
1

Towards Exascale: High Performance
Visualization and Analytics – Project Status

Report
E. Wes Bethel, David Camp, Hank Childs, Mark Howison, Hari Krishnan, Burlen Loring, Jörg

Meyer, Prabhat, Oliver Rübel, Daniela Ushizima, Gunther Weber

University of California, Berkeley, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,
94720

DOE 2012 Exascale Research Conference and Workshop
April 16–18, 2012
Portland, Oregon

F

2

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science, Office and Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the
Scientific Discovery through Advanced Computing (SciDAC) program’s Visualization and Analytics
Center for Enabling Technologies (VACET).

LEGAL DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While
this document is believed to contain correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof, or The Regents of the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof or
The Regents of the University of California.

3

CONTENTS

1 Introduction 4

2 Hybrid Parallelism 4
2.1 Hybrid Parallelism and Extreme-Concurrency Volume Rendering 4

2.1.1 Introduction . 4
2.1.2 Implementation and Methodology . 5
2.1.3 Impact . 6

2.2 Hybrid Parallelism and Integral Curve Calculation . 6
2.2.1 Introduction . 6
2.2.2 Implementation and Results . 6
2.2.3 Impact . 7

3 Autotuning and Performance Optimization for Extreme-Scale Visualization 7
3.1 Introduction . 7
3.2 Implementation and Results . 7
3.3 Impact . 7

4 Evaluating the Benefits of An Extended Memory Hierarchy for Parallel Streamline Algo-
rithms 8

4.1 Introduction . 8
4.2 Implementation and Methodology . 8
4.3 Results . 10

References 11

4

Abstract—The LBNL Visualization research program focuses
on a key set of problems facing our community as we move
towards the exascale regime of computing. First, we aim to better
understand how to effectively take advantage of an evolving
architectural landscape where there are an increasing number of
cores per processor by examining algorithmic reformulation and
alternative methods of programming these increasingly complex
platforms. Second, as the gap widens between computational
and I/O capacity, it is increasingly imperative to perform more
visual data exploration and analysis operations concurrent with
the simulation to avoid increasingly expensive I/O. Our approach
is to examine several interrelated issues aimed at minimizing the
memory footprint, data movement, and design/implementation
issues related to deploying tools that can have broad applicability
across many different simulation codes and science domains.
Third, increasing computational power produces larger and more
complex scientific data, and our research program focuses on
new technologies aimed at enabling scientific data understand-
ing with ever-larger data. Here, we explore how multi-resolution
data representation techniques can reduce data movement, and
study novel approaches that focus visualization and analysis
processing on subsets of data that are “scientifically interesting,”
thereby also minimizing data movement while accelerating scien-
tific knowledge discovery.

Index Terms—hybrid parallelism, parallel volume rendering,
parallel streamlines, performance optimization, auto-tuning, ex-
tended memory hierarchy

1 INTRODUCTION

Many in the community believe that making the
transition from the petascale to the exascale regime
of computing will require a complete rethinking of
all aspects of the computational pipeline [4]. In that
spirit, our research focuses on several key challenge
areas that are somewhat unique to the fields of
visualization, analysis, and analytics.

While the concern that MPI won’t scale effec-
tively into the exascale is not unique to visual-
ization and analysis, proving that it is not ef-
fective, and potential remedial strategies, includ-
ing using hybrid parallelism, which blends tra-
ditional message-based distributed memory par-
allelism with shared-memory parallel constructs,
is the subject of Section 2. Specifically, we study
hybrid parallelism as applied to two staple vi-
sualization algorithms, direct volume rendering
(Section 2.1) and calculating integral curves (Sec-
tion 2.2). In both instances, we see significant per-
formance and resource-utilization advantages to
using hybrid parallelism as compared to traditional
distributed-memory parallelism.

Given that computational platforms are increas-
ing in complexity, the algorithms that run on them
are similarly increasingly complex. For example,
determining the right granularity of work unit
decomposition to achieve optimal performance is
not a straightforward proposition. Furthermore, the
difference in performance between good and bad
choices can be significant. We explore this idea in

Fig. 1: Our hybrid-parallel volume rendering application
produced

Section 3 where we apply the principles of auto-
tuning to optimize the performance of a staple
visualization algorithm, direct volume rendering.

Another dimension of increasing platform com-
plexity, specifically a deepening memory hierarchy,
raises the question of how algorithms and appli-
cations can use alternative architectural configura-
tions to their advantage. We explore this idea in
Section 4 to better understand how using a locally
attached drive, both traditional and solid-state, can
improve performance. We find there are significant
performance advantages, particularly for a data
intensive integral curve calculation algorithm.

2 HYBRID PARALLELISM

2.1 Hybrid Parallelism and Extreme-
Concurrency Volume Rendering

2.1.1 Introduction

Modern computational platforms are evolving to-
wards using multi-core processors; future gener-
ations of machines will be built using processors
containing tens or hundreds of cores. There is con-
cern that existing, traditional message-based paral-
lel programming models will not scale well on such
platforms. The aim here is to better understand
how well hybrid-parallelism, which combines both
traditional message-based distributed memory par-
allel concepts with multi-core, shared-memory par-
allelism, performs for visualization algorithms, ray-
casting volume rendering specifically, as compared
to traditional message-based, distributed-memory
parallelism.

5

Fig. 2: Hybrid-parallel system architecture.

2.1.2 Implementation and Methodology

The architectural approach we pursue uses tradi-
tional MPI-based parallelism for across nodes, and
one of a variety of different shared-memory parallel
approaches (e.g., POSIX threads, OpenMP, CUDA)
within a node. The architecture, shown in Figure 2,
illustrates that the raycasting phase of the algorithm
runs in shared-memory parallel mode in the hybrid
parallel configuration.

Our solution entails conducting performance and
scalability tests of traditional and hybrid parallel
implementations of raycasting volume rendering, a
staple visualization algorithm. Our approach is to
compare performance using several different met-
rics: (1) absolute runtime, (2) memory footprint at
various stages of algorithm execution; (3) commu-
nication characteristics of the two implementations.

Strong Scaling Study. A strong-scaling study
aims to discover how time-to-solution improves as
more and more processors are brought to bear on
a fixed-size problem. The expectation is that as
you bring more processors to bear on a problem,
time-to-solution should decrease. The focus of our
strong-scaling study was to discover how the rela-
tive time-to-solution decrease differs between MPI-
only and MPI-hybrid approaches over a range of
concurrencies.

In our tests, we used a fixed size dataset of
46083 over concurrency levels ranging from 1728
to 216,000-way parallel, the highest level of con-
currency ever published (Figure 1). These tests,
run on JaguarPF at ORNL, reveal that: (1) for just
the initialization phase and before we begin any
actual volume rendering work, the MPI-only im-
plementation consumes 12x more memory than the
MPI-hybrid implementation due to MPI overhead;
(2) the MPI-hybrid implementation requires 40%
less memory for ghost data at runtime owing to

use of larger-sized data blocks; (3) the MPI-only
implementation sends about 6x more communi-
cation messages during the compositing phase as
compared to the MPI-hybrid implementation; (4)
at the highest level of concurrency, the MPI-hybrid
implementation is about 3x faster than the MPI-
only implementation due primarily to the reduced
communication load.

Weak Scaling Study. In contrast to the strong-
scaling study, the weak-scaling study aims to in-
crease problem size while adding more proces-
sors. The idea is that using more processors, and
their associated memory, enables tackling ever-
larger problems, which is important from a large-
data perspective since we wish to use large, parallel
computational resources to enable visual data ex-
ploration and analysis. Ideally, time-to-solution re-
mains constant at increasing concurrency for a code
that exhibits perfect weak scaling characteristics.

In our weak scaling studies, we use a 3843 data
block per processor at all concurrency levels. At
1728-way parallel, the resulting mesh is 46083, and
at 216,000-way parallel, the mesh is 230403 in size
(12.2 trillion cells). We observe that this mesh reso-
lution far exceeds that of current scientific codes.

With raycasting volume rendering, there are ac-
tually two dimensions of “problem size.” The first
is the size of the source data itself. The second
is the size of the resulting image. In order to
better understand weak-scaling characteristics of
our hybrid-parallel application, we explored two
types of weak scaling: weak-dataset scaling and
weak scaling. With weak-dataset scaling, we use
a fixed-size image of 46082 pixels at all levels of
concurrency. With weak scaling, we also increase
the resolution of the image from 46082 pixels at
1728-way parallel up to 230402 pixels at 216,000-
way parallel.

The results of the weak scaling studies confirm
the favorable MPI-hybrid characteristics first ob-
served in the strong-scaling studies: (1) at initial-
ization, the MPI-hybrid implementation requires
12x less memory than the MPI-only implemen-
tation due to MPI overhead; (2) during the ray-
casting phase of the algorithm, the MPI-hybrid
approach shows better scalability than the MPI-
only approach; (3) during compositing, the MPI-
hybrid approach requires substantially less com-
munication traffic than the MPI-only approach; (4)
the MPI-hybrid implementation consistently runs
faster than MPI-only, as much as about 40% faster at
216,000-way parallel on the 12.2 trillion-cell dataset.

Many-core GPU Study. In an effort to better
understand how these performance gains would
extend to architectures having more than a few
cores per processor, we conducted a test run on
a multi-GPU system (Longhorn at TACC). Our
testing configuration consisted of running an MPI-

6

hybrid implementation in parallel across 448 GPUs,
each of which is capable of concurrently executing
30 CUDA thread blocks, producing an effective
concurrency of 13,440-way parallel. The main objec-
tive here is to evaluate the relative performance of
our MPI-hybrid implementation run a distributed
memory GPU cluster as compared to a traditional
distributed memory multi-core CPU system. The
results indicate that the 448-GPU configuration
runs about 30% faster than on a distributed mem-
ory multi-core system at similar concurrency.

2.1.3 Impact
The results of this study show that the hybrid-
parallel approach offers clear and distinct perfor-
mance advantages when compared to the tradi-
tional approach to parallelism. First, the hybrid-
parallel version consumes between one sixth and
one twelfth the amount of memory required by
the traditional MPI version just for initialization.
Second, at high levels of concurrency, the hybrid-
parallel implementation runs about three times
faster. Third, the hybrid-parallel version requires
only about half the communication bandwidth
compared to the MPI version.

These early results will help to shape the archi-
tecture of future visualization and analysis applica-
tions so as to be able to run effectively on current
petascale and future exascale platforms: the hybrid-
parallel approach allows for tackling larger prob-
lems on a given set of resources than is possible
using an MPI-only approach.

This work resulted in an award-winning pub-
lication at the 2010 Eurographics Symposium on
Parallel Graphics and Visualization [5], and an
invited follow-on publication to IEEE Transactions
on Visualization and Computer Graphics [6], and
numerous invited presentations.

2.2 Hybrid Parallelism and Integral Curve Cal-
culation
2.2.1 Introduction
Supercomputers are increasingly relying on nodes
that contain multiple cores to achieve FLOP per-
formance while minimizing power consumption.
While current supercomputer nodes contain six
to twenty-four cores, current trends suggest that
future supercomputers will consist of individual
nodes with tens to hundreds of cores.

This hardware approach gives rise to an impor-
tant software question: which parallel program-
ming model can effectively utilize such architec-
tures? The classical method, which uses the Mes-
sage Passing Interface (MPI), is to assign an MPI
task to every core on every node; this approach is
often the simplest way to write parallel programs.
An increasingly popular approach, however, is to

Fig. 3: Visualization of thermal hydraulics simulation
output. Twin inlets pump water into a box, where the
water from each inlet is of a different temperature.
The water moves through the box and eventually exits
through an outlet. The mixing behavior and temperature
of the water at the outlet are the subjects of scientific
study. Non-optimal mixing can be caused by long-lived
recirculation zones that effectively isolate certain regions
of the domain from heat exchange. This run of the
NEK5000 code produces an unstructured grid comprised
of 23 million hexahedral elements. Our team applied
the hybrid-parallel streamline calculation to this data
set, as well as two others, to study its performance
characteristics. The hybrid-parallel streamline calculation
has been implemented in production form in VisIt, and
released to the scientific community.

use hybrid parallelism, where fewer MPI tasks are
used (typically one per node) and shared-memory
parallelism is employed within a node. This ap-
proach, although more challenging to implement,
can enable significant performance and efficiency
gains.

In early work, we study the difference between a
traditional MPI-based implementation and an MPI-
hybrid parallel approach applied to the problem of
streamline integration in a large vector field data
set. That work showed a great improvement in
performance on the local node. But this work did
not show how the hybrid parallelism scaled. In this
work we are looking at how it scales on a shared
memory system and on large distributed memory
parallel systems.

2.2.2 Implementation and Results
The aim of this work is to explore the scalability
of our MPI-Hybrid parallel, distributed streamline
algorithms. The hybrid parallel implementation is
a blend of traditional message passing between
CPUs and shared memory parallelism between
cores on a CPU. We investigate the thesis that a
hybrid parallel implementation can realize signifi-
cant improvements in performance via factors like
improved efficiency, reduced communication, and
reduced I/O costs.

The problem of streamline integration should
especially benefit from such an approach since its

7

runtime complexity and I/O vary greatly with
respect to both the data set under investigation
and the number and distribution of streamlines to
be computed. Based on a wide range of experi-
ments we perform for typical streamline compu-
tation scenarios, our findings, presented in Camp
et al. 2011 [3], indicate that there is opportunity
for significant performance gains under the hybrid
approach, ranging from modest to over a 500%
increase, depending upon dataset and problem con-
figuration. These gains result from reductions in
memory footprint, communication, I/O and im-
provements in parallel efficiency. Those experi-
ments were conducted with the VisIt visualization
tool, and hence, the performance observations we
arrive at in that paper directly apply to real-world,
production visualization scenarios.

2.2.3 Impact
In our work, we are looking at strong and weak
scaling of our MPI-Hybrid parallel particle advec-
tion algorithms. We are looking at the limiting fac-
tors on scalability and performance. We will also try
to optimize the performance on both a large-scale
shared memory system and a large scale distributed
memory parallel system. In the longer term, the
results can help to inform the design and imple-
mentation of parallel particle advection algorithms
to achieve better performance. Our published re-
sults show that the hybrid approach can produce
a performance improvement ranging between two-
and ten-fold, depending on various data dependent
and data independent factors.

3 AUTOTUNING AND PERFORMANCE OP-
TIMIZATION FOR EXTREME-SCALE VISUAL-
IZATION

3.1 Introduction

As computer architectures evolve towards the ex-
ascale – through a combination of increased core-
count per chip, and deeper and more complex
memory hierarchies – it is difficult to achieve op-
timal algorithmic performance due to increasing
architectural complexity. There are many open re-
search questions as we move towards the exascale,
including understanding tunable algorithmic pa-
rameters and algorithmic optimizations impact per-
formance on evolving computational architectures.

3.2 Implementation and Results

Our approach is to leverage auto-tuning work that
has been applied by the computational science
research community to numerical solver kernels. In
our research, we vary tunable algorithmic settings,
along with known algorithmic optimizations and

two different memory layouts, and measure per-
formance in terms of absolute runtime, along with
L2 memory cache misses.

Our work is a more systematic and thorough
study than has ever been performed for a sta-
ple visualization algorithm, and the algorithmic
optimizations, which have appeared in literature
over the years, have not been thoroughly tested on
modern processor architectures in conjunction with
other tunable algorithmic parameters. Our results,
which will appear in Bethel and Howison 2012 [1],
indicate there is a wide variation in performance on
all platforms, as much as 254% for the tunable pa-
rameters we test on multi-core CPUs and 265% on
many-core GPUs, and the optimal configurations
vary across platforms, often in a non-obvious way.

For example, our results (Figure 4) indicate the
optimal configurations on the GPU occur at a
crossover point between those that maintain good
cache utilization and those that saturate computa-
tional throughput. This result is likely to be ex-
tremely difficult to predict with an empirical perfor-
mance model for this particular algorithm because
it has an unstructured memory access pattern that
varies locally for individual rays and globally for
the selected viewpoint.

3.3 Impact

Our research shows that high performance vi-
sualization algorithms, and related data-intensive
cousins, stand to reap huge performance gains
through careful tuning that has worked well in
the computational science community. For example,
the set of experiment runs in our work in hybrid-
parallel volume rendering work (Section 2.1) con-
sumed on the order of 5M CPU hours. Had we
not first conducted the performance optimization
and autotuning work described in this chapter, the
estimate runtime of the untuned code would have
been on the order of 15M CPU hours.

Some of the our study’s results are unexpected,
namely those for the GPU: absolute runtime and
memory utilization performance are a function of
both blocking factor and device-specific behavior
(thread divergence) that is unique to this type
of processor and architecture. These benefits will
likely become more pronounced in the future as the
number of cores per chip and the cost of moving
data through the memory hierarchy both increase.
Our results presented in the paper raise several
new interesting research questions for follow-on
work, including use of some form of auto-tuning
as part of routine initialization to enable platform-
specific optimizations on the part of data-intensive
applications.

8

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 3.21 1.85 1.23 1.25 1.49 3.32 1.87 1.17 0.83 0.74 1 1E+08 1E+08 1E+08 3E+08 8E+08 7E+07 7E+07 8E+07 1E+08 3E+08

2 1.94 1.18 0.96 1.21 1.55 1.88 1.12 0.75 0.61 0.69 2 1E+08 1E+08 2E+08 6E+08 9E+08 6E+07 6E+07 7E+07 2E+08 5E+08

4 1.29 0.93 0.93 1.31 1.96 1.18 0.75 0.58 0.62 0.93 4 2E+08 2E+08 6E+08 8E+08 1E+09 6E+07 6E+07 1E+08 4E+08 1E+09

8 1.15 0.99 1.03 1.71 1.75 0.84 0.62 0.63 0.86 0.91 8 5E+08 7E+08 9E+08 1E+09 1E+09 9E+07 2E+08 4E+08 9E+08 9E+08

16 1.31 1.18 1.39 1.42 1.43 0.76 0.71 0.86 0.84 0.89 16 1E+09 1E+09 1E+09 1E+09 1E+09 3E+08 5E+08 9E+08 8E+08 9E+08

1 2.95 1.70 1.12 1.11 1.31 3.06 1.72 1.07 0.75 0.66 1 8E+07 9E+07 1E+08 3E+08 7E+08 7E+07 7E+07 7E+07 9E+07 3E+08

2 1.78 1.08 0.86 1.06 1.35 1.72 1.02 0.68 0.55 0.60 2 9E+07 9E+07 2E+08 5E+08 8E+08 5E+07 5E+07 6E+07 2E+08 4E+08

4 1.18 0.84 0.83 1.14 1.70 1.08 0.68 0.52 0.55 0.81 4 1E+08 2E+08 5E+08 7E+08 1E+09 5E+07 6E+07 1E+08 3E+08 8E+08

8 1.03 0.88 0.92 1.47 1.51 0.76 0.56 0.55 0.74 0.78 8 4E+08 6E+08 7E+08 1E+09 1E+09 7E+07 2E+08 3E+08 7E+08 8E+08

16 1.16 1.04 1.21 1.24 1.25 0.68 0.62 0.74 0.72 0.77 16 1E+09 9E+08 1E+09 1E+09 1E+09 2E+08 4E+08 7E+08 7E+08 7E+08

Z OrderArray Order
E

R
T

N
oE

R
T

N
oE

R
T

E
R

T

Array Order Z Order

Fig. 4: Runtime (a) and L2 cache misses (b) averaged over 10 views for different thread block sizes on the NVIDIA/Fermi
with varying memory layout and early ray termination (ERT). Grey boxes indicate thread blocks with too few threads to fill
a warp of execution. The unexpected result here is that better runtime performance does not necessarily correspond to better
memory utilization on this particular platform. This result would likely have not been possible to discover using a predictive
performance model, and reinforces the argument that finding optimal performance on increasingly complex architectures often
times requires a search of tunable algorithm parameter space and algorithmic optimizations.

4 EVALUATING THE BENEFITS OF AN EX-
TENDED MEMORY HIERARCHY FOR PARAL-
LEL STREAMLINE ALGORITHMS

Emerging architectures: can Solid State Drives ac-
celerate visualization and analysis? We have con-
ducted a study aimed at gaining a better un-
derstanding of how locally attached solid state
drives (SSD’s) can accelerate visualization and anal-
ysis operations on large problems and on large,
distributed-memory parallel machines. The initial
findings, reported in Camp et al. 2011 [2], indicate
there is the potential for a performance gain rang-
ing modest to approximately a two-fold speedup,
depending upon problem configuration.

4.1 Introduction
Computer architects have been experimenting with
a new approach to improve the performance of
I/O through the use of relatively lower cost com-
ponents. The approach uses two-stage I/O system:
a remote parallel file system coupled with a local
solid state drives (SSDs) and/or hard disk drives
(HDDs). In a conventional I/O subsystem, the sim-
ulation writes data directly to a parallel file system.
With the new design, the simulation writes its data
to the local drive instead. Then the simulation may
immediately resume computation, while concur-
rently and transparently to the simulation, data is
migrated from the local drive to the parallel file sys-
tem, thereby insulating the simulation performance

from potentially much slower parallel file system.
Although the local drives introduce a new dollar
cost, they lessen the importance of peak I/O band-
width, allowing for the SSDs to be coupled with
a slower (and potentially less expensive) parallel
file system, resulting in an overall cost reduction.
To applications, this new I/O configuration appears
to have two distinct bandwidth characteristics. On
write, the bandwidth appears to be good, since it
is be accelerated by local drive. On read, however,
the bandwidth can appear poor, since the reads are
backed by a slower parallel file system and the
presence of the local drive cannot directly acceler-
ate this activity. As I/O is often the slowest part
of visualization and analysis pipelines, suboptimal
I/O read performance will result in poor overall
visualization performance. Our research question is
to better understand if visualization algorithms can
be re-architected to use new I/O access patterns
that leverage the local drives and actually improve
I/O and visualization performance.

4.2 Implementation and Methodology

We investigate whether local SSDs or HDDs can
effectively increase I/O performance – and there-
fore visualization performance – by treating them
as an extended part of the memory hierarchy. While
the first read of any block of data will remain slow
because the data will be located on the remote
parallel file system, the local SSDs or HDDs can be

9

Parallel file system!

Local hard drive!

Solid state drive!

K! CPU running MPI task K!

GPFS! Cache SSD! Local SSD!

Local HD!Cache HD!

0! 1! N-1!...!0! 1! N-1!...!

0! 1! N-1!...!

0! 1! N-1!...!

0! 1! N-1!...!

Fig. 5: Test configurations.

used as a cache to store those blocks, considerably
accelerating subsequent reads. We also study how
these local drives can accelerate I/O and visualiza-
tion performance. Although many paradigms for
processing data do not read blocks of data repeat-
edly, streamline calculations do. When parallelizing
over streamlines (or, equivalently, over their seed
points), particles are advected and blocks of data
loaded dynamically based on the trajectory taken.
This is exactly the data processing pattern that
can benefit from an extended memory hierarchy
and we study this approach here. The different
test configurations, shown in Figure 5, are detailed
below.

In the first variant, which we denote GPFS, each
MPI task loads data blocks directly from the general
parallel file system (GPFS), establishing a baseline
for performance without an extended memory hier-
archy. In the second variant, Cache SSD, each MPI
task can load data blocks from either the SSD or
from the GPFS. For each load, it starts by checking
the SSD, since its load times are considerably faster.
If the SSD does not contain the data, then it loads
the block from the GPFS and stores the data block
back to the SSD, meaning subsequent loads of
that block will come from the faster SSD. In the
third variant, Local SSD, a preprocessing step is
applied where the entire data set is copied to each
SSD before execution begins. In this variant, every
processor is able to fetch data directly from its SSD
and does not have to deal with the GPFS. Note
that this scenario is only possible when the data
to be processed is smaller than the size of the SSD
and, further, requires a large initialization cost. The
fourth and fifth variants, Cache HD and Local HD,
are identical to the second and third, except that
the local hard drive is used in the place of the SSD.
These tests determine the performance differences
between SSDs and local hard drives.

10

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

G
PFS

C
ache H

D

C
ache SSD

Local H
D

Local SSD

G
PFS

C
ache H

D

C
ache SSD

Local H
D

Local SSD

R
el

at
iv

e
A

ve
ra

ge
 T

im
e

Astrophysicssmall large

1.00

0.45 0.40

2.94 2.09

1.00

0.87
0.81

4.66 3.29

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

G
PFS

C
ache H

D

C
ache SSD

Local H
D

Local SSD

G
PFS

C
ache H

D

C
ache SSD

Local H
D

Local SSD

R
el

at
iv

e
A

ve
ra

ge
 T

im
e

Fusionsmall large

1.00

0.53 0.50

1.35 1.10

1.00

0.58

0.45

1.58 1.25

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

G
PFS

C
ache H

D

C
ache SSD

Local H
D

Local SSD

G
PFS

C
ache H

D

C
ache SSD

Local H
D

Local SSD

R
el

at
iv

e
A

ve
ra

ge
 T

im
e

Thermal Hydraulicssmall large

1.00

0.52

0.33

0.57

0.46

1.00

0.63
0.57

1.18

0.90

Fig. 6: Using the local storage as a cache (Cache HD,
Cache SSD) results in up to about a two-fold improve-
ment in performance compared to baseline performance
(GPFS). When the entire dataset can fit into local storage,
performance is better yet (Local HD, Local SSD) but
requires an expensive one-time data copy (gray).

4.3 Results

We examine five different I/O configurations (see
Figure 5). The test results, which measure perfor-
mance of the algorithm in different configurations,
is shown in Figure 6. In Figure 6, baseline per-
formance (GPFS), always going to the filesystem
with no use of SSDs or local drives, is always
1.0, and other configurations are scaled to that
baseline performance. Values less than 1.0 are faster
than baseline performance. These results show that

using the SSD or local drive as a local cache speeds
performance in all problem configurations. This
result is due to the fact that data reloads can be
serviced by faster, local storage rather than slower,
more distant storage. For problems that fit entirely
within local storage (Local HD and Local SSD),
these configurations are much faster than the GPFS
configuration, but require an expensive one-time
data copy, which shows in these charts as gray.
The results of this study showed that using a local
drive to extend the memory hierarchy created an
overall speedup of approximately a factor of two.
We developed a equation for a performance model
to predict performance when using locally attached
storage. This study illuminates possible changes
in I/O access patterns that will lead to improved
performance on the I/O subsystems predicted to
exist on future exascale machines.

11

REFERENCES
[1] E. Wes Bethel and Mark Howison. Multi-core and Many-

core Shared-memory Parallel Raycasting Volume Rendering
Optimization and Tuning. International Journal of High Per-
formance Computing Applications, (In press), 2012.

[2] David Camp, Hank Childs, Amit Chourasia, Christoph
Garth, and Ken Joy. Evaluating the Benefits of an Extended
Memory Hierarchy for Parallel Streamline Algorithms. In
LDAV: Large Data Analysis and Visualization symposium at
IEEE Visualization 2011, Providence, RI, USA, October 2011.

[3] David Camp, Christoph Garth, Hank Childs, Dave Pugmire,
and Kenneth I. Joy. Streamline Integration using MPI-
Hybrid Parallelism on a Large Multi-Core Architecture.
IEEE Transactions on Visualization and Computer Graphics,
17(11):1702–1713, 2011.

[4] Sonia Sachs (ed.). Tools for Exascale Computing: Challenges
and Strategies – Report of the 2011 ASCR Exascale Tools
Workshop. Technical report, U. S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Bethesda, MD, USA, October 2011.

[5] Mark Howison, E. Wes Bethel, and Hank Childs. MPI-
hybrid Parallelism for Volume Rendering on Large, Multi-
core Systems. In Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV), Norrköping, Sweden, May 2010.
LBNL-3297E, Best Paper Award.

[6] Mark Howison, E. Wes Bethel, and Hank Childs. Hybrid
Parallelism for Volume Rendering on Large, Multi, and
Many-core Systems. IEEE Transactions on Visualization and
Computer Graphics, 18(1):17–29, January 2012. LBNL-4370E.

