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Abstract

This paper describes collaborative work between active traders, regulators, economists, and super-
computing researchers to replicate and extend investigations of the Flash Crash and other market anoma-
lies in a National Laboratory HPC environment.

Our work suggests that supercomputing tools and methods will be valuable to market regulators in
achieving the goal of market safety, stability, and security. Research results using high frequency data
and analytics are described, and directions for future development are discussed.

Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We
believe a more graduated approach, similar to the “yellow light” approach in motorsports to slow down
traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of in-
dicators that could foresee hazards in market conditions and explore options to confirm such predictions.
Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of
volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong
signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged
early-warning system for unusual market conditions.

Keywords: Flash crash, liquidity, flow toxicity, market microstructure, probability of informed trading,
VPIN, circuit breakers, market fragmentation. (JEL codes: C02, D52, D53, G14.)

1 Introduction

After the dramatic Flash Crash of May 6, 2010, it took more than four months in order for the SEC/CFTC
to issue a full report on the event [4, 5]. Such a long duration of time was required because the government
currently relies on a mélange of legacy systems. The SEC and CFTC clearly realized the limitations, and
have called for comments in a 203-page discussion of the proposed next-generation system: CATS (Con-
solidated Audit Trail System) [25]. In computer science, visionary scientists like Jim Gray have developed
technologies and tools to foster a brand new approach termed “data-intensive science [13]”. This paper
reports our initial attempt to adapt some key techniques to address the information technology needs of
financial regulatory agencies.

A basic tool in regulating the financial market is the “circuit breaker” that stops trading. However, many
traders and academicians have compared this approach of on/off circuit breakers to “applying the rules of the
road to aircraft.” As different markets and venues become more interdependent, sudden halts in one market

1



segment can ripple into others [16, 28]. One key idea is that brown-outs are preferable to black-outs. After
the Flash Crash of 2010, new circuit breakers were instituted that stop the trading of individual stocks if
their price variations exceed a prescribed threshold [1]. However, this approach is insufficient for achieving
safety and stability. It may be possible to detect and predict hazardous conditions in real-time, allowing the
regulatory agencies to implement a “yellow light” approach, to slow down, rather than stop markets.

In this work, we seek to explore three aspects of implementing these early warning indicators: i) finding
indicators that can provide early warnings, ii) better understanding of their computational requirements, and
iii) implementing an interactive exploratory system for validation of warning indicators and to allow expert
verification in cases requiring extraordinary actions.

Based on recommendations from large traders, regulators, and academicians, we have implemented
two sets of indicators from institutional traders that have been shown to have “early warning” properties
preceding the Flash Crash. They are the Volume Synchronized Probability of Informed Trading [10] (VPIN)
and a variant of Herfindahl-Hirschman Index (HHI) of market fragmentation [12, 14]. We describe how to
organize data to efficiently compute these indicators and how to parallelize the computational tasks on a high
performance computer (HPC) system. Because the automated indicators may need to be verified if a critical
action is to be taken, we also explore the option of interactively verifying warnings with comparisons to
historical data by using a high-performance search and visualization tool. One major operational challenge
in the future will be to perform all these tasks – including computation and verification of market warnings
– in real-time.

The two early warning indicators use trades only, and the interactive exploration system uses trades and
quotes, neither of them uses the limit order book or order flow data, so they are modest examples of what
would be required in an operational system. Nevertheless, we believe this exercise is instructive because
the basic approach could be extended to work with higher levels of data. Furthermore, this exercise enables
us to identify critical issues to be addressed in order to build a high-performance monitoring system for
regulators responsible for the safety, security, and stability of financial markets.

2 Background

2.1 LBNL Center for Innovative Financial Technology

In 2010, Horst Simon, then director of LBNL’s Computational Research Division (now deputy director of
LBNL) and David Leinweber, a computer scientist, financial technology entrepreneur [19] and Fellow in Fi-
nance at the Haas business school co-founded LBNL’s Center for Innovative Financial Technology (CIFT).
In addition to involving senior HPC researchers in this effort [17], we also have assembled a multidisci-
plinary collaboration of the type mentioned in the call for papers of the Workshop on High Performance
Computational Finance at SC11.

This group has engaged with key federal regulators at the SEC and Treasury [3], high frequency traders,
financial data and tool vendors, and leading academics in market micro-structure. CIFT’s initial approach
was to replicate portions of the Federal Flash Crash investigation to gain firsthand experience into how HPC
technologies, e.g., FastBit [31], are applicable in market analysis. More recently, we have tried to follow the
examples set by Jim Gray and other key figures of data-intensive sciences [13]. In particular, the Flash Crash
of 2010 revealed an urgent need for the financial regulatory agencies to apply the modern data management
and analysis techniques to improve market safety, security, and stability. A call for action along these lines
appeared on page 1 of the spring issue of the Journal of Portfolio Management, which is one of the most
prestigious publications in the financial industry [18].



To realize the above vision, CIFT is collaborating closely (at code level) with the developers of VPIN to
evaluate its effectiveness as an early warning indicator of flash crashes and other market anomalies [10]. We
have also taken a similar approach to implement and evaluate a family of fragmentation indices suggested
by the head of trading research at one of the world’s largest investment firms (assets under management
of $3.6 trillion) [20]. These collaborations are supported by proven HPC technologies for searching and
visual analyses [6, 30], along with the computing power of one of the most powerful supercomputers at the
National Energy Research Scientific Computing (NERSC) center 1.

2.2 Levels of High-frequency Financial and Market Data

In this section, we briefly describe the types of data used in our work. Readers are referred to texts on market
microstructure for a full treatment [23].

2.2.1 Level 1 – Transactions

The most basic form of market data is the most familiar – a time series of prices, widely seen on smartphones
and market television, and screens used by millions. Popular time series, such as the Dow-Jones Industrial
Average (DJIA), are weighted averages of stock trades.

2.2.2 Level 2 – Transactions and BBO Quotes

All transactions from Level 1 data, plus the “inside quotes,” i.e., the best bid and offer price for each security
in the combined markets included in the data. The Trades And Quotes (TAQ) data originally developed by
the New York Stock Exchange is the academic standard for this type of data and has been used extensively
in research [22]. This data includes identification information by market fragment (e.g., NYSE, NASDAQ,
ARCA, BATS). This type of data contains considerably more information than Level 1 data, but at about a
few GB per day it is also quite convenient for analysis and is used in our current work. A sample using TAQ
data to describe the Flash Crash event on May 6, 2010 is shown in Figure 1.

2.2.3 Level 3 – Transactions, BBO Quotes, and Limit Order Book (LOB) Information

Level 2 data only shows the inside Best Bid/Offer (BBO) prices in the LOB. There are many limit orders in
the LOB as well as prices away from the BBO. With decimal penny pricing replacing the old 1/8 and 1/16,
these have become more important. With ever faster electronic market access, they can change very rapidly,
in milli- to micro-seconds, so LOB data is usually a snapshot in time, showing prices, and total sizes at each
price. In some data, the breakdown of the many orders comprising the total size at a price is also included.
Figure 2, which is from the September 2010 SEC/CFTC report, uses color codes to show price levels in
snapshots of the time varying “depth of the book.”

2.2.4 Level 4 – Transactions + Quotes + LOB + Order Flow

Orders get into the LOB as messages to market systems, and are removed as cancellation messages. This
traffic volume can become extremely high. The ever-faster activities of High Frequency Traders (HFTs) are
the primary source of this message volume. Algorithmic trading and conventional electronic orders (e.g.,
retail) comprise the rest. It used to require a phone call to modify, replace or cancel an order in the LOB, a

1More information about NERSC is available at http://www.nersc.gov/.



Figure 1: Using Level 2 data shows the bizarre behavior in the trades and quotes for Accenture (ACN), one
of the stocks most extremely impacted during the Flash Crash. (Source: May 18 CFTC/SEC report, pg 35)

process that took minutes to complete. It is now measured in units of milli- and micro-seconds. This traffic
can at times exceed the capacity of market systems, and result in an unintentional Denial of Service attack.

Nanex, a small high-end market data firm [21] has published an ongoing series of interesting observa-
tions at this level of data. A sample is shown in Figure 3.

2.2.5 Level 5 – Identifying information

All of the data discussed so far has been anonymous. A key role for regulators is enforcement, which
requires identifying information. The Large Trader Rule and other Legal Entity Identification requirements
are designed to accommodate such use. This type of data contains highly sensitive identifying information,
and thus engenders strong concerns about privacy.

It is estimated that there are up to 100 market “fragments” for trading of stocks alone. The best known
venues, the NYSE and NASDAQ have seen their market shares for their securities drop from more than
90% to the 20% range. That is only for stocks. Futures, options and ETFs introduce further complications,
couplings, and cross market issues.

2.2.6 Level 6 – Systemic Engineering Data

None of the data includes any engineering or systems data describing the queues, delays, and traffic that
could adversely affect the performance of market systems due to accidental Denial of Service anomalies



Figure 2: Level 3 data charts showing the evaporation of liquidity from both sides of the the LOB for
Accenture (ACN) during the Flash Crash, viewed on four time scales. (Source: Sept 29 SEC/CFTC report,
pg 88)

and result in additional undesirable events, such as “mini flash crashes,” both up and down, which in fact are
still observed.

2.3 Market Indicators for Early Warning of Anomalies

Numerous indicators have been devised to measure aspects of the financial market. Some of these, such as
the S&P 500, DJIA and Chicago Board Options Exchange Market Volatility Index (VIX), are used daily in
the evening news, while others are only known to the academics and traders interested in specific market ac-
tivities. In our attempt to detect anomalous activities, we start by examining a few indicators that are known
to provide early warning signals for the Flash Crash of May 6, 2010. They are the Volume-Synchronized
Probability of Informed Trading (VPIN) [10] and the Herfindahl-Hirschman Index (HHI) [12, 14]. Because
these indicators revealed unusual behavior on May 6, 2010, they might be useful in detecting other unusual
activities. Both these indicators require substantially more computations than many of the well-known indi-
cators. Because of the computational demands, computing indicators like VPIN and HHI in real-time will
require HPC resources. Next, we briefly describe these two indicators.

VPIN measures the balance between buy and sell activities [10]. An earlier version of this indicator is
called Probability of Informed Trading (PIN) [9]. The key change in VPIN is to use bins with the same



Figure 3: Using Level 4 data, this Nanex “bandsaw” example shows 5 minutes of order flow messages,
which modify the LOB at ever faster rates. This activity has been done, albeit at slower speeds, for a very
long time, but all computer and communications systems have capacity limits. In extrema, order flow traffic
can cause disruptions. (Source: http://www.nanex.net/20100506/FlashCrashAnalysis Part4-1.html)

trading volume instead of bins with the same time span. The VPIN authors refer to this as measuring
the buy-sell imbalance in volume-time instead of clock-time. Furthermore, instead of using the relative
imbalance value directly, which can be different for different commodities, the authors normalized them
using the function Φ that defines the Cumulative Distribution Function of a normal distribution. Because
of this normalization, a single threshold, T = 0.9, can be used for many different stocks. With suitable
parameters, the authors have shown that the VPIN reaches 0.9 more than an hour before the Flash Crash
on May 6, 2010. This is the strongest early warning signal known to us at this time. To a large extent,
our computation of VPIN replicates the one used by Easley et al. [9]. In fact, the developers of VPIN have
shared a Python implementation of their program with us and our C++ implementation reproduces exactly
the same values on the same input values. A key difference is that we compute VPIN values of individual
stocks while the earlier work computes VPIN values on SP500 futures.

Another indicator producing a clear early warning signal for the Flash Crash of 2010 was a market
fragmentation measure based on HHI [20]. The particular version used in this work is called the Volume
Herfindahl Index, but many other variations exist in the literature. Because we will not use any other type
of HHI, we simply refer to it as HHI in later discussions. During a given time window, say five minutes,
the fractions of trade volumes executed by different stock exchanges can be computed. HHI is the sum
of squares of these fractions [12, 14]. Variations of HHI are widely used to measure the concentration of
industrial production or other economic power [8, 29]. In this case, the particular version of HHI measures
how concentrated the exchange operations are. An HHI value of 1 indicates that all trades are executed at a
single exchange, which is easiest for buyers to be matched with sellers. When the value of HHI is smaller
than 1, some fractions of trades are executed at different exchanges and potentially at unequal prices. In other
words, buyers and sellers at different exchanges may be treated differently. This phenomenon is generally
referred to as market fragmentation and is considered as a source of market instability.

In [20], Madhavan computes a single HHI value for an entire day. In an attempt to use HHI as an
early warning indicator, Madhavan suggested that we break each day into small intervals. In our work here,
we choose to use 5-minute bins. Furthermore, to detect “abnormal” values, we define a reference window
covering twelve bins that covers the hour preceding the current bin. We use the bins in the reference window



to compute a mean and a standard deviation. We declare an HHI to be “abnormal” if it is more than x times
the standard deviation away from the mean. Note that the x value of 1.645 is equivalent to the choice of 0.9
as the threshold for VPIN.

In this paper, we examine how HPC can accelerate the computation of the indicators. We plan to evaluate
the effectiveness of the indicators in the future.

2.4 Data Management

In order to perform the above mentioned computations effectively, the required data must be in the appro-
priate format. For example, the widely available TAQ (Trades And Quotes) data [22] is available typically
on a CD or DVD with extraction program that runs only on MS Windows platforms. Since most of the HPC
systems run Linux operating systems, TAQ data requires a transformation step before it can be used on HPC
platforms. Many other collections of data have a similar limitation.

Even if the computing platform is based on MS Windows, the data extraction program, such as the
one provided with the TAQ data distribution, produces Comma-Separated Values (CSV), which is an ASCII
representation of the values. This representation typically requires more bytes than the corresponding binary
representation and requires significantly more time to read into memory. Furthermore, because the data
records in ASCII format typically require different numbers of bytes, it is more difficult to skip unwanted
bytes to directly extract a specific data record without also reading the records preceding it in the data file.
Other data distributions, such as the one from Nanex, do not require the intermediate step of converting
data to ASCII format. However, many of them still require the user to go through each data record, without
obvious means for skipping unwanted records.

One way to provide high-performance data access is to store the data records in a commercial database
management system (DBMS). Some DBMS have extensive support for operations on financial data series.
However, to achieve higher performance and to have more control over the analysis operations, we have
taken the approach used by many scientific applications – using a high-level data format library, the Hierar-
chical Data Format version 5, or HDF5 [11].

2.5 Data Exploration, Visualization, and Simulation

Data exploration, visualization, and simulation are key concepts in scientific HPC. A detailed discussion of
these topics in a fast financial context is beyond the scope of this paper. However, we want to include an
example that dramatically illustrates the truly strange nature of the Flash Crash, and some of the remaining
open questions.

Figure 4 shows a still frame from a movie produced by the visualization firm Panopticon. The movie,
even though very instructive, is backward looking – showing what happened. A key question for market
regulators is if we can anticipate future flashes and other anomalies before they occur. Stopping trading
through the use of “circuit breakers” is current practice. Alternatively, one could slow down trading using a
“yellow light” mechanism that would allow HFT programs and other algorithmic market actors to back off
gracefully.

3 Case Study

The goal of this case study is to evaluate how high-performance computing can support financial data anal-
ysis and, in particular, the development and implementation of early warning systems for detection and



Figure 4: A view showing the price changes and volumes for S&P 500 stocks during the Flash Crash.
Sectors are show by the color coded circles, market capitalization by the size of the circle, price change is
on the vertical axis, and volume on the horizontal. ACN, which is also shown in Figure 1 and 2, is selected
on the lower left . (Source: Panopticon)

analysis of market anomalies. Development and evaluation of reliable indicators for market anomalies re-
quires thorough analysis of the effectiveness of such indicators on large amounts historic data. We need
to be able to: i) store and process large amounts of data, ii) efficiently compute market indicators, and iii)
quickly extract and analysis portions of data during which abnormal market behavior is indicated.

3.1 File Format

Enabling efficient analysis of large amounts of data fundamentally relies on effective data organization and
storage to optimize I/O performance and allow algorithms to quickly locate data records of interest. Finan-
cial data is commonly stored in simple ASCII and binary formats, like TAQ data, or proprietary binary data
formats. Simple ASCII and binary formats are easily accessible but inefficient with respect to storage re-
quirements, do not support efficient search operations, are not portable (binary data only), and are inefficient
for parallel I/O. Proprietary data formats often suffer from similar problems, are often opaque to the user,
and require the use of commercial, black-box libraries for file access.

Over the course of the last decades, the HPC community has developed advanced, open scientific data
formats that address many of the data challenges the financial community is facing. In this work we adopt
HDF5 [11] – a state-of-the-art, open, scientific data format – for storing financial data. Figure 5 illustrates
the HDF5 data-layout we are using for storing TAQ data. We organize the data into groups based on the data
type ( /trades, /quotes), date, and stock symbol. Each complete group (e.g. trades/20100506/ACN )
then contains a set of 1D HDF5 datasets of varying types (e.g., PRICE stored in floating-point format, or
SIZE stored as integers). Additional information about the data, like the time format, and simple statistics,
such as minimum price or total volume, are stored as HDF5 attributes associated with the corresponding
datasets and groups. SZIP compression [32] can further significantly reduce file size, by a factor of 5-7 in



Figure 5: HDF5 data-layout used for storing trades data showing: i) the organization of the data via HDF5
groups and datasets (blue), ii) example meta-data for ACN, 05/06/2010 (red), and iii) spreadsheet-view of
PRICE and SIZE data array for ACN, 05/06/2010 (yellow).

CSV CSV (zip) HDF5 HDF5 (SZIP) Index
Trades 2,769 215 1,326 472 1,803
Quotes 38,566 3,058 28,844 5,377 24,784

Table 1: File sizes in mega-byte (MB) for example TAQ data using different file formats. The datasets
contain three days worth of trades and quotes for S&P 500 symbols.

the case of TAQ data, while enabling fast decompression and, hence, data access. In contrast to manually
compressed CSV files, SZIP compression is integrated transparently with HDF5: the user does not need
to explicitly decompress the data first but can access the compressed data directly through the HDF5 API.
Table 1 compares the storage requirements of an example TAQ dataset in different formats.

Using HDF5 for storing financial data has many advantages. HDF5 is portable, easy to use, efficient with
respect to storage and I/O performance, supports compression and parallel I/O, and provides additional tools
for browsing, validation and profiling (e.g, HDFView). HDF5 is optimized for large data files and enables
us to store months to years worth of financial data in a single file while maintaining easy data access.

The ability to group data into meaningful subgroups within a file improves the data organization, eases
data access, and reduces storage cost for highly repetitive data fields, like date and stock symbol. Using
groups also allows us to store related but heterogeneous financial data types, such as trades and quotes
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Figure 6: HHI (blue) and VPIN (red) values on May 6, 2010. The minimum and maximum prices shown
are computed in each 5-minute bin. Each indicator shows extreme values before the irregular price changes.

data, in the same file. The ability to augment individual HDF5 groups and datasets with meta-data allows
us to store additional information about the data, such as daily statistics, in an easily accessible manner.
The organization into groups of multiple HDF5 datasets, one per variable, makes it convenient to access
selected attributes of a trade or a quote. For example, the computations of both VPIN and volume HHI use
information on trades; however, neither of them require all eight attributes. We only need three attributes
to compute either VPIN or HHI: time, price and volume for VPIN, and time, volume and exchange for
HHI. However, dividing the data into a large number of subgroups, each containing only ≈ 10, 000 −
200, 000 records in the case of TAQ, may reduce the effectiveness of compression and may require a large
number of disjoint data access operations, which in turn reduces overall I/O performance. Depending on
the application, one may be able to achieve higher performance, by grouping data into larger subsets by
grouping records by week or month rather than by day.

One benefit of using the above organization is that it enables convenient use of advanced HPC index and
search software. In our case, we used the FastQuery software to index and search the data [7]. FastQuery
exploits the searching capabilities of a set of bitmap indexes implemented in FastBit [31] to a number of



popular scientific data formats including HDF5. In the past, this indexing technique has been successfully
used to search over historical data to confirm the observations made in real-time data activities [27], to
perform forensic cybersecurity analysis [2,26], and to enable use of HPC resources for large-scale scientific
data analysis [24]. In the application area of financial data analysis, we believe that the bitmap indexing
technique can fulfill a similar role of searching historical data to efficiently compute early warning indicators.
This idea is the subject of the next section.

3.2 Computing Market Indicators

After organizing the data in an effective way, the next question to answer is whether HPC resources can
effectively compute market indicators. We use the computations of VPIN and HHI as examples, and treat
the computation of VPIN and HHI on each stock or fund as a separate computational task. Because these
tasks don’t require any coordination among them, they can achieve good speedup as we show later. A
key limitation to achieving perfect speedup is that the amount of work in each computational task is very
different, resulting in load imbalance. Therefore, a dynamic task scheduling method is needed to balance
the amount of work assigned to each process. In this work, we use a manager-worker approach to distribute
the tasks. In this section, we also present some evidence that HHI and VPIN produce strong signals before
and during the Flash Crash of 2010.

We start our discussion on the computation of VPIN and HHI by describing the data used. We use two
different sets of trades data. The first set of trades covers the time period of April and May, 2010, containing
45 trading days. This set contains all trades of SP500 stocks. The total number of records is about 640
million and the total size is about 25 GB as CSV files and 4.4 GB as HDF5 files.

The second set contains trades of 25 ETFs with the largest trading volumes. The time period varies from
3 years (2008, 2009, and 2010) to 10 years (2001 – 2010). The total number of records is about 2.7 billion,
and the size is 108 GB in CSV and 17 GB in HDF5. Clearly, there is a size advantage for using HDF5 files.

It is faster to use data in HDF5 files for computation as well. For example, on a subset of data from
May 2010, using HDF5 it only took 0.4 seconds to compute VPIN for Accenture (ACN) stock. However,
it took 142 seconds using the corresponding CSV files. Using HDF5 files speeds up the VPIN computation
by a factor 355. The key difference between using HDF5 and CSV is that using HDF5 files, combined with
efficient indexing, one can quickly locate the desired data records, while using CSV files, one has to read
through each data record to locate the desired records about ACN.

We compute VPIN and HHI for each stock or fund separately, in order to raise the “yellow flag” on
each of them independently. We realize that this is not exactly how the original authors of VPIN and HHI
intended to use them [10,20]. However, as we show in Figure 6, there is strong evidence that VPIN and HHI
can indeed provide early warning for the Flash Crash of May 6, 2010.

In Figure 6 we show the values of VPIN and HHI for four individual stocks and two ETFs. The stocks
are Accenture (ACN), CenterPoint Energy (CNP), Hewlett-Packard (HPQ), and Apple (AAPL). The first
two are the well known examples where the prices dropped to one penny per share during the Flash Crash,
HPQ is one of Dow-Jones stocks significantly affected by the Flash Crash, and AAPL stock has the unusual
behavior of reaching to $100,000 per share during the same time period. The ETFs shown are SPY and
IWM, these are the closest relatives of the futures used by the original authors of VPIN [10].

The data shown in Figure 6 is from May 6, 2010, between 9:30 and 16:30. For each 5-minute time
interval used to compute HHI, we also compute the minimum price and maximum price during the same
time interval. In Figure 6, we see that the minimum price drops to one penny in a number of bins, the earliest
of which is around 14:45. Three of the four stocks shown exhibit significant price drops. There are other
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Figure 8: User interface for defining symbolic
trades/quotes queries.

Figure 9: User interface for evaluating market indicator-
based warnings.

noticeable price variations later in the trading day as shown in Figure 6. Not all the stock prices fell during
the Flash Crash, in Figure 6 we see a small jump for HPQ and two sets of tremendous jumps for AAPL.

In Figure 6, the values of VPIN became quite high before the Flash Crash at 14:45. In the case of ACN,
there was a sharp rise for both HHI and VPIN at 13:352. This was about 70 minutes before the Flash Crash,
slightly before the time frame examined in detail in the official report on the Flash Crash, which suggests
that both VPIN and HHI might have detected some signals missed by the investigators.

For other stocks, either VPIN or HHI showed similar early warning before the Flash Crash. For example,
for CNP, the VPIN values were very high earlier in the day, for HPQ, the VPIN values also reached a high
level around 13:45 about an hour before the Flash Crash, for AAPL, the VPIN value reaches a high level at

2The particularly sharp rise in VPIN and HHI is directly linked to a unusually large trade at 13:36:07. The volume of this single
trade is 470,300 shares, which is almost 10% of the average daily volume for ACN. The impact of such a large trade on VPIN and
HHI needs to be further examined.



14:45 about half an hour before the unusual event at 15:15. Combined with the evidences provided by other
authors [10,20], we believe that VPIN and HHI are strong candidates for providing early warning signals of
unusual activities.

Figure 7 shows how the time needed to compute HHI and VPIN varies with the number of processors
used. The system used has 24 CPU cores on a compute node and each node has two network interface to
other compute nodes and file systems3. In Figure 7(a), we show the time to compute HHI and VPIN on
SP500 stocks. In this case, the task of computing HHI or VPIN on each stock is given to a process that uses
one CPU core on a node. These tasks are independent from each other in terms of computation, however,
they need to access the same file system in order to read the necessary input data and write the final output.
In Figure 7(b), we show the time to compute HHI and VPIN on the 25 ETFs. Again, we distributed the task
of computing HHI or VPIN for each ETF to a process. since there are only 25 tasks, we used a maximum
of 8 processing elements.

Overall, as the number of processes increase, the time needed goes down. However, due to load im-
balance among the tasks and performance variance of the file system, time does not vary smoothly. For
example, in Figure 7(a), as the number of PEs vary from 16 to 32, the total execution time appears to remain
the same or slightly increase.

In Figure 7(a), using 16 processes, the speed up over using one process is about 9x when computing both
HHI and VPIN. Using 128 processes, we achieve a speedup of 11x when computing HHI, and 13x when
computing VPIN. In Figure 7(b), the maximum speedup of 5x is achieved with eight processes. In both
cases, we see the task of computing HHI and VPIN are indeed independent tasks and can be parallelized
effectively. As we extend our work on to more stocks and ETFs, we see more opportunity for parallel
computation and more efficient uses of HPC resources.

3.3 Query-driven Analysis and Data Exploration

Typical scientific applications require single (or few) queries to be evaluated on extremely large data. In
contrast, screening of financial data requires evaluation of a large number of independent data queries (one
query per date/symbol combination). Similarly, validation of market indicators fundamentally relies on the
ability to quickly locate and extract data associated with large numbers of indicated warning periods, e.g,
for HHI we find 298,956 potential warnings for S&P 500 stocks during April 2010.

To allow analysts to quickly define large sets of queries, we extend the FastQuery query language using
symbolic queries. A symbolic query is a compact representation of a large number of queries using reserved
keywords (here $DATE and $SYMBOL) to represent data categories. The user can then select, from
simple lists, the specific dates and symbols for which a symbolic query should be executed (Figure 8). The
symbolic query is then expanded into #dates ∗ #symbols queries on behalf of the user. We use standard
spreadsheet and statistics plots (Figure 10) for validation of queries and market-indicator warnings.

In the case of market indicators, large sets of warning events are created automatically by the screening
process. Each warning has an associated date, symbol, and time period. To extract the data associated with
warning events, we automatically translate warnings to queries of the form:

TY PE/$DATE/$SYMBOL/TIME >= start&&
TY PE/$DATE/$SYMBOL/TIME <= stop,

(1)

where TY PE identifies the trades/quotes group. We use a spreadsheet representation to allow the analyst
to quickly browse and select warnings of interest (Figure 9). The duration and peak warning value (e.g.,

3More information about the particular computer can be found at http://www.nersc.gov/systems/
hopper-cray-xe6/.
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peak CDF (V PIN) value) are color-coded to ease identification of long and high-risk warnings. Once a
warning query has been executed, additional information about the corresponding warning is displayed in
the table, such as the number of trades and quotes executed during the warning period. To help reduce the
analysis of false alarms, we plan in the future to extend this concept with automatic methods for defining
whether an anomaly occurred during a warning period.

In the following, we study the parallel performance of our query system, using the Hopper 2 system at
NERSC. In the scaling experiment, we evaluate 8000 independent queries as defined in Eq. 1 on S&P 500
quotes data for April 2010. Each date/symbol group contains on average approximately 274,151 records,
and 47 out of 8838 of these date/symbol groups contain between 1.5 - 3.9 million records (Figure 11). This
constitutes 74.5 GB of uncompressed HDF5 data (13.4 GB as HDF5 with SZIP compression and 100.4
GB as uncompressed csv) and 28.3 GB for all FastBit indices. To evaluate the expected performance on
more larger amounts of financial data, we replicated each HDF5 dataset 10 times, effectively increasing the
number of quotes executed per date and symbol by a factor of 10. The replication also emulates storing ten
month’s worth of quotes data grouped into periods of ten trading days. The replicated dataset constitutes
744.7 GB of uncompressed HDF5 data and 210.2 GB for all FastBit indices. Both quotes HDF5 files were
created using default HDF5 settings and are stored on Hopper’s Lustre file system using a striping of 24 and
a stripe-size of 1MB. We use a controller-worker-type setup implemented in MPI to parallelize the query
process. The controller schedules the queries in batches of 10 queries as workers become available. Once all
queries are completed, the controller acquires all hit-counts from the workers, while the file offsets (results)
are stored on the workers to allow for efficient parallel analysis of the data associated with the queries. We
repeated each experiment ten times and report the average wall-clock time elapsed to evaluate all queries,
including all communication.

Figure 12 shows the results of this parallel query study. We observe good scalability in all cases and
achieve two orders of magnitude speedup compared to the serial case. Using the CSV data, it takes approx-
imately 3.5 hours in serial to evaluate all 8000 queries, even though we can compute all queries in a single
pass, exploiting the fact that data records are sorted by date, symbol and time in the CSV file(s). Using
HDF5 and indexing, we are able to perform the same analysis in parallel in less than 5 seconds on both
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Figure 11: Number of data records (quotes) per date/symbol group for S&P 500 quotes data for April 2010.
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Figure 12: Time (seconds) needed to evaluate 8000 queries using different numbers of processors on i) S&P
500 quotes data for April 2010 (lilac) and with indexing (blue) and ii) the same dataset with 10× replication
(green) and with indexing (red). Note the log-scale on the vertical time axis.

datasets, constituting a three orders of magnitude speed-up compared to using CSV. For the regular quotes
data we do not observe a significant difference between the version with and without FastBit indexing. This
behavior is expected, since the number of records required per query is low. For the dataset with 10× repli-
cation, we observe speedups of ≈ 2 − 4x when using indexing. Interestingly, the time used for evaluating
queries on the 10× replicated data does not increase by a factor of 10 compared to the regular quotes data.
This is likely due to inefficiencies with respect to the HDF5 write: the default chunk-size may be too large
for the small numbers of records per dataset, and/or the filesystem performance, which is sensitive to tunable
parameters like the level of striping and stripe size, resulting in a larger I/O overhead for the smaller dataset.
This type of variation in performance is well known: it has been shown that tuning of HDF5 and file system
parameters can have a significant impact on I/O performance [15].



4 Discussion

Data organization In this work, we demonstrated the benefit of using a more efficient data organization
by using the HDF5 file format. For computing market indicators (Section 3.2), we see a speedups of about
355x by using HDF5 compared to using CSV. This speedup results directly from more efficient data access
methods. Organizing and storing the financial data in a more efficient way has a tremendous potential of
improving the monitoring and reporting of financial markets.

Parallel computing Large-scale analyses of financial data – such as query-based analysis of historical data
– require processing of large amounts of computationally independent data, e.g., data for different stocks.
The experiments in Sections 3.2 and 3.3 have shown that we can parallelize these types of operations effec-
tively. The combination of efficient data organization and parallel computing enables us to evaluate large
amounts of queries in seconds rather than hours. Such results, which stem from a combination of parallel
computing, efficient data I/O and index/search, are consistent with other studies in forensic cybersecurity
analysis [2, 26] and large-scale scientific data analysis [24], where processing time was reduced from hours
or days to minutes or seconds. We are able to evaluate 8000 queries on a 74.5GB dataset in ≈2 seconds,
an operation that takes more than 3.5 hours in serial using CSV data, a speedup of about 6,300x. The same
operation on the larger 744.7GB dataset still requires less than 5 seconds.

HPC for early warning systems Based on our preliminary results, we believe that early warning systems
can benefit substantially from HPC research, systems, and tools. Evaluation of the effectiveness of potential
early warning indicators requires screening of large amounts of historical data. Ultimately we need to be
able to compute market indicators in real time, requiring massively parallel algorithms and high-throughput
data networks to analyze data from large numbers of stocks at once. At the same time, the real-time data
needs to be stored efficiently for later analysis. For example, to enable regulators to judge the credibility
of an indicated alarm, they need to be able to quickly locate and analyze similar events in large amounts of
historical data. While our case study was limited in scope, focusing only on TAQ data, the results indicate
that HPC methods can facilitate many of the tasks necessary for development, operation, and monitoring
of a market monitoring and alarm system. For use scenarios involving larger amounts of financial data, we
expect the computational demands to increase significantly making HPC methods indispensable.

Future Work In the current work, we have encountered inconsistent data from different sources. For
example, different sources disagree on how many trades of AAPL at $100,000 per share occurred on May
6, 2010. In the TAQ data, there are four records of trades at this price, two at 3:29:30 PM with a total
of 895 shares, one at 3:44:51 PM with 695 shares, and one at 3:49:39 PM with 200 shares. In the Nanex
data, there are also four trades recorded, though the volumes match those from TAQ, all of the records in
Nanex data have the time stamp of 3:29:30 PM. The official SEC/CFTC report about the Flash Crash only
mentioned two trades at 3:29:30 PM with a total volume of 895 shares. Clearly, such a discrepancy is a
serious issue. Increasing the data quality should be one important goal for improving transparency and
efficiency of financial markets.

With respect to data management, we plan to further investigate improvements of the HDF5 data layout,
and tuning of HDF5 and filesystem parameters to improve I/O performance and efficiency of data indexing
methods.

The current version of VPIN requires all trades to be present to determine the function Φ needed for
the final normalization. We plan to develop a variation of VPIN for real-time computations. It may also be



fruitful to evaluate whether using volume-time for binning can improve the effectiveness of HHI.
Quantification of the effectiveness of potential early warning indicators fundamentally relies on the

ability to judge whether a warning is true or false and whether relevant anomalous behavior is missed by an
indicator. We, therefore, plan to develop algorithms to automatically detect anomalies in historical financial
data. Evaluation of market indicators and validation of designs and implementations of real-time market
monitoring systems will also benefit from realistic high-performance simulations of financial markets.

5 Conclusion

This “early warning” line of inquiry begins to address a key question regarding the role of high-performance
computing in finance from a federal perspective: Is real-time high frequency monitoring needed? The
SEC/CFTC has announced their intention to direct many billions from the financial industry to this effort,
which has been criticized by others as unnecessary overkill.

We and our collaborators have come to believe that it is not overkill. Current post Flash Crash regulatory
approaches are based on “circuit breakers,” which suspend trading when price or volatility triggers set them
off. These are very “blunt instruments” that do not allow the market to self-correct and stabilize, and they
can easily make a bad situation worse. Our tests showed that VPIN, HHI and similar indicators could
provide early warning signals for a more gradual “slow down, rather than stop” replacement for on/off
circuit breakers. Our HFT and academic collaborators hold this opinion strongly as well.

This work explores a number of pressing issues in implementing such an “early warning” system, such
as the need for sufficient computing power to generate the warning signals and the need for reliable and
effective data. We demonstrate that techniques from data-intensive sciences can address these issues. Fur-
thermore, we believe that the same approach, likely with additional computation, are applicable in the area
of financial market cyber-security, which is widely acknowledged as important, but also largely ignored in
the regulatory debate.
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