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Figure 1: (Left) Sub-volume mesh extracted from a 21 billion cell structured grid decomposed across 2197 processors. (Right)
Sub-volume mesh colored by result from our connected components labeling algorithm.
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Abstract

We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-
decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because
connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm
employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently
merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex
with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis
capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling

study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to
68 billion cells.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computational Geometry and Object Model-
ing]: Geometric algorithms, languages, and systems—

1 Introduction massive quantities of high resolution mesh-based data. Sci-
entists can analyze this data by eliminating portions of the
Parallel scientific simulations running on today’s state of data and visualizing what remains, through operations such

the art petascale and terascale computing platforms generate
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as isosurfacing, selecting certain materials and discarding
the others, isolating hot spots, etc. In the context of massive
data, these approaches can generate complex derived geom-
etry with intricate structures that require further techniques
to effectively analyze.

In these instances, representations of the topological
structure of a mesh can be helpful. For example, a labeling of
the connected components in a mesh provides a simple and
intuitive topological characterization of which parts of the
mesh are connected to each other. These unique sub-meshes
contain a subset of cells that are directly or indirectly con-
nected via series of cell abutments.

The global nature of connectivity poses a challenge for
distributed memory computers, which are the most common
resource for analyzing massive data. In this setting, pieces
of the mesh are distributed across processors since the entire
data set is too large to fit into the memory of a single proces-
sor. Cells comprising connected sub-meshes may span any
of the processors, but the information on which cells abut
across processors may not be available. These factors con-
strain the approaches available to resolve connectivity.

Data-parallel algorithms have been developed for graphs,
but these algorithms fail to take advantage of optimizations
inherent to mesh-based scientific data. Further, data-parallel
algorithms specifically for mesh-based scientific data have
also been developed. However, these algorithms focus on
regular grids and their performance has only been studied
at low levels of concurrency with modest data sets. This
study presents a new mesh-based algorithm, one that oper-
ates on both structured and unstructured meshes and scales
well even for very large data. Our multi-stage algorithm con-
structs a unique label for each connected component and
marks each vertex with its corresponding connected com-
ponent label. The final labeling enables analysis such as:

e Calculation of aggregate quantities for each connected
component.

e Feature based filtering of connected components.

e Calculation of statistics on connected components.

In short, the algorithm provides a useful tool for domain
scientists with applications where physical structures, such
as individual fragments of a specific material, correspond
to the connected components contained in a simulation data
set. This paper presents an outline of the algorithm (Section
4), an overview of two specific applications of the algorithm
(Section 5), and results from a weak scaling performance
study (Section 6).

2 Related Work

Research into connected components algorithms has fo-
cused primarily on applications in computer vision and
graph theory. Several efficient serial algorithms have been
developed. We review these serial algorithms, survey ex-

isting parallel algorithms, and then discuss implications of
these approaches in a distributed-memory parallel setting.

2.1 Applications of connected components
2.1.1 Computer Vision

Labeling connected components in binary images is a
common image segmentation technique used in computer
vision [RW96]. To gain efficiency, labeling algorithms use
sweeps that exploit the structured nature of image data.
The most common sweep techniques are tailored to pro-
vide results for four- or eight-connected image neighbor-
hoods. [ST88] outlines an approach to efficiently label con-
nected components in three- and higher dimensional images
using linear bintrees. Although these techniques are quite ef-
fective in the area of computer vision, the approach does not
easily generalize to the problem of resolving connectivity in
unstructured meshes.

2.1.2 Graph Theory

The cell abutment relationships in an unstructured mesh
can be encoded into a sparse undirected graph representa-
tion, so methods for finding the connected components of
graphs are applicable, at least in spirit, to mesh-based data.
Connected components algorithms are used in various graph
theory applications to identify partitions. There are two com-
mon approaches. The first employs a series of Depth-first
or Breadth-first searches [HT71]. Initially all vertices are
unmarked. Each search starts at an unmarked vertex walk-
ing the graph edges and marking each reached vertex. New
searches are executed until all vertices are marked. Each
search yields a tree which corresponds to a single connected
component. This approach is analogous to a region growing
scheme.

The second approach uses the Union-find algorithm
[CSRLO1] for disjoint-sets. This is typically used for track-
ing how connected components evolve as edges are added
to a graph. This incremental approach requires only lo-
cal connectivity information and efficiently handles merg-
ing disjoint-sets as each new edge is added. The Union-find
algorithm and data structures are also used to efficiently con-
struct topological representations such as a Contour Tree
[CSAO0O] or a Reeb Graph [TGSP09] of a data set. We use
the serial Union-find algorithm as a key building block for
our approach. Union-find is discussed in detail in Section
3.1.

2.2 Parallelism

2.2.1 Parallelism in computer vision and graph
algorithms

[AP92,CT92] provide overviews of several parallel com-
puter vision algorithms for connected components label-
ing, including a few approaches for distributed-memory ma-
chines. Like the serial computer vision algorithms, these ap-
proaches are limited to regular grids.
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A naive distributed-memory implementation of the graph
search approach (i.e. DFS or BFS) would have a run-time
proportional to the number of cells in the largest sub-mesh
and would require complex communication to track visited
cells as mesh regions grow across processors. The run-time
of this approach would be prohibitive for data sets with sub-
meshes on the order of the size of the entire mesh. A naive
distributed-memory implementation of the Union-find algo-
rithm is difficult due to the indirect memory access patterns
used by the disjoint-set data structures to gain efficiency.
Both of these approaches map conceptually well to a PRAM
(Parallel Random Access Memory) [JaJ92] model of compu-
tation. However, they are difficult to implement efficiently in
a distributed-memory parallel context.

Much of the research into parallel algorithms for graph
connected components has focused on shared-memory ar-
chitectures [HW90, AW91]. [CAP88] provides a parallel al-
gorithm using the Union-find algorithm that is structurally
similar to a connected components algorithm. They obtained
speedups on a shared-memory machine, but observed poor
performance when mapping their algorithm to a PRAM
model on a distributed-memory architecture.

[KLCY94, BTO1, MP10] use a hybrid local-global ap-
proach on distributed-memory machines. [KLCY94] uses a
breadth-first search to resolve local connectivity, followed
by a global PRAM step to incorporate edges that cross pro-
cessors. [BT01] extends [KLCY94] using a diffrent a PRAM
scheme implemented over MPI and provides results for 2D
and 3D structured grids with maximum size of 500,000
cells. [MP10] presents a distributed-memory Union-find al-
gorithm for identifying the spanning forest of a graph. Their
global step distributes the Union-find data structure and op-
erations across all processors using a complex message pass-
ing scheme, which limits scalability.

Our algorithm also uses a multi-stage approach with lo-
cal and global steps. Because our algorithm is designed for
mesh based simulation data, we take advantage of the sparse
nature of mesh connectivity. A novel contribution of our ap-
proach is a compression from a label set the size of the to-
tal number of cells to a much smaller intermediate labeling.
This allows us to use the serial Union-find algorithm for the
global resolve and avoid the drawbacks of distributing the
Union-find. Our approach also handles the constraint that
connectivity information across processors is not known a
priori, a problem that does not occur in general graph appli-
cations. Finally, this study presents performance characteris-
tics at considerably higher concurrency levels and larger data
sizes (including, for the first time, unstructured meshes) than
have been studied in previous work. Further, properties of
mesh-based data create opportunities for optimizations not
possible with graph data, making the performance character-
istics substantially different. For example, mesh-based data
can use ghost data to optimize across boundaries (described
in Section 4.2).

(© The Eurographics Association 2011.

2.2.2 Parallelism strategy for end user tools

Our algorithm is intended for data sets so large that
they cannot fit into the memory of a single node. Popu-
lar end user visualization tools for large data, such as En-
Sight [Com09], ParaView [AGLO05], and VisIt [CBB*05],
follow a distributed-memory parallelization strategy. Each
of these tools instantiate identical visualization modules on
every MPI task, and the MPI tasks are only differentiated by
the sub-portion of the larger data set they operate on. The
tools rely on the data set being decomposed into pieces (of-
ten referred to as domains), and they partition the pieces over
their MPI tasks. This approach has been shown to work well
to date, with the most recent example demonstrating Vislt to
perform well on meshes with trillions of cells using tens of
thousands of processors [CPA*10]. Our algorithm follows
the strategy of partitioning data over the processors and has
been implemented as a module inside Vislt.

3 Algorithm building blocks

This section describes four fundamental building blocks
used by our algorithm. The first is the serial Union-find al-
gorithm which allows us to efficiently identify and merge
connected components. The second is a parallel binary space
partitioning scheme which allows us to efficiently compute
mesh intersections across processors. The third is the prac-
tice of generating ghost data, which, if available, allows us
to use an optimized variant of our algorithm. The fourth is
the data structures for storing mesh-based data.

3.1 Union-find

The Union-find algorithm enables efficient management
of partitions. It provides two basic operations: UNION and
FIND. The UNION operation creates a new partition by
merging two subsets from the current partition. The FIND
operation determines which subset of a partition contains a
given element.

To efficiently implement these operations, relationships
between sets are tracked using a disjoint-set forest data struc-
ture. In this representation, each set in a partition points to a
root node containing a single representative set used to iden-
tify the partition. The UNION operation uses a union-by-
rank heuristic to update the root node of both partitions to the
representative set from the larger of the two partitions. The
FIND operation uses a path-compression heuristic which up-
dates the root node of any traversed set to point to the cur-
rent partition root. With these optimizations each UNION
or FIND operation has an amortized run-time of O(c(N))
where N is the number of sets and &(N) is the inverse Ack-
ermann function [Tar75]. a(N) grows so slowly that it is
effectively less than four for all practical input sizes. The
disjoint-set forest data structure requires O(N) space to hold
partition information and the values used to implement the
heuristics. The heuristics used to gain efficiency rely heavily
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on indirect memory addressing and do not lend themselves
to direct a distributed-memory parallel implementation.

3.2 Generating a BSP-Tree

To determine if a component on one processor abuts a
component on another processor (meaning they are both ac-
tually part of a single, larger component), we will need to
relocate the cells in a way that guarantees spatially abutting
cells will reside on the same processor. We do this by creat-
ing a binary space partitioning (BSP) [FKN8O0] which parti-
tions two- or three-dimensional space into Nprocessors pieces.
Each split in the BSP is designed to give each processor ap-
proximately the same number of elements (and thus mem-
ory), in the hope of avoiding load imbalance and/or poten-
tially exhausting memory.

It is difficult to efficiently sub-divide spatial elements into
tree-based data structures in a shared memory parallel set-
ting (for example see [BSGE98,BS99]). In our case, the tree
generation must be performed in a distributed memory set-
ting, because there are many more cells than can fit on a sin-
gle node. Our algorithm is recursive. We start by creating a
region that spans the entire data set. On each iteration and for
each region that represents more than 1/Nth of the data (mea-
sured in number of elements covered), we select “pivots”,
which are possible locations to split a region along a given
axis. This axis changes on each iteration. All processors tra-
verse all of their elements, and their positions with respect
to the pivots are categorized. If a pivot exists that allows for
a good split, then the region is split into two sub-regions and
recursive processing continues. Otherwise we choose a new
set of pivots, whose choice incorporates the closest match-
ing pivots from the previous iteration as extrema. If a good
pivot is not found after some number of iterations, we use
the best encountered pivot and accept the potential for load
imbalance.
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Figure 2: The process for constructing a BSP-tree in a dis-
tributed memory setting. On the left, the cells from the orig-
inal mesh. Assume the red portions are on processor 1, blue
on 2, and so on. The iterative strategy starts by dividing in
X, then in Y, and continues until every region contains ap-
proximately 1/Nprocessors of the data. Each processor is then
assigned one region from the partition and we communicate
the data so that every processor contains all data for its re-
gion. The data for processor 3 is shown on the far right.

After constructing a BSP-tree, we assign one portion of
the partition to each MPI task and then re-distribute the cells
such that each MPI task contains every cell from its partition.
Cells that span multiple partitions are duplicated.

3.3 Ghost Cells

When a large data set is decomposed into domains, inter-
polation artifacts can occur along domain boundaries. The
typical solution for this problem is to create “ghost cells,"
a redundant layer of cells along the boundary of each do-
main. Ghost cells are either pre-computed by the simulation
code and stored in files or calculated at run-time by the post-
processing tool. More discussion of ghost cells can be found
in [ILC10,CBB*05].

Ghost cells can provide benefits beyond interpolation.
They also can be used to identify the location of the bound-
ary of a domain and provide information about the state of
abutting cells in a neighboring domain. It is in this way that
we incorporate ghost cell information into our algorithm.
Note that this paper uses ghost cells that are generated at run-
time and uses the collective pattern described in [CBB*05],
not the streaming pattern described in [ILC10].

3.4 Data Structures

The Visualization ToolKit library (VTK) [SML96] is used
to represent mesh-based data. The data model has a mesh
(structured or unstructured) with multiple fields stored on
either the cells or the vertices. VTK provides routines for
identifying cell abutment and we use these routines within a
domain.

4 Algorithm description

Our algorithm identifies the global connected components
in a mesh using four phases. We first identify the connected
components local to each processor (Phase 1) and then create
a global labeling across all processors (Phase 2). We next de-
termine which components span multiple processors (Phase
3). Finally, we merge the global labels to produce a consis-
tent labeling across all processors (Phase 4). This final la-
beling is applied to the mesh to create per-cell labels which
map each cell to the corresponding label of the connected
component it belongs to. In terms of parallelization, Phase 1
is embarrassing parallel, Phase 2 is a trivial communication,
Phase 3 has a large all-to-all communication, followed by
embarrassingly parallel work, and Phase 4 has trivial com-
munication following by more embarrassingly parallel work.

We present two variants of the algorithm. This first
provides a general solution, applicable to any domain-
decomposed 3D mesh. The second algorithm is an optimized
variant of the first which can be used if ghost data is avail-
able for the mesh. The optimizations in the second variant
greatly reduce the communication and processing required
to resolve global connectivity.

4.1 General Algorithm
Phase 1: Identify components within a processor
The purpose of this phase is for each processor to label

the connected components for its portion of the data. As
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Phase 1

Phase 2

Figure 3: Example illustrating the four phases of our algo-
rithm on a simple data set decomposed onto three proces-
SOFS.

mentioned in Section 2, the Union-find algorithm efficiently
constructs a partition through an incremental process. A par-
tition with one subset for each point in the mesh is used to
initialize the Union-find data structure. We then traverse the
cells in the mesh. For each cell, we identify the points inci-
dent to that cell. Those points are then merged (“unioned")
in the Union-find data structure.

In pseudocode:

UnionFind uf;
For each point p:
uf. SetLabel (p,
For each cell c:
pointlist = GetPointsIncidentToCell(c)
p0 = pointlist[0]
For each point p in pointlist:
if (uf.Find(p0) != uf.Find(p))
uf.Union(p0, p)

GetUniqueLabel ())

The execution time of this phase is dependent on the num-
ber of union operations, the number of find operations, and
the complexity of performing a given union or find. The
number of finds is equal to the sum over all cells of how
many points are incident to that cell. Practically speaking,
the number of points per cell will be small, for example eight
for a hexahedron. Thus the number of finds is proportional
to the number of cells. Further, the number of unions will be
less than the number of finds. Finally, although the run-time
complexity of the Union-find algorithm is nuanced, each in-
dividual union or find is essentially a constant time oper-
ation, asymptotically-speaking. Thus the overall execution
time of this phase for a given processor is proportional to the
number of cells contained on that processor.

(© The Eurographics Association 2011.

Phase 2: Component re-label for cross-processor
comparison

At the end of Phase 1, on each processor, the components
within that processor’s data have been identified. Each of
these components has a unique local label and the purpose of
Phase 2 is to transform these identifiers into unique global la-
bels. This will allow us to perform parallel merging in subse-
quent phases. Phase 2 actually has two separate re-labelings.
First, since the Union-find may create non-contiguous iden-
tifiers, we transform the local labels such that the numbering
ranges from O to Np, where Np is the total number of labels
on processor P. For later reference, we denote N = Y Np as
the total number of labels over all processors. Second, we
construct a unique labeling across the processors by adding
an offset to each range. We do this by using the MPI rank
and determining how many total components exist on lower
MPI ranks. This number is then added to component labels.
At the end of this process, MPI rank 0 will have labels from 0
to Ng — 1, MPI rank 1 will have labels from Ny to No+Nj — 1
and so on. Finally, a new scalar field is placed on the mesh,
associating the global component label with each cell.

Phase 3: Merging of labels across processors

At this point, when a component spans multiple proces-
sors, each processor’s sub-portion has a different label. The
goal of Phase 3 is to identify that these sub-portions are ac-
tually part of a single component and merge their labels. We
do this by re-distributing the data using a BSP-tree (see Sec-
tion 3.2) and employing a Union-find strategy to locate abut-
ting cells that have different labels. The Union-find strategy
in this phase has four key distinctions from the strategy de-
scribed in Phase 1.

e The labeling is now over cells (not points), which is made
possible by the scalar field added in Phase 2.

e We merge based on cell abutment, as opposed to Phase 1,
where we merged when two points were incident to the
same cell.

e Each cell is initialized with the unique global identifier
from the scalar field added in Phase 2, as opposed to the
arbitrary unique labeling imposed in Phase 1.

e Whenever a union operation is performed, we record the
details of that union for later use in establishing the final
labeling.

In pseudocode:

CreateBSPTree ()
UnionFind uf;
For each cell c:
uf.SetLabel(c, label[c])
For each cell c:
For each neighbor n of c:
if (uf.Find(c) != uf.Find(n))
uf.Union(n, c)
RecordMerge (n, c)



C. Harrison, H. Childs, & K.P. Gaither / Data-Parallel Mesh Connected Components Labeling and Analysis

After the union list is created, we discard the re-
distributed data and each processor returns to operating on
its original data.

Phase 4: Final assignment of labels

Phase 4 incorporates the merge information from Phase
3 with the labeling from Phase 2. Recall that in Phase 2 we
constructed a globally unique labeling of per-processor com-
ponents and denoted N as the total number of labels over all
processors. The final labeling of components is constructed
as follows:

e After Phase 3, each processor is aware of the unions it
performed, but not aware of unions on other processors.
However, to assign the final labels, each processor must
have the complete list of unions. So we begin Phase 4
by broadcasting (“all-to-all") each processor’s unions to
construct a global list.

e Create a Union-find data structure with N entries, each
entry having the trivial label.

UnionFind uf
For i in 0 to N—1:
uf.SetLabel (i, i)

e Replay all unions from the global union list.

For union in GlobalUnionList:
uf.Union(union.labell , union.label2)

The Union-find data structure can now be treated as a
map. Its “Find" method transforms the labeling we con-
structed in Phase 2 to a unique label for each connected
component.

e Use the “Find" method to transform the labeling from the
scalar array created in Phase 2 to create a final labeling of
which connected component each cell belongs to.

For each cell c:
val[c] = uf.Find(val[c])

e Optionally transform the final labeling so that the labels
range from 0 to N¢ — 1, where N is the total number of
connected components.

Note that the key to this construction is that every pro-
cessor is able to construct the same global list by following
the same set of instructions. They essentially “replay” the
merges from the global union list in identical order, creating
an identical state in their Union-find data structure.

4.2 Ghost cell optimized algorithm

One of the strengths of the general algorithm is that lo-
cal connectivity, which encapsulates the majority of cell
abutments, is resolved concurrently on each processor. Af-
ter Phase 2 completes, the only cells that can contribute and
merge labels across processors are those cells that could po-
tentially abut cells residing other processors. If we can iden-
tify which cells intersect the spatial boundary of each proces-
sor, we can limit the re-distribution in Phase 3 to this subset

of cells. Processing a reduced set of cells in Phase 3 can lead
to significant performance gains.

We created an optimized variant of the general algorithm
using this strategy. To do so, we add a new preprocessessing
step (“Phase 0"), and modify Phase 3 to reduce the amount
of re-distributed cells. Phases 1, 2, and 4 are reused from the
general algorithm.

Phase 0: Identify cells at processor boundaries

The goal of this preprocessing phase is to identify cells
that abut the spatial boundary of the data contained on each
processor. When ghost cells are present this is trivial: the
boundary cells are those that are adjacent to ghost cells. Note
that we cannot directly use the ghost cells to represent pro-
cessor boundaries since they themselves lack ghost data. For
example, an isosurface operation for a ghost cell will gen-
erate incorrect geometry since that ghost cell is lacking the
requisite additional ghost data to perform interpolation. Fur-
ther, since ghost data can have incorrect geometry, we re-
move all ghost cells after the boundary is identified.

In pseudocode:

For each cell c:
boundary[c] = false
if (not IsGhostCell(c))
For each neighbor n of c:
if IsGhostCell(n):
boundary[c] = true
RemoveGhostCells ()

Phase 3’: Merging of labels across processors

In Phase 3°, we create the spatial partition using only the
set of boundary cells identified in Phase 0, in contrast to the
general algorithm which re-distributes all of cells. We iden-
tify abutment and construct each processor’s union list using
the same Union-find strategy from Phase 3 in the general
algorithm. By using the boundary information identified in
Phase 0, we reduce the number of cells redistributed by an
order of magnitude. This minimizes the amount of commu-
nication and the complexity of the intersection tests used to
identify cell abutment.

5 Applications

The labeling produced by a connected components algo-
rithm is key to certain types of analyses. Having a topo-
logical description of the connected components of a mesh
allows us to isolate features in ways fundamentally differ-
ent from standard visualization tools. To demonstrate this,
we present two applications on real data sets that use a
connected components algorithm, also reporting the perfor-
mance characteristics.

5.1 Turbulent flow

Turbulence is the most common state of fluid motion in
nature and engineering and a complex subject in the physi-
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Num cells Num cells Num
wo/ ghosts w/ ghosts comps
Input data set 68.7 billion | 77.2 billion 1
After isosurface 1.08 billion | 1.21 billion | 2.02 million
After isovolume 1.81 billion | 2.04 billion | 2.01 million

Table 1: Number of cells processed. The input mesh was a
4096° rectilinear grid of hexahedral cells (voxels). For the
first test, applying an isosurface, the cell types are triangles.
For the second test, applying an isovolume, the cells types
are hexahedrons, tetrahedrons, wedges, and pyramids. The
number of isovolume components is less than the number
of isosurface components, since they contribute a different
number at the boundary of the problem.

cal sciences. Advances in understanding how to model tur-
bulence is critical to advancing the state of turbulent the-
ory and more practically, to the areas of aerospace vehi-
cle design, combustion processes and environmental quality
just to name a few. Turbulent flow is characterized by non-
linear stochastic fluctuations in time and three-dimensional
space over a wide range of scales. Two important descrip-
tors of these small-scale motions are energy dissipation rate
and vorticity. Specifically, we wish to understand how en-
ergy dissipation rate and vorticity relate to each other and
the characteristics of the vortical structures over time.

One easy way to visualize vorticity is by creating isosur-
faces of thresholded values. These values in turbulent flow,
however, are very small, and it is not clear that selecting a
single threshold will provide the desired information. For
this reason, we choose to visualize isovolumes (also known
as “interval volumes" [FMS95]) of vorticity rather than iso-
surfaces of vorticity. Visualizing all isovolumes is both time-
consuming and unnecessary. Many of these structures are
miniscule and not relevant. We can cull out isovolumes by
thresholding based on volume, but that only partially allevi-
ates a potential clutter problem.

Creating connected components of the thresholded isovol-
umes presents us with a number of strong vortical structures
that we can study over time. We can investigate questions
such as: how are they born, do they die off, do they marry,
and do they divorce. Understanding and tracking this behav-
ior over time allows for in-depth view of what is happening
in turbulent flow at the small scale, rather than being limited
exclusively to global views.

Figure 4 shows an example of worm-like structures of vor-
ticity extracted from a turbulent flow simulation. This view
shows us the general clustering behavior at a given time-step
and allows us to see that their shape is somewhat random in
nature. The coloring allows us to see how the different iso-
volumes are clustered throughout the data set. The details of
the simulation data set are given in the text for Table 1.

We ran on 256 processors of Longhorn, a Dell/Linux ma-
chine for remote, interactive visualization that contains a to-
tal of 256 nodes, 2048 cores (8 Intel Nehalem 2.3 GHz cores

(© The Eurographics Association 2011.
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Figure 4: The 224 “worms" that have volume larger than a
certain threshold. Each worm.is colored by its volume.

Algorithm Ghost Iso CC
Isosurf. wo/ Ghost - 16.3s | 30.2s
Isosurf. w/ Ghost 18.5s 17.1s 16.9s
Isovol. wo/ Ghost - 24.4s 108.5
Isovol. w/ Ghost 18.3s 26.3s | 69.6s

Table 2: Performance of connected components identifica-
tion algorithm in the context of overall performance, in-
cluding time to calculate a layer of ghost cells (“Ghost"),
apply either an isosurface or isovolume algorithm (“Iso"),
and apply the connected components identification algo-
rithm (“CC"). Note that read times regularly exceed one
minute and vary greatly due to disk contention, caching by
the operating system, and other factors. (All tests read the
same data.)

per node), 512 gpus, and 14.5 terabytes of aggregate mem-
ory. Our actual analysis used isovolumes and data with no
ghost cells. For this paper, we added the option to calculate
ghost data and also repeated the analysis with isosurfaces,
giving a total of four tests. The overall performance on this
4K3 rectilinear mesh is described in Table 2 and the per-
phase performance is described in Table 3.

5.2 Turbulent flow in a nuclear reactor

In [FLPSO08], Fischer et al use the Nek5000 code to sim-
ulate the flow of coolant around a 217-fuel rod nuclear re-
actor. In this simulation, coolant flows through the assembly
with a strong bias along a fixed axis (the “z-axis"), with each

Algorithm / Phase 0 1 2 3 4
Isosurf. wo/ Ghost - 4.4s 0.01s | 24.2s | 1.5s

Isosurf. w/ Ghost 4.2s 4.3s 0.01s 5.0s 3.1s

Isovol. wo/ Ghost 12.5s | 0.03s | 89.2s | 6.7s

Isovol. w/ Ghost 12.9s 13.2s | 0.03s | 37.9s | 5.4s

Table 3: Performance of connected components algorithm.
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rod also being aligned to this axis. It is not desirable for the
coolant to travel directly down this fixed axis. If one of the
rods is “hot," the ideal scenario is for coolant to absorb heat
and then move away, letting other material come in to con-
tinue the cooling process. One important question is where
“pockets" of coolant are transferring through the assembly
most quickly. Since each rod is aligned with the z-axis, this
is equivalent to locating regions with significant x,y-velocity,
which can be accomplished via an isosurface operation on
this derived field. Of course, only regions above a certain
size criteria represent significant trends, so we once again
only study components above a size threshold.

This simulation takes place on a 1.012 billion cell unstruc-
tured mesh of hexahedrons. There was no ghost data avail-
able and we could not calculate it for comparison’s sake as
we did in Section 5.1. We used 30 nodes of Argonne Na-
tional Laboratory’s “Eureka" machine, with each node con-
taining two 2.0 GHz quad-core Xeons (a total of 240 MPI
tasks). The resulting isosurface had 3.04 million cells spread
over 25,189 components. By discarding components below a
size threshold, we arrived at 214 “large" components. These
components almost all resided at the exterior of the assem-
bly, meaning that coolant is communicating better in the ex-
terior than in the interior. The resulting visualizations can be
seen in Figure 5 and specific performance measures in Table
4.

L\

5: A nuclear reactor coolant
simulation on a 1.03 billion
cell unstructured mesh. The |
top left is the full assem- )
bly, the top right shows all |-
components that have high |
transverse velocity, and the
right is just the large compo- NS

nents. Large components oc- ‘ \w ‘
cur mostly near the exterior ‘
of the assembly. 1

Stage Read | Isosurface | Phase 1 2 3 4

Time 14.7 1.1s 0.1s 0.01s | 0.5s | O.1s

Table 4: Performance of connected components algorithm
on reactor coolant simulation.

Num cores Input mesh size | Isovol. mesh size
23=38 80 million 10.8 million
3¥ =27 270 million 34.9 million
4% =64 640 million 80.7 million
53 =125 1.25 billion 155.3 million
6° =216 2.16 billion 265.7 million
73 =343 3.43 billion 418.7 million
83 =512 5.12 billion 621.5 million
93 =729 7.29 billion 881.0 million
103 = 1000 10 billion 1.20 billion
113 = 1331 13.3 billion 1.59 billion
123 =1728 17.2 billion 2.06 billion
133 =2197 21.9 billion 2.62 billion

Table 5: Scaling study data set sizes. We targeted proces-
sor counts equal to powers of three to maintain an even spa-
tial distribution after upsampling. The highest power of three
processor count available on our test system was 133 =2197
processors. This allowed us to study processor counts from
8 to 2197 and initial mesh sizes from 80 million to 21 bil-
lion cells. The isovolume operation creates a new unstruc-
tured mesh consisting of portions of approximately 1/8th of
the cells from the initial mesh, meaning that each core has,
on average, 1.2 million cells.

6 Performance study

To further explore the performance characteristics of our
algorithm, we conducted a weak scaling study that looked at
concurrency levels up to 2197 cores with data set sizes up to
21 billion cells. We ran this study on Lawrence Livermore
National Laboratory’s “Edge" machine, a 216 node Linux
cluster with each node containing two 2.8GHz six-core Intel
Westmere processors. The system has 96GB of memory per
node (8GB per core) and 20TB of aggregate memory.

6.1 Problem setup

We used synthetic data as input, upsampling structured
grid data from a core-collapse supernova simulation pro-
duced by the Chimera code [BMH™*08]. This data set was
selected because it contains a scalar entropy field with large
isovolume components that span many processors. To test
weak scaling we upsampled the input data set, creating new
data sets with 10 million cells for every processor. We ex-
tracted isovolumes from the upsampled structured grid to
create an unstructured mesh for input to the connected com-
ponents algorithm. Table 5 outlines the number of cores and
the corresponding data sets used in our scaling study. Fig-
ure 1 shows rendered views of the largest isovolume data
set used in the scaling study and its corresponding labeling
result. We tested both the general and ghost cell optimized
variants of the algorithm.

(© The Eurographics Association 2011.
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General Algorithm Timings (w/o ghost data)
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Figure 6: (Left) Scaling study timings for the general algorithm. (Right) Scaling study timings for the ghost data optimized
algorithm. Phase 3 timings are significantly reduced by using ghost cells. Note that the two graphs have different scales, going
up to 150 seconds for the general algorithm, but only up to 25 seconds for the ghost data optimized algorithm.

Num cores Num cellsin | Num cores | Num global
largest comp. spanned union pairs
23 =38 10.1 million 4 16
33 =27 32.7 million 17 96
23 =64 76.7 million 29 185
53 =125 146.6 million 58 390
6° =216 251.2 million 73 666
73 =343 396.4 million 109 1031
8 =512 588.9 million 157 1455
93 =729 835.5 million 198 2086
103 = 1000 | 1.14 billion 254 2838
11° = 1331 1.51 billion 315 3948
123 =1728 1.96 billion 389 5209
133 =2197 | 2.49 billion 476 6428

Table 6: Largest component information and number of
global union pairs transmitted. As the size of the data set in-
creases we see a linear correlation (0.994322) between the
number of cores spanned by the largest connected compo-
nent of the isovolume and the number of union pairs trans-
mitted in Phase 4. The percentage of cores spanned by the
largest component converges to slightly less than 25%.

6.2 Performance

Figure 6 presents the timing results from our scaling
study. As expected, the timings for phases 1,2, and 4 are
consistent between both variants of the algorithm. At 125
processors and beyond the largest subset of the isovolume
on a single processor approaches the maximum size, 10 mil-
lion cells. At this point we expect weak scaling for Phase 1.
This is confirmed by flat timings for Phase 1 beyond 125
processors. The ghost cell optimized variant significantly
outperformed the general algorithm in Phase 3. These tim-
ings demonstrate the benefit of having ghost data available to
identify per-processor spatial boundaries. The small amount
of additional preprocessing time required for Phase 0 allows
us to reduce the number of cells transmitted and processed
in Phase 3 by an order of magnitude.

(© The Eurographics Association 2011.

By upsampling, we maintain a fixed amount of data per
processor, however the number of connectivity boundaries
in the isovolume increases as the number of processors used
in decomposition increases. This is reflected by the linear
growth in both the number of union pairs transmitted in
Phase 4 and the number of cores spanned by the largest con-
nected component (See Table 6).

7 Conclusion and Future Work

We have presented a data-parallel algorithm that iden-
tifies and labels the connected components in a domain-
decomposed mesh. Our algorithm is designed to fit well into
currently deployed distributed-memory visualization tools.
The labeling produced by our algorithm provides a topolog-
ical characterization of a data set that enables new types of
analysis. We presented two applications which demonstrate
our approach is suitable for analyzing the massive data sets
created by today’s parallel scientific simulations. Our scal-
ing study demonstrated a significant speed up in execution
time when ghost data is available.

As far as future work, an improved understanding of the
construction of the BSP-tree and overall communication pat-
terns would reveal more about the performance of this al-
gorithm. Further, although we demonstrated our algorithm
works well on large data sets at high levels of concurrency,
previous approaches have not been studied in this context.
Studying their performance would allow for better compari-
son to our own algorithm.
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