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Abstract
Although there has been significant research in GPU acceleration, both of parallel simulation codes (i.e., GPGPU)
and of single GPU visualization and analysis algorithms, there has been relatively little research devoted to visual-
ization and analysis algorithms on GPU clusters. This oversight is significant: parallel visualization and analysis
algorithms have markedly different characteristics – computational load, memory access pattern, communication,
idle time, etc. – than the other two categories.
In this paper, we explore the benefits of GPU acceleration for particle advection in a parallel, distributed-memory
setting. As performance properties can differ dramatically between particle advection use cases, our study oper-
ates over a variety of workloads, designed to reveal insights about underlying trends. This work has a three-fold
aim: (1) to map a challenging visualization and analysis algorithm – particle advection – to a complex system (a
cluster of GPUs), (2) to inform its performance characteristics, and (3) to evaluate the advantages and disadvan-
tages of using the GPU. In our performance study, we identify which factors are and are not relevant for obtaining
a speedup when using GPUs. In short, this study informs the following question: if faced with a parallel particle
advection problem, should you implement the solution with CPUs, with GPUs, or does it not matter?

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Computer Graphics]: Concurrent
Programming—Parallel programming

1 Introduction

Very large simulation data is increasingly visualized in
environments where GPU acceleration is available. Tradi-
tionally, this environment has come from “visualization clus-
ters”: smaller GPU-based supercomputers that are optimized
for loading, processing, and rendering data [BVS∗11]. The
alternative to these specialized clusters is to perform visu-
alization on the general-purpose supercomputers where the
simulations themselves are run. These supercomputers now
regularly also contain GPUs, as a way of obtaining addi-
tional computing power with reduced cost and power con-
sumption.

Surprisingly, most instances of today’s parallel visualiza-
tion software – e.g., VisIt [CBW∗12], ParaView [AGM∗12],
and VTK [SML96] – have CPU implementations for their al-
gorithms, and only exploit the GPU through basic OpenGL

calls for rendering. This is because development of these
software packages began over a decade ago when GPUs
were a rarity in supercomputing environments. However, as
GPUs become more prevalent on supercomputers, we must
design and evaluate appropriate algorithms.

With this study, we consider parallel particle advection
in distributed memory GPU environments. Particle advec-
tion – displacing particles so that they are tangent to the
velocity field – is a foundational element of many visual-
ization algorithms for flow analysis, including streamlines,
pathlines, stream surfaces, and calculating Finite-Time Lya-
punov Exponents (FTLE). Particle advection is a particularly
difficult form of a non-embarrassingly parallel algorithm, as
the work needed to complete the problem is not known a pri-
ori. Additionally, the workload varies greatly from problem
to problem. Streamline calculation often involves advecting
few particles for long distances, while FTLE calculation of-
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ten involves advecting many particles for short distances. In
turn, our study considers a range of scenarios, varying over
particle count, distance traveled, and vector field. While one
contribution of this paper is our GPU-based parallel particle
advection algorithm, we believe its most significant contri-
bution is the performance study, which illuminates the fac-
tors which make CPU and GPU performance differ and the
magnitude of their effects.

2 Related Work

McLouglin et al. recently surveyed the state of the art in
flow visualization [MLP∗09], and the large majority of tech-
niques they described incorporated particle advection. As
mentioned in the introduction, the computational workload
for these particle advection-based techniques vary. On the
low end of computational demands, streamlines, which dis-
play the trajectory of particles placed at seed locations, can
involve advecting just a few particles. In the middle, stream
surfaces, which advect a seeding curve (or, rather, particles
along that curve) to create a surface, require potentially tens
of thousands of particles to be advected. At the high end,
FTLE calculations advect a particle for every node in a mesh
and compare how much nearby particles diverge, determin-
ing the rate of separation throughout the volume. Further,
although FTLE techniques are often assumed to only con-
sider short distances, application areas such as ocean mod-
eling require long distances [OPF∗12], representing an ex-
treme computational load.

Many visualization algorithms have been ported to, and
optimized for, the GPU [AFM∗12]. While less work is de-
voted to parallel GPU clusters, there still has been significant
research in achieving load balancing and scalability for ren-
dering, both for surfaces [HHN∗02, SMW∗04, BRE05] and
volumes [MSE06, MMD08, FCS∗10, FK10, ADM12]. Very
few papers are devoted to studying visualization algorithms
on parallel GPU clusters, with a notable exception on isosur-
facing [MSM10]. The study most closely related to our own
uses the GPU to perform LIC flow visualization [BSWE06],
although the parallelization approach is significantly differ-
ent and focuses on the problem of dense particle seeding on
curved surfaces.

A summary of strategies for parallelizing particle
advection problems on CPU clusters is summarized
in [PPG12]. The basic approaches are to parallelize-
over-data, parallelize-over-particles, or a hybrid of the
two [PCG∗09]. Recent results using parallelization-over-
data demonstrated streamline computation on up to 32,768
processors and eight billion cells [PRN∗11]. Alternate ap-
proaches use preprocessing to study the patterns of the
flow and schedule processing of blocks to optimize perfor-
mance [NLS11].

The most comparable study to our own focused on stream-
lines with multi-core CPUs and showed that hybrid paral-
lel techniques are highly beneficial [CGC∗11]. However, the

study does not consider the performance characteristics of
many-core devices, i.e., do the benefits from shared mem-
ory parallelism persist when the number of cores per node
reaches hundreds or thousands? Or do limitations emerge
from the reduced computational power of an individual core
on a many-core device or from the latency in accessing that
device?

3 Particle Advection Overview

The fundamental unit of work for particle advection is an
advection step, which is the displacement of a particle for
a short distance from one location to a nearby one. An inte-
gral curve is the total path the particle travels along and it is
formed by the sequence of advection steps from the seed lo-
cation to the terminal location. The calculation of advection
steps must be carried out sequentially, as advecting parti-
cles is a data dependent process. Explicitly, the Nth advec-
tion step for a particle must know the location of where the
(N −1)st advection step terminated.

A traditional scheduling view, which considers a fixed
number of operations with known dependencies between
these operations, is too simplistic when it comes to particle
advection, since the total number of operations (i.e., the total
number of advection steps) is not known a priori. The num-
ber of advection steps for any given particle varies, based on
whether it advects into a sink, exits the problem domain, or
meets some other termination criteria.

When considering data sets so large that they can not fit
into memory, there are scheduling difficulties in getting the
particle and appropriate region of the vector field on the
same resource to carry out the advection step. In this study,
we employed a parallelization-over-data approach; the prob-
lem domain is divided into pieces and each task operates on
one piece of the domain. Particles are advected on a task as
long as they remain within that task’s piece. Particles that ad-
vect into other pieces are communicated to the correspond-
ing task. Our motivation for studying this particular paral-
lelization strategy was that it mirrored the conditions en-
countered with in situ processing on GPU-based supercom-
puters, where the simulation data is predivided into pieces
and likely already located on the GPU.

4 Algorithm Overview

The algorithm extends our previous work [CGC∗11] to
GPUs. It has two phases: initialization (§4.1) and advec-
tion (§4.2). Further, the advection implementations differ for
the GPU and CPU and are discussed separately (§4.2.3 and
§4.2.4, respectively). Implementation details are discussed
in §4.3.

4.1 Initialization Phase

The algorithm’s initialization phase consists of three
parts: (i) loading data, (ii) constructing a piece map of where
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data resides, and (iii) particle creation and initialization. For
(i), each task reads its domain piece directly from disk. The
GPU implementation then transfers the data as a texture map
to GPU memory, along with other meta-data. For (ii), each
task creates a map between domain pieces and tasks. For
(iii), each task will create the starting number of particles,
defined by user input, and prepare them for processing by
placing them in a queue.

4.2 Advection Phase

4.2.1 Queues

The particles are maintained in three queues, which drive
how they are processed. The active queue contains particles
that need to be advected. The finished queue contains parti-
cle that have completed advecting. The inactive queue con-
tains particles that cannot be further advected on the current
task, but also cannot be placed in its finished queue.

4.2.2 Advecting Particles

The goal of this phase is to promote all particles from the
active queue to the finished queue. Each task continuously
iterates over a loop until all tasks declare themselves fin-
ished. An individual task declares itself finished when all
particles it is responsible for have completed, i.e., the size of
its finished queue is equal to the size of its active queue at
the beginning of the algorithm. However, finished tasks con-
tinue participating in the algorithm, since individual tasks
that are finished may contain portions of the domain that are
necessary for other tasks to finish.

Each task’s loop iteration consists of three steps: (i) ad-
vect, (ii) inspect, and (iii) communicate. For (i), the task ex-
amines its active queue and instructs a group of particles to
advect. The size of the group and details of the advection
vary between GPU and CPU implementations (see §4.2.3
and §4.2.4). For (ii), the particles resulting from step (i) are
placed in one of two queues. Particles that have advected
outside the task’s piece are placed in the inactive queue. Par-
ticles that are done advecting and originated on the current
task are placed in the finished queue, while those that origi-
nated on a different task are placed in the inactive queue. For
(iii), all particles in the inactive queue are sent to the appro-
priate task using the piece map. Further, messages from other
tasks are read. The particles in those messages correspond to
particles that are done advecting (and placed in the finished
queue) or need more advecting on this task (and placed in
the active queue). Finally, the task assesses if it is finished
and the tasks coordinate to determine if they are all finished.

4.2.3 GPU Advection

In the GPU advection implementation, there are three
memory allocations on the GPU: (i) vector field data, (ii)
meta-data, and (iii) particle data. The vector field (i) is stored
as a texture map, enabling hardware interpolation for arbi-
trary locations in space. The meta-data (ii) contains informa-
tion for determining if a particle has exited the task’s piece

(i.e., the piece boundary and origin) and also information
about when to stop advecting each particle. The vector field
and meta-data are transferred only once, during the initial-
ization phase, to the GPU and used throughout the advection
phase. The particle data (iii) contains the location, time, and
status for each particle that needs to be advected. The size of
the particle data array is set with a user defined value.

During the advection phase, particles are pulled from the
active queue and their information is copied to the particle
data array for transfer to the GPU memory. Most commonly,
the active queue contains less than two million particles and
they are all sent together to the GPU for advection. If there
are more than two million particles, only the first two mil-
lion are sent. After the data transfer is complete, the GPU
cores advect the particles. After the particles are advected,
the GPU advection data is transferred to the CPU memory.
Then the GPU particle advection data is transferred to the
CPU particle memory. This advection process is repeated
until all particles are advected.

4.2.4 CPU Advection

In the CPU advection implementation, a team of worker
threads handle the advection of the particles. The number of
worker threads is arbitrary, although we typically chose the
number to reflect the number of cores available to each task.
Each worker thread fetches a particle from the active queue
and advects the particle. The particle is then transferred di-
rectly to the inactive queue or finished queue, as described
in §4.2.2.

4.3 Implementation Details

Each task has a thread to handle all MPI communica-
tion and a thread (GPU) or threads (CPU) to handle the
advection. The communication thread handled the inspect
and communicate steps (i.e., (ii) and (iii) as described in
§4.2.2). The only synchronization between the threads oc-
curred when accessing the particle queues (§4.2.1), and this
is handled using mutexes and conditions.

The GPU code was written in CUDA. We did not know
what CUDA block size would be best to divide this work up
among the multiprocessors. With some manual auto-tuning,
we found that a CUDA block size of a 128 particles was
the best block size for a large amount of particles. The auto-
tuning results found that with a small number of particles,
less than the number of cores on the GPU, a smaller CUDA
block size would perform better. But this performance in-
crease was very small, less than 0.3 ms, so a CUDA block
size of a 128 was used for all numbers of particles being
advected.

Both CPU and GPU use a 4th-order Runge-Kutta tech-
nique, with a constant step size, to advect particles. The
tasks do non-blocking point-to-point communication to ex-
change particles, i.e., MPI_Isend and MPI_Irecv. Finally,
since this study focuses on particle advection workloads,
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no visualization-centric transformations (e.g., streamlines,
stream surfaces, or FTLE) are actually performed at the end
of the algorithm.

5 Study Overview

5.1 Configurations

Our study was designed to provide coverage over a variety
of particle advection workloads. We varied four factors:

1. CPU versus GPU (2 options)
2. Data set (3 options)
3. Number of particles (10 options)
4. Duration of advection (5 options)

We ran the cross-product, meaning 2× 3× 10× 5 = 300
tests overall. The variants for each factor are discussed be-
low.

5.1.1 CPU Versus GPU

All tests were run with and without GPUs. The implemen-
tation details are described in §4.2.3 and §4.2.4.

5.1.2 Data Sets

We considered three data sets to ensure coverage. Each
data set was a single time slice, meaning we studied steady
state flow. Each task operated on a data block of 500 x 500 x
500 cells, i.e., a 1,0003 data set divided over the eight nodes.
Figure 1 shows different particle advection-based visualiza-
tions on all three data sets.

Fusion: This data set is from a simulation of magneti-
cally confined fusion in a tokamak device by the NIMROD
simulation code [SGG∗04]. To achieve stable plasma equi-
librium, the field lines of the magnetic field need to travel
around the torus in a helical fashion. This data set has the
unusual property that most integral curves are approximately
closed and traverse the torus-shaped vector field domain re-
peatedly.

Thermal Hydraulics: In this data set, twin inlets pump
air into a box, with a temperature difference between the
inlets. The air mixes in the box and exits through an out-
let. Mixing of “hot” and “cold” air, residence time in the
box, and identification of both stagnant and highly turbulent
regions are areas of active study. The simulation was per-
formed using the NEK5000 code [FLPS08].

Astrophysics: This data set is from a simulation of the
magnetic field surrounding a solar core collapse, resulting
in a supernova. The simulation was computed by a GENA-
SIS simulation [ECBM08], a multi-physics code being de-
veloped for the simulation of astrophysical systems involv-
ing nuclear matter [CRE∗05].

5.1.3 Number of Particles

We placed a variable number of seeds into each of our data
blocks, reflecting the varying number of particles required

to carry out particle advection-based analyses. The lowest
number of particles per data block was just a single parti-
cle and the highest number of particles per data block was
2503. These workloads are representative of use cases such
as streamlines, stream surfaces, and coarser FTLE analysis,
among others. The options for the numbers of particles per
data block were 13, 53, 153, 253, 403, 503, 653, 803, 1003,
and 2503. Over all tasks, the lowest number of particles was
just 8, while the highest number was over 120 million.

5.1.4 Duration of Advection

The duration of the advection (i.e., the number of advec-
tion steps) depends on the termination criterion and thus
varies from use case to use case. Some termination criteria
require that particles advect for a fixed amount of simulation
time, while others require that they travel a certain distance.
Still others have application-specific requirements, such as
ensuring the particle enters a given region. Of course, each
of these termination criteria are met by carrying out some
number of advection steps, and the total number of advection
steps dictates how much computation is necessary. To reflect
this variation in particle advection workload, we made five
categories for duration: tiny (50 steps), little (250), short
(1,000), medium (5,000), and long (20,000).

5.2 Runtime Environment

We performed tests on Dirac, a machine at Lawrence
Berkeley’s NERSC supercomputing center. Each node on
Dirac contains two Intel quad-core Nehalem processors
(eight cores overall) running at 2.4 GHz, and capable of
19.2 GigaFLOPs. The GPU on a Dirac node is an NVIDIA
Tesla C2050 (Fermi), with 448 CUDA cores running at 1.15
GHz and capable of 515 GigaFLOPs. Comparing the two,
the GPU has 26.8 times the FLOP capability of the CPU per
node. Our study used eight nodes for all tests.

5.3 Measurements

For each GPU test, we identified when “events” were oc-
curring, for how long, and on which task. The events were:

• “High-activity” advection and “low-activity” advec-
tion. These events capture when the GPU is asked to do
advection with more than 1,000 particles (high-activity)
and less than 1,000 particles (low-activity). We experi-
mented with additional gradations in activity level (i.e.,
differentiating further than low and high), but found that
using only two categories simplified our analysis and the
presentation of results.

• CPU overhead. Preparing buffers to send to the GPU and
interpreting their results.

• Latency. Sending data between the CPU and GPU.
• Idle. The designation when the task is doing no work, of-

ten because it is waiting for work from other tasks.
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Figure 1: On the left, a stream surface from the fusion data set, visualizing the magnetic field in a tokamak. In the middle,
streamlines showing the mixing of air between twin inlets in a thermal hydraulics simulation. On the right, the FTLE of a
solar core collapse resulting in a supernova. The left and middle images are reprinted with permission from [CCG∗12] and
[CGC∗11], respectively.

6 Results and Analysis

6.1 Comparisons of CPU and GPU Tests

Our test configurations – varying over data set, number
of particles, and duration of advection – created 150 CPU-
GPU comparisons. The test with the maximum speedup for
the GPU implementation was 10.5X faster, coming from the
fusion simulation and using the maximum number of parti-
cles and longest duration. The test with the worst speedup for
the GPU implementation was 18X faster on the CPU, again
coming from the fusion simulation and using the longest du-
ration, but this time with one particle per data block. Table 1
compares speedups between the implementations with re-
spect to the factors varied for our tests. The primary findings
from this table are:

• The majority of GPU tests outperform their CPU counter-
parts.

• The CPU is faster most often when there are few particles,
while the GPU is always a clear winner when the number
of particles per data block exceeds 10,000.

• The GPU is always superior for short durations. This was
a surprising result, which suggests that CPU-GPU transfer
times do not play a large role in overall performance.

• Long durations provide the most counter-intuitive result,
as they provide the examples with the most extreme ben-
efit both for the CPU and for the GPU. The CPU is faster
when there are few particles, while the GPU is faster when
there are many.

• The results are consistent across all three data sets.

Additionally, Figure 2 gives further insights about speedup
as a function of overall test time and computational work-
load.

6.2 Underlying Performance Drivers

Consider Figure 3, which plots GPU speedup as a func-
tion of the total number of advection steps. The figure shows
that the amount of advection work can be misleading when
predicting the amount of GPU speedup. In particular, the red
line spotlights eight tests that all have approximately one
million advection steps, but have different performance char-
acteristics. One grouping has the CPU going approximately

Test
Factors

>5x
CPU

2X-5X
CPU

2X CPU-
2X GPU

2X-5X
GPU

>5X
GPU

D
at

a
Se

t Astro 3 2 6 12 27
T.H. 4 2 7 10 27
Fus. 3 3 6 9 29

1 6 2 7 0 0
53 4 5 6 0 0
153 0 0 6 9 0

#
of

Pa
rt

ic
le

s 253 0 0 0 10 5
403 0 0 0 2 13
503 0 0 0 3 12
653 0 0 0 2 13
803 0 0 0 3 12

1003 0 0 0 2 13
2503 0 0 0 0 15
Tiny 0 0 8 16 6

D
ur

at
io

n Little 0 0 6 6 18
Short 0 5 2 4 19
Med. 4 2 1 4 19
Long 6 0 2 1 21
Total 10 7 19 31 83

Table 1: This table examines each of the three testing
factors: data set, number of particles, and duration. For
each table entry, we count how many CPU-GPU tests have
that performance ratio (column) for the given factor variant
(row). For example, the table entry for the row for medium
duration and the column for similar CPU and GPU times
(i.e., between 2X CPU and 2X GPU) is 1. This is because
the only test that matched this criterion was the one with the
thermal hydraulics data set and 125 particles per data block,
which had a GPU speedup of 1.58X, since its GPU time was
6.36s and its CPU time was 10.1s.

five times faster than its GPU counterpart, while the other
has the GPU approximately five times faster.

We incorporated the events described in §5.3 to better un-
derstand the underlying factors behind performance. Since
tests where the CPU is faster have qualitatively different
performance characteristics than those where the GPU is
faster, we split our analysis into two groups: CPU-advantage
and GPU-advantage. For each event and advantage group,
we plotted the proportion of the time spent performing that
event as a function of speedup. We then calculated a best fit
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Figure 2: Each glyph in the plot represents one of the 150
pairs of tests. The independent axis shows the time for a
pair’s GPU test, while the dependent axis shows the speedup
of the GPU test over the CPU test. The coloring is of the
total number of advection steps, using a logarithmic scale.
By way of example, a test that required 70 million advec-
tion steps and took 10 seconds for its GPU test and 2.5 sec-
onds for its CPU test would be placed at (10, 4) and colored
orange. Since some CPU tests were faster than their GPU
counterparts, the speedup axis goes below 1X.

line and recorded its slope and (Pearson) correlation coeffi-
cient. The results are listed in Table 2 and led to the follow-
ing insights:

• The single highest slope and largest correlating factor for
good performance on the GPU was with high activity ad-
vection. The plot showing this correlation is shown in Fig-
ure 4.

• Of the tests where the CPU had the advantage, there was
not a single instance of high activity advection. Based on
our tests, if an advection workload ever creates the condi-
tions for high activity advection, the GPU is the superior
option.

• However, low activity advection correlates with improved
CPU performance in both groupings. Low activity advec-
tion corresponds to only some of the GPU’s processor
cores being used. This is often not a good approach, since
individual processor cores on the CPU are faster.

• Latency correlated with reduced performance, but the
slope was small enough to conclude that this factor is neg-
ligible. CPU overhead had no impact on performance.

• Idle time was negatively correlated for both CPU- and
GPU-advantage groupings. This is because idle time gates
both implementations; its presence prevents the CPU from
being faster than the GPU and vice-versa.

6.3 GPU Speedups

The GPUs on Dirac have 26.9X more FLOPs than its
CPU, well exceeding the maximum speedup we observed

Figure 3: Each glyph in the plot represents one of the 150
pairs of tests. The independent axis shows the total number
of advection steps taken, while the dependent axis shows the
speedup of the GPU test over the CPU test. The coloring is of
elapsed time for the GPU test, using a logarithmic scale. The
red line spotlights one of several groupings of tests where the
raw computational workload is the same, but the speedup re-
sults are drastically different. See §6.2 for more discussion.

Event Slope Correlation
Coefficient

High activity 11.6 0.81

A
dv

an
ta

ge Low activity -5.3 -0.63

G
PU CPU overhead -0.05 0.01

Latency -0.25 -0.44
Idle -6.0 -0.50

High activity 0.0 0.0

A
dv

an
ta

ge Low activity 3.6 0.5

C
PU CPU overhead -0.03 -0.333

Latency -0.13 -0.69
Idle -3.4 -0.50

Table 2: Correlating speedup with the proportion of time
spent performing an event.

with our tests (10.5X). We repeated our tests in a serial set-
ting and again observed speedups on the order of 10X. We
were only able to achieve a speedup commensurate to the
FLOP ratio when we greatly reduced the size of the vec-
tor field data, simplifying memory accesses. We concluded
that the unstructured memory accesses required for particle
advection affect the GPU more than the CPU, which is an
expected insight.

6.4 Performance Over Time

We show performance over time of three exemplars from
our GPU tests in Figure 5:

• The top plot shows an example of high activity advection
over the entire test. It is from the test with 15.6M parti-
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Figure 4: Each glyph in the plot represents one of the 123
pairs of tests where the GPU was faster. The independent
axis shows the percentage of time spent doing high activity
advection, while the dependent axis shows the speedup of
the GPU test over the CPU test. The coloring is of elapsed
time for the GPU test, using a logarithmic scale. This plot
shows the highest correlation between performance and any
of the events we studied, with a correlation coefficient of
0.81. More information can be found in §6.2 and Table 2.

cles per data block, advecting for 20,000 steps, and using
the astrophysics data set. The GPU test took 17,205 sec-
onds, while the CPU test took 167,226 seconds, making
the GPU implementation 9.7X faster.

• The middle plot shows an example of high activity advec-
tion eroding into low activity advection over time, with
the latter stages representing the workload from particles
that cross domain boundaries. It is from the test with 3,375
particles per data block, advecting for 5,000 steps, and us-
ing the astrophysics data set. The GPU test took 0.38 sec-
onds, while the CPU test took 1.17 seconds, making the
GPU implementation 3.1x faster.

• The bottom plot shows an example of low activity advec-
tion over the entire test. It is from the test with 625 parti-
cles per data block, advecting for 1,000 steps, and using
the astrophysics data set. The GPU test took 0.049 sec-
onds, while the CPU test took 0.02 seconds, making the
CPU implementation 2.5x faster.

7 Conclusion and Future Work

We presented an algorithm for GPU acceleration of par-
ticle advection and a study designed to illuminate when the
GPU was beneficial in carrying out particle advection prob-
lems, and why. Our initial hypothesis was that latency in ac-
cessing the GPU would be a dominant factor in performance
and that this study would explore the tension between the
increased computational power of the GPU and the cost in
accessing it. To our surprise, latency was virtually not a fac-
tor in the workloads we studied, and the findings showed

Figure 5: Behavior over time from the three exemplar GPU
tests described in §6.4. Each column represents a time in-
terval and is colored according to events that occurred. The
proportion devoted to a given color within a column reflects
the proportion of time – aggregated over all eight GPUs –
spent performing that event.

that heavy advection work was the single greatest predic-
tor of GPU benefit. A secondary finding was that idleness
slowed both CPU and GPU implementations down, meaning
that neither will be markedly superior to the other if there is
significant idle time.

Finally, this study suggests many interesting future re-
search directions, such as investigating higher concurrency
levels, performance characteristics as a function of concur-
rency, truly heterogeneous algorithms that use both the CPU
and the GPU, and comparisons with emerging architectures,
such as the Intel Xeon Phi. The workload considered could
also be expanded to consider unsteady flow, adaptive place-
ment of particles, and parallelization schemes other than
parallelization-over-data.
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