
1

Comparing GPU Implementations of Bilateral
and Anisotropic Diffusion Filters

for 3D Biomedical Datasets
Mark Howison

Computational Research Division
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720, USA
mhowison@lbl.gov

Abstract—We compare the performance of hand-tuned
CUDA implementations of bilateral and anisotropic dif-
fusion filters for denoising 3D MRI datasets. Our tests
sweep comparable parameters for the two filters and
measure total runtime, memory bandwidth, computational
throughput, and mean squared errors relative to a noiseless
reference dataset.

I. INTRODUCTION

Denoising is a important step in many image pro-
cessing pipelines for brain magnetic resonance imaging
(MRI). We focus on two 3D filters, the bilateral filter
and the anisotropic diffusion filter, that remove noise
and smooth features within MR images while at the
same time preserving edges in the image. Our imple-
mentation of these stencil-based algorithms are hand-
tuned in NVIDIA’s CUDA programming language to
take advantage of the high computational throughput of
GPU coacceleraters.

This work was supported by the Director, Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Disclaimer: This document was prepared as an account of work
sponsored by the United States Government. While this document
is believed to contain correct information, neither the United States
Government nor any agency thereof, nor The Regents of the Univer-
sity of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University
of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California.

Both filters we investigate offer several tunable param-
eters, and we perform parameter sweeps that identify
both optimal runtime and noise reduction. To measure
noise reduction, we use MR images from a simulated
brain database called BrainWeb [1], which include a
noiseless reference dataset and a dataset with realistic
MRI noise added.

One application scenario for our system is rapid
turnaround of MRI data smoothing over a range of
filtering parameters. The idea is that between data ac-
quisition and physician inspection there is a battery of
filtering operations; our highly tuned implemenation can
minimize the time required for such a filtering battery,
or could enable real-time, interactive exploration of filter
parameter choices. Figure 1 shows an example of the
output from a filtering battery over many combinations
of parameters for the bilateral filter.

II. BACKGROUND AND RELATED WORK

Image smoothing, or denoising, is a fundamental op-
eration in computer vision and image processing. One
of the simplest approaches to smoothing is to perform
averaging of nearby points to compute an estimate of
the noiseless signal. A “box filter” computes an estimate
using equal weights for all the nearby sample points. A
better estimate of the average would be to afford greater
weights to nearby points and smaller weights to more
distant points. The Gaussian low-pass filter performs
such an averaging using a set of weights defined over
a normal distribution such that points nearby the target
sample point have a greater contribution to the average
than points far away from the sample point. For an image
I and sample point p, the new value in the filtered image
I′ can be computed as

I′p = ∑
q∈Np

Gσ (‖p−q‖)Iq

2

Fig. 1. These images show a zoomed-in view of three orthogonal slices 3D brain MR images smoothed with our bilateral filter implementation.
The first column shows the original data, and the subsequent columns show smoothed versions for r = {1,2,4,8,16}. The rows show varying
standard deviations in the photometric range, σr = {5%,10%,15%,20%,25%}.

where Ns is a neighborhood of points around p and Gσ

is a Gaussian kernel with standard deviation σ .
This type of smoothing is isotropic in the sense that

the filter application is performed independent of the
underlying signal. The result is that it smooths equally
in all directions, which has the unfortunate side effect of
blurring edges. We have implemented two well-known
image denoising filters that try to solve the edge blurring
problem: bilateral filtering and anisotropic diffusion.

A. Bilateral Filtering

Bilateral filtering, as defined by Tomasi [2], aims to
perform anisotropic image smoothing using a low-cost,
non-iterative formulation. The idea is to smooth images

by computing the influence of nearby points in a way that
removes noise “within regions,” and that does not have
the undesirable property of smoothing edge features.
This formulation uses a straightforward, tunable estimate
for region boundaries: a Gaussian-weighted difference in
the range of the signal, or photometric space. Wherever
a sharp edge exists, there will be a large difference in
signal that will correspond to a small Gaussian weight,
thereby attenuating the smoothing. The range estimate is
combined with a traditional Gaussian-weighted distance
function in the spatial domain to lessen the contribution
of more distant voxels.

In the bilateral filter, the output at each pixel location
p in an image I is the weighted average of the influence

3

of nearby pixels in the neighborhood Ns with “radius”
r (e.g., for r = 1 the 3× 3× 3 cube centered at p).
The “influence” is computed as the product of two
Gaussian kernels, one in the spatial domain (Gσd) and
one in the photometric range (Gσr). These Gaussian
kernels attenuate the influence of nearby points such
that those nearby in geometric or signal space have
greater influence, while those further away in geometric
or signal space have less influence. The filtered image I′

is computed as

I′p =
1

Wp
∑

q∈Np

Gσd (‖p−q‖)Gσr(|Ip− Iq)Iq

where Wp is a normalization factor that sums all of the
Gaussian weights,

Wp = ∑
q∈Np

Gσd (‖p−q‖)Gσr(|Ip− Iq|).

While it is possible to precompute the weights in Wp
contributed by Gσd , the contributions from Gσr are not
known a priori as they depend on the photometric values
of a particular image.

In earlier work, we extended the original Tomasi
bilateral filtering formulation for use on 3D volumetric
data and compared its scalability and performance on
shared- and distributed-memory platforms using several
different parallel programming models and execution
frameworks [3].

B. Anisotropic Diffusion

Anisotropic diffusion is a process similar to isotropic
diffusion, or Gaussian smoothing, except that it makes
use of an additional “conductance” function that reg-
ulates how much diffusion takes place at different lo-
cations in the data. This is useful for edge-detection
and for edge-preserving denoising of images because
the conductance function can be chosen to limit the
diffusion at voxels with sudden changes in value (i.e.
large gradients) and these areas typically correspond to
edges.

The PDE for modeling anisotropic diffusion is similar
to the heat equation,

∂u
∂ t

= ∇
2u = ∇ ·∇u,

but scales the gradient by the conductance function g to
regulate the amount of diffusion,

∂u
∂ t

= ∇ · (g(|∇u|)∇u).

In this formulation, the conductance function is a scalar-
valued function whose domain is also scalar (i.e. it oper-
ates on the magnitude of the gradient |∇u|). Technically,

this makes the Perona-Malik filter isotropic: it diffuses
the same amount in all directions, but with different
magnitudes at different voxels (i.e., non-homogenous
might be a better term). A truly anisotropic filter would
use a conductance tensor that operates on the vector-
valued gradient. For example, the equation could be
rewritten as

∂u
∂ t

= ∇ · (D∇u),

for a matrix D with eigenvalues and eigenvectors that
depend on ∇u. Setting an eigenvalue to 1 will cause
diffusion to take place in the direction of its correspond-
ing eigenvector. For edge-preserving diffusion in 2D,
Weickert [4] suggests using the matrix

D =
[

~v1 ~v2

][
λ1 0
0 λ2

][
~vT

1

~vT
2

]
constructed from the eigenvectors and eigenvalues

~v1‖∇uσ , ~v2 ⊥ ∇uσ , λ1 = g(|∇uσ |), λ2 = 1,

defined on a Gaussian smoothed version of the image uσ .
This preliminary smoothing helps regularize the image
to prevent artifacts in the numerical solution of the PDE,
as proved by Catté et al [5].

Perona and Malik [6] give an inexact discretization
of the continuous PDE for anisotropic diffusion by
restricting the gradient approximation to a lattice. By
inexact, they mean that they are actually solving a PDE
that looks (in 2D) like

∂u
∂ t

= ∇ · (g(ux)ux,g(uy)uy) .

Their stencil operation for diffusing an image value at
location p in image I is

It+1
p = It

p +∆t ∑
q∈Np

g(It
q− It

p)(I
t
q− It

p),

where ∆t is the timestep and Np is the neighborhood of
points that are ±1 lattice point from p in each direction:
it is a 2-point stencil in 1D, 4-point in 2D, 6-point in
3D, etc. Perona and Malik claim that they noticed no
difference between this simplified approach and more
complicated approximations of the gradient. One of their
motives for using a lattice is because it is the “natural
choice for analog VLSI implementations.” Of course, it
is also natural to think of pixels or voxels in an image
as nodes of a lattice.

Voci et al. [7] and Gerig et al. [8] suggest enhancing
the numerical approximation by sampling from a larger
neighborhood, for instance by including all of the diago-
nal lattice directions. This is an 8-point stencil in 2D or
26-point in 3D, and the additional accuracy comes with

4

a computational cost. A stencil operation of this type is
similar to Perona and Malik’s, but adds a normalization
factor lq that corrects for the length of the diagonal
between p and q:

It+1
p = It

p +∆t ∑
q∈Np

g(It
q− It

p)
lq

(It
q− It

p).

The normalization factor also accomodates datasets with
non-uniform elements, such as in 3D MR images where
the resolution is lower in the z-dimension. However,
some implementors warn that images acquired with
excessively skewed ratios between resolutions, such as
1 : 2 or greater, contain insufficient information to be
used as 3D datasets in biomedical settings (see [9] pg.
242 for a discussion).

In contrast to Perona and Malik’s “inexact” approach,
Weickert and Benhamouda [10] describe a discretization
that does calculate g(|∇I|) but requires two stencil opera-
tions. The first pass computes the gradient approximation
(by central difference), applies the conductance function,
and stores the value in a temporary buffer image G:

Gp = g

 ∑
(q+,q−)∈Np

(
Iq+− Iq−

2(lq+ + lq−)

)2
 .

The pairs (q+,q−) are the locations on either side of p
in a given lattice direction. Again, the stencil accomo-
dates non-uniform data elements with the normalization
factors l·. The second pass uses these pre-computed
conductance values in place of the conductance function
in the previous stencils:

It+1
p = It

p +∆t ∑
q∈Np

(Gt
q−Gt

p)
lq

(It
q− It

p).

Weickert and Benhamouda also establish an upper limit
on choosing a stable timestep for an N-dimensional
image:

∆t <
1

∑
N
i=1

2
l2
i

,

where {l1, . . . , lN} are the normalization factors for each
lattice direction. For an evenly spaced 3D grid, ∆t = 1/8.

The original conductance functions given by Perona
and Malik are

gPM1(t) = e−|t|/κ2
,

gPM2(t) =
1

1+(t/κ)2 .

The first function preserves high-contrast edges better
than low-contrast ones, while the second preserves larger

regions better than smaller ones. Voci et al. suggest using
the Charbonnier conductance function,

gChar(t) =
1√

1+(t/κ)2
,

in place of Perona and Malik’s second function.
Black et al. [11] recast the Perona–Malik filter in

terms of robust statistics in order to derive even better
edge-stopping conductance functions. The premise is that
an image is made up of regions with fairly constant
values separated by edges. Within a region, the difference
between a given element and its neighbors is small and
normally distributed. If a neighbor lies on the other side
of an edge, however, the difference becomes large and is
a statistical outlier of the distribution. Black et al. liken
anisotropic diffusion to the problem of minimizing an
error norm over the image. This connection suggets two
other candidates for conductance functions. The first is
derived from Tukey’s biweight norm,

gTukey(t) =

 1
2

(
1− t2

5κ2

)2
, |t| ≤

√
5κ,

0, otherwise,

and the second from the Huber min-max norm,

gHuber(t) =

{
1/κ, |t| ≤ κ,

1/|t|, otherwise.

Black et al. demonstrate an image that after 100 iter-
ations of diffusion has visibly sharper edges with the
Tukey function than with the gPM2 function.

C. GPU Computing

A GPU implementation of bilateral filtering appears
in [12]. Using a combination of vertex and fragments
shaders, it performs filtering on a data structure called a
“bilateral grid” that contains a reduced-size approxima-
tion of the original data, thereby achieving good perfor-
mance and memory utilization. In contrast, our work is
a direct implementation in CUDA of bilateral filtering
in 3D, rather than an approximation, which is more
appropriate for a clinical medical imaging application.

Jiang et al. [13] study autotuning of a matrix multi-
plication kernel on GPUs. Their system takes a matrix
multiplication kernel written in the BrookGPU language
[14], a portable high-level programming language for
GPUs, and uses techniques to improve data reuse so
as to leverage SIMD GPU instructions. They present
an algorithm to search the tuning space that relies
on a combination of algorithm- and platform-centric
heuristics with adaptive search to find the combination
of tuning parameters that results in optimal performance.

5

More recently, Ryoo presents a set of performance
metrics to estimate the performance of a given optimiza-
tion configuration for CUDA-based code running on a
GPU [15]. They compute two metrics, efficiency and
utilization, by examining developer-readable assembler
and GPU resource utilization maps produced by the
Nvidia CUDA compiler. The basic idea is to estimate
values for each of these metrics by examining resource
utilization maps. Then, to avoid an exhaustive search of
the optimization space, they estimate the relative perfor-
mance change by altering parameters that contribute to
both metrics. They prune the size of the search space by
examining only those configurations that have only high
levels in both metrics.

Sumanweera et al. [16] present optimizations for an
FFT kernel on the GPU. The implementation is based on
OpenGL fragment and vertex shaders rather than CUDA.
They solve a load balance problem, where the aim is to
keep both stages of a two-stage algorithm filled with
work, by automatically searching for the right balance
between workload at each of these two processing stages
and choosing the one with the best performance. Our
work, in constrast, investigates optimization that might
occur well before this type of autotuning. Namely, we
evaluate the performance impact of fundamental algo-
rithmic parameter choices.

Stone et al. [17] present results from optimizing a
MRI reconstruction algorithm on a Quadro FX 5600.
They compute anatomically constrained reconstructions
of non-cartesian MRI data. Their CUDA-based algorithm
performs a least-squares minimization using conjugate
gradient iterations along with FFT, inverse FFT, BLAS
and sparse BLAS operations. They experiment with a
number of optimizations: register allocation, coalesced
memory access, use of constant memory, fast math
operations, and finally exhaustive search for optimal
tiling, number of threads per block and loop unrolling
factors. They report a speedup of ≈ 13× over a CPU
implementation for a 1283 dataset. While we use similar
GPU optimizations, we use a different stencil-based al-
gorithm with a different data access pattern. From a MR
imaging pipeline perspective, the bilateral or anisotropic
diffusion filter could be used as a complementary post-
processing technique after the data has been acquired and
processed using their non-cartesian acquisition method.

III. ARCHITECTURE

Our GPU implementations are written in the highly-
threaded, data-parallel CUDA [18] language, which en-
ables access to GPU architectural resources via a set of
extensions to C. We implement a simple memory tiling
scheme originally described by Rivera and Tseng [19]

to accelerate 3D stencil computations by reusing data
cached in a CUDA thread block’s shared memory. In
order to support bilateral filtering, our implementation
handles stencil widths of arbitrary size. We also imple-
ment utility routines to transfer 3D datasets to and from
CUDA global memory while maintaining the appropriate
padding required by the stencil at boundary locations.
Finally, we pad out the dataset in the fastest moving
dimension to a multiple of the CUDA “warp” size of
32, which is the number of threads that are executed
simaultaneously on each of the GPU’s multi processors.

Our test platform is Tesla, a Sun Fire x4600-M2
connected to an NVIDIA QuadroPlex 2200-S4 located
at the National Energy Research Scientific Computing
Center (NERSC). The QuadroPlex unit contains four
NVIDIA FX-5800 Quadro GPUs each with 240 “CUDA
cores” across 30 “multi processors,” which consist of
8 processors that each execute the same instruction.
Instructions are batched into “warps” of 32, which
complete every 4th clock cycle, in what NVIDIA terms
Single Instruction Multiple Threads (SIMT). The FX
5800 has 4GB of GDDR3 memory with 102GB/s of
theoretical memory bandwidth. We used a single GPU
for our tests.

One disadvantage of using a GPU coprocessor to
accelerate computations is the cost of transferring data
between main memory on the host system and the GPU’s
memory. This takes place over a PCI-Express bus, which
on Tesla is an 8 lane PCIe v1 bus with a maximum
transfer rate of 2GB/s, a factor of 50× less than the
memory bandwidth of the onboard GPU memory. We
measured the average time to copy the 181×217×181
BrainWeb dataset (27.2MB after conversion to 4-byte
float values) to GPU memory as 0.04s, and 0.06s to
copy the data back after filtering, for a round trip time
of 0.1s. This corresponds to a memory bandwidths of
678MB/s to and 452MB/s from the GPU memory. All
runtimes we report later do not include this constant cost
of data transfer, and measure only the runtime of the
actual CUDA kernel.

IV. RESULTS

BrainWeb [1], [20] provides a reference MR image
and corresponding noisy images that have been artifi-
cially generated using a mathematical model of real-
world noise. With this reference image, we can calculate
the mean-squared error of the noisy image before and
after applying our denoising filter.

For the bilateral filter, we chose to sweep three pa-
rameters: the filter half-radius r (i.e. spatial support),
the standard deviation σd in the spatial domain, and the
standard deviation σr in the image range.

6

Bilateral Filter

 10

 20

 30

 40

 50

 2 4 6 8 10

Ra
ng

e
σ

Domain σ

r=1

 10

 20

 30

 40

 50

 2 4 6 8 10
Domain σ

r=2

 10

 20

 30

 40

 50

 2 4 6 8 10
Domain σ

r=3

 10

 20

 30

 40

 50

 2 4 6 8 10
Domain σ

r=5

 10

 20

 30

 40

 50

 2 4 6 8 10
Domain σ

r=7

 10

 20

 30

 40

 50

 2 4 6 8 10
Domain σ

r=9

 180

 190

 200

 210

 220

 230

Fig. 2. MSE for the bilateral filter for a parameter sweep over the standard deviations σd and σr and filter radius r. White areas indicate
that the filter increased rather than reduced MSE.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 5 7 9

M
ea

n
Ru

nt
im

e
(s

)

Filter Radius

Cubic Regression
CUDA tiled

CUDA naive

Fig. 3. Mean runtime for the bilateral filter by filter radius. There
is only minor variation of runtime across the standard deviation (σd
and σr) parameters.

For the anisotropic diffusion filter, we implemented
three of the discrete forms of the PDE: the original
form described by Perona and Malik, one with larger
spatial support (26-point in 3D), and the two-pass form
described by Weickert. Additionally, we implemented
four conductance functions: the two given by Perona
and Malik (gPM1 and gPM2), the Charbonnier function
gChar, and the gTukey function given by Black et. al.
For each combination of form and conductance function,
we swept over the following parameters: the number of
iterations N, the size of discrete timesteps ∆t, and the κ

value.
For a dataset I with dimensions X×Y ×Z, we calcu-

lated MSE as
1

XY Z ∑
(
I′s− Is

)2

where I′ is the filtered dataset and I is the noiseless
reference dataset. Although we performed the filtering
on normalized float data on the interval [0,1], we scaled
those values by 255 before calculating MSE to better

represent the deviation in terms of 8-bit integer values
(the original format of our MR images). We measured
the MSE of the unfiltered, noisy dataset as 234.868.

In many configurations, the denoising filters increased
the MSE of the final image relative to the reference
image. These configurations appear as white regions
in the heatmaps in Figures 2 and 4. In contrast, the
configurations that reduced MSE the most appear as
green regions, while red regions indicate where the MSE
was unchanged by filtering.

The most effective configurations for both filters re-
duced the MSE of the noisy image by nearly 30%, from
234.868 to about 173 (see Tables I and II). Although the
lowest MSE values were very close for the two filters,
the bilateral filter ran nearly 5× faster. However, if we
instead look for the anisotropic diffusion configuration
that yielded the greatest reduction in MSE for the least
cost in runtime (i.e. the best “value”), we see that an
MSE of about 187 (within 10% of the lowest MSE)
requires even less time (0.015 s). For the bilateral filter,
the configurations with the best value were identical to
those with the lowest MSE.

In general, the runtime of the bilateral filter scaled
cubicly with filter radius (see Figure 3), although there
was little practical benefit in running at higher radii since
the best MSE reduction occurred at r = 1. In contrast, the
anisotropic diffusion filter scaled linearly with number
of iterations (see Figure 5), and achieved the lowest
MSE with the largest number of iterations we tested. The
choice of discrete scheme and conductance function for
the anisotropic diffusion filter added a constant amount
of variation in the linear scaling.

We also tested a more aggressive memory tiling opti-
mization in which we preloaded a block of neighboring
voxels into the GPU’s shared memory to reduce the
number of redundant memory loads among neighboring
voxels. For larger stencil radii, where there is more

7

TABLE I
LOWEST MSE FOR BILATERAL FILTER

r σd σr MSE Runtime (s)
1 4 23 172.55 0.040
1 3 23 172.56 0.041
1 5 23 172.56 0.041

TABLE II
LOWEST MSE FOR ANISOTROPIC DIFFUSION

N ∆t κ Cond. Scheme MSE Runtime (s)
9 0.025 0.01 PM2 Weickert 173.52 0.206
9 0.025 0.1 PM1 Weickert 174.15 0.207
7 0.025 0.01 PM2 Weickert 174.74 0.160

TABLE III
BEST MSE REDUCTION VS. RUNTIME FOR ANISOTROPIC

DIFFUSION

N ∆t κ Cond. Scheme MSE Runtime (s)
1 0.025 1 PM2 26-Point 188.66 0.015
1 0.025 1 Char 26-Point 188.87 0.015
1 0.025 10 PM2 26-Point 189.12 0.015

opportunity for cache reuse, this netted a small gain.
Memory tiling atually led to worse performance with
the anisotropic diffusion filter because the smaller stencil
size (6-point or 26-point depending on the scheme) offers
less opportunity for cache reuse, and the cost of the
synchronization required after the shared load leads to a
net loss in performance.

V. CONCLUSIONS AND FUTURE WORK

Our analysis of MSE reduction for the bilateral and
anisotropic diffusion filters suggest that it is easy to
choose parameters that either oversmooth or, especially
in the case of the bilateral filter, provide diminishing
returns for the cost in runtime.

In future work, we plan to perform an in-depth anal-
ysis of the tile dimensions used in our shared-memory
cache. Using parameter sweeps similar to those for MSE
presented in this paper, we identify the optimal tile
dimensions for various GPU architectures, including the
forthcoming Fermi architecture.

Additionally, we plan to assess the suitability of these
denoising implementations and parameter choices for
an image processing pipeline where we also perform
segmentation and calculate validation scores.

ACKNOWLEDGMENT

This research used resources of the National Energy
Research Scientific Computing Center (NERSC), which
is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-
05CH11231. Sample data for this work was provided
by the UC Davis Alzheimer’s Disease Center, which
is supported by the National Institutes of Health under
grant No. P30 AG010129.

REFERENCES

[1] M. N. I. McConnel Brain Imaging Center, http://www.bic.mni.
mcgill.ca/brainweb/.

[2] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray
and Color Images,” in ICCV ’98: Proceedings of the Sixth
International Conference on Computer Vision. Washington,
DC, USA: IEEE Computer Society, 1998, p. 839.

[3] E. W. Bethel, “High Performance, Three-Dimensional Bilateral
Filtering,” Lawrence Berkeley National Laboratory, Tech. Rep.
LBNL-1601E, 2009.

[4] J. Weickert, Anisotropic Diffusion in Image Processing.
Stuttgart, Germany: B.G. Teubner, 1998.

[5] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image Selective
Smoothing and Edge Detection by Nonlinear Diffusion,” SIAM
Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193,
1992.

[6] P. Perona and J. Malik, “Scale-Space and Edge Detection Using
Anisotropic Diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629–639, July
1990.

[7] F. Voci, S. Eiho, N. Sugimoto, and H. Sekiguchi, “Estimating
the Gradient Threshold in the Perona-Malik Equation,” IEEE
Signal Processing Magainze, vol. 21, no. 3, pp. 39–46, May
2004.

[8] G. Gerig, O. Kübler, R. Kikinis, and F. A. Jolesz, “Nonlin-
ear Anisotropic Filtering of MRI Data,” IEE Transactions on
Medical Imaging, vol. 11, no. 2, pp. 221–232, June 1992.

[9] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software
Guide: The Insight Segmentation and Registration Toolkit. Kit-
ware, 2003.

[10] J. Weickert and B. Benhamouda, “Why the Perona-Malik filter
works,” Department of Computer Science, University of Copen-
hagen, Tech. Rep. DKIU-TR-97/22, 1997.

[11] M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger,
“Robust Anisotropic Diffusion,” IEEE Transactions on Image
Processing, vol. 7, no. 3, pp. 421–432, March 1998.

[12] J. Chen, S. Paris, and F. Durand, “Real-time Edge-aware Image
Processing with the Bilateral Grid,” in SIGGRAPH ’07: ACM
SIGGRAPH 2007 papers. New York, NY, USA: ACM, 2007,
p. 103.

[13] C. Jiang and M. Snir, “Automatic Tuning Matrix Multiplication
Performance on Graphics Hardware,” in Proceedings of the
Fourteenth International Conference on Parallel Architecture
and Compilation Techniques (PACT), Sep. 2005, pp. 185–196.

[14] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for GPUs: Stream
Computing on Graphics Hardware,” in Proceedings of ACM
Siggraph, August 2004.

[15] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi,
S.-Z. Ueng, J. A. Stratton, and W. mei W. Hwu, “Program
optimization space pruning for a multithreaded GPU,” in CGO
’08: Proceedings of the Sixth Annual IEEE/ACM International
Symposium on Code Generation and Optimization, 2008, pp.
195–204.

[16] T. Sumanaweera and D. Liu, “Medical Image Reconstruction
with the FFT,” in GPU Gems 2, M. Pharr, Ed. Addison Wesley,
Mar. 2005, ch. 48, pp. 765–784.

8

Anisotropic Diffusion

0.001
0.01
0.1

1
10

100

ka
pp

a

26/C

 180

 190

 200

 210

 220

 230

26/PM1 26/PM2 26/T PM/C PM/PM1 PM/PM2 PM/T W/C W/PM1 W/PM2

N=1

W/T

0.001
0.01
0.1

1
10

100

ka
pp

a N=3

0.001
0.01
0.1

1
10

100

ka
pp

a N=5

0.001
0.01
0.1

1
10

100

ka
pp

a N=7

0.001
0.01
0.1

1
10

100

0.025
0.013

0.006
0.003

ka
pp

a

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

dt

0.025
0.013

0.006
0.003

N=9

dt

Fig. 4. MSE for the anisotropic diffusion filter for three discrete schemes: the 26-point stencil (26), Perona and Malik’s (PM), and Weickert’s
(W); and four conductance functions: both of Perona and Malik’s (PM1 and PM2), the Charbonnier (C), and the Tukey biweight norm (T).
White areas indicate that the filter increased rather than reduced MSE.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

M
ea

n
Ru

nt
im

e
(s

)

26/C

CUDA tiled
CUDA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

26/PM1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

26/PM2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

26/T

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

M
ea

n
Ru

nt
im

e
(s

)

PM/C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

PM/PM1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

PM/PM2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

PM/T

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9

M
ea

n
Ru

nt
im

e
(s

)

Iterations

W/C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9
Iterations

W/PM1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9
Iterations

W/PM2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 3 5 7 9
Iterations

W/T

Fig. 5. Mean runtime for the anisotropic diffusion filter by number of iterations and the implementation and conductance function. There
is only minor variation of runtime across the ∆t and κ parameters.

9

[17] S. S. Stone, J. P. Haldar, S. C. Tsao, W. m. W. Hwu, B. P. Sutton,
and Z. P. Liang, “Accelerating advanced mri reconstructions on
gpus,” J. Parallel Distrib. Comput., vol. 68, no. 10, pp. 1307–
1318, 2008.

[18] NVIDIA Corporation, NVIDIA CUDAT M Version 2.1 Program-
ming Guide, 2008.

[19] G. Rivera and C. Tseng, “Tiling optimizations for 3D scientific
computations,” in SC ’00: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing, 2000.

[20] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike, and
A. C. Evans, “Brainweb: Online interface to a 3d mri simulated
brain database,” NeuroImage, vol. 5, p. 425, 1997.

