
Extreme Scaling of Production Visualization Software on Diverse
Architectures

Hank Childs∗ David Pugmire and Sean Ahern† Brad Whitlock‡

Mark Howison, Prabhat, Gunther Weber, and E. Wes Bethel§

Lawrence Berkeley National Laboratory
Oak Ridge National Laboratory

Lawrence Livermore National Laboratory

Abstract

We present the results of a series of experiments studying how visualization software scales to
massive data sets. Although several paradigms exist for processing large data, we focus on pure
parallelism, the dominant approach for production software. These experiments utilized multiple
visualization algorithms and were run on multiple architectures. Two types of experiments were
performed. For the first, we examined performance at massivescale: 16,000 or more cores and one
trillion or more cells. For the second, we studied weak scaling performance. These experiments
were performed on the largest data set sizes published to date in visualization literature, and
the findings on scaling characteristics and bottlenecks contribute to understanding of how pure
parallelism will perform at high levels of concurrency and with very large data sets.

1 INTRODUCTION

Over the last decade, supercomputers have increased in capability at a staggering rate. Petascale computing has arrived and

machines capable of tens of petaflops will be available in a few years. No end to this trend is in sight, with research in exascale

computing well underway. These machines are primarily usedfor scientific simulations that produce extremely large data sets.

The value of these simulations is the scientific insights they produce: these insights are often enabled by scientific visualization.

However, there is concern whether visualization software can keep pace with the massive data sets simulations will produce

in the near future. If this software cannot keep pace, it willpotentially jeopardize the value of the simulations and thus the

supercomputers themselves.

For large data visualization, the most fundamental question is what paradigm should be used to process this data. The

majority of visualization software for large data, including much of the production visualization software that serves large user

communities, utilizes the pure parallelism paradigm. Pureparallelism is brute force: data parallelism with no optimizations to

reduce the amount of data being read. In this paradigm, the simulation writes data to disk and the visualization softwarereads

this data at full resolution, storing it in primary memory. As the data is so large, it is necessary to parallelize its processing by

partitioning the data over processors and having each processor work on a piece of the larger problem. Through parallelization,

the visualization software has access to more I/O bandwidth(to read data faster), more memory (to store more data), and more

compute power (to execute its algorithms more quickly).

In this paper, we seek to better understand how pure parallelism will perform on more and more cores with larger and larger

data sets. How does this technique scale? What bottlenecks are encountered? What pitfalls are encountered with running

production software at massive scale? Will pure parallelism be effective for the next generation of data sets?
∗e-mail:hchilds@lbl.gov
†e-mail:pugmire,ahern@ornl.gov
‡e-mail:whitlock2@llnl.gov
§e-mail:mhowison,prabhat,ghweber,ewbethel@lbl.gov



These questions are especially important because pure parallelism is not the only data processing paradigm. And where

pure parallelism is heavily dependent on I/O bandwidth and large memory footprints, alternatives de-emphasize these traits.

Examples include in situ processing, where visualization algorithms operate during the simulation’s run, and multi-resolution

techniques, where a hierarchical version of the data set is created and visualized from coarser to finer versions. With this paper,

however, we only study how pure parallelism will handle massive data.

We performed our experiments using only a single visualization tool, “VisIt,” though we do not believe this limits the impact

of our results. This paper’s aim is to understand whether pure parallelism will work at extreme scale, not to compare tools.

When a program succeeds, it validates the underlying technique. When a program fails, it may indicate a failing in the technique

or, alternatively, a poor implementation in the program. The principal finding of this paper is that pure parallelism at extreme

scale works, that algorithms such as contouring and rendering performed well, and that I/O times were very long. Therefore

the only issue that required further study was I/O performance. One could envision addressing this issue by studying other

production visualization tools. But these tools will ultimately employ the same (or similar) low-level I/O calls, likefread, that

are themselves the key problem. So rather than varying visualization tools, each of which follow the same I/O pattern, wevaried

I/O patterns themselves (meaning collective and non-collective I/O) and also compared across architectures and filesystems.

This paper is organized as follows: after discussing related work in section 2, we present an overview of pure parallelism in

section 3. We then discuss our trillion cell experiments in section 4, followed by the results of a weak scaling study in section

5. The final section describes pitfalls that we encountered in our efforts.

2 RELATED WORK

We are aware of no previous efforts to examine the performance of pure parallelism at extreme scales on diverse architectures.

However, other publications provide corroboration in thisspace, albeit as individual data points. For example, Peterka et al. [9]

demonstrate a similar overall balance of I/O and computation time when volume rendering a 90 billion cell data set on a BG/P

machine.

There are paradigms besides pure parallelism, such as in situ processing [6, 5], multi-resolution processing [3, 8], out-of-

core [12], and data subsetting [1, 10]. Framing the decisionof which paradigm should be used to process massive data as

a competition between pure parallelism and the others is an oversimplification. These techniques have various strengths and

weaknesses and are often complementary. From the perspective of this paper, the issue is whether pure parallelism will scale

sufficiently to process massive data sets.

Our study employed the VisIt visualization tool [2], which primarily uses pure parallelism, although some of its algorithms

allow for out-of-core processing, data subsetting, or in situ processing1. ParaView [7], another viable choice for our study, also

relies heavily on pure parallelism, again with options for out-of-core processing, data subsetting, and in situ visualization. The

end users of these tools, however, use pure parallelism almost exclusively, with the other paradigms often used only situationally.

Both tools rely on the Visualization ToolKit [11]. VTK provides relatively small memory overhead for large data sets, which

was crucial for this study (since data sets must fit in memory), and especially important given the trend in petascale computing

towards low memory machines. The parallel VTK/ParaView infrastructure, in the context of this pure parallelism paper,is

highly similar to the VisIt implementation, in that they both divide the data set into pieces, partition those pieces, operate in an

embarrassingly parallel fashion when possible, and perform parallel rendering. Therefore we believe our scalabilityresults are

applicable to the major open-source large data visualization tools currently in use today. Yet another viable choice toexplore

pure parallelism would have been the commercial product EnSight [4], with the caveat that measuring performance accurately

would have been more difficult with that tool.

1The experiments in this paper used pure parallelism exclusively.



3 PURE PARALLELISM OVERVIEW

Pure parallelism works by partitioning the underlying mesh(or points for scattered data) of a large data set among cores/MPI

tasks. Each core loads its portion of the data set at full resolution, applies visualization algorithms to its piece, andthen combines

the results, typically through rendering. In VisIt, the pure parallelism implementation centers around data flow networks. To

satisfy a given request, every core sets up an identical dataflow network, differentiated only by the portion of the wholedata

set that core operates on.

Many visualization algorithms require no interprocess communication and can operate on their own portion of the data

set without coordination with the other cores (i.e. “embarassingly parallel”). Examples of these algorithms are slicing and

contouring. There are important algorithms that do requireinterprocess communication (i.e. not “embarassingly parallel”),

however, including volume rendering, streamline generation, and ghost data generation2.

The pure parallelism paradigm accommodates both types of parallel algorithms. For “embarrassingly parallel” algorithms,

it is possible to have each core directly apply the serial algorithms to its portion of the data set. And pure parallelism is often

the simplest environment to implement non-embarrassinglyparallel algorithms as well, since every piece of data is available at

any given moment and at full resolution. This property is especially beneficial when the order of operations is data dependent

(streamlines) or when coordination between data chunks is necessary (volume rendering, ghost data generation).

After the algorithms are applied, the results of those algorithms are rendered in parallel. This rendering algorithm serves to

collect the results of all the cores into a single result, as if all of the data was rendered on a single core. The algorithm scales

relatively well, although the combination phase isO(n logn).

Pure parallelism is typically run with one of two hardware scenarios: (i) on a smaller supercomputer dedicated to visualizing

and analyzing data sets produced by a larger supercomputer or (ii) on the supercomputer that generated the data itself. In

both of these scenarios, visualization and analysis programs often operate with substantially less resources than thesimulation

code for the same data set. For either hardware scenario, theaccepted rule of thumb for pure parallelism is to have on order

10% of the total memory footprint used to generate the data. Although rising hardware costs have relaxed this rule somewhat

for the largest supercomputers, many US supercomputing centers are procuring dedicated machines that come close to this

guideline. For example, Lawrence Livermore’s Gauss machine, has 8 percent of the memory of the BG/L machine, and

Argonne’s Eureka has nearly five percent of the memory of the Intrepid machine. In this paper, we have demonstrated results

using large supercomputers (scenario ii), but our results are applicable to either hardware scenario.

4 MASSIVE DATA EXPERIMENTS

The basic experiment used a parallel program with a high level of concurrency to read in a very large data set, apply a contouring

algorithm (“Marching Cubes”), and render this surface as a 1024×1024 image. We had originally set out to perform volume

rendering as well, but encountered difficulties (see section 6 on Pitfalls). An unfortunate reality of experiments of this nature

is that running large jobs of the largest supercomputers in the world is a difficult and opportunistic undertaking. It wasnot

possible to re-run on all of these machines with the improvedvolume rendering code. Further, these runs were undoubtedly

affected by real world issues like I/O and network contention. Although we only studied isosurfacing, the process of loading

data, applying an algorithm, and rendering is representative of many visualization operations and exercises a significant portion

of the code.

Our variations of this experiment fell into three categories:

• Diverse supercomputing environments, to test the viability of these techniques with different operating systems, I/O

behavior, compute power (e.g. FLOPs), and network characteristics. We performed these tests on two Cray XT machines

2When a large data set is decomposed into chunks, “ghost data” refers to a redundant layer of cells around the boundaries of each chunk. These extra cells
are sometimes necessary to prevent artifacts, usually due to interpolation inconsistencies.



Figure 1: Contouring of two trillion cells, visualized with VisIt on Franklin using 32000 cores.

(OLCF/ORNL’s JaguarPF & NERSC/LBNL’s Franklin), a Sun Linux machine (TACC’s Ranger), a CHAOS Linux ma-

chine (LLNL’s Juno), an AIX machine (LLNL’s Purple), and a BG/P machine (LLNL’s Dawn). For each machine but

Purple, we ran with 16000 cores and visualized one trillion cells3. For machines with more than 16000 cores available,

JaguarPF and Franklin, we performed a weak scaling study, maintaining a ratio of one trillion cells for every 16000 cores.

More information about the machines can be found in table 1.

Machine Machine Total # Memory System Type Clock Speed Peak FLOPS Top 500
Name Type/OS of Cores Per Core Rank (11/2009)

JaguarPF Cray 224,162 2GB XT5 2.6GHz 2.33PFLOPs #1
Ranger Sun Linux 62,976 2GB Opteron Quad 2.0GHz 503.8 TFLOPs #9
Dawn BG/P 147,456 1GB PowerPC 850MHz 415.7 TFLOPs #11

Franklin Cray 38,128 1GB XT4 2.6GHz 352 TFLOPs #15
Juno Commodity (Linux) 18402 2GB Opteron Quad 2.2GHz 131.6 TFLOPs #27

Purple AIX 12,208 3.5GB POWER5 1.9GHz 92.8 TFLOPs #66

Table 1: Characteristics of supercomputers used in this study.

• I/O pattern , to see if certain patterns (collective versus non-collective) exhibit better performance at scale. For the non-

collective tests, the data was stored as compressed binary data (gzipped). We used ten files for every core, and every file

contained 6.25 million data points, for a total of 62.5 million data points per core. Since simulation codes often write out

one file per core, and following the rule of thumb that visualization codes receive one tenth of the cores of the simulation

code, using multiple files per core was our best approximation at emulating common real world conditions. As this pattern

may not be optimal for I/O access, we also performed a separate test where all cores use collective access on a single, large

file via MPI-IO.

• Data generation. Our primary mechanism was to upsample data by interpolating a scalar field for a smaller mesh onto a

3We ran with only 8000 cores and one half trillion cells on Purple, because the full machine has only 12208 cores, and only 8000 are easily obtainable for
large jobs.



high resolution rectilinear mesh. However, to offset concerns that upsampled data may be unrepresentatively smooth, we

ran a second experiment, where the large data set was a many times over replication of a small data set. The source data

set was a core-collapse supernova simulation from the CHIMERA code on a curvilinear mesh of more than three and one

half million cells4. We applied these upsampling and replication approaches since we are not aware of any existing data

sets containing trillions of cells. Moreover, the primary objective for our study is to better understand the performance and

functional limits of parallel visualization software. This objective can be achieved even when using synthetic data.

4.1 Varying Over Supercomputing Environment

For these runs, we ran on different supercomputers and kept the I/O pattern and data generation fixed, using non-collective I/O

and upsampled data generation.

 0

 10

 20

 30

 40

 50

 60

8000

T
im

e 
(s

)

Cores

Purple

 0

 50

 100

 150

 200

 250

16384

Cores

Dawn

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

16000

Cores

Juno

 0

 50

 100

 150

 200

 250

 300

16000

Cores

Ranger

 0

 50

 100

 150

 200

 250

 300

16000 32000

Cores

Franklin

 0

 100

 200

 300

 400

 500

 600

 700

 800

16000 32000

Cores

JaguarPF

I/O
Contour
Render

Figure 2: Runtimes for the I/O, contouring, and rendering phases.

Machine Cores Data set size Total I/O time Contour time Total pipeline execution Rendering time
(time to produce surface)

Purple 8000 0.5 TCells 53.4s 10.0s 63.7s 2.9s
Dawn 16384 1 TCells 240.9s 32.4s 277.6s 10.6s
Juno 16000 1 TCells 102.9s 7.2s 110.4s 10.4s

Ranger 16000 1 TCells 251.2s 8.3s 259.7s 4.4s
Franklin 16000 1 TCells 129.3s 7.9s 137.3s 1.6s
JaguarPF 16000 1 TCells 236.1s 10.4s 246.7s 1.5s
Franklin 32000 2 TCells 292.4s 8.0s 300.6s 9.7s
JaguarPF 32000 2 TCells 707.2s 7.7s 715.2s 1.5s

Table 2: Performance across diverse architectures. Dawn requires that the number of cores be a power of two.

There are several noteworthy observations:

• Careful consideration of I/O striping parameters is necessary for optimal I/O performance on Lustre filesystems (Franklin,

JaguarPF, Ranger, Juno, & Dawn). Even though JaguarPF has more I/O resources than Franklin, its I/O performance did

not perform as well because its default stripe count is 4. In contrast, the default stripe count of 2 on Franklin was better

suited for the I/O pattern, which read ten separate gzipped files per core. Smaller stripe counts often benefit file-per-core

4Sample data courtesy of Tony Mezzacappa and Bronson Messer (Oak Ridge Lab), Steve Bruenn (Florida Atlantic University) and Reuben Budjiara
(University of Tennessee)



I/O because the files are usually small enough (tens of MB) that they won’t contain many stripes, and spreading them

thinly over many I/O servers increases contention.

• Because the data was gzipped, there was an unequal I/O load across cores. The reported I/O times measure the elapsed

time between file open and a barrier after all cores are finished reading. Because of this load imbalance, I/O time did not

scale linearly from 16000 to 32000 cores on Franklin and JaguarPF.

• The Dawn machine has the slowest clock speed (850MHz), whichis reflected in its contouring and rendering times.

• Although many of the variations we observed were expected, for example due to slow clock speeds, interconnects, or I/O

servers, some variation was not:

– For Franklin’s increase in rendering time from 16000 to 32000 cores, seven to ten network links failed that day and

had to be statically re-routed, resulting in suboptimal network performance. Rendering algorithms are “all reduce”

type operations that are very sensitive to bisectional bandwidth, which was affected by this issue.

– For Juno’s slow rendering time, we suspect a similar networkproblem.

We have have been unable to schedule time on either machine tofollow up on these issues.

4.2 Varying Over I/O Pattern

For these runs, we compared collective and non-collective I/O patterns on Franklin for a one trillion cell upsampled data set.

In the non-collective test, each core performed ten pairs offopen and fread calls on independent gzipped files without any

coordination among cores. In the collective test, all coressynchronously calledMPI File open once thenMPI File read at all

ten times on a shared file (each read call corresponded to a different domain in the data set). An underlying collective buffering

or “two phase” algorithm in Cray’s MPI-IO implementation aggregated read requests onto a subset of 48 nodes (matching the

48 stripe count of the file) that coordinated the low-level I/O workload, dividing it into 4MB stripe-alignedfread calls. As

the 48 aggregator nodes filled their read buffers, they shipped the data through MPI to their final destination among the 16016

cores. We used a different number of cores (16000 versus 16016) to make data layout more convenient for each scheme.

Machine I/O pattern Cores Data set size Total I/O time Data read Read bandwidth
Franklin Collective 16016 1 TCells 478.3s 3725.3GB 7.8GB/s
Franklin Non-collective 16000 1 TCells 129.3s 954.2GB 7.4GB/s

Table 3: Performance with different I/O patterns. The data set size for collective I/O corresponds to 4 bytes for one trillion cells. The data read
is not 4000GB, because one gigabyte is 1,073,741,824 bytes. The data set size for non-collective I/O is much smaller because it was gzipped.

Both patterns led to similar read bandwidths, 7.4 and 7.8 GB/s, which are about 60% of the maximum available bandwidth

of 12 GB/s on Franklin. In the non-collective case, load imbalances caused by different gzip compression factors may account

for this discrepancy. For the collective I/O, we speculate that coordination overhead between the MPI tasks may be limiting

efficiency. Further, we note that achieving one hundred percent efficiency would not substantially change the balance between

I/O and computation.

4.3 Varying Over Data Generation

For these runs, we processed both upsampled and replicated data sets with one trillion cells on 16016 cores of Franklin using

collective I/O.

The contouring times were identical, since this operation is dominated by the movement of data through the memory hierar-

chy (L2 cache to L1 cache to registers), rather than the relatively rare case where a cell contains a contribution to the isosurface.

The rendering time nearly doubled, because the contouring algorithm produced more triangles with the replicated data set.



Data generation Total I/O time Contour time Total pipeline execution Rendering time
Upsampling 478.3s 7.6s 486.0s 2.8s
Replicated 493.0s 7.6s 500.7s 4.9s

Table 4: Performance across different data generation methods.

Figure 3: Contouring of replicated data (one trillion cells total), visualized with VisIt on Franklin using 16016 cores.

5 SCALING EXPERIMENTS

To further demonstrate the scaling properties of pure parallelism, we present results that demonstrate weak scaling (scaling up

the number of processors with a fixed amount of data per processor) for both isosurface generation and volume rendering5.

Once again, these algorithms test a large portion of the underlying pure parallelism infrastructure and indicate strong likelihood

of weak scaling for other algorithms in this setting. Demonstrating weak scaling properties on high performance computing

systems meets the accepted standards of “Joule certification,” which is a program within the U.S. Office of Management and

Budget to evaluate the effectiveness of agency programs, policies and procedures.

5.1 Study Overview

The scaling studies were performed on output from Denovo, a three-dimensional radiation transport code from Oak Ridge

National Laboratory, which modeled radiation dose levels for a nuclear reactor core and surrounding areas. The Denovo

simulation code does not directly output a scalar field representing effective dose. Instead, we calculated this dose atruntime

through a linear combination of 27 scalar fluxes. For both theisosurface and volume rendering tests, VisIt read in 27 scalar

fluxes and combined them to form a single scalar field representing radiation dose levels. The isosurface extraction testconsisted

of extracting six evenly spaced iso-contour values of the radiation dose levels and rendering an 1024×1024 pixel image. The

volume rendering test consisted of ray-casting with 1000, 2000 and 4000 samples per ray of the radiation dose level on a

1024×1024 pixel image.

5This study was run in July of 2009, after the volume rendering algorithm was fixed.



These visualization algorithms were run on a baseline Denovo simulation consisting of 103,716,288 cells on 4096 spatial

domains with a total size on disk of 83.5 GB. The second test was run on a Denovo simulation nearly three times the size of the

baseline run, with 321,117,360 zones on 12720 spatial domains and a total size on disk of 258.4 GB.

5.2 Results

The baseline calculation used 4096 cores and the larger calculation used 12270 cores. These core counts are large relative to

the problem size and were chosen because they represent the number of cores used by Denovo. This matching core count was

important for the Joule study and is also indicative of performance for an in situ approach. Note that I/O was not includedin

these tests.

Algorithm Cores Minimum Maximum Average
Time Time Time

Calculate radiation 4,096 0.18s 0.25s 0.21s
Calculate radiation 12,270 0.19s 0.25s 0.22s

Isosurface 4,096 0.014s 0.027s 0.018s
Isosurface 12,270 0.014s 0.027s 0.017s

Render (on core) 4,096 0.020s 0.065s 0.0225s
Render (on core) 12,270 0.021s 0.069s 0.023s

Render (across cores) 4,096 0.048s 0.087s 0.052s
Render (across cores) 12,270 0.050s 0.091s 0.053s

Table 5: Weak scaling of isosurfacing. Isosurface refers to the execution time of the isosurface algorithm, Render (on core) indicates the time
to render that cores’s surface, while Render (across cores) indicates the time to combine that image with the images of other cores. Calculate
radiation refers to the time to calculate the linear combination of the 27 scalar fluxes.

Figure 4: Rendering of an isosurface from the Denovo calculation, produced by VisIt using 12,270 cores of JaguarPF.



Cores Samples Per Ray: 1000 2000 4000

4,096 7.21s 4.56s 7.54s
12,270 6.53s 6.60s 6.85s

Table 6: Weak scaling of volume rendering. 1000, 2000, and 4000 represent the number of samples per ray. The algorithm demonstrates
super-linear performance, because the number of samples per core (which directly affects work performed) is smaller at 12,270 cores, while the
number of cells per core is constant. The anomaly where performance increases at 2000 samples per ray requires further study.

Figure 5: Volume rendering of data from the Denovo calculation, produced by VisIt using 12,270 cores on JaguarPF.

6 PITFALLS AT SCALE

The common theme of this section is how decisions that were appropriate on the order of hundreds of cores become serious

impediments at higher levels of concurrency. The offendingcode existed at various levels of the software, from core algorithms

(volume rendering) to code that supports the algorithms (status updates) to foundational code (plugin loading). The volume

rendering and status update problems were easily correctable and the fixes will be in the next public version of VisIt. Theplugin

loading problem was partially addressed, but a total fix may require removing shared libraries altogether.

6.1 Volume Rendering

The volume rendering code used anO(n2) buffer, wheren is the number of cores. An all-to-all communication phase re-

distributed samples along rays according to a partition with dynamic assignments. An “optimization” for this phase wasto

minimize the number of samples that needed to be communicated by favoring assignments that kept samples on their orig-

inating core. This “optimization” required anO(n2) buffer that contained mostly zeroes. Although this “optimization” was

indeed effective for small core counts, the coordination overhead caused VisIt to run out of memory at scale. Our solution was

to eschew the optimization, simply assigning pixels to cores without concern of where individual samples lay. As the number

of samples gets smaller with large core counts, ignoring this optimization altogether at high concurrency is probably the best

course of action.

We do not have comprehensive volume rendering data to present for the one trillion cell data sets. However, we observed

that after our changes, ray casting performance was approximately five seconds per frame for a 1024x1024 image.



Figure 6: Volume rendering of one trillion cells, visualized by VisIt on JaguarPF.

For the weak scaling study on Denovo data, running with 4,096cores, the speedup was approximately a factor of five (see

table 7).

Cores Date run Samples Per Ray: 1000 2000 4000

4,096 Spring 2009 34.7s 29.0s 31.5s
4,096 Summer 2009 7.21s 4.56s 7.54s

Table 7: Volume rendering of Denovo data at 4,096 cores before and after speedup.

6.2 All-To-One Communication

At the end of every pipeline execution, each core reports itsstatus (success or failure) as well as some meta-data (extents, etc).

These status and extents were being communicated from each MPI task to MPI task 0 through point to point communication.

However, the delay in having every MPI task send a message to MPI task 0 was significant, as shown in the table below. This

was corrected subsequently with a tree communication scheme6.

Machine All-to-one Cores Data set Total Contour Total pipeline Pipeline minus Date run
status size I/O time time execution contour & I/O

Dawn yes 16384 1 TCells 88.0s 32.2s 368.7s 248.5s June 2009
Dawn yes 65536 4 TCells 95.3s 38.6s 425.9s 294.0s June 2009
Dawn no 16384 1 TCells 240.9s 32.4s 277.6s 4.3s August 2009

Table 8: Performance with old status checking code versus new status checking code. Taking the pipeline time and subtracting contour and
I/O time approximates how much time was spent waiting for status and extents updates. Note that the other runs reported in this article had
status checking code disabled and that the last Dawn run is the only reported run with new status code.

Another “pitfall” is the difficulty in getting consistent results. Looking at the I/O times from the Dawn runs, there is a

6After our initial round of experiments, our colleague Mark Miller of Lawrence Livermore Lab independently observed the same problem and made this
enhancement.



dramatic slowdown from June to August. This is because, in July, the I/O servers backing the file system became unbalanced

in their disk usage. This caused the algorithm that assigns files to servers to switch from a “round robin” scheme to a statistical

scheme, meaning files were no longer assigned uniformly across I/O servers. While this scheme makes sense from an operating

system perspective by leveling out the storage imbalance, it hampers access times for end users. With the new scheme, the

number of files assigned to each I/O server followed a Poissondistribution, with some servers assigned three or four moretimes

more files than others. Since each I/O server has a fixed bandwidth, those with more files will take longer to serve up data,

resulting in I/O performance degradation of factors of three or four for the cores trying to fetch data from the overloaded I/O

servers.

6.3 Shared Libraries and Startup Time

During our first runs on dawn, using only 4096 cores, we observed lags in startup time that worsened as the core count increased.

Each core was reading plugin information from the filesystem, creating contention for I/O resources. We addressed this problem

by modifying VisIt’s plugin infrastructure so that plugin information could be loaded on MPI task 0 and broadcast to other cores.

This change made plugin loading nine times faster.

That said, startup time was still quite slow, taking as long as five minutes. VisIt uses shared libraries in many instancesto

allow new plugins to access symbols not used by any current VisIt routines; compiling statically would remove these symbols.

The likely path forward is to compile static versions of VisIt for the high concurrency case. This approach will likely be

palatable because new plugins are frequently developed at lower levels of concurrency.

7 CONCLUSION

Our results contribute to the understanding of pure parallelism, the dominant paradigm for production visualization tools, at

extreme scale. The experiments were designed to answer two questions: (1) will pure parallelism be successful on extreme

data sets at extreme concurrency on a variety of architectures? And (2) can we demonstrate that pure parallelism scales from a

weak scaling perspective? We believe our results demonstrate that pure parallelism does scale, though it is only as goodas its

supporting I/O infrastructure.

We were successful in visualizing up to four trillion cells on diverse architectures with production visualization software.

The supercomputers we used were “underpowered,” in that thecurrent simulation codes on these machines produce meshes far

smaller than a trillion cells. They were appropriately sized, however, when considering the rule of thumb that the visualization

task should get ten percent of the resources of the simulation task, and assuming our trillion cell mesh represents the simulation

of a hypothetical 160,000 core machine.

I/O performance became a major focus of our study, as slow I/Oprevented interactive rates when loading data. Most super-

computers are configured for I/O bandwidth to scale with number of cores, so the bandwidths we observed in our experiments

are commensurate with what we should expect when using ten percent of a future supercomputer. Thus the inability to read

data sets quickly presents a real concern going forward. Worse, the latest trends in supercomputing show diminishing I/O rates

relative to increasing memory and FLOPs, meaning that the I/O bottleneck we observed may potentially constrict furtheras the

next generation of supercomputers arrives.

There are potential hardware and software solutions that can help address this problem, however. From the software side,

multi-resolution techniques and data subsetting (such as query-driven visualization) limit how much data is read, while in situ

visualization avoids I/O altogether. From the hardware side, an increased focus on balanced machines that have I/O bandwidth

commensurate with compute power would reduce I/O time. Further, emerging I/O technologies, such as FLASH drives, have

the possibility to make significant impacts. From this study, we conclude that some combination of these solutions will be

necessary to overcome the I/O problem and obtain good performance.



8 ACKNOWLEDGMENTS

This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231through the Scientific Discovery through Advanced Com-

puting (SciDAC) program’s Visualization and Analytics Center for Enabling Technologies (VACET). Further, we thank Mark

Miller for the status update improvements referenced in 6.2and the anonymous reviewers, whose suggestions greatly improved

this paper. Finally, the authors acknowledge the resourcesthat contributed to the research results reported in this paper:

• The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231.

• The Livermore Computing Center at Lawrence Livermore National Laboratory, which is supported by the National Nuclear

Security Administration of the U.S. Department of Energy under Contract DE-AC52-07NA27344.

• The Center for Computational Sciences at Oak Ridge NationalLaboratory, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. De-AC05-00OR22725.

• The Texas Advanced Computing Center (TACC) at The University of Texas at Austin for use of their HPC resources.

• We thank the personnel at the computing centers that helped us to perform our runs, specifically Katie Antypas, Kathy

Yelick, Francesca Verdier, and Howard Walter of LBNL’s NERSC, Paul Navratil, Kelly Gaither, and Karl Schulz of UT’s

TACC, James Hack, Doug Kothe, Arthur Bland, and Ricky Kendall of ORNL’s LCF, and David Fox, Debbie Santa Maria,

and Brian Carnes of LLNL’s LC.

REFERENCES

[1] Hank Childs, Eric Brugger, Kathleen Bonnell, Jeremy Meredith, Mark Miller, Brad Whitlock, and Nelson Max. A contract based system for large data

visualization. InProceedings of IEEE Visualization, 2005.

[2] Hank Childs and Mark Miller. Beyond meat grinders: An analysis framework addressing the scale and complexity of large data sets. InProceedings of

HPC2006, 2006.

[3] J. Clyne, P. Mininni, A. Norton, and M. Rast. Interactivedesktop analysis of high resolution simulations: application to turbulent plume dynamics and

current sheet formation.New Journal of Physics, 9:301, August 2007.

[4] Computational Engineering International, Inc.EnSight User Manual.

[5] Robert Haimes. pV3: A Distributed System for Large-ScaleUnsteady CFD Visualization. InAIAA paper, pages 94–0321, 1994.

[6] C.R. Johnson, S. Parker, and D. Weinstein. Large-scale computational science applications using the SCIRun problemsolving environment. InProceed-

ings of the 2000 ACM/IEEE conference on Supercomputing, 2000.

[7] C. Charles Law, Amy Henderson, and James Ahrens. An application architecture for large data visualization: a case study. In PVG ’01: Proceedings of

the IEEE 2001 symposium on parallel and large-data visualization and graphics, pages 125–128. IEEE Press, 2001.

[8] Valerio Pascucci and Randall J. Frank. Global static indexing for real-time exploration of very large regular grids.In SC, page 2, 2001.

[9] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R Latham. End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. In Proceedings of

ICPP’09 Conference, 2009.

[10] Oliver Ruebel, Prabhat, Kesheng Wu, Hank Childs, JeremyMeredith, Cameron G. R. Geddes, Estelle Cormier-Michel, SeanAhern, Gunther H. Weber,

Peter Messmer, Hans Hagen, Bernd Hamann, and E. Wes Bethel. High performance multivariate visual data exploration for extemely large data. In

SuperComputing 2008 (SC08), 2008.

[11] William J. Schroeder, Kenneth M. Martin, and William E.Lorensen. The design and implementation of an object-oriented toolkit for 3D graphics and

visualization. InVIS ’96: Proceedings of the 7th conference on Visualization ’96, pages 93–ff. IEEE Computer Society Press, 1996.

[12] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algorithms for scientific visualization and computer graphics. InVisualization 2002 Course

Notes, 2002.


