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Abstract

We describe an interactive visualization and modeling program for
the creation of protein structures “from scratch.” The input to our
program is an amino acid sequence – decoded from a gene – and
a sequence of predicted secondary structure types for each amino
acid – provided by external structure prediction programs. Our
program can be used in the set-up phase of a protein structure pre-
diction process; the structures created with it serve as input for a
subsequent global internal energy minimization, or another method
of protein structure prediction. Our program supports basic visu-
alization methods for protein structures, interactive manipulation
based on inverse kinematics, and visualization guides to aid a user
in creating “good” initial structures.
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1 Introduction

One of the grand challenges in computational biology is the predic-
tion of the three-dimensional structure of a protein from its chem-
ical composition alone. A protein’sprimary structure, i. e., its
amino acid sequence, is directly translated from its messenger RNA
(mRNA) sequence, which is transcribed from a DNA sequence in
a gene (but perhaps subsequently modified by splicing). The pro-
tein’s primary structure, however, is purely one-dimensional and
does not directly encode a three-dimensional shape. It is commonly
believed that thenativeshape of a protein is the one corresponding
to the global minimum of its internal energy. Thus, theprotein fold-
ing problemhas been treated as an optimization problem in recent
years. Since the optimization problem is high-dimensional and the
energy function contains local extrema in abundance, it is impor-
tant to provide an optimization program with a diverse set of chem-
ically and biologically reasonable initial configurations. When us-
ing human intuition and biological knowledge to create initial con-
figurations it is highly likely that much better predictions can be
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obtained in much less computing time. Our work focuses on pro-
viding an interactive, visual tool assisting a user to rapidly create
many three-dimensional protein structures for a given amino acid
sequence. These structures are then used as initial configurations
for an optimization algorithm.

1.1 Protein Structure Hierarchy

Protein structure is described at four different levels [Lehninger
et al. 1993]:

Primary Structure A protein’s primary structure is its amino acid
sequence. It is directly encoded in a protein’s mRNA, with
each group of three bases defining one amino acid. The chem-
ical structure of proteins in our program is a single chain of
amino acid residues connected by peptide bonds (see Fig-
ure 1).

Figure 1: Part of the primary structure of a protein.

As shown in Figure 2, the chemical structure of proteins is
highly regular since all amino acids have the same N–C–C
backboneand differ only in their side chains, denoted in the
figure by R. In each amino acid residue, the two interior back-
bone bonds (N–C and C–C) are single covalent bonds that can
rotate around their respective bond axes1. Thus, each residue
has two rotational degrees of freedom in its backbone – the
dihedral anglesφ andψ. The peptide bond connecting two
adjacent residues, though usually drawn as a single covalent
bond, behaves like a rigid double bond, with the effect that
the six atoms C–C=O and H–N–C are always coplanar and
arranged in atransconfiguration.
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Figure 2: Primary protein structure and rotational degrees of free-
dom along a residue chain. Adjacent residues are separated by
dashed lines. Amino acid side chains are denoted by R.

Secondary Structure Adjacent amino acid residues inside a pro-
tein can interact with each other, forming regular substruc-
tures: α-helices (see Figure 3), andβ -strands. Inside an

1This degree of freedom does not exist in proline, which forms a ring
structure and cannot rotate around the N–C bond.



α-helix, each residue forms hydrogen bonds with two other
residues, accounting for the rigidity of the helix. For each
amino acid type, the probabilities of forming either one of
these structures are known, and neural networks have been
used succesfully to predict secondary structure occurrences
from amino acid sequences [McGuffin n. d.]. A third type of
secondary structure, acoil region, is defined by the absence of
any other structure. Since coil regions are highly flexible, we
use them as basis for interactive manipulation.

Figure 3: Anα-helix. Hydrogen bonds stabilizing the helix are
shown as dashed yellow lines.

Tertiary Structure A protein’s overall three-dimensional struc-
ture is the result of interactions between amino acid residues
from distant parts of the chain with each other and the
surrounding medium. β -strands, not very rigid by them-
selves, align to each other to form stableβ -sheets (see Fig-
ure 4). alpha-helices cluster with other structures to “hide”
hydrophobic amino acid side chains from the surrounding wa-
tery solution. It is important to note thatβ -sheets are stabi-
lized by adjacentβ -strands forming hydrogen bonds along the
backbone, while the clustering ofα-helices is based on inter-
actions between side chains. Prediction of tertiary structure is
still an unsolved problem.

Figure 4: Twoβ -sheets. Hydrogen bonds stabilizing the sheets are
shown as dashed yellow lines. Top row: anti-parallel sheet (left)
and cartoon rendering (right). Bottom row: parallel sheet (left) and
cartoon rendering (right).

Quaternary Structure Many proteins, e. g., hemoglobin, contain
more than one amino acid chain. For those, quaternary struc-
ture describes how separate chains interact with each other
to define an overall shape. Our interactive manipulation tool,

and the internal energy optimization code it interacts with, do
not yet consider proteins with more than one chain.

2 Related Work

Existing tools used for molecular visualization or interaction fall
into two classes: (i) visualization programs that additionally pro-
vide for rigid body transformations of molecules or molecule parts,
and (ii) molecular dynamics (MD) simulation systems based on
physical and chemical principles. The most commonly used pro-
gram in the first class is VMD [Humphrey et al. n. d.], and a popu-
lar program in the second class is NAMD [Nelson et al. 1996], de-
veloped by the same group. The rendering and visualization tech-
niques used in our program are modeled after those supported by
VMD, but the interaction paradigm of our program is entirely dif-
ferent. VMD supports transformations of protein parts, but those
parts have to be “cut out” from the rest of the protein before trans-
formation, and VMD does not assist in reconnecting parts after-
wards. Although VMD contains a steering component that allows
it to be coupled with MD systems, it does not support real-time ma-
nipulation of larger protein parts due to the complexity of full MD
simulations. One such coupled system, Interactive Molecular Dy-
namics (IMD) [Stone et al. 2001], combines VMD and NAMD and
supports manipulation of molecules by applying forces to single
atoms with real-time force feedback. The major advantage of our
program is that it supports interactive real-time motion of protein
parts with respect to each other without breaking the manipulated
protein’s chemical structure in the process.

3 Protein Structure Visualization

Though the development of our program was driven more by in-
teractive manipulation capability than rendering, it offers several
methods for protein visualization that aid a user in creating protein
structures. The three methods described below are modeled after
existing visualization packages (see Section 2).

3.1 Van-der-Waals Spheres

In this visualization mode, each atom inside a protein is rendered
as a sphere (see Figure 5). The radius of a sphere is the van-der-
Waals radius of its atom’s element [Lehninger et al. 1993]. Spheres
are colored according to standard usage in chemical visualization
programs and textbooks. Van-der-Waals sphere rendering is most
useful for judging the compactness of a protein structure. In their
native shapes, proteins typically fold tightly, with hardly any empty
space between atoms. Van-der-Waals spheres are a good represen-
tation of the overall volume of a protein structure, and allow esti-
mating how tightly it is folded.

3.2 Bond Sticks

The relatively large sizes of van-der-Waals spheres leads to high de-
grees of occlusion, which can make it difficult to understand details
of the chemical structure of a protein in close-up views. To deal
with this problem, our program can render covalent bonds between
atoms as “bond sticks,” two-color cylinders of fixed radius, where
the halves of a bond stick are colored according to the elements of
the atoms at the ends (see Figure 5). Bond sticks can lead to high
visual clutter in overview renderings, but enable a user to judge
the exact alignment and chemical makeup of protein structures in
close-up views.



3.3 Structure Cartoons

Neither van-der-Waals spheres nor bond sticks are appropriate for
modeling purposes since the important visualization of structure
alignment is lost due to too much rendered detail, occlusion, and
visual clutter.Structure cartoonsoffer a solution by ignoring amino
acid residue side chains, and rendering only a protein’s backbone.
Secondary structures are visualized using different glyphs for each
of the three basic structure types:α-helices are rendered as helices
of thick ribbons;β -strands are rendered as thick arrows; and coil
regions are rendered as cylindrical tubes (see Figure 5). All three
glyph types are modeled by non-uniform B-splines [Farin 1997],
with control points located at the central Cα carbon atoms in each
amino acid residue. By using B-splines, structure cartoons natu-
rally follow the shape of the structures they visualize.β -strand
arrows intuitively visualize aβ -strand’s position, orientation, di-
rection, and the four shape parameters described in Section 4.3,
while coil region tubes visualize the position, orientation, and “de-
sirability” of coil region conformations. Structure cartoons work
best when rendered with highly specular lighting to emphasize the
cartoons’ shapes.

Figure 5: One configuration of protein 1pgx visualized in three dif-
ferent modes, using identical view parameters. Top left: van-der-
Waals spheres; top right: bond sticks; bottom: structure cartoons.

4 Protein Structure Creation and Manipu-
lation

Our interactive tool supports the creation of protein structures
“from scratch,” i.e., solely from a sequence of amino acid residues
decoded from a gene, and from a sequence of secondary structure
types for each residue, supplied by one or several structure pre-
diction servers [McGuffin n. d.]. Structures created interactively
are intended to be fine-tuned by subsequent optimization. Conse-
quently, our program focuses on creating overall layouts, without
much regard for details like the extra torsion-angle degrees of free-
dom within the amino acid side chains, or the interactions between
different side chains. More specifically, we concentrate on the cre-
ation of backbone-to-backbone hydrogen bonds andβ -sheets and
let the optimization code handleα-helix clustering, determination
of side chain configurations, and resolution of side chain interfer-
ences.

The process of protein structure creation is done in two major
steps. First, the program creates apre-configurationby assem-

bling amino acid residue templates. Second, a user manipulates the
created pre-configuration by manually – and semi-automatically –
aligning protein substructures to each other. Our program supports
several manipulation tools: manual reassignment of structure types
to individual residues; globalβ -strand shape adjustment; interac-
tive manipulation using an inverse kinematics algorithm [Welman
1993]; semi-automaticβ -sheet formation; andβ -strand shape opti-
mization. The following sections describe these tools in detail.

4.1 Creating Pre-configurations

Our program creates pre-configurations, i.e., protein structures ex-
hibiting only primary and secondary structure, in a fully automatic
process inspired by the working of a ribosome. A ribosome creates
a protein guided by messenger RNA (mRNA) transcribed from a
gene by successively adding amino acids to a growing chain. In
each step, an amino acid of the type prescribed by the mRNA is se-
lected, and concatenated to the (partial) protein by forming a pep-
tide bond with the last amino acid in the chain. It is believed that the
protein under construction starts folding into its native shape even
before it is completely assembled, but the specific mechanisms are
still unknown.

Our approach uses only secondary structure information during
protein creation. Given a specific amino acid sequence, a secondary
structure prediction server classifies each amino acid as being part
of either anα-helix, a β -strand, or a coil region [McGuffin n.
d.]. The server also provides confidence values for each prediction
(ranging from 0 – weakest to 9 – strongest), but these confidence
values are not yet used by our method. The structures assigned to
each residue can be changed interactively during manipulation.

To create a protein, the program assembles amino acid residues
one at a time – simulating the action of a ribosome. The position
of all atoms making up a single residue, and their connectivity, are
defined by a set of template files, one for each residue type. A
template file models a residue instandard configurationin its own
local coordinate system. To concatenate residues, we keep track
of anend-of-chain transformationdescribing how to translate local
template coordinates to the end of the partial protein.

While adding a new residue, its dihedral anglesφ andψ are set
to the standard values forα-helix, β -strand, or coil region, respec-
tively, and the end-of-chain transformation is updated accordingly.
Thus, proteins are created with secondary structures already fully
formed and intact, as opposed to other existing approaches that con-
struct completely unfolded proteins first, and then use constrained
energy optimization to form secondary structures [Crivelli et al.
2002]. Such optimization typically takes several hours, whereas
our approach is instantaneous even for large proteins containing
hundreds of amino acid residues. A pre-configuration created by
our method is shown in Figure 6.

Figure 6: Pre-configuration for protein 1pgx created by assembling
amino acid residues and using standard dihedral angles to form sec-
ondary structures.

4.2 Structure Type Reassignment

As described above, structure types are predicted for each amino
acid residue by one or more structure prediction servers. One can



not always rely on these predictions for one or more of the fol-
lowing reasons: different servers often disagree; predicted structure
types can be flagged with a low confidence value; interactive ma-
nipulation can show that predicted structures do not fit into an oth-
erwise desirable alignment; and global energy optimization some-
times “unwinds” predicted structures or attempts to transform one
structure type into another.

To address these concerns, our tool allows a user to re-assign
structure types during manipulation. Each amino acid residue can
individually be set to any of the three basic structure types. Chang-
ing a residue’s structure type does not immediately set that residue’s
dihedral angles to the standard angles for the new type; a user has
to explicitly request any dihedral angle changes.

Changing structure types dynamically is especially useful for en-
larging short coil regions for more freedom during manipulation, or
for inserting temporary single-residue structures as additional ma-
nipulation “handles” into long coil regions for finer control over a
coil region’s behavior during interaction. This feature can also be
used to “touch up” already optimized protein structures by resetting
partially unwound structures to their default shapes.

4.3 β -strand Adjustment

β -strands have a certain amount of flexibility to adjust to their en-
vironment in sheets. Coherent shape changes result from changing
all φ angles by the same increment, or allψ angles by the same in-
crement. Richardson and Richardson [Richardson and Richardson
1989] suggest a different basis for this two-dimensional space of
coherent shape changes, which has a more comprehensible geomet-
ric meaning.Twist increments bothφ andψ by the same amount,
while pleat increments allφ angles by the same amount, and decre-
ments allψ angles by this amount.

Since the dihedral angles of aβ -strand are close to 180◦, the
backbone forms a zig-zag pattern, with the residues on alternating
sides. Thus, changes inφ andψ of period two also have coherent
effects on the strand shape.Curl, a period-two change also sug-
gested in [Richardson and Richardson 1989], decreasesφ and in-
creasesψ of odd-numbered residues, counting from the beginning
of the strand, and does the opposite for even-numbered residues.
To fill out the four-dimensional space of period-two changes toφ

andψ, we added a fourth basis element, not described in [Richard-
son and Richardson 1989], which we callbraid. It increases both
φ andψ for odd-numbered residues, and decreases them for even-
numbered residues.

These changes were implemented in the form of four dials,
which can coherently change the shape of a selectedβ -strand in
the interactive user interface. These dials are useful in adjusting a
strand’s shape in order to form more hydrogen bonds with adjacent
strands in aβ -sheet.

4.4 Structure Manipulation

Our program uses inverse kinematics (IK) to transform parts of a
protein with respect to each other, without breaking chemical bonds
in the protein backbone between those parts [Welman 1993]. As
mentioned in Section 1.1, coil regions are flexible because they do
not pose tight constraints on their residues’ dihedral angles. Thus,
they can serve as buffers for transformations of protein parts.

To begin manipulation, a user selects a single secondary struc-
ture, typically anα-helix or aβ -strand. The program then renders
the3D interaction widget, a translucent green box surrounding the
selected structure (see Figures 7 and 8). The widget can be trans-
lated or rotated by dragging it with the mouse. Additionally, a user
activates one or more coil regions that will serve as buffers for sub-
sequent manipulation. In Figures 7 and 8, active coil regions are
highlighted in yellow.

Figure 7: Selectedβ -strand and surrounding 3D interaction widget.
The two coil regions surrounding the centralα-helix are activated
for manipulation. Left: before dragging the widget; right: after
dragging the widget.

In the simpler case, all active coil regions are on the same side of
the selected structure (either in front of it or behind it according to
chain order). When, for example, all coil regions are in front of the
selected structure, dragging the interaction widget will transform
the selected structure, and the rest of the protein behind it, with re-
spect to the part of the protein in front of the first active coil region.
All active coil regions will change shape, and all structures between
active coil regions will undergo rigid body transformations, as dic-
tated by the IK algorithm. This mode of interaction allows a user
to align protein parts to each other, especially to formβ -sheets by
manually aligningβ -strands.

In the more complex case, where active coil regions exist on both
sides of the selected structure, dragging the widget will move the se-
lected structure with respect to the two parts of the protein in front
of and behind any active coil regions. Those two parts, even though
unrelated according to chain order, will not move with respect to
each other. As in the simpler case, shape changes of active coil re-
gions and transformations of intermediate structures are guided by
the IK algorithm. This second interaction mode can be used to fine-
tune the placement of intermediate parts in an already assembled
structure (see Figure 8).

Figure 8: Selectedα-helix and surrounding 3D interaction widget.
Both surrounding coil regions are activated for manipulation. Left:
before dragging the widget; right: after dragging the widget.

4.5 Inverse Kinematics

Every rotatable single covalent bond along a protein’s backbone
can be interpreted, in an IK sense, as a joint with a single axis of
unconstrained rotation. After a user has selected a structure and ac-
tivated coil regions, and before manipulation begins, the program
constructs a linked assembly by creating two rotational joints for
each amino acid residue2 inside each active coil region. Let us as-
sume that all active coil regions are in front of the selected structure

2In the case of proline, the IK algorithm only creates a single joint since
proline has a rigid N–C bond.



according to chain order3. In this simpler manipulation case, the
linked assembly is rooted at the rear end of the last structure before
the first active coil region, and the “leaf” joint is connected to the
front end of the selected structure (see Figure 9).

active coil region active coil region

intermediate
structure

root
structure

selected
structure

Figure 9: Linked assembly created by IK algorithm from two ac-
tive coil regions on one side of a selected structure. Each coil region
contains three residues, leading to six rotational joints per coil re-
gion. Bold arrows denote assembly direction from root to leaf.

This method of creating a linked assembly results in intuitive
behavior during manipulation. The selected structure, and the rest
of the manipulated protein behind it, are treated as a rigid body
and move together, following the motion of the 3D interaction wid-
get. If the widget is moved into a position/orientation that cannot
be realized by setting dihedral angles for the currently active coil
regions, the IK algorithm will automatically approximate the re-
quested position/orientation in a least-squares sense.

A more complex manipulation case occurs when active coil re-
gions are located on both sides of a selected structure. The current
version of our manipulation code handles this case by creating two
independent linked assemblies: one for all active coil regions in
front of the selected structure, and one for all active coil regions
behind the selected structure. Compared to the simpler case, the
direction of assemblies is reversed. The selected coil region serves
as root structure for both assemblies, and each of the two leaf joints
is connected to the first structure after the last active coil region on
either side of the selected structure (see Figure 10).

active coil region active coil region

selected
structure

leaf
structure

leaf
structure

left assembly right assembly

Figure 10: Two-part linked assembly created by IK algorithm from
one active coil region on both sides of a selected structure. Each
coil region contains three residues, leading to six rotational joints
per coil region. Bold arrows denote assembly direction from root
to leaf.

The benefit of creating two linked assemblies in the more com-
plex manipulation case is that it is possible to use the same IK al-
gorithm in both cases. The major drawback is reversed and less
intuitive behavior at the dragging limits. If the 3D interaction wid-
get is moved into a position/orientation that cannot be realized by
adjusting dihedral angles in active coil regions, the selected struc-
ture will still follow the widget, and the two protein parts beyond
the assemblies’ leaf structures will approximate their initial posi-
tions/orientations in a least-squares sense. Thus, a user has to be
careful not to break existing alignments when dragging the selected
structure.

3The case where all active coil regions are behind the selected structure
is symmetrical.

The only technical difference between the two manipulation
cases is the number of linked assemblies, and their direction accord-
ing to chain order. The IK algorithms for both cases are identical.
While dragging the interaction widget, the IK algorithm computes
the difference between the widget’s current requested position and
orientation and the position and orientation of the selected struc-
ture, computed from the link assembly’s current rotation angles.
The algorithm updates all joint angles to minimize that difference.
Our IK algorithm uses a transposed Jacobian method with force
integration [Welman 1993]. This method has two major benefits:
(i) it is based on a (simplified) physical model causing intuitive link
assembly behavior during interaction; and (ii) its computational ef-
ficiency leads to high update rates even for large assemblies.

The major problem with an IK approach to protein manipula-
tion is one of scale. In robotics or computer animation, typical
assemblies consist of up to a dozen joints, whereas assemblies cre-
ated by our program can have 80 or more joints for larger pro-
teins. To achieve stable behavior and high update rates for large
proteins, we improved the basic IK algorithm by using a second-
order Runge-Kutta method with adaptive step size control for force
integration [Press et al. 1992].

4.6 Semi-automatic β -sheet Formation

The manipulation process described above is sufficient to create ar-
bitrarily complex protein structures, but the main task of creating
β -sheets by forming hydrogen bonds betweenβ -strands can be te-
dious and time-consuming. To address this problem, our system
supports the automatic formation of hydrogen bonds between two
user-selected amino acid residues. In the context ofβ -sheet for-
mation, hydrogen bonds appear in two shapes: parallel and anti-
parallel (see Figure 11). In the anti-parallel case, two residues from
differentβ -strands form a double hydrogen bond: one residue’s N–
H group bonds with the other residue’s C=O bond, and vice versa.
The parallel case involves three residues: one residueRi in one
strand, and two residuesRj−1 andRj+1 in another strand (the latter
two residues being separated by one central residue in the chain).
Ri ’s C=O group bonds withRj−1’s N–H group, andRi ’s N–H group
bonds withRj+1’s C=O group.
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Figure 11: Two shapes of hydrogen bonds betweenβ -strands in a
β -sheet. The upper two strands are aligned in an anti-parallel way;
the lower two strands are aligned in a parallel way. The direction of
the topmost strand is right-to-left in chain order.



Our automatic bonding feature supports both shapes. To invoke
it, a user selects aβ -strand and activates coil regions as usual, and
then selects two residues – the first being inside the selected strand –
and a bonding shape. In the anti-parallel case, the program calcu-
lates a transformation that moves the selected structure to a position
and orientation that will form a double hydrogen bond between the
selected residues. In the parallel case, it calculates a transformation
to bond the first selected residue with both neighbors of the sec-
ond one. In either case, the IK algorithm updates dihedral angles in
all active coil regions to realize the calculated transformation. This
process typically requires a few seconds, and it is animated in real
time. Once twoβ -strands have been aligned semi-automatically, it
is a matter of seconds to manually fine-tune the alignment to involve
more hydrogen bonds.

4.7 β -strand Shape Optimization

In an effort to automate the adjustment ofβ -strand shape in aβ -
sheet environment, we tried to define optimal twist, pleat, curl, and
braid parameters forβ -strands of length four to twelve, in combina-
tion with rotated and translated copies of an identically configured
adjacent strand at either side in theβ -sheet. Since these two adja-
cent strands can be either in the parallel or anti-parallel direction,
and the two sides of a strand are not equivalent, four cases arise,
each of which extend to a global twisted helicoid-likeβ -sheet of
spiral symmetry, either all parallel, all anti-parallel, or alternating
parallel and anti-parallel, with two strands in one direction, fol-
lowed by two strands in the other.

In forming the two adjacent copies of a central strand, there are
three translational and three rotational degrees of freedom for each,
leading to a total of twelve. There are also four degrees of free-
dom for the twist, pleat, curl, and braid parameters. In addition,
accounting for the difference in geometry near the edges of the he-
licoid compared to the center, we allowed a quadratic variation in
the increments used in these four parameters, which was propor-
tional to the square of the difference between the residue index and
the center of the strand. Adding these four quadratic coefficients
lead to a total of twenty degrees of freedom.

We optimized the Amber energy of the strand [Cornell et al.
1995], counting interactions of atoms within the strand, and with its
two adjacent copies in the sheet, using the version of the BFGS non-
linear local optimization in [Liu and Nocedal 1989]. Since only the
φ andψ angles were varied in this optimization, and our standard
initial configurations of the larger residues were not optimal forβ -
sheets, we obtained unfavorable results for larger residues. There-
fore, we performed the optimization only for polyalanine, and post-
pone adjusting all the atomic positions for the side chains until after
the initial backbone configuration is specified interactively. The op-
timization results for each length and sheet environment of polyala-
nine were saved in tables of dihedral angles, which are loaded when
requested by a user.

5 Visual Manipulation Guides

To be most useful for protein structure manipulation, our program
offers several visualization methods that help a user in creating
good structures, and decrease the interaction time required to cre-
ate a structure that is fit for subsequent optimization. The methods
described below are typically not components of existing protein
visualization packages.

5.1 Hydrogen Bond Visualization

The main task in creating initial protein configurations is the align-
ment of individualβ -strands to formβ -sheets. Optimization algo-

rithms for protein structure prediction are not yet capable of trans-
forming one configuration into an energetically better one if that
change implies a drastic jump in parameter space. As many differ-
ent alignments ofβ -strands are geometrically close but far apart
in parameter space, interactive manipulation, especially utilizing
recurringβ -sheetmotifs extracted from known proteins, leads to
better predictions than optimization alone.

Sinceβ -sheets are stabilized by hydrogen bonds between their
strands, protein manipulation is mostly used to alignβ -strands to
each other in such a way that the number of hydrogen bonds be-
tween them is maximized. To assist a user in this task, the program
offers several alignment guides. The first guide is real-time detec-
tion and visualization of backbone hydrogen bonds. As a protein
changes shape, the program constantly monitors position and ori-
entation of hydrogen bonding sites along the backbone, and renders
a dashed yellow line between all pairs of negatively charged C=O
and positively charged N–H groups that satisfy certain constraints.
This visualization provides immediate feedback about the quality
of the current alignment during interaction, but it does not advise
how to change an alignment to improve it.

To guide interaction, the program provides two different ways of
rendering potential hydrogen bonds (see Figure 12). First, it can
render abond site, i.e., the midpoint of a hypothetical hydrogen
bond, for each charged backbone group, showing a potential bond’s
midpoint position and orientation. Forming bonds is thus reduced to
aligning the midpoints and orientations of two differently charged
backbone groups. Alternatively, the program can render ahydrogen
cagearound each backbone N–H group. Hydrogen cages enclose
the space a C=O group’s oxygen atom must lie within to form a
hydrogen bond. Hydrogen cages are more accurate than hydrogen
bond sites, but the latter are more appropriate for rapid coarse align-
ments, and lead to less visual clutter.

Figure 12: Mixed parallel and anti-parallelβ -sheet. Formed hydro-
gen bonds are shown as dotted yellow lines. Left: hydrogen bond
sites for positively charged N–H groups are rendered in blue; those
for negatively charged C=O groups are rendered in red. Right: Hy-
drogen cages are rendered as yellow wireframe cages around N–H
groups; C=O groups are rendered in red.

5.2 Ramachandran Plots

The current IK algorithm assumes that a residue’s backbone bonds
can freely rotate, and that dihedral angles can have any value in the
interval [0,2π). In reality, however, not all dihedral angle value
combinations are equal. Due to interference of a residue’s side
chain with its backbone, some values ofφ andψ are more favorable
than others. The internal energy of a single residue can be treated
as a bivariate function ofφ andψ, and graphs of this function are
calledRamachandran plots[Lehninger et al. 1993]. Incidentally,
some especially low-energy regions in Ramachandran plots corre-
spond to the particular angle combinations that formα-helices and
standardβ -strands. Our program visualizes the dihedral angles of
active coil regions in the style of a Ramachandran plot to help a



user evaluating the “naturalness” of a configuration created by the
IK algorithm.

5.3 Visualization of Atom Collisions

Another aspect not considered by the IK algorithm is global inter-
ference of atoms inside a protein. Ignoring atom collisions during
manipulation gives a user more freedom to rapidly create “good”
structures and to move from one structure to another one. However,
before a protein structure can be used as initial configuration for
optimization, atom intersections that are too “deep” to be automati-
cally resolved by the global energy optimization algorithm must be
resolved manually.

To assist a user in this task, the program calculates and visualizes
atom intersections in real-time during manipulation. We use a sim-
ple grid-based algorithm to quickly find all pairs of atoms whose
van-der-Waals-spheres intersect deeper than some threshold value.
This algorithm is efficient enough for real-time collision detection,
even for large proteins consisting of several thousand atoms. To vi-
sualize intersections, the program renders red spheres of radii pro-
portional to the depth of an intersection at the midpoint between
two intersecting atoms (see Figure 13).

Figure 13: Protein structure where the centralα-helix is too close to
theβ -sheet. Parts of the helix’ side chains interfere with the sheet.
The collision spheres are updated in real time during manipulation.

6 Conclusions and Future Work

We have described a program for the interactive creation of protein
structures from “scratch,” i.e., from an amino acid sequence, by
using simple geometric constructions and inverse kinematics (see
Figures 14 and 15). The program supports several visualization
methods to aid a user in this process – some found in existing pack-
ages, others developed specifically for our purpose – but the main
focus of the program is manipulation, not visualization.

Our collaborators from the Lawrence Berkeley National Labora-
tory, the University of California, Berkeley, and the University of
Colorado, Boulder have used the program to create initial configu-
rations for several large proteins while participating in the CASP5
(“Fifth Meeting on the Critical Assessment of Techniques for Pro-
tein Structure Prediction”) protein structure prediction competition
in summer 2002 [Head-Gordon et al. 2002] (see Figures 15 and 16).
Over a period of three months, they generated several hundred ini-
tial configurations, which were subsequently refined using global
energy optimization. The final optimization results were submitted
to the competition referees for evaluation and comparison to native
protein shapes determined by crystallographical methods.

Our collaborator’s previous approach to generate initial config-
urations involved adding constraints to a local optimization algo-

rithm forcing a protein structure to assume pre-determined shapes.
Implementing constraints was tedious and required programming
skills, and local optimization required several hours or even days
for a single configuration. Using the new interactive approach, we
were able to create dozens of different configurations for a single
protein in a few of hours. Using our program requires no program-
ming skills; the main difficulty is learning how to perform three-
dimensional manipulations using a two-dimensional desktop user
interface. Our program has been released to the research commu-
nity under the name “ProteinShop,” and it is currently being evalu-
ated by dozens of protein structure prediction groups for usability
in their own, often non-optimization based, prediction methods [Pro
n. d.]. Their feedback will allow us to adapt and generalize our pro-
gram.

Our current research focuses on improving the IK algorithm to
handle bidirectional manipulation more elegantly (see Section 4.5),
and to optionally consider the “desirability” of(φ ,ψ) angle pairs
to find better coil region conformations (see Section 5.2). We
are also investigating the use of stereoscopic rendering and three-
dimensional input devices to remove the limitations of a two-
dimensional user interface. Furthermore, we are adding a steering
component that allows using our program as a monitoring and com-
putational steering front-end for protein structure prediction.
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Figure 14: Protein structure consisting of severalα-helices grouped
around a centralβ -barrel, i.e., a closedβ -sheet. The structure was
created from scratch using an artificial amino acid sequence and a
custom secondary structure type sequence.



Figure 15: One initial structure for protein T187, one of the tar-
gets from the CASP5 protein structure prediction competition. We
focused on the central anti-parallelβ -sheet and did not attempt to
cluster the surroundingα-helices into a compact shape.
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