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ABSTRACT: Mass spectrometry imaging (MSI) enables research-
ers to directly probe endogenous molecules directly within the
architecture of the biological matrix. Unfortunately, efficient access,
management, and analysis of the data generated by MSI approaches
remain major challenges to this rapidly developing field. Despite the
availability of numerous dedicated file formats and software
packages, it is a widely held viewpoint that the biggest challenge
is simply opening, sharing, and analyzing a file without loss of
information. Here we present OpenMSI, a software framework and
platform that addresses these challenges via an advanced, high-
performance, extensible file format and Web API for remote data
access (http://openmsi.nersc.gov). The OpenMSI file format
supports storage of raw MSI data, metadata, and derived analyses
in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and
programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using
chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage
requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold
improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50
GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and
collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and
derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data
sharing, visualization, and analysis.

Mass spectrometry imaging (MSI) as an analytical
technique is rapidly finding widespread application in

life sciences,1−3 bioengineering, medicine,4 drug develop-
ment,5,6 and studies of metabolic processes and promises to
enable transformative medical diagnostics and large-scale
scientific experiments.7,8 In recent years, sample preparation
methodologies, desorption-ionization techniques, and MSI
instrumentation have advanced to a point where standard
practices can be followed to yield high-quality data, enabling
direct interrogation of the spatial distribution of metabolites
and proteins within cells and tissues.
In MSI, many spatially defined mass spectra are acquired

across a sample. In the raw form, the data for each position is
represented as a profile of intensity values over a corresponding
range of mass-to-charge (m/z) values. Modern mass
spectrometers are capable of accurately measuring the m/z to
approximately the mass of a single electron, generating massive
and highly complex data sets.9

Despite numerous advances in analysis of MSI data sets,
widespread adoption of MSI is hindered by a lack of fast and
easy-to-use approaches for sharing, management, access, and
provenance of raw MSI data and derived analyses.10−18 While

numerous open standards have been proposed for storage of
MSI data, e.g, imzML or mzML,19,20 none of the current
formats efficiently support standard data access patterns, such
as reading of ion images, and they often introduce large storage
overheads. This lack in performance already at the file-format
level unnecessarily hinders visual data exploration and high-
performance, complex data analysis. These formats came about
due to the urgent need for a standardized way to store data and
have been adopted by many laboratories as their preferred file
format. However, as Web-based technologies and high-
performance, parallel data analysis and computing become
mainstream in today’s laboratories, it is essential that beyond
standardized data storage that data formats support efficient
parallel I/O for fast read and write, compact data storage, and
storage and management of metadata and data provenance
information to facilitate complex analysis workflows.
Storage and management of MSI data is challenging; the data

is extremely large, shows large (3−4 orders of magnitude)



differences between spatial and mass resolution and requires
fast orthogonal access to spectra and ion images. A 2D MSI
data set can be described as a three-dimensional cube of (x,y,m/
z) typically containing hundreds of thousands of positions
(x,y), with each position containing one or more spectra. Each
spectrum describes the distribution of masses (m/z) at a given
image location (x,y) and typically consists of 105 to 107 integer
intensity values. See Part 1 in the Supporting Information for a
detailed discussion of the MSI data requirements.
Here we describe a new paradigm in MSI data storage and

processing based on a central data repository with Web-based
processing and standardization of data formats. This approach
takes advantage of advanced computing to make MSI data
analysis rapid and accessible such that researchers can easily
share and compare data. The OpenMSI file format, file API,
and Web API described here build the foundation of the
OpenMSI science resource (http://openmsi.nersc.gov). Overall
the OpenMSI platform addresses many of the data challenges
to MSI by making advanced, high-performance data analysis
and computing easily accessible to MSI scientists, by enabling

fast sharing and access to raw MSI data and derived analyses via
the Web (see Figure 1). All software has been implemented in
Python using the h5py library to interact with HDF5 and using
the Django Web application framework for Web-related
tasks.21,22

■ OPENMSI FILE FORMAT AND API

In recent years, there have been significant advancements in
methods for management, access, and storage of big data sets.
One of the most widespread file formats for storing and
accessing scientific data on massive parallel file systems is the
HDF5 format.23 HDF5 is a suite of technologies, consisting of a
versatile data model, portable data format, and a widely
accessible software library and API, which includes a rich set of
integrated features for optimization of I/O performance and
tools for managing, viewing, and manipulating HDF5 data
collections.23 We here describe the newly developed OpenMSI
file format, a novel, extensible, portable, self-describing, parallel-
aware MSI file format based on HDF5.

Figure 1. Illustration showing the main processing paradigm of OpenMSI. MSI data is acquired at the lab and transferred to NERSC for processing
and storage. This enables us to take advantage of large-scale, high-performance compute resources to perform more complex analyses than possible
using limited local compute capabilities. Raw MSI data and derived analyses results are then visualized and analyzed via the Web using the interactive
OpenMSI online viewer providing fast feedback to the user.

Figure 2. Overview of the hierarchy of the OpenMSI file format. The omsi file format and API follow the same semantic hierarchy. Each main HDF5
group is managed in the omsi file format API by a corresponding class (colored boxes) responsible for providing access to and creating the direct
content of the group in the file.



Specifically, what does this mean for the end user?
Extensibility of the format means that the object-oriented
design of the file structure and API enables flexible extension of
the file format to handle custom application use-cases that may
not yet be fully supported. Portability of the format means that
OpenMSI files can be manipulated and viewed using standard
HDF5 APIs and tools and used directly without change on all
architectures and operating systems for which HDF5 is
available. HDF5 is available for Windows and Unix-based
systems, including Linux and MacOS, and well-supported
HDF5 APIs exist for common programming languages, e.g., C,
C++, Fortran, or Python. Also, many advanced visualization
and analysis systems, e.g., Matlab, R, and VisIt, support HDF5
natively. Self-describing of the format means that all information
about the data hierarchy, data types, etc. are directly encoded in
the HDF5 files so that a user can, without prior knowledge
about the file, explore the file hierarchy and load data similar to
how one browses files and directories on a file system. Finally,
in being parallel-aware, the HDF5 file format has been designed
with parallel applications in mind. HDF5 provides many
optimizations to enable and accelerate parallel I/O to single
HDF5 files. This is fundamentally important to enable parallel
algorithms to scale well on modern computing platforms, with
I/O being one of the main bottlenecks in many parallel
analyses. The OpenMSI file format addresses in this way many
of the shortcomings of current MSI data formats. In the
following we first describe how data is organized in the
OpenMSI data format and then the optimization of the data
layout.
In HDF5, data is stored as multidimensional data arrays.

HDF5 supports a large range of standard data types as well as
complex user-defined compound data types. Similar to
directories in file systems, data sets can be organized via so-
called groups in HDF5. In addition, groups and data sets may
be assigned additional attributes, defining small metadata
objects that can be used, e.g., to describe the nature and/or
intended usage of a primary data object, e.g., data set or group.
Figure 2 describes the organization of raw MSI data and

metadata via groups and data sets in OpenMSI HDF5-based
data files. The file format also supports storage and manage-
ment of derived analyses results, data provenance information,
and data from other imaging modalities; this, however is
beyond the scope of this manuscript.
All OpenMSI files contain a root group, /. Data associated

with a particular imaging experiment is then stored in a
corresponding /entry_# group. This allows for convenient
storage of data from multiple related experiments in a single
OpenMSI data file. Each /entry_# group contains a simple
string data set /entry_#/experiment_identifier used to name
and uniquely identify the experiment. Metadata describing the
instrument and sample associated with the experiment are then
stored in separate /entry_#/instrument and /entry_#/sample
groups. Since the HDF5 format is self-describing, custom
metadata may be added to the sample and instrument groups
without violating the OpenMSI file format. Raw MSI data and
derived analysis results are then stored in dedicated /entry_#/
data_# groups. This data organization allows us to store an
arbitrary number of raw MSI data sets and derived analyses for
each experiment represented by a /entry_# group.
Storing raw MSI data in a /entry_#/data_# group, rather

than directly in an HDF5 data set, provides us with great
flexibility with respect to the data layout and storage of
additional associated data sets. In the basic case where the raw

data defines a complete 3D MSI data cube, each data_# group
contains (i) a string data set data_#/format indicating the data
format used, (ii) a 1D floating-point array data_#/mz with the
m/z values for the spectrum dimension, and (iii) an 3D array
data_#/data_# with the 3D MSI data cube. With this design it
is simple to organize MSI data in different formats (indicated
by the data_#/format string) each optimized for different
practical use cases. For example, to avoid possibly large storage
overheads by storing an uncompressed, full 3D cube even if
only a small region of interest has been imaged, the current
implementation of the OpenMSI file API supports storage of
mass spectra as a 2D data set of spectra along with additional
small index data sets to record the relationship between spatial
(x,y) locations and spectra. The design of the file format and
API enables us to flexibly extend the file format to
accommodate other optimized MSI storage formats as well as
to integrate data from other imaging modalities, such as light
microscopy. Organizing raw MSI in an HDF5 group allows us
to also store multiple copies of the same data as numbered
instances of data_#/data_# data sets. As described later, storing
multiple copies of the same data using different data layouts can
significantly accelerate orthogonal selective data accesses.
The OpenMSI file format API then follows an object-

oriented design that models the group hierarchy of the file
format. Each main HDF5 group (here called a managed group)
is represented in the API by a corresponding class responsible
for creation, management, and access of the corresponding
HDF5 group type. The type of a managed groupd is uniquely
determined by the naming scheme described above. For
increased flexibility and extensibility of the file format, optional
HDF5 attributes are associated with all main groups to indicate
the interface class and version. In particular, the omsi_file_m-
sidata interface class is designed to provide convenient access to
raw MSI data stored in data_#/ groups independent of the data
format used. The class provides a convenient array-based
interface which allows a user to interact with the data as a 3D
data cube independent of whether the MSI data set is stored as
a full 3D cube or in a reduced data format. In the case where
multiple copies of the same data set are available, the interface
also automatically determines the data copy that is best suited
to resolve a given data request. Providing a consistent data
interface, independent of the underlying storage format,
significantly simplifies the access to the data and eases
development of data analysis algorithms. At the same time,
the omsi_file_msidata interface allows developers to directly
access all HDF5 data objets associated with the corresponding
data_# group, enabling development of algorithms that are
optimized to take advantage of different data organizations.

Data Layout Optimization. While HDF5 natively
supports multidimensional arrays, on disk the data must be
linearized to a one-dimensional data stream. The data layout
describes the strategy by which the data is linearized.
Traditional binary formats typically flatten MSI data into a
single monolithic block on disk by storing the MSI data one
spectrum at a time. These types of data layouts, in which the
entire data is serialized into a monolithic block on disk that
maps directly to a memory buffer of the size of the data sets, are
referred to as contiguous data layouts. The traditional, one-
spectrum-at-a-time continuous data layout is well suited to
access single full spectra but shows very poor performance for
access of ion images (see part 3 in the Supporting Information).
To achieve optimal performance for the typical selective read
operations on MSI data, in particular read of (i) spectra, (ii) ion



images, and (iii) subcubes, our file format and API supports a
number of data layout optimizations, including chunking,
compression, and data replication, described in detail in the
following. All data layout optimizations are implemented
transparently for the user directly by HDF5 (chunking and
compression) and the omsi_file_msidata API (data replica-
tion), allowing the user to interact with the data in a consistent
manner independent of the data layout used to store the data
on disk.
Accelerating Selective Data Access Operations Using

Chunking. Chunked data layouts are an important alternative
to contiguous data layouts. Chunking splits the data into
multiple independent subparts, so-called, chunks, which are
stored separately in the file. In HDF5, chunks may be stored in
any order and at any position in the file, allowing chunks to be
written and read independently, enabling efficient parallel read/
write and improved I/O performance when operating on
subsets of the data. Using chunking allows us to optimize the
data layout to enable fast access to select data portions by
improving data locality, hence, reducing the number of I/O
operations needed and the size of the data that has to be
traversed. Which chunked data layout is best depends greatly
on the data access patterns to be optimized. Considering the
most common data access patterns in MSI, we focus on the
following main chunking strategies: (i) spectra aligned
chunking, i.e., store a single full or partial spectrum per
chunk; (ii) image-aligned chunking, i.e., store a single full or
partial ion image per chunk; and (iii) hybrid chunking, i.e.,
store a 3D subcube describing a subset of multiple spectra and
ion images (see part 5 in the Supporting Information).
Reducing Storage Cost and Accelerating I/O Using

Compression. For chunked data layouts, HDF5 allows the
data, i.e., the individual chunks, to pass through a series of user-
defined I/O filters while being written to or read from disk. I/O
filters are applied transparently by HDF5 whenever necessary,
allowing the user to interact with the data in a consistent
manner independent of the I/O filters used. Here, we focus on
the use of compression filters with the goal to reduce storage
cost and to accelerate data read operations by reducing the
amount of data that needs to be transferred via the system bus
and network. To ensure broad applicability of the OpenMSI file
format, we focus on the use of gzip compression, which is (in
contrast to, e.g., szip and LZF) available by default as part of
HDF5. Gzip defines a lossless compression scheme, i.e., no
information is lost in the compression process.
Accelerating Orthogonal Data Accesses Using Data

Replication. Linearization of the data on disk makes it
impossible to achieve optimal performance for orthogonal data
access operations, here access to spectra and ion images. Data
layouts that are optimal for access of spectra are worst for

access to ion images and vice versa. While it may seem
undesirable at first sight, replicated storage of MSI data using
different optimized data layouts can significantly improve
selective read performance, improve responsiveness of
interactive applications, and substantially reduce the compute
cost for parallel data analyses. Support for replicated data
storage is implemented transparently in OpenMSI via the
omsi_file_msidata API class, which allows users to interact with
the data as a single, regular MSI data set. In the case where
multiple copies of a MSI data set are available, the API
automatically selects the data set that is most efficient to resolve
a given data request and retrieves the data. In the context of
OpenMSI, we often store two copies of the data, one optimized
for access of spectra and one optimized for access of ion images
with the chunking strategies automatically determined by the
API. Even when storing the data twice, the resulting
compressed MSI HDF5 files are in practice still substantially
smaller (typically half the size or less) than the original raw
binary data.

■ WEB API

The primary goals during the design of the OpenMSI Web API
have been simplicity and usability. One primary objective has
been to efficiently support exploratory analyses of the data via
the Web while computationally intensive analyses are executed
on high-performance compute resources at NERSC. We
observe that most data analyses and visualization tasks are
based on the following three data access pattern: (i) read
spectra; (ii) read ion images; and (iii) read arbitrary subcubes
of the data. We furthermore observe that while MSI data sets
are large, the data required during individual data requests for
data exploration are typically small.
The OpenMSI Web API consists of just five simple

functions, qmetadata, qmz, qslice, qspectrum, and qcube,
which together provide full access to the data, including
metadata and raw MSI and derived analysis data. The basic
methods are simple and can be effectively encoded in URL
patterns (see Figure 3).
The qmetadata call is used to retrieve metadata information

about which files are available on the server and which
information is available in the files. The qmz call is used to
retrieve information about the m/z data axis. Information about
the m/z axis is in practice frequently reused. To avoid large
overheads due to repeated transfer of the m/z data, we separate
this into an independent call that is usually executed once at the
beginning of any analysis.
The qslice, qspectrum, and qcube patterns are designed to

provide easy-to-use support for the three most common
selective access patterns, i.e., read ion image slices, read m/z
spectra and read arbitrary subcubes of the data. To minimize

Figure 3. Illustration of the design of OpenMSI URL data requests (top), example URLs for data retrieval (middle), and a simple Python application
example (bottom). Query string parameters may appear in arbitrary order.



the amount of data that needs to be transferred via the Web, all
access patterns support common data reduction operations,
including maximum, minimum, average, standard deviation,
variance, etc., which are applied on the server side prior to
transfer of the data. This allows one to conveniently access, e.g.,
maximum projection ion images of selected m/z ranges or
mean spectra for arbitrary sets of spectra, while only the final
image or spectrum needs to be transferred via the Web. Further
detailed descriptions of the five URL patterns are provided in
part 4 in the Supporting Information.
We implemented the Web API in Python using the Django

Web application framework, and like the file format, the Web
service is cross platform compatible. In the current
implementation of the Web API, we typically transfer all data
either as easy-to-use JSON objects or as images (e.g., ion
images of curve plots of spectra). To also support efficient
retrieval of larger subsets of MSI data sets, we plan in the near
future to also support retrieval of data directly in binary HDF5
format.

■ WEB-BASED DATA EXPLORATION

To demonstrate the applicability of the OpenMSI platform, we
have developed an interactive Web-based, HTML5 data viewer
based on the OpenMSI Web API. Using this viewer, a user can
interactively define ion images and spectra to be displayed. Ion
images and spectra are directly retrieved from the file from the
complete, raw MSI data during each data request. As we show
next, the OpenMSI data format and Web API can resolve these
data requests in less than ∼0.25 s via the Web even for large 50
GB MSI data sets. The viewer uses the standard URL patterns
without any knowledge about the specific names of data sets or
organization of the data in the HDF5 files. The Web client is in
this way isolated from any specific implementation details on
the server end and can flexibly display images and spectra for
raw data and all derived analyses and their dependencies. The
OpenMSI viewer is available online at http://openmsi.nersc.
gov/ (see also part 8 in the Supporting Information).

■ EVALUATION AND RESULTS

Data Layout Optimization and Performance. The goal
of this study is to evaluate the effectiveness of the various data
layout optimizations available as part of the OpenMSI file
format and API. Although text-based formats (e.g., XML) are
very common in MSI,19,20 such formats are optimized for ease
of use, not efficient data storage and fast data access. We,
therefore, compare the various optimized data layouts to the
common and much more efficient continuous binary data
layout. However, we would like to note that due to the large
storage and data read overheads of XML-based formats, the
improvements in read performance and storage requirements
would be in practice one or several orders of magnitude greater,
if we were to take XML-based formats into account.

Identifying a Suitable Hybrid Chunked Data Layout. In
practice, we expect spectra-aligned chunking to provide optimal
performance for access of single, complete spectra while
providing poor performance for access of ion images and vice
versa for image-aligned chunked data (see parts 2, 3, and 5 in
the Supporting Information). Hybrid chunked data layouts
promise to provide fast read performance to arbitrary subcubes
of the data while providing a compromise in performance for
access to ion images and spectra. However, the large differences
in resolution in physical space (x,y) and the spectra (m/z) in
MSI data, make finding a well-performing hybrid chunking
challenging. To identify a good hybrid chunked data layout we
performed a large-scale autotuning-type experiment in which
we explored: (i, ii, iii) the read performance of spectra, ion
images, and subcubes; (iv) the data write performance; and (v)
the storage requirements of all k × k × l hybrid chunked data
layouts with k ∈ [1, 2, 4, 8, 16, 32] and l ∈ [128, 256, 512,
1024, 2048, 4096, 8192] using a 100 × 100 × 100 000 sized
data set as reference. These experiments have shown that a
chunked layout of 4 × 4 × 2048 may provide good
performance in all above-mentioned evaluation criteria, and
we use this configuration in the following to exemplify the
performance characteristics of a hybrid chunked data layout. A
detailed discussion of these experiments is available in part 5 in
the Supporting Information.

Figure 4. Size of original img data (gray bars) compared to the same data stored using the OpenMSI HDF5 data format (black bars) using gzip
compression and a hybrid chunking of 4 × 4 × 2048. We observe very good compression ratios (curve, right axis) in all cases. See also Figure 6 for
more details about the data sets.



Data Compression. Next we examined the ability of
compression to reduce file size. Figure 4 shows a comparison
of the size of a diverse set of MSI data sets stored using the
OpenMSI file format compared to the standard raw binary data.
We achieved 3−16 times compression without loss of data, e.g.,
a 3 GB image could be compressed to only 0.5 GB. This means,
even when replicating the MSI data to accelerate data access,
the resulting OpenMSI files are still much smaller than the raw
binary data.
The combination of chunking and compression has also

shown itself to be a viable solution for efficient storage of partial
MSI data cubes and processed spectra. In this case, the data is
still described as a complete MSI data cube. However, chunks
are allocated by HDF5 during the first write, i.e., empty data
chunks are never allocated by HDF5, while missing data values
are automatically completed with zero values upon read.
Furthermore, partial chunks are completed with zeros, which
can be compressed very efficiently with very little overhead. To
illustrate the effectiveness of this approach, we chose as an
example an MSI data set of a lung with a resolution of 132 ×
149 × 300 000. In the data set, an arbitrary region of interest
consisting of 12 654 spectra has been imaged, and the spectra
were preprocessed to remove background noise. From the total
5 900 400 000 data values (i.e., ∼11 800 MB) only 107 007 401
values (i.e., ∼214 MB) are nonzero. Using a hybrid chunked
layout of 4 × 4 × 2048 in combination with compression, we
require only ∼196 MB to store the complete 132 × 149 × 300
000 data cube while allowing the user to seamlessly interact
with the data as if it were a complete MSI data cube.
Optimizing Data Read Performance. The goal of the

following tests has been to evaluate the performance of our file
format and to identify the best suited data layouts. To evaluate
the performance of different data layouts for the most common
selective read patterns, we defined the following three
representative test cases: (i) read 25 consecutive m/z slices,

(ii) read a 3 × 3 subset of complete spectra, and (iii) read a 20
× 20 × 1000 subcube of the data. We here compare the
performance of the following five data layouts: (i) the default
monolithic layout (baseline), (ii) a hybrid (4 × 4 × 2048)
chunking with compression, (iii) a hybrid (4 × 4 × 2048)
chunking without compression, (iv) an autochunked data
layout with compression, and (v) the same autochunked layout
without compression. The autochunked data layout uses data
replication in addition to chunking and compression to further
optimize data read performance. Here, the data is stored twice
using a spectrum-aligned and an image-aligned data chunking
(see Figure 5), while the OpenMSI file API automatically
chooses the best-suited data layout for a given data read.
To demonstrate the performance across a broad range of

MSI data sets, we have chosen 10 MSI data sets that show
varying spatial and m/z resolution and range in size between 1
GB up to 50 GB (see Figure 5). All tests were performed on a
local desktop workstation equipped with two quad-core Intel
Xeon E5630 CPUs running at 2.53 GHz and 18 GB of RAM.
All data was stored on a local 1 TB regular spinning-disk hard
drive. The tests were performed in serial, i.e., only one of the
available compute cores was used in the tests. The tests were
implemented in Python, and the source code of the tests is
available in part 6 in the Supporting Information. We
performed 50 random read operations for each of the 150
test cases, while we randomized (i) the m/z value for the image
read, (ii) the (x/y) location for spectra read, and (iii) the
(x,y,m/z) origin for the subcube read. We report the 95th
percentile of all measurements to demonstrate the expected
sustained read performance for the different data layouts.
Figure 5 summarizes the results from all selective read

performance tests. We observed that the baseline data layout
shows particularly poor performance for the read of ion images
(Figure 5, top left), requiring more than 600 s to retrieve just
25 consecutive images for data set I. Even though 25 ion images

Figure 5. Serial read performance for the three most common data access patterns using the following data layouts (i) default monolithic layout
(baseline), (ii,iii) hybrid (4 × 4 × 2048) chunking with and without compression, and (iv, v) auto chunking with and without compression. The auto
chunking option uses two data copies optimized for retrieval of ion images and full spectra (see Auto Chunks row table above). The results were
generated using a desktop workstation equipped with two Intel Xeon CPU, E5630 @ 2.53 GHz (only one core used here) and 18 GB of RAM.



constitute only ∼9.5 MB of binary data, the entire ∼48 GB data
volume needs to be traversed to retrieve the data using the
baseline layout. For the hybrid-chunked data layout (with
compression) we observed speed-ups of up to ∼6.3× for the
image read, ∼2.6× for the spectrum read, and ∼11.2× for the
subcube read compared to the baseline data layout. While this
improvement in performance is significant, the read perform-
ance of the hybrid-chunked data layout is still insufficient for
many time-critical analysis tasks and interactive data
applications on large MSI data sets. This is due to the
compromise the hybrid chunking is making in terms of
performance to support orthogonal data access patterns.
Using the autochunked data layout (with compression) of

the OpenMSI platform yielded speed-ups of more than 2000×
for the image read, enabling data read of ion images and spectra
in less than 0.3 s even for the largest test data set. We also
found that the performance for reading ion images using the
autochunked approach depends mainly on the spatial
resolution (i.e., number of pixels) of the images and is mostly
independent of the resolution of the data in m/z (i.e., the total
number of images). Similarly, the read performance of spectra
is largely independent of the spatial resolution of the data in the
autochunked case. These results suggest that this approach is
scalable to meet the needs of data at scales higher than what is
typically generated today. Using this approach enables for the
first time fast retrieval of both spectra and ion image directly
from the file without requiring caching of the data in memory.
The performance we observe is sufficient to support interactive
data exploration tasks even for very large MSI data sets.
We observe that the compressed data layouts perform

significantly better even for reads from local disk when
compared to the corresponding uncompressed data layouts.
In cases where the data is stored on external storage systems,
we would expect this behavior to be further amplified due to
the reduced amount of data that needs to be transferred via the
network when the data is compressed.
Performance of Web-Based Data Access Operations.

To test the performance of the OpenMSI platform’s ability to
access data across the Internet, images and spectra were
programmatically retrieved from the server to a laptop
computer. With the expectation that the size of a particular
MSI file would significantly affect the time required to transfer
results, we chose data sets J, F, and B (sizes are shown in Figure

6). We retrieved for each file 20 000 images and 20 000 spectra
from the server at random spatial coordinates and m/z ranges
and using the qslice and qspectrum commands, respectively.
These requests were implemented in Matlab using the urlread
command to retrieve the data as JSON structured text (the
source code is provided in part 8 in the Supporting
Information). The computer requesting the data was a
MacBook Pro laptop with a 2.2 GHz Intel Core i7 processor
and 8 GB of 1333 MHz RAM. All requests were made to a
server at NERSC https://openmsi.nersc.gov. All of the files
were stored on the physical, regular spinning disk of that server.
The laptop was connected to a standard (1 Gb/s) office
Ethernet connection in Berkeley, California.
The tests showed that the OpenMSI platform reliably

supports subsecond data retrieval times for a wide range of MSI
file sizes. For these data sets, the average time to retrieve a
spectrum ranged between 74 and 126 ms. The average time to
retrieve an image ranged between 43 and 294 ms. These results
are consistent with the performance we have observed in the
previous section for read performance directly from file. Figure
6 shows the histogram of the 20 000 requests for each of the six
test cases. We observed very reliable read performance in all
cases, indicated by the compact distribution of response times
in the histograms.

URL-Based Data Analysis Sharing. Using the OpenMSI
Web viewer prototype, a URL can be shared that presents the
user with an interactive view based on specified visualization
parameters, e.g., http://openmsi.nersc.gov/openmsi/client/
viewer/?file=20120711_Brain.h5&expIndex=0&dataIndex=
0&redValue=868.6&greenValue=840.6&blueValue=824.
6&rangeValue=0.2&cursorX1=40&cursorY1=40&cursorX2=
80&cursorY2=80
In this example, the m/z values and range are specified for

creating an RGB image of three distinct ions and the spatial
locations of two cursors are defined, selecting two spectra of
interest plotted separately (see part 8 in the Supporting
Information, OpenMSI Viewer).

■ CONCLUSION

We have described the OpenMSI platform and shown that it
addresses many of the data challenges to MSI by making
advanced, high-performance data analysis and computing easily
accessible via the Web (http://openmsi.nersc.gov). The use of

Figure 6. Web-based read performance. For each file, we evaluated 20 000 random single spectrum and 20 000 random ion-image data requests
returning a maximum intensity projection over 10 m/z bins. The remote data requests were performed using Matlab (see also part 6 in the
Supporting Information for further details).



the OpenMSI HDF5-based file format was found to be highly
suited for this application. Optimization of data layouts using
chunking, compression, and data replication were found to be
critical enablers of rapid data access and resulted in >2000-fold
improvement in image access. The Web-based API design
enables easy-to-implement data access patterns with data
retrieval speeds of less than 0.3 s across the Internet even for
large 50 GB MSI data sets. By making MSI easily accessible,
without the need for advanced knowledge in high-performance
data analysis and computing, OpenMSI promises to transform
how MSI is used in practice and promotes the widespread
adoption of MSI as a novel imaging approach. While this has
been beyond the scope of this manuscript, we would like to
note that OpenMSI also supports management, provenance,
and visualization of derived data analyses. In addition, the
format is well suited to three-dimensional imaging, SIMS, and
other mass spectrometry imaging approaches.
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Supplemental Material 

1. MSI Data Requirements  
 

Storage and management of MSI data is challenging; the data is extremely large, 

shows large (three to four orders of magnitude) differences between spatial and 

mass resolution, and requires fast orthogonal accesses to spectra and ion images. A 

2D MSI dataset can be described as a three-dimensional cube of (x,y,m/z). Current 

2D raw MSI datasets contain spectra from hundreds of thousands of positions, with 

each position containing one or more spectra. Each spectrum describes the 

distribution of masses at a given image location (pixel) and typically consists of 105 

to 107 integer intensity values. Using currently available instrumentation, MSI 

datasets with 106 pixels and 106 mass bins could be easily acquired, resulting in a 

raw size of 4TB. Unfortunately, acquisition of such datasets is largely limited by the 

inability of current tools and methods to store and process MSI datasets of this 

magnitude.  

 

In practice, MSI data is used in a write-once read-many fashion, i.e., the data is 

written once during data acquisition and read repeatedly during the visualization 

and analysis process. For instance, many visualization and analysis algorithms do 

not process the full MSI data cube at once but rely on repeated selective read of (i) 

spectra, (ii) ion images, and (iii) arbitrary 3D subsets of the data. The performance 

of current tools for visual exploration of MSI data is largely limited due to the poor 

performance of current MSI data formats in resolving selective data accesses 

efficiently. Accelerating these most common data access patterns and enabling 

efficient parallel read are fundamental requirements for enabling fast and efficient 

analysis of large MSI datasets.  

 

A second main requirement is the need for flexible storage of metadata describing 

(among others) the sample, instrument, and imaging settings. Current MSI data 

formats often require the use of secondary data files for storage of metadata and 

often do not allow for flexible extension of metadata storage.  

 

Finally, to facilitate distributed, inter-disciplinary, collaborative analyses of MSI data 

and to enable the scientific community to share and benefit from results from other 

MSI experiments, researchers must be able to share data and analysis results with 

other researchers around the world and the MSI community at large. An 

appropriately designed file format must therefore be self-describing, platform 

independent, and easily accessible via a large range of programming languages and 

analysis systems. In the following we describe the OpenMSI file format, file format 

and analysis APIs, and web API, which we have developed to meet the 

abovementioned fundamental data and analysis requirements and needs. 



2.	
  Data	
  Read	
  

	
  
The	
  figure	
  shown	
  above	
  illustrates	
  the	
  layout	
  most	
  commonly	
  used	
  for	
  storing	
  MSI	
  
data	
  in	
  binary	
  form.	
  The	
  data	
  is	
  stored	
  as	
  a	
  single	
  monolithic	
  block	
  arranged	
  on	
  disk	
  
one	
  spectrum	
  at	
  a	
  time.	
  	
  This	
  layout	
  is	
  well	
  suited	
  for	
  retrieval	
  of	
  single	
  full	
  spectra	
  
from	
  disk	
   (red)	
  but	
   requires	
  a	
   large	
  number	
  of	
   seek	
  and	
  small	
   read	
  operations	
   to	
  
retrieve	
  a	
  single	
  ion-­‐image	
  (blue).	
  In	
  order	
  to	
  retrieve	
  an	
  ion	
  image,	
  the	
  full	
  dataset	
  
has	
  to	
  be	
  traversed,	
  leading	
  to	
  poor	
  performance	
  in	
  particular	
  for	
  large	
  MSI	
  datasets.	
  	
  

3.	
  Data	
  Layout	
  
	
  

	
  
The	
  figure	
  shown	
  above	
  illustrates	
  different	
  basic	
  chunked	
  data	
  layouts	
  for	
  storage	
  
of	
  MSI	
  data.	
  Use	
  of	
   chunking	
  enables	
   independent	
   read/write	
   access	
   to	
   individual	
  
data	
  chunks	
  and	
  can	
  significantly	
   improve	
  the	
  locality	
  of	
  data	
  as	
   it	
   is	
   linearized	
  on	
  
disk.	
   Chunking	
   allows	
   in	
   this	
  way	
   optimization	
   of	
   the	
   data	
   layout	
   to	
   improve	
   the	
  
performance	
  of	
  a	
  select	
  set	
  of	
  I/O	
  patterns.	
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4. Description of the OpenMSI WebAPI URL Patterns 
 

The basic URL patterns are constructed as follows:  

 
<baseURL>/<command>/?<querystring> 
 

and consist of the following three main components: 

 

• <baseURL> : The basic URL where the server is running, e.g. 

https://openmsi.nersc.gov/openmsi/ 

• <command> : Depending on which data/action we are requesting a different 

command is used. The main available commands are : 

o qmetadata: Request metadata information. 

o qmz: Request information about the m/z axis of the data. 

o qslice: Request ion-slices (raw or derived) from the data. 

o qspectrum: Request spectra (raw or derived) from the data. 

o qcube: Request arbitrary structured subsets of the data. 

o (client:   Request  client  webpages e.g, the OpenMSI viewer. ) 

• <querystring>: List of different function parameters. 

 

In the following we first describe the different URL patterns and briefly describe the 

syntax for specifying data selections. 

 

qmz: Requesting m/z data 

Request information about the static m/z axes.  This function is provided to avoid 

repeated transfer of the usually static m/z axes information.  In most cases the m/z 

axes data is requested once at the beginning and reused afterwards. In cases where 

the m/z axes for spectra is not static—e.g., in the case of processed spectra— the 

qslice pattern returns the intensity values as well as the corresponding m/z values 

for the spectra, otherwise the m/z values are omitted.   

 

Base pattern: 

https://openmsi.nersc.gov/openmsi/qmz/?<querystring> 

 

Query string parameters: 

• Required query string parameters: 

o file: The filename/path of the OpenMSI HDF5 datafile to be used. 

o expIndex : The index of the experiment stored in the file. 

• Required query parameters when requesting from raw MSI data: 

o dataIndex : The index of the MSI dataset to be used. 

Returns: 

o Returns error message or JSON object with the following entries: 

o values_spectra : Axes values for the spectra or null if missing in the 

data. 



o label_spectra : Axes label to be used for the spectrum axes. 

o values_slice : Values for the z axis to be used for identifying image 

slices or null if missing in the data. This return value is optional and is 

only present if different from values_spectra.  

o label_slice : Label for the z axis to be used for image slices. This 

return value is optional and is only present if different from 

label_spectra. 

 

qmetadata: Requesting metadata information 

Request JSON object with metadata information pertaining to the list of available 

files, a file, an experiment, an analysis, an instrument or a sample. 

Base Pattern: 

https://openmsi.nersc.gov/openmsi/qmetadata/?<querystring> 

 

Query string parameters: 

• Required query arguments: 

o mtype : Type of metadata  requested,  one of:  
� filelist,  
� file,  
� experiment,  
� experimentFull,  
� analysis,  
� instrument,  
� sample,  
� dataset. 

• Additional required query arguments for mtype experiment, 

experimentFull, instrument, and sample: 

o filename : The filename/path of the OpenMSI HDF5 datafile. 

o expIndex : The index of the experiment stored in the file. 

• Additional required query arguments if mtype is analysis: 

o filename : The filename/path of the OpenMSI HDF5 datafile. 

o expIndex : The index of the experiment stored in the file. 

• Additional required query arguments if mtype is dataset: 

o filename : The filename/path of the OpenMSI HDF5 datafile. 

o expIndex : The index of the experiment stored in the file 

o Raw MSI data indicator (only when requesting information for a raw 

MSI dataset): 

� dataIndex :  Index of the MSI dataset  

Returns: 

• The function returns a JSON object with a dictionary describing the 

requested metadata information in a structured fashion. 



 

qspectrum: Requesting spectra 

Request JSON object or PNG image plot of: i) a single spectrum, ii) multiple spectra 

or iii) the difference of two or multiple spectra. 

Base Pattern: 

https://openmsi.nersc.gov/openmsi/qspectrum/?<querystring> 

 

Query string parameters: 

• Required query arguments: 

o filename : The filename/path of the OpenMSI HDF5 datafile. 

o expIndex : The index of the experiment stored in the file. 

o format : Output format of the returned data, one of: JSON or PNG 

o x : x-index(s) of the pixel/spectrum to be loaded. See Section Data 

Selection below. 

o y : x-index(s) of the pixel/spectrum to be loaded. See Section Data 

Selection below. 

• Required query arguments when requesting from raw MSI data: 

o dataIndex :  Index of the MSI dataset 

• Additional optional query parameters: 

o findPeaks : Execute peak finding for the retrieved spectra (only used 

if format==JSON). Valid values are 0 (False) and 1 (True). 

o reduction: String indicating the reduction operation to be executed 

on the first set of spectra defined by x, y. (Default is mean). Reduction 

operations are defined as strings indicating the numpy function to be 

used for data reduction. Valid reduction operations include e.g.: min, 

max, mean, median, std, var etc.. 

• Optional query parameters when requesting difference spectra: 

o x2  :  x-index of the second pixel/spectra to be loaded.  See Section 

Data Selection below. 

o y2  :  y-index of the second pixel/spectra to be loaded. See Section 

Data Selection below. 

o reduction2 : String indicating the reduction operation to be 

executed for the second set of spectra selected by x2, y2 (default is 

None). Reduction operations are defined as strings indicating the 

numpy function to be used for data reduction. Valid reduction 

operations include e.g.: min, max, mean, median, std, var etc.. 

Note if no reduction operation is applied, then the (x,y) shape of the 

first selection and second selection have to match in order to allow for 

the two arrays to be subtracted from each other. 

Returns: 

 

• If format==JSON: 



o JSON object of the raw spectrum data (or multiple spectra if no 

reduction is applied), if only x, y (but not x2, y2) are specified and 

findPeaks is set to 0. 

o JSON object of the difference spectrum (or multiple difference spectra 

if no reduction is applied), if x,y and x2, y2 are specified findPeaks 

is set to 0. 

o JSON object of the raw spectrum (or difference spectra) data including 

additional fields with the results from the local peak finding 

(spectrum, peak_value, peak_pz) if findPeaks is set to 1. 

o In case that the m/z axis should be not static but change dynamically 

between spectra, then additional spectrum_mz key value with the 

m/z data is returned. 

• If format==PNG:  

o PNG plot of the raw spectrum data, if only x,y  are specified or PNG 

plot of the difference spectrum data if  x,y and x2, y2 are specified. 

             

 

qslice: Requesting z data slices 

Request JSON object  (or gray-scale PNG image) of a single or multiple m/z image 

slices of the data.   

Base Pattern: 

https://openmsi.nersc.gov/openmsi/qslice/?<querystring> 

 

Query string parameters: 

• Required query arguments: 

o filename : The filename/path of the OpenMSI HDF5 datafile. 

o expIndex : The index of the experiment stored in the file. 

o format : Output format of the returned data, one of: JSON or PNG 

o z : z-index(s) of image slices to be loaded. See Section Data Selection 

below. 

• Required query arguments when requesting from raw MSI data: 

o dataIndex :  Index of the MSI dataset 

• Additional optional query parameters: 

o normalize: Binary value (0=False, 1=True) indicating whether the 

data retrieved should be normalized by dividing by the maximum 

value retrieved. (Relevant only if format==JSON). 

o reduction : String indicating the reduction operation to be executed 

for the selected image slices (axis=2). Reduction operations are 

defined as strings indicating the numpy function to be used for 

reduction. Valid reduction operations include e.g.: min, max, mean, 

median, std, var etc..  

Returns: 

o JSON object or PNG image of the selected image slice(s). 



 

qcube: Requesting arbitrary structured subsets of the data 

Request JSON object of a general subset of the original MSI data or derived analysis 

data. 

Base Pattern: 

https://openmsi.nersc.gov/openmsi/qcube/?<querystring> 

 

Query string parameters: 

• Required query arguments: 

o filename : The filename/path of the OpenMSI HDF5 datafile. 

o expIndex : The index of the experiment stored in the file 

• Required query arguments when requesting from raw MSI data: 

o dataIndex :  Index of the MSI dataset 

• Optional query arguments required for specification of data selections: 

o x : Selection string for x. Default value is ”:” (i.e. all). See Section Data 

Selection below. 

o y : Selection string for y. Default value is ”:” (i.e. all). See Section Data 

Selection below 

o z : Selection string for z. Default value is ”:” (i.e. all). See Section Data 

Selection below 

• Additional optional query arguments: 

o normalize : Normalize the data by dividing by the maximum 

retrieved data value. 

o reduction : String specifying the first data reduction to be applied 

to the data. Reduction operations are defined as strings indicating the 

numpy function to be used for reduction. Valid reduction operations 

include e.g.: min, max, mean, median, std, var etc..  

o axis : The data axis along which reduction should be applied 

(default value 2, i.e., the z axis). 

o reduction2 : Second reduction operation to be applied to the data. 

o axis2 : Axis along which the second reduction operation should be 

applied. Note that the dimensionality of the data is reduced by 1 by 

any prior data reduction operations (default value is 0). 

o reduction3 : Third reduction operation to be applied to the data. 

o axis3 : Axis along which the third reduction operation should be 

applied. Note that the dimensionality of the data is reduced by 1 by 

each prior data reduction operation (default value is 0). 

Returns: 

o JSON object defining the array of data retrieved. 

 

 

Data Selection  



Basic Slicing 

 

The data request URL’s commonly support data selection parameters—e.g., x, y, or 

z —which are used to select the data that should be retrieved. There are several 

basic ways in which a user may specify data selections: 

 

• Range selection: “a:b” indicate that all values in the range of a and b 

should be selected. The upper bound b is not included in the selection, i.e., 

the selection 1:10 selects the elements 1,2,3,4,5,6,7,8,9. 

• Index selection: “a” specifies a single index a that should be selected. 

NOTE: Specifying a single index usually implies that the dimensionality of the 

returned array is reduced by 1. E.g., a selection of [1,4,5] usually results in 

the retrieval of a single scalar corresponding to the item with index (1,4,5).  

• All: “:” indicates that all values, i.e., the full range for the given dimension, 

should be selected. 

• Index list: “[a,b,c,d]” indicates that the indices a,b,c,d should be 

selected. 

Multi-dimensional Slicing 

 

Several of the data URL patterns support multiple selection parameters, e.g., x and y 

in the case of qspectrum. These parameters are combined as [x,y,z] to allow 

retrieval of data from multi-dimensional arrays. The semantic for different 

combinations follows the same strategy as used by numpy (and h5py) : 

• All-to-all: Most combinations of selections follow the all-to-all combination 

principal.  That is all elements in the selection specified for x are combined 

with the selection specified for y.  x=1:4 and y=1:3, hence, results in the 

retrieval of the elements [(1,1), (1,2), (2,1), (2,2) (3,1), 

(4,2)].  All-to-all selection, hence, always result in the retrieval of of a 

single or multiple rectangular regions. 

• Multiple index lists: In case that multiple index list selections are specified 

the lists are matched. This means if multiple lists are specified, then the lists 

must be of equal length and the lists are merged to define specific index- 

pairs to be selected. E.g, x=[1,2]  and y=[4,5] results in the retrieval of the 

elements [ (1,4), (2,4) ] compared to an all-to-all matching, which 

would retrieve [ (1,4), (1,5), (2,4), (2,5) ]. This scheme allows 

for selection of arbitrary regions of interest. NOTE: When specifying multiple 

index lists, the dimensionality of the returned array may be reduced. 

 

5. Evaluation of Hybrid Chunked Data Layouts 
Goal: The goal of this study has been to identify hybrid chunked data layouts that 

provide a compromise in performance for common data access patterns. In this 



initial study we investigated the sustained performance for repeated selective data 

access operations. 

Test Platform: All test were performed using a shared login node of the 

hopper.nersc.gov compute system equipped with 4 quad-core AMD 2.4 GHz Opteron 

8378 processors (16 cores total)  and  128 GB of memory using the Lustre-based 

scratch file system. All test were performed in serial, i.e., only a single processor 

core was used.  

Test Design: To evaluate the performance of different data layouts, we designed a 

set of test cases modeling the most common data access patterns in the analysis of 

MSI data.. We report for each selection test case the median time (indicating the 

sustained performance on an open file) and in select cases also the maximum time 

(indicating the selection performance after the first opening of the file). We usually 

repeat each selection test case 50 times for each data layout using randomized 

selection parameters. All tests are performed using a 100×100×100,000 test 

dataset. We, evaluate the performance of k×k×l layouts with k=[1, 2, 4, 8, 16, 32] and 

l=[128, 256, 512, 1024, 2048, 4096, 8192]. We omitted 32×32×128, 32×32×256, 

32×32×512 due to the poor spectrum-at-a-time write performance of these data 

layouts. 

 

o Case 1: m/z Slice Selection: This test case models the selection of a series of 

m/z-slices of the data, and extracts a set of consecutive, full ion-images of the 

data.  

o Selection: [:,:,zmin:zmax] 

o Randomized Selection Parameters: zmin 

o Dependent Selection Parameters: zmax   =  zmin+25 

o Selection Size: 100×100×25 = 250, 000 records 

  = 500, 000 bytes = 0.5MB 

o Case 2: Spectra Selection This test case models the selection of a 5 × 5 set of 

full spectra.  

o Selection: [xmin:xmax, ymin:ymax, :] 

o Randomized Selection Parameters: xmin , ymin 

o Dependent Selection Parameters: xmax   =  xmin+5 , ymax   =  

ymin+5 

o Selection Size: 5×5×100, 000 = 200, 000 records  

    = 2, 500, 000 bytes = 5MB 

o Case 3: 3D Subcube Selection: This selection models the general access to 

consecutive sub-pieces of the data, e.g., when accessing data from a particular 

spatial region of the data related to a particular set of m/z data values.  

o Selection: [xmin:xmax, ymin:ymax, zmin:zmax] 

o Randomized Selection Parameters: xmin , ymin, zmin 

o Dependent Selection Parameters: xmax   =  xmin+5 , ymax   =  

ymin+5, zmax   =  zmin+1000 

o Selection Size: 5×5×1, 000 = 25, 000 records  

             = 50, 000 bytes = 0.05MB 

Comments:  



o Note, the amount of data that needs to be read and/or traversed on disk 

largely depends on the chosen data layout and may be significantly larger 

than the size of the selection. 

o Note, the sustained performance, here measured by the median performance, 

is in practice often more important for analyses algorithms rather than web-

applications, which require good worst-case performance, rather than good 

median performance. For hybrid chunked data layouts the general 

performance characteristics are in practice much more stable than for 

traditional monolithic data layouts (see Plot 4.1) so that the general trends of 

the median and 95%’il performance characteristics are often very similar.   

 

 
Plot 4.1: This plot shows the minimum, median, and maximum time for reading 25 

consecutive ion-images from a 100x100x100,000 test dataset. The baseline, 

monolithic data layout requires traversal of the full dataset in order to retrieve ion 

images. In the baseline case, this behavior causes the full data to be cached in 

memory after just a few image read operations. This behavior leads to dramatic 

difference between the maximum and median read performance in the baseline 

case. Also, in cases where the size of the MSI data exceeds the amount of available 

memory, the data can no longer be cached so that the median time approaches the 

maximum time.  In contrast, the hybrid chunked data layout used in this example 

requires the read of typically only 625 independent chunks (i.e., 25*25 chunks in x 

and y) so that only a subvolume of 100x100x2048 is touched, avoiding traversal of 

the full data. This characteristic behavior leads to a much more stable read 

performance. 
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Plot 4.2: For the read of 25 ion-images we observe better read performance for 

hybrid chunked data layouts with larger spatial xy chunk sizes and smaller z chunk 

sizes. This behavior is expected; smaller z chunk sizes imply that less data needs to 

be read while larger xy chunks imply that less chunks need to be read. 

 

 
Plot 4.3: For the read of a random 5x5 subset of full spectra we observe better read 

performance for chunked data layouts with larger spatial z chunk sizes. This 
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behavior is expected as larger z chunk sizes imply that fewer chunks need to be 

read. 

 
Plot 4.4: Plot showing the median read performance for the selective read of a 

random 5x5x100 subvolumes of the test data.  
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Plot 4.5: To illustrate the overall performance of the different dataset layouts and to 

identify the “best” layouts, we define the following set of minimum performance 

criteria a data layout should fulfill: 

 

o The median time for the z-slice selection test case should be <0.1 s 

o The median time for the spectra selection test case should be <0.05 s 

o The median time for the 3D subcube selection test case should be <0.002 s 

o The total file size should be < 2100  MB, limiting the overhead in file size for 

the test data to a maximum of ≈ 200MB. 

 

Based on these criteria we can determine an overall performance score by 

evaluating how many of the criteria a particular data layout fulfills (with 4=best 

(passes all criteria) and 0=worst (does not pass any of the criteria)).  We observe a 

cluster of 8 data layouts that satisfy the four performance conditions. Based on 

these results and experience with real data in practice, we selected a chunked data 

layout of 4x4x2048 as reference hybrid chunked data layout. 

 

6. Python script for testing local file read performance 
 
"""Simple script for testing the read performance of a set of HDF5  
   files. The goal is to evaluate the performance of files with    
   different data layouts for the same data. The script performs three  
   main read tests: i) ion-images, ii) spectra, and iii) sub cube. To  
   evaluate the estimated performance in the context of a web-based  
   application, we start a new python interpreter for each data read,  
   execute the read, and close the read process.""" 
 
from omsi.dataformat.omsi_file import * 
import time 
import json 
import sys 
from sys import argv,exit 
import numpy as np 
import os 
import random 
import subprocess 
 
 
def main(argv=None): 
     
    #Check and read input parameters 
 if argv is None: 
        argv = sys.argv 
         
  if len(argv) < 2 : 
        printHelp() 
        exit(0) 
     

#If we are a slave process, then read the requested data #subset and exit       
    if len(argv) == 8 : 
         
        infile = argv[1] 



        xmin = int(argv[2]) 
        xmax = int(argv[3]) 
        ymin = int(argv[4]) 
        ymax = int(argv[5]) 
        zmin = int(argv[6]) 
        zmax = int(argv[7]) 
        start = time.time() 
        d = omsi_file( infile , 'r' ).get_exp(0).get_msidata(0) 
        loaddata = d[xmin:xmax , ymin:ymax, zmin:zmax] 
        #content = json.dumps( loaddata.tolist() ) 
        stop = (time.time() - start)  
        print stop 
        exit(0) 
     
 #If we are the master process then define the test parameters 
    repeats = 50 
    outfolder  = argv[1] 
    filelist =  [<list_of_files>] 
     
    #Initalize the output data structures 
    data_shapes = {} 
    results = {} 
    for filename in filelist : 
 
        #Initialze data shape 
        f = omsi_file( filename , 'r' ) 
        d = f.get_exp(0).get_msidata(0) 
        data_shapes[filename] = d.shape 
        f.close_file() 
        #Initialze output storage 

    results[filename] = np.zeros( repeats ,  dtype=[ ('mz- 
  slice','f') , ('spectrum','f') , ('xyz-cube','f'),  
  ('mz-slice-all','f') , ('spectrum-all','f') , ('xyz- 
  cube-all','f')  , ('filesize' , 'f') ] ) 

        results[filename]['filesize'] = os.stat( filename).st_size 
 

#Note: We compute each test separately so that we have touched #enough data from other files to 
avoid biases due to data cacheing.  

     #Note: Depending on the file system, a significant amount of data 
 #and in some cases complete files) can be cached by the file  

#system. In particular for small datasets this can result in slow #initial data access and much faster 
repeated data access during a #given test. 
  

    #Compute the slice query test 
    for filename in filelist : 
        print filename+" 25 mz-slices" 
        #mz-slice selection 250,000 elements 
        sliceWidthZ = 25 #xdim=100 , ydim=100 
        for ri in xrange( 0 , repeats ) : 
 
            xmin = 0 
            xmax = data_shapes[filename][0] 
            ymin = 0 
            ymax = data_shapes[filename][1] 
            zmin = random.randint(0, data_shapes[filename][2]- 
     sliceWidthZ-1 ) 
            zmax = zmin + sliceWidthZ 
            callCommand = ["python", "testhdf5_file_read.py" , filename  
    , str(xmin) , str(xmax), str(ymin), str(ymax),  
    str(zmin) , str(zmax) ] 
            start = time.time() 
            p2 = subprocess.Popen(callCommand, stdout= subprocess.PIPE) 



            readTime =  float(p2.stdout.read()) 
            stop = (time.time() - start) 
            results[filename]['mz-slice'][ri] = readTime 
            results[filename]['mz-slice-all'][ri] = stop 
             
    #Compute the spectra test 
    for filename in filelist : 
        print filename+" 3 x 3  spectra" 
        #mz-slice selection 250,000 elements 
        sliceWidthX = 3  
        sliceWidthY = 3 
        for ri in xrange( 0 , repeats ) : 
 
            xmin = random.randint(0, data_shapes[filename][0]- 
    sliceWidthX-1 ) 
            xmax = xmin + sliceWidthX 
            ymin = random.randint(0, data_shapes[filename][1]- 
    sliceWidthY-1 ) 
            ymax = ymin + sliceWidthY 
            zmin = 0 
            zmax = data_shapes[filename][2] 
            callCommand = ["python", "testhdf5_file_read.py" ,  
    filename, str(xmin) , str(xmax), str(ymin),  
    str(ymax), str(zmin) , str(zmax) ] 
            start = time.time() 
            p2 = subprocess.Popen(callCommand, stdout=subprocess.PIPE) 
            readTime =  float(p2.stdout.read()) 
            stop = (time.time() - start) 
            results[filename]['spectrum'][ri] = readTime 
            results[filename]['spectrum-all'][ri] = stop 
 
    #Compute the cube test  
    for filename in filelist : 
        print filename+" 20 x 20 x 1000  cube" 
        #mz-slice selection 250,000 elements 
        sliceWidthX = 20 
        sliceWidthY = 20 
        sliceWidthZ = 1000 
        for ri in xrange( 0 , repeats ) : 
 
            xmin = random.randint(0, data_shapes[filename][0]- 
    sliceWidthX-1 ) 
            xmax = xmin + sliceWidthX 
            ymin = random.randint(0, data_shapes[filename][1]- 
    sliceWidthY-1 ) 
            ymax = ymin + sliceWidthY 
            zmin = random.randint(0, data_shapes[filename][2]- 
    sliceWidthZ-1 ) 
            zmax = zmin + sliceWidthZ 
            callCommand = ["python", "testhdf5_file_read.py" ,  
    filename, str(xmin) , str(xmax), str(ymin),  
    str(ymax), str(zmin) , str(zmax) ] 
            start = time.time() 
            p2 = subprocess.Popen(callCommand, stdout=subprocess.PIPE) 
            readTime =  float(p2.stdout.read()) 
            stop = (time.time() - start) 
            results[filename]['xyz-cube'][ri] = readTime 
            results[filename]['xyz-cube-all'][ri] = stop 
     
 #Save the test results to file 
    for filename in filelist : 
         



        infilename = os.path.split( filename )[1] 
        outfile = outfolder+infilename+"_timings.txt" 
         
        f = open( outfile , 'w' ) 
        for colName in results[filename].dtype.names : 
            f.write( colName+" " ) 
        f.write("\n") 
        np.savetxt( f , results[filename] ) 
        f.close() 
 
    exit(0) 
 
 
def printHelp(): 
    """Print the help explaining the usage of testHDF5Optimiation""" 
     
    print "USAGE: Call \"testhdf5_file_read resultsFile\" " 
    print "Execute query: testhdf5_file_read filename xmin xmax ymin  
       ymax zmin zmax" 
 
 
if __name__ == "__main__": 
    main()  

7. Matlab script for testing remote read performance 
clear all 
close all 
clc 
  
%% test cases 
clc 
N = 20000; %this is the number of tests to perform 
file{1} = '20120711_Brain.h5'; 
file{2} = '2012_0403_KBL_platename.h5'; 
file{3} = '20111207_KBL_Roots_BigChip_SmallRoots.h5'; 
t1 = tic 
for iii = 1:length(file) 
    str = 
sprintf('https://openmsi.nersc.gov/openmsi/qmetadata/?file=/data/openmsi
/omsi_data/%s&expIndex=0&mtype=experimentFull',file{iii}) 
    [s status] = urlread(str); 
    s = loadjson(char(s)); 
    OutData{iii}.dataShape = s.data_0.shape; 
    % dimension an empty matrix to store the time, status, x-coordinate, 
    % and y-coordinate of each spectrum requested from the server 
    OutData{iii}.spectraTimes = zeros(N,4); 
    for i= 1:size(OutData{iii}.spectraTimes,1) 
        idx1 = round(rand*(OutData{iii}.dataShape(1)-1)); 
        idx2 = round(rand*(OutData{iii}.dataShape(2)-1)); 
        str = 
sprintf('https://openmsi.nersc.gov/openmsi/qspectrum/?file=%s&expIndex=0
&dataIndex=0&x=%d&y=%d&findPeaks=0&format=JSON',file{iii},idx1,idx2); 
        tic % start the timer 
        [s status] = urlread(str); 
        t = toc; % stop the timer 
        OutData{iii}.spectraTimes(i,1) = t; 
        OutData{iii}.spectraTimes(i,2) = status; 
        OutData{iii}.spectraTimes(i,3) = idx1; 
        OutData{iii}.spectraTimes(i,4) = idx2; 
        disp(['Message ',num2str(i),' received in 
',num2str(spectraTimes(i)),' seconds']); 



    end 
    % dimension an empty matrix to store the time, status, minimum m/z, 
and 
    % maximum m/z for each requested image.   
    % Each image is a maximum intensity projection across 10 mass bins. 
    OutData{iii}.sliceTimes = zeros(N,4); 
    for i= 1:size(OutData{iii}.sliceTimes,1) 
        idx = round(rand*(OutData{iii}.dataShape(3)-50)); 
        str = 
sprintf('https://openmsi.nersc.gov/openmsi/qslice/?file=%s&expIndex=0&da
taIndex=0&z=%d:%d&format=JSON&reduction=max',file{iii},idx,idx+10); 
        tic % start the timer 
        [s status] = urlread(str); 
        t = toc; % stop the timer 
        OutData{iii}.sliceTimes(i,1) = t; 
        OutData{iii}.sliceTimes(i,2) = status; 
        OutData{iii}.sliceTimes(i,3) = idx; 
        OutData{iii}.sliceTimes(i,4) = idx+10; 
        disp(['Message ',num2str(i),' received in 
',num2str(OutData{iii}.sliceTimes(i,1)),' seconds']); 
    end 
end 
t2 = toc(t1) 
%% Check if any of our tests failed 
for i = 1:3 
    sum(OutData{i}.spectraTimes(:,2)==0) 
    sum(OutData{i}.sliceTimes(:,2)==0) 
end 
%% histogram the results of the timed events 
edges = 0:1:400; % # milliseconds for binning the data 
idx = [1 2 3] 
for i = 1:length(idx) 
    [y x] = hist([OutData{idx(i)}.spectraTimes(:,1) 
OutData{idx(i)}.sliceTimes(:,1)]*1000,edges); 
    subplot(1,3,i) 
    bar(x,y,1) 
    xlim([0 max(edges)]) 
    title(num2str(OutData{idx(i)}.dataShape)) 
     
    
set(gca,'fontsize',20,'fontweight','bold','linewidth',2,'fontName','cour
ier') 
    legend('Spectra (single pixel)','Image (MIP of 10 m/z bins)') 
    xlabel('time (msec)'); 
    ylabel('#Queries'); 
end 
 
 

8. OpenMSI Viewer  
 



 
The above figure shows a screenshot of the OpenMSI web-based viewer application 

showing the ion-image viewer on the left and the spectrum plots for two selected 

locations (marked by cross-hair cursors) on the right . Using the website a user can 

interactively explore large-scale MSI data files stored remotely at NERSC. For more 

details see the http://openmsi.nersc.gov/openmsi/client/. A detailed description of 

the OpenMSI web-based viewer is beyond the scope of this manuscript and will be 

described in detail in a forthcoming manuscript. 
 

 

 

 

 

 

 

 

 

 


