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1. PANEL DESCRIPTION 
The scientific visualization community faces a crisis: there 
exist many individual tools that can be used to perform 
visualization, but there is little, if any, hope of being able to 
use tools from different sources as part of a single 
application. As a result, our community is fractured, and 
can be characterized as “islands of capability.” The purpose 
of this panel is to probe the issues that prevent such 
interoperability, and engage in frank discussion about how 
our community can rectify these maladies. The issues to be 
discussed include but are not limited to: (1) lack of 
“standards” for data storage and modelling of N-
dimensional scientific data, similar to those used for raster 
image files; (2) lack of “standard” interfaces for common 
visualization tools; (3) the visualization needs of the 
computational science research community, who are the 
primary consumers of technology from the visualization 
community; (4) lack of organization within our community 
to push for definition and adoption of such “standards;” (5) 
lack of organization within our community to serve as a 
“broker” and “promoter” for tools that might conform to 
even the weakest of standards. The panelist lineup 
represents a diverse cross-section of expertise and opinions 
about the panel topic. The panelists themselves are in 
disagreement about the severity of the problem, and 
potential solutions. The topic of this panel is highly 
germane to future growth of visualization as a science, and 
promises to be highly engaging for panelists and audience 
members alike. 

2. PANELISTS 

2.1 Greg Abram, IBM T.J. Watson 
Research Center 
To my mind, much of the failure to develop and adopt 
broad-based standardization within and between the 
visualization and computational science communities 
reduces to the short-sighted belief that the performance of a 
solution to any particular problem - or, in fact, the 
performance of any particular component of a particular 
problem – outweighs the larger goals of maximizing cost-
effectiveness and minimizing total time-to-solution across a 
wide range of problems. Several things foster this attitude. 
There is the fun and ego-gratification of delivering a 
heroically built piece of code. There is the performance 
gain to be had by taking advantage of unique characteristics 
of a particular problem to provide a tailored, super-tuned 
piece of code that performs ideally on that problem. There 

is the need to justify the purchase of hardware with tangible 
results shown by anecdotes of larger problems being solved 
in less time. What there isn’t is a the recognition of the real 
problem - maximizing cost-effectiveness and minimizing 
time-to-solution over all of the tasks that confront an 
institution, accompanied by anecdotes of problems that 
arise and are solved satisfactorily, quickly and 
inexpensively. The problem is compounded once 
institutional lines are crossed. Proprietary goals make 
concessions to standardization unpalatable. A lack of 
concession leads to attempts at standardization that are all 
things to all people, and are useful to none. Users and 
management are unwilling to accept costs and 
inconveniences that they might attribute to being of more 
benefit to a competitor than themselves. 
 
We attempted to attack this problem when we first 
developed OpenDX. We saw a visualization community 
that relied on either domain-specific closed applications, or 
components tied very closely to specific representations, 
which were often built for very specific purposes and then 
tossed into a toolkit. We felt that we could develop a data 
model that would provide effective representation across a 
very wide range of applications and then a set of 
visualization components that operated on any data 
represented in the model.  Since objects in the model 
provided the ability to describe their representation, we 
could build high-level components that examine their input 
and call low-level representation-specific algorithms if they 
existed, and or use more general-purpose algorithms 
otherwise. We could “hammer on the highest nail,” 
providing customized algorithms where they proved most 
valuable, and not waste time developing tuned algorithms 
for less important cases. We could provide users the ability 
to create the components that they needed and leverage our 
vendor-supplied code wherever it would suffice. Finally, 
we noted the ease-of-use that a self-describing data model 
would provide, since users building high-level visualization 
applications could concern themselves with function 
without regard for representation, up to the point that they 
needed to address performance issues. 
 
I always hoped that this would serve a larger purpose as 
well - to subsume both the visualization process and the 
computation that creates the data for visualization into a 
single super-application. I believed that the convenience the 
infrastructure of OpenDX - notably the data model, but also 
visual programming interface and GUI-builder capabilities, 
would entice people to incorporate computational science 
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components into OpenDX, thereby building computational 
steering and tracking into their application. Alas, this has 
rarely been the case. 
 
Greg Abram received his PhD at the University of North 
Carolina at Chapel Hill in 1986. He has been a Research 
Staff Member at the IBM T.J. Watson Research Center 
since 1990, working on many aspects of scientific 
visualization as well as participating in the architecture and 
implementation of OpenDX. 

2.2 John Shalf, Lawrence Berkeley 
National Laboratory 
Visualization systems will become an essential part of the 
emerging fabric of Grid services. While there have been 
many tantalizing demonstrations of the capabilities that this 
new “Grid” frontier will enable, there is a huge gap 
between the demonstrations of Grid visualization 
applications and solutions that could reasonably be 
deployed in a production environment. 
 
The underlying Grid infrastructure offers a considerable 
number of challenges to application programmers before it 
can become a stable substrate for interactive visualization 
applications. This includes some work that is the traditional 
domain of visualization researchers like specialized latency 
tolerant or highly scalable parallel visualization algorithms. 
However, there are considerably more areas of 
development that require advances in security models, 
performance modelling and prediction, dynamic application 
redeployment, distributed data management, and network 
protocols that are not the typical domain of visualization 
researchers. These problems are very complex and will 
require considerable effort just to build the Grid 
infrastructure up to a level that can stably support 
production quality applications.  
 
Unless we make a concerted effort to address the 
deficiencies in the current Grid and bring it up to a level of 
abstraction that is sensible for visualization application 
needs, there will be little progress in this area. However, 
given the current balkanization of visualization systems and 
capabilities, every application developer in this community 
will need to solve the same problems over and over again, 
thereby continuing this depressing of lack of forward 
progress in this community. We have failed to rise to the 
challenge of large data visualization on commodity MPPs 
in a manner that is widely deployed in production 
environments. Will we continue with this track record 
through the Grid revolution as well?  
 
The problems inherent in the Grid are far too complex and 
varied for us to provide an even minimally useful solution 
unless we are able to find a way to combine our efforts. 
The only path to sharing this difficult job of Grid 
infrastructure is by coming back to the table to address the 
very difficult problems of interoperability between different 

visualization frameworks and tool environments that we 
have abandoned so many times in the past. 
 
John Shalf is a staff scientist at Lawrence Berkeley 
National Laboratory. He is involved in projects that cover 
visualization of AMR data, distributed/remote 
visualization, Grid portal technology, high performance 
networking, and computer architecture. He has also been a 
visiting researcher at the at the Albert Einstein 
Institute/Max Planck Institute in Potsdam Germany and is a 
member of the Technical Advisory Board for the EU 
GridLab project that seeks to create application-oriented 
APIs and frameworks for Grid computing. 

2.3 Randy Frank, Lawrence Livermore 
National Laboratory 
Our ability to generate large datasets is rapidly outpacing 
our ability to manipulate and visualize them. The move to 
distributed visualization systems to handle these datasets 
has been slow and strewn with potholes. Moreover, recent 
leaps in workstation class PC performance has allowed 
commercial developers to largely avoid dealing with this 
problem, leaving many of us to roll our own tools from the 
myriad of available components. Indeed, research into 
advanced mechanisms for handling these datasets has 
yielded a number of excellent solutions to these problems, 
yet seldom do these techniques make their way into 
production tools for end users. Funding mechanisms and 
other forces have pushed the community toward large, 
monolithic implementations that are rarely nimble enough 
to leverage the latest research results. The complexity of 
such codes prohibits their adaptation to and timely delivery 
of vertical visualization solutions that our end users 
request. A new approach to tool development is needed. 
There are many great system components available, yet you 
rarely see them used together to solve a problem. Why?  
 
An approach is needed that encourages independent groups 
to work together on system components with focused, 
intelligently designed interfaces that do not require large 
infrastructure changes to use. Most distributed visualization 
tools consist of a few basic components that in many cases 
know nothing about the actual data they are handling. 
Loosely coupled lightweight components with a relatively 
narrow focus may be the key to our ability to rapidly 
prototype and deliver visualization solutions, which 
leverage the results of novel approaches, our end users 
desire.  
 
Randall Frank currently serves as the LLNL ASCI VIEWS 
Visualization Project Lead. He is involved in a number 
scalable rendering and visualization research projects, 
targeting interactive visualization of terascale data and 
distributed clusters. These projects include Chromium, 
DMX and the TeraScale Browser. Prior to joining LLNL, 
he worked at Research Systems as a Systems Architect on 
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their IDL product. He has received BS and MS degrees in 
Biomedical Engineering from the University of Iowa. 
 

2.4 Jim Ahrens, Los Alamos National 
Laboratory 
I do not believe visualization tool interoperability is a crisis 
because solutions are available now or will be in the near 
future. Tools can work together by 1) sharing files and 2) 
sharing algorithms/user interfaces. Sharing files is fairly 
simple, but typically hindered by a lack of a common data 
format. There are current projects working to solve the 
common data format problem including HDF and the Los 
Alamos, Livermore and Sandia Scientific Data 
Management project. In the worse case, a visualization 
developer can translate from one tool’s data format to the 
other. Sharing algorithms and user interfaces can be 
achieved by taking code from one tool and porting it for 
use in another tool. Algorithms can also be shared by using 
a common architecture. DOE’s Common Component 
Architecture (CCA) project is currently solving this 
problem. A key question to address is: What is the 
definition of efficient/effective tool interoperability? A 
related question is: Who is the interoperability 
efficient/effective for? Visualization developers or users? I 
believe the next step for the visualization developer 
community is to focus on real-world user tool 
interoperability problems. I suspect many interoperability 
problems can be solved quickly and easily using the 
techniques described above. 
 
James Ahrens received a Ph.D. in computer science from 
the University of Washington in 1996. After graduation he 
became a staff member at Los Alamos, where he is 
currently employed. His research interests include scientific 
visualization and parallel/distributed systems. He has 
written book chapters, journal and conference papers on 
these topics. He is leading an open-source software effort to 
extend the Visualization Toolkit (VTK) and create an end-
user tool (ParaView) to visualize extremely large datasets. 

2.5 Steve Parker, University of Utah 
Visualization systems were one of the earliest adopters of 
component-based architectures. Numerous systems have 
been developed over the years that have successfully 
employed these architectures to form powerful 
visualization systems, including AVS, IBM Data Explorer, 
IRIS Explorer, Khoros, Vtk, and SCIRun. However, 
visualization research is seldom able to take advantage of 
these environments due to various constraints, both 
technical and otherwise. 
 
I implore the visualization community to work together to 
create a standard component-based architecture that will 
fulfill the needs of visualization researchers and 

practitioners alike. This system should have the following 
attributes:  
• Based on open standards, including the underlying 

component technology and the visualization standards 
themselves.  

• Based on a flexible execution model to facilitate a 
broad range of visualization algorithms.  

• Addresses parallelism, both in terms of parallel data 
and parallel visualization tools.  

• Facilitates both flexibility and performance on a broad 
range of scientific data.  

• Facilitates incremental adoption, such that 
communities can utilize pieces of the standard as they 
progress towards full adoption.  

• Is sufficiently efficient and flexible to work with large-
scale visualization tasks.  

Many in the community have pieces of this larger puzzle, 
but putting them all together in an efficient manner is a 
non-trivial task. Nevertheless, it is an important 
undertaking that will help to bring to a broader community 
the myriad of techniques developed by visualization 
researchers.  
 
Steven Parker is a Research Assistant Professor in the 
Department of Computer Science at the University of Utah. 
His research focuses on problem solving environments, 
which tie together scientific computing, scientific 
visualization, and computer graphics. He is the principal 
architect of the SCIRun Software System, which formed 
the core of his Ph.D. dissertation, and is currently the chief 
architect of Uintah, a software system designed to simulate 
accidental fires and explosions using thousands of 
processors. He was a recipient of the Computational 
Science Graduate Fellowship from the Department of 
Energy. He received a B.S. in Electrical Engineering from 
the University of Oklahoma in 1992, and a Ph.D. from the 
University Utah in 1999. 

2.6 Nagiza Samatova, Oak Ridge National 
Laboratory 
The concept of a “plug-in” is not new. Plug-ins are code 
modules that literally plug into a computing framework to 
add capabilities that previously did not exist. Familiar 
examples include web browser plug-ins for playing live 
audio files, displaying PDF files, and much more. There is 
no need for “porting user interfaces” of these numerous 
applications for use in a Web browser, especially when a 
typical interface code is tens/hundreds of thousands lines of 
code. Data format translation – from one format to another 
– is not practical for terabyte data sets generated by 
scientific applications – simply use an appropriate plug-in.  
 
We wish life were that simple so that we could take a 
visualization package(s) and plug it into our data 
management and data analysis infrastructure, called 
ASPECT, designed with some special end-to-end and QoS 
performance requirements.  There exist many successful 
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visualization applications (e.g., OpenDX, ParaView, 
Terascale Browser) with a variety of complimentary 
capabilities to choose from. While it is possible to use any 
one in isolation, using them in a larger context is the 
ultimate goal. However, incorporating even a single one of 
them within another application or framework is very time 
consuming and tedious. Struggling with monolithic 
frameworks and tightly integrated user interface, system-
specific event loops to handle the events for active user 
interaction, lack of support of various data formats (e.g., 
HDF, netCDF), or inability to mix and match packages by 
choosing an algorithm from one that the other doesn’t 
implement are just a few of our frustrations that still make 
us believe that interoperability of visualization software is 
still fantasy.  

Packages should be providers of visualization capabilities, 
rather than posing barriers to use by scientists or extension 
by developers. The idea of integration with other tools, 
frameworks and applications should be present from the 
start of development, as should the question “what kind of 
use breaks this package?” But until the mentality of 
visualization and data management architectures change in 
a fundamental way, the visualization software “plug-in” 
concept will remain an elusive desire, rather than a reality. 

Nagiza Samatova is a staff scientist at the Oak Ridge 
National Laboratory. Her research focuses on advanced 
algorithms for large-scale, distributed and streamline data 
mining. She is the Project Lead of the ASPECT system 
developed under the DOE SciDAC Scientific Data 
Management (SDM) center. She received a Ph.D. in 
mathematics from Russian Academy of Sciences, Moscow, 
in 1993 and M.S. in computer science from the University 
of Tennessee, Knoxville, in 1998. 

2.7 Mark Miller, Lawrence Livermore 
National Laboratory 
Interoperability at the level of data models is not only 
feasible, but it has been achieved on the small and medium 
scale. Furthermore, we’re making slow and steady progress 
towards large-scale integration. The key is DATA 
ABSTRACTION! 
 
In the early days of scientific computing, roughly 1950 - 
1980, each big simulation code effort included sub-efforts 
to develop supporting tools for visualization, etc. 
Developers working in a particular stovepipe designed 
every piece of software they wrote, simulation code and 
visualization tools alike, to conform to a common 
representation for the data. All software in a particular 
stovepipe was really just one monolithic application held 
together by a common, binary or ASCII file format. In 
short, there was no integration. 
 
Between 1980 and 2000 an important innovation emerged, 
the MENU based I/O library. In fact, two variants emerged 
each working at a slightly different level of abstraction. 

One offered a menu of computer science (CS) objects such 
as arrays, structs and linked lists. The other offered a menu 
of computational modeling (CM) objects such as structured 
and unstructured-zoo meshes and zone- and node-centered 
variables. Examples of the former are CDF and HDF (early 
80's). Examples of the latter are EXODUS (1982), Silo 
(1988) and CDMLib (1998). On the one hand, there are 
numerous examples of menu-based I/O libraries being used 
successfully to integrate on the small and medium scale. On 
the other hand, both classes of menu-based libraries have 
weaknesses prohibiting integration on the large scale. 
 
By 2000, a new breed of I/O library began to emerge. It is 
based on modeling the abstract mathematical/physical 
continuum from which scientific software is ultimately 
derived. Examples are the Sets and Fields (SAF) and Sheaf 
scientific data modeling systems. These technologies 
enable developers to model scientific data in terms of 
WHAT it represents in a mathematical or physical sense 
independent of HOW it is represented in an implementation 
sense. These technologies promise take us into the large 
scale of integration. Nonetheless, this leap in integration 
does come at a price. Visualization tool developers must 
embrace this abstract mathematical world and express their 
software components in its terms. 
 
Mark C. Miller received his Ph.D. in Electrical Engineering 
from University of California, Davis where he developed 
multi-resolution techniques for interactive, terascale terrain 
visualization. For the past eight years, he has worked on 
scalable, parallel scientific database technology supporting 
simulation codes in the Accelerated Strategic Computing 
Initiative (ASCI).  

2.8 Wes Bethel, Lawrence Berkeley 
National Laboratory 
Bethel is a Staff Scientist at Lawrence Berkeley National 
Laboratory, where he is a Group Leader for the 
Visualization Group. Bethel’s background includes design 
and implementation of several generations of visualization, 
virtual reality, and graphics rendering systems and tools. 
Recent examples include the Visapult application, which 
was used to win the SC Bandwidth Challenge for three 
years in a row and OpenRM Scene Graph, an Open Source 
scene graph API tailored for high performance applications. 
Bethel’s role in the panel will be to provide an historical 
perspective during introductory remarks, to ignite spirited 
discussion, and to serve as moderator. 
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