
Transitioning Data Flow-Based Visualization
Software to Multi-Core Hybrid Parallelism

David Camp
Lawrence Berkeley Natl. Laboratory

Berkeley, CA, USA
Email: dcamp@lbl.gov

E. Wes Bethel
Lawrence Berkeley Natl. Laboratory

Berkeley, CA, USA
Email: ewbethel@lbl.gov

Hank Childs
Lawrence Berkeley Natl. Laboratory &

The University of Oregon
Email: hchilds@lbl.gov, hank@uoregon.edu

Abstract—Many of today’s programs for supercomputers are
designed for distributed-memory parallelism, but not for shared-
memory parallelism. As architectural trends for supercomputers
suggest an ever-increasing number of cores per node, these
projects must evaluate whether they can benefit from hybrid
parallelism — parallelism that blends distributed- and shared-
memory approaches — and whether the costs for migrating to
new architectures are prohibitive. With this research effort, we
explore whether a data flow-based visualization tool could be
easily migrated to a hybrid parallel setting, what the challenges
are, and what benefits hybrid parallelism achieves. For results,
we find that only a relatively small investment was required to
transition the tool and it significantly improves performance and
also reduces memory usage and communication costs.

I. INTRODUCTION

In the 1990s, supercomputer architectures transitioned from
an era of vector processing to an era of clusters made up
of nodes of commodity hardware. At the beginning of this
transition, it was common for each node of the cluster to have
only a single CPU on each node. Over the last decade, how-
ever, computing centers have incorporated multi-core nodes
into their designs: dual-core nodes, then quad-core nodes, and
now frequently a dozen or more cores per node.

Unfortunately, many large software packages were de-
signed to handle the parallelism challenges from distributed-
memory nodes, but not the parallelism challenges of shared-
memory cores within a node. This is because the transi-
tion from vector processing to commodity clusters required
a significant investment in designing software for a com-
pletely different architecture. Many of the resulting efforts
(reasonably) focused on distributed-memory parallelism; since
nodes had only a single core at the time, distributed-memory
parallelism was the pressing challenge. By and large, these
efforts created a Processing Element (PE) — an instance of
their program — on each node and used the Message Passing
Interface (MPI [1]) for execution control, synchronization,
and interprocessor communication. On platforms comprised of
multi-core processors, many of these MPI-based tools simply
sidestepped the issue by running a PE on each core, in effect
treating each core as if were a node. In effect, the programs
maintained a distributed-memory approach, assigning a PE
to each core on a node and forcing cores within a node to
communicate with each other using message passing.

Hybrid parallelism refers to the practice of using a combi-
nation of shared- and distributed-memory techniques, namely

using distributed-memory techniques across nodes, and shared-
memory techniques within a node. The technique has the
ability to improve performance and lessen resources consumed,
specifically I/O, network communications, and memory. Fur-
ther, from the perspective of an individual core, these resources
are diminished as the number of cores increase; the algorithms
we employ must be responsive to this. The benefits of hybrid
parallelism, and the best way to implement the approach, has
recently been an active area of research.

With this short paper, we consider a specific instance of
a program designed for distributed-memory parallelism that
has survived into the hybrid parallel era. The program is
data flow-based and is used to visualize and analyze massive
data sets. The developers of this program — as well as the
developers of many other programs which also were designed
only for distributed-memory parallelism — are faced with a
key decision: Should they adapt their existing program? Should
they start over from scratch? Or should they do nothing? We
attempt to inform all three questions by exploring the approach
of modernizing an existing program to deal with multi-core
nodes, including the costs and benefits of the approach. The
costs inform the tradeoff between modernizing and re-writing,
while the benefits inform the question of whether action is
required.

The contributions of this short paper are aimed at answer-
ing questions pertinent to developers of distributed-memory
only data flow programs. Specifically:

• Cost: How much effort is required to transition data
flow programs to a hybrid parallel setting? Are there
special advantages or disadvantages unique to data
flow? What are the best approaches?

• Benefit: What benefits does hybrid parallelism add to
data flow programs? (I.e., is “do nothing” a viable
option?)

In our study, we find that, because of the data flow nature
of the program, only (relatively) small changes were required
to enable hybrid parallelism in an existing program. We also
demonstrate significant benefits for performance, memory, and
communication.

II. RELATED WORK

A. Hybrid Parallelism

As already discussed, hybrid parallelism combines
distributed- and shared-memory techniques. For distributed-



memory parallelism, nearly all applications use the MPI [1]
to manage coordination between its PEs. For shared-memory
parallelism, there are more options, including POSIX threads
[2], OpenMP [3], and Intel Thread Building Blocks [4].

Early hybrid parallelism work focused on benchmarking
well-known computational kernels [5], [6]. Subsequent work
explored specific impacts of hybrid parallelism for visualiza-
tion [7]. Specifically, Howison et al. showed a factor of
two speedup and significant memory savings when volume
rendering using 216, 000 cores with weak scaling [8] and
strong scaling [9]. Camp et al. studied performance bene-
fits for streamlines [10] and demonstrated order-of-magnitude
speedups.

B. Overview of VisIt

VisIt [11] is an end-user tool for visualizing massive data
sets. Its development started in the year 2000 — when hybrid
parallelism was not frequently considered by developers — and
continues to be heavily used and actively developed today. The
project has been downloaded over 200,000 times and is used
around the world, including many of the supercomputers on
the Top500 [12]. VisIt contains over 1.5 million lines of C++
code, meaning reimplementing the code base from scratch for
hybrid parallelism would be a substantial undertaking.

VisIt follows a client-server model, where the client runs
on the user’s desktop computer, and the server runs where
the data can be accessed and processed, likely on a remote
supercomputer. The server is parallelized; data is loaded in
parallel, processed in parallel, and rendered in parallel. VisIt
has scaled to tens of thousands of cores and been used to look
at data sets with trillions of cells [13].

C. Data Flow In VisIt

VisIt’s server is based on data flow techniques. Visu-
alization algorithms are encapsulated as filters, which are
combined into data flow networks referred to as pipelines. VisIt
contains over 300 filters, each of which performs a different
data manipulation, transformation, derivation, or rendering.
Users themselves decide which filters to place into a pipeline,
dynamically creating exactly the visualization they want to see.

The flow is demand-driven; filters go through an “update-
execute” cycle. The cycle begins when the pipeline’s sinks
are asked to “update.” The update requests propagate up the
pipeline until they reach sources. After the sources produce
data — usually by reading it from a file — data flows down
the pipeline and filters execute on the data as it comes. VisIt’s
design is similar to (and inspired by) that of the Visual-
ization ToolKit (VTK) [14], but contains key enhancements.
Specifically, a contract-based mechanism [15] enables filters
to communicate with each other both their requirements and
their opportunities for optimizations, for example data culling,
where only the necessary regions of the data are loaded and
processed.

III. APPROACH

VisIt’s filters are implemented as C++ classes, with a
deep inheritance hierarchy. The base class for all filters is
avtFilter, which is an abstract type. The middle portions of

the inheritance hierarchy specialize what types of data a filter
operates on, e.g., mesh-based data, images, etc., or specialize
its processing strategy. Concrete types implement a specific
algorithm and it is these concrete types that are instantiated as
part of a data flow network. This design is common to many
data flow libraries; the management of execution is the same
across the filters, so it is abstracted into a base class that many
derived types can share.

VisIt uses data-parallel techniques to achieve parallelism.
Large data sets are divided into pieces (corresponding to spatial
regions); VisIt partitions these pieces over its PEs and each
PE operates on its own pieces. Typically, there are many
more pieces than PEs, since the simulation code often divides
the data set into pieces itself for its own parallelism, and
since the simulation frequently has many more PEs than the
visualization program. The majority of the algorithms in VisIt
are embarrassingly parallel, meaning that no coordination is
required between the PEs when parallelizing. In this case, each
PE operates on its pieces and the results are aggregated later
on in the execution, typically during rendering.

Our goal was to have one PE on each node, and to have
all the cores share that PE’s workload. Previously, each PE
would iterate over the pieces assigned to it (one at a time), so
having each core operate on a piece was a natural extension to
the existing scheme. Further, since a hybrid parallel approach
reduces the number of PEs, the number of pieces per PE
would go up proportionally, guaranteeing that there would be
sufficient pieces to assign to the cores. Our question became:
how should we schedule work to cores in a way that could
remain coordinated?

Our scheme was to, for each filter execution, acquire
threads from a thread pool, complete the execution, and
then return the threads to the thread pool. We considered an
alternate scheme where each thread would be assigned a piece
and execute the entire pipeline on that piece before getting
more work. We did not choose this scheme since, although
many filters are embarrassingly parallel, those that require
parallel coordination would require significant extensions in
this context. Further, our selected scheme imposes fewer
restrictions on how to carry out shared-memory parallelism.
We were able to provide an implementation in the base class
that worked for approximately 95% of the filters.

For the filters that require special coordination in parallel
— i.e., the remaining 5% — there are two options. The first
option is to disable hybrid parallelism for that filter. In this
case, only one core is used from a node, which is inferior to the
distributed-memory only case. However, it allows the program
to continue, it takes no additional developer effort, and the rest
of the program can still run in a hybrid parallel manner. The
second option is to not use the infrastructure from the base
class and, instead, implement custom shared memory paral-
lelism in a way that optimizes filter execution. For example,
the streamline work referenced in [10] requires sophisticated
queuing of shared-memory work that goes beyond our simpler
scheme. Since this scheme was already implemented in VisIt
(on an experimental branch), it can simply replace the basic
threading scheme with its own existing scheme.

Our work items to realize this vision are listed below. Time
spent to achieve each work item is listed parenthetically.



• Threading support (3 weeks): We added an ab-
straction for an execution manager, which carries out
assignment of work to resources. Within the execution
manager, we implemented support using using POSIX
threads (pthreads), including management of a thread
pool, thread creation and deletion, and thread joining.

• Filter-level support (5 weeks): We added code in
the base classes to engage the execution manager to
round-robin pieces over the threads. Since most filter
implementations had already abstracted away paral-
lelism and were simply focused on how to execute on a
given piece, 95% of filters could use this infrastructure
and did not even need to be aware that they were now
running in a hybrid parallel mode.

• Auditing of derived types (5 weeks): Although the
thread support could be added in the base class, some
filters were implemented in a non-thread-safe way.
The most common example would be a filter’s method
to manipulate a data set modified data members asso-
ciated with the instance of the class. To catch these
cases, we used VisIt’s regression test suite, which
contains over 7, 000 tests.

• Auxiliary infrastructure (3 weeks): VisIt’s timing
infrastructure outputs one file per PE and had to be
modified to deal with multiple cores creating timing
events simultaneously (through semaphores). A simi-
lar issue arose with the creation of log files. Finally,
VisIt’s job launching had to be modified to reflect
hybrid parallel job submissions.

In total, this effort was approximately four months of
work. The total development time in VisIt since its begin-
ning is approximately 100 person-years, making the hybrid
parallelization effort relatively quick. We note, however, that
although we have transitioned the infrastructure of VisIt to
hybrid parallelism, we have not completely finished the transi-
tion, especially with respect to migrating non-embarrassingly
parallel filters.

IV. MEASURING THE BENEFITS OF HYBRID
PARALLELISM

A. Study Overview

We compared the results of running a distributed-memory
version of the program with a hybrid parallel version. The
test was designed to isolate the difference between the two
parallelism approaches. Both configurations used identical
hardware, worked on the same data sets, and applied the same
visualization algorithms.

We ran the tests on the Hopper machine at Lawrence Berke-
ley National Laboratory’s NERSC facility. Hopper’s compute
nodes each contain 32GB of memory and two twelve-core
AMD ‘MagnyCours’ 2.1-GHz processors, for a total of twenty-
four cores per node.

The experiments loaded output from a GenASiS [16]
simulation of the magnetic field surrounding a solar core
collapse, calculated an isosurface, and rendered the resulting
surface (see Figure 1). The data set consisted of over two
billion cells, broken into 512 pieces.

Fig. 1. Rendering of an isosurface
of a solar core collapse. Identical im-
ages were rendered by a distributed-
memory version of VisIt, and by a
hybrid parallel version, and identical
hardware was used for both configura-
tions. The differences in performance
and resource consumption inform the
benefits of hybrid parallelism.

We ran the experiments on three nodes. For the distributed-
memory tests, we ran with 72 PEs. For the hybrid parallel tests,
we ran with 3 PEs, and each PE used twenty-four cores.

B. Results

We compared the performance, memory usage, and com-
munication patterns of the tests.

With respect to performance, we found that the hybrid
parallel version was consistently faster. This is because, with
isosurfacing, the amount of work per piece varies based on
how much of the data set intersects the isosurface. The hybrid
parallel version effectively balanced this load dynamically; the
distributed-memory version had some PEs sitting idle while
other cores on the same node still had work to perform. This
imbalance is crucial, since the results are not displayed until
all PEs have finished. The individual times for each PE can be
seen in Figure 2. Over five tests, the hybrid parallel version
took between 8.28s and 8.45s, while the distributed-memory
version took between 13.5s and 14.9s. The average speedup
was 1.67X.

 0

 2

 4

 6

 8

 10

 12

 14

T
im

e 
(S

ec
on

ds
)

Processing Element
 0

 2

 4

 6

 8

 10

 12

 14

T
im

e 
(S

ec
on

ds
)

Processing Element

Fig. 2. The left figure shows the time for the distributed-memory approach
and its 72 PEs to process its pieces. The right figure shows the time for the
hybrid parallel approach and its 3 PEs to process its pieces. The hybrid parallel
version averaged being 1.67X faster.

The only aspect of our test that emphasized communication
was the rendering. Parallel rendering is a two-step process [17].
First, each PE renders its own surface data into a sub-image.
Then the PEs exchange the sub-images and composite them
together using information about the depth of the surface. With
the distributed-memory test, 72 sub-images are exchanged,
while, with the hybrid parallel version, only 3 sub-images are
exchanged. As a result, the compositing times for the hybrid
parallel version are faster, averaging 0.3s versus 0.5s for the
distributed-memory version. That said, we note that we have
not yet converted our surface renderer to hybrid parallelism.
As a result, only one core performed the first step (rendering
of surface data), and the total rendering time was overall
slower with the hybrid parallel version. Hybrid parallelism
will be faster after the conversion, because of its advantages
in compositing time.



The hybrid parallel version uses less memory, because it
only loads one version of the binary. At the end of execution,
the distributed-memory version uses 22.3GB, while the hybrid
parallel version uses 20.7GB, for a saving of 1.6GB. This
is because each instance of the program takes almost 70MB.
Realistically, 1.6GB out of the available 32GB is noteworthy,
but not significant. However, since architectural trends have
more and more cores placed on a node and memory staying
constant, this savings will become more and more important.

V. CONCLUSION AND FUTURE WORK

We found that we only needed to modify relatively few
locations to convert a large application to hybrid parallelism.
This is because the data flow pattern lends itself to an in-
heritance design and the hybrid parallelism can be addressed
in a base class of an inheritance hierarchy and benefit many
derived types. Further, the large majority of visualization data
flow algorithms are embarrassingly parallel. If this was not
the case — i.e., if many of the algorithms required parallel
coordination — then this effort would have been a much more
significant undertaking.

The scope for this effort was for multi-core CPUs, not
many-core GPUs. Multi-core CPU platforms lend themselves
to the type of refactoring described in this paper, since multi-
core programming environments are the same as those of single
core. (In our case, VisIt’s C++ code is extended to include
POSIX threads.) Many-core GPU platforms require languages
that enable fine-grained parallelism, such as CUDA [18] or
OpenCL [19]. Three visualization libraries have emerged that
tackle fine-grained parallelism: PISTON [20], DAX [21], and
EAVL [22]. Incorporating one these libraries into a large tool
like VisIt — and thus making it many-core capable — is a fea-
sible task, especially since our newly added execution manager
was designed with this use case in mind. However, the many-
core transition will be significantly more time-consuming than
the one considered in this study: the visualization routines in
VisIt make up almost 700, 000 lines of code and this code
would have to be reimplemented (and possibly re-thought) for
a many-core setting.

ACKNOWLEDGMENTS

Support for this work was provided through Scientific
Discovery through Advanced Computing (SciDAC) program
funded by U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research. This research used
resources of the National Energy Research Scientific Com-
puting Center (NERSC), which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

REFERENCES

[1] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI
– The Complete Reference: The MPI Core, 2nd edition. Cambridge,
MA, USA: MIT Press, 1998.

[2] D. R. Butenhof, Programming with POSIX threads. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997.

[3] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel programming in OpenMP. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001.

[4] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor. O’Reilly Media Inc., 2007.

[5] G. Hager, G. Jost, and R. Rabenseifner, “Communication Characteristics
and Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-
core SMP Nodes,” in Proceedings of Cray User Group Conference,
2009.

[6] D. Mallón, G. Taboada, C. Teijeiro, J. Tourino, B. Fraguela, A. Gómez,
R. Doallo, and J. Mourino, “Performance Evaluation of MPI, UPC
and OpenMP on Multicore Architectures,” in 16th European PVM/MPI
Users’ Group Meeting, (EuroPVM/MPI’09), September 2009.

[7] E. W. Bethel, D. Camp, H. Childs, C. Garth, M. Howison, K. I. Joy, and
D. Pugmire, “Hybrid Parallelism,” in High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, Oct. 2012, pp. 261–290.

[8] M. Howison, E. W. Bethel, and H. Childs, “MPI-hybrid Parallelism
for Volume Rendering on Large, Multi-core Systems,” in Eurographics
Symposium on Parallel Graphics and Visualization (EGPGV), Apr.
2010, pp. 1–10.

[9] ——, “Hybrid Parallelism for Volume Rendering on Large-, Multi-
, and Many-Core Systems,” IEEE Transactions on Visualization and
Computer Graphics (TVCG), vol. 18, no. 1, pp. 17–29, Jan. 2012.

[10] D. Camp, C. Garth, H. Childs, D. Pugmire, and
K. I. Joy, “Streamline Integration Using MPI-Hybrid
Parallelism on a Large Multicore Architecture,” IEEE
Transactions on Visualization and Computer Graphics (TVCG),
vol. 17, pp. 1702–1713, Nov. 2011.

[11] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data,” in High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, Oct. 2012, pp. 357–372.

[12] Top500, “Top 500 supercomputer sites,” http://www.top500.org/, 2013.
[13] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat,

G. Weber, and E. W. Bethel, “Extreme Scaling of Production Visual-
ization Software on Diverse Architectures,” IEEE Computer Graphics
and Applications, vol. 30, no. 3, pp. 22–31, May/Jun. 2010.

[14] W. J. Schroeder, K. M. Martin, and W. E. Lorensen, “The design and
implementation of an object-oriented toolkit for 3d graphics and visual-
ization,” in VIS ’96: Proceedings of the 7th conference on Visualization
’96. IEEE Computer Society Press, 1996, pp. 93–ff.

[15] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Mered-
ith, M. Miller, and B. J. W. A. D. N. Max, “A
Contract-Based System for Large Data Visualization,” in
Proceedings of IEEE Visualization (Vis05), Oct. 2005, pp. 190–
198.

[16] E. Endeve, C. Y. Cardall, R. D. Budiardja, and A. Mezzacappa, “Gen-
eration of Strong Magnetic Fields in Axisymmetry by the Stationary
Accretion Shock Instability,” ArXiv e-prints, Nov. 2008.

[17] C. Hansen, E. W. Bethel, T. Ize, and C. Brownlee, “Rendering,”
in High Performance Visualization—Enabling Extreme-Scale Scien-
tific Insight, ser. Chapman & Hall, CRC Computational Science,
E. W. Bethel, H. Childs, and C. Hansen, Eds. Boca Raton,
FL, USA: CRC Press/Francis–Taylor Group, Nov. 2012, pp. 49–60,
http://www.crcpress.com/product/isbn/9781439875728, LBNL-6324E.

[18] NVIDIA Corporation, NVIDIA CUDATM Programming Guide Ver-
sion 3.0, http://developer.nvidia.com/object/cuda 3 0 downloads.html,
2010.

[19] Khronos Group, “OpenCL – The Open Standard for Parallel Pro-
gramming of Heterogeneous Systems,” http://www.khronos.org/opencl/,
2011.

[20] L.-t. Lo, C. Sewell, and J. Ahrens, “PISTON: A portable cross-platform
framework for data-parallel visualization operators.” Eurographics
Symposium on Parallel Graphics and Visualization, 2012, pp. 11–20.

[21] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma, “Dax Toolkit: A
Proposed Framework for Data Analysis and Visualization at Extreme
Scale,” in Proceedings of the IEEE Symposium on Large-Scale Data
Analysis and Visualization, October 2011, pp. 97–104.

[22] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros, “EAVL:
the extreme-scale analysis and visualization library,” in Eurographics
Symposium on Parallel Graphics and Visualization. The Eurographics
Association, 2012, pp. 21–30.


