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Abstract—The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific
research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis
on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties
of AMR grids that challenge many existing visualization techniques. Further, we present the first implementation of query-driven
visualization on the GPU that uses a GPU-based indexing structure to both answer queries and efficiently utilize GPU memory. We
apply our method to two different science domains to demonstrate its broad applicability.
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1 INTRODUCTION

Computational simulation has become an essential and powerful tool
impacting a diverse group of scientific disciplines such as engineer-
ing, biology, and medicine. Detailed simulations that model time-
dependent, continuous physical phenomena, along with analysis and
visualization tools that address the temporal aspects of these simu-
lations, are essential to generate new understanding and insight into
many domain-specific problems. Approaches for visualizing time-
varying data are generally based on either temporally sequential, or
temporally concurrent analysis methods. In the former, renderings are
first generated from individual timesteps by using traditional visual-
ization approaches (e.g. isosurface extraction or volume rendering).
These renderings are then viewed sequentially as an animation. In con-
trast, temporally concurrent visualization methods (i.e. multitemporal
visualizations) present the important features from multiple timesteps
in a single image.

In scientific simulations, the immense size and sheer complexity
of data generated from highly-detailed numerical methods has pop-
ularized the use of adaptive mesh refinement (AMR) strategies. In
numerical simulations, AMR-based techniques adaptively refine the
domain space of a simulation, both spatially and temporally, into a hi-
erarchy of nested, sequentially refined grids. Though these strategies
are computationally efficient and provide significant storage benefits,
the dynamic aspects of the grid hierarchies pose significant challenges
for visualization methods. Specifically, each timestep in a simulation
contains a unique grid hierarchy, consisting of multiple levels of grid
cell refinement. When considering a fixed spatial location in the com-
putational domain at two or more timesteps, the disparity of grid cell
refinement that occurs between the grid hierarchies at this location
prevents the simultaneous evaluation of data necessary for many visu-
alization algorithms.

In this work, we address the challenges of using a query-driven
visualization (QDV) approach to visualize time-varying AMR data.
QDV methods allow users to process ad-hoc queries over large-scale
datasets and visualize the spatial regions where data satisfies the
queries. QDV methods are well-suited for analyzing and visualizing
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datasets that are both large and highly complex [26].

We present a two-step method for compositing and synchronizing
AMR data from a series of timesteps. We first generate a composite
template from the AMR grid hierarchies of these timesteps; the com-
posite template preserves the finest level of grid cell refinement from
each grid hierarchy. We then synchronize each timestep’s grid hier-
archy to the composite template. This approach enables our method
to process queries on a common AMR grid hierarchy. Using this data
structure, we move the work of query processing to the GPU to realize
the benefit of greatly accelerated QDV analysis. On the GPU side, we
integrate our new method with a GPU-based query engine, called the
Bin-Hash index [10].

The main contributions of this work are the following.

• We develop a new framework for doing QDV processing and vi-
sualization of time-varying AMR data. The core of this method
is based upon a synchronization strategy that addresses the dis-
parities in spatial refinement that exist between any series of
timesteps in an AMR-based simulation.

• We demonstrate the first GPU-based QDV approach that utilizes
a GPU-based indexing strategy to accelerate query processing,
efficiently utilize GPU memory, and accelerate QDV methods.

In the next section, we discuss work germane to our efforts. This is
followed in Section 3 by an overview of AMR grid fundamentals, our
composite template construction and timestep synchronization pro-
cess, and an introduction to the Bin-Hash index. Finally, we present
the results of our method from both a qualitative and quantitative anal-
ysis perspective.

2 PREVIOUS WORK

To provide a new method for analyzing and visualizing time-varying
adaptive mesh refinement data, our work builds upon three separate
fields: AMR visualization, query-driven visualization (QDV), and
time-dependent visualization methods.

2.1 Visualization of Adaptive Mesh Refinement Data

Adaptive mesh refinement (AMR) strategies are based on the obser-
vation that localized complexity in physical phenomena – i.e. the rate
of change observed in physical quantities within small regions in the
domain – often varies substantially over space and time. Utilizing
this observation, AMR strategies proceed by simulating these physical
phenomena adaptively. Rather than utilizing a costly uniform grid of
high density for the entire domain space, AMR techniques begin with
a relatively course (and thus cheaper) grid hierarchy and adaptively
refine grids in this hierarchy only in regions of the domain requiring
higher levels of accuracy.



Importantly, this adaptive refinement occurs not just spatially, but
temporally as well. As the simulation evolves, a regridding algorithm
tests and refines grid cells with a frequency directly related to their
level of refinement. Thus, grid cells of fine refinement – indicating
regions of complex or important behavior – undergo testing for regrid-
ding more frequently than grid cells of comparatively coarser refine-
ment. This adaptive spatial and temporal refining of the domain space
results in a hierarchy of nested, sequentially refined grids that are com-
putationally cheaper to construct and are less expensive to store than a
high-density uniform grid.

Though AMR was first presented in 1984 [5], and then extended in
1989 [6], the challenges of mapping common visualization techniques
to AMR’s spatially dynamic grid structure were not addressed until
much later. One of the earliest examples of AMR visualization was
given by Max [20] in his cell-sorting method for volume rendering.
Norman et al. [21] convert AMR hierarchies into finite-element hexa-
hedral cells with cell centered data, thus enabling the use of standard
visualization tools.

More recent work focuses upon operating directly on AMR data.
Work by Ma [19] describes a parallel rendering strategy for AMR
data and presents two contrasting visualization approaches. Weber et
al. [27, 29] present software and hardware-accelerated methods based
on cell projection that facilitate direct volume rendering of AMR data.
In their work, they render an AMR hierarchy by starting with its coars-
est representation. The image is then refined by subsequently inte-
grating the results obtained from renderings of finer grids. Weber et
al. [28] also present crack-free isosurface extraction methods for AMR
data. Park et al. [23] present a hierarchical multi-resolution splatting
technique for AMR data that utilizes kd-trees and octrees. Their novel
approach provides interactive performance for modest sized data.

Kähler and Hege [14] present a hardware-accelerated volume-
rendering approach to visualize AMR data. Their work, based on 3D
textures, directly utilizes the hierarchical grid structure of the AMR
data to rapidly render high-resolution datasets – including AMR data
consisting of over nine levels of refinement. Kähler et al. also present
a novel strategy for remotely visualizing AMR data at intermediate
time steps [15]. Their method utilizes so-called “keyframe” timesteps
to generate intermediate grid hierarchies. Data for these grid structures
is then acquired through interpolation strategies (via Hermite or linear
methods) by using the existing data in the keyframe timesteps.

Kähler et al. have more recently extended their earlier work by
presenting a GPU-assisted raycasting strategy for accelerating the vi-
sualization of AMR data [16]. This work utilizes a kd-tree, resident on
the GPU, to provide a view-consistent ordering of data, and acceler-
ate the task of volume rendering. They contrast their method’s results
with a hardware accelerated slice-based volume rendering approach.
Their method generates superior images to the slice-based approach,
with no observable artifacts.

2.2 Query-Driven Visualization

Query-Driven Visualization (QDV) is an important and effective way
to combine database and visualization technologies. QDV strategies
are based on the observation that smaller subsets of data are usually
the genesis of insight or breakthroughs to new trends [3, 11]. In QDV,
users begin analysis by forming definitions for data that are “impor-
tant” to them. This characterization consists of constructing range
constraints for variables of interest. As an example, a user analyzing a
combustion dataset may set constraints over specific variables such as:
(1100 < temperature < 1800) AND (pressure < 780). QDV methods
use these range constraints to filter data records passed to visualization
and analysis software. This query filtration process focuses visualiza-
tion and analytical resources exclusively on data that is meaningful to
the user.

Stockinger et al. [25] were first to present the notion of coupling
visualization with high performance query technology. Their work
demonstrates that the computational complexity of visualization pro-
cessing can be constrained to the number of items returned by a query.
Their approach introduces a software system (DEX) that utilizes a
highly efficient indexing and query infrastructure, called FastBit, to

rapidly identify records of interest [32, 33].
Gosink et al. [9] extend the utility of QDV methods by using cor-

relation fields to explore variable interactions within the domain space
of query-regions. Their work focuses on characterizing flame-front
regions in combustion simulations.

Bethel et al. apply QDV principles to network traffic analysis [7].
They use compressed bitmap indices to visualize and characterize over
2.5 billion records of network connection data. Stockinger et al. [24]
extend the QDV approach for traffic analysis by presenting a family of
new parallel algorithms that generate queryable two-dimensional con-
ditional histograms. These conditional histograms are used to detect
and characterize distributed scans.

2.3 Multitemporal Visualization

Though researchers have proposed various methods to track time-
varying features across multiple timesteps in sequential fashion (i.e.
animations), less attention has been paid to the direct visualization of
4D data. In direct visualization of 4D data, or multitemporal visualiza-
tion, important features from selected timesteps are conveyed in a sin-
gle meaningful visualization. Projecting four-dimensional information
meaningfully onto a two-dimensional image is difficult to do without
saturating the visualization with too much information. Finding ways
to extend traditional, three-dimensional visualization methods to four
dimensions is one intuitive way to approach visualizing time-varying
data.

Hansen et al. [12,13] use 3D scalar fields as elevation maps in 4D. In
these works, 4D lighting, shading, and plane-tracing (i.e. 4D ray trac-
ing) are used to visualize higher dimensional data. Bajaj et al. [2] ex-
tend object splatting techniques to present a generalized hyper-volume
splatting approach. Their method presents a multi-resolution algo-
rithm for providing insightful visualizations of scalar fields in any di-
mension; the focus of their work, however, is not explicit temporal
feature tracking. Bhaniramka et al. [8] extend and generalize march-
ing methods to higher dimensions, specifically generating 4D isosur-
faces that can be sliced to enable the study of time-evolving features.
Woodring et al. [31] also extend slicing techniques for the direct ren-
dering of 4D space-time volumes (as apposed to the 4D isosurfaces
generated by Bhaniramka’s work). Their hyper-projection method dis-
plays unique spatiotemporal features. Woodring and Shen [30] present
a way to directly volume render time-varying data in a single mul-
titemporal image. In their work, they orthographically project four-
dimensional data (i.e. volume data accumulated over time) onto a three
dimensional image plane. They use traditional rendering methods over
the image plane, using opacity values that are spatially and temporally
based, to realize multitemporal images.

Extending AMR and QDV Work

To date, no techniques exist that facilitate the rendering of time-
varying AMR data in a multitemporal fashion. We address this impor-
tant issue in this work by combining GPU-based QDV methods with
a new approach for temporally synchronizing the time-varying data
from a series of AMR timesteps. The results of our method allow for
the interactive visualization of multivariate, spatiotemporal AMR data.
We also extend previous QDV work in two aspects: we present the first
application of QDV techniques on AMR data, and we also present the
first GPU-based QDV approach that utilizes a GPU-based indexing
strategy to accelerate query processing, efficiently utilize GPU mem-
ory, and accelerate QDV methods.

3 METHOD

Query-driven analysis and multitemporal visualization of AMR data
are hindered by the dynamic temporal and spatial properties of AMR-
based simulations. Specifically, in AMR-based simulations, any fixed
spatial location in the domain can be covered by a grid cell of vary-
ing refinement based upon the timestep analyzed. For query-driven
visualization (QDV), this disparity in refinement between timesteps
prevents the evaluation of multitemporal queries. Similarly, coher-
ent multitemporal renderings of AMR data from any visualization
approach – extracting and simultaneously rendering isosurfaces from



multiple timesteps, or volume rendering with time-dependent transfer
functions – also require addressing these temporal-based disparities of
spatial refinement.

Our new method addresses these challenges by synchronizing all
AMR grid hierarchies (from any subset of timesteps) with a composite
template. This synchronization process facilitates query-driven analy-
sis and multitemporal visualization in two aspects: temporally sequen-
tial visualizations, where features from these timesteps are analyzed in
sequential frames as a movie, and temporally concurrent visualizations
where a single multitemporal image conveys the important features
from all synchronized timesteps.

We base our method on the AMR grid hierarchy outlined by Berger
and Colella [5,6]. We outline this hierarchy and its properties next. For
more details regarding AMR-based simulations, we refer the reader
to [1, 5, 6].

3.1 AMR Grid Structure

Adaptive mesh refinement (AMR) implementations are traditionally
based on a nested hierarchy of successively refined axis-aligned grids.
These grids are identified using the notation Gl,k where l indicates the
level of cell refinement for the grid, and k is the unique number for
the grid given this refinement level [6]. We use the notation Gl,k→k+n

to refer to a continuous set of grids at a single level of refinement.
The increase in resolution from one grid refinement level to the next
is specified by a refinement ratio ”r”, which indicates how many grid
cells of level l + 1 fit into a single grid cell of level l (considering a
single axis-direction).

∆xl+1 = 1
r ∆xl , ∆yl+1 = 1

r ∆yl , ∆zl+1 = 1
r ∆zl (1)

Note that the refinement ratio may change between successive grid
levels. For example, the refinement ratio may be two between levels l
and l+1, and four between levels l+1 and l+2. Though not required,
refinement ratios are usually based on powers of two [4]. This conven-
tion seems to reflect a good balance between coding simplicity and an
effective realization of the benefits of refinement.

An additional property required of all grids is the notion of proper
nesting. This nesting property is strictly defined in the sense that grid
cells of refinement level l are prohibited from abutting any grid cell
other those of refinement level l, l+1, or l−1. A simple 2D example
demonstrating an AMR hierarchy is illustrated in Figure 1.

At the start of a simulation, t = 0, the initial AMR grid hierarchy
contains a single grid composed of cells of the coarsest level of re-
finement. Before the simulation begins, the grid cells of this initial
hierarchy are refined based upon a convergence/stability criteria spec-
ified by the user. This refinement criteria, utilized both at the start and
during the simulation process, may be based on the behavior of flow
features (e.g. vorticity or density gradients) [1], or on factors that are
more complex [6]. This initial refinement process is iterative – testing
and refining are repeated until for all grid cells at all levels of refine-
ment either the convergence criteria is met, or the finest allowed level
of refinement is reached (maximum refinement levels are user set).

Given this refinement procedure, note that regions can be covered
by multiple grids: e.g. a spatial location covered by G2,a, will also

Fig. 1: This image depicts an AMR grid hierarchy consisting of four grids and three levels

of refinement: G0,0, G1,0→1, and G2,0. Grid cells are refined with a refinement ratio of r=2

and are properly nested: grid cells at level 2 do not abut grid cells at level 0.

be covered by some G1,b as well as G0,c. With each refinement level
possessing a different set of data for the specific region, a visualization
method can take one of several approaches to utilize this data [18]:

• Treat all the grids (and their values) independently;

• Combine the data together in some way that is physically mean-
ingful and use the result for visualization; or

• Use the data value(s) from the finest grid available and ignore
data value(s) from coarser grids.

In our method we adopt the last approach to acquire data values
from AMR grid hierarchies; by using the finest resolution source avail-
able at any given location in the domain, we are sure to be using the
more accurate and detailed information produced by the computational
model.

3.1.1 Advancing Grid Cells in Time

As the simulation advances beyond t = 0, a time-stepping algorithm
evaluates and regrids grid cells according to their level of refinement:
Gl,0→n are evaluated and regridded independently of Gl+1,0→m etc.
The frequency of these regriddings is directed by the refinement ratio
such that r defines both the spatial and temporal refinement properties
that guide AMR-based simulations:

∆t l+1 =
1

r
∆t l (2)

The time-stepping algorithm can be thought of as a recursive approach
that advances grids cells in time according to their level of refine-
ment [1]. To advance level l, l0 ≤ l ≤ lmax, the following steps are
performed:

1. Advance grid cells at level l in time by one timestep. Calculate
data values for these grid cells at this new time. Additionally, if
l+1 ≤ lmax, assess all grid cells at this new time for the need of
additional refinement (through the convergence criteria). For all
cells that require further refinement, generate new grid cells at
refinement level l+1 in these cell locations.

2. Advance level l + 1 grid cells r times using Equation 2 to deter-
mine the length of the timestep. At each of the r timesteps, calcu-
late data values for these grid cells. Additionally, if l+2 ≤ lmax,
assess all grid cells for the need of additional refinement (through
the convergence criteria). For all cells that require further refine-
ment, generate new grid cells at refinement level l + 2 in these
cell locations.

3. Synchronize data from grid cells at level l+1 back to level l.

The synchronization of data in the last step involves several steps
that effectively serve to propagate accuracy back to the coarser refined
grid levels. In this way the accuracy of the data at coarser levels of
refinement is corrected/adjusted with finer resolution data.

3.2 Composition and Synchronization of AMR Grids

To perform QDV on a series AMR timesteps, e.g. timestep 0 and
timestep n, every spatial grid cell associated with a data record at
timestep 0 must have a corresponding spatial grid cell of equivalent
refinement at timestep n. We achieve this consistency of refinement
by first constructing a composite template from the series of AMR
timestep’s grid hierarchies. We then use this template to direct the
synchronization of these grid hierarchies for purposes of QDV.

3.2.1 Composite Template Construction

The composite template construction process consists of a refinement-
level ordered compositing of AMR grid cells. From the AMR grid
hierarchies contained in a series of timesteps, the construction process
begins by adding to the composite template only those grid cells whose
refinement level is equal to lmax. Next, the construction process con-
ditionally adds to the template those grid cells whose refinement level
is equal to lmax−1. With conditional additions, the process adds a grid
cell to the template only if a grid cell of finer refinement is not already



Fig. 2: This figure illustrates the sequential process of compositing the AMR grid hierarchies of two selected timesteps. The process begins by filling the composite template with all

grid cells, from both timesteps, of the finest level of refinement. In each subsequent pass, our procedure adds grid cells of the next level of lesser refinement to the template - conditioned

on the basis that a more finely refined grid cell has not already been placed at that position. Finally, we add grid cells of the coarsest level of refinement to the template.

resident in the template at this given location. This strategy continues
until the process conditionally adds grid cells of refinement level equal
to l0. Figure 2 illustrates this construction process.

This refinement-level ordered compositing guarantees two funda-
mental properties in the final composite template:

• The template maintains the finest level of refinement from each
timestep utilized in its construction – the template thus preserves
the high fidelity data created by the numerical simulation.

• The composite template provides a basis for resolving the dif-
ferences in grid cell refinement that exist when a given point in
space is covered by different grid cell refinement levels at differ-
ent points in time. Specifically, every grid cell from any AMR
grid hierarchy used to construct the composite template can be
mapped to a grid cell of equivalent refinement, or a group of
nested grid cells of greater refinement, in the composite template.

3.2.2 Grid Synchronization

The composite template provides the common grid hierarchy neces-
sary for performing query-driven analysis and multitemporal visual-
ization of AMR data. The variable attributes (e.g. pressure, density,
etc.) contained in each timestep’s grid hierarchy must now be syn-
chronized with this template. The second fundamental property of the
composite template formulates this synchronization process.

Those grid cells (from all grid hierarchies used to generate the com-
posite template) that map to regions of greater refinement in the com-
posite template are synchronized through a regridding process. This
regridding process iteratively divides the grid cell in question into a
nested group of grid cells of increased refinement. This refinement
continues iteratively until grid cells are identical in refinement and hi-
erarchical ordering to the group of nested grid cells in the composite
template. To complete the synchronization, we propagate the cell cen-
tered value of the original grid cell to the centers of the newly created
grid cells. Figure 3 illustrates this process. With each timestep’s grid
hierarchy synchronized, multitemporal query-driven visualization of
AMR data is now possible.

3.3 Query-Driven Visualization of Temporal AMR Data

The goal of query-driven analysis is to provide scientists with interac-
tive and resource-efficient methods for visually exploring large mul-
tidimensional data. To meet these needs, it is important to process
user’s queries, and render the results generated from these queries, as
fast as possible. We meet these needs by employing a GPU-based
query indexing structure, called the Bin-Hash index [10]. By utilizing
a GPU-based query engine, we can implement the entire QDV pro-
cess on the GPU and accelerate QDV performance as a whole with
the GPU’s parallel processing power. In our implementation, the CPU
serves as a host to the GPU, only streaming the minimal data neces-
sary to perform full-resolution queries (Section 3.3.2). All queries are
evaluated (and rendered) on the GPU by executing kernels written in
NVIDIA’s data-parallel programming language CUDA [22]. QDV in
literature typically evaluates scalar data. However, the Bin-Hash index
can also evaluate vector data, as well as evaluate an arbitrary number
of timesteps or variables.

The integration of the Bin-Hash index into QDV is similar to previ-
ous integrations that utilized a CPU-based index [26]. Both strategies
use index building, index searching, record processing, and rendering

procedures. The difference between our work and previous work is
that we query and render adaptively refined spatiotemporal data. This
difference requires, in addition to the use of the composite template
and synchronized grid hierarchies (Section 3.2), mapping query re-
sults to direct the rendering of grid cells during the rendering stage.
We discuss Bin-Hash index building, searching, and rendering next.

3.3.1 Bin-Hash Index Construction

The strategy of the Bin-Hash method is based upon the observation
that query performance can be accelerated through the utilization of
multi-resolution information. Supporting this approach requires two
levels of informational representation for the AMR data records: full-
resolution (the 32-bit base data) and low-resolution information (8-bit
encoded data).

The Bin-hash index construction algorithm takes as input the full-
resolution AMR data from a single timestep and generates both an
encoded and spatially compacted version of this input. The index con-
struction algorithm performs this operation in two stages. In the first
stage, it utilizes a binning strategy to generate a binned (ı.e. encoded)
version of the data. In the second stage it utilizes a combination of
data partitioning with a technique referred to as spatial hashing [17]
to compactly represent the full-resolution data contained in each bin
previously created by the first stage’s binning procedure.

The first stage in the index construction process begins by ex-
amining and binning – independently – the data from each selected
timestep’s hierarchy. For example, given a set of bin boundaries on a
variable A, such as (b0, b1, . . . , bn), each bin is defined to be the inter-
val (b0 ≤ A < b1), (b1 ≤ A < b2), and so on. Bin-Hash binning always
utilizes 256 bins, where each bin contains approximately the same
number of records. The encoded version of the dataset, referred to as
low-resoution data, is created by replacing each 32-bit full-resolution
data value with its associated 8-bit bin number (0-255).

The second stage in the process of index construction requires the
partitioning and spatial compaction of the original full-resolution data.

Fig. 3: This figure depicts the sequential process of synchronizing the grid hierarchy of

a given timestep with a composite template. At each level of synchronization, grid cells

conditionally refine themselves by one additional level according to whether or not they are

synchronized with the composite template. In this example, synchronization is complete

for the grid hierarchy in the second level of synchronization.



(a)

(b)

(c)

Fig. 4: These images depict the three transfer functions we employ in our work. In (a)

and (b) the colors correspond to levels of AMR grid refinement for the respective Argon

Bubble and Hurricane datasets: green colors indicate grid cells of finest refinement, and

gray colors indicate grid cells of coarsest refinement. In (c) the colors are used to convey

summary statistic information in multitemporal visualizations: blue colors indicate regions

where few queries have selected a cell during QDV analysis, and yellow colors indicate

regions where the most queries have selected the cell.

To perform this, records are first partitioned according to their bin
numbers. Next, these subsets of data are spatially compacted through
a technique called perfect spatial hashing [17]. Perfect spatial hash-
ing takes all the full-resolution data associated with the records of a
given bin, and stores it separately as two small tables: a hash table and
an offset table. This operation is performed for all 256 bins. Once
the second stage is completed, the total full-resolution dataset is now
represented as 256 pairs of hash and offset tables. The total storage
overhead for the indices is approximately 1.5 - 2.0 times the size of
the original AMR data. This partitioning and spatial hashing of the
data is essential to the search process as the next section details.

3.3.2 Bin-Hash Index Searching

Before query processing begins, low-resolution (i.e. encoded) data
for all selected timesteps is first uploaded onto the GPU. Resolving
a query then consists of two stages, both performed on the GPU. In
the first stage the GPU-resident low-resolution data is evaluated in a
low-resolution query. In certain cases this low-resolution information
is insufficient and full-resolution data must be utilized. In the sec-
ond stage, up to two pairs of hash and offset tables (per variable) are
sent to the GPU to assist in evaluating a full-resolution query. The re-
sult of this two-stage index searching approach is a single bit-vector –
a boolean array, with one entry per AMR data record, that indicates
which records (grid cells) have passed and which have failed the query.

In the first stage of the index searching algorithm we first determine
the boundaries of the query. Consider an example. Given a user’s
range constraints on a given variable and timestep, such as (pressure
> 100), we determine the bin(s) (Section 3.3.1) that these constraints
fall into. In this example, assume that the value “100” for pressure
is contained in the value range captured by bin 17. Bin 17 is then
defined to be a “boundary bin” for the query. Next, the search process
evaluates a low-resolution query by accessing the low-resolution data
on the GPU. These low-resolution data records are then characterized
as passing (the given record’s value is greater than 17), failing (the
given record’s value is less than 17), or in need of full-resolution data
(the given record’s value is equal to 17).

In the second stage of the index searching algorithm, those low-
resolution records that were characterized in stage one as needing
full-resolution data, now undergo a full-resolution query. In this
full-resolution query, the hash and offset tables corresponding to the
boundary bin(s) of the query are streamed to the GPU from the CPU.
This data transfer constitutes a trivial impact on PCI-E bandwidth [10],

as a maximum of 2
256 the size of the original dataset is transfered over

the bus (at most two boundary bins may exist per variable in a query
out of the possible 256 bins). Each record whose low-resolution value
corresponds to a boundary bin utilizes the hash and offset tables of
this bin, via a perfect spatial hash, to access its original full-resolution
value. Once this data has been retrieved, the searching algorithm per-
forms a full-resolution query and all records are classified as passing
or failing the query. In the case of a query that constrains more than
one variable, the bit-vector solutions from each single variable are log-
ically combined to form the multi-dimensional query’s final solution.

3.3.3 Mapping AMR-Based Bit-Vectors to Three-Space

Our rendering algorithm takes the bit-vector solution created in the in-
dex search stage, and generates (for cells passing the query) renderable

coordinates for dynamically-sized hexahedral cells in three-space. For
uniform datasets, bit-vectors are rendered by mapping each record’s
unique index to a three-space position (through modular indexing),
and rendering a constant sized hexahedral cell at this location. How-
ever, these rendering techniques won’t work on query solutions gen-
erated from AMR data. AMR grids have dynamic cell sizes, and with
arbitrary cell counts per dimension, modular indexing will not work.

Our approach to solving this problem is to generate a single record-
ID list for each composite template that stores the spatial location and
level of refinement of each grid cell in the template’s hierarchy. The
ordering of this list coincides with the ordering of the records being
queried by the Bin-Hash method. Thus, the rendering stage in our im-
plementation first accesses the bit-vector solution of the user’s query.
For each record that passes the query, the algorithm uses the record’s
index value to lookup the spatial location and level of refinement of
that record. The appropriately sized hexahedral cell parameters are
then written to a buffer in the GPU’s global memory. The render-
ing algorithm additionally uses the cell’s refinement level, and a color
lookup table, to determine the color to render each grid cell; grid cells
of a common refinement level share a common color. The memory is
then mapped as a Vertex Buffer Object and rendered to the screen.

4 VISUALIZATION APPLICATIONS AND ANALYSIS

We apply our new query-driven visualization (QDV) method to two
datasets. We demonstrate our method’s ability to generate multitem-
poral visualizations from time-varying AMR data, by visualizing sum-
mary statistic information generated from a single query that has been
evaluated over multiple timesteps. In our analysis the term, “synchro-
nized AMR data”, refers to AMR data that has been synchronized with
a composite template, “non-synchronized AMR data” refers to AMR
data that has not been synchronized with a composite template.

All tests were performed on a desktop machine running the Win-
dows XP operating system with SP2. All GPU kernels were run utiliz-
ing NVIDIA’s CUDA software: drivers version 1.6.2, SDK version 1.1
and toolkit version 1.1. We additionally used the following hardware:

• Motherboard: EVGA 680i - 1066MHz FSB; 16X PCI-Express

• Processor: Intel QX6700 - 2.66GHz; 2 x 128KB L1; 2 x 4MB L2

• Co-processor (Graphics Card): NVIDIA 8800GTX - 768MB GDDR3

4.1 Dataset 1: Argon Bubble with Shock Wave

This dataset models a simulated shock wave passing through an argon
bubble surrounded by atmospheric gases (i.e. air). One of the impor-
tant characteristics of this dataset is the dispersion of the argon gas
over time. There are over 1000 simulated timesteps in this dataset
where the physical property we analyze is gas density; i.e. mass of gas
per unit volume (ranging in values from 1.3 to 5.1). We analyze 18
AMR timesteps from these 1000: the grid hierarchies associated with
times 100, 150, . . ., and 950. Each timestep’s (synchronized) hierarchy
consists of three refinement levels and a total of 14 million cells.

Multitemporal Visualization

The left column of images in Figures 5(a) through 5(c) depict two-
dimensional slices of selected AMR grid hierarchies; these are the
grid hierarchies we use to construct our composite template. The right
column of images shows cells from these hierarchies that have been
rendered through a process of query-driven analysis; all rendered grid
cells in images from this column are selected by querying for density
values: (density ≥ 1.5). In both columns, colors depict levels of grid
refinement and are based on the transfer function shown in Figure 4(a).
Specifically, gray regions indicate grid cells of coarsest refinement in
the Argon Bubble simulation; and green regions indicate areas of finest
refinement. Compositing the AMR grids from the 18 timesteps results
in the composite template shown in Figure 5(d).

We use this composite template to generate a multitemporal visu-
alization based on summary statistic information accumulated from



(a) Timestep 100

(b) Timestep 200

(c) Timestep 900

(d) Composite template

Fig. 5: This figure depicts images from select timesteps of the Argon Bubble dataset. In

this dataset there are three grid hierarchy levels, shown in these images as colored gray

(coarsest cell refinement), blue (medium cell refinement), and green (finest cell refine-

ment). The left column of images, (a) - (c), show two-dimensional slices through the AMR

grid hierarchies of these select timesteps. The image in figure (d) depicts the composite

template we construct from all (18) timesteps we use in our analysis. The right column of

images show the cells selected from query-analysis for the individual timesteps; in these

images regions where gas density is greater than 1.5 are rendered.

queries that select regions of high gas density. We construct this vi-
sualization by first generating an integer-based solution array. This
array contains one entry for each grid cell in the composite template
that tracks how many times its respective grid cell passes a series
of queries. We then query the synchronized AMR data of the first
timestep (Timestep 100) for grid cells where (density ≥ 1.5) – this
query delineates regions of higher gas density. Cells from this timestep
that have passed the query increment the value corresponding to their
position in the solution array by one. We apply the same query to
the next timestep’s synchronized AMR data (Timestep 150); results of
this query too are added to the array. We repeat this process for all 18
timesteps. The final solution array contains summary statistic data that
reveals how higher-levels of gas density disperse spatially over time.

We visualize these summary statistics in Figure 6. This figure is col-
ored according to the transfer function shown in Figure 4(c). Cells that
contain low gas density over the entire length of the simulation (i.e. no
query from any timestep indicated the cell passed our query for high
density) are shown in blue; in contrast, cells that contain higher gas
density for the entire length of the simulation (i.e. every query over
the timesteps indicated the cell passed our query for density) are indi-
cated in yellow. From this multitemporal visualization we can see how
higher-levels of gas density are distributed over space with respect to
time. This type of visualization allows scientists to assess how effec-
tive various types of shock-waves are at dispersing chemical gases.

4.2 Dataset 2: Hurricane Isabel

This dataset was generated by a climate simulation that models a hurri-
cane event over 48 timesteps. This dataset represents a common class
of uniform resolution data consisting of a uniform grid of hexahedral
cells (500x500x100). Such time dependent datasets can be costly to
store and analyze. To ameliorate these costs, we recast this uniform
data in a multi-resolution framework to ease storage and visualization
demands. We recast the data by adaptively coarsening the flattened
grid – in regions where detail is not required – into a multi-resolution
grid framework that abides by the properties of an AMR hierarchy.

Fig. 6: This multitemporal image depicts summary statistic information gathered from

queries processed over 18 select timesteps from the Argon Bubble dataset. In this image,

yellow regions indicate areas where high gas density predominantly resides over the course

of the Argon Bubble simulation. Light blue regions show areas where only a few timesteps

indicate the presence of high gas density; these regions denote where argon is dispersing.

We define “important” regions in this process – that is, regions where
coarsening should not take place – as areas where observed physical
properties vary greatly. Those regions where observed physical prop-
erties do not vary are subjected to coarsening.

The results of this adaptive coarsening are a series of multi-
resolution, time-dependent datasets that follow the structural proper-
ties of an AMR grid hierarchy. Each timestep in the original source
data contains 25 million cells. After coarsening, each timestep con-
tains 5 levels of refinement and a total of 8.6 million cells. Thus the
criteria for adaptive coarsening results in a storage savings of about
65%, while still preserving the dataset’s important features. We ap-
ply our method for generating multitemporal visualizations to these
datasets; we generate a composite template from all timesteps, and
then synchronize the timesteps with this template. One of the im-
portant characteristics in this dataset is the low-pressure regions that
depict the location of the hurricane event. With our new multitemporal
visualization method, we effectively characterize these regions. In this
section, all queries for pressure are in Pascal units

Multitemporal Visualization

Figure 8 depicts select non-synchronized (top row) and synchronized
(bottom row) timesteps from the hurricane dataset. The top row il-
lustrates the individual grid hierarchies generated from our adaptive
coarsening approach; the bottom row depicts the same grid hierar-
chies after synchronization with a composite template. The cells
rendered in these images (both top and bottom rows) have passed a
double-constraint query for pressure that selects cells from a given
timestep that either contain low pressure OR high pressure: (−200 ≤

pressure ≤ 20) OR (500 ≤ pressure ≤ 1000). Note that we also show,
to assist in interpreting the data in Figure 8’s images, the regions of
isolated low pressure (Figure 7(a)) and isolated high pressure (Fig-
ure 7(b)) .

The regions in Figure 8, as well as those in Figure 7(a) and Fig-
ure 7(b), are colored according to the transfer function in Figure 4(b);
green regions indicate grid cells of finest refinement, and gray regions
indicate grid cells of coarsest refinement. In both rows of images in
Figure 8 observe that the low pressure regions, which characterize the
important hurricane event, are preserved at the finest level of cell re-
finement. In contrast, regions of high pressure, which characterize
areas where little observable variation in physical properties occur, are
predominately coarsened by our adaptive coarsening method. In the
bottom row of images in Figure 8, which show results for querying
timesteps of composited and synchronized AMR grids, the path of the

(a) Cells selected from a query

selecting regions of low pressure:

(−200 ≤ pressure ≤ 20)

(b) Cells selected from a query se-

lecting regions of high pressure:

(500 ≤ pressure ≤ 1000)

Fig. 7: This figure depicts grid cells in the Hurricane dataset that contain relatively low (a)

and high pressure (b).



(a) Timestep 10 (b) Timestep 25 (c) Timestep 35 (d) Timestep 45

Fig. 8: This series of images, selected from 48 timesteps, compares query results from non-sychronized (top row), and sychronized (bottom row) AMR grids of the Hurricane Isabel

dataset. The query used on each timestep consists of two parts; we query for regions of low pressure (−200 ≤ pressure ≤ 20) OR regions of high pressure (500 ≤ pressure ≤ 1000). To

assist in interpreting these images, the individual regions generated from these low and high pressure queries are shown in Figures 7(a) and 7(b).

hurricane is preserved at the finest level of refinement in the composite
template as indicated by the green path.

We utilize this composite template to generate a multitemporal vi-
sualization based on summary statistics from queries – processed over
each of the 48 timesteps – that select regions of low pressure. This
process is analogous to the one performed in Section 4.1 for the Ar-
gon Bubble dataset. We begin by querying the synchronized AMR
data of the first timestep (Timestep 1) for all cells with pressure val-
ues in the range of (−200 ≤ pressure ≤ 20) – note that this query
characterizes regions of hurricane activity in the simulation. The re-
sults of this query are stored in an array. This process is repeated for
all 48 timesteps; each query indicating in the array, those cells that
have passed its query. The final results of the array contain summary
statistics that indicate how the hurricane event, as characterized by our
queries for low-pressure, evolves spatiotemporally.

We visualize these summary statistics in Figure 9. This figure is col-
ored according to the transfer function shown in Figure 4(c). From this
multitemporal visualization we can see how cells that predominantly
contain low pressure over time – as indicated by regions of yellow –
define the path of the hurricane.

Performance

There are two factors that contribute to the response time of a QDV
application: the time it takes to process a query (Section 3.3.2), and
the time it takes to render the query’s solution (Section 3.3.3). To the
user, these two times appear as a unified sum that we define as “query-
driven response time”. We analyze the performance of our work by
presenting our query-driven response times in terms of the number of
queries we can process and render in a single second. We additionally
show this metric in terms of its two principle components: the time it
takes to answer a query and the time to render the query’s results.

Each timestep from the coarsened, synchronized Hurricane dataset
(for the variable pressure) consists of 8.6 million cells. We evalu-
ate our method’s performance by independently analyzing two query

Fig. 9: This multitemporal image depicts summary statistic information gathered from

queries processed over 48 timesteps from the Hurricane dataset. In this image, yellow

regions indicate where low pressure predominantly exists across the 48 timesteps.

characteristics important to QDV. We analyze QDV performance with
respect to increasingly complex queries (i.e. the number of timesteps
evaluated by the query), and QDV performance with respect to de-
creasingly selective queries (i.e. the percentage of cells that passed the
query). The former query characteristic impacts the time it takes to
process a query; the more timesteps in a query, the more time it takes
to process the query. The latter impacts the time it takes to render the
results of the query; queries with low selectivity select more cells that
must be processed and rendered to the screen.

We begin our tests by querying a single timestep with queries that
select 1%, 10%, and 20% of the cells as hits. As mentioned, we record
for each of these queries the time it takes to answer a query, render the
result of the query, as well as the total number queries we can process
and render in a single second. We then consider an additional timestep
in our queries, and repeat the same sequence of tests. We repeat this
process until a total of five timesteps are simultaneously evaluated by
all queries. The results of these tests are shown in Table 1.

The values shown in Table 1 indicate that performance for our QDV
method is predominantly determined by the selectivity and not the
complexity of a given query. Thus, users who analyze numerous vari-
ables or numerous timesteps in their queries, so long as the selectivity
of these queries is high, will experience excellent performance with
our method. Users whose queries are not very selective (i.e. select a
large number of cells to render), even if they are only analyzing one
variable, will experience slower performance. Note that even at the
lowest level of performance (five timesteps at 20% selectivity in Ta-
ble 1), our method is still operating above performance levels consid-
ered interactive (typically, any implementation that functions in excess
of 6 Hz is considered interactive), and is providing excellent perfor-
mance for QDV functionality.

5 CONCLUSION AND FUTURE WORK

We have presented a new method for performing query-driven visual-
ization of time-varying AMR data. With our new analysis and visual-
ization approach, we are able to construct multitemporal visualizations
that convey in a single image how queries characterizing important in-
teractions or properties evolve over time. We have demonstrated the
extensible utility of our method by applying it to two different science

Timesteps Queried
1% selectivity 10% selectivity 20% selectivity

(ms / ms / qps) (ms / ms / qps) (ms / ms / qps)

1 (8.6 million cells) 1.9 / 40.1 / 23.3 1.9 / 59.1 / 16.1 1.9 / 74.0 / 13.0

2 (17.2 million cells) 3.1 / 41.7 / 22.0 4.0 / 59.4 / 15.5 4.0 / 74.8 / 12.5

3 (25.8 million cells) 5.0 / 41.9 / 20.9 5.86 / 60.1 / 14.8 6.0 / 75.9 / 12.0

4 (34.4 million cells) 7.0 / 42.0 / 19.9 7.0 / 61.8 / 14.3 8.0 / 76.9 / 11.6

5 (43 million cells) 8.1 / 43.8 / 18.9 10.4 / 60.5 / 14.0 12.6 / 77.2 / 11.0

Table 1: This table depicts, for an increasing number of timesteps and records queried,

performance times taken during the analysis of the Hurricane dataset (Section 4.2). The

results are given according to three ranges for query selectivity: queries where 1%, 10%,

and 20% of the available records are selected by the query. The first value in any given col-

umn and row entry is the time to answer the query, the second number is the time to render

the query’s solution; both of these values are given in milliseconds. The final number is

the total number of queries processed and rendered per second; this measurement depicts

the total performance experienced by the end user and incapsulates the two previous times.



domains, and showing how more traditional “flattened” time-varying
datasets may be recast as AMR and evaluated by our approach.

One potential limitation of our new method is the possibility that
a large number of compositing steps could result in a composite tem-
plate that becomes a representation of the entire domain at the finest
level of refinement. One observation to make in this worst-case sce-
nario is that a fully refined composite template is not the expensive
factor with respect to storage concerns. The concerns for storage arise
from the synchronization of AMR timesteps with this template.

One approach we are pursuing to address this worst-case scenario
is to develop methods that optimally select the timesteps synchronized
in our analysis process, e.g., select the timesteps that minimize storage
costs while maximizing information obtained. Such optimal selections
need to be based upon the statistics of the AMR simulation itself: the
temporal and spatial distribution pattern of fine-refinement cell counts,
the rate at which these regions grow and diminish, etc. A second
strategy we are pursuing is to utilize multiple composite templates,
where each template is based upon a unique time interval. Timesteps
are then synchronized to their local template; synchronizing timesteps
to a small and local temporal range should reduce storage demands.
Queries are evaluated over these individual templates, and the results
are then combined using a template synchronization protocol. Both
these strategies form the basis of our future work.

Another potential limitation for this work comes from memory con-
straints, imposed by the GPU, that limit the amount of AMR data able
to be processed by our method. Our current work is focused on devel-
oping an application, based on the Bin-Hash index, that utilizes a grid
of GPUs that will alleviate this limitation. In this application, large
datasets will be partitioned and analyzed in parallel across the GPU
grid, and independent solutions will be composited for final viewing.
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