
H5hut: A High-Performance I/O Library for
Particle-based Simulations

Mark Howison∗, Andreas Adelmann†, E. Wes Bethel∗, Achim Gsell†, Benedikt Oswald†, Prabhat∗

∗ Computational Research Division
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720, USA
Email: {mhowison,ewbethel,prabhat}@lbl.gov

† Accelerator Modeling and Advanced Simulations Group
Paul Scherrer Institut, CH-5234 Villigen, Switzerland

Email: {andreas.adelmann,achim.gsell,
benedikt.oswald}@psi.ch

Abstract—Particle-based simulations running on large high-
performance computing systems over many time steps can
generate an enormous amount of particle- and field-based data
for post-processing and analysis. Achieving high-performance I/O
for this data, effectively managing it on disk, and interfacing it
with analysis and visualization tools can be challenging, especially
for domain scientists who do not have I/O and data management
expertise. We present the H5hut library, an implementation of
several data models for particle-based simulations that encapsu-
lates the complexity of HDF5 and is simple to use, yet does not
compromise performance.

Index Terms—Parallel I/O

I. INTRODUCTION

Particle accelerators have enabled some of the most remark-
able discoveries of the 20th century and are a cornerstone
of research in fields ranging from basic science to applied
biologics. Accelerator-based systems have now been proposed
to address problems related to energy, biology, and the en-
vironment that are of great social importance. The design,
optimization, and operation of these machines—some of the
most complex ever built by mankind—requires both advanced
numerical methods and high-performance computing (HPC)
tools.

Particle-based simulations of accelerators, especially in six
dimensional phase space, generate vast amounts of time-
varying data. Reading and writing enormous datasets for
post-simulation analysis remains challenging, especially on
massively parallel high-performance computing systems. The
HDF5 Utility Toolkit (H5hut) simplifies these I/O tasks by
encapsulating specific data models in an easy-to-use C/C++
and Fortran API that has been tuned to perform and scale
well on modern parallel file systems.

Although we focus on particle accelerator simulations in
this paper, H5hut naturally accommodates any time-varying
data that can be described using particles, rectilinear grids,
or finite element meshes. H5hut has also been integrated
with FastBit [1] indexing technology to accelerate queries of
particle data and with analysis tools such as the ROOT data
analysis framework and both the VisIt and ParaView parallel
visualization tools.

Fig. 1. These volume renderings of plasma density data from a laser
wakefield particle accelerator simulation were visualized from H5hut output
files using VisIt. Features of interest have been extracted and highlighted in
the visualization using state-of-the-art indexing techniques.

II. RELATED WORK

H5hut is built on top of the Hierarchical Data Format
v5 (HDF5) file format and I/O library [2]. HDF5 provides
several important features: it has a self-describing, machine-
independent binary file format; it supports scalable parallel
I/O for MPI codes on a variety of HPC systems; and it works
equally well on workstations or laptop computers. HDF5’s
“object database” data model enables users to focus on high-
level concepts of relationships between data objects rather than
descending into the details of the specific layout of every byte

978-1-4244-8396-9/10/$26.00 ©2010 IEEE.

in the data file.
Another common I/O solution for scientific data is the Net-

work Common Data Form (netCDF) library [3], which offers
flexible data models and machine independence similar to
HDF5. The most recent version, netCDF-4, has adopted HDF5
as its intermediate layer and inherits the parallel capabilities of
HDF5. Prior to that release, the pNetCDF [4] library provided
parallel support for the netCDF-3 file format. We chose to
build on top of HDF5 rather than netCDF because of HDF5’s
richer set of tuning parameters for file layout and parallel I/O
available through its “property list” interface.

The Geodesic Parallel IO (GIO) library [5] has similar
goals for ease-of-use as H5hut, but targets a different science
domain, namely climate modeling. It implements a data model
for geodesic grids using both netCDF-4 and pNetCDF bind-
ings.

The F5 library [6] builds on HDF5 to implement more
complicated data models. It supports a range of grids, meshes,
and fields by providing building blocks based on the concept
of fiber bundles form algebraic geometry [7]. F5 implements
user-defined and compound types in HDF5 to encapsulate
geometric objects, like multi-vectors, and takes advantage
of HDF5’s support for type-casting, endian-conversion, and
transformations on the layout of types. While F5 is intended
to be modular and re-usable rather than to provide specific
data models, it does provide an example usage for particle-
based data models. However, F5 lacks the support that H5hut
has for parallel I/O and for writing large datasets on modern
HPC systems.

The Silo library [8] also provides data model abstractions
on top of the HDF5 and NetCDF libraries. It can represent
many mesh types, variable types, parallel decompositions, and
advanced abstractions such as material volume fractions and
species mass factions. In parallel usage, the Silo library uses
a subset of processors to write out their own file, with a
subsequent write to create a master file that contains links to
those files. Although Silo can support the data models we are
targeting, it has the same drawback as using HDF5 directly,
which is that it provides unneeded features at the cost of
additional complexity.

Both the Parallel Log-structured File System (PLFS) [9]
and the Adaptable I/O System (ADIOS) [10] address the
performance issues of parallel I/O on large HPC systems.
PLFS is well-suited for check pointing, where the state of a
running application needs to be quickly saved to disk in case of
a system failure, and the files may never be read again. It uses
file-per-processor writes to avoid the lock contention problems
that arise with parallel access to shared files, but presents a
virtual shared file by maintaining an index that maps the write
calls from each process to global offsets. Although one could
theoretically write an HDF5 or netCDF file into such a virtual
shared file, it is unclear how that file would perform under
read access. In PLFS, reads require the additional complexity
of querying a global index file to lookup offsets into individual
files in the log-structured container.

ADIOS supports both file-per-processor and collective ac-

TABLE I
OVERVIEW OF H5HUT MODULES

Module Features
Core File and error handling, time steps, file and step attributes.
H5Part Variable-length 1D arrays of particles.
H5Block Rectilinear 3D scalar and vector fields, ghost zones, field

attributes.
H5Fed Adaptively refined tetrahedral and triangle meshes.

cess, and provides flexibility in how I/O is conducted through
parameters specified in an external XML file that is read
by the application at runtime. ADIOS also features perfor-
mance optimizations such as asynchronous I/O, which double
buffers data and offloads I/O operations onto designated I/O
threads, allowing a computational code to continue non-I/O
calculations while I/O is handled in the background. This
optimization would also be possible in HDF5, although it
has not been implemented yet. Although ADIOS provides
interoperability with existing data formats like HDF5 and
netCDF, a post-processing step is necessary to render such
a file from the internal format used by ADIOS.

Unfortunately, neither PLFS nor ADIOS directly support the
specific data models central to the particle-based simulations
we are targeting. The goal of H5hut is to provide these
data models through an easy-to-use API while also offering
competitive parallel I/O performance.

III. DESIGN

H5hut is tuned for writing collectively from all processors
to a single, shared file. Although collective I/O performance
is typically (but not always) lower than that of file-per-
processor, having a shared file simplifies scientific workflows
in which simulation data needs to be analyzed or visualized.
In this scenario, the file-per-processor approach leads to data
management headaches because large collections of files are
unwieldy to manage from a file system standpoint. On a
parallel file system like Lustre, even the ls utility will break
when presented with tens of thousands of files, and perfor-
mance begins to degrade with this number of files because of
contention at the metadata server. Often a post-processing step
is necessary to refactor file-per-processor data into a format
that is readable by the analysis tool. In contrast, H5hut files
can be directly loaded in parallel by visualization tools like
VisIt and ParaView.

H5hut is a veneer API for HDF5: H5hut files are also
valid HDF5 files and are compatible with other HDF5-based
interfaces and tools. For example, the h5dump tool that comes
standard with HDF5 can export H5hut files to ASCII or XML
for additional portability. H5hut also includes tools to convert
H5hut data to the Visualization ToolKit (VTK) format and to
generate scripts for the GNUplot data plotting tool.

A top design priority for H5hut was ease of use, especially
for parallel I/O. The cost of HDF5’s extensive functionality
and flexibility is a complex API that can be daunting to
inexperienced programmers and scientists, even for simple
tasks such as writing out 1D arrays of data. Worse, effective
parallel I/O is further complicated by the variety of data layout
and tuning parameters available in HDF5. By restricting the

1 file = H5OpenFile("particles.h5", H5_O_WRONLY, MPI_COMM_WORLD);
2 H5SetStep(file, 0);
3 H5PartSetNumParticles(file, nparticles);
4 H5PartWriteDataFloat64(file, "x", x);
5 H5PartWriteDataFloat64(file, "y", y);
6 H5PartWriteDataFloat64(file, "z", z);
7 H5PartWriteDataFloat64(file, "px", px);
8 H5PartWriteDataFloat64(file, "py", py);
9 H5PartWriteDataFloat64(file, "pz", pz);

10 H5CloseFile(file);

1 fapl = H5Pcreate(H5P_FILE_ACCESS);
2 H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL);
3 file = H5Fcreate("particles.h5", H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
4 step = H5Gcreate(file, "Step#0", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
5 memspace = H5Screate_simple(1, nparticles, NULL);
6 MPI_Allreduce(&nparticles, &sum, 1, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
7 filespace = H5Screate_simple(1, sum, NULL);
8 MPI_Scan(&nparticles, &offset, 1, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD);
9 H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &sum, NULL);

10 dxpl = H5Pcreate(H5P_DATASET_XFER);
11 H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);
12 dset = H5Dcreate1(step, "x", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
13 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, x);
14 H5Dclose(dset);
15 dset = H5Dcreate1(step, "y", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
16 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, y);
17 H5Dclose(dset);
18 dset = H5Dcreate1(step, "z", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
19 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, z);
20 H5Dclose(dset);
21 dset = H5Dcreate1(step, "px", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
22 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, px);
23 H5Dclose(dset);
24 dset = H5Dcreate1(step, "py", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
25 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, py);
26 H5Dclose(dset);
27 dset = H5Dcreate1(step, "pz", H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT);
28 H5Dwrite(dset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, pz);
29 H5Dclose(dset);
30 H5Pclose(dxpl);
31 H5Sclose(memspace);
32 H5Sclose(filespace);
33 H5Gclose(step);
34 H5Fclose(file);
35 H5Pclose(fapl);

Fig. 2. For writing out a typical particle array with six coordinates (position and momentum), H5hut (top) uses only 10 lines of code, while equivalent
HDF5 calls (bottom) for implementing the same functionality and performance tunings require at least 35 lines.

usage scenario to particle-based simulations, H5hut encapsu-
lates much of the complexity of HDF5 to present a simple
interface, thus trading off some flexibility for ease-of-use. The
code example in Figure 2 shows how 10 lines of H5hut calls
can encapsulate the same functionality of 35 lines of HDF5
calls for writing a simple 1D array of particles. Also, we
believe that H5hut’s more verbose function names and fewer
arguments per function (design choices that are shared by
pNetCDF) produce code that is more readable for a domain
scientist.

An H5hut file consists of a series of “time steps,” which are
HDF5 groups that are added sequentially to the file root. Each
time step can hold multiple datasets, including 1D and 3D
arrays and finite element data, of either 32- or 64-bit integer

or floating point values. Attributes can be attached to the file
or to an individual time step. See Table I for an overview of
H5hut modules.

The H5Part module provides the data model for 1D arrays
of particles. For writes, each MPI task can specify the number
of particles it owns and its sequential “view” (in MPI-IO
parlance) of the on-disk dataset is automatically calculated (as
shown in Figure 2). For reads, a canonical view can be selected
that evenly distributes the particles in a dataset across all tasks.
In both cases, the user can also manually specify the start and
end offsets of each task’s view, or can specify a point selection
using an array of offsets.

The H5Block module provides a data model for scalar
and vector fields on rectilinear 3D grids. Again, a view

file = H5OpenFile("fields.h5",
H5_O_WRONLY, MPI_COMM_WORLD);

H5SetStep(file, 0);
H5Block3dSetView(file,
xrank*XDIM, (xrank+1)*XDIM - 1,
yrank*YDIM, (yrank+1)*YDIM - 1,
zrank*ZDIM, (zrank+1)*ZDIM - 1);

H5Block3dWriteScalarFieldFloat64(
file, "Q", q);

H5Block3dWrite3dVectorFieldFloat64(
file, "E", ex, ez, ey);

H5CloseFile(file);

Fig. 3. An example of H5Block calls for writing out a 3D grid.

file = H5OpenFile("mesh.h5",
H5_O_WRONLY, MPI_COMM_SELF);

H5FedAddMesh(file, H5_TETRAHEDRAL_MESH);
H5FedBeginStoreVertices(file, nvertices);
int i;
for (i = 0; i < nvertices; i++) {

H5FedStoreVertex(file, -1, Vertices[i].P);
}
H5FedEndStoreVertices(file);
H5FedBeginStoreElements(file, nelems);
for (i = 0; i < nelems; i++) {

H5FedStoreElement(file, Elems[i].vids);
}
H5FedEndStoreElements(file);
H5FedAddLevel(file);
H5FedBeginRefineElements(file);
for (i = 0; i < nelems2refine; i++) {

H5FedRefineElement(file, Elems2Refine[i]);
}
H5FedEndRefineElements(file);
H5FedCloseMesh(file);
H5CloseFile(file);

Fig. 4. An example of H5Fed calls for writing out a tetrahedral mesh wih
one level of refined elements.

is used to represent which block of the grid is owned by
each task. The example in Figure 3 shows how to create
a view with a fixed block size of (XDIM,YDIM,ZDIM)
for every task, and where each task has been assigned an
index (xrank,yrank,zrank) into the grid. Ghost zones of
arbitrary dimension can be represented as overlapping views,
and H5Block features an algorithm to “reduce” these ghost
zones so that all tasks’ views are disjoint, thus eliminating
redundant writes for the ghost zones.

The H5Fed module of H5hut provides a data model for
adaptively refined tetrahedral and triangle meshes. Key fea-
tures of H5Fed are tags, i.e. data associated with entities,
and access to all up- and downward adjacencies. No intrinsic
limits exist on the number of vertices, elements and level
of refinements and multiple meshes can be stored in the
same H5hut file. H5Fed is aggressively optimized for minimal
memory and disk usage. Information that can be computed
efficently from other data is neither stored on disk nor kept in
memory. Currently, H5Fed only supports serial access, but a
parallel version is in development.

H5hut is also designed to easily facilitate post-simulation
analysis and visualization. H5PartROOT [11] is a tool to
visualize medium scale data produced with H5hut and is based
on the ROOT framework for data analysis developed at CERN.
The main Graphical User Interface (GUI) allows convenient
navigation between time steps and between several files for
quick comparisons at the click of a mouse. Together with
scripting capabilities, H5PartROOT covers almost all analysis
task in particle accelerator design and optimization. The basic
functionality of the tool ranges from plotting one-, two-, and
three-dimensional particle distributions to line plots of step
attributes such as emittance (projected, slice and screen), RMS
beam size and centroid position, which are either read in
directly from file or reconstructed from the particle distribution
at the current time step. More sophisticated analysis tasks are
possible using the corresponding ROOT classes.

Figure 1 shows an example of laser wakefield simulation
data in H5hut format that has been rendered by VisIt. VisIt [12]
is an open-source, high-performance, scalable visualization
and analysis package for processing scientific data. It has been
demonstrated to efficiently render terabytes of multi-variate
scientific datasets on large HPC systems, and features plugins
that directly import particle and field data in parallel from
H5hut files.

IV. APPLICATIONS

In the following two subsections, we illustrate two specific
applications that write out as much as terabytes of particle
and field data. In both cases, an I/O solution using H5hut was
deployed using fewer lines of code than if the I/O routines
had been written from scratch in HDF5. Additionally, the
performance tuning we performed in the HDF5 and MPI-IO
layers could be implemented once in H5hut to the benefit of
both applications. In the final subsection, we describe how
H5hut files can be augmented with bitmap indices to accelerate
complex analysis tasks.

A. OPAL

OPAL (Object Oriented Parallel Accelerator Library) is a
tool for simulating charged-particle optics in large accelerator
structures and beam lines [13]. OPAL is based on IP2L [14]
and provides a data parallel approach for particles, fields and
associated operators. OPAL is built from the ground up as
a parallel application exemplifying the fact that HPC is the
third leg of science, complementing theory and the experiment.
This third leg is made possible now through the increasingly
sophisticated mathematical models and evolving computer
power available on the desktop and in scientific computing
centers.

The data produced by OPAL are in general multivariate
and describe a time-dependent, six-dimensional phase space.
The time evolution of this space is governed by internal
and external electromagnetic fields according to Maxwell’s
equations [15]. OPAL uses an FFT-based direct solver and a
pre-conditioned conjugate gradient algorithm [16] to calculate
the 3D space charge. Production runs of OPAL codes use

several thousands of cores, on the order of 109 simulation
particles, and mesh resolutions on the order of 10243, which
can be saved for post-run analysis using H5hut.

B. MC4

MC4 is a parallel particle-mesh based cold dark matter
(CDM) code based on MC2 [17] developed by Salman Habib
(LANL), Katrin Heitmann (LANL), Robert Ryne (LBNL),
and Viktor Decyk (UCLA). One of the goals of MC4 is to
explore similarities between beam dynamics and astrophysics
simulations and further develop IP2L [14] in order to perform
largest scale simulations in the two research areas.

MC4 makes use of the Friedmann - Lemaı̂re - Robertson -
Walker (FLRW) metric

ds2 = c2dt2−a(t)2dx2,

which is an exact solution of Einstein’s field equations of
general relativity. It describes a simply connected, homo-
geneous, isotropic expanding or contracting universe. The
solution method splits the Hamiltonian into two pieces

H = Hstream +Hgav.

The gravitational component is solved as a Poisson problem
with periodic boundary conditions, while the streaming com-
ponent uses a second order Leap Frog integrator. MC4 is
written entirely in C++ and makes use of the IP2Lframework
for parallel particle and field interactions. MC4 currently
achieves scalable parallel performance for maximum values
of Nparticles = Ngrid = 40963 using O(10,000) cores, and uses
H5hut to output several terabytes of particle and field data
per time step. We are working toward problem sizes of
Npartcles = Ngrid = 81923 or even larger using O(100,000)
cores.

C. Laser Wakefield Analysis

Analysis and knowledge discovery from large, complex,
multi-variate laser wakefield particle accelerator simulation
data is a challenging task [18]. Researchers are interested in
identifying beams of high-energy particles formed during the
coarse of the simulations. While H5hut enables the output of
large arrays of particle and field data from such simulations,
efficient and accurate analysis of that data requires the ability
to extract subsets that meet multi-dimensional range queries.
For example, high-energy particles in laser wakefield data can
be selected by thresholding for large momenta in the direction
of the beam.

HDF5-FastQuery [19] is a high-level API that provides the
ability to perform multi-dimensional indexing and searching
on large H5Part datasets. It leverages an efficient bitmap
indexing technology called “FastBit” [1] that is state-of-the-
art in the database community. Bitmap indices are especially
well suited for interactive exploration of large-scale read-only
data. Storing the bitmap indices directly into the H5hut file
significantly speeds up accessing subsets of multi-dimensional
data and allows for portability of the indices across multiple
computer platforms.

HDF5-FastQuery allows users to efficiently execute com-
plex and compound range queries like

(energy > 105) && (70 < pressure < 90)

and retrieve only the subset of elements in an H5Part dataset
that meet the query conditions. Compared with other indexing
schemes, compressed bitmap indices are compact and well
suited for searching over multi-dimensional data even for
arbitrarily complex combinations of range conditions.

V. PERFORMANCE AND SCALABILITY

A key strategy for bringing single-shared-file performance
up to the level of a file-per-processor approach is to employ
“collective” optimizations, which have a long history of use in
different MPI-IO implementations (see [20] for an overview).
In general, collective optimizations use the additional infor-
mation provided by a complete view of an I/O operation to
decrease the number of I/O accesses and reduce latency.

By default, H5hut sets the MPI-IO “virtual file driver” in the
parallel HDF5 layer to collective mode. This enables collective
buffering, an optimization that assigns a subset of MPI tasks
to act as “aggregators”. Aggregators gather smaller, non-
contiguous accesses into a larger, contiguous buffer in the first
phase, and in the second phase write this buffer to the file sys-
tem. On a system with a tuned collective buffering algorithm in
the MPI-IO library, this can achieve bandwidths close to those
of a file-per-processor approach. Most MPI-IO libraries use a
heuristic to determine whether to enable collective buffering,
but accept a “hint” to force collective buffering on. For
instance, on a Cray XT system with a Lustre file system and
version 3.2 or greater of the Message Passing Toolkit (MPT),
setting the environment variable MPICH_MPIIO_HINTS to
"romio_cb_write=enable,romio_cb_read=enable" will en-
able collective buffering.

We ran experiments on two machines, both with Lustre
parallel file systems. JaguarPF is a Cray XT5 located at Oak
Ridge National Laboratory with 672 Object Server Targets
(OSTs). Franklin is a Cray XT4 located at the National Energy
Research Scientific Computing Center with 48 OSTs.

Figure 5 shows the results of an experiment using the
MC4 application that compares H5hut shared-file performance
against a synthetic file-per-processor test that writes the same
amount of data. This synthetic test was run using the IOR
benchmarking utility [21]. Because the Lustre file system sets
a hard limit of 160 OSTs over which a shared file can be
striped, we also restricted IOR to use only 160 OSTs on
JaguarPF (out of the 672 available).

We used IOR in POSIX mode, which means it can write a
large amount of data into the OS write buffer, then return a
bandwidth that is actually a measure of the memory bandwidth
and not the I/O bandwith. To mitigate this effect, we modified
IOR to allocate and touch a dummy array that filled 75% of
available system memory. In previous experiments, we have
found that this memory policy defeats the OS write cache
during benchmarking. This step is necessary to accurately
simulate HPC applications that use a significant portion of

 0

 2

 4

 6

 8

 10

 12

 14

 16

1024 Cores, 320GB File
10243 Particles x 10 Timesteps

8192 Cores, 2TB File
40963 Particles x 1 Timestep

W
rit

e
Ba

nd
wi

dt
h

(G
B/

s)
JaguarPF

H5hut
IOR

 0

 2

 4

 6

 8

 10

 12

 14

 16

1024 Cores, 320GB File
10243 Particles x 10 Timesteps

8192 Cores, 2TB File
40963 Particles x 1 Timestep

Franklin

Fig. 5. A comparison of write bandwidths for H5hut output from the MC4 cosmology application and a simulated file-per-processor output using the IOR
benchmark tool. Because of variability caused by contention with other users, we ran 4 to 7 trials and show the range and median value.

 0

 4000

 8000

 12000

 16000

 1000 2000 4000 8000 16000

 238 471 936 1868 3731

Ba
nd

wi
dt

h
(M

B/
s)

Cores

Read
File Size (GB)

 0

 4000

 8000

 12000

 16000

 1000 2000 4000 8000 16000

 238 471 936 1868 3731

Ba
nd

wi
dt

h
(M

B/
s)

Cores

Write
File Size (GB)

Fig. 6. Read and write bandwidths for a synthetic H5Block weak scaling study, scaling to 16,000 cores on Franklin and 3.7TB of data. The read times
include a halo exchange, to transmit a ghost region of cells among neighboring blocks. The solid line shows the mean bandwidth, while the shaded region
shows the minimum and maximum over repeated trials.

memory for their data and therefore would not leave memory
available for OS write buffers.

For the write configurations we tested, file-per-processor
performance dropped at higher core counts on JaguarPF, and
H5hut’s shared-file approach performed better. This result is
corroborated by a study by Yu et al. [22], which found that
file-per-processor performance lagged behind shared-file on
JaguarPF when more than 96 OSTs were used. On Franklin,
the file-per-processor approach maintained its performance
out to 8,192 cores, but H5hut came within 75% of file-per-
processor performance.

In another experiment (see Figure 6), we conducted a
weak scaling study of the H5Block module up to 16,000-
way concurrency and 3.7TB of data on Franklin. Because

each processor writes the same size block, we are able to
use a “chunked” layout in HDF5 (similarly called an “N-1
segmented” layout by Bent et al. [9]). A chunked dataset’s
elements are stored in equal-sized chunks within the file,
allowing fast access to subsets of dataset elements, as well as
the application of compression operations. HDF5 also allows
the chunks to be padded out to a multiple of the Lustre stripe
size by means of the “alignment” tuning property. When linked
against the Lustre API, H5hut can automatically detect the
stripe size of a file and set the HDF5 alignment property to
this value.

We also bypassed the MPI-IO library by using a different
“virtual file driver” (VFD) in the HDF5 layer called MPI-
POSIX, which can be selected in H5hut with a flag at file open.

file = H5OpenFile("fields.h5",
H5_O_WRONLY | H5_VFD_MPIPOSIX,
MPI_COMM_WORLD);

H5Block3dSetChunk(file, XDIM, YDIM, ZDIM);
H5SetThrottle(file, 8);

Fig. 7. These H5hut calls enable the MPI-POSIX VFD, chunking, and
throttling techniques used in the H5Block experiment.

The MPI-POSIX driver uses direct POSIX (e.g. fwrite) calls
that are coordinated within the HDF5 library via MPI calls
in a way that is analogous to the MPI-IO library operating
in “independent” mode. In some scenarios, the lighter-weight
MPI-POSIX driver exhibits better performance, especially on
systems with poor MPI-IO collective performance, as was the
case on the Cray XT prior to the release of MPT 3.2.

One problem with using independent rather than collective
access to the file is that all MPI tasks, not just a subset, are
communicating with the OSTs. With only 48 OSTs available
on Franklin, 16,000 tasks caused time-outs in the Lustre client
when writing so much data. To mitigate this, we introduced
a “throttling” feature into H5hut that delays the write calls
in a cyclic fashion by passing an MPI token. For example,
setting the throttle factor to 8 for 16,000 tasks caused writes
to be issued in batches of 2,000 tasks, which could complete
before hitting the time-out limit. While it is unfortunate that
the time-out problem is exposed at higher layers of the I/O
software stack, we think it better to implement a workaround
like throttling at the I/O library layer rather than to require
applications to solve the problem independently.

Overall, our H5Block experiment showed near-peak per-
formance on Franklin, which at the time of the experiment
had 12GB/s peak read and write bandwidth as measured by
daily IOR monitoring tests. The read phase also included
a halo exchange (with a radius of one cell). At 16,000-
way concurrency, the communication overhead of the halo
exchange caused a drop in read performance. At 8,000-way
concurrency, there was a dip in write performance, although
we were only able to collect one data point and suspect that
it suffered from contention with other users. Otherwise, we
saw bandwidth increasing with concurrency, up to the 12GB/s
peak.

VI. CONCLUSION

We have demonstrated how the H5hut library can be used
to efficiently output terabytes of data from particle- and field-
based simulations at up to 16,000-way concurrency on modern
HPC systems. Moreover, implementing these I/O solutions
with H5hut is easier and requires fewer lines of code than with
HDF5 alone, and the resulting shared-file storage interfaces
well with analysis and visualization tools.

ACKNOWLEDGMENT

This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725;
and resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] K. Wu, E. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Transactions on Database Systems, vol. 31,
pp. 1–38, 2006.

[2] The HDF Group, “Hierarchical data format version 5,” 2000-2010, http:
//www.hdfgroup.org/HDF5.

[3] Unidata, “netCDF (network Common Data Form),” http://www.unidata.
ucar.edu/software/netcdf.

[4] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A high-performance scientific I/O interface,” in SC ’03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, 2003, p. 39.

[5] K. Schuchardt, “Data services for the Global Cloud Resolving Model
(GCRM),” https://svn.pnl.gov/gcrm.

[6] W. Benger, “The Fiber Bundle HDF5 Library,” http://www.fiberbundle.
net/.

[7] W. Benger, A. Hamilton, M. Folk, Q. Koziol, S. Su, E. Schnetter,
M. Ritter, and G. Ritter, “Using geometric algebra for navigation in
Riemannian and hard disc space,” in Proceedings of Computer Graphics,
Computer Vision and Mathematics, Plzen, Czech Republic, 2008, pp.
80–92.

[8] Lawrence Livermore National Laboratory, “Silo: A mesh and field I/O
library and scientific database,” https://wci.llnl.gov/codes/silo.

[9] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem for parallel
applications,” in SC ’09: Proceedings of the 2009 ACM/IEEE Conference
on Supercomputing, Portland, Oregon, 2009.

[10] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, metadata
rich IO methods for portable high performance IO,” in IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), Rome,
Italy, 2009.

[11] T. Schietinger, “H5PartROOT: a ROOT based graphical user inter-
face for H5Part,” 2006–2010, http://amas.web.psi.ch/tools/H5PartROOT/
index.html.

[12] Lawrence Livermore National Laboratory, “Visit Visualization Tool,”
https://wci.llnl.gov/codes/visit.

[13] A. Adelmann et al., “The OPAL (Object Oriented Parallel Accelerator
Library) Framework,” Paul Scherrer Institut, Tech. Rep. PSI-PR-08-02,
2008–2010.

[14] A. Adelmann, “The IPPL (Independent Parallel Particle Layer) Frame-
work ,” Paul Scherrer Institut, Tech. Rep. PSI-PR-09-05, 2009.

[15] J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang,
“Beam dynamics in high intensity cyclotrons including neighboring
bunch effects: Model, implementation, and application,” Phys. Rev. ST
Accel. Beams, vol. 13, no. 6, p. 064201, Jun 2010.

[16] A. Adelmann, P. Arbenz, and Y. Ineichen, “A fast parallel Poisson solver
on irregular domains applied to beam dynamics simulations,” Journal
of Computational Physics, vol. 229, no. 12, pp. 4554–4566, 2010.

[17] K. Heitmann, P. M. Ricker, M. S. Warren, and S. Habib, “Robustness of
cosmological simulations i: Large scale structure,” Astrophys. J. Suppl.
160, 28, 2005, [arXiv:astro-ph/0411795].

[18] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. R. Geddes,
E. Cormier-Michel, S. Ahern, G. H. weber, P. Messmer, H. Hagen,
B. Hamann, and E. W. Bethel, “High performance multivariate visual
data exploration for extemely large data,” in SC ’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, Austin, Texas, 2008,
LBNL-716E.

[19] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and E. W. Bethel, “HDF5-
FastQuery: Accelerating complex queries on HDF datasets using fast
bitmap indices,” in Proceedings of the 18th International Conference
on Scientific and Statistical Database Management, July 2006, LBNL-
59602.

[20] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous accesses
in MPI-IO,” Parallel Computing, vol. 28, no. 1, pp. 83–105, 2002.

[21] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, Austin, Texas, 2008.

[22] W. Yu, J. S. Vetter, and S. Oral, “Performance characterization and
optimization of parallel I/O on the Cray XT,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2008.

