
Distributed Parallel Particle Advection using Work Requesting

Cornelius Müller, David Camp, Bernd Hentschel and Christoph Garth

Abstract— Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets
in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using
work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication
overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results
to an existing algorithm.

1 INTRODUCTION

Integral curves are one of the most intuitive means to depict vector
fields and they are a cornerstone of visualization and analysis across a
variety of application domains. Successful application of integration-
based techniques to large data must crucially leverage parallel compu-
tational resources to achieve well-performing visualization. However,
scalable integral curve computation has been difficult to attain. Due
to the strong inherent data dependency of such curves, effective load
balancing has proven difficult, and resulting algorithms have shown
limits in scalability.

In this paper, we investigate the application of a general-purpose
load balancing technique – work requesting – to integral curve com-
putation. Work requesting, and similarly its cousin work stealing have
been proven versatile schemes at balancing even very irregular and
dynamic loads well, while also exhibiting excellent scalability if im-
plemented well [8]. From a theoretical perspective, these techniques
should handle integral curve computation well. Moreover, they do not
require a priori knowledge about vector field data, facilitate generation
of new integral curves during computation, and have modest complex-
ity of implementation compared to other specialized schemes.

Based on a prototype implementation, we report the results of sev-
eral experiments centered on a typical integral curve use case. We
have investigated both scalability and efficiency, and compare our im-
plementation against a baseline approach. Our results show that work
requesting yields very good efficiency and scales well to a modest
numbers of processors, and should therefore be considered as a viable
strategy for integral curve load balancing.

2 RELATED WORK

2.1 Parallel Particle Advection

Integration-based techniques are one of the cornerstones of flow visu-
alization [11]. Integral curves are typically classified into streamlines
and pathlines, depending on whether the underlying data is steady-
state or time-varying, respectively. Here, we will focus related work
regarding the parallel computation of large amounts of integral curves.

Given reasonably small data, GPGPU-based approaches which use
a single GPU have been very successful. They exploit the straight-
forward possibility of concurrently computing individual traces. Dif-
ferences mainly result from the supported input data type, i.e. sup-
port for steady-state vs. time-varying data on the one hand and struc-
tured vs. unstructured grids on the other [10, 17, 2, 3]. However, it
seems that GPU-based approaches best serve highly interactive use
cases where the handling of large data is not the top priority.

• Cornelius Müller and Christoph Garth are with the University of

Kaiserslautern. E-mail: {cmueller, garth}@cs.uni-kl.de.

• David Camp is with Lawrence Berkeley National Laboratory. E-mail:

dcamp@lbl.gov.

• Bernd Hentschel is with RWTH Aachen University. E-mail:

hentschel@vr.rwth-aachen.de.

In contrast, several recent publications have targeted the handling
of very large data sets. Pugmire et al. [16] considered root causes of
load imbalance and identified two fundamental distribution schemes
that minimize either communication load or I/O load.

The parallelize-over-seeds (POS) technique statically distributes in-
tegral curves among tasks. Each task works on its integral curves in
isolation, which minimizes communication overhead. Data blocks are
loaded as required by the computation. This results in two disadvan-
tages. First, redundant data loading results in high I/O overhead. Sec-
ond, static scheduling leads to load imbalances because of the fact that
integral curve lengths usually vary strongly. Thus, some tasks finish
their work long before others, and they stay idle because the static
scheduling prevents any redistribution of work.

In contrast, parallelize-over-blocks (POB) minimizes the I/O over-
head by statically and non-redundantly distributing data blocks among
tasks. Each task computes the trace segments within its assigned
blocks. If traces leave the local data domain, they are sent to the task
which holds the required block. Thus, no I/O is needed after an ini-
tial loading phase. However, the frequent migration of traces leads to
significant communication overhead. Additionally, the computation
becomes highly imbalanced if only a few blocks actually contain par-
ticles, i.e. some tasks are overloaded while others idle.

Due to the strong data dependency of integral curve computation,
choosing the best parallelization strategy cannot be done a priori. To
address this, Pugmire et al. developed a hybrid scheduling scheme that
combines ideas of POB and POS [16]. A central master process dy-
namically assigns trace computations to slave processes. The scheme
successfully mitigates load imbalances, yet its centralized nature may
become a bottleneck for increasing processor counts.

Other solutions to the load-balancing issues are presented in [7, 14,
18]. Rather than adapting the scheduling of particle traces, they stat-
ically partition the domain into blocks of approximately equal work-
load by using different schemes. While these solutions yields good
results, they comes at the cost of an additional pre-processing step.

Peterka et al. present a variant of POB that is able to handle time-
varying data [15]. Based on this work, a pipeline-parallel compu-
tation of the Finite-Time Lyapunov Exponent (FTLE) has been pro-
posed [13]. It exploits temporal coherence in order to advect particles
from different points in time in parallel.

Most approaches are implemented using the Message Passing Inter-
face (MPI) [12] only. Camp et al. proposed to use hybrid parallelism
in order to better utilize the increasing number of processing units in
today’s HPC machines. They observed good scaling for a combina-
tion of process-level MPI parallelization and thread-level paralleliza-
tion in comparison to an MPI-only implementation [5]. More recently,
they demonstrated a system in which GPUs carry most of the work-
load [6]. With this approach, they specifically target a class of modern
HPC cluster designs which combine a fast, many-core accelerator with
classical CPUs.

2.2 Dynamic Scheduling

The key challenge for parallel integral curve computation is its dy-
namic data dependency: the exact data required to compute the curve
cannot be determined a priori. This information, however, would be



Fig. 1. An overview of the Jet4 dataset showing 25,000 streamlines.
A jet of fast air is entering a medium at rest (on the left), with stream-
lines seeded around the inlet. Strongly non-uniform particle behavior is
apparent, with turbulence, recirculation, and laminar flow visible in the
image. This induces a strong load imbalance when using the parallelize-
over-seeds algorithm.

crucial for an optimal, parallel schedule. Hence, there is no way to
create an efficient scheduling a priori. One either has to bear with an
inefficient solution or perform dynamic scheduling.

In general, dynamic scheduling strategies are used for parallel com-
putations, in which the distribution of the work is only discovered at
runtime. Two proven schemes are work stealing and work requesting.
For both, the problem is partitioned into several work items which are
small enough to be solved by a single processing unit. A processing
unit will be called a task in the rest of this paper to match the term
used in MPI. In this paper, a work item correspond to an integral curve
or the integration work on an integral curve. Work items are initially
distributed among all tasks. Each task holds its items in a work queue,
which is processed in FIFO order. Once a task runs out of work, it
first dynamically selects a random task and then tries to retrieve work
from that task’s work queue. The requesting task is called a thief, the
other task is the victim. If the victim itself has no work items, another
task is randomly selected. It has been shown that choosing a victim at
random yields optimal results in the general case [1].

The difference between work stealing and work requesting is how
tasks obtain work items from one another. In a work requesting sched-
uler, the thief asks the victim for work and the victim actively provides
it. In contrast, in a work stealing scheduler, the victim is oblivious of
its role: the thief directly accesses to the victim’s queue without the
victim being actively involved. Due to the symmetric communication,
work requesting schedulers incur more communication overhead, yet
they are far easier to implement, particularly in a distributed memory
setting. Both strategies have shown to be efficient in theory and prac-
tice [8], because communication is only required if the load actually is
unbalanced.

3 IMPLEMENTATION

As mentioned above, an optimal schedule for integral curve computa-
tion cannot be determined a priori. Therefore, we suggest the use of
work requesting as a dynamic scheduling strategy. The relative sim-
plicity of work requesting is attractive, because it has been shown to
work well for a large class of unbalanced computations, and includes
relatively few parameters that need manual tweaking by a user. We de-
cided against work stealing because it needs that each task has access
to the work queues of all other tasks, requiring a form of remote mem-
ory access (RMA). However, it proved difficult to deploy a platform-
independent RMA implementation as corresponding frameworks or
libraries are typically less mature than implementations of the widely-
used Message Passing Interface (MPI) [12].

Algorithm 1 Pseudo code of the worker thread.

loop
if work queue empty then

Wait for new work item or termination.
else

Pop work item from the queue’s front.
Load data block if needed.
Integrate as long as all required blocks are in cache.
if integral curve finished then

Delete work item.
else

Create new work item starting at last particle position.
Push new work item to the back of the work queue.

end if
end if

end loop

Algorithm 2 Pseudo code of the supervisor thread.

loop
if received work request then

Hand over half of the local work queue, starting at the back.
end if
if work queue empty then

Perform termination detection.
Pick random victim and request work from it.

end if
end loop

In our application, each work item equals one integral curve. By
default, all curves are equally distributed among all tasks; however,
initial distribution is arbitrary and not a fundamental part of the adap-
tive distribution scheme. Therefore, we test the worst case where all
work items are initially at just one task to see how fast the system can
balance it self. But for normal calculation of integral curves, all tasks
have the same number of work items at the beginning, which is also
true for the other experiments.

Every task has a local block cache, where the data blocks which
were previously loaded are kept to be used in further calculations. The
cache may be smaller than the data set. If a newly loaded block does
not fit into the cache, room is made by deleting the oldest block in a
FIFO style.

Each task executes a basic parallelize-over-seeds algorithm. The
processing of one work item consists of two parts. Firstly, the data
block where the integral curve starts is loaded from disk if it is not
already in the local block cache. This ensures that at least a part of the
curve can be calculated. Secondly, the actual integration is done. In
this second part, no additional data is loaded. This leads to two pos-
sible endings for the processing of the work item. Either the integral
curve is completed. Then the work item will be deleted. Or the curve
reaches a point where an unloaded block is needed. In this case, the
unfinished curve forms a new work item. The point where the intega-
tion stopped is the new starting point. The new work item will be put
back in the work queue.

If it would be put at the front of the queue, it would be the next pro-
cessed work item and certainly needs to load a new data block from
disk. Therefore, it is put at the back of the queue, leaving the possi-
bility that the next item at the front does not need to load a new block.
This is likely when the work items are sorted at the start of the pro-
gram, so that the starting points of the work items next to each other
in the queue are also next to each other in the data domain.

The actual work requesting operates like described in the last sec-
tion for the general work requesting algorithm: If one task has finished
calculating all its work items, it sends a work request to another task,
called victim. This victim is randomly chosen which was proven to
be optimal [1]. Dividing the work so that both the victim and the
thief have the same amount of work after the operation has shown the



0 200 400 600 800 1000
Number of Tasks

100

500

1000

1500

2000

3000

4000
5000
6000

Se
co
nd
s

Total Runtime for the streamline test

Work Requesting
Ideal speedup of Work Requesting
Parallelize-over-seeds
Ideal speedup of Parallelize-over-seeds

Fig. 2. Total runtime of the scalability test comparing work request-
ing with parallelize-over-seeds. The number of tasks goes from 32 to
1024. A clear gap between both algorithms can be seen which gets
even bigger on higher numbers of tasks. Additionally, work requesting
scales nearly perfect, while parallelize-over-seeds gets scalability prob-
lems from 256 tasks on.

best performance [8]. Since each integral curve is expected to take
the same calculation time without further knowledge, the victim sends
half of the work items in its queue back to the thief. As in [1], the
local task takes its work items from one side of the queue (front) but
the items which are given to another task is taken from the other side
(back). The work items which would need to load a block are put at
the back, so they are the first to be sent to thieves. This way, unneces-
sary I/O could be avoided because the victim does not have the needed
block whereas the thief could have it in its block cache.

Our first implementation was single-threaded and the communica-
tion requests were only handled in between the processing of work
items. This led to several problems. The most important one was that
a task could not answer work requests from other tasks while it was
calculating a work item, so the requesting task had to wait for some
time before getting a response. This resulted in long idle times until a
task with an empty work queue had found new work items. This had
a significant negative impact on computation time and scalability.

Consequently, we implemented a multi-threaded version with two
threads: a worker and a supervisor. The worker thread processes the
work items, see Algorithm 1, which means it is responsible for I/O and
integration. The supervisor thread handles the communication, see Al-
gorithm 2. It replies to work requests from other tasks, sends out work
requests if its local work queue is empty, and does the termination de-
tection. This approach prevents the problems of the single-threaded
version. The response times of the work requests are much shorter,
which improves the work request performance.

Note that beyond using a block cache on each task, the implemen-
tation we describe here does not make use of some possible optimiza-
tions such as improved caching and other optimizations [8]. The se-
lection of the victim is completely random to ensure work requesting
fairness, and the work items are processed in sequence, without taking
in account the data blocks in the cache. As it is our goal to evaluate
work requesting as a distribution algorithm for integral curve paral-
lelization, we aim to keep the basic algorithm as simple as possible to
obtain an unobfuscated impression of work requesting scalability. Fur-
thermore, diverging from the usual work requesting scheme, which has
been shown to perform excellent in general problems [1, 8] can easily
yield worse performance than without optimization. For example, cus-
tom selection of work items while stealing inevitably results in longer
steal times and therefore more contention while looking for work [8].

0 200 400 600 800 1000
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f I
nt
eg

ra
tio

n

Efficiency for the streamline test

Work Requesting
Parallelize-over-seeds

Fig. 3. Efficiency of the scalability test comparing work requesting with
parallelize-over-seeds. Ratio of the total runtime which was spent do-
ing the actual integration is shown. Work requesting has an efficiency
of more than 90% even on 1024 tasks while parallelize-over-seeds
achieves a maximum of only 76% and drops significantly on higher task
counts.

4 EXPERIMENTS

In this section we describe the experimental setup that we used to com-
pare our new scheduling strategy to the established parallelize-over-
seeds approach. We selected POS as base-line because it is similar
to our work requesting implementation apart from the work balanc-
ing part. So we can eliminate other factors on the performance like
initial I/O or calculation restrictions. The key question behind these
experiments is whether or not the potentially better work distribution
outweighs the additional communication involved in work requesting.

Dataset — All tests have been conducted with the Jet4 simulation
dataset, which describes a high-speed jet entering a medium at rest.
Each of the 735 time steps consists of a regular grid with 32 M points,
which amounts to 384 MB per time step and 275 GB overall. The time
steps are partitioned into 1,024 blocks, each.

This dataset offers a large variety of different integral curve behav-
iors, including recirculation and quickly terminating curves. Figure 1
gives an impression of integral curves in this dataset. For streamline
computations, we used a single time step, whereas pathline integration
was executed on the entire data set.

Runtime Environment — All the test results in this paper were
obtained on the Hopper system at Lawrence Berkeley National Labo-
ratories. Hopper is a Cray XE6 system which features 153,216 com-
pute cores organized in 6,384 compute nodes which are connected by
a proprietary Cray Gemini network. Each node is equipped with two
twelve-core AMD MagnyCours processors and 32 GB of memory. I/O
is handled through a parallel Lustre file system that provides access to
approximately 2 PB of usable disk space.

Test Cases — We performed a strong scaling study and an artificial
load balancing test. In order to assess scaling behavior, we compare
our work requesting scheme to POS for a varying number of tasks
given a constant amount of work. For each run, 1 million integral
curves were integrated. This number was chosen to ensure a sufficient
degree of available parallelism. Our tests comprise settings for 32, 64,
128, 256, 512, and 1,024 tasks. Particles were seeded on a regular grid
uniformly covering the entire domain.

In order to test the load balancing abilities of our work requesting
scheme in an extreme case, we set up the following artificial distribu-
tion test. All of the starting seed points were initially assigned to task 0
and we then observed how work propagated throughout the system by
the means of work requesting. We choose the same number and dis-
tribution of seed points as the scaling tests, so we could compare the



results but we limited the test to one run with 256 tasks. This test antic-
ipates the case of strong load imbalance which is typically encountered
in methods which seed new integral curves during runtime. Examples
for such adaptive algorithms with on-the-fly refinement strategies are
stream surfaces [6] and streaklines.

All measurements were collected with VampirTrace [9]. We per-
form manual instrumentation using VampirTrace’s regions feature to
reduce the overhead of profiling and obtain a clear picture of runtime
spent in different phases of the algorithm. The sections we measured
were initialization (consisting of setting up MPI, reading the meta data
of the database and loading the initial seed set), communication (for
work requesting and termination detection), idle time, data I/O, the
integration calculation, and the termination detection (voting).

5 RESULTS

We analyzed the timing logs to determine the scalability of both algo-
rithms, and then compute the efficiency of each algorithm to integrate
the integral curves. To test how well the work requesting algorithm
can perform under extreme load imbalance we designed an artificial
test to see the distribution of integration work across the tasks. The
results are presented in this section.

5.1 Scalability Test

We look at the total time and efficiency to process 1 million integral
curves at different concurrency levels. Additionally, Gantt charts are
presented in Section 5.1.3 to show the load balancing effect.

5.1.1 Streamline Runtime

The total runtime of the test runs can be seen in Figure 2. The x-axis
shows the number of tasks, from 32 to 1024. On the y-axis the total
runtime in seconds can be seen using logarithmic scaling. The blue
line represents the test using the work requesting algorithm and the
green line represents the tests using the parallelize-over-seeds algo-
rithm. For both, the ideal speedup is plotted as a dashed line. The
ideal speedup shows the theoretical runtime if the performance of the
program would scale linearly with the number of tasks. It was calcu-
lated based on the runtime of the test with 32 tasks, as in this test it
can be assumed that the amount of overhead due to parallelization is
the lowest.

It can be seen that there is a significant gap between the graphs cor-
responding to both algorithms. This gap increases further for higher
number of tasks: using 32 tasks, the parallelize-over-seeds algorithm
needs 38% more time to run than the work requesting algorithm, but
using 1024 tasks, it needs 59% more.

The comparison with the ideal speedup is also interesting. For
the work requesting algorithm, both lines are nearly identical, which
means that it scales nearly perfectly. But using the parallelize-over-
seeds algorithm, a clear gap can be seen for 256 and more tasks.

5.1.2 Streamline Efficiency

Efficiency is defined as the ratio of the total runtime which was spent
doing the actual integration work. It is shown in Figure 3 on the y-axis.
The x-axis again gives the number of tasks. On these graph, both axes
use linear scaling. Again, the blue line represents the work requesting
algorithm and the green line the parallelize-over-seeds algorithm.

It can be seen that the work requesting algorithm reaches nearly
100% efficiency on lower task counts and while it drops at higher task
counts, it is still 93% using 1024 tasks.

On the other hand, the parallelize-over-seeds algorithm reaches a
maximum of 76% efficiency using 32 tasks and drops significantly on
higher task counts, down to 58%. But the decrease seems to slow down
and will maybe settle above 55%.

5.1.3 Streamline Gantt Charts

A gantt chart shows a summary of one parallel program run. The x-
axis represents the runtime of the program. Each thread is drawn as
a horizontal bar. The color of the bar corresponds to the activity the
thread did at the certain time: Blue stands for the integration work,
green means loading a block, the different shades of red symbolize

0 100 200 300 400 500 600
Number of Tasks

50

100

150

200

250
300
350
400
450
500
600
700
800

Se
co
nd
s

Total Runtime for the pathline test

Work Requesting
Parallelize-over-seeds

Fig. 6. Strong scaling results for pathline computation using work re-
questing and parallelize-over-seeds, respectively.

different kinds of communication, dark gray is the waiting of one task
for the others after it finished and light gray is the sleeping the super-
visor thread does when it is waiting for communication requests.

Figure 4 is the work requesting algorithm gantt chart, it can be seen
that nearly 100% of the time is used for integration work, like one
would assume from the efficiency plot. All of the tasks finish at nearly
the same time.

Figure 5 is the parallelize-over-seeds algorithm gantt chart, the load
imbalance can be seen clearly. The task which finishes its work last,
takes approximately double time than the first task to complete its
work. But all tasks have to wait for the other tasks to complete, lead-
ing to the inefficiency of the parallelize-over-seeds algorithm. With
larger number of tasks, the difference between the completion of the
first and last task gets even bigger, this explains the worse efficiency
when using more tasks.

5.1.4 Pathline Runtimes

Figure 6 shows the strong scaling tests for both the work requesting
and parallelize-over-seeds algorithms calculating pathlines on the Jet
dataset. Both algorithms start scaling well, but then level out at 256
tasks. This leveling is because of the rising cost of I/O. Both algo-
rithms have to load a lot more data to integrate the pathlines to com-
pletion. The cache size is reduced in half because of the requirement
of needing two data blocks to integrate the curves between time seg-
ments. This reduces the chance of finding the data block needed to
continue integrating a pathline. Also when the task steals work it is al-
most a given that every data block in the cache is no good, because data
in the cache will be from the end of the data time and the new work
items will require data blocks from a different time segment. This will
likely cause the task to reload all new data.

5.2 Distribution Test

The distribution test analyzes the behavior of the algorithm under
extreme load imbalance by initially assigning all work items to just
one task. This anticipates the imbalance which adaptive methods like
streaklines typically have. Figure 7 is a gantt chart of the this test. It
shows only the first 50 seconds from the total runtime of 479 seconds
and only about one thirds of the tasks. This is done to see the costs
of distributing the work across the tasks. The task at the bottom is the
one which initially has all the work items.

After the initialization time of about 4 seconds, all of the empty
tasks send out work requests which can be seen in red. The bottom
task sends out work items (purple), loads the necessary data blocks
(blue and green), and starts integrating its work items. It takes roughly
15 seconds for most of the other tasks to have work items and start



Fig. 4. Gantt chart of the work requesting algorithm using 32 tasks. It can be seen that nearly all the time is spent with integration and all tasks
finish at nearly the same time, leading to a visible shorter runtime than parallelize-over-seeds as seen in Figure 5.

Fig. 5. Gantt chart of the parallelize-over-seeds algorithm using 32 tasks. The load imbalance between the tasks is clearly visible which leads to
an inefficient use of system resources, which results in a longer runtime.

Fig. 7. Gantt chart of the work requesting distribution test. Only the first 50 seconds of the total runtime of 479 seconds is shown for only about one
thirds of the tasks. After a few seconds of sending the work items, they are distributed between every task so the calculation can continue normally.



their integration. Only a few tasks need more time to find work; the
last task needs about 30 seconds to find work. After that, the work
items are distributed good enough so that the run looks like the test
run where the work items were equally distributed at the beginning.

The efficiency of the distribution test is less than the test with
equally distribution because of the additionally time needed to ex-
change the work items at the start of the test. But it only drops
from 98.4% to 94.7% which is still better then the equally distribu-
tion parallelize-over-seeds algorithm.

6 DISCUSSION

There is certainly an overhead involved when using the work request-
ing algorithm. Firstly there is the obvious overhead of communication
to request work, send the work items and the voting process to deter-
mine termination. But additionally, there is presumably more I/O than
in the parallelize-over-seeds algorithm because of the ordering of the
particles. One task in the parallelize-over-seeds algorithm calculates a
number of particles which all start near each other. So it is likely that
they use the same parts of the dataset, leading to fewer blocks to load
for each task. On the other hand, the work requesting algorithm shuf-
fles the particles between the different tasks on each transfer of work
items. So theoretically each task may calculate each particle, needing
to load arbitrary parts of the dataset.

Both types of overhead get bigger on a higher number of tasks, as
there is more communication of work items between the tasks.

This overhead can be seen in the results, most clearly on the effi-
ciency graph (Figure 3), which shows decreasing efficiency for bigger
numbers of tasks. But it can also be seen that the overhead is relatively
small, less than 10% even on 1024 tasks. It is also much smaller than
the overhead of the parallelize-over-seeds algorithm, which consists
mostly of the waiting of the tasks after they finished their work for the
other tasks to finish.

The reason for using work requesting instead of work stealing is the
distributed memory of high performance computing clusters. Our pro-
totype uses one addition thread to handle the communication required
by the work requesting algorithm, this is needed to not interrupt the
integration work. However dedicated hardware on current and future-
generation supercomputers which allows remote direct memory access
is more and more common. With this, a partitioned global address
space can be used to access the work queues of other tasks without
interrupting them, therefore, work stealing could be implemented ef-
fectively. One would expect better performance and scalability, as no
co-operation is needed from the victim. There are however indications
(cf. [8]) that this difference is only important if the work items require
very little computation time and work remains unbalanced throughout
the computation, which is not typical for an integral curve problem.

Overall, we conclude that work requesting can be a viable load bal-
ancing scheme for integral curve computation. We have observed it to
scale quite well, at a very modest cost to efficiency. Naturally, our ex-
periments cover a simplified implementation, and many optimizations
would be possible to bring performance up to higher levels.

7 CONCLUSION

Integral curves, while being one of the most important techniques for
the visualization of vector fields, are hard to calculated efficiently in
a parallel setting due to strong inherent data dependency. General-
purpose load balancing techniques like work requesting have been
proven to be able to balance irregular loads well. In this paper, we have
investigated how well work requesting performs on the integral curve
computation problem. For this, we have implemented a prototype to
compare it to a baseline approach. We have conducted tests to ana-
lyze scalability and efficiency, as well as understand how it performs
even on a badly distributed work loads. Our results show very good
efficiency and scalability up to at least 1,024 processes. Therefore,
work requesting promises to be an effective technique to balance in-
tegral curve computation load. Regarding future work, we would like
to investigate in how far dynamic, adaptive algorithms such as stream
surface [4] or streakline computations, which generate new integral
curves at runtime, can be scheduled efficiently with our approach.

ACKNOWLEDGMENTS

This work was funded in part by the Marie Curie Actions within the
EU FP7 Programme under grant #304099. The authors wish to thank
Hank Childs for an in-depth discussion of this work. We also thank
the AHRP for uncomplicated access to the Elwetritsch cluster which
we used for early tests. For compute time on Hopper, were all the
test results presented in this paper were obtained, we thank Lawrence
Berkeley National Laboratory, which was supported by the U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computa-

tions by work stealing. Journal of the ACM, 46(5):720–748, Sept. 1999.

[2] K. Bürger, J. Schneider, P. Kondratieva, J. Krüger, and R. Westermann.

Interactive Visual Exploration of Unsteady 3D Flows. In Proceedings of

the Joint EG/IEEE VGTC Symp. on Visualization, pages 251–258, 2007.

[3] M. Bußler, T. Rick, A. Kelle-Emden, B. Hentschel, and T. Kuhlen. Inter-

active Particle Tracing in Time-Varying Tetrahedral Grids. In Proceed-

ings of the Eurographics Symposium on Parallel Graphics and Visualiza-

tion, pages 71–80, 2011.

[4] D. Camp, H. Childs, C. Garth, and D. Pugmire. Parallel stream surface

computation for large data sets. In Proc. Large Data Analysis and Visu-

alization ’12, pages 39–47, Oct. 2012.

[5] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy. Streamline

Integration Using MPI-Hybrid Parallelism on a Large Multicore Archi-

tecture. IEEE Transactions on Visualization and Computer Graphics,

17(11):1702–1713, 2011.

[6] D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson, E. W. Bethel,

K. I. Joy, and H. Childs. GPU Acceleration of Particle Advection Work-

loads in a Parallel, Distributed Memory Setting. In Proceedings of the

Eurographics Symposium on Parallel Graphics and Visualization, 2013.

[7] L. Chen and I. Fujishiro. Optimizing parallel performance of streamline

visualization for large distributed flow datasets. In IEEE Pacific Visuali-

sation Symposium, pages 87–94, Mar. 2008.

[8] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and

J. Nieplocha. Scalable work stealing. In SC. ACM, Nov. 2009.

[9] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,

M. S. Müller, and W. E. Nagel. The vampir performance analysis tool-set.

In Tools for High Performance Computing, pages 139–155. 2008.

[10] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A Particle Sys-

tem for Interactive Visualization of 3D Flows. IEEE Transactions on

Visualization and Computer Graphics, 11(6):744–756, 2005.

[11] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. Over

Two Decades of Integration-Based, Geometric Flow Visualization. Com-

puter Graphics Forum, 29(6):1807–1829, 2010.

[12] Message Passing Interface Forum. MPI2: A message passing interface

standard. High Performance Computing Applications, 12(1–2):1–299,

1998.

[13] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Par-

allel Particle Advection and FTLE Computation for Time-Varying Flow

Fields. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pages 1–11, 2012.

[14] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-Balanced Parallel

Streamline Generation on Large Scale Vector Fields. IEEE Transactions

on Visualization and Computer Graphics, 17(12):1785–1794, 2011.

[15] T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen, W. Kendall,

and J. Huang. A Study of Parallel Particle Tracing for Steady-State and

Time-Varying Flow Fields. In Proceedings of the Parallel Distributed

Processing Symposium (IPDPS),, pages 580–591, 2011.

[16] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. Weber. Scalable Com-

putation of Streamlines on Very Large Datasets. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2009.

[17] M. Schirski, C. Bischof, and T. Kuhlen. Interactive Particle Tracing on

Tetrahedral Grids Using the GPU. In Proceedings of Vision, Modeling,

and Visualization (VMV) 2006, pages 153–160, 2006.

[18] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical visualization of

large time-varying 3d vector fields. In Supercomputing, 2007. SC’07.

Proceedings of the 2007 ACM/IEEE Conference on, pages 1–12. IEEE,

2007.


	Introduction
	Related Work
	Parallel Particle Advection
	Dynamic Scheduling

	Implementation
	Experiments
	Results
	Scalability Test
	Streamline Runtime
	Streamline Efficiency
	Streamline Gantt Charts
	Pathline Runtimes

	Distribution Test

	Discussion
	Conclusion

