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ABSTRACT

The path towards realizing peta-scale computing is increas-
ingly dependent on scaling up to unprecedented numbers
of processors. To prevent the interconnect architecture be-
tween processors from dominating the overall cost of such
systems, there is a critical need for interconnect solutions
that both provide performance to ulta-scale applications and
have costs that scale linearly with system size. In this work
we propose the Hybrid Flexibly Assignable Switch Topol-
ogy (HFAST) infrastructure. The HFAST approach uses
both passive (circuit switch) and active (packet switch) com-
modity switch components to deliver all of the flexibility
and fault-tolerance of a fully-interconnected network (such
as a fat-tree), while preserving the nearly linear cost scal-
ing associated with traditional low-degree interconnect net-
works. To understand the applicability of this technology,
we perform an in-depth study of the communication re-
quirements across a broad spectrum of important scientific
applications, whose computational methods include: finite-
difference, lattice-bolzmann, particle in cell, sparse linear
algebra, particle mesh ewald, and FFT-based solvers. We
use the IPM (Integrated Performance Monitoring) profiling
layer to gather detailed messaging statistics with minimal
impact to code performance. This profiling provides us suf-
ficiently detailed communication topology and message vol-
ume data to evaluate these applications in the context of
the proposed hybrid interconnect. Overall results show that
HFAST is a promising approach for practically addressing
the interconnect requirements of future peta-scale systems.

1. INTRODUCTION

As the field of scientific computing matures, the demands
for computational resources are growing at a rapid rate. It is
estimated that by the end of this decade, numerous mission-
critical applications will have computational requirements
that are at least two orders of magnitude larger than current
levels [1, 2, 16]. However, as the pace of processor clock rate
improvements continues to slow, the path towards realizing

peta-scale computing is increasingly dependent on scaling
up the number of processors to unprecedented levels. To
prevent the interconnect architecture from dominating the
overall cost of such systems, there is a critical need to ef-
fectively build and utilize network topology solutions with
costs that scale linearly with system size.

HPC systems implementing fully-connected networks
(FCNs) such as fat-trees and crossbars have proven popular
due to their excellent bisection bandwidth and ease of ap-
plication mapping for arbitrary communication topologies.
In fact, as of November 2004, 94 of the 100 systems in the
Top500 [4] employ FCNs (92 of which are fat-trees). How-
ever, it is becoming increasingly difficult and expensive to
maintain these types of interconnects, since the cost of an
FCN infrastructure composed of packet switches grows su-
perlinearly with the number of nodes in the system. Thus,
as supercomputing systems with tens or even hundreds of
thousands of processors begin to emerge, FCNs will quickly
become infeasibly expensive. This has caused a renewed in-
terest in networks with a lower topological degree, such as
mesh and torus interconnects (like those used in IBM Blue-
Gene/L, Cray RedStorm, and Cray X1), whose costs rise
linearly with system scale. However, only a subset of scien-
tific computations have communications patterns that can
be effectively embedded onto these types of networks.

One of the principal arguments for moving to lower-degree
networks is that many of the phenomena modeled by sci-
entific applications involve localized physical interactions.
However, this is a dangerous assumption because not all
physical processes have a bounded locality of effect (e.g. n-
body gravitation problems), and not all numerical methods
used to solve scientific problems exhibit a locality of data
dependencies that is a direct reflection of the phenomena
they model (e.g. spectral methods and adaptive mesh com-
putations). As a result, lower-degree interconnects are not
suitable for all flavors of scientific algorithms. Before moving
to a radically different interconnect solution, it is essential
to understand scientific application communication require-
ments across a broad spectrum of numerical methods.

Several studies that profile application communication
have observed that many applications have communication
topology requirements that are far less than the total con-

nectivity provided by FCN networks. For instance, the
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is 3-7 distinct destinations, or neighbors. This provides
strong evidence that many application communication top-
ologies exercise a small fraction of the resources provided by
FCN networks.

However, even if the network offers a topological degree
that is greater than or equal to the application’s TDC, tradi-
tional low-degree interconnect approaches have several sig-
nificant limitations. First, there is no guarantee the in-
terconnect and application communication topologies are
isomorphic—hence preventing the communication graph from
being properly embedded into the fixed interconnect topol-
ogy. Additionally, adoption of networks with a lower degree
of topological connectivity leads to considerable problems
with runtime job scheduling. Unless the communication
topology is known before application processes are assigned
to nodes, the mapping of the application process topology
to the fixed network topology may result in hopelessly ineffi-
cient performance. This kind of topological mismatch can be
mitigated by sophisticated task migration and job-packing
by the batch system, but such migration impacts overall
system efficiency. Furthermore, task migration is a complex
software technology, especially for distributed architectures,
and is often absent on modern parallel computers. Finally,
individual link or node failures in a lower-degree intercon-
nection network are far more disruptive than they are to a
fully-interconnected topology. Any failure of a node within
a mesh will create a gap in the interconnect topology that
further complicates job scheduling, and, in some cases, mes-
sage routing. Even if the interconnect can route around
failure, overall application performance then becomes de-
pendent on the slowest link in the interconnect. In contrast,
when a node fails in an FCN, it can be taken offline without
compromising the messaging requirements for the remaining
nodes in the system.

To address these deficiencies, we propose the Hybrid Flex-
ibly Assignable Switch Topology (HFAST) infrastructure.
The HFAST approach uses both passive (layer-1 / circuit
switch) and active (layer-2 / packet switch) commodity
switch components to deliver all of the flexibility and fault-
tolerance of a fat-tree interconnect, while preserving the
nearly linear cost scaling associated with traditional low-
degree interconnect networks. In order to understand the
applicability of this technology, we perform an in-depth study
of the communication requirements across a broad spectrum
of important scientific applications, whose computational
methods include: finite-difference, lattice-bolzmann, parti-
cle in cell, sparse linear algebra, particle mesh ewald, and
FFT-based solvers. To efficiently collect this data, we use
the IPM profiling layer, which gathers detailed messaging
statistics with minimal impact on code performance. The
derived messaging statistics enable us to compute the topo-
logical requirements of these applications, in the context of
our hybrid interconnect network. Overall results show that
HFAST is a promising approach for practically addressing
the interconnect requirements of future peta-scale systems.

2. HYBRID SWITCH ARCHITECTURE

Given the superlinear cost of constructing FCN architec-
tures, the interconnect will rapidly become the dominant
cost of such systems. As we move towards petaflops sys-
tems with tens (or hundreds) of thousands of processors,
the industry will be hard-pressed to continue to build fat-
tree networks into the peta-scale era. For an alternative

to fat-trees and traditional packet-switched interconnect ar-
chitectures, we can look to recent trends in the high-speed
wide area networking community, which has arrived at a
cost-effective hybrid solution to similar problems.

2.1 Circuit Switch Technology

Packet switches, such as Ethernet, Infiniband, and
Myrinet, are the most commonly used interconnect technol-
ogy for large-scale parallel computing platforms. A packet
switch must read the header of each incoming packet in order
to determine on which port to send the outgoing message.
As bit rates increase, it becomes increasingly difficult and
expensive to make switching decisions at line rate. Most
modern switches depend on ASICs or some other form of
semi-custom logic to keep up with cutting-edge data rates.
Fiber optic links have become increasingly popular for clus-
ter interconnects because they can achieve higher data rates
and lower bit-error-rates over long cables than is possible us-
ing low-voltage differential signaling over copper wire. How-
ever, optical links require a transceiver that converts from
the optical signal to electrical so the silicon circuits can per-
form their switching decisions. The Optical Electrical Opti-
cal (OEO) conversions further add to the cost and power
consumption of switches. Fully-optical switches that do
not require an OEQO conversion can eliminate the costly
transceivers, but per-port costs will likely be higher than
an OEQO switch due to the need to use exotic optical mate-
rials in the implementation.

Circuit switches, in contrast, create hard-circuits between
endpoints in response to an external control plane — just like
an old telephone system operator’s patch panel, obviating
the need to make switching decisions at line speed. As such,
they have considerably lower complexity and consequently
lower cost per port. For optical interconnects, micro-electro-
mechanical mirror (MEMS) based optical circuit switches
offer considerable power and cost savings as they do not re-
quire expensive (and power-hungry) optical/electrical trans-
ceivers required by the active packet switches. Also, be-
cause non-regenerative circuit switches create hard-circuits
instead of dynamically routed virtual circuits, they con-
tribute almost no latency to the switching path aside from
propagation delay. MEMS based optical switches, such as
those produced by Lucent, Calient and Glimmerglass, are
common in the telecommunications industry and the prices
are dropping rapidly as the market for the technology grows
larger and more competitive.

2.2 Related Work

Circuit switches have long been recognized as a cost-
effective alternative to packet switches, but it has proven
difficult to exploit the technology for use in cluster intercon-
nects because the switches do not understand message or
packet boundaries. It takes on the order of milliseconds to
reconfigure an optical path through the switch, and one must
be certain that no message traffic is propagating through the
light path when the reconfiguration occurs. In comparison, a
packet-switched network can trivially multiplex and demul-
tiplex messages destined for multiple hosts without requiring
any configuration changes.

The most straightforward approach is to completely elim-
inate the packet switch and rely entirely on a circuit switch.
A number of projects, including the OptIPuter [8] transcon-
tinental optically-interconnected cluster, use this approach



for at least one of their switch planes. The OptIPuter nodes
use Glimmerglass MEMS-based optical circuit switches to
interconnect components of the local cluster, as well as to
form transcontinental light paths which connect the Uni-
versity of Illinois half of the cluster to the UC San Diego
half. One problem that arises with this approach is how to
multiplex messages that arrive simultaneously from differ-
ent sources. Given that the circuit switch does not respect
packet boundaries and that switch reconfiguration latencies
are on the order of milliseconds, either the message traffic
must be carefully coordinated with the switch state or multi-
ple communication cards must be employed per node so that
the node’s backplane effectively becomes the message mul-
tiplexor; the OptIPuter cluster uses a combination of these
two techniques. The single-adapter approach leads to im-
practical message-coordination requirements in order avoid
switch reconfiguration latency penalties, whereas the mul-
tiadapter approach suffers from increased component costs
due to the increased number of network adapters per host
and the larger number of ports required in the circuit switch.

One proposed solution, the ICN (Interconnection Cached
Network) [10], recognizes the essential role that packet
switches play in multiplexing messages from multiple sources
at line rate. The ICN consists of processing elements that
are organized into blocks of size k which are interconnected
with small crossbars capable of switching individual mes-
sages at line rate (much like a packet switch). These k-blocks
are then organized into a larger system via a k * Npiocks
ported circuit switch. The ICN can embed communication
graphs that have a consistently bounded topological degree
of communication (TDC) less than k. The jobs must be
scheduled in such a way that the bounded contraction of
the communication topology (that is, the topological de-
gree of every subset of vertices) is less than k. This is an
NP-complete problem for general graphs when k£ > 2, al-
though such contractions can be found algorithmically for
regular topologies like meshes, hypercubes, and trees. If
the communication topology has nodes with degree greater
than k, some of the messages will need to take more than one
path over the circuit switch and therefore share a path with
other message traffic. Consequently the bandwidth along
that path is reduced if more than one message must con-
tend for the same link on the network. Job placement also
plays a role in finding an optimal graph embedding. Run-
time reconfiguration of the communication topology on an
ICN may require task migration in order to maintain an op-
timal embedding for the communication graph. The HFAST
approach detailed in this work has no such restriction to reg-
ular topologies and needs no task migration.

Finally, there are a number of hybrid approaches that use
combination packet/circuit switch blocks. Here each switch-
ing unit consists of a low bandwidth dynamically-routed net-
work that is used to carry smaller messages and coordinate
the switch states for a high-bandwidth circuit switched net-
work that follows the same physical path. Some examples
include Gemini [7], and Sun Microsystems Clint [9]. Each of
these uses the low-bandwidth packet-switched network to set
up a path for large-payload bulk traffic through the circuit
switch hierarchy. While the circuit switch path is unaware
of the packet boundaries, the lower-speed packet network is
fast enough to mediate potential conflicts along the circuit
path. This overcomes the problems with coordinating mes-
sage traffic for switch reconfiguration exhibited by the purely

circuit-switched approach. While promising, this architec-
ture suffers from the need to use custom-designed switch
components for a very special-purpose use. In the short
term, such a specialized switch architecture will have diffi-
culty reaching a production volume that can amortize the
initial development and manufacturing costs. Our target is
to make use of readily available commodity components in
the design of our interconnect in order to keep costs under
control.

2.3 HFAST: Hybrid Flexibly Assignable
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Figure 1: General layout of HFAST (left) and ex-
ample configuration for 6 nodes and active switch
blocks of size 4 (right).

We propose HFAST as a solution for overcoming the ob-
stacles we outlined above using (Layer-1) passive/
circuit switches to dynamically provision (Layer-2) active/
packet switch blocks at runtime. This arrangement leverages
the less expensive circuit-switches to connect processing el-
ements together into optimal communication topologies us-
ing far fewer packet switches than would be required for
an equivalent fat-tree network composed of packet switches.
For instance, packet switch blocks can be arranged in a
single-level hierarchy when provisioned by the circuit
switches to implement a simpler topology like a 3D torus,
whereas a fat-tree implementation would require traversal
of many layers of packet switches for larger systems — con-
tributing latency at each layer of the switching hierarchy.
Therefore this hybrid interconnection fabric can reduce fab-
ric latency by reducing the number of packet switch blocks
that must be traversed by a worse-case message route.

Using less-expensive circuit switches, one can emulate many
different interconnect topologies that would otherwise re-
quire fat-tree networks. The topology can be incremen-
tally adjusted to match the communication topology re-
quirements of a code at runtime. Initially, the circuit switches
can be used to provision densely-packed 3D mesh commu-
nication topologies for processes. However, as data about
messaging patterns is accumulated, the topology can be ad-
justed at discrete synchronization points to better match
the measured communication requirements and thereby dy-
namically optimize code performance. MPI topology direc-
tives can be used to speed the runtime topology optimiza-
tion process. There is also considerable research opportu-
nities available for studying compile-time instrumentation
of codes to infer communication topology requirements at
compile-time. In particular, languages like UPC offer a high-
level approach for exposing communication requirements at



[ System [ Technology [ MPI Latency | Peak Bandwidth | Bandwidth Delay Product |

SGI Altix Numalink-4 1.1us

Cray X1 Cray Custom 7.3us

NEC Earth Simulator NEC Custom 5.6us
Myrinet Cluster Myrinet 2000 5.7us
Cray XD1 RapidArray/IB4x 1.7us

1.9 GB/s 2 KB
6.3 GB/s 46 KB
1.5GB/s 8.4 KB
500MB/s 2.8 KB

2GB/s 3.4 KB

Table 1: Bandwidth delay products for several high performance interconnect technologies. This is the
effective peak unidirectional bandwidth delivered per CPU (not per link).

compile-time. Similarly, the compiler can automatically in-
sert the necessary synchronization points that allow the cir-
cuit switches time to reconfigure since they do not otherwise
respect packet boundaries for in-flight messages.

HFAST differs from the bounded-degree ICN approach
in that the fully-connected passive circuit-switch is placed
between the nodes and the active (packet) switches. This
supports a more flexible formation of communication topolo-
gies without any job placement requirements. Codes that
exhibit non uniform degree of communication (e.g. just one
or few process(es) must communicate with a large number of
neighbors) can be supported by assigning additional packet
switching resources to the processes with greater communi-
cation demands. Unlike the ICN and OptIPuter, HFAST
is able to treat the packet switches as a flexibly assignable
pool of resources. In a sense, our approach is precisely the
inverse of the ICN — the processors are connected to the
packet switch via the circuit switch, whereas the ICN uses
processors that are connected to the circuit switch via an
intervening packet switch.

Figure 1 shows the general HFAST interconnection be-
tween the nodes, circuit switch and active switch blocks.
The diagram on the right shows an example with 6 nodes
and active switch blocks of size 4. In this example, node 1
can communicate with node 2 by sending a message through
the circuit switch (red) in switch block 1 (SB1), and back
again through the circuit switch (green) to node 2. This
shows that the minimum message overhead will require cross-
ing the circuit switch two times. If the TDC of node 1 is
greater than the available degree of the active SB, multiple
SBs can be connected together (via a myriad of interconnec-
tion options). For the example in Figure 1, if node 1 was
to communicate with node 6, the message would first arrive
at SB1 (red), then be transferred to SB2 (blue), and finally
sent to node6 (orange) — thus requiring 3 traversals of the
circuit switch crossbar and two active SB hops.

2.4 Small Messages and the Bandwidth Delay
Product

The product of the bandwidth and the delay for a given
point-to-point connection describes precisely how many bytes
must be “in-flight” to fully utilize available link bandwidth.
This can also be thought of as the minimum size required for
a non-pipelined message to fully utilize available link band-
width. Vendors commonly refer to an N;,, metric, which
describes the message size below which you will get only 1/2
of the peak link performance. The N;,, metric is typically
half the bandwidth-delay product. In this paper, however,
we choose to focus on messages that are larger than the
bandwidth-delay product, which is the minimum message
size that can theoretically saturate the link.

Table 1 shows the bandwidth delay products for a num-

ber of leading-edge interconnect implementations. The best
bandwidth-delay products hover close to 2 KB. Therefore,
we will choose 2 KB as our target bandwidth delay product
threshold. It reflects the state of the art in current switch
technology and an aggressive goal for future leading-edge
switch technologies. Below this threshold, we presume that
the messages will not benefit from a dedicated point-to-point
circuit because such messages will not be able to fully utilize
the available bandwidth. Such messages would be routed
over multiple links or a lower-bandwidth interconnect that
is used for collectives.

Therefore, in addition to a high-bandwidth hybrid inter-
connect, we propose a second low-latency low-bandwidth
interconnect for handling collective communications with
small payloads, as well as small point-to-point messages that
do not benefit from the high-bandwidth hybrid interconnect.
A tree network, similar to the one used in the IBM Blue-
Gene/L, does not incur a large additional cost because it is
designed to handle low-bandwidth messages and can there-
fore employ considerably less expensive hardware compo-
nents.

2.5 Hypothesis

We summarize the applicability of HFAST as follows: Ap-
plications with communication patterns that are isotropic
(that is, a topologically regular communication pattern) and
bounded by a low TDC (case i) can be mapped onto reg-
ular limited-connectiviy topological networks, such as n-
dimensional torii or hypercubes. Effective packing of multi-
ple jobs and link/node fault tolerance may still pose a dif-
ficult challenge for these types of configurations. Applica-
tions with communication patterns which are anisotropic
(an irregular topology) and bounded by a low TDC (case
1) cannot be embedded perfectly in a fixed mesh network,
and therefore benefit from adaptive interconnects. Of these
codes, if the mazimum TDC is bounded by a low degree,
then approaches with bounded-degree such as ICN will be
sufficient. For applications where the average TDC is bounded
by a small number, while the mazimum TDC is arbitrarily
large (case i), the more flexible HFAST approach to allo-
cating packet-switch resources is warranted. The final case
is case iv, where the TDC of an application consistently
equals the number of processors used by the application.
The full-bisection capability of an FCN is still required for
such applications.

We hypothesize that case i covers a few of the studied ap-
plications, indicating mesh/torus interconnects may be suffi-
cient for a diverse workload (fault-tolerance and job-packing
problems with the fixed topology interconnects notwithstand-
ing). Likewise, we surmise that few codes will be described
by case iv: thereby undercutting the motivation for using
FCNs. Thus, for the wide class of applications with low av-



[ Name | Lines | Discipline [ Problem and Method [ Structure |
Cactus [3] 84,000 Astrophysics Einstein’s Theory of GR via Finite Differencing Grid
LBMHD [14] 1,500 | Plasma Physics | Magneto-Hydrodynamics via Lattice Boltzmann | Lattice/Grid
GTC [13] 5,000 | Magnetic Fusion Vlasov-Poisson Equation via Particle in Cell Particle/Grid
SuperLU [12] | 42,000 | Linear Algebra Sparse Solve via LU Decomposition Sparse Matrix
PMEMD 37,000 Life Sciences Molecular Dynamics via Particle Mesh Ewald Particle
PARATEC [6] | 50,000 | Material Science Density Functional Theory via FFT Fourier /Grid

Table 2: Overview of scientific applications examined in this work.

erage TDC covered by cases i-7ii, the HFAST approach offers
a much lower cost solution than FCNs, with the flexibility to
effectively handle anisotropic communication patterns and
nodes with high TDC. Additionally, the HFAST architec-
ture gracefully handles application mapping and link/node
failures. Nevertheless, it is important to keep in mind that
the class of applications characterized by high average TDC
is best served by FCNs.

One important missing piece in HFAST is direct support
for the kinds of high-radix communication patterns required
by MPI collective operations like broadcasts and reductions.
We hypothesize that the typical message size for collective
communication is much smaller than the bandwidth-delay
product of the high-speed network and therefore will benefit
little from a dedicated circuit provisioned by HFAST, and
that such messages are better suited for a dedicated low-
bandwidth tree network.

3. METHODOLOGY
3.1 IPM: Low-overhead MPI profiling

In order to profile the communication characteristics of
scientific applications for our study, we employ the Inte-
grated Performance Monitoring (IPM) tool — an applica-
tion profiling layer that allows us to non-invasively gather
the communication characteristics of these codes as they are
run in a production environment. IPM brings together mul-
tiple sources of performance metrics into a single profile that
characterizes the overall performance and resource usage of
the application. It maintains low overhead by using a unique
hashing approach which allows a fixed memory footprint and
minimal CPU usage. IPM is open source, relies on portable
software technologies and is scalable to thousands of tasks.

Since most of the workload we are interested in uses MPI

for parallelism, we have focused on implementing IPM through

the name shifted profiling interface to MPI. The use of the
profiling interface to MPI is of widely recognized value in
profiling MPI codes [17, 15]. The name-shifted or PMPI in-
terface allows each MPI call to be wrapped by profiling code
that collects communication performance information.

IPM collects a wide variety of communication informa-
tion through this interface, storing it in a fixed size hash
table. In this work, we are principally using the information
which encodes the number and timing of each MPI call. We
gather communication information on each task about each
MPI call with a unique set of arguments. Arguments to MPI
calls contain message buffer size, as well as source and desti-
nation information. In some cases we also track information
from the MPI_Status structure. For instance, in the case of
MPI Send, IPM keeps track of each unique buffer size and
destination, the number of such calls, as well as the total,
minimum and maximum runtimes to complete the call. IPM

also allows code regions to be defined, enabling us to sepa-
rate application initialization from steady state computation
and communication patterns, as we are interested, primar-
ily, in the communication topology for the application in its
post-initialization steady state. We ran using IPM on the
Seaborg, the NERSC IBM SP. Overall, the IPM analysis
captures the topology and nature of communication, which
is essential for understanding application applicability to the
HFAST methodology.

3.2 Evaluated Applications

In order to evaluate the potential effectiveness of utilizing
hybrid interconnect networks, we must first develop an un-
derstanding of the communication requirements of scientific
applications across a broad spectrum of parallel algorithms.

In this section we highlight the salient features of the ap-
plications studied in this work. The high level overview of
the codes and methods is presented in Table 2. Each of
these applications is actively run at multiple supercomput-
ing centers, consuming a sizable amount of computational
resources. Detailed descriptions of the algorithms and sci-
entific impact of these codes has been detailed elsewhere [5,
12, 6, 13, 14].

Together, this sampling of applications spans the charac-
teristics of a great many more applications, especially with
respect to communication pattern. For instance, though we
examine PARATEC in the present work, its core algorithm
has the communication characteristics of many other impor-
tant plane wave DFT codes (CPMD, VASP, etc.). Likewise
we expect a large number of finite difference and particle-
mesh codes to exhibit similar communication patterns, based
on our study of Cactus and PMEMD. Certain reduced quan-
tities important to the present study, such as communication
degree, should be largely dictated by the problem solved and
algorithmic methodology. For instance, in the case of Cactus
where finite differencing is performed using a regular grid,
the number of neighbors is determined by the dimensional-
ity of the problem and the stencil size. Profiling a greater
number of applications would of course improve the coverage
of this study, but the six applications studied here broadly
represent a wide range of scientific disciplines and modern
parallel algorithms.

We also note that in order to study steady-state communi-
cation characteristics, we use IPM’s regioning feature, which
allows us to examine only the profiling data from one section
of the code. In particular, we eliminate the large amounts
of communication caused by SuperLU during initialization,
primarily consisting of large transfers of the input matrix
from one node to all of the others.
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Figure 2: Relative number of MPI communication calls for each of the codes.

4. APPLICATION COMMUNICATION
CHARACTERISTICS

As a first step in understanding the applicability of HFAST,
we analyze the communication characteristics of the six sci-
entific codes in our study. We use the IPM profiling layer to
quantify the type and frequency of application-issued MPI
calls, as well as identify the buffer sizes utilized for both
point-to-point and collective communications. Lastly, we
study the communication topology of each application, de-
termining the average and maximum TDC of each.

4.1 Call counts

The breakdown of MPI communication call types is shown
in Figure 2, for each of our studied applications. Notice that
overall, there is only a small subset of calls used by these ap-
plications relative to the entire MPI library. Here, we only
consider calls dealing with communication and synchroniza-
tion, and do not analyze other types of MPI functions which
do not intiate or complete message traffic. Most codes use a
small variety of MPI calls, and utilize mostly (over 90% of all
MPI calls) point-to-point communication functions, except
in the case of GTC, which relies heavily on MPI_Gather. Ob-
serve also that non-blocking communication is the predom-
inant point-to-point communication model for these codes.

4.2 Collectives Buffer Size

Figure 3 shows the cumulatively histogramed buffer sizes
for collective communication, across all six applications. Ob-
serve that relatively small buffer sizes are predominately
used; in fact, about 90% of the collective messages are 2
KB or less (shown as the bandwidth-delay product by the
pink line), while almost half of all collective calls use buffers
less than 100 bytes. This confirms our earlier hypothesis
that collective message sizes are generally small, and could
be accommodated by a low-bandwidth tree interconnect.

4.3 Point-to-Point Buffer Size

The cumulatively histogramed buffer sizes for point-to-
point communication are shown in Figure 4 for each of the

Collective Buffer Sizes for All Codes

100 _J———

% calls <= buffer size
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Figure 3: Buffer sizes distribution for collective com-
munication for all codes. The pink line demarcates
the bandwidth-delay product.

applications; once again the 2 KB bandwidth-delay prod-
uct is shown by the pink vertical lines. Here we see a wide
range of communication characteristics across the applica-
tions. Cactus and LBMHD use a relatively small number of
sizes, but each of these buffers is relatively large. GTC em-
ploys small communication buffers, but over 80% of the mes-
saging occurs with 1 MB or larger data transfers. In addi-
tion, it can be seen that SuperLU, PMEMD, and PARATEC
use many different buffer sizes, ranging from a few bytes to
over a megabyte in some cases. Overall, Figure 4 demon-
strates that unlike collectives (Figure 3), point-to-point mes-
saging uses a wide range of buffers, as well as large message
sizes — sometimes on the order of megabytes.

4.4 Connectivity

In this section, we present the topological connectivity for
each application by representing the volume and pattern of
message exchanges between all tasks. By recording statis-
tics on these message exchanges we can form an undirected
graph which describes the topological connectivity required
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by the application. This graph is undirected because we as-
sume that switch links are bi-directional. As a result, the
topologies shown are always symmetric about the diagonal.
From this graph we can calculate certain reduced quanti-
ties which describe the communication pattern at a coarse
level. Such reduced metrics are important in being able to
make direct comparisons between applications. In particu-
lar, we examine the maximum and average TDC (connectiv-
ity) of each code, a key metric for evaluating the potential
of the HFAST approach. In addition to showing the max
and average, we explore a thresholding heuristic based on
the bandwidth-delay product (see Section 2.4) that disre-
gards smaller latency-bound messages. In many cases, this
thresholding lowers the average and maximum TDC sub-
stantially.

As shown in Figure 5, we see that GTC has a regular com-
munication structure. This particle-in-cell calculation uses
a one-dimensional domain decomposition across the toroidal
computational grid, causing each processor to exchange data
with its two neighbors as particles cross the left and right
boundaries. Additionally, there is a particle decomposition
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within each toroidal partition, resulting in an average TDC
of 4 with a maximum of 17 for the P = 256 test case. This
maximum TDC is further reduced to 10 when using our
2 KB bandwidth-delay product message size cutoff. These
small TDC requirements clearly indicate that most links on
an FCN are not being utilized for the GTC simulation.

In Figure 6, we see that the ghost-zone exchanges of Cac-
tus result in communications with “neighboring” nodes, rep-
resented by diagonal bands. In fact, each node communi-
cates with at most 6 neighbors due to the regular compu-
tational structure of this 3D stencil code. On average, the
TDC is 5, because some nodes are on the boundary and
therefore have fewer communication partners. The maxi-
mum TDC is independent of run size (as can be seen by
the similarity of the P = 64 and P = 256 lines) and is
insensitive to thresholding, which suggests that no pattern
of latency-bound messages can be excluded. Note however
that the low TDC indicates limited utilization of an FCN
architecture.

The connectivity of LBMHD is shown in Figure 7. Struc-
turally, we see that the communication, unlike Cactus, is



Cactus Point-to-Point Communication (bytes)

120408

1.0e+08

8.0e+07

Processor

6.0e+07

# of Partners

4.0e+07

2.0e+07

0.0e+00

151
Processor

Cactus Concurrency with Cutoff

~——<% max 64
-©O—0O avg 64
< max 256
-©——0 avg 256

OO OO0 OO0

Q’n

T T T T T T T T T T T T T W
0 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k1024k

Cutoff (msg size in bytes)

Figure 6: Cactus (a)volume of communication at P=256 and (b) effect of thresholding on TDC for P=64,256

LBMHD Point-to-Point Communication (bytes)
o ¢ P 12e410
Jo0| S - 1.0e+10

8.0e+09

6.0e+09

Processor

# of Partners

4.0e+09

2.0e+09

= 0.0e+00
15 200
Processor

LBMHD Concurrency with Cutoff

T T T T T T T T T T T T T T W
0 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k1024k

Cutoff (msg size in bytes)

Figure 7: LBMHD (a)volume of communication P=256 and (b) effect of thresholding on TDC for P=64,256

scattered (not occuring on the diagonal). This is due to the
interpolation between the diagonal streaming lattice and un-
derlying structure grid. Note that although the 3D LBMHD
streams the data in 27 directions, the code is optimized to
reduce the number of communicating neighbors to 12, as
seen in Figure 7. This degree of connectivity is insensitive
to the concurrency level, as can be seen by the overlap of the
P =64 and P = 256 graphs. The maximum TDC is insen-
stivive to thresholding, showing that there is no pattern of
latency-bound messages to be excluded within the HFAST
model.

Figure 8 shows the connectivity and TDC for our SuperLU
runs. The complex communication structure of this compu-
tation results in many point-to-point message transmissions:
in fact, without thresholding the connectivity is equal to
P. However, by removing the latency-bound messages by
thresholding at 2 KB, the average and maximum TDC is
reduced to 30 for the 256 processor test case. Also, note
that the connectivity of SuperLU is a function of concur-
rency, scaling proportionally to the v/P, as can be seen by
the different TDC requirements of P = 64 and P = 256 in
Figure 8. SuperLU-DIST communication is described more
completely in a 2003 paper by Li and Demmel [12].

Figure 9 shows the complex communication structure of
the PMEMD particle mesh ewald calculation. Here the max-
imum and average TDC is equal to P and the degree of
connectivity is a function of concurrency. For the spatial de-
composition used in this algorithm, each task’s data transfer
with another task drops off as their spatial regions become

more distant. The rate of this drop off depends strongly on
the molecule(s) in the simulation. Observe that for P = 256,
thresholding at 2 KB reduces the average connectivity to 55,
even though the maxium TDC remains at 256. This dispar-
ity between the maximum and average TDC can be effec-
tively addressed using our proposed HFAST methodology.

Finally, Figure 10 shows the communication requirements
of PARATEC. This communication-intensive code relies on
global data transposes during its 3D FFT calculations, re-
sulting in large, global message traffic [6]. Here the max-
imum and average TDC is equal to P, and the connectiv-
ity is insensitive to thresholding. Only with a relatively
large message size cutoff of 32 KB do we see any reduction
in the number of communicating partners required. Thus,
PARATEC represents the class of codes that can make use of
the bisection bandwidth that a fully-connected network con-
figuration can provide. This type of communication presents
formidable challenges to the HFAST approach or any low-
degree connectivity solution.

Table 3 presents a summary of the application communi-
cation characteristics derived in this section. (SuperLU and

PMEMD exhibit misleadingly low median point-to-point buffer

sizes, but this is due to the fact they sometimes send with
buffer sizes of 0 bytes, in cases where a communicating part-
ner expects a message that is not necessary for the compu-
tation.)

In the next section, we utilize these results to determine
the applicability of HFAST to each of the applications we
study.
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5. ANALYSIS

Based on the analysis of Section 4 we now investigate
the potential advantages of the HFAST approach. For each
application, we examine the TDC of each node, thresholded
by the 2 KB bandwidth-delay product (defined Section 2.4),
and determine the number of switches required to build an
HFAST network compared with FCN configurations.

One important simplifying assumption we apply to our
analysis is that each node contains only a single processor.
While most practical systems will likely use SMP nodes, the
analysis would need to consider bandwidth localization al-
gorithms for assigning processes to nodes in addition to the
analysis of the interconnection network requirements. How-
ever, bandwidth localization is a separable issue — one that
unnecessarily complicates our analysis of the interconnect
behavior and requirements. Therefore, we focus exclusively
on single-processor nodes in this paper, and leave the anal-
ysis of SMP nodes for future work.

5.1 Collectives

Consistent with our earlier hypothesis in Section 2.5, Fig-
ure 3 shows that nearly all of the collective communication
payload sizes fall below 2 KB. This result is consistent with
previous research [17] and validates IBM’s architectural de-
cision to dedicate a separate lower-bandwidth network on
BG/L for collective operations. One could imagine com-
puting a minimum-latency routing pattern that is overlaid
on the high-bandwidth interconnect topology, but the com-
plexity of such an algorithm is out of the scope of this pa-

per. Therefore, we will presume a lower-bandwidth, low-
cost dedicated-tree network, similar to the one in BG/L,
will carry the collective messages as well as small point-to-
point messages, and focus the remaining analysis on using
HFAST to accelerate large payload point-to-point messages.

5.2 Point To Point Traffic

We now discuss each of the applications and consider the
class of network best suited for its communication require-
ments. First, we examine the three codes exhibiting the
most regularity in their communication exchanges: Cac-
tus, LBMHD, and GTC. Cactus displays a bounded TDC
independent of run size, with a communication topology
that isomorphically maps to a regular mesh; thus a fixed
3D mesh/torus would be sufficient to accommodate these
types of stencil codes, although an adaptive approach would
also fulfill Cactus’s requirements (consistent with case i de-
scribed in Section 2.5). LBMHD also displays a low de-
gree of connectivity, but while its communication pattern
is isotropic, the structure is not isomorphic to a regular
mesh, thereby requiring an adaptive approach such as ICN
or HFAST network (case i). Although GTC’s primary com-
munication pattern is isomorphic to a regular mesh, it has
a maximum TDC that is quite higher than the average
due to important connections that are mot isomorphic to a
mesh(case ii1). Thus, neither a fixed mesh/torus topology,
nor the bounded-degree adaptive network of ICN, would be
well suited for this class of computation. Here, the HFAST
approach holds a clear advantage, since additional packet
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% median % median TDC @ 2KB FCN Circuit
Code Procs | PTP Calls | PTP buffer | Col. calls | Col. buffer | cutoff(max,avg) | Utilization (avg.)
GTC 64 42.0 128k 58.0 100 2,2 3%
256 40.2 128k 59.8 100 10, 4 2%
Cactus 64 99.4 299k 0.6 8 6, 5 9%
256 99.5 300k 0.5 8 6, 5 2%
LBMHD 64 99.8 811k 0.2 8 12, 11.5 19%
256 99.9 848k 0.1 8 12, 11.8 5%
SuperLU 64 89.8 64 10.2 24 14, 14 22%
256 92.8 48 7.2 24 30, 30 25%
PMEMD 64 99.1 6k 0.9 768 63, 63 100%
256 98.6 72 1.4 768 255, 55 22%
PARATEC 64 99.5 64b 0.5 8 63, 63 100%
256 99.9 64 0.1 4 255, 255 100%

Table 3: Summary of code characteristics for point-to-point (PTP) and collective (Col.) communications.

switch resources can dynamically be assigned to the subset
of nodes with higher TDC requirements.

SuperLU and PMEMD exhibit anisotropic communica-
tion patterns with a TDC that scales with the number of
processors. Additionally, PMEMD has widely differing max-
imum and average TDC. However, with thresholding, the
proportion of processors that have messages that would ben-
efit from the dedicated links is large but stays bounded to
far less than the number of processors involved in the cal-
culation (consistent with case iii). A regular mesh or torus
would be inappropriate for this class of computation, but an
FCN remains underutilized. However, the HFAST network
can be dynamically reconfigured to satisfy the requirements
of these complex applications.

Finally, PARATEC represents the communications require-
ments for a large class of important chemistry and fluids
problems where part of the problem is solved in fourier
space. It requires large global communications involving
large messages that fully utilize the FCN and are therefore
consistent with case iv. PARATEC’s large global commu-
nications are a result of the 3D FFTs used in the calcu-
lation, which require two stages of global 3D transposes.
The first transpose is non-local and involves communica-
tions of messages of similar sizes between all the processors,
resulting in the uniform background of 32 KB messages.
In the second transpose, processors only communicate with
neighboring processors, resulting in additional message traf-
fic along the diagonal of the graph. A more detailed descrip-
tion of the communication requirements can be found in [6].

PARATEC is an example where the HFAST solution is in-
appropriate. The large global communication requirements
can only be effectively provisioned with an FCN network.
In summary, only one of the six codes studied offered a
communication pattern that maps isomorphically to a 3D
mesh network topology (case i. Only one of the codes fully
utilizes the FCN at large scales (case iv. The preponderance
of codes can benefit from an adaptive communication net-
work that uses a lower radix active switching solution. This
result is consistent with the hypothesis stated in Section 2.5

5.3 HFAST Cost Model

Fat Tree networks are built in layers of N-port switches
such that L layers can be used to create a fully connected
network for P processors where P = 2 % (N/2)*. However,
the number of switch ports in the interconnection network
per processor grows at a rate of (1 + 2(L — 1)). So, for
instance, a 6 layer fat-tree composed of 8-port switches re-
quires 11 switch ports for each processor for a network of
2048 processors! Messages must traverse up to 21 layers of
packet switches to reach their destination. While state-of-
the-art packet switches typically contribute less than 50ns
to the message latency, traversing 21 layers of them can be-
come a significant component of the end-to-end latency.

With the HFAST solution, the number of ports required
for the passive circuit switch grows by the same proportion
as a full FCN. However, the cost per port for the circuit
switch is far less than the cost per port for a packet switch
using a leading-edge technology. Packet switches, the most



expensive component per-port, can be scaled linearly with
the number of processors used in a given system design. So
unlike a fixed topology mesh, hypercube, or torus intercon-
nect, the cost of HFAST is not entirely linearly-proportional
to the number of processors because of the cost of the fully
connected circuit switch. However, the cost of the most
expensive component, the packet switches and network in-
terface cards for the hosts, scales proportionally with the
number of processors.

We introduce a simple cost function that represents the
applicability of HFAST given the TDC of each node in the
computation. To simplify our analysis, we present an upper-
bound that does not use any sophisticated graph-theoretic
methods to optimize mappings. In addition, we assume a
homogenous active switch block size of 16 ports.

Generally, the cost Costgrast is given by
Nactive*Costacti1)e+008tpassive+005tcollective7 where Nactive
is the number of active switch blocks required, and Costactive,
Costpassive, and Costeoliective are the respective costs of
a single active switch block, the passive switch, and the
collective network. HFAST is effective if Costgrast <
COStfat—tree~

For a given code, we examine each node in turn. For each
node, if the TDC is less than the active switch block size (in
our case 15), we assign it one active switch block. However,
if the TDC is greater than 15, we assign it the number of
switch blocks needed to build a tree network large enough to
communicate with all of the node’s partners. This algorithm
uses potentially twice as many switch ports as an optimal
embedding, but it has the advantage that it will complete
in linear time.

As an example, we determine the cost for Cactus, a code
that exhibits an average and maximum TDC of 6 per node.
For each node, then, we assign a single active switch block,
giving us Ngctive = P. That is, the number of active switch
blocks required is equal to the number of processors in a run.
For codes like PMEMD that exhibit a maximum TDC that
is higher than the average, additional packet switch blocks
can be provisioned (if available) to construct a higher-radix
tree network to support the higher-degree communication
pattern required by that subset of processors.

6. CONCLUSIONS + FUTURE WORK

Most high-end computing platforms currently employ fully
interconnected networks whose cost grows superlinearly rel-
ative to system size. Thus these interconnect technologies
will become impractical for next-generation peta-flop plat-
forms employing tens (or hundreds) of thousands of proces-
sors. Fixed networks (such as 3D meshes/torii), on the other
hand, are inflexibly bounded in their topological degree and
suffer the overheads of job fragmentation. In this work, we
propose the HFAST interconnect which combines passive
and active switch technology to create dynamically reconfig-
urable network topologies. Our solution maintains a linear
cost function between the expensive (active switch) compo-
nents and system scale, allows anisotropic communication
patterns within the applications, and obviates the need for
job-packing by the batch-system. We have analyzed 6 paral-
lel codes that represent a wide array of scientific algorithms
and associated communication topologies. We have shown
that these codes have communication requirements that typ-
ically underutilize the capabilities of an FCN, but also do not
usually map isomorphically to a fixed n-dimensional mesh

network like a mesh or torus. This suggests constructing a
hybrid interconnect that supports a lower average topolog-
ical degree (like mesh networks), but uses circuit switches
so the topology can adapt to code requirements that other-
wise cannot map to the fixed mesh topology. We show that
the costs of the circuit switch component of HFAST scale
similarly to a fat-tree, but the cost per port of the circuit
switch is far less than the cost of components used to imple-
ment an FCN. The cost of the most expensive component,
the packet switches, scales linearly with system size just as
they would for a 3D mesh interconnect. HFAST also offers
benefits for fault-tolerance and job scheduling that are not
available from a mesh interconnect.

The cost estimates presented in this work are based on
a rather simple topology mapping algorithm is not opti-
mal and in many cases is an overestimate of the optimal
mapping and therefor cost. The simple approach we have
taken allows embedding arbitrary communication topologies
in linear time, but may miss certain more complex highly
optimal mappings between switch and application. An opti-
mal process mapping may consume as little as half as many
ports as the general approach detailed above, but is an NP-
complete problem for embedding arbitrary communication
graphs. For problems that are consistent with case i and
case i, there exist algorithms with bounded complexity for
communication graph mapping. In future work, we may also
adapt the genetic programming approaches used for opti-
mizing the fixed switch topology of the Flat Neighborhood
Networks [11] to optimize the embedding. An even more
promising approach is to apply runtime iterative or adaptive
approaches that incrementally arrive on an optimal embed-
ding by monitoring runtime communication and gradually
optimizing the switch topology to minimize communication
time as described in Section 2.3.

In future work we hope to expand the scope of both the
applications profiled and the data collected through IPM.
The low overhead of IPM profiling opens up the possibil-
ity of the characterization of large and diverse application
workloads. We will also pursue more detailed performance
data collection. For instance producing a full chronological
communication trace of most applications would incur sig-
nificant performance penalties, however, computing a time
windowed TDC as the application progresses would not. By
studying the time dependence of communication topology
one could expose oppurtunities to reconfigure an HFAST
switch as the application is running. It is expected that
different program phases will have different communication
needs and might benefit from such runtime reconfiguration.
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