Understanding Ultra-Scale Application Communication
Requirements

Shoaib Kamil, John Shalf, Leonid Oliker, David Skinner
CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

ABSTRACT

As thermal constraints reduce the pace of CPU performance
improvements, the cost and scalability of future HPC archi-
tectures will be increasingly dominated by the interconnect.
In this work we perform an in-depth study of the commu-
nication requirements across a broad spectrum of impor-
tant scientific applications, whose computational methods
include: finite-difference, lattice-bolzmann, particle in cell,
sparse linear algebra, particle mesh ewald, and FFT-based
solvers. We use the IPM (integrated Performance Moni-
toring) profiling framework to collect detailed statistics on
communication topology and message volume with minimal
impact to code performance. By characterizing the paral-
lelism and communication requirements of such a diverse set
of applications, we hope to guide architectural choices for the
design and implementation of interconnects for future HPC
systems.

1. INTRODUCTION

As the field of scientific computing matures, the demands
for computational resources are growing at a rapid rate. It is
estimated that by the end of this decade, numerous mission-
critical applications will have computational requirements
that are at least two orders of magnitude larger than cur-
rent levels [1]. However, as the pace of processor clock rate
improvements continues to slow, the path towards realizing
peta-scale computing is increasingly dependent on scaling
up the number of processors to unprecedented levels.

As a result, there is a critical need to understand the
range of CPU interconnectivity required by parallel scien-
tific codes. The massive parallelism required for ultra-scale
computing presents two competing risks. If interconnects
do not provide sufficient connectivity and data rates for
the communication inherent in HPC algorithms, application
performance will not scale. If interconnects are over-built,
however, they will dominate the overall cost and thus the
extent of ultra-scale systems. Both performance scalability
and cost scalability are crucial to manufacturers and users
of large scale parallel computers. Failure to characterize and
understand the communication requirements of HPC codes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IISWC 2005, Austin, TX, USA

risks limiting the extent of future scientific computation.

In this work, we begin by examining the current state of
HPC interconnects in the next section, motivating some of
the characteristics we examine. Then we outline our pro-
filing methodology, introducing the IPM library as well as
the applications we study. We then explore the observed
characteristics of our applications, including buffer sizes and
connectivity, ending with an analysis of the feasibility of
lower-degree interconnects for ultra-scale computing.

2. INTERCONNECTS FOR HPC

HPC systems implementing fully-connected networks (FCNs)

such as fat-trees and crossbars have proven popular due to
their excellent bisection bandwidth and ease of application
mapping for arbitrary communication topologies. However,
it is becoming increasingly difficult and expensive to main-
tain these types of interconnects, since the cost of an FCN
infrastructure composed of packet switches grows superlin-
early with the number of nodes in the system. As supercom-
puting systems with tens or even hundreds of thousands of
processors begin to emerge, FCNs will quickly become in-
feasibly expensive. Recent studies of application communi-
cation requirements, such as the series of papers from Vetter
and Mueller [18, 19], have observed that applications with
the best scaling efficiency have communication topology re-
quirements that are far less than the total connectivity pro-
vided by FCN networks.

Concerns about the cost and complexity of interconnec-
tion networks on next-generation MPPs has caused a re-
newed interest in networks with a lower topological degree,
such as mesh and torus interconnects (like those used in
IBM BlueGene/L, Cray RedStorm, and Cray X1), whose
costs rise linearly with system scale. The most significant
concern is that lower-degree interconnects may not provide
suitable performance for all flavors of scientific algorithms.
However, even if the network offers a topological degree that
is greater than or equal to the application’s topological degree
of connectivity (TDC), traditional low-degree interconnect
approaches have several significant limitations. For exam-
ple, there is no guarantee the interconnect and application
communication topologies are isomorphic—hence prevent-
ing the communication graph from being properly embed-
ded into the fixed interconnect topology. Before moving to a
radically different interconnect solution, it is essential to un-
derstand scientific application communication requirements
across a broad spectrum of numerical methods.

In subsequent sections of this work we present a detailed
analysis of application communication requirements for a



[ System [ Technology [ MPI Latency | Peak Bandwidth | Bandwidth Delay Product |
SGI Altix Numalink-4 1.1us 1.9 GB/s 2 KB
Cray X1 Cray Custom 7.3us 6.3 GB/s 46 KB
NEC Earth Simulator NEC Custom 5.6us 1.5 GB/s 8.4 KB
Pathscale Infinipath 1.5us 1.0 GB/s 1.5 KB
Myrinet Cluster Mgyrinet 2000 5.7us 500 MB/s 2.8 KB
Cray XD1 RapidArray/IB4x 1.7us 2 GB/s 3.4 KB

Table 1: Bandwidth delay products for several high performance interconnect technologies. This is the effective peak
unidirectional bandwidth delivered per CPU (not per link).

Since most of the workload we are interested in uses MPI
for parallelism, we have focused on implementing IPM through

number of important supercomputing applications and ex-
plore the feasibility of lower-degree interconnects for these

applications. the name shifted profiling interface to MPI. The use of the
profiling interface to MPI is of widely recognized value in

2.1 Small Messages and the Bandwidth Delay profiling MPI codes [16, 18]. The name-shifted or PMPI in-
Product terface allows each MPI call to be wrapped by profiling code

Not every message in a given communication topology is
an important message. In particular very small messages do
not benefit from a dedicated link because they are unable to
saturate the available bandwidth of the network interface.
We use the bandwidth-delay product to define more precisely
the size of messages that would otherwise be unable to take
advantage of a dedicated link.

The product of the bandwidth and the delay for a given
point-to-point connection describes precisely how many bytes
must be “in-flight” to fully utilize available link bandwidth.
This can also be thought of as the minimum size required for
a non-pipelined message to fully utilize available link band-
width. Vendors commonly refer to an N, metric, which
describes the message size below which you will get only
1/2 of the peak link performance. The Nj/; metric is typ-
ically very close to half the bandwidth-delay product. Ta-
ble 1 shows the bandwidth delay products for a number of
leading-edge interconnect implementations.

When considering point-to-point interconnect bandwidth,
it is important to focus on messages that are larger than the
bandwidth-delay product. Such messages can derive bene-
fit from bonded or striped interconnect fabrics where band-
width is built-up incrementally using multiple links that fol-
low the same topology. Messages that are less than Ny 5 re-
quire a focus on latency minimization, since latency-bound
messages do not benefit from bonding or striped intercon-
nect fabrics. For this work, we consider messages sizes
smaller than 2 KB to be latency-bound, and therefore not
as important as larger point-to-point messages. While it is
possible to pipeline the messages in order to reach satura-
tion, the overhead incurred by most MPI implementations
renders such pipelining ineffective.

3. METHODOLOGY

3.1 IPM: Low-overhead MPI profiling

The Integrated Performance Monitoring (IPM) [2] appli-
cation profiling layer allows us to non-invasively gather the
communication characteristics of parallel codes as they are
run in a production environment. IPM brings together mul-
tiple sources of performance metrics into a single profile that
characterizes the overall performance and resource usage of
the application. It maintains low overhead by using a unique
hashing approach, yielding a fixed memory footprint and
minimal CPU usage. IPM is open source, relies on portable
software technologies, and is scalable to thousands of tasks.

that collects communication performance information.

IPM collects a wide variety of communication information
through this interface. In this work, we are principally us-
ing the information that encodes the number of each MPI
call with a unique set of arguments. Arguments to MPI
calls contain message buffer size as well as source and des-
tination information. In some cases, we also track informa-
tion from the MPI_Status structure. For instance, in the
case of MPI_Send, IPM keeps track of each unique buffer size
and destination, the number of such calls, as well as the to-
tal, minimum, and maximum runtimes to complete the call.
IPM also allows code regions to be defined, enabling us to
separate application initialization from steady state com-
putation and communication patterns, as we are interested,
primarily, in the communication topology for the application
in its post-initialization steady state. We ran using IPM on
Seaborg, the NERSC IBM SP. Since the applications studied
here do not use performance-adaptive algorithms, the com-
munication data presented here would be the same on any
other interconnect. Overall, IPM captures the topology and
nature of communication, which is essential for understand-
ing the applicability of various interconnect architectures to
real-world scientific application requirements.

3.2 Evaluated Applications

In this section we highlight the salient features of the ap-
plications studied in this work. The high level overview of
the codes and methods is presented in Table 2. Each of
these applications is actively run at multiple supercomput-
ing centers, consuming a sizable amount of computational
resources. Detailed descriptions of the algorithms and sci-
entific impact of these codes has been explored elsewhere [6,
7,8, 11, 12, 13, 15].

3.2.1 Cactus

One of the most challenging problems in astrophysics is
the numerical solution of Einstein’s equations following from
the Theory of General Relativity (GR): a set of coupled
nonlinear hyperbolic and elliptic equations containing thou-
sands of terms when fully expanded. The Cactus Compu-
tational ToolKit [3] is designed to evolve these equations
stably in 3D on supercomputers to simulate astrophysical
phenomena with high gravitational fluxes, such as the col-
lision of two black holes and the gravitational waves radi-
ating from that event. The Cactus GR components solve
Einstein’s equations as an initial value problem that evolves
partial differential equations (PDEs) on a regular grid us-



[ Name [ Lines ]| Discipline [ Problem and Method [ Structure |
Cactus [3] 84,000 Astrophysics Einstein’s Theory of GR via Finite Differencing Grid
LBMHD [13] 1,500 Plasma Physics Magneto-Hydrodynamics via Lattice Boltzmann | Lattice/Grid
GTC [12] 5,000 | Magnetic Fusion Vlasov-Poisson Equation via Particle in Cell Particle/Grid
SuperLU [11] 42,000 Linear Algebra Sparse Solve via LU Decomposition Sparse Matrix
PMEMD 37,000 Life Sciences Molecular Dynamics via Particle Mesh Ewald Particle
PARATEC (8] 50,000 | Material Science Density Functional Theory via FFT Fourier/Grid
FVCAM [15] 200,000 | Climate Modeling Atmospheric Circulation via Finite Volume Grid
MADbench [6] 5000 Cosmology CMB Analysis via Newton-Raphson Dense Matrix

Table 2: Overview of scientific applications examined in this work.

ing finite differencing. For parallel computation, the global
3D grid is block domain decomposed so that each processor
has its own section. The standard MPI driver for Cactus
solves the PDEs on a local region and then updates the val-
ues at the ghost zones by exchanging data on the faces of
its topological neighbors.

3.2.2 GIC

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-
in-cell (PIC) application developed at the Princeton Plasma
Physics Laboratory to study turbulent transport in mag-
netic confinement fusion [12]. GTC solves the non-linear
gyrophase-averaged Vlasov-Poisson equations [10] for a sys-
tem of charged particles in a self-consistent, self-generated
electrostatic field. The geometry is that of a torus with
an externally imposed equilibrium magnetic field, charac-
teristic of toroidal fusion devices. By using the Particle-in-
Cell method, the non-linear PDE describing the motion of
the particles in the system becomes a simple set of ordi-
nary differential equations (ODEs) that can be easily solved
in Lagrangian coordinates. The self-consistent electrostatic
field driving this motion could conceptually be calculated di-
rectly from the distance between each pair of particles using
an O(N?) calculation, but the PIC approach reduces it to
O(N) by using a grid where each particle deposits its charge
to a limited number of neighboring points according to its
range of influence.

3.2.3 LBMHD

Lattice Boltzmann methods (LBM) have proved a good
alternative to conventional numerical approaches for simu-
lating fluid flows and modeling physics in fluids. The basic
idea of the LBM is to develop a simplified kinetic model that
incorporates the essential physics, and reproduces correct
macroscopic averaged properties. Recently, several groups
have applied the LBM to the problem of magneto-hydrody-
namics (MHD) with promising results. LBMHD [14] sim-
ulates the behavior of a three-dimensional conducting fluid
evolving from simple initial conditions and decaying to form
current sheets. This application uses either a 2D or 3D cu-
bic lattice for spatial and velocity resolution with 9 or 27
streaming vectors, respectively. Each grid point is associ-
ated with a set of mesoscopic variables, whose values are
stored in vectors proportional to the number of streaming
directions — in this case nine (eight plus the null vector) or
27. The simulation proceeds by a sequence of collision and
stream steps. In this paper, we examine both the 2D and
3D cases.

3.2.4  SuperLU

SuperLU [11] is a general purpose library for the direct
solution of large, sparse, nonsymmetric systems of linear

equations on high performance machines. The library is
written in C and is callable from either C or Fortran. The
library routines perform an LU decomposition with partial
pivoting and triangular system solves through forward and
back substitution. This application relies on sparse linear
algebra for its main computational kernels.

3.2.5 PMEMD

PMEMD (Particle Mesh Ewald Molecular Dynamics) is
an application that performs molecular dynamics simula-
tions and minimizations. The force evaluation is performed
in an efficiently-parallel manner using state of the art nu-
merical and communication methodologies. PMEMD uses
a highly asynchronous approach to communication for the
purpose of achieving a high degree of parallelism. Periodic
load balancing steps redistribute the spatially decomposed
grid amongst MPI tasks.

3.2.6 PARATEC

PARATEC (PARAllel Total Energy Code [8]) performs
ab-initio quantum-mechanical total energy calculations us-
ing pseudopotentials and a plane wave basis set. PARA-
TEC uses an all-band conjugate gradient (CG) approach
to solve the Kohn-Sham equations of Density Functional
Theory (DFT) and obtain the ground-state electron wave-
functions. DFT is the most commonly used technique in
materials science, having a quantum mechanical treatment
of the electrons, to calculate the structural and electronic
properties of materials. Codes based on DFT are widely
used to study properties such as strength, cohesion, growth,
magnetic/optical properties, and transport for materials like
nanostructures, complex surfaces, and doped semiconduc-
tors. Due to their accurate predictive power and compu-
tational efficiency, DFT-based codes have become some of
the largest consumers of supercomputing cycles in computer
centers around the world. In solving the Kohn-Sham equa-
tions using a plane wave basis, part of the calculation is
carried out in real space and the remainder in Fourier space
using specialized parallel 3D FFTs to transform the wave-
functions.

3.2.7 FVCAM

The Community Atmosphere Model (CAM) is the atmo-
spheric component of the flagship Community Climate Sys-
tem Model (CCSM3.0). Developed at the National Center
for Atmospheric Research (NCAR), the CCSM3.0 is exten-
sively used to study climate change. The CAM application is
an atmospheric general circulation model (AGCM) and can
be run either coupled within CCSM3.0 or in a stand-alone
mode driven by prescribed ocean temperatures and sea ice
coverages. The dynamic core of CAM was constructed with
two very different methodologies to solve the equations of



[ Function [[ Cactus [ GTC [ LBMHD | PARATEC [ PMEMD [ SuperLU | FVCAM2D | MADbench |
Isend 26.8% 0% 40% 25.1% 32.7% 16.4% 28.3% 5.3%
Irecv 26.8% 0% 40% 24.8% 29.3% 15.7% 28.3% 0%
‘Wait 39.3% 0% 0% 49.6% 0% 30.6% 19.8% 0%
Waitall 6.5% 0% 20% 0.1% 0.6% 0% 22.9% 0%
Waitany 0% 0% 0% 0% 36.6% 0% 0% 0%
Sendrecv 0% 40.8% 0% 0% 0% 0% 0% 30.1%
Send 0% 0% 0% 0% 0% 14.7% 0% 32.2%
Gather 0% 47.4% 0% 0.02% 0% 0% 0% 0%
Reduce/Allreduce || 0.5% | 11.7% | 0.06% 0% 0.7% 1.9% 0.5% 13.6%
Bcast 0% 0.04% 0% 0.03% 0% 5.3% 0% 6.8%

Table 3: Breakdown of MPI communication call percentages for each of the codes.

motion. The default method, known as the spectral trans-
form method, exploits spherical harmonics to map a solution
onto the sphere. An alternate formulation based on a finite
volume methodology is also supplied. This option, referred
to in this paper as FVCAM, is based on a regular latitude-
longitude mesh and conserves certain higher order moments,
and thus allows a 2D domain decomposition. In this work
we examine the communication characteristics of both CAM
and FVCAM.

3.2.8 MADbench

The Cosmic Microwave Background (CMB) is a snapshot
of the Universe when it first became electrically neutral some
400,000 years after the Big Bang. The tiny anisotropies in
the temperature and polarization of the CMB radiation are
sensitive probes of cosmology. MADbench [6] is a lightweight
version of the Microwave Anisotropy Dataset Computational
Analysis Package (MADCAP) CMB power spectrum esti-
mation code that retains the operational complexity and in-
tegrated system requirements of the original. The computa-
tion estimates the angular power spectrum using a Newton-
Raphson iteration to locate the peak of the spectral likeli-
hood function, via dense linear algebra operations. MAD-
bench’s most computationally intensive component — a set
of independent dense matrix-matrix multiplications — was
originally performed in single-gang mode, where all the pro-
cessors processed each matrix one at a time. The recent in-
troduction of gang-parallelism enables more efficient matrix
multiplications but requires an additional data remapping
transformation. In this paper we refer to single- and gang-
parallel implementations as MADbench SG and MADbench
MG respectively.

3.3 Application Summary

Together, this sampling of applications spans the charac-
teristics of a great many more scientific computing appli-
cations, especially with respect to communication pattern.
For instance, though we examine PARATEC in the present
work, its core algorithm shares the communication charac-
teristics of many other important plane-wave DFT codes
(CPMD, VASP, etc.). Likewise, we expect a large num-
ber of finite difference and particle-mesh codes to exhibit
similar communication patterns, based on our study of Cac-
tus and PMEMD. Certain reduced quantities important to
the present study, such as communication degree, should
be largely dictated by the problem solved and algorithmic
methodology. For instance, in the case of Cactus, where fi-
nite differencing is performed using a regular grid, the num-
ber of neighbors is determined by the dimensionality of the
problem and the stencil size. Profiling a greater number

of applications would of course improve the coverage of this
study, but the eight applications studied here broadly repre-
sent a wide range of scientific disciplines and modern parallel
algorithms.

We also note that in order to study steady-state communi-
cation characteristics, we use IPM’s regioning feature, which
allows us to examine only the profiling data from one section
of the code. In particular, we eliminate the large amounts of
communication caused by applications during initialization,
primarily consisting of large transfers of input data from one
node to all of the others.

4. COMMUNICATION CHARACTERISTICS

In this section, we analyze the communication characteris-
tics of the eight scientific codes in our study, using the IPM
profiling layer to quantify four machine-independent com-
munication properties. First, we identify the type and fre-
quency of application-issued MPI calls, and show the range
of buffer sizes utilized for both point-to-point and collec-
tive communications by each application. We then profile
the communication topology and TDC of each application.
These characteristics are further analyzed in the next sec-
tion.

4.1 Call Counts

Table 3 shows the breakdown of the major MPI communi-
cation and synchronization calls used by each of our studied
applications. Overall, a small subset of calls accounts for
most of the observed communication; in most cases, five or
fewer MPI calls account for 90% or more of the total com-
munication calls for a particular application. Most codes
primarily utilize (over 90% of all MPI calls) point-to-point
communication functions, except in the case of GTC, which
relies heavily on MPI _Gather, and MADbench, which uses
MPI Reduce and MPI Bcast. Non-blocking communication
(using Isend/Irecv/etc) is the predominant point-to-point
communication model for these codes, although MADbench
uses mostly blocking Sends and Receives.

4.2 Collectives Buffer Size

Figure 1 shows the cumulatively histogrammed buffer sizes
for collective communication for each code. Most of our ap-
plications predominantly use relatively small buffer sizes for
collective communication. In most cases, the overwhelming
majority of buffer sizes are less than 2 KB. However, there
is one notable exception: MADbench, which uses very large
collective buffer sizes; the preponderance of collective mes-
sages for this application use buffer sizes larger than 100
KB. In effect, this code effectively utilizes the interconnect
capacity even for collective messages. Overall we see that



100 4

@ @
3 8
L L

% calls <= buffer size
IS
8
.

20 A

Cactus Collective Buffer Sizes
100 4

& =) ®
8 3 3
L L L

% calls <= buffer size

N
3
L

GTC Collective Buffer Sizes LBMHD Collective Buffer Sizes

% calls <= buffer size

% calls <= buffer size

T
10

o
24

T T T T T
100 1Kk 10k 100k 1MB
buffer size (bytes)
PARATEC Collective Buffer Sizes
100

s 2 ©
& 3 3
L L L

% calls <= buffer size

N
5
L

T T T T T T T T T
100 100k 1MB 1 10 100 ik 10k 100k 1MB
buffer size (bytes)

SuperLU Collective Buffer Sizes

1k 10
buffer size (bytes)
PMEMD Collective Buffer Sizes

s 9 @ 3
5 g &g 8
L L L ,

% calls <= buffer size

N
5]
L

T
10

o

T T T T T T
100 1k 10k 100k 1MB 1 10
buffer size (bytes)

0

T T T T T T T T T T T
100 1k 10k 100k 1MB 1 10 100 1k 10k 100k 1MB
buffer size (bytes) buffer size (bytes)

FVCAM2D Collective Buffer Sizes
100

% calls <= buffer size

MADbench Collective Buffer Sizes
100 5

a =) ®
3 3 3
L L L

% calls <= buffer size

n
3
L

0 T
1 10

T T T T T
100 1k 10K 100k 1MB
buffer size (bytes)

o

T T T
10 100 100k 1MB

T T
1k 10k
buffer size (bytes)

Figure 1: Buffer sizes distribution for collective communication for all codes.

with one exception, collective communication tends to oc-
cur with buffers smaller than the typical bandwidth-latency
product of current and bleeding-edge interconnects.

4.3 Point-to-Point Buffer Size

The cumulatively histogrammed buffer sizes for point-to-
point communication are shown in Figure 2. Observe that
Cactus, GTC, and LBMHD use a relatively small number of
buffer sizes. For all three of these codes, most point-to-point
communication uses buffer sizes of 100 KB or larger; in the
case of LBMHD, almost all buffers are 1 MB or larger. In
contrast, the other codes use a large variety of buffer sizes
in their point-to-point communication. PARATEC’s com-
munication uses a large number of small messages, but the
other codes use many large messages of size greater than 10
KB. SuperLU and PMEMD tend to have many small mes-
sages as well as large ones, but the other codes, including
FVCAM and MADbench, predominantly use large buffers of
10 KB or more. Across all applications, we observe a large
mix of buffer sizes, with some applications using a few sizes
and others using a large variety of different buffer sizes. Note
that in most cases, many of the point-to-point messages are
larger than the 2 KB bandwidth-delay product demarcated
by the red line; besides the small messages used by SuperLLU
and PARATEC, the other applications do utilize the avail-
able bandwidth in their point-to-point messaging.

4.4 Connectivity

In this section, we present the topological connectivity
for each application by showing the volume of message ex-
change between all tasks. Using IPM to record statistics
about these message exchanges, we then use the IPM data to

construct an undirected graph that represents the topologi-
cal connectivity of the application. From this graph we cal-
culate certain reduced quantities that describe the commu-
nication pattern at a coarse level. Such reduced metrics are
important because they allow us to make direct comparisons
between applications. In particular, we derive the maximum
and average TDC (connectivity) of each code which a key
metric for evaluating different interconnect approaches as
well by quantifying how much connectivity each application
requires. We also use a thresholding heuristic based on the
bandwidth-delay product (see Section 2.1) that disregards
smaller latency-bound messages, sometimes lowering the av-
erage and maximum TDC substantially. In this manner, we
limit which messages we believe contribute most to inter-
connect utilization and use these messages in our analysis.

Figure 3 shows the regular communication structure ex-
hibited by GTC. This particle-in-cell calculation uses a one-
dimensional domain decomposition across the toroidal com-
putational grid, causing each processor to exchange data
with its two neighbors as particles cross the left and right
boundaries. Additionally, there is a particle decomposition
within each toroidal partition, resulting in an average TDC
of 4 with a maximum of 17 for the P = 256 test case. This
maximum TDC is further reduced to 10 when using our
2 KB bandwidth-delay product message size cutoff. These
small TDC requirements indicate that most links on an FCN
are not being utilized for the GTC simulation.

In the topology chart in Figure 4, we see that the ghost-
zone exchanges of Cactus result in communications with
“neighboring” nodes, represented by diagonal bands. In
fact, each node communicates with at most 6 neighbors due



Cactus PTP Buffer Sizes
100 4 100

@
8
L
®
3
L

@
3
L
=)
3
L

&
8
L

% calls <= buffer size
IS
8
.

% calls <= buffer size

N
3
L

20 A

GTC PTP Buffer Sizes

LBMHD PTP Buffer Sizes

% calls <= buffer size

0 T T
1 10 100

o

T T T
100k 1MB 10 100

i 10
buffer size (bytes)
PARATEC PTP Buffer Sizes
100

®
8
L
2 ©
3 3
L L

% calls <= buffer size
IS
&
|

% calls <= buffer size

T T
1k 10k
buffer size (bytes)
P Buffer Sizes

100
/ 80

PMEMD PT

g

T T 0 T T T T T T
100k 1MB 1 10 100 1k 10k 100k 1MB
buffer size (bytes)
SuperLU PTP Buffer Sizes

- [ ——

% calls <= buffer size

0 T T T T T T T T
1 10 100 1k 10k 100k 1MB 1 10 100
buffer size (bytes)

FVCAM2D PTP Buffer Sizes
100

% calls <= buffer size

T T
1k 10k
buffer size (bytes)

% calls <= buffer size

T T T T T T T T
100k 1MB 1 10 100 1k 10k 100k 1MB
buffer size (bytes)

MADbench PTP Buffer Sizes
100 5

®
3
L

=)
3
L

N
3
L

n
3
L

]

0 T

T T T
1 10 100

T T
1k 10k 100k 1MB
buffer size (bytes)

o

T T T
10 100 100k 1MB

1k 10k
buffer size (bytes)

Figure 2: Buffer sizes distribution for point-to-point communication. The red line demarcates the bandwidth-delay

product.

to the regular computational structure of this 3D stencil
code. On average, the TDC is 5, because some nodes are on
the boundary and therefore have fewer communicating part-
ners. The maximum TDC is independent of run size and is
insensitive to thresholding, but the low TDC indicates lim-
ited utilization of an FCN architecture.

The connectivity of LBMHD is shown in Figure 5 for both
the 3D and 2D versions. Structurally, we see that the com-
munication, for the 3D version, unlike Cactus, is scattered
(not occuring on the diagonal). This is due to the interpola-
tion between the diagonal streaming lattice and underlying
structure grid. Note that although the 3D LBMHD streams
the data in 27 directions, the code is optimized to reduce
the number of communicating neighbors to 12. This degree
of connectivity is insensitive to the concurrency level. In
contrast, the 2D version of LBMHD has a lower connectiv-
ity, on average, of 4. This is due to the lower number of
directions that each node communicates for the 2D decom-
position. For both versions of LBMHD, the application is
insensitive to thresholding for the bandwidth-delay product.
In either case, we see that the vast majority of the links in
an FCN remain unutilized by this application.

Figure 6 shows the connectivity for our SuperLU run. The
complex communication structure of this computation re-
sults in many point-to-point message transmissions: in fact,
without thresholding the maximum connectivity is equal to
P. However, by removing the latency-bound messages by
thresholding at 2 KB, the average and maximum TDC is
reduced to 30 for the 256 processor test case. Also, note
that the average connectivity of SuperLU is a function of
concurrency, scaling proportionally to v/P. SuperLU-DIST

communication is described more completely in a 2003 paper
by Li and Demmel [11].

Figure 7 shows the complex structure of communication
in the PMEMD particle mesh ewald calculation. Here the
maximum and average TDC is equal to P. For the spa-
tial decomposition used in this algorithm, each task’s data
transfer with another task drops off as their spatial regions
become more distant. The rate of this drop off depends
strongly on the molecule(s) in the simulation. For P = 256,
thresholding at 2 KB reduces the average connectivity to 55,
even though the maximum TDC remains at 256.

In Figure 8 we see the communication requirements of
PARATEC. This communication-intensive code relies on global
data transposes during its 3D FFT calculations, resulting in
large global message traffic [8]. Here the maximum and av-
erage TDC is equal to P, and the connectivity is insensitive
to thresholding. Thus, PARATEC represents the class of
codes that can make use of the high bisection bandwidth
that a fully-connected network configuration can provide.
This type of communication presents formidable challenges
to any low-degree connectivity solution.

The communication topologies for FVCAM and CAM are
shown in Figure 9. Note that because this application uses
OpenMP for every four processors along with MPI, we repre-
sent each 4-processor OpenMP task as a single node. For the
1D version (CAM) we see that, as expected, each node com-
municates with its two neighbors in 1D. Thus, the maximum
and average TDC is 2. FVCAM, however, shows a more
complex communication structure. Along with the commu-
nication close to the diagonal, we see “bands” of communi-
cation of lesser total data. Some of the nodes communicate



GTC Point-to-Point Communication (bytes)

1.4e+09

1.2e+09

1.0e+09

8.0e+08

Processor

6.0e+08

4.0e408

2.0e+08

0.0e+00

15
Processor

Figure 3: Communication topology of GTC.

MHD 2D Point-to-Point Communication (bytes)

250,
// 2.5e+08
200 /
//
L 150 7
2 V4 1.5e+08
¢ /
8
& 100 /,
/ 1.0e+08
s,
0 // 5.0e+07
/
0/ 0.0e+00

0 50 100 150 200 250
Processor

Cactus Point-to-Point Communication (bytes)

6 1.2e408

200 5
% 1.0e+08

150 % 8.0e+07

Processor
3,

& 6.0e+07

% 4.0e+07

& 2.0e+07

#
o 50 100 150 200 250 0.0e+00

Processor

Figure 4: Communication topology of Cactus.

LBMHD Point-to-Point Communication (bytes)

12e+10

200 4 1.0e+10

8.0e+09

6.0e+09

Processor

4.0e409

2.0e+09

% " 50 100 150 200 250 0.0e+00

Processor

Figure 5: Communication topology of LBMHD2D (1) and LBMHDS3D (r).

with as many as 20 others, but the average TDC for FV-
CAM is 15. Neither CAM nor FVCAM is sensitive to our
bandwidth-delay thresholding heuristic. However, in both
cases, an FCN remains underutilized due to the low TDC.
These two graphs demonstrate that different decompositions
of the same code can result in different communication.

Lastly, we present the communication topology of MAD-
bench in Figure 10 for two different scheduling schemes.
MADbench MG uses ScaLAPACK’s pdgemr2d function to
remap subsets of the matrices to different processors before
calling pdgemm. The version without gang-scheduling calls
pdgemm without remapping. As seen in Figure 10, the two
versions result in very different communication. The topol-
ogy of MADbench MG displays the communication required
for remapping the matrices, while the graph on the right
shows no such characteristics. Without the matrix remap-
ping, MADbench SG has an average TDC of 13, with a max
of 15. The version of MADbench that calls pdgemr2d has a
higher maximum TDC of 44, with an average of 40. Thresh-
olding has no effect in reducing the TDC of either version.
Nevertheless, neither version utilizes a large percentage of
the available links in an FCN.

Table 4 presents a summary of the application communi-
cation characteristics derived in this section. (SuperLU and

PMEMD exhibit misleadingly low median point-to-point buffer

sizes, but this is due to the fact they sometimes send with
buffer sizes of 0 bytes, in cases where a communicating part-
ner expects a message that is not necessary for the compu-
tation.)

In the next section, we utilize these results to determine
the applicability of different interconnect architectures to
each of the applications in this study.

S. ANALYSIS

Based on the information gathered in Section 4, we now
analyze the communication data in the context of contem-
porary switch architectures.

One important simplifying assumption we apply to our
analysis is that each node contains only a single processor.
While most practical systems will likely use SMP nodes, the
analysis would need to consider bandwidth localization al-
gorithms for assigning processes to nodes in addition to the
analysis of the interconnection network requirements. How-
ever, bandwidth localization is a separable issue — one that
unnecessarily complicates our analysis of the interconnect
behavior and requirements. Therefore, we focus exclusively
on single-processor nodes in this paper, and leave the anal-
ysis of SMP nodes for future work.

5.1 Collectives

Consistent with previous research [18], Figure 1 shows
that for many applications, nearly all of the collective com-
munication payload sizes fall below 2 KB. MADbench, how-
ever, utilizes many large collective messages, and would there-
fore benefit from higher-bandwidth interconnects rather than
focusing on minimizing latency. Overall, the collective mes-
sages are dominated by very small message payload sizes,
which are primarily latency bound. Therefore, the collec-
tive message requirements of these applications benefit more
from latency minimization strategies than they do from higher
bandwidth.

The collective communication latency requirements are
clearly differentiated from those of the point-to-point mes-
sages, which are more firmly bandwidth bound. The typ-
ical approach to collective communication is to overlay a
minimum-latency routing pattern over the primary high-



Processor

~ 150408

- 108408

- 508407

Processor

Figure 6: Communication topology of SuperLU.

PMEMD Point-to-Point Communication (bytes)

250 /7
|2 206408

150400

108409

Processor

5.00108

0.08400

Processor

Figure 7: Communication topology of PMEMD.

Paratec Point-to-Point Communication (bytes)

200

Processor

f 126409

1.0e409
8.0e+08

6.00408

4.0e+08

2.0e+08

100 150
Processor

T 250 0.0e+00

Figure 8: Communication topology of PARATEC.

bandwidth interconnect topology, but the latencies of dif-
ferent paths through the interconnect can be dramatically
affected by the topology of the underlying communication
infrastructure. The complexity of such overlay routing be-
comes highly dependent on message payload size and job
placement.

The IBM Blue Gene/L uses an alternative approach by
providing a separate dedicated network with a tree topol-
ogy that better matches collective communication patterns.
Providing a separate dedicated interconnect to support col-
lectives can offer significant performance benefits for Particle-
in-Cell (PIC) codes like GTC that rely heavily on collective
communications for load-balancing as well as PDE solvers
that require fast global reductions to implement implicit
methods using Krylov subspace algorithms.

5.2 Point-To-Point Traffic

We now discuss each of the applications and consider the
class of network best suited for its point-to-point commu-
nication requirements. First, we examine the four codes
exhibiting the most regularity in their communication ex-
changes: Cactus, LBMHD, CAM, and GTC. Cactus dis-
plays a bounded TDC independent of run size, with a com-
munication topology that isomorphically maps to a regular
mesh; thus a fixed 3D mesh/torus would be sufficient to ac-
commodate these types of stencil codes. LBMHD3D also
displays a low degree of connectivity, but while its commu-
nication pattern is isotropic, the structure is not isomorphic
to a regular mesh or torus. The 2D version of this code,
however, maps very well to a mesh network, due to the low
average TDC of 4, as well as the fact that it is isomorphic to
such a network. Although GTC’s primary communication
pattern is isomorphic to a regular mesh, it has a maximum

TDC that is quite higher than the average. For most of the
nodes, however, the TDC is low enough to map onto a regu-
lar mesh. Lastly, CAM has an average and maximum TDC
of 2; this application in fact maps well to a mesh or torus
network. Thus, for these four codes, a fixed mesh/torus
topology would be well suited for providing sufficient inter-
connect performance.

SuperLU and PMEMD exhibit anisotropic communica-
tion patterns with a TDC that scales with the number of
processors. For FVCAM and MADbench, we observe a rel-
atively low TDC, but neither of these codes has an average
TDC low enough to map to a torus or regular mesh network.
Additionally, PMEMD has widely differing maximum and
average TDC. A regular mesh or torus would be inappro-
priate for this class of computation, but an FCN remains
underutilized.

Finally, PARATEC represents the communications require-
ments for a large class of important chemistry and fluids
problems where part of the problem is solved in Fourier
space. It requires large global communications involving
large messages that fully utilize the FCN. PARATEC’s large
global communications are a result of the 3D FFTs used in
the calculation, which require two stages of global 3D trans-
poses. The first transpose is non-local and involves commu-
nicating messages of similar sizes between all the processors,
resulting in the uniform background of 32 KB messages.
In the second transpose, processors only communicate with
neighboring processors, resulting in additional message traf-
fic along the diagonal of the graph. A more detailed descrip-
tion of the communication requirements can be found in [8].
The large global communication requirements can only be
effectively provisioned with an FCN network.

We note in the previous section that increasing intercon-



FVCAM 1D Point-to-Point Communication (bytes)

9.0e+09

8.0e+09

7.0e409

6.0e+09

5.0e+09

Processor

4.0e+09

3.0e+09

2.0e+09

1.0e409

o 10 20 0 50 60 0.0e+00

30
Processor

FVCAM 2D Point-to-Point Communication (bytes)

2.50+09

2.0e+09

1.5e+09

Processor

1.0e+09

5.0e+08

e

10 20 40 50 60

30
Processor

Figure 9: Communication topology of (1) CAM and (r) FVCAM.

MADbench Non-Gang Point-to-Point Communication (bytes)

250 /
126410
s,
"/
200 vy 100410
7,
7 bowsos
L 150 //
2
g % 60es0
* 100 7,
// 4.0e+09
50, 7,
/7 2.0e+09
/
o/ 0.0e+00

100 15 200 250
Processor

MADbench Gang Sched Point-to-Point Communication (bytes)

250 ﬁ
3
g;;é?
e @ 7 2.0e+09
3?83
L 1% y ;ggf ¢ 1.5e+09
S
g &
é?éﬂ
e
50 £ & 5.0e+08
3?&?
"
o£ 0.0e+00

100 15 200 250
Processor

Figure 10: Communication topology of (1) MADbench SG and (r) MADbench MG.

nect bandwidth will offer little benefit to the collectives be-
cause they are nearly all latency bound. However, Figure 2
shows that the distribution of point-to-point message buffer
sizes is predominantly bandwidth bound. One can visual-
ize the effect of adding bandwidth using additional network
planes by moving the red vertical bandwidth-delay prod-
uct line in each graph of Figure 2 to the right. As the
bandwidth-delay product increases, the benefits of adding
interconnect planes will diminish as a larger fraction of the
messages become latency bound. We conclude that increas-
ing interconnect bandwidth will improve performance for
the majority of the codes we studied in this project, but
the benefits are not directly proportional to the bandwidth
increases because of the non-uniform distribution of buffer
sizes. We also observe that the distribution of buffer sizes
can also exhibit considerable variation depending on prob-
lem size and concurrency.

In summary, only two of the eight codes studied exhibit
communication patterns that map isomorphically to a 3D
mesh network topology. Only one of the codes, PARATEC,
fully utilizes the FCN at large scales. The preponderance
of codes do not fully utilize an FCN, nor do they map well
to regular mesh or torus networks. Finally, increasing in-
terconnect bandwidth benefits point-to-point message per-
formance for the majority of the codes we studied, but the
benefits diminish as more of the messages become latency
bound.

6. CONCLUSIONS

We have analyzed eight parallel codes that represent a
wide array of scientific algorithms and associated communi-
cation topologies. We show that the average collective pay-
load size is so small that they are primarily latency-bound

and do not benefit from over-provisioning of bandwidth. In-
creased bandwidth can benefit point-to-point messaging for
some of the applications studied in this paper, but many of
the applications then quickly become latency-bound.

We have also shown that the majority of these codes have
communication requirements that underutilize the capabili-
ties of a fully connected network. The majority of applica-
tions have very low topological degree of connectivity and
commensurate bisection bandwidth requirements. However,
the communication topology of many of these same appli-
cations do not map isomorphically to a low-degree network
like a mesh or torus. Optimal mapping of communication
topologies to low-degree fixed-topology interconnects (like
the 3D torus) has proven challenging even for a low topologi-
cal degree [5]. Mesh/torus interconnects include many other
challenges, such as limited fault tolerance and difficulties in-
volved in batch scheduling for diverse workloads. These de-
ficiencies can be addressed using hybrid circuit switched net-
works that employ circuit switches to dynamically customize
the links in a low-degree interconnect topology to match
application requirements and to route around failures. [17].
However, these approaches depend on applications exhibit-
ing low bisection bandwidth requirements. Codes such as
PARATEC that require large bisection bandwidth also pose
additional problems for lower-degree interconnects.

This is not to say that there do not exist avenues for
making lower-degree interconnects successful for HPC ap-
plications. At the start of this paper, we assumed that
messages that are smaller than the bandwidth-delay prod-
uct cannot be pipelined. This is a reasonable assumption
for MPI codes given existing performance data regarding
the software overhead of sending MPI messages [4]. How-
ever, if a lower-overhead messaging layer were utilized, then



% median % median TDC @ 2KB FCN Circuit

Code Procs | PTP Calls | PTP buffer | Col. calls | Col. buffer | cutoff(max,avg) | Utilization (avg.)
GTC 64 42.0 128k 58.0 100 2,2 3%

256 40.2 128k 59.8 100 10, 4 2%
Cactus 64 99.4 299k 0.6 8 6, 5 8%

256 99.5 300k 0.5 8 6, 5 2%
LBMHD3D 64 99.8 811k 0.2 8 12, 11.5 19%

256 99.9 848k 0.1 8 12, 11.8 5%
LBMHD2D 256 100 12k 0.0 8 4, 4 2%
SuperLU 64 89.8 64 10.2 24 14, 14 22%

256 92.8 48 7.2 24 30, 30 25%
PMEMD 64 99.1 6k 0.9 768 63, 63 100%

256 98.6 72 1.4 768 255, b5 22%
PARATEC 64 99.5 64 0.5 8 63, 63 100%

256 99.9 64 0.1 4 255, 255 100%
FVCAM 64 99.5 96k 0.5 8 20, 15 23%
CAM 64 99.6 359k 0.4 208 2,2 3%
MADbench MG | 256 78 1.2M 22 163k 44, 40 16%
MADbench SG 256 97.3 327k 2.7 163k 15, 13 5%

Table 4:

Summary of code characteristics for point-to-point (PTP) and collective (Col.) communications. Note that

CAM/FVCAM ran on 256 processors, but only used 64 MPI processes each utilizing 4 OpenMP threads.

over-provisioning of interconnect bandwidth might mitigate
the effects of non-optimal mapping between the application
communication topology and that of the underlying inter-
connect. Furthermore, recent papers such as one by the
ARCMI Project [9] indicate that low-overhead messaging
can be used to successfully hide bisection bandwidth limita-
tions through more effective overlap of communication and
computation. However, the success of these solutions hinge
on adoption of runtime environments and programming lan-
guages such as UPC, Co-Array Fortran, or Titanium that
support low-overhead messaging and underlying hardware
mechanisms such as RDMA.

In summary, we have shown that the communication pat-
terns exhibited by these codes generally underutilize the bi-

section bandwidth of fully-connected networks. Fully-connected

networks still remain the most flexible approach to intercon-
nect topology at the moment primarily because of scheduling
and job mapping flexibility and not due to bisection band-
width requirements. Over-provisioning bandwidth cannot
be used to compensate for the reduced bisection bandwidth
of mesh or hybrid circuit switched interconnects unless the
overhead for sending small messages can be reduced signifi-
cantly. We conclude that mesh and hybrid circuit switched
interconnects offer compelling alternatives to fully connected
networks, but their benefits cannot be realized by hardware
alone.

7. REFERENCES

[1] Science case for large-scale simulation. In D. Keyes, editor,
DOE Office of Science Workshop, June 2003.

IPM Homepage. http://wuw.nersc.gov/projects/ipm, 2005.

M. Alcubierre, G. Allen, B. Brgmann, E. Seidel, and W.-M.
Suen. Towards an understanding of the stability properties of
the 3+1 evolution equations in general relativity. Phys. Rev. D,
(gr-qc/9908079), 2000.

C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove,

P. Husbands, C. Iancu, M. Welcome, and K. Yelick. An
evaluation of current high-performance networks. In 17th
International Parallel and Distributed Processing Symposium
(IPDPS), 2003.

G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton,
and R. Walkup. Optimizing task layout on the blue gene/1
supercomputer. IBM Journal of Research and Development,
49(2/3):489-501, 2005.

Julian Borrill, Jonathan Carter, Leonid Oliker, David Skinner,
and R. Biswas. Integrated performance monitoring of a

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

cosmology application on leading hec platforms. In Proceedings
of the International Conference on Parallel Processing
(ICPP), to appear, 2005.

A. Canning, J. Carter, J. Shalf, and S. Ethier. Scientific
computations on modern parallel vector systems. In
Proceedings of the IEEE Conference on Supercomputing,
2004.

A. Canning, L.W. Wang, A. Williamson, and A. Zunger.
Parallel empirical pseudopotential electronic structure
calculations for million atom systems. J. Comput. Phys.,
160:29, 2000.

Manoj Krishnan and Jarek Nieplocha. Optimizing performance
on linux clusters using advanced communication protocols:
Achieving over 10 teraflops on a 8.6 teraflops linpack-rated
linux cluster. In 6th International Conference on Linuz
clusters: The HPC Revolution, Chapel Hill, USA, 2005.

W. W. Lee. Gyrokinetic particle simulation model. J. Comp.
Phys., 72, 1987.

Xiaoye S. Li and James W. Demmel. Superlu—dist: A scalable
distributed-memory sparse direct solver for unsymmetric linear
systems. ACM Trans. Mathematical Software, 29(2):110-140,
June 2003.

Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of
turbulent transport in magnetically confined plasmas. Phys.
Rev. Lett., 88, 2002.

A. Macnab, G. Vahala, P. Pavlo, , L. Vahala, and M. Soe.
Lattice boltzmann model for dissipative incompressible MHD.
In Proc. 28th EPS Conference on Controlled Fusion and
Plasma Physics, volume 25A, 2001.

A. Macnab, G. Vahala, and L. Vahala. Lattice boltzmann
model for dissipative MHD. In Proc. 29th EPS Conference on
Controlled Fusion and Plasma Physics, volume 26B,
Montreux, Switzerland, June 17-21, 2002.

Leonid Oliker, Jonathan Carter, Michael Wehner, Andrew
Canning, Stephane Ethier, B. Govindasamy, A. Mirin, and

D. Parks. Leading computational methods on scalar and vector
hec platforms. In Proceedings of Supercomputing 2005, to
appear, 2005.

Rolf Rabenseifner. Automatic profiling of MPI applications
with hardware performance counters. In Proceedings of the 6th
European PVM/MPI User’s Group Meeting
(EuroPVM/MPI), pages 35-42, September 1999.

John Shalf, Shoaib Kamil, Leonid Oliker, and David Skinner.
Analyzing ultra-scale application communication requirements
for a reconfigurable hybrid interconnect. In Proceedings of
Supercomputing 2005 (to appear), 2005.

Jeffery S. Vetter and Frank Mueller. Communication
characteristics of large-scale scientific applications for
contemporary cluster architectures. In Proceedings of the 16th
International Parallel and Distributed Processing Symposium
(IPDPS), 2002.

Jeffrey S. Vetter and Andy Yoo. An empirical performance
evaluation of scalable scientific applications. In Proceedings of
the IEEE Conference on Supercomputing, 2002.



