
In situ Visualization and Analysis of Ion Accelerator Simulations

using Warp and VisIt

Oliver Rübel, Burlen Loring, Jean-Luc Vay, David P. Grote, Remi Lehe, Stepan
Bulanov, Henri Vincenti, and E .Wes Bethel

June 9, 2016

Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, in part through the grant
“Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery,” program
manager Dr. Lucy Nowell. This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency
thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by its trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof, or the Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the University of California.

Copyright

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher,
by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for U.S. Government purposes.

1

Abstract

The generation of short pulses of ion beams through the interaction of an intense laser with a plasma
sheath offers the possibility of compact and cheaper ion sources for many applications; from fast ignition
and radiography of dense targets to hadron therapy and injection into conventional accelerators. To
enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp
simulation suite, we introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates
state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and
control of complex in situ visualization and analysis workflows, and implements integrated analytics
to facilitate query and feature-based data analytics and efficient large-scale data analysis. WarpIV en-
ables for the first time distributed parallel, in situ visualization of the full simulation data using high-
performance compute resources as the data is being generated by Warp. We describe the application of
WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant
differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via
https://bitbucket.org/berkeleylab/warpiv .

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 1

In situ Visualization and Analysis of Ion
Accelerator Simulations using Warp and VisIt

Oliver Rübel*, Burlen Loring*, Jean-Luc Vay, David P. Grote, Remi Lehe, Stepan Bulanov, Henri Vincenti,
and E .Wes Bethel

Abstract—The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the
possibility of compact and cheaper ion sources for many applications; from fast ignition and radiography of dense targets to hadron
therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator
simulations using the Warp simulation suite, we introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates
state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ
visualization and analysis workflows, and implements integrated analytics to facilitate query and feature-based data analytics and
efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data
using high-performance compute resources as the data is being generated by Warp. We describe the application of WarpIV to study
and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and
3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv .

Index Terms—Data visualization, in situ, particle rendering, data analysis, nuclear and plasma sciences, particle beams, ion beams.

F

1 INTRODUCTION

THE rapid development of laser technologies has made
the interaction of high intensity laser pulses with matter

a major focus of theoretical and experimental research.
This interaction has attracted a lot of attention since it
can potentially revolutionize a number of applications by
making available compact sources of high energy beams
of electrons and ions, and high frequency radiation. In
particular, the beams of ions accelerated to the energies
from several MeV to hundreds of MeV or even GeV are
expected to be available from laser plasma interaction [1],
[2]. Several lasers able to achieve 100 MeV levels of proton
energy are already in operation and many more facilities
are being built or planned. These ion beams have a wide
range of applications, such as, radiography, deflectometry,
cancer therapy, injection into conventional accelerators, fast
ignition, isochoric heating of matter, positron emission to-
mography, nuclear physics and others (See [1], [2] and Refs.
therein).

Accelerator scientists at the Berkeley Lab Laser Acceler-
ator (BELLA) center are using Warp (Sec. 2.1)—an advanced
particle-in-cell (PIC) simulation framework—for computa-
tional modeling, design, and study of laser-based ion and
electron acceleration (Sec. 2.2) to improve understanding
of the complex acceleration processes and to optimize and
develop new accelerators. PIC [3] is a technique that uses

• B. Loring*, O. Rübel*, and E. Wes Bethel are with the Data Visualization
and Analytics Group of the Computational Research Division, Lawrence
Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA,
94720. E-mail: bloring@lbl.gov

• J. L. Vay, D. Grote, R. Lehe, S. Bulanov, and H. Vincenti are with the
Accelerator Technology & Applied Physics Division, LBNL.

• D. Grote is with the Fusion Energy Sciences Program, Lawrence Liver-
more National Laboratory.

Manuscript received September 1, 2015; revised February 2, 2016
*These authors contributed equally to this work.

a combination of particles and meshes to solve Vlasov-
type equations and is widely used in computational studies
where the modeling of kinetic effects is required.

Accurate three-dimensional modeling of laser-based par-
ticle accelerators using PIC requires: i) high-resolution
meshes with billions of cells to resolve the high plasma
frequencies, ii) hundreds of millions and in many cases
billions to trillions of particles to model the plasma, and
iii) 104 to 106 timesteps to accurately resolve the laser and
particle motions and interactions. At the same time, often
only a small fraction of the particles form particle features
of interest, such as, a beam. Understanding of the complex
acceleration processes requires visualization and analysis
at high temporal and spatial resolutions and the ability to
study the relationships and interactions between multiple
particle types and fields. The large data sizes and need for
high temporal and spatial resolution are—in conjunction
with recent lag in I/O bandwidth and storage capacity
relative to growing computational capacity—making it in-
creasingly prohibitive to collect all the data required for post
hoc analysis in persistent storage.

To address this critical challenge, we introduce WarpIV—
an advanced in situ visualization and analysis toolkit for
Warp—enabling the efficient, parallel visualization and
analysis of simulation data while it is being generated. The
goal of WarpIV is to enable particle-in-cell (PIC) simulations
using Warp to: i) more effectively utilize high-performance
computing resources, ii) perform analysis at high temporal
resolution, and to iii) enable knowledge discovery from
large-scale simulations. To achieve this goal, we are imple-
menting a three-fold strategy in WarpIV. First, we couple
general-purpose, state-of-the-art in situ visualization tech-
nology using VisIt [4], [5] with Warp to make new advanced
analysis capabilities accessible to Warp and to enable in situ
processing of the complete data in parallel (Sec. 3.1). Second,

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 2

(a) Particle density (b) Kinetic Energy

Fig. 1. Visualization of (a) the particle density and (b) the kinetic energy of all particles in a 3D simulation of a laser ion accelerator model generated
in situ using WarpIV. Both visualizations show the protons (red), carbon (green), and electrons (blue) at an intermediate timestep it = 4105,
time = 5.53716e−14s after the laser has hit the target foil. When comparing (a) and (b) we observe that the bubble has low density but high kinetic
energy compared to the foil.

we support a broad range of in situ operational modes
and workflows, enabling scientific discovery via: i) batch,
production in situ runs, ii) on-demand in situ monitoring
of simulations, iii) interactive in situ data exploration, and
iv) in situ debugging and development via the interactive
simulation prompt (Sec. 3.2). Third, WarpIV implements
a series of integrated analytics to i) enable in situ query
and feature detection, ii) to optimize the analysis of spatial
distributions of particle quantities, and iii) to facilitate the
efficient visualization of staggered “Yee” grids (Sec. 3.3).
WarpIV has been designed with extensibility in mind to
facilitate the fast integration of new Warp simulation mod-
els and in situ visualization, analysis and I/O methods
with WarpIV (Sec. 3.4). We demonstrate the application of
WarpIV to study advanced ion accelerator models in 2D and
3D (Sec. 4).

2 BACKGROUND

Before discussing our methods in detail, we provide in
the following a brief introduction to Warp (Sec. 2.1), the
fundamental concept of laser ion acceleration (Sec. 2.2), and
an overview of methods for in situ visualization (Sec. 2.3).

2.1 Warp
Warp [6], [7] is an advanced particle-in-cell (PIC) simulation
framework that supports a broad range of electrostatic and
electromagnetic field solvers; a variety of geometries (3-D
x,y,z; 2-D r,z; 2-D x,y); the use of “warped” coordinates for
bent beam lines (hence the name Warp); Adaptive Mesh
Refinement (AMR); models for particle interactions with gas
and walls; Lorentz-boosted frame solver, and many other
advanced features. Warp has a broad range of applications,
including modeling of laser-based electron and ion accelera-
tion, non-neutral plasmas in traps, or stray “electron clouds”
in accelerators.

Warp’s basic architecture combines efficient, compiled
Fortran routines for large-scale numerical operations with a
modern, object-oriented Python upper layer and user inter-
face. The Fortran routines are wrapped using the Forthon [8]

library, making all major code quantities accessible to both
Fortran and Python code and enabling compiled subrou-
tines to be called from Python. Warp may be thought of
as a set of “physics extensions to Python.” In fact, input
files to Warp are Python programs that flexibly combine
Warps efficient solvers, models, and diagnostics to define
advanced kinetic simulations of particle beams and plasmas.
This basic design empowers users, facilitates scripting and
control of runs, and facilitates the flexible extension of Warp.

Basic diagnostics and plots are typically implemented in
Warp on the Python level to ease reuse and customization.
Warp primarily uses Gist [9] for two-dimensional graphics
and OpenDX [10] for three-dimensional visualization. While
this approach has been successful, the method is inherently
serial. This means that all data needed for plotting must be
gathered to a single compute core resulting in i) increasingly
large communication and computation overheads as simu-
lation sizes grow and ii) dramatically limiting the amount
of data that can be visualized, in particular as the amount of
available memory relative to compute continues to decrease.
Also, the legacy OpenDX software is no longer supported.

2.2 Ion Accelerator Modeling

There are several ion acceleration mechanisms that are being
discussed in the literature from both theoretical and experi-
mental points of view. The basic ones are i) Target Normal
Sheath Acceleration (TNSA), ii) Coulomb Explosion (CE),
iii) Radiation Pressure Acceleration (RPA), and iv) Magnetic
Vortex Acceleration (MVA). Also several mechanism that
are the combinations of the basic ones are being discussed:
Break-out-Afterburner (BOA), Directed Coulomb explosion
(DCE). Another mechanism of laser ion acceleration being
discussed in the literature is proton acceleration by a laser
generated shock wave in a near critical density plasma.
For the most part, up to now the experiments performed
used conditions in the TNSA regime. The highest energy
ions generated experimentally were generated by the LANL
laser in the BOA regime. There are several results that give
an experimental indication of the RPA and MVA regimes.

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 3

However, most of the experiments demonstrate exponen-
tially decaying spectra, while most of the applications re-
quire monoenergetic ion beams with highly controllable
maximum energy and energy spread. That is why a mecha-
nism is required that can produce a spectrum with a peak at
high energies in a controllable way, as well as allow for the
adjustment of the maximum ion energy.

Here we consider the laser ion acceleration from
ultra-thin foil targets in the Directed Coulomb Explosion
regime [11], [12]. The most efficient realization of this regime
is achieved with ultra-thin solid density two-layer (high
Z/low Z, carbon/hydrogen) foils, which allows the pro-
duction of quasi monoenergetic proton beams applicable
to a variety of applications. In this case, the foil is at first
accelerated by the radiation pressure of the laser pulse, then,
as the electrons are expelled from the irradiated spot (see
Fig. 1, blue), the remaining ion core begins to explode due
to the excess of positive charge. Since the ion core is moving,
the Coulomb Explosion in the lab frame produces a cloud
of carbon ions (see Fig. 1, green) expanding predominantly
in the direction of the laser pulse propagation. The protons
(see Fig. 1, red) are accelerated at the front of this expanding
cloud by the charge separation field. The effectiveness of
acceleration depends on the laser pulse properties as well
as on the target properties. For increasingly thin foils, both
the Coulomb Explosion and the Radiation Pressure should
become weaker. It is due to the fact that the Coulomb
Explosion field depends on the total charge in the irradiated
spot, and the increasing transparency of the foil reduces
the effectiveness of the RPA. Correspondingly, thicker foils
produce high Coulomb Explosion fields but are harder to
accelerate by the radiation pressure as well as to remove a
sizable amount of electrons from the irradiated spot, which
ensures the Coulomb Explosion to occur at all.

2.3 In situ Visualization and Analytics

Data analytics and visualization are processes that enable
scientific knowledge discovery. Data analytics describes the
transformation of data into an information-rich form via
algorithms to promote better understanding. Visualization
is the transformation of data into images to facilitate visual
understanding.

In practice, visualization and analysis are performed in
conjunction with the generation of data (e.g., via simulation
or experimentation) in three main modes: i) post hoc, ii) in
transit, and iii) in situ. Post hoc refers to the processing of data
after it has been generated and stored in persistent storage.
Using this approach, the visualization is decoupled from the
data generation, providing great flexibility but at potentially
large cost for data I/O and storage. Most traditional scien-
tific visualization systems support and have been optimized
for post hoc data processing, e.g., VisIt, ParaView, Matlab, R,
IDL, among many others.

In transit then refers to the processing of data as part of
the I/O transport of the simulation, while the visualization
runs in a separate process in a “staging” area. GLEAN,
ADIOS, and NESSIE are just three examples for frameworks
designed for in transit data processing [13]. The “loose,” in
transit coupling of the visualization with the simulation can
improve performance and reduce I/O and storage cost by

enabling processing of data without having to write the data
to disk and hiding latency of the persistent data store when
writing data to disk.

Finally, in situ (latin for “in position” or “on site”)
refers to the processing of data in place while it is being
generated and the simulation and visualization are running
concurrently. This “tight” coupling of the visualization with
the simulation enables the visualization to access the data
directly in-memory, without the need for costly I/O or net-
work transport. ParaView Catalyst [14] and VisIt libsim [5]
are two examples for libraries designed for in situ coupling
of state-of-the-art visualization systems with simulations.
In situ and in transit visualization and analysis enable the
processing of data at higher frequency and resolution than
possible using traditional, post-hoc approaches and are in-
creasingly becoming an essential tool for scientific discovery.

In practice, in situ, in transit, and post hoc are comple-
mentary approaches that together enable more advanced
and efficient data analysis and scientific discovery. In fact,
the product of in situ analysis is in many cases not “just”
an image, but often the goal is to generate a reduced, de-
rived data product—e.g., distribution, compressed dataset,
descriptions of data features etc.—that can be efficiently
processed in transit or post-hoc. Hybrid analysis workflows
combine in situ, in transit, and post hoc analysis with the
goal to balance processing, I/O, and storage cost factors and
enable more advanced analysis than possible using a single
data processing strategy.

3 METHODS

In the following we describe WarpIV, a novel application
that enables high-performance in situ visualization and anal-
ysis for Warp.

3.1 High-performance In Situ Visualization for Warp

To enable distributed parallel, in situ visualization and anal-
ysis of large-scale simulations using Warp, WarpIV couples
general-purpose, state-of-the-art in situ visualization tech-
nology using VisIt [4], [5] with Warp. WarpIV is a Python
application and integrates with Warp and VisIt directly
using the respective Python APIs. This strategy allowed us
to couple Warp and VisIt, without the need to modify Warp
itself, while at the same time enabling WarpIV to directly
access all simulation data and functions. WarpIV enables
Warp to perform scalable visualization and analysis of the
full simulation data in place and in parallel, without the
need to reduce and collect the data to a single process.
WarpIV supports introspection—i.e., we automatically de-
termine, based on the solvers used, which variables are
valid and relevant to the visualization—and also exposes
to VisIt a series of control commands to enable steering of
the execution of the simulation (e.g, via step, stop, and run).

When analyzing data in situ, because the simulation
and visualization share resources, performance is critical
and the visualization needs to be cognizant of the needs
of the simulation and limit its impact on the simulation
as much as possible. A central cost factor for in situ visu-
alization is memory usage. To reduce memory usage and
enable long production runs, we added NumPy zero-copy

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 4

support to VisIts libsim simulation interface, avoiding the
need for additional data copies to convert Warp data arrays
to Python lists. We apply the same zero-copy techniques
to the integrated data conversions and analyses that take
place in the WarpIV layer. Also, in situ visualization and
analyses workflows, typically run for longer periods of
time and perform many more iterations than is common
during traditional post-hoc analysis. We have profiled and
optimized the memory usage of VisIt and WarpIV to avoid
memory leaks over time and ensure reliability. We present
details of this work in the supplemental material.

Another main cost factor, in addition to memory, is com-
pute time. We have optimized a number of analyses using
modern C++ to leverage compiler optimizations such as in-
lining and auto-vectorization (see Sec. 3.3). In addition, to
optimize rendering performance of complex visualizations
of transparent scenes commonly used for the study of the
three-dimensional structures of particles and fields, we have
extended VisIt to support alpha-blend sort-last compositing
and implemented an ordered compositing strategy that
allows in-place rendering of translucent block-disjoint de-
composed datasets. Our strategy and performance analyses
are detailed in [15]. Our ordered compositing optimization
resulted in a 4× speed up of workstation rendering perfor-
mance and an 8× speed up of server rendering performance
at 512 cores on NERSC’s Cray Edison.

3.2 Managing In Situ Visualization Workflows
A primary function of WarpIV consists in the management
and control of the end-to-end, integrated simulation and
in situ visualization and analysis workflow. WarpIV ini-
tializes and coordinates all required processes and com-
ponents, including Warp; VisIt’s compute engine, viewer
and, command line interface(CLI); and depending on the
mode of operation the simulation prompt and/or VisIt’s
graphical user interface (GUI). To coordinate all aspects of
the workflow, WarpIV defines the main control loop while
providing the user with fine-grained control of when which
tasks are executed, e.g., advancing the simulation, executing
specific visualization and analysis tasks, performing I/O,
responding to user controls et cetera.

3.2.1 Modes of Operation
WarpIV uses the strategy design pattern [16] to support four
main modes of operation—batch, monitoring, interactive,
and prompt mode—each of which supports a different
approach towards, in situ scientific discovery. Fig. 2 provides
an overview of the high-level control flow between the main
processes in the different operational modes.

In Batch Mode WarpIV executes the simulation and
in situ analysis automatically, without intervention by the
user. Batch mode enables production runs in which sets of
predefined analytics are executed in conjunction with the
simulation based on user-defined conditions. For example,
at specific time intervals or based on the detection of specific
events, such as, a spike in energy.

In Interactive Mode the user controls the simulation
directly from VisIt’s GUI. Here the user can interactively
explore the simulation data and define visualizations. The
user can also directly control from VisIt when the simu-
lation should step, run, pause, or terminate. Being able to

Batch Mode Interactive Mode

Warp Warp Warp Warp

Warp Warp Warp Warp

Warp Warp Warp Warp

libsim libsim libsim libsim

libsim libsim libsim libsim

libsim libsim libsim libsim

Parallel Compute
(Local or Remote)

Controls
(Workstation, etc.)

Viewer

CLI GUI

W
arpIV

W

arpIV

W
arpIV

W
arpIV

W

arpIV

W
arpIV

W
arpIV

W

arpIV

W
arpIV

W
arpIV

W

arpIV

W
arpIV

1. P
ython S

cript

2.
 C

om
m

an
ds

3. Result

1.
 C

om
m

an
ds

2. Result

VisIt WarpIV Warp

Fig. 2. Illustration showing the main processes (boxes) and high-level
control flow (arrows) for batch and interactive mode using WarpIV. Mon-
itoring mode then provides the user with the flexibility to switch between
batch and interactive mode and vice versa. Finally, prompt mode adds
the ability to control the simulation and visualization directly from the
simulation prompt (not shown).

interactively explore simulation data as it is being generated
is a critical tool for scientific discovery and provides users
incredible flexibility to explore data as events of interest
occur, test hypotheses, and debug, validate and refine new
simulations and models.

Monitoring Mode is a hybrid of the batch and inter-
active modes enabling users to perform batch style runs
while still being able to flexibly connect to the simulation
to interactively inspect and explore the simulation data
and afterwards resume the simulation run in batch mode.
Being able to monitor large-scale simulations is critical, for
example, to detect and investigate errors and to enable
scientists to make informed decisions about whether to
continue, terminate, or modify a simulation run.

Finally, Prompt Mode runs inside an interactive Python
shell. The simulation data structures can be accessed di-
rectly, visualization scripts executed, and WarpIV simula-
tion commands issued. This enables the scientist to pro-
grammatically interact with the simulation and visualiza-
tion and is intended primarily for development and debug-
ging of simulation models.

3.2.2 Automated Analyses via Scripts

A unique feature of WarpIV is its strategy for controlling
automated in situ visualizations via scripts. This is built
around an often overlooked feature in libsim, namely the
ability to execute VisIt CLI Python scripts stored in a string
via the libsim API. This feature allows us to use Python
scripts for configuration and execution of visualization and
analysis tasks. In contrast to the rather sparse functionality
exposed explicitly via the libsim API, CLI Python scripts
expose VisIt’s full range of functionality for in situ use. In
addition, CLI scripts can be generated automatically, simply
by recording a user’s actions in VisIt’s GUI.

During each update WarpIV collects the user-defined
visualization scripts to be executed and sends them to the
VisIt CLI via the libsim API. The CLI in turn interprets
the scripts, sending commands that control visualizations to
VisIt’s engine or sending simulation commands that control
the execution of analyses tasks back to WarpIV (Fig. 2,

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 5

red arrows). VisIt’s CLI executes incoming scripts asyn-
chronously, each in a separate thread. However, VisIt’s CLI
Python API is not thread-safe leading to a host of issues if
multiple scripts execute simultaneously. Therefore, at each
update the set of active scripts are concatenated into a
single script prior to execution. This strategy also simplifies
synchronization of the visualization and simulation and
allows us to instrument the scripts to gather coarse grained
run time performance data and to gracefully handle errors
in the user-provided code. Because CLI scripting is a VisIt
feature, this approach could be used in Fortran or C/C++
based codes as well.

One particularly tricky aspect in the design of WarpIV’s
script-based visualization controls has been the synchro-
nization of the simulation and VisIt. When using zero-
copy data transfers, the simulation must not modify its
data structures during visualization operations. However,
VisIt CLI scripts are executed asynchronously in a separate
process where Python code is translated into VisIt’s internal
remote procedure calls which trigger actions on the VisIt
engine, running in the process shared with the simulation.

To achieve the required synchronization we leverage CLI
Python bindings to the GUI’s “simulation command” mech-
anism. These are typically used for interactive control of
the simulation. WarpIV implements a “synchronous mode”
during which incoming simulation commands are queued.
This temporarily prevents the simulation from advancing.
Synchronous mode is activated prior to requesting the asyn-
chronous execution of a CLI script. During the concate-
nation of user provided scripts, an “end-syn” simulation
command is added, which when executed gets sent back to
WarpIV to indicate that the visualization is finished. In re-
sponse to the end-syn command WarpIV de-queues and acts
upon any pending commands before exiting synchronous
mode and resuming normal operation.

In addition to visualization scripts, WarpIV also sup-
ports “simulation scripts”. Simulation scripts are user pro-
vided Python analysis scripts that are executed in parallel on
the simulation side. Similar to visualization scripts, simula-
tion scripts are executed by WarpIV at user defined intervals
and/or in response to specific conditions or events in the
simulation. Simulation scripts enable users to easily incor-
porate custom visualization, analysis, and I/O methods that
do not rely on VisIt.

3.3 Integrated Analytics

WarpIV supports a number of integrated data analytics to
facilitate in situ analysis of advanced accelerator simula-
tions, in particular derived particle species (Sec. 3.3.1), data
binning (Sec. 3.3.2), and re-centering of Yee grids (Sec. 3.3.3).

3.3.1 Derived Particle Species
A central challenge in the analysis of complex particle simu-
lations arises from the fact that while 107 to 109 particles are
required for accurate simulation, often only a small fraction
of the particles form features of interest, e.g., a particle beam.
WarpIV addresses this challenge via the concept of filtered
species. Filtered species define custom, derived particle
species while exposing to the analysis the same interface
as Warp’s regular particle species. This concept enables: i)

flexible in situ analysis of particle features, ii) analysis and
collection of select data subsets of interest at higher temporal
frequency, and iii) reduces memory and compute cost for
subsequent visualization and I/O. Similar to filtered species,
WarpIV also supports merged species. Merged species allow
multiple particle species to be combined, e.g., to facilitate
analysis of the joint distributions of all electrons that may
arise from different particle types, such as, electrons from
Carbon and Hydrogen in the foil. WarpIV provides a set of
customizable, reusable particle filters—including threshold,
particle Id, accumulative query, cone, and halo filters—to
facilitate common use cases while at the same time allowing
users to easily add their own custom filters. Multiple filtered
and merged species may also be combined to define more
complex species via a sequence of filters.

3.3.2 Data Binning
Rather than visualizing individual particles, it is in practice
often useful to study the distribution of particle quantities
in space, such as, the density of particles or average kinetic
energy. We call this re-meshing operation “data binning” as
particle quantities can be mapped to other axes, such as ve-
locity or momentum, in addition to the spatial dimensions.
VisIt supports data binning. However, in VisIt’s data bin-
ning implementation the output is constructed on a single
node. While this works well for small output resolutions, for
higher resolutions, and in particular 3D output, this strategy
can run out of memory, and encounters performance issues
as operations on the results take place in serial.

We address these issues by implementing a truly data-
parallel data binning operator in WarpIV. A key feature
of our implementation is that the resulting mesh remains
distributed allowing for much high resolution 3D output.
By implementing data binning in WarpIV we can also take
advantage of Warp’s internal data structures to enable the
fast, parallel computation of high-resolution, spatial distri-
butions of derived particles quantities. In order to deliver
the highest possible performance, our algorithm is written
in C++ and made accessible in WarpIV via Python bindings.
We make these derived grids and quantities directly accessi-
ble in VisIt, enabling efficient, parallel visualization of high-
resolution, spatial distributions of particle quantities.

3.3.3 Yee Grid Re-centering
Many of Warp’s electromagnetic field solvers use a stag-
gered “Yee” discretization [17] where the electric field com-
ponents are located on the edge centers and magnetic field
components are located on the face centers. To enable in
situ visualization of these meshes, we developed a C++ ex-
tension to WarpIV for fast conversion of Yee-style meshes to
node-centered meshes. Our C++ implementation has shown
to be one order of magnitude faster than using NumPy
broadcasting, and three orders of magnitude faster than the
base Python implementation. See supplemental material for
details.

3.4 Integrating New Simulation Models and Analytics
WarpIV uses a factory pattern design [16] to define simu-
lation models, enabling scientists to create new simulation
and in situ analysis models in a self-contained fashion,

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 6

simply by defining a derived simulation class type. The
effort to create a new simulation in WarpIV is low and
is comparable to the effort needed to define models for
Warp itself. In addition to the simulation model, a user
also needs to define and add the in situ visualization and
analysis scripts to be performed in conjunction with the
simulation. As mentioned in Sec. 3.2, WarpIV supports
two types of in situ scripts: i) visualization scripts are
shipped to and interpreted by the VisIt CLI (Fig. 2) to create
advanced in situ visualizations and analytics, whereas ii)
simulation scripts are executed in parallel directly on the
simulation side (Fig. 2, left) and are used to perform I/O
and custom python-based visualization and analytics. Users
may also customize other behaviors, such as, the advance,
finalization, or termination of runs and define policies and
triggers for the execution of visualization and simulation
scripts by overriding the corresponding control functions.
WarpIV provides a convenient command-line interface to
assist users with the execution of simulations and scripts.

4 RESULTS

In the following we demonstrate the application of
WarpIV to analyze and compare a series of ion accelerator
simulations, with the goal to study the impact of using 2D
vs. 3D simulation models on the scientific interpretation.
We, therefore, designed a simulation campaign of the same
laser ion accelerator model as shown in Table 1 in two
and three dimensions. The actual simulation box size is
(8µm×8µm×14µm) and the actual duration is 6.2710e−14

seconds. The temporal resolution is rtime = 6400 steps and
the spatial mesh resolution is rspace = (900 × 900 × 1800)
in 3D and correspondingly rspace = (900×1800) in 2D. The
2D simulation contains 251,600 electron, 179,776 carbon, and
71,824 proton particles per timestep and the 3D simulation
models the motions of more than 2.1 billion particles at
each timestep; 1,069,251,640 electron, 809,557,568 carbon,
and 259,694,072 proton particles.

For every simulation we computed a broad range of in
situ visualizations and analytics, including, i) histograms of
various quantities, ii) basic statistics of various quantities,
e.g., mean, standard error, iii) filtering of particles to ex-
tract and analyze beam particles, iv) merging of particle
species to define joint particle distributions, v) two and
three-dimensional binning of the data to compute multi-
dimensional histograms and derived spatial statistics, and
vi) 3D renderings using transparent iso-surfaces of binned
quantities. For visualizations of derived data products, such
as histograms and 2D data binnings, we typically save the

Laser wavelength 800nm

Laser intensity 1.3x1022W.cm−2

Focal spot size 0.8 microns
Laser duration 27fs

Carbon layer thickness 75nm

Hydrogen layer thickness 50nm

Electron density of the carbon layer ≈ 8× 1023cm−3

Electron density of the hydrogen layer ≈ 4× 1022cm−3

Polarization of the laser Y-axis

TABLE 1
Parameters of the ion accelerator model

Fig. 3. Average kinetic energy over z for electrons (blue), carbon (green),
and protons (red) for the 2D and 3D simulation at it = 3300, time =
4.403e− 14s (left) and it = 4105, time = 5.5372e− 14s (right).

reduced data product for post hoc rendering. For complex
3D visualizations, where saving the raw data is prohibitive,
we store the images only.

4.1 2D vs. 3D
In what follows we compare the results of 2D and 3D
simulation runs. It is well known that the propagation of
tightly focused laser pulses in 2D and in 3D is different. This
difference should imprint itself into the distributions of en-
ergetic electrons and ions. In Fig. 3 the energy of carbon ions
and protons averaged at each value of z coordinate is shown
for two time steps. The 3D case shows consistently larger
energy and the front of the 3D ion distribution is ahead of
the 2D one. This means that the ions acquire higher energies
in the 3D case. The distribution of ion density, shown in
Fig. 4 (right), gives an insight into the difference between
the 2D and 3D cases. The figure shows a consistently larger
extension of the accelerated ion cloud in the 3D case. This is
mainly due to the higher divergence of the tightly focused
laser after it passes the focal plane. The higher divergence
also contributes to higher carbon ion and proton energies in
3D. This is due to the fact that the more divergent laser pulse
is able to evacuate electrons from a larger spot on the foil,
boosting the Coulomb field, which accelerates the protons.
This effect is similar to using a transversely Super Gaussian
pulse instead of a Gaussian pulse, as studied in [12]. As we
can see from the comparison of 2D and 3D cases, the 2D one
correctly catches the qualitative nature of the interaction,
i.e., the creation of the expanding carbon ion cloud and the
layer of protons being accelerated by the charge separation
field in front of the carbon ion cloud. However the 2D fails
to correctly predict the quantitative parameters of the ions,
i.e., the spectrum and angular distribution. Thus for the
correct analysis of the laser driven ion acceleration as well as
interpretation of experimental results, 3D simulations are of
paramount importance. A key challenge when comparing
simulations is that we often do not know a priori when
important features occur and what key differences we may

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 7

Fig. 4. Average kinetic energy in x/z for the 3D (x > 0) and 2D (x < 0) simulation. There are a number of immediately apparent differences
between the 2D and 3D result. We observe that the acceleration process is quantitatively different in 3D as the proton bubble (right) has propagated
significantly further (≈ 1.24µm, indicated by the magenta arrow) after the same amount of time, here time = 5.53716e−14s. We also see a similar
discrepancy in the propagation of Carbon (center).

 x
 (

x1
0^

-6
 m

)

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

2.0 4.0 6.0 8.0 10.0
 z (x10^-6 m)

Iteration it =

20
00

28

00

36
00

44

00

52
00

60

00

Fig. 5. Illustration of a high-resolution laser ion accelerator simulation
showing the evolution of the protons over time, while the color of par-
ticles indicates time. Protons that are located within the red cone are
selected as being part of the beam at the given time point.

find. As such, in situ analysis and visualization has been
critical to this study as it allowed us to perform visualization
and analysis at high temporal frequency at significantly
reduced I/O cost (see Sec. 4.3).

4.2 Beam Analytics
Ultimately the goal is to produce a high-quality ion beam.
Similar to the diagnostic proposed by Bulanov et al. [12], we
use a cone-shaped filter with an 8◦ opening angle normal to
the target and centered at the origin (0, 0, 0) to extract the
set of protons that are part of the beam at a given point in
time. I.e, the beam filter selects all particles p that satisfy the
following condition:

arccos

 |pz|√

p2x + p2y + p2z

 <= 8◦ · π

180◦
(1)

Fig. 6. Analysis of the acceleration over time of the main ion beam in
2D (bottom) and 3D (top) showing the average and standard deviation
in kinetic energy as well as the number of particles selected as part of
the beam.

In WarpIV we implement this filter via the concept of fil-
tered species. Fig. 5 illustrates the behavior of the beam filter
over the course of the 2D laser ion accelerator simulation.

Fig. 6 shows the mean kinetic energy, and standard
deviation in kinetic energy (i.e, energy spread), and count of
all protons selected by the beam filter over time. We observe
that the beam accelerates continuously over time, while we
can identify at least three main phases of acceleration. First,
early on, before the laser has hit the target, the protons are
largely stationary (i.e., ke ≈ 0). Second, after collision of
the laser with the target we initially observe very strong
acceleration while the energy spread (i.e., standard error in
ke) is fairly large. Third, later on in time, we can see that

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 8

Fig. 7. Histogram of the kinetic energy for all protons (gray) and the
subset of protons selected by the beam filter (magenta) at it = 4150,
time = 5.537e − 14s for the 3D laser ion accelerator simulation (left)
and the equivalent timestep of the corresponding 2D simulation (right).

the acceleration slows down while the energy spread of the
beam becomes smaller. The reduction in energy spread also
coincides with a continues loss in the number of particles
that are part of the beam. When comparing the distribution
in kinetic energy ke of all protons with the corresponding
distribution for the beam protons (see Fig. 7), we then
observe that the beam filter, despite being defined solely in
physical space, selects the protons with the highest kinetic
energies. This behavior is consistent over time once the
proton bubble starts to from.

The behavior we have seen here can be explained as
follows. When the laser hits the target, it preferentially
gives momentum to ions in the laser beam’s propagation
direction. However, due to the tight focusing, ions receive
transverse momentum as they are being pulled out of focus
by transverse components of the laser radiation pressure.
This defocusing force primarily effects less energetic ions,
pulling the low-energy ions out from the main propaga-
tion direction, whereas the more energetic ions will not be
deflected. Hence, as the ions move away from the target
the low-energy ions escape the beam filter resulting in a
reduced energy spread and explaining the selectivity of the
filter for high-energy ions. Similarly, as we narrow the cone
angle we expect the energy spread and charge of the beam to
decrease as well. The appropriate cone angle and distance to
the target, or equivalently the slit used in lab experiments to
extract the beam, therefore, depends on the beam charge and
energy-spread requirements of a given application. These
kind of in situ analytics are important to simulation studies
as they help understand the beam acceleration process, val-
idate and determine beam properties, and predict optimal
parameters of the laser, plasma, and slit.

When comparing the 3D simulation with the corre-
sponding 2D simulation, we observe, consistent with our
observations in Sec. 4.1, that the beam accelerates signifi-
cantly faster in 3D than in 2D and reaches a higher level
of energy. This behavior again illustrates the critical need

Fig. 8. Run time in seconds by category at 50 iteration updates.

for high resolution 3D simulations. This example further
illustrates the critical need for visualization and analysis at
high temporal resolution to enable accurate estimation of
the acceleration gradient of the beam, identification of the
various phases of acceleration, and definition of appropriate
parameters to extract ion beams with the desired energy
level and spread.

4.3 Performance

The melding of simulation and visualization and analy-
sis codes for in situ use holds the promise to enable ad-
vanced, high-fidelity analyses and drastically reduced I/O
cost. However, performance and scalability of the merged
code base is of paramount importance. We instrumented
WarpIV with a light weight, coarse grained, profiling API
and have used it to study the performance of the 3D run
presented above. For the performance analysis we grouped
similar operations into one of five categories: i) “simula-
tion”, for the Warp solver computations; ii) “histograms”,
for the computation and I/O of 12 histograms (e.g. Fig 3, 7);
iii) “projections”, for the computation and I/O of 18 2D
projections that were used to compare 2D and 3D wave
fronts (e.g. Fig. 4); iv) “iso-surfaces”, for the 3D iso-surface
computation, translucent rendering, and image I/O of the
Ke and density fields (e.g. Fig. 1); and v) “statistics”, for
a number of simple descriptive statistics computations and
I/O (e.g. Fig. 6).

The stack plot in Fig. 8 shows the time spent to complete
each category at every 50 iteration simulation update. At
each update the visualization, analysis, and I/O operations
consumed approximately 11% to 15% of the total time,
while the remainder of the time, i.e. > 85%, was used by the
simulation. This ratio of simulation vs. in situ data analysis
is quite reasonable as the overall run time performance
and scalability of the simulation has not been impacted
drastically, in particular when considering the large range
of analyses performed.

In addition to run time, another primary cost factor is
I/O. As part of the in situ analyses, histograms are written
in an ASCII CSV format, projections in VTK compressed
binary VTR format, iso-surfaces are rendered and written

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 9

Fig. 9. I/O cost in bytes by category at 50 iteration updates.

Category I/O Cost

in situ

histogram 4.49 MB
projections 795.97 MB
iso-surfaces 40.77 MB
statistics 3484 b
total 841.23 MB

hypothetical
post process

particle position
and velocity 3.24 TB

TABLE 2
Total I/O cost and comparison with identical post-process analysis.

as PNG images, and statistics are output to standard error
stream. Figure 9 shows the cumulative I/O cost in bytes
at each 50 iteration update by category. The size of both iso-
surface and projection categories grow in time because com-
pression becomes less effective as the simulation evolves
and particles begin to fill the entire simulation box. Table 2
shows the total I/O cost of the run by category. The total
I/O cost in the run is approximately 841MB. If one were to
make the same analysis post hoc, one would need to save the
particle positions and velocities for each species at each 50
iteration update, resulting in a total of approximately 3.2TB
written to disk. Thus, by using in situ we have reduced our
I/O cost by a factor of more than 4000×.

5 CONCLUSION

5.1 Lessons Learned

While we have focused on a specific application, many of
the design features of WarpIV and lessons learned from this
study are relevant more broadly to applications of in situ
visualization.

Performance and reliability: In contrast to the post
hoc approach, in situ visualization and analysis shares re-
sources with the simulation. Also, in the in situ approach,
many more iterations of the visualization and analysis
operations are made. Careful optimization and testing of
the in situ visualization and analysis are, therefore, critical.
For example, the profiling and optimization of the memory
usage of VisIt; the addition of numpy and zero-copy sup-
port; the C++ optimized Yee-grid re-meshing, data binning

operations, and derived particle species; all were critical to
enable WarpIV to support large-scale 3D PIC simulations.

Tuning visualization parameters: One challenge to
making effective use of in situ rendering is the loss of in-
teractive adjustment and fine tuning of parameters. Setting
rendering parameters in advance is difficult, especially so
with translucent rendering techniques such as volume ren-
dering and rendering translucent geometry (Fig. 1). These
techniques also exhibit a resolution dependence which con-
founds the use of a low resolution sample to set up the
visualization in advance. For in situ applications it is, there-
fore, often preferable to generate reduced data products for
subsequent rendering (or multiple or editable variants of the
same visualization) to provide users with the fidelity that in
situ provides while preserving at least some of the flexibility
of post hoc analysis and rendering.

Data compatibility: The level of compatibility be-
tween simulation and visualization library data structures
greatly impacts performance. Where data structures have
binary compatibility and metadata is equivalent between
the two codes, performance will be optimal. However,
a mismatch in data structures and/or metadata on the
visualization side can lead to potentially expensive data
conversions and redundant or unnecessary computations.
Given the size and complexity of visualization codes and
their web of third-party dependencies (e.g. VisIt+VTK), the
amount of effort needed to add support for a new data
structure can be prohibitive.

An alternative approach moves a portion of the visual-
ization and analysis work that rely on the unsupported data
structure into the coupling layer that sits in between the sim-
ulation and the visualization library. Working in this layer
can have the additional advantage of reducing data to be
processed by the visualization library. We have successfully
taken this approach in WarpIV with our specialized data-
binning operator that takes advantage of native simulation
data layout, with our Yee-grid conversions, and with our
“filtered-species”.

As in situ analysis becomes more-and-more central to
simulations, co-design of simulation codes and in situ visu-
alization infrastructure becomes desirable to achieve opti-
mal integration and performance.

Visualization strategies: The visualization strategy
we choose, whether it is in situ, in transit, post hoc, or some
hybrid approach, dictates which optimizations, operations,
and interactions we can perform. In situ processing uniquely
enables us to take advantage of the structure and location of
the data, to early on reduce data and cost for subsequent
processing, and to access data as it is being generated. On
the other hand, by separating the visualization and analysis
from the simulation, post hoc data processing enables us to
optimize the visualization independent of the simulation
and to perform interactive and complex analyses that may
be prohibitive in situ. To address these challenges, we plan
to expand WarpIV in the future to also support advanced
in transit, post hoc, and hybrid visualization and analysis
workflows.

Flexibility: The practical use cases for in situ visu-
alization are broad, ranging from debugging, interactive
exploration, monitoring, to batch runs. In WarpIV we have
addressed this critical challenge by enabling users to flexibly

IEEE CG&A, SPECIAL ISSUE ON HIGH PERFORMANCE VISUALIZATION AND ANALYSIS, SEPTEMBER 2015 10

expand WarpIV and to easily choose between a variety of
modes of operation; prompt, interactive, monitoring, and
batch mode. In our experience, this flexibility has been crit-
ical to both the scientific discovery process and to achieve
productivity. In particular, the design of new simulation and
in situ workflow scenarios critically relies on the ability to
easily transition between the different use cases and modes.

Ease-of-use: In situ visualization is ultimately an
end-user tool. Ease-of-use is, hence, a critical requirement
in the design of in situ applications. We have addressed
this challenge in WarpIV by enabling users to create in situ
visualizations using the same Python scripts and tools used
for post hoc analysis and by providing simple interfaces for
implementing new simulation and in situ analysis scenarios.
To further ease adoption, we plan to also develop libraries of
standard, reusable in situ visualization and analysis scripts.

5.2 Conclusion

We have introduced WarpIV, a novel application for in
situ visualization and analysis of large-scale particle-in-
cell simulations using Warp and VisIt. We have made
WarpIV available to the public via https://bitbucket.org/
berkeleylab/warpiv. We have described the application of
WarpIV to study and compare large 2D and 3D ion accel-
erator simulations, demonstrating the utility of advanced
in situ visualization and analytics. We analyzed the run
time performance of the in situ visualization and analysis
operations and the simulation itself and found that the
addition of in situ analysis introduced a reasonable overhead
and did not drastically impact the overall performance and
scaling of the code. We also analyzed I/O cost of the in situ
analysis compared to an identical hypothetical post process
analysis and found that the use of in situ analysis reduced
I/O cost by a factor of more than 4000. Our scientific in-
vestigations revealed significant differences between corre-
sponding simulations in 2D and 3D. These results highlight
the critical need for high-resolution, 3D simulation in con-
junction with advanced in situ visualization and analysis to
enable accurate modeling and study of the complex laser ion
acceleration processes and prediction of beam properties.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 as part of the SciDAC Institute for Scalable
Data Management Analysis and Visualization (SDAV). This
research used resources of the National Energy Research Sci-
entific Computing Center, a DOE Office of Science User Fa-
cility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

LEGAL DISCLAIMER
This document was prepared as an account of work sponsored by
the United States Government. While this document is believed to
contain correct information, neither the United States Government nor
any agency thereof, nor The Regents of the University of California,
nor any of their employees, makes any warranty, express or implied,
or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the
University of California.

REFERENCES

[1] G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in
the relativistic regime,” Rev. Mod. Phys., vol. 78, pp. 309–371,
Apr 2006. [Online]. Available: http://link.aps.org/doi/10.1103/
RevModPhys.78.309

[2] H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-
driven ion sources and their applications,” Reports on Progress in
Physics, vol. 75, no. 5, p. 056401, 2012.

[3] C. K. Birdsall and A. B. Langdon, Plasma physics via computer
simulation. CRC Press, 2004.

[4] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pug-
mire, K. Biagas, M. Miller, G. H. Weber, H. Krishnan, T. Fo-
gal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel,
M. Durant, J. Favre, and P. Navratil, “VisIt: An End-User Tool for
Visualizing and Analyzing Very Large Data,” in High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, ser. Chap-
man & Hall, CRC Computational Science, E. W. Bethel, H. Childs,
and C. Hansen, Eds. Boca Raton, FL, USA: CRC Press/Francis–
Taylor Group, Nov. 2012, pp. 357–372.

[5] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in situ
coupling of simulation with a fully featured visualization system,”
in Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization, ser. EGPGV ’11. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2011, pp. 101–109.

[6] A. Friedman, R. Cohen, D. Grote, S. Lund, W. Sharp, J.-L. Vay,
I. Haber, and R. Kishek, “Computational methods in the warp
code framework for kinetic simulations of particle beams and
plasmas,” Plasma Science, IEEE Transactions on, vol. 42, no. 5, pp.
1321–1334, May 2014.

[7] Warp. [ONLINE] http://warp.lbl.gov.
[8] Forthon. [ONLINE] http://hifweb.lbl.gov/Forthon/.
[9] Gist. [ONLINE] http://hifweb.lbl.gov/public/software/gist.
[10] OpenDX. [ONLINE] http://www.opendx.org.
[11] S. S. Bulanov, A. Brantov, V. Y. Bychenkov, V. Chvykov,

G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed,
V. Yanovsky, K. Krushelnick, D. W. Litzenberg, and
A. Maksimchuk, “Accelerating protons to therapeutic
energies with ultraintense, ultraclean, and ultrashort laser
pulses,” Medical Physics, vol. 35, no. 5, pp. 1770–1776,
2008. [Online]. Available: http://scitation.aip.org/content/aapm/
journal/medphys/35/5/10.1118/1.2900112

[12] S. S. Bulanov, A. Brantov, V. Y. Bychenkov, V. Chvykov,
G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky,
D. W. Litzenberg, K. Krushelnick, and A. Maksimchuk,
“Accelerating monoenergetic protons from ultrathin foils by
flat-top laser pulses in the directed-coulomb-explosion regime,”
Phys. Rev. E, vol. 78, p. 026412, Aug 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.78.026412

[13] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld
et al., “Examples of in transit visualization,” in Proceedings of the
2nd international workshop on Petascal data analytics: challenges and
opportunities. ACM, 2011, pp. 1–6.

[14] A. C. Bauer, B. Geveci, and W. Schroeder, “The paraview catalyst
users guide,” 2013.

[15] B. Loring and O. Rübel, “Rendering and compositing infras-
tructure improvements to visit for insitu rendering,” Lawrerence
Berkeley Lab, Tech. Rep. LBNL-1004236, 2016.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[17] K. S. Yee et al., “Numerical solution of initial boundary value
problems involving maxwells equations in isotropic media,” IEEE
Trans. Antennas Propag, vol. 14, no. 3, pp. 302–307, 1966.

