Extreme Scaling of Production Visualization Software on Diverse
Architectures

Hank Childs* David Pugmire and Sean Ahern® Brad Whitlock*
Mark Howison, Prabhat, Gunther Weber, and E. Wes Bethel®

Lawrence Berkeley National Laboratory
Oak Ridge National Laboratory
Lawrence Livermore National Laboratory

Abstract

We present the results of a series of experiments studyimngvisualization software scales to
massive data sets. Although several paradigms exist f@epsing large data, we focus on pure
parallelism, the dominant approach for production sofenvdihese experiments utilized multiple
visualization algorithms and were run on multiple arcHitees. Two types of experiments were
performed. For the first, we examined performance at massale: 16,000 or more cores and one
trillion or more cells. For the second, we studied weak scgierformance. These experiments
were performed on the largest data set sizes published &idlatisualization literature, and
the findings on scaling characteristics and bottlenecksriboree to understanding of how pure
parallelism will perform at high levels of concurrency anidhwery large data sets.

1 INTRODUCTION

Over the last decade, supercomputers have increased ihilitgpat a staggering rate. Petascale computing has alriawvel
machines capable of tens of petaflops will be available imayfsars. No end to this trend is in sight, with research in exies
computing well underway. These machines are primarily fisescientific simulations that produce extremely largeadsts.
The value of these simulations is the scientific insightg fireduce: these insights are often enabled by scientifialization.
However, there is concern whether visualization softwane keep pace with the massive data sets simulations willuzend
in the near future. If this software cannot keep pace, it patentially jeopardize the value of the simulations andstthe
supercomputers themselves.

For large data visualization, the most fundamental quessovhat paradigm should be used to process this data. The
majority of visualization software for large data, inclngimuch of the production visualization software that seifaege user
communities, utilizes the pure parallelism paradigm. Ra@llelism is brute force: data parallelism with no optiations to
reduce the amount of data being read. In this paradigm, thelaiion writes data to disk and the visualization softwai@ds
this data at full resolution, storing it in primary memorys #e data is so large, it is necessary to parallelize itsgqzsing by
partitioning the data over processors and having each gsoc&ork on a piece of the larger problem. Through para#ébn,
the visualization software has access to more I/O bandwidttead data faster), more memory (to store more data), amd m
compute power (to execute its algorithms more quickly).

In this paper, we seek to better understand how pure pasaflelill perform on more and more cores with larger and larger
data sets. How does this technique scale? What bottleneeksnapuntered? What pitfalls are encountered with running
production software at massive scale? Will pure paraitelie effective for the next generation of data sets?

*e-mail:hchilds@Ibl.gov
Te-mail:pugmire,ahern@ornl.gov
*e-mail:whitlock2@lInl.gov
Se-mail:mhowison,prabhat,ghweber,ewbethel@Ibl.gov

These questions are especially important because purliefiana is not the only data processing paradigm. And where
pure parallelism is heavily dependent on I/0O bandwidth amgd memory footprints, alternatives de-emphasize thags.t
Examples include in situ processing, where visualizatigorithms operate during the simulation’s run, and mugalution
techniques, where a hierarchical version of the data se¢&ed and visualized from coarser to finer versions. Withghaper,
however, we only study how pure parallelism will handle masdata.

We performed our experiments using only a single visuatinabol, “Vislt,” though we do not believe this limits the pact
of our results. This paper’s aim is to understand whethee parallelism will work at extreme scale, not to comparegool
When a program succeeds, it validates the underlying teabeniyhen a program fails, it may indicate a failing in the tegha
or, alternatively, a poor implementation in the programe Phincipal finding of this paper is that pure parallelism>t@me
scale works, that algorithms such as contouring and remgl@érformed well, and that 1/O times were very long. Therefo
the only issue that required further study was 1/O perforceanOne could envision addressing this issue by studyingroth
production visualization tools. But these tools will ulaely employ the same (or similar) low-level 1/O calls, liftead, that
are themselves the key problem. So rather than varyinglizstian tools, each of which follow the same 1/O pattern,waeed
I/O patterns themselves (meaning collective and non-cible I/O) and also compared across architectures and gies)s.

This paper is organized as follows: after discussing rdlaterk in section 2, we present an overview of pure paraiteiis
section 3. We then discuss our trillion cell experimentsdaati®n 4, followed by the results of a weak scaling study ttise
5. The final section describes pitfalls that we encounterexir efforts.

2 RELATED WORK

We are aware of no previous efforts to examine the performahpure parallelism at extreme scales on diverse architest
However, other publications provide corroboration in gpace, albeit as individual data points. For example, Rettral. [9]
demonstrate a similar overall balance of I/O and computdtine when volume rendering a 90 billion cell data set on aBBG/
machine.

There are paradigms besides pure parallelism, such asliprsitessing [6, 5], multi-resolution processing [3, 8]i-of:
core [12], and data subsetting [1, 10]. Framing the decisiowhich paradigm should be used to process massive data as
a competition between pure parallelism and the others isvarsimplification. These techniques have various strengtiu
weaknesses and are often complementary. From the pexspetthis paper, the issue is whether pure parallelism wdles
sufficiently to process massive data sets.

Our study employed the Vislt visualization tool [2], whichmarily uses pure parallelism, although some of its altonis
allow for out-of-core processing, data subsetting, ortin giocessinyy ParaView [7], another viable choice for our study, also
relies heavily on pure parallelism, again with options fat-of-core processing, data subsetting, and in situ vizat@bn. The
end users of these tools, however, use pure parallelismsabrolusively, with the other paradigms often used onlyegibnally.
Both tools rely on the Visualization ToolKit [11]. VTK proges relatively small memory overhead for large data set&ghwh
was crucial for this study (since data sets must fit in memanydl especially important given the trend in petascale coimgp
towards low memory machines. The parallel VTK/ParaViewdsfructure, in the context of this pure parallelism pajer,
highly similar to the Vislt implementation, in that they halivide the data set into pieces, partition those piecesate in an
embarrassingly parallel fashion when possible, and parfwarallel rendering. Therefore we believe our scalabibtsults are
applicable to the major open-source large data visuadimdtiols currently in use today. Yet another viable choicexplore
pure parallelism would have been the commercial producidin$], with the caveat that measuring performance adelya
would have been more difficult with that tool.

1The experiments in this paper used pure parallelism exalysiv

3 PURE PARALLELISM OVERVIEW

Pure parallelism works by partitioning the underlying méshpoints for scattered data) of a large data set among /60Rés
tasks. Each core loads its portion of the data set at fulluésa, applies visualization algorithms to its piece, #meih combines
the results, typically through rendering. In Vislt, the @yrarallelism implementation centers around data flow nedsvoro

satisfy a given request, every core sets up an identicalflietanetwork, differentiated only by the portion of the whalata

set that core operates on.

Many visualization algorithms require no interprocess samication and can operate on their own portion of the data
set without coordination with the other cores (i.e. “emisanagly parallel”). Examples of these algorithms are sicand
contouring. There are important algorithms that do requiterprocess communication (i.e. not “embarassingly It
however, including volume rendering, streamline genenatand ghost data generatfon

The pure parallelism paradigm accommodates both typesrafi@laalgorithms. For “embarrassingly parallel” algbrits,
it is possible to have each core directly apply the seriabrigms to its portion of the data set. And pure parallelisroften
the simplest environment to implement non-embarrassipagigllel algorithms as well, since every piece of data islalvie at
any given moment and at full resolution. This property iseesqlly beneficial when the order of operations is data dépen
(streamlines) or when coordination between data chunksdsssary (volume rendering, ghost data generation).

After the algorithms are applied, the results of those dligas are rendered in parallel. This rendering algorithmeto
collect the results of all the cores into a single resultfad of the data was rendered on a single core. The algorittates
relatively well, although the combination phas&ignlogn).

Pure parallelism is typically run with one of two hardwarersarios: (i) on a smaller supercomputer dedicated to vsog!
and analyzing data sets produced by a larger supercompu@y on the supercomputer that generated the data itself. |
both of these scenarios, visualization and analysis pragjten operate with substantially less resources thasitgation
code for the same data set. For either hardware scenariactepted rule of thumb for pure parallelism is to have onrorde
10% of the total memory footprint used to generate the dal#oAgh rising hardware costs have relaxed this rule soraewh
for the largest supercomputers, many US supercomputinggrseare procuring dedicated machines that come closego thi
guideline. For example, Lawrence Livermore’s Gauss maghitas 8 percent of the memory of the BG/L machine, and
Argonne’s Eureka has nearly five percent of the memory oftitrepid machine. In this paper, we have demonstrated sesult
using large supercomputers (scenario ii), but our resuitsipplicable to either hardware scenario.

4 MASSIVE DATA EXPERIMENTS

The basic experiment used a parallel program with a high thencurrency to read in a very large data set, apply a coirtg
algorithm (“Marching Cubes”), and render this surface a®24k 1024 image. We had originally set out to perform volume
rendering as well, but encountered difficulties (see sedion Pitfalls). An unfortunate reality of experiments abkthature

is that running large jobs of the largest supercomputerentorld is a difficult and opportunistic undertaking. It wast
possible to re-run on all of these machines with the improx@dme rendering code. Further, these runs were undouybted|
affected by real world issues like I/O and network contemtidlthough we only studied isosurfacing, the process oflilog
data, applying an algorithm, and rendering is represemtafimany visualization operations and exercises a sigmifiportion

of the code.

Our variations of this experiment fell into three categsrie

e Diverse supercomputing environmentsto test the viability of these techniques with differenteogting systems, 1/10
behavior, compute power (e.g. FLOPSs), and network chaiatits. We performed these tests on two Cray XT machines

2When a large data set is decomposed into chunks, “ghost dé¢as te a redundant layer of cells around the boundariesalf eaunk. These extra cells
are sometimes necessary to prevent artifacts, usually daéstpolation inconsistencies.

Figure 1: Contouring of two trillion cells, visualized with Vislt on Franklin using 32000 cores.

(OLCF/ORNLs JaguarPF & NERSC/LBNL's Franklin), a Sun Linmachine (TACC’s Ranger), a CHAOS Linux ma-
chine (LLNL's Juno), an AIX machine (LLNL's Purple), and a B&machine (LLNL's Dawn). For each machine but
Purple, we ran with 16000 cores and visualized one trillielise. For machines with more than 16000 cores available,
JaguarPF and Franklin, we performed a weak scaling studgtanaing a ratio of one trillion cells for every 16000 cores
More information about the machines can be found in table 1.

Machine Machine Total # | Memory | System Type | Clock Speed| Peak FLOPS Top 500
Name Type/OS of Cores | Per Core Rank (11/2009)
JaguarPF Cray 224,162 2GB XT5 2.6GHz 2.33PFLOPs #1
Ranger Sun Linux 62,976 2GB Opteron Quad 2.0GHz 503.8 TFLOPs #9
Dawn BG/P 147,456 1GB PowerPC 850MHz 415.7 TFLOPs #11
Franklin Cray 38,128 1GB XT4 2.6GHz 352 TFLOPs #15
Juno Commodity (Linux) | 18402 2GB Opteron Quad 2.2GHz 131.6 TFLOPs #27
Purple AIX 12,208 | 3.5GB POWERS 1.9GHz 92.8 TFLOPs #66

Table 1: Characteristics of supercomputers used in this study.

e |/O pattern, to see if certain patterns (collective versus non-callegtexhibit better performance at scale. For the non-
collective tests, the data was stored as compressed bintaygkipped). We used ten files for every core, and every file
contained 6.25 million data points, for a total of 62.5 mitlidata points per core. Since simulation codes often wtite o
one file per core, and following the rule of thumb that viseatiion codes receive one tenth of the cores of the simulation
code, using multiple files per core was our best approximatt@mulating common real world conditions. As this pattern
may not be optimal for I/O access, we also performed a septasitwhere all cores use collective access on a single, larg

file via MPI-10.

e Data generation Our primary mechanism was to upsample data by interpgjatiscalar field for a smaller mesh onto a

3We ran with only 8000 cores and one half trillion cells on Rerpecause the full machine has only 12208 cores, and only &@0easily obtainable for
large jobs.

high resolution rectilinear mesh. However, to offset cansdhat upsampled data may be unrepresentatively smoeth, w
ran a second experiment, where the large data set was a mag/diver replication of a small data set. The source data
set was a core-collapse supernova simulation from the CHRRIEode on a curvilinear mesh of more than three and one
half million cells*. We applied these upsampling and replication approaches sie are not aware of any existing data
sets containing trillions of cells. Moreover, the primabjextive for our study is to better understand the perforreamd
functional limits of parallel visualization software. Bhbbjective can be achieved even when using synthetic data.

4.1 Varying Over Supercomputing Environment

For these runs, we ran on different supercomputers and lkept@ pattern and data generation fixed, using non-coliettO
and upsampled data generation.

Purple Dawn Juno Ranger Franklin JaguarPF
60 250 - 110 300 300 - 800
50 |- | — bt 250 - 250 700 [
200 | fo 90
80 |l 600
40 | e 200 - 200
— 150 foofo 10 500
D 60 |l e /10 E====
“é 30 o] 150 - 150 400 Contour s
£ 50 oo e Render
100 || aw M 300
20 [100 [s 100 e
80 200 |-
10 |- Sl I I e] P - 100 L
H w0k |
8000 16384 16000 16000 16000 32000 16000 32000
Cores Cores Cores Cores Cores Cores

Figure 2: Runtimes for the I/O, contouring, and rendering phases.

Machine | Cores | Data set size| Total I/O time | Contour time | Total pipeline execution| Rendering time
(time to produce surface

Purple 8000 0.5 TCells 53.4s 10.0s 63.7s 2.9s
Dawn 16384 1 TCells 240.9s 32.4s 277.6s 10.6s
Juno 16000 1TCells 102.9s 7.2s 110.4s 10.4s
Ranger | 16000 1 TCells 251.2s 8.3s 259.7s 4.4s
Franklin | 16000 1 TCells 129.3s 7.9s 137.3s 1.6s
JaguarPF| 16000 1 TCells 236.1s 10.4s 246.7s 1.5s
Franklin | 32000 2 TCells 292.4s 8.0s 300.6s 9.7s
JaguarPF| 32000 2 TCells 707.2s 7.7s 715.2s 1.5s

Table 2: Performance across diverse architectures. Dawn requires that the number of cores be a power of two.

There are several noteworthy observations:

e Careful consideration of 1/O striping parameters is nemmgs®r optimal I/O performance on Lustre filesystems (Ftemnk
JaguarPF, Ranger, Juno, & Dawn). Even though JaguarPF hadi@aesources than Franklin, its I/O performance did
not perform as well because its default stripe count is 4.oltrast, the default stripe count of 2 on Franklin was better
suited for the I/O pattern, which read ten separate gzippesifier core. Smaller stripe counts often benefit file-pee-co

4Sample data courtesy of Tony Mezzacappa and Bronson Mesa&rR@ge Lab), Steve Bruenn (Florida Atlantic UniversityJdaReuben Budijiara
(University of Tennessee)

I/O because the files are usually small enough (tens of MB)ttiey won’t contain many stripes, and spreading them
thinly over many 1/O servers increases contention.

e Because the data was gzipped, there was an unequal I/O loasbamwres. The reported 1/O times measure the elapsed
time between file open and a barrier after all cores are fidishading. Because of this load imbalance, 1/0 time did not
scale linearly from 16000 to 32000 cores on Franklin and deifel

e The Dawn machine has the slowest clock speed (850MHz), whiflected in its contouring and rendering times.

e Although many of the variations we observed were expectdXample due to slow clock speeds, interconnects, or I1/0
servers, some variation was not:

— For Franklin’s increase in rendering time from 16000 to 3200res, seven to ten network links failed that day and
had to be statically re-routed, resulting in suboptimalveek performance. Rendering algorithms are “all reduce”
type operations that are very sensitive to bisectional wéttl, which was affected by this issue.

— For Juno’s slow rendering time, we suspect a similar netyoooklem.

We have have been unable to schedule time on either machiokoiw up on these issues.

4.2 Varying Over I/O Pattern

For these runs, we compared collective and non-collect®ephtterns on Franklin for a one trillion cell upsampledadset.

In the non-collective test, each core performed ten paifemén andfread calls on independent gzipped files without any
coordination among cores. In the collective test, all cagggchronously callePl_File_open once therMPI_File_read_at_all

ten times on a shared file (each read call corresponded téeaettift domain in the data set). An underlying collectiveféxifg

or “two phase” algorithm in Cray’s MPI-IO implementationgrggated read requests onto a subset of 48 nodes (matcking th
48 stripe count of the file) that coordinated the low-levé korkload, dividing it into 4MB stripe-aligneétead calls. As

the 48 aggregator nodes filled their read buffers, they shiphbe data through MPI to their final destination among thEL66
cores. We used a different number of cores (16000 versuss)®@inake data layout more convenient for each scheme.

Machine I/O pattern Cores | Data set size| Total I/O time | Data read | Read bandwidth
Franklin Collective 16016 1 TCells 478.3s 3725.3GB 7.8GB/s
Franklin | Non-collective | 16000 1 TCells 129.3s 954.2GB 7.4GB/s

Table 3: Performance with different 1/O patterns. The data set size for collective |/O corresponds to 4 bytes for one trillion cells. The data read
is not 4000GB, because one gigabyte is 1,073,741,824 bytes. The data set size for non-collective 1/0 is much smaller because it was gzipped.

Both patterns led to similar read bandwidths, 7.4 and 7.8sGBlhich are about 60% of the maximum available bandwidth
of 12 GB/s on Franklin. In the non-collective case, load itabees caused by different gzip compression factors mayuatc
for this discrepancy. For the collective 1/0, we specul&gg toordination overhead between the MPI tasks may beirignit
efficiency. Further, we note that achieving one hundredeperefficiency would not substantially change the balanteéden
I/O and computation.

4.3 Varying Over Data Generation

For these runs, we processed both upsampled and replicatzdets with one trillion cells on 16016 cores of Franklimgs
collective 1/0.

The contouring times were identical, since this operatsotiaminated by the movement of data through the memory hierar
chy (L2 cache to L1 cache to registers), rather than theivelgtrare case where a cell contains a contribution to thsugace.
The rendering time nearly doubled, because the contoulimgitnm produced more triangles with the replicated data s

Data generation Total I/O time | Contour time | Total pipeline execution Rendering time
Upsampling 478.3s 7.6s 486.0s 2.8s
Replicated 493.0s 7.6s 500.7s 4.9s

Table 4: Performance across different data generation methods.

Figure 3: Contouring of replicated data (one trillion cells total), visualized with Vislt on Franklin using 16016 cores.

5 SCALING EXPERIMENTS

To further demonstrate the scaling properties of pure adisah, we present results that demonstrate weak scaloadjteg up
the number of processors with a fixed amount of data per psocefor both isosurface generation and volume rendering
Once again, these algorithms test a large portion of theriyidg pure parallelism infrastructure and indicate sgdikelihood

of weak scaling for other algorithms in this setting. Denteoating weak scaling properties on high performance comgut
systems meets the accepted standards of “Joule certifi¢atibich is a program within the U.S. Office of Management and
Budget to evaluate the effectiveness of agency prograntisiggoand procedures.

5.1 Study Overview

The scaling studies were performed on output from Denoviyreetdimensional radiation transport code from Oak Ridge
National Laboratory, which modeled radiation dose leveisd nuclear reactor core and surrounding areas. The Denovo
simulation code does not directly output a scalar field regméing effective dose. Instead, we calculated this dosgngime
through a linear combination of 27 scalar fluxes. For bothisbsurface and volume rendering tests, Vislt read in 27ascal
fluxes and combined them to form a single scalar field reptegpradiation dose levels. The isosurface extractiondessisted

of extracting six evenly spaced iso-contour values of tlkataon dose levels and rendering an 1624024 pixel image. The
volume rendering test consisted of ray-casting with 10@@02and 4000 samples per ray of the radiation dose level on a
1024x 1024 pixel image.

5This study was run in July of 2009, after the volume renderiggrithm was fixed.

These visualization algorithms were run on a baseline Demsawulation consisting of 103,716,288 cells on 4096 spatia
domains with a total size on disk of 83.5 GB. The second testrwa on a Denovo simulation nearly three times the size of the
baseline run, with 321,117,360 zones on 12720 spatial denzaid a total size on disk of 258.4 GB.

5.2 Results

The baseline calculation used 4096 cores and the largaslatitm used 12270 cores. These core counts are largeveetati

the problem size and were chosen because they represenintfienof cores used by Denovo. This matching core count was
important for the Joule study and is also indicative of penfance for an in situ approach. Note that I/O was not included
these tests.

Algorithm Cores | Minimum | Maximum | Average
Time Time Time
Calculate radiation 4,096 0.18s 0.25s 0.21s
Calculate radiation 12,270 0.19s 0.25s 0.22s
Isosurface 4,096 0.014s 0.027s 0.018s
Isosurface 12,270 0.014s 0.027s 0.017s

Render (on core) 4,096 0.020s 0.065s 0.0225s
Render (on core) 12,270 | 0.021s 0.069s 0.023s
Render (across cores)| 4,096 0.048s 0.087s 0.052s
Render (across cores)| 12,270 0.050s 0.091s 0.053s

Table 5: Weak scaling of isosurfacing. Isosurface refers to the execution time of the isosurface algorithm, Render (on core) indicates the time
to render that cores’s surface, while Render (across cores) indicates the time to combine that image with the images of other cores. Calculate
radiation refers to the time to calculate the linear combination of the 27 scalar fluxes.

0.0 XAQIQ(XWD%)O 3.0

Figure 4: Rendering of an isosurface from the Denovo calculation, produced by Vislt using 12,270 cores of JaguarPF.

[Cores | Samples Per Ray: 100D 2000 | 4000 |

4,096 7.21s 4.56s | 7.54s
12,270 6.53s 6.60s | 6.85s

Table 6: Weak scaling of volume rendering. 1000, 2000, and 4000 represent the number of samples per ray. The algorithm demonstrates
super-linear performance, because the number of samples per core (which directly affects work performed) is smaller at 12,270 cores, while the
number of cells per core is constant. The anomalv where nerformance increases at 2000 samnbles ner rav reaiiires further study.

DB: forward_out.silo
Cycle: 0
O SIme
. ar: dose
1000e+04

Axis (x1073)

.0

user; pugmire
Wed Sep 222:35:31 2009

Figure 5: Volume rendering of data from the Denovo calculation, produced by Vislt using 12,270 cores on JaguarPF.

6 PITFALLS AT SCALE

The common theme of this section is how decisions that wepeogpiate on the order of hundreds of cores become serious
impediments at higher levels of concurrency. The offendiogde existed at various levels of the software, from corerélgms
(volume rendering) to code that supports the algorithmetstupdates) to foundational code (plugin loading). THare
rendering and status update problems were easily corte@ad the fixes will be in the next public version of Vislt. Tiplegin
loading problem was partially addressed, but a total fix neayire removing shared libraries altogether.

6.1 Volume Rendering

The volume rendering code used &tin?) buffer, wheren is the number of cores. An all-to-all communication phase re
distributed samples along rays according to a partitiom ditnamic assignments. An “optimization” for this phase was
minimize the number of samples that needed to be commuditstdéavoring assignments that kept samples on their orig-
inating core. This “optimization” required af(n?) buffer that contained mostly zeroes. Although this “opgation” was
indeed effective for small core counts, the coordinatioerbead caused Vislt to run out of memory at scale. Our solwtias
to eschew the optimization, simply assigning pixels to savéhout concern of where individual samples lay. As the ham
of samples gets smaller with large core counts, ignoring dptimization altogether at high concurrency is probabéyltest
course of action.

We do not have comprehensive volume rendering data to présetme one trillion cell data sets. However, we observed
that after our changes, ray casting performance was appately five seconds per frame for a 1024x1024 image.

DB: astro_1TZ.bov
Cycle: 0

Figure 6: Volume rendering of one trillion cells, visualized by Vislt on JaguarPF.

For the weak scaling study on Denovo data, running with 4@986s, the speedup was approximately a factor of five (see
table 7).

[Cores| Daterun | Samples Per Ray: 100D 2000 [4000 |
4,096 | Spring 2009 34.7s 29.0s | 31.5s
4,096 | Summer 2009 7.21s 4.56s | 7.54s

Table 7: Volume rendering of Denovo data at 4,096 cores before and after speedup.

6.2 All-To-One Communication

At the end of every pipeline execution, each core reportstéttus (success or failure) as well as some meta-data (exétc).
These status and extents were being communicated from eBtkalk to MPI task 0 through point to point communication.
However, the delay in having every MPI task send a messagePiadadk 0 was significant, as shown in the table below. This
was corrected subsequently with a tree communication s¢hem

Machine | All-to-one | Cores | Dataset| Total Contour | Total pipeline | Pipeline minus| Date run
status size I/O time time execution contour & I/0
Dawn yes 16384 | 1 TCells| 88.0s 32.2s 368.7s 248.5s June 2009
Dawn yes 65536 | 4 TCells | 95.3s 38.6s 425.9s 294.0s June 2009
Dawn no 16384 | 1 TCells | 240.9s 32.4s 277.6s 4.3s August 2009

Table 8: Performance with old status checking code versus new status checking code. Taking the pipeline time and subtracting contour and
1/O time approximates how much time was spent waiting for status and extents updates. Note that the other runs reported in this article had
status checking code disabled and that the last Dawn run is the only reported run with new status code.

Another “pitfall” is the difficulty in getting consistent selts. Looking at the I/O times from the Dawn runs, there is a

6After our initial round of experiments, our colleague Markllgli of Lawrence Livermore Lab independently observed thaesgroblem and made this
enhancement.

dramatic slowdown from June to August. This is because, liyj the 1/O servers backing the file system became unbalanced
in their disk usage. This caused the algorithm that assitgssté servers to switch from a “round robin” scheme to astiatl
scheme, meaning files were no longer assigned uniformlysadf® servers. While this scheme makes sense from an opgratin
system perspective by leveling out the storage imbalandgmpers access times for end users. With the new scheme, the
number of files assigned to each /O server followed a Poidstribution, with some servers assigned three or four riores

more files than others. Since each I/O server has a fixed bdtigwihose with more files will take longer to serve up data,
resulting in 1/0 performance degradation of factors of ¢hoe four for the cores trying to fetch data from the overlahtl®
servers.

6.3 Shared Libraries and Startup Time

During our first runs on dawn, using only 4096 cores, we olezklags in startup time that worsened as the core count setea
Each core was reading plugin information from the filesysteneating contention for I/O resources. We addressed thisgm
by modifying Vislt's plugin infrastructure so that pluginformation could be loaded on MPI task 0 and broadcast ta otites.
This change made plugin loading nine times faster.

That said, startup time was still quite slow, taking as loadiee minutes. Vislt uses shared libraries in many instatees
allow new plugins to access symbols not used by any curresit Miutines; compiling statically would remove these spiab
The likely path forward is to compile static versions of Vifr the high concurrency case. This approach will likely be
palatable because new plugins are frequently developesvat levels of concurrency.

7 CONCLUSION

Our results contribute to the understanding of pure pdisttte the dominant paradigm for production visualizatiools, at
extreme scale. The experiments were designed to answeruesiigns: (1) will pure parallelism be successful on exeeem
data sets at extreme concurrency on a variety of archieg?uAnd (2) can we demonstrate that pure parallelism saalesd
weak scaling perspective? We believe our results demaedtrat pure parallelism does scale, though it is only as gsaits
supporting I/O infrastructure.

We were successful in visualizing up to four trillion cells diverse architectures with production visualizationtwafe.
The supercomputers we used were “underpowered,” in thatutirent simulation codes on these machines produce meshes f
smaller than a trillion cells. They were appropriately dizeowever, when considering the rule of thumb that the Visaition
task should get ten percent of the resources of the simal&gk, and assuming our trillion cell mesh represents thalation
of a hypothetical 160,000 core machine.

I/0 performance became a major focus of our study, as slovpié®ented interactive rates when loading data. Most super-
computers are configured for 1/0 bandwidth to scale with neindb cores, so the bandwidths we observed in our experiments
are commensurate with what we should expect when using teemeof a future supercomputer. Thus the inability to read
data sets quickly presents a real concern going forwards&dine latest trends in supercomputing show diminishidgates
relative to increasing memory and FLOPs, meaning that ©édbttleneck we observed may potentially constrict furteethe
next generation of supercomputers arrives.

There are potential hardware and software solutions thahefp address this problem, however. From the software side
multi-resolution techniques and data subsetting (sucluasyedriven visualization) limit how much data is read, kehin situ
visualization avoids 1/O altogether. From the hardware séh increased focus on balanced machines that have |/@vizihd
commensurate with compute power would reduce 1/O time.Heuremerging I/O technologies, such as FLASH drives, have
the possibility to make significant impacts. From this stuag conclude that some combination of these solutions eill b
necessary to overcome the I/O problem and obtain good pesfuce.

8 ACKNOWLEDGMENTS

This work was supported by the Director, Office of Advanceg®tific Computing Research, Office of Science, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH1184ugh the Scientific Discovery through Advanced Com-
puting (SciDAC) program’s Visualization and Analytics Genfor Enabling Technologies (VACET). Further, we thankrika
Miller for the status update improvements referenced ire@@the anonymous reviewers, whose suggestions greatipwagh
this paper. Finally, the authors acknowledge the resodhacontributed to the research results reported in thpgipa

The National Energy Research Scientific Computing Centaichvis supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231

The Livermore Computing Center at Lawrence Livermore Natld.aboratory, which is supported by the National Nuclear
Security Administration of the U.S. Department of EnerggemnContract DE-AC52-07NA27344.

The Center for Computational Sciences at Oak Ridge Natioalabratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. De-ACO5RDP2725.

The Texas Advanced Computing Center (TACC) at The UniveddifTexas at Austin for use of their HPC resources.

We thank the personnel at the computing centers that helpéd perform our runs, specifically Katie Antypas, Kathy
Yelick, Francesca Verdier, and Howard Walter of LBNL's NER$aul Navratil, Kelly Gaither, and Karl Schulz of UT’s
TACC, James Hack, Doug Kothe, Arthur Bland, and Ricky Kehoa®ORNL's LCF, and David Fox, Debbie Santa Maria,
and Brian Carnes of LLNL's LC.

REFERENCES

(1]
(2]
(3]
(4]
(5]
(el
(7]

(8]
(9]

(20]

[11]

[12]

Hank Childs, Eric Brugger, Kathleen Bonnell, Jeremy M#tte, Mark Miller, Brad Whitlock, and Nelson Max. A contracased system for large data
visualization. InProceedings of | EEE Visualization, 2005.

Hank Childs and Mark Miller. Beyond meat grinders: An arg$ framework addressing the scale and complexity of lar¢ge skts. InProceedings of
HPC2006, 2006.

J. Clyne, P. Mininni, A. Norton, and M. Rast. Interactigtesktop analysis of high resolution simulations: applarato turbulent plume dynamics and
current sheet formatioNew Journal of Physics, 9:301, August 2007.

Computational Engineering International, IrenSight User Manual.

Robert Haimes. pV3: A Distributed System for Large-Sdatesteady CFD Visualization. 1AIAA paper, pages 94-0321, 1994.

C.R. Johnson, S. Parker, and D. Weinstein. Large-saatgatational science applications using the SCIRun proBl&ring environment. IfProceed-
ings of the 2000 ACM/IEEE conference on Supercomputing, 2000.

C. Charles Law, Amy Henderson, and James Ahrens. An apigliicarchitecture for large data visualization: a caseytudPVG ' 01: Proceedings of
the |EEE 2001 symposium on parallel and large-data visualization and graphics, pages 125-128. IEEE Press, 2001.

Valerio Pascucci and Randall J. Frank. Global statiekidg for real-time exploration of very large regular gritts. SC, page 2, 2001.

T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R Latham. End-t@EStudy of Parallel Volume Rendering on the IBM Blue Gene/f? Prioceedings of
ICPP’ 09 Conference, 2009.

Oliver Ruebel, Prabhat, Kesheng Wu, Hank Childs, Jerbtasedith, Cameron G. R. Geddes, Estelle Cormier-Michel, $¢samn, Gunther H. Weber,
Peter Messmer, Hans Hagen, Bernd Hamann, and E. Wes Bethédi. pelifprmance multivariate visual data exploration for extgrnierge data. In
Super Computing 2008 (SC08), 2008.

William J. Schroeder, Kenneth M. Martin, and William Eorensen. The design and implementation of an object-odetaiglkit for 3D graphics and
visualization. InVIS’96: Proceedings of the 7th conference on Visualization ' 96, pages 93—ff. IEEE Computer Society Press, 1996.

C. Silva, Y. Chiang, J. EI-Sana, and P. Lindstrom. Outaife algorithms for scientific visualization and computepdrics. Invisualization 2002 Course
Notes, 2002.

