray XC40 960 (32 per-node) 2.3 GHz Cray Aries [20], [21] 252 GiB None

Experimental Cray cluster 960 (24 per-node) 2.5 GHz Cray Aries [20], [21] 126 GiB 1 x 800 GB

Table I: Specifications of the three hardware platforms used in these performance experiments.

the full specifications of the three platforms. Note that these
are state-of-the-art configurations in datacenters and high
performance computing centers.

V. RESULTS

A. CX Performance using C and MPI

In Table II, we show the benefits of the optimizations
described in Sec. III-A. As far as single-node performance
is concerned, we started with a parallelized implementation
without any of the described optimizations. We first imple-
mented the multi-core synchronization scheme, wherein a
single copy of the output matrix is maintained, which re-
sulted in a speedup of 6.5X, primarily due to the reduction in
the amount of data traffic between the main memory and the
caches. We then implemented our cache blocking scheme,
which led to a further 2.4X speedup (overall 15.6X). We
then implemented our SIMD code that sped it up by a further
2.6X, for an overall speedup of 39.7X. Although the SIMD
width is 4, there are overheads of address computation,
stores, and not all computations (e.g. the QR decomposition)
were vectorized.

As far as the multi-node performance is concerned, on the
Amazon EC2 cluster, with 30 nodes (960-cores in total), and
the 1 TB dataset as input, it took 151 seconds to perform
CX computation (including the time to load the data into
main memory). Compared to the Scala code on the same
platform (whose performance is detailed in the next sub-
section), we achieve a speedup of 21X. This performance
gap can be attributed to the careful cache optimizations,
maintaining a single copy of the output matrix shared
across threads, bandwidth friendly access of matrices, and
vectorized computations using SIMD units.

Some of these optimizations can be implemented in Spark,
such as arranging the order of memory accesses to make ef-
ficient use of memory. However, other optimizations such as
sharing the output matrix between threads and use of SIMD
intrinsics fall outside the Spark programming model, and
would require piercing the abstractions provided by Spark
and the JVM. Thus there is a tradeoff between optimizing
performance and the ease of implementation provided by
expressing programs in the Spark programming model.

B. CX Performance Using Spark

1) CX Spark Phases: The RANDOMIZEDSVD subroutine
accounts for the bulk of the runtime and all of the distributed

Single Node Optimization Overall Speedup
Original Implementation 1.0

Multi-Core Synchronization 6.5
Cache Blocking 15.6

SIMD 39.7

Table II: Single node optimizations to the CX C implemen-
tation and the subsequent speedup each additional optimiza-
tion provides.

computations in our Spark CX implementation. The exe-
cution of RANDOMIZEDSVD proceeds in four distributed
phases listed below, along with a small amount of additional
local computation.

1) Load Matrix Metadata The dimensions of the matrix
are read from the distributed filesystem to the driver.

2) Load Matrix A distributed read is performed to load
the matrix entries into an in-memory cached RDD
containing one entry per row of the matrix.

3) Power Iterations The MULTIPLYGRAMIAN loop
(lines 2-5 of RANDOMIZEDSVD) is run to compute
an approximate basis Q of the dominant right singular
subspace.

4) Finalization (Post-Processing) Right multiplication
by Q (line 7 of RANDOMIZEDSVD) to compute C.

Figure 2: Strong scaling for the 4 phases of CX on an XC40
for a 100GB dataset at k = 32 and default partitioning as
concurrency is increased.

7



2) Empirical Results: Fig. 2 shows how the distributed
Spark portion of our code scales. We considered 240, 480,
and 960 cores. An additional doubling (to 1920 cores) would
be ineffective as there are only 1654 partitions, so many
cores would remain unused. When we go from 240 to 480
cores, we achieve a speedup of 1.6x: 233 seconds versus
146 seconds. However, as the number of partitions per core
drops below two, and the amount of computation-per-core
relative to communication overhead drops, the scaling slows
down (as expected). This results in a lower speedup of 1.4x
(146 seconds versus 102 seconds) from 480 to 960 cores.

C. CX Performance across Multiple Platforms

16 32
Rank

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(s

)

XC40

XC40

EXP_CC

EXP_CC

EC2

EC2

Load Matrix Metadata Load Matrix Power Iterations Finalization (Post-Processing)

Figure 3: Run times for the various stages of computation
of CX on the three platforms using k = 16 and k = 32 on
the 1 TB size MSI dataset, using the default partitioning on
each platform.

Table III shows the total runtime of CX for the 1 TB
dataset on our three platforms. The distributed Spark portion
of the computation is also depicted visually in Figure 3
for k = 16 and k = 32 on the 1 TB dataset. All three
platforms were able to successfully process the 1 TB dataset
in under 25 minutes. As the table and figure illustrates, most
of the variation between the platforms occurred during the
MultiplyGramian iterations. We now explore how the
platform differences relate to the performance of the matrix
iterations.

Spark divides each iteration into two stages. The first
local stage computes each row’s contribution, sums the
local results (the rows computed by the same worker node),
and records these results. The second aggregation stage
combines all of the workers’ locally-aggregated results using
a tree-structured reduction. Most of the variation between
platforms occurs during the aggregation phase, where data
from remote worker nodes is fetched and combined. In
Spark, all inter-node data exchange occurs via shuffle op-
erations. In a shuffle, workers with data to send write the

data to their local scratch space. Once all data has been
written, workers with data to retrieve from remote nodes
request that data from the sender’s block manager, which in
turns retrieves it from the senders local scratch space, and
sends it over the interconnect to the receiving node.

Examining our three platforms (Table I), we notice two
key hardware differences that impact shuffle operations:

• First, both the EC2 nodes and the experimental Cray
cluster nodes have fast SSD storage local to the com-
pute nodes that they can use to store Spark’s shuffle
data. The Cray® XC40™ system’s [20], [21] nodes, on
the other hand, have no local persistent storage devices.
Thus we must emulate local storage with a remote
Lustre filesystem. The impacts of this can be somewhat
mitigated, however, by leaving sufficient memory to
store some of the data in a local RAM disk, and/or
locally caching some of the remote writes to Lustre.3

• Second, the Cray XC40 and the experimental Cray clus-
ter both communicate over the HPC-optimized Cray
Aries interconnect [20], [21], while the EC2 nodes use
10 Gigabit Ethernet.

We can see the impact of differing interconnect capabilities
in the Average Network Wait column in Table III. These
lower average network wait times explain why the two Cray
platforms outperform the EC2 instance (with the experimen-
tal cluster achieving a speedup of roughly 1.5x over EC2).

The XC40 is still slightly slower than the experimental
Cray cluster, however. Part of this difference is due to the
slower matrix load phase on the XC40. On EC2 and the
experimental Cray cluster, the input matrix is stored in SSDs
on the nodes running the Spark executors. Spark is aware of
the location of the HDFS blocks, and attempts to schedule
tasks on the same nodes as their input. The XC40, however,
lacks SSDs on its compute nodes, so the input matrix is
instead stored on a parallel Lustre file system. The increased
IO latency slows the input tasks. The rest of the difference in
performance can be understood by looking at the distribution
of local (write) task times in the box and whiskers plot in
Figure 4. The local/write tasks are much more numerous
than the aggregation/read tasks (4800 vs 68 per iteration),
thus they have a more significant impact on performance.
We see that the XC40 write tasks had a similar median time
to the experimental cluster’s write tasks, but a much wider
distribution. The large tail of slower ”straggler” tasks is the
result of some shuffle data going to the remote Lustre file
system rather than being cached locally. We enabled Spark’s
optional speculative re-execution (spark.speculation)
for the XC40 runs, and saw that some of these tasks were
successfully speculatively executed on alternate nodes with
more available OS cache, and in some cases finished earlier.

3This is an ideal usage of caching, since Spark assumes the scratch space
is only locally accessible; thus we are guaranteed that the only node that
reads a scratch file will be the same node that wrote it.

8



Platform Total Load Time Per Average Average Average
Runtime Time Iteration Local Aggregation Network

Task Task Wait

Amazon EC2 r3.8xlarge 24.0 min 1.53 min 2.69 min 4.4 sec 27.1 sec 21.7 sec

Cray XC40 23.1 min 2.32 min 2.09 min 3.5 sec 6.8 sec 1.1 sec

Experimental Cray cluster 15.2 min 0.88 min 1.54 min 2.8 sec 9.9 sec 2.7 sec

Table III: Total runtime for the 1 TB dataset (k = 16), broken down into load time and per-iteration time. The per-iteration
time is further broken down into the average time for each task of the local stage and each task of the aggregation stage.
We also show the average amount of time spent waiting for a network fetch, to illustrate the impact of the interconnect.

Figure 4: A box and whisker plot of the distribution of
local (write) and aggregation (read) task times on our three
platforms for the 1TB dataset with k = 16. The boxes
represent the 25th through 75th percentiles, and the lines in
the middle of the boxes represent the medians. The whiskers
are set at 1.5 box widths outside the boxes, and the crosses
are outliers (results outside the whiskers). Note that each
iteration has 4800 write tasks and just 68 read tasks.

This eliminated many of the straggler tasks and brought our
performance closer to the experimental Cray cluster, but still
did not match it (the results in Figure 3 and Table III include
this configuration optimization). We discuss future directions
for improving the performance on Spark on HPC systems
in Section V-E.

D. Science Results

The rows and columns of our data matrix A correspond
to pixels and (τ,m/z) values of ions, respectively, where
τ denotes drift time and m/z denotes the mass to charge
ratio. We compute the CX decompositions of both A and AT

in order to identify important ions in addition to important
pixels.

In Figure 5, we present the distribution of the normalized
ion leverage scores marginalized over τ . That is, each score
corresponds to an ion with m/z value shown in the x-

100 200 300 400 500 600 700

m/z

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

n
o
rm

a
liz

e
d
 l
e
v
e
ra

g
e
 s

co
re

Figure 5: Normalized leverage scores (sampling probabili-
ties) for m/z marginalized over τ . Three narrow regions of
m/z account for 59.3% of the total probability mass.

axis. Leverage scores of ions in three narrow regions have
significantly larger magnitude than the rest. This indicates
that these ions are more informative and should be kept in
the reconstruction basis. Encouragingly, several other ions
with significant leverage scores are chemically related to
the ions with the highest leverage scores. For example, the
ion with an m/z value of 453.0983 has the second highest
leverage score among the CX results. Also identified as
having significant leverage scores are ions at m/z values
of 439.0819, 423.0832, and 471.1276, which correspond to
neutral losses of CH2, CH2O, and a neutral “gain” of H2O
from the 453.0983 ion. These relationships indicate that this
set of ions, all identified by CX as having significant leverage
scores, are chemically related. That fact indicates that these
ions may share a common biological origin, despite having
distinct spatial distributions in the plant tissue sample.

E. Improving Spark on HPC Systems

The differences in performance between the Cray® XC40™

system [20], [21] and the experimental Cray cluster point to
optimizations to Spark that could improve its performance
on HPC-style architectures. The two platforms have very
similar configurations, with the primary difference being
the lack of local persistent storage on the XC40 nodes.
As described in Section V-C, this forces some of Spark’s
local scratch space to be allocated on the remote Lustre
file system, rather than in local storage. To mitigate this,

9



and keep more of the scratch data local, we propose the
following future work:
• Spark cleans its local scratch space inefficiently. In par-

ticular, shuffle data is not immediately cleaned up after
a shuffle completes. This makes fault recovery more
efficient, but results in higher storage requirements for
scratch space. A more efficient cleaning process would
make it more feasible to fit the scratch data entirely in
a local RAM disk and avoid using Lustre.

• Spark does not currently allow you to configure primary
and backup scratch directories. Instead you list all
scratch directories in a single list, and it distributes
data in a round robin fashion between them as long as
space is available. You can bias it towards one storage
device (e.g., RAM disk vs. Lustre) by listing multiple
directories on the preferred device. Ideally, though, we
would like to use a RAM disk (or other local storage)
exclusively unless and until it fills, and only switch to
Lustre directories if necessary.

• Spark does not allow you to specify that a scratch
directory is globally accessible. Thus non-cached data
is stored to the remote Lustre directory by the sender,
and then later retrieved by the sender and sent to the
receiver. This wastes a step, since the receiver could
easily fetch the data directly from Lustre (or any other
global file system).

• Alternatively, a push model of communication (as op-
posed to the current pull model) might be possible -
however this would have implications for reliability and
the handling of very large data sets.4

VI. CONCLUSIONS

Matrix factorizations are an important class of linear
algebra computations with broad applications in Big Data
analytics. In this work, we have successfully developed
highly optimized distributed multi-node versions of the CX
algorithm. We use Spark as a contemporary productive data
analytics framework for developing and deploying the CX
algorithm, and successfully demonstrate the implementation
scaling up to 960 cores. We also implement a close-to-metal
parallelized C version that runs 21X faster than the Spark
version on the Amazon EC2 system. Further examination
of this performance gap and its attribution to various com-
ponents of the Spark stack will be conducted in the near
future.

Using the Spark version, we evaluate our parallel im-
plementation on HPC and EC2 class hardware; we find
that faster interconnects enable the numerically intensive
computations to run more efficiently on HPC systems.

4Storing the shuffle data to a large persistent block storage device and
only sending it as needed allows Spark to easily shuffle more data than
could fit in the remote buffers. In a push-based model, extra logic and
synchronization would be necessary to ensure that the remote buffers do
not overflow.

Finally, this scalable implementation was used to analyze
a large TB-sized mass-spec imaging dataset; the resulting
ion and spatial patterns obtained from the analysis are pro-
viding biologists with novel insights on complex molecular
mechanisms in cells.

REFERENCES

[1] D. Skillicorn, Understanding complex datasets: data mining with
matrix decompositions. Boca Raton, FL: Hall/CRC Press, 2007.

[2] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore:
Johns Hopkins University Press, 1996.

[3] I. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.
[4] M. GU and S. C. EISENSTA, “Efficient algorithms for computing

a strong rank-revealing qr factorization,” SIAM J. ScI. COMPUT.,
vol. 17, no. 4, pp. 848–869, 1996.

[5] D. Lee and H. Seung, “Algorithms for non-negative matrix factoriza-
tion,” in NIPS, 2001.

[6] M. W. Mahoney and P. Drineas, “CUR matrix decompositions for
improved data analysis,” Proc. Natl. Acad. Sci. USA, vol. 106, pp.
697–702, 2009.

[7] M. W. Mahoney, Randomized algorithms for matrices and data,
ser. Foundations and Trends in Machine Learning. Boston: NOW
Publishers, 2011.

[8] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” SIAM Review, vol. 53, no. 2, 2011.

[9] J. Yang, X. Meng, and M. W. Mahoney, “Implementing randomized
matrix algorithms in parallel and distributed environments,” Tech.
Rep., 2015, preprint: arXiv:1502.03032.

[10] P.-G. Martinsson, V. Rohklin, and M. Tygert, “A Randomized Algo-
rithm for the Approximation of Matrices,” Technical Report, 2006.

[11] ——, “A randomized algorithm for the decomposition of matrices,”
Appl. Comput. Harmon. Anal., vol. 30, pp. 47–68, 2011.

[12] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, “Relative-error
CUR matrix decompositions.” SIAM J. Matrix Analysis Applications,
vol. 30, no. 2, pp. 844–881, 2008.

[13] P. Paschou, E. Ziv, E. G. Burchard, S. Choudhry, W. Rodriguez-
Cintron, M. W. Mahoney, and P. Drineas, “PCA-correlated SNPs
for structure identification in worldwide human populations,” PLoS
Genetics, vol. 3, pp. 1672–1686, 2007.

[14] C.-W. Yip, M. W. Mahoney, A. S. Szalay, I. Csabai, T. Budavari,
R. F. G. Wyse, and L. Dobos, “Objective identification of informative
wavelength regions in galaxy spectra,” The Astronomical Journal, vol.
147, no. 110, p. 15pp, 2014.

[15] J. Yang, O. Rübel, Prabhat, M. W. Mahoney, and B. P. Bowen,
“Identifying important ions and positions in mass spectrometry imag-
ing data using CUR matrix decompositions,” Analytical Chemistry,
vol. 87, no. 9, pp. 4658–4666, 2015.

[16] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff,
“Fast approximation of matrix coherence and statistical leverage,”
Journal of Machine Learning Research, vol. 13, 2012.

[17] G. Ballard, A. Buluç et al., “Communication optimal parallel multi-
plication of sparse random matrices,” in SPAA, 2013.

[18] M. M. A. Patwary et al., “Parallel Efficient Sparse Matrix-Matrix
Multiplication on Multicore Platforms,” in ISC, 2015, pp. 48–57.

[19] Intel, “Intel Advanced Vector Extensions Programming Reference,”
White paper, June 2011.

[20] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network,” Cray Inc. White Paper WP-Aries01-1112, 2012.

[21] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade:
A scalable HPC system based on a Dragonfly network,” ser. SC ’12,
2012, pp. 103:1–103:9.

10


