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Abstract

As part of the 2008-2009 upgrade of the Franklin Cray XT at the National Energy Research Scientific Computing
center, its I/O resources were more than doubled. The extra bandwidth reduced contention for I/O resources and those
resources were split into two file systems, /scratch and /scratch2, each with more bandwidth than the original /scratch.
In an effort to improve responsiveness, NERSC consulting encouraged ”big I/O” jobs to use /scratch2. File system
monitoring data indicate that this division of the NERSC workload has been largely successful, and we present several
useful characterizations of the two I/O workloads that resulted. This feedback for both the users and the center enhances
NERSC’s ability to manage and provision Franklin’s I/O subsytem as well as to plan for future I/O requirements. The
workload characterization presented here also lays the groundwork for the development of a rigorous methodology for
measuring the impact of I/O on system utilization, which we outline in Future Work.

1 Introduction

The Franklin Cray XT at the National Energy Research
Scientific Computing center (NERSC) regularly has over
300 users logged in and submitting jobs, with 100-200 ap-
plications running at a given time. The scratch file sys-
tems on Franklin are a shared resource with no explicit
“quality of service” or “fair share” mechanism, so there is
inevitably contention for I/O bandwidth. Time lost to I/O
contention represents CPU hours lost to the user, as well
as a lower overall scientific productivity from the system.
Contention also leads to variability in job run time. Some
I/O variation is expected and tolerated by users, however,
if an application’s wall clock time varies significantly, it
can undermine performance analysis and workflow man-
agement. Analysis of the I/O workload on Franklin using
the techniques presented here enables NERSC to manage
the I/O resources to benefit the users individually and to
improve the overall productivity of the system.

NERSC has roughly 3000 users and 400 different
projects spanning the program offices of the Depart-
ment of Energy’s Office of Science, including: astro-
physics, material science, chemistry, fusion energy, nu-
clear physics, climate research, and more. It is a diverse

workload that represents NERSC’s mission in serving the
Department of Energy’s research community. Much ef-
fort is spent studying the application workload in order to
procure systems that meet the requirements of the scien-
tific applications [1] . In this paper we extend this effort to
include user I/O requirements. As the premier supercom-
puting platform at NERSC, it is critical that we understand
the Franklin Cray XT system’s I/O capabilities and how
they meet the needs of the NERSC workload.

Each year NERSC Principal Investigators (PIs) sub-
mit an allocation request for time on NERSC machines.
From this group of over 400 projects, 50 PIs with large
I/O intensive projects answered a detailed survey about
the project’s I/O requirements, current practices and fu-
ture needs [6]. Some of the highlights from the survey
include: I/O is dominated by append-only writes; I/O read
and write sizes vary widely (from a few KB to hundreds
of MB); most applications use a file-per-processor ap-
proach - where each process writes to its own separate file
- rather than using parallel I/O APIs (such as MPI-IO).

A few application’s I/O requirements and I/O patterns
have been studied closely (FLASH [4], MADbench [2],
Vorpal [10] [6]), however, user I/O requirements for the
broader application workload are still not well understood.
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Even an application whose I/O patterns are known can
have I/O usage vary depending on the size of the simula-
tions and the frequency of output. Furthermore, the I/O
pattern resulting from hundreds of applications running
concurrently can be very different from the I/O pattern of
any single application.

It has been our experience that some large applications
perform relatively little I/O while some small, low con-
currency jobs put a heavy I/O load on the system. Addi-
tionally, NERSC has a number of users who run 3rd party
applications not authored by NERSC users and thus whose
I/O requirements are less well known.

This paper takes a detailed look at the I/O taking place
at NERSC, and in particular, on the Franklin Cray XT4
supercomputer.

1.1 The Franklin Cray XT4

The Franklin Cray XT4 machine was delivered to
NERSC in the spring of 2007 and was accepted in Octo-
ber of that year. Franklin arrived as a dual-core (Opteron)
machine with 9660 compute nodes connected via the Cray
SeaStar–2 interconnect, which is organized as a 3D torus.
The scratch space on Franklin is presented to the compute
nodes via the Lustre [3] parallel file system. At the time
of acceptance the single scratch file system, mounted as
/scratch, was measured to have a peak write bandwidth
of about 11GB/s and a peak read bandwidth of about
8GB/s. In the Autumn of 2008 Franklin was upgraded
to have quad-core nodes with twice the memory, dou-
bling the compute capacity of the system. Prior to the up-
grade NERSC was concerned that this change, doubling
the compute capacity without changing the I/O capacity,
would lead to an imbalance in the system. This concern
turned out to be well founded. Even before the upgrade,
some users had voiced concerns about I/O performance,
and after the upgrade reports of slow I/O increased. A
comparison of the balance between I/O and compute ca-
pacity on other supercomputing platforms lead Cray and
NERSC to augment Franklin’s I/O capacity. The band-
width capability was tripled and and storage was increased
by 20%. At that time, NERSC also divided the I/O re-
sources into two equal file systems /scratch and /scratch2.
Each file system now has a peak performance of roughly
17GB/sec for both reads and writes.

Computing time on NERSC systems is not divided
equally amongst the 400 projects. Rather, there are
roughly a dozen projects that together use about a third
of the computational time and a couple dozen projects
that use the next third. The remaining 350 projects share
the last third of the computational time at NERSC. In
order to balance I/O across the two scratch file systems
on Franklin, NERSC contacted ”big I/O” users - those
who either used more than the default disk space or who
had previously reported slow I/O on the system - and

asked them to run applications out of /scratch2 rather than
/scratch. NERSC hypothesized that the few users whose
applications were sensitive to I/O performance would take
the time and effort to move to a new filesystem. The
I/O intensive jobs and users who moved would benefit
from lower contention on /scratch2, on the one hand, and
/scratch would be relieved of the ”big I/O” to the benefit
of the rest of the users. Almost all the users who were
contacted were members of the top 50 projects by alloca-
tion at NERSC. The users were not required to move to
/scratch2, and other users were not prevented from mov-
ing to /scratch2. Nevertheless, this informal policy had ef-
fectively separated the user workload into two parts, with
”big I/O” users running out of one file system and smaller
I/O users running in the other.

In order to understand the I/O requirements of the
Franklin job mix we monitor the jobs closely. In or-
der to do so we rely on the job log maintained by the
batch scheduling system and on the Lustre Monitoring
Tool (LMT) [9], a server-side I/O data acquisition system
providing bytes read and bytes written by the servers every
five seconds.

In the remainder of the paper we will describe the char-
acteristics of the separate workloads of the two scratch
file systems. Our ultimate goal is to develop a rigorous
methodology for measuring the how well the I/O sub-
system performs under a given workload. With such a
measure we could evaluate if, as we believe, this segre-
gation has lead to an improvement in the utilization of the
Franklin system as a whole. The workload characteriza-
tions presented here are a first step in that direction. Fi-
nally, we will introduce (as future work) a new methodol-
ogy for analyzing the connection between the LMT data
and the job log that holds the promise of leading to the
desired measure of system performance.

2 Basic Workload Statistics

The first, simplest way to characterize workload is to
answer the question, ”How much data was moved?” The
data in Table 1 comes from the two sources of monitor-
ing on Franklin: the server-side I/O statistics gathered by
LMT [9] and the job log maintained by NERSC’s batch
system. Table 1 gives the month-by-month totals for bytes
read and bytes written on the two file systems along with
the total number of jobs run each month. Note that 1.6
times as much data is read as is written to the two Franklin
scratch file systems. The total number of jobs being pro-
cessed by Franklin is relatively steady from month to
month, and that is true both for the totality of jobs and
for those run at high concurrency. However, the aggregate
I/O totals vary widely both from month to month and from
/scratch to /scratch2. The fact that reads dominate writes
is contrary to our expectation based on the results of the
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/scratch /scratch2 number of jobs
read write read write all jobs > 15 nodes > 255 nodes

2009-04 2.518 2.280 0.043 0.171 49,161 24,499 4168
2009-05 0.988 1.318 0.257 0.310 47,453 21,940 2919
2009-06 2.278 1.180 0.355 0.476 37,307 18,609 3807
2009-07 2.989 0.714 0.397 0.390 36,969 16,254 3093
2009-08 1.545 0.774 0.255 0.274 47,236 18,913 3757
2009-09 1.690 0.980 0.267 0.298 45,215 19,347 2940
2009-10 4.086 0.673 0.252 0.977 57,329 23,312 4321
2009-11 4.775 1.223 0.509 1.349 52,896 22,422 3630
2009-12 0.728 0.888 0.181 0.466 40,699 19,673 3717
2010-01 0.200 0.370 0.063 0.326 47,484 23,944 3791
2010-02 2.481 0.907 0.272 0.680 57,136 25,610 3898
2010-03 1.090 0.532 0.386 0.743 51,275 25,218 4481
2010-04 3.262 2.374 0.234 2.201 54,007 25,830 3308

total 28.63 14.21 3.24 6.46 624,167 285,571 47,830
average 2.20 1.09 0.25 0.50 48,013 21,967 3679
std. dev. 1.291 0.587 0.143 0.348 6,450 2998 479

Table 1. Amount of data read and written in PB (1015 bytes) on the two scratch file systems. /scratch
moves four times as much I/O as /scratch2. On /scratch there is twice as much read activity as write.
On /scratch2 there is twice as much write activity a read. Overall, there is 1.6 times as much read
as write activity. I/O varies widely, though the number of jobs being run is fairly steady.

NERSC survey of I/O intensive users. Clearly, the pat-
tern for the workload as a whole is not governed by those
who reported that their I/O was dominated by append-only
writes. Our survey of I/O intensive users did not tell the
whole story.

The job log does not record which scratch file system,
if any, a job used, nor does the server side data from LMT
identify from which job a particular I/O operation origi-
nated.∗ We can see from Table 1 that the workloads do

appear to be consistently different between the two file
systems in their volume and the balance between reads and
writes. The workload on /scratch2 appears to more closely
resemble the write intensive I/O profile of the projects
identified originally as heavy users of I/O, but most of
the I/O and even most of the write I/O still takes place
on /scratch. Looking at how much data is stored on the
two file systems we find /scratch typically is maintained
at 50% utilization while /scratch2’s steady state utiliza-

∗Lustre does have an optional capability to record client-side statistics on the server, but it is a memory intensive activity that becomes prohibitively
expensive at large scale. LMT does not employ that capability.
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Figure 1. 24 hour average rates calculated daily
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Figure 2. A regularly scheduled production-time I/O write and read experiment indicates variability.

/scratch /scratch2
read write read write

optimum 80 55 80 55
average 141 118 111 91

ratio 1.76 2.15 1.39 1.65

Table 2. Contention is worse on /scratch than on /scratch2 and is worse for writes than for reads.

tion is around 30%. The number of users running in each
file system however, has a much wider spread. Only about
85 users run out of /scratch2 whereas over 450 users run
from /scratch. On average each /scratch user reads 4.8TB
and writes 2.4 TB of data per month. On /scratch2 the pat-
tern is reversed. The average user running out of /scratch2
reads 2.9TB and writes 5.9TB of data per month. It is in-
teresting to note that only about 30 users have disk usage
of more than the default 750GB quota on either scratch
file system and only a handful of users have disk usage of
more than 3TB. This means users are writing and reading
many temporary files.

Figure 1 shows the daily average value of read and
write rates on the two file systems as reported by LMT.
Here again, it is apparent that reads dominate on /scratch
and writes dominate on /scratch2, that most I/O is taking
place on /scratch, and that the I/O pattern varies markedly
from day to day,.

The next section reports on a standard I/O performance
test that is run at regular intervals on each file system. That
”test probe” gives some insight into the consequences of
I/O contention given the workloads on the two file sys-
tems.

3 Probing I/O Contention and Variability

To better understand performance variation on Franklin
we initiated a regularly scheduled set of I/O tests, which

are launched by a cron job and run three times a day.
The performance of a parallel file system is commonly
measured with a benchmark that probes the file system
for its performance given a variety of constraints. One
such benchmark is IOR [5, 7]. The output from IOR
gives, among other details, the time spent writing and the
amount written, the time spent reading and the amount
read, and the rates calculated from these values. Our cho-
sen test ran IOR with the following settings: 64 tasks on
16 nodes, transferring 4MB with each I/O transaction, us-
ing POSIX I/O calls to a separate file per task, and writing
100GB from each task and then reading that 100GB back
in. These automated tests were performed between April
2009 and May 2010.

Figure 2 shows a scatter plot of the performance vari-
ation for the 800 tests each for read I/O and write I/O on
both the /scratch and /scratch2 file systems. Table 2 sum-
marizes those observations.

Figure 3 recapitulates the scatter plots of Figure 2 as
plots of the frequency histograms for the durations of the
tests. The x-axis gives the duration of the test with the
scale divided into 100 bins. The y-axis gives the number
of tests with a duration in the range for each bin. The
histograms have the general shape of a Poisson distribu-
tion, or perhaps a long tailed power law distribution of
some sort, and have a couple of modes as well. The pre-
cise nature of the distributions is beyond the scope of the
present discussion, as we only consider how the average
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Figure 3. This figure shows the histograms of the duration of the IOR variability test. Optimum
values for read tests are a little slower than for writes. On /scratch2 the dominant mode for reads
and writes is at or near the optimum value, though there is a significant mode at slightly slower
values. On /scratch the dominant mode is significantly slower than the optimum for read and writes.
Contention is present on both file systems but tends to dominate only on /scratch.

test probe compares to the “ideal case”. The “long tail”
corresponds to the poorly performing tests in the scatter
plot. The minimum value for each distribution represents
a good estimate of the ideal case, where the probe had no
interference at all. The ideal case values conform well to
tests run on a dedicated system. The ratio of the average
test duration to the best-case duration gives some indica-
tion of the relative interference observed on the file sys-
tem. It should be noted that the relative interference is not
necessarily a universal property of I/O on the file system.
On the contrary, very short jobs like the test probes will
tend to sample the transient I/O rates on the system, and
thus would be expected to vary as the aggregate I/O on the
file system itself varies. Jobs with much longer sustained
I/O will see something more like the average behavior of
the file system, so will have a very different distribution.

We note in passing that there are occasional periods of
slower performance for reads and writes on both /scratch
and /scratch2. Those periods of degraded performance
correlate with times of especially severe imbalance of
space allocation across the servers and were present at var-
ious times on both file systems. For our purposes this is
just another opportunity for contention and lost compute
time, though it does represent a separate mode of opera-
tion for the file systems and is reflected in the histograms
in Figure 3. That, in turn, makes the interpretation of
Table 2 a little tricky, since the histograms are capturing
two separate effects: the two modes of operation, and the
penalty for experiencing contention. The next section ex-
plores contention and variability in closer detail.

4 The LMT View of I/O Contention and
Variability

LMT provides server-side data rates for the file systems
every five seconds. Plotting the instantaneous level of file
system activity over time gives a useful view of file sys-
tem activity. In Figure 4 the x-axis is wall-clock time for
the period of interest, and the y-axis is the aggregate data
rate: red for reads, and blue for writes. If one further su-
perimposes the start time, stop time, and reported rates for
an IOR test then one can compare what the servers experi-
enced with what the IOR test reports. The comparison in
Figure 4(a) is a useful sanity check on the two monitoring
methods, where an IOR is run during a ”dedicated testing
time” with no other activity on the system.

In Figure 4(b) two IORs are launched simultaneously
during the dedicated testing time. They must contend with
each other for file system bandwidth, and in this case seem
to have split that bandwidth relatively evenly. Thus each
test takes twice as long to complete, and if the tests had
been run one after the other the pair would have completed
in about the same total time. However, in Figure 4(b) the
CPUs for both jobs are occupied for the entire time. If
the CPUs are forced to be otherwise idle during the I/O
then the contention directly leads to lost productivity for
the system.

Figure 5(a) shows one of the test probe IORs being
interfered with during regular production time. Most,
though not all, of the incidents of poor test performance
that we investigated from those in Figure 2 had a similar
character. Another example of interference can be seen in

†When the sample density is large enough the graph is easier to read using points rather than lines, but the underlying data is of the same sort in
either case.
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Figure 4. a) One IOR test running on a quiescent system proceeds in an orderly fashion. b) Two
IORs compete for the available bandwidth, and in this case each gets about half, they both take
twice as long. If two IORs had been run one after the other they would have together completed
in about the same time as those in b). However, in b) twice as many CPUs were kept occupied for
the entire time.

Figure 5(b). In this case each sample is plotted as a point.†

This was not during one of the regularly scheduled tests,
but was observed in the normal course of monitoring I/O
behavior. An interval of high read activity (at about 11:00)
appears to suppress write activity, presumably from other
jobs.

One way to get a sense of the I/O workload is to look at
a 24 hour period of LMT data as in Figure 6. In Figure 6(a)
the /scratch file system is heavily occupied with read I/O
for the entire day. In Figure 6(b) the /scratch2 file system
is relatively lightly loaded but for a few brief, transitory
I/O operations. Reviewing daily LMT data reports will
show days that span the range from light to heavy activity,
from read dominated to write dominated, and with well-
defined I/O operations as in Figure 6(b) or with a con-
tinual, variable, and undifferentiated sequence of observa-
tions. Looking at LMT data in this way does not scale in
the sense that increasing amounts of data does not lead to
a clearer picture of the workload. In the next sections we
look at statistical methods of analyzing the LMT data, in
order to establish a more rigorous characterization of I/O
workload.

5 The I/O Power Spectrum

The I/O rate observed by each server at each sampling
interval gives an instantaneous and transient view of the
file system as a whole. By gathering all such observations
into a histogram of observed I/O rate versus count we can
get an aggregate view of I/O that emphasizes the modes of
behavior rather than the time order of events.

The power spectrum for LMT data is built by first
constructing the histogram of the LMT I/O observations.

The LMT observations are binned based on the number
of bytes moved in each observation. Figure 7 uses 100
bins ranging from 0 bytes up 2.5GB. The power spec-
trum modifies the underlying histogram by multiplying the
count by the bytes moved for that bin. Thus the power
spectrum gives the total contribution to the I/O of the I/O
in each bin. Figure 7(a) gives the power spectrum for
/scratch for the 13 months of operation since the I/O up-
grade in March of 2009, Figure 7(b) gives the power spec-
trum for /scratch2.

The power spectrum for the I/O observations gives a
useful characterization of the aggregate workload on the
file system. A month of such data reveals, in some cases,
a broadly diffuse spectrum where the workload consists of
a wide variety of different behaviors, none dominant. In
other cases the distribution is a low flat line punctuated by
a few very dominant modes. In that case the workload it-
self is made of a few dominant jobs with a very specific
and repeatable I/O profile.

The centroid of the power spectrum is the bin at which
half the I/O is in larger observations and half in smaller
observations. For /scratch read I/O and for /scratch2 read
and write I/O the centroid is very close to the center of the
range of bins at about 900MB. The centroid for /scratch
write I/O is much smaller at about 400MB. This tells
us that write I/O on /scratch is much more dominated by
smaller individual I/O observations, and we may surmise
that this is because it is dominated by much smaller write
requests from the job mix targeting /scratch. It is I/O
from very large and sustained transfer requests that is most
likely to result in individual LMT observations at the peak
available transfer rate. There is a great deal of structure in
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Figure 5. Jobs competing for I/O bandwidth can interfere with each other. a) One of the regularly
scheduled IOR tests suffered due other activity on the system. b) A period of high read activity
appears to suppress the write activity.

(a) A 24 period of heavy I/O on /scratch (b) Relatively light I/O on /scratch2

Figure 6. Looking at LMT data 24 hours at a time can give an intuitive sense of whether the file
system is busy and what the workload looks like. It is difficult to get a complete or rigorous view
for the year as a whole, though, by simply looking at many such daily graphs.

the power spectrum of the LMT data for the file system as
a whole and when examined month by month or day by
day.

The two values so far used to characterize workload -
the aggregate amount of data transfered and the centroid of
the power spectrum - both distinguish the workload on the
two file systems. These aggregate values cannot represent
the more nuanced differences that would come from work-
loads that differ, for example, in presenting short intervals
of high I/O versus long intervals of low I/O. The centroid
of the power spectrum cannot distinguish between a work-
load of identically performing jobs versus a distribution of
jobs with the same average behavior, but widely varying
individual I/O rates. The next section presents a very dif-
ferent statistical view of the I/O behavior on Franklin and
on the way answers a very different sort of question about

the workload.

6 The Auto-correlation Function

We make a slight digression into a separate question
that also has some interest, and from the results of answer-
ing that question we gain insight into our original work-
load characterization goal.

One may wonder if a job that has a regularly sched-
uled I/O component of its workflow might be able to ben-
efit from examining how busy the file system is and, if it
is busy, deferring the I/O by an amount τ , waiting until
things calm down a bit. If the system is busy, how long
is that likely to last? If the system is quiet, is it likely to
remain quiet long enough to acomplish the needed I/O?
This amounts to the auto-correlation of the I/O rate on the
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(a) /scratch (b) /scratch2

Figure 7. The power spectrum gives the total I/O contributed in each of 100 bins based on the
LMT observations. For example, an LMT observation of 1GB transfered to/from a given server in
the 5 second interval contributes 1GB of I/O to the 1GB bin. In a) there would appear to be about
200,000 such observations for read I/O and about 50,000 for write I/O. The centroid of the spectra
in /scratch2 are both near the middle of the distribution at about 900MB, as is the centroid for reads
in /scratch, but the centroid for writes in /scratch is much smaller at around 400MB.

file system.
Figure 8 graphs the auto-correlation function (ACF) for

April 2010 for both /scratch and /scratch2. For τ less than
about two minutes it is very likely that the current ob-
served I/O rates will persist for reads and writes for both
file systems. Beyond that /scratch2 is likely to be quiet
if it was busy or vice versa. On /scratch the write auto-
correlation also drops significantly in the first two min-
utes, but the read-autocorrelation remains high well past
an hour. A computation on /scratch2 that can wait two
minutes to save a checkpoint might well do so if the file
system is currently busy, and a job that can complete its
I/O in two minutes has a reasonable chance of doing so
unmolested when it sees the file system is quiecent. On
/scratch the expected wait for a quiescent system is much
longer, simply because it is always rather likely that a lot
of reads are going on as in Figure 6(a).

As with the power spectrum, the auto-correlation func-
tions change from month to month reflecting changes in
the underlying workload, though the /scratch read auto-
correlation is like that in Figure 9 most months, and the
/scratch2 auto-correlations seldom show much correlation
past a few minutes. In the previous section we saw that the
centroid of the /scratch write power spectrum was half the
value of the other spectra reflecting more, smaller writes
there. With the auto-correlation calculation we see that it
is the reads on /scratch that stand out as being very differ-
ent, and in this case it reflects that there is an ongoing high
read activity on scratch that persists for many hours at a
time.

These statistical methods of characterizing the work-
load on Franklin are helpful in exhibiting the long-term

and persistent trends that might not be as apparent by look-
ing at the instantaneous rates as in Figure 6. It is clear
that the strategy of segregating the ”big I/O” workload on
/scratch2 has had a significant effect on how the two file
systems are used, but we cannot yet say if doing so saved
CPU hours for the users compared to other strategies. In
order to evaluate alternative strategies we need one more
thing. Knowing which job is responsible for which I/O ac-
tivity will allow us to count the number of CPU hours lost
due to delays induced by I/O contention. In the next sec-
tion we outline one strategy for extracting this information
from the available data.

7 Future Work

In order to answer the original question of whether the
segregation strategy actually improved the utilization of
the compute resource one additional piece of the puzzle
remains. We need to be able to determine how many
CPUs were impacted by a given instance of contention.
The most direct way to do this is to connect observed I/O
with particular jobs. There are several possible ways to
approach that, including implementing a compute node
monitoring scheme like the Integrated Performance Mon-
itoring library (IPM [8]). The scheme we propose is to
infer job-level I/O events from the LMT stream of obser-
vations and employ clustering analysis to associate those
events with specific jobs. In cases where an otherwise idle
file system suddenly transitions to having a high I/O rate,
stays there for an extended interval and then returns to idle,
it is easy to infer that this was the result of the tasks of a
single job acting in consert to carry out the job’s I/O. In
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(a) /scratch (b) /scratch2

Figure 8. The auto-correlation functions for /scratch and /scratch2 differ mainly in the reads. The
data presented is for the month of April 2010, and is typical for both /scartch and /scratch2. For
reads and writes on /scratch2 and for writes on /scratch the auto-correlation tends to fall within ten
minutes or so to low correlation, but reads on /scratch maintain a strong correlation well beyond
an hour.

the other extreme, where the file system is very busy and
remains so for an extended period, with a high degree of
variability in the level of activity from one interval to the
next, one may guess that many jobs are busy with I/O si-
multaneously, and disentangling them may be impossible.
A sufficiently clever automated ”event recognizer” may
be able to characterize a large fraction of the I/O as be-
ing from separate jobs. If enough such job I/O events can
be recognized one may be able to analyze their frequency
with an eye towards calculating how often and to what ex-
tent the events do cause jobs to interfere with each other
and therefore how much wasted compute time there was
due to I/O contention.

In the proposed scheme we manipulate the LMT data
stream using signal processing techniques. Transients in
the signal mark significant events. An automatic recog-
nition procedure marks the event start and end points.
The procedure starts with the definition of a minimum
amplitude level, here estimated from a year of observa-
tions to be about 1GB/s. The signal is convolved with
a smoothing kernel to guarantee differentiability and min-
imize background oscillations. Next, the procedure cal-
culates the first derivative to determine the maximal and
minimal turning points of the signal to identify event start
and end points. Figure 10 illustrates the processing steps,
showing the original signal, the signal filtered with a win-
dow of 600 seconds, and the identified events. The crite-
rion for start (S) and end (E) points for a particular peak
Pi (Figure 10(b)) considers Si to be the closest minimum
to Pi−1 in (Pi−1, Pi];Ei is obtained similarly. The thresh-
old amplitude and smoothing kernel determine the sensi-
tivity of the algorithm and can be tuned to define the sig-
nificance of the events. Figure 11 presents a parameter

study for the smoothing kernel window size and suggests
that there is wide latitude in the choice of that parameter.

The LMT signal f(t) is defined in the time domain.
However, it is possible to represent the same function in
the frequency domain with sinusoids as the set of basis
functions, producing a Fourier transform F (f). Currently,
we are building a visualization tool (see Figure 12) that
will assist in the exploration of read/write traces in the fre-
quency domain.

A Short Term Fourier Transform (STFT) is a sequence
of Fourier transforms with a fixed window size, and a
spectrogram is the intensity plot of the magnitudes in a
STFT. Color spectrograms have been used for many years
in audio spectral analysis and speech recognition. Fig-
ure 12 shows the spectrogram visualization tool as it is be-
ing used to identify spectral signatures of individual jobs
or job phases in the LMT signal.

The upper panel of the visualization tool shows the
original LMT stream of read rate values for a 24 hour pe-
riod. As in Figure 6 the x-axis is time and the y-axis is
the aggregate read rate observed by the servers.The bot-
tom panel shows the spectrogram of the signal in the top
panel. Again, the x-axis is time - corresponding directly
to the signal in the panel above - but now the y-axis is
frequency. The colormap represents the amplitude of the
frequency component, from blue for the lowest amplitude,
through green, to yellow, and finally to red for the highest
amplitude. The spectrogram shows well defined regions
of event activity with low frequency transients as well as
higher harmonics. When condensed to a few descriptive
parameters the spectrum during an event can be combined
with the other general facts about it, such as how much
data was moved, and used in a clustering scheme to pick
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Figure 9. The auto-correlation for read I/O on /scratch drops to about 0.5 within a few minutes, but
when followed to much longer lags shows an ongoing high correlation out beyond two hours. In
this graph the auto-correlation is calculated out to a 24 hour (86400 second) lag. The high corre-
lation is because /scratch is frequently engaged in a constant high read I/O similar to that depicted
in Figure 6(a).

out when two jobs are ”the same.” In conjunction with the
job log data this can then allow us to associate specific
I/O events with the actual binary that the job was running,
which in turn allows us to associate I/O events with size of
the job. Armed with this association we can then compute
in a rigorous way the cost, in CPU cycles lost, of a delay
induced by I/O contention.

8 Conclusions

NERSC more than doubled the I/O resources for the
Franklin Cray XT and split those resources in two. The
increased resources lead to a better balance between com-
pute and I/O capabilities, and the user community noticed
both the improved performance and the decreased vari-
ability in I/O performance. NERSC encouraged “big I/O”
users to move to using /scratch2 so that they would ex-
perience less interference and so that jobs with lower I/O
requirements would not have to contend for resources with
them.

A review of our monitoring data shows that this segre-
gation was largely successful. We were able to character-
ize I/O contention on the system using a regularly sched-
uled I/O test. We observed that read rates are as important
as write rates to NERSC users. This appears to contra-
dict the results from the NERSC user survey where PIs
reported ”predominately write” activity for their I/O in-
tensive applications. This leads us to conclude that the
selected projects were not entirely representative of the
NERSC workload. Compared to the size of the scratch
file systems and the average growth of disk use, the vol-
ume of write data shows that users must be managing most
of their disk use without system staff intervention.

LMT provides both a low-level, detailed view of the

file system and a high-level overview of long term and
aggregate use. Average daily rates and historical trends
show the workload changing from month to month. The
monthly summary statistics and the statistical analysis of
the LMT data stream using the power spectrum and the
auto-correlation function all show that the workloads on
the two file systems differ. The workload on /scratch2
reflects those characteristics consistent with “big I/O” as
outlined in the NERSC user survey. Nevertheless, most of
the I/O on Franklin still targets /scratch, raising the possi-
bility that a better balance might be achieved.

From this work one could ask, ”Did creating two
scratch file systems increase scientific productivity on the
NERSC systems, and is the balance of users between
scratch and scratch2 ideal?” From the center staff’s per-
spective, after the I/O upgrade and the creation of two file
systems, the number of users reporting problems with I/O
performance dropped significantly. It is not known how-
ever, if maintaining one scratch file system after the I/O
upgrade would have produced the same level of user sat-
isfaction. It is clear however, that the /scratch2 file system
has lower I/O activity and so users whose applications are
sensitive to I/O now have a file system from which to run
with little interference from other users. This segregation
can be a benefit to both to the ”big I/O” users, who have
a quieter file system, and to the large number of NERSC
users whose I/O is not impacted by those ”big I/O” jobs.
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Figure 10. Steps of the algorithm to detect events: (a) read activity on 2010-04-29; (b) smoothed
signal, peaks and start-end point candidates; (c) event detection result - different colors indicate
different events.
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Figure 11. Multiscale representation of signal in Fig.10 that shows that the identity of peaks is
stable over a wide variety of window lengths using different smoothing kernel sizes.

Figure 12. A spectrogram of the LMT read data is constructed via the Short Term Fourier Trans-
form of the signal. The Fourier transform of a moving window about each time step provides the
spectrum represented in the heat map in the bottom half of the display.
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