Cactus and Visapult:
An Ultra-High Performance Grid-Distributed Visualization Architecture
Using Connectionless Protocols

E. Wes Bethel and John Shalf"

Lawrence Berkeley National Laboratory
National Energy Research Scientific Computing Center
University of California
Berkeley, CA 94720

Abstract

This past decade has seen rapid growth in the size, resolution, and complexity of Grand Challenge
simulation codes. This trend is accompanied by a trend towards multinational, multidisciplinary teams who
carry out this research in distributed teams, and the corresponding growth of Grid infrastructure to support
these widely distributed Virtual Organizations. As the number and diversity of distributed teams grow, the
need for visualization tools to analyze and display multi-terabyte, remote data becomes more pronounced
and more urgent. One such tool that has been successfully used to address this problem is Visapult.
Visapult is a parallel visualization tool that employs Grid-distributed components, latency tolerant
visualization and graphics algorithms, along with high performance network I/O in order to achieve
effective remote analysis of massive datasets. In this paper we discuss improvements to network
bandwidth utilization and responsiveness of the Visapult application that result from using connectionless
protocols to move data payload between the distributed Visapult components and a Grid-enabled, high-
performance physics simulation used to study gravitational waveforms of colliding black holes; The Cactus
code. These improvements have boosted Visapult’s network efficiency to 88-96% of the maximum
theoretical available bandwidth on multi-gigabit Wide Area Networks, and greatly enhanced interactivity.
Such improvements are critically important for future development of effective interactive Grid
applications.

Introduction

Over the past decade, growth in the memory and data storage capabilities of the largest supercomputing
installations in the world has outpaced Moore’s law. This has lead to a significant data management and
data analysis problem. Even more dramatic growth is expected in the observational sciences as high-
resolution data feeds from remotely operated network/Grid-connected observatories and experimental
equipment come online [1]. While statistical methods and feature detection/extraction algorithms have been
proposed to automate the mining of useful information from these enormous data stores, there is still a
strong need for a human component to the visualization process. It is not realistic to expect that every
numerical simulation domain will have suitable automated methods to mine and detect features in large
data sets. Detection of unexpected phenomena is still most often performed using interactive visualization.

Consequently, supercomputing centers, such as the National Energy Research Supercomputing Center
(NERSC), are motivated to provide visualization tools that enable effective interactive analysis of remotely
located data stores and remote monitoring of simulation codes runs that can span multiple days, or in some
cases, weeks. Such tools must balance the competing interests of interactivity and fidelity in order to fit
within the limits imposed by available infrastructure. The emerging Grid infrastructure ties these resources
together into a global fabric integrating distributed research teams and virtual organizations with the remote
research hardware, software and services used to carry out their work.

The NERSC/LBNL Visualization group has developed the Visapult [2] tool to attack these sorts of “Grand
Challenge” problems. Visapult is a distributed, parallel volume rendering application that leverages
parallel computation and high performance networking resources that are on the same scale as the
supercomputers used to generate the data. Volume rendering is a very important visualization technique

" Authors’ contact information: jshalf@Ibl.gov and ewbethel@lbl.gov, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Mail Stop S0F, Berkeley CA, 94720.

for exploration of complex 3D datasets, but is extremely compute and bandwidth intensive. Traditional
serial raytracing volume renderers can take many minutes or hours to render a single frame. Visapult
supports volume rendering at interactive rates by employing network distributed components, a high degree
of parallelism, and a rendering technique called Image Based Rendering Assisted Volume Rendering
(IBRAVR). The IBRAVR algorithm, described more completely in other papers [2,4], allows Visapult to
trade additional computational power in exchange for reduced bandwidth requirements. In this paper, we
will describe the high performance remote visualization tool called Visapult and our efforts to improve its
effectiveness using aggressive network tuning and network protocol modifications. In particular we will
describe how we used a new connectionless UDP protocol to improve network utilization efficiency from
25% of line-rate to 88% of line-rate for multi-gigabit networks. Connectionless protocols also dramatically
reduce the latency of network event delivery, thereby improving the responsiveness of wide-area
distributed interactive graphics applications as compared to TCP stream protocols. We believe that these
UDP protocols and development of transport encodings and algorithms that can tolerate loss gracefully will
be a fundamental component of future Grid visualization architectures due to their ability to more
effectively utilize network bandwidth.

Driving Application (Numerical Relativity)

A motivating application for this kind of Grid-distributed visualization capability is the modeling of black
hole collisions. One of the most challenging problems in science is the numerical simulation of Einstein’s
equations in order to explore Einstein’s Theory of General Relativity (GR). These equations are among the
most complex in the world of physics; a set of nonlinear, hyperbolic, elliptic coupled equations containing
thousands of terms when fully expanded. The General Relativity Group at the Albert Einstein Institute in
Potsdam Germany developed the Cactus code [3] to solve these equations from first principles on
supercomputers in order to simulate astrophysical phenomena with extremely high gravitational fluxes,
such as the collision of two black holes and the gravitational waves that radiate from that event.

The Cactus simulation code scales well on some of the largest supercomputers in the world, including
NERSC’s 3000+ processor 5Teraflop IBM SP2 (seaborg). Large-scale MPP’s like seaborg are required to
reach the target regime of physics they would like to explore; the “spiraling” merger of two black holes.
Simulations that require comparatively small amounts of memory (~1Tbyte) allow accurate simulations for
simpler phenomena like the Schwartzchild (spinning black hole) and Misner (head-on-collision of two
black holes) cases (see figure 1). While simulating of these cases is important for validating and calibrating
the solvers used by the code, they are of little consequence to the endeavor of gravitational wave
characterization and detection. The spiraling merger of two black holes offers a more compelling and
astrophysically relevant source for detectable gravitational waves. At a minimum, 1.5TB of memory is
required to simulate a basic spiraling collision using bitant symmetry (reflection along the plane of
rotation). A full 3D evolution requires a minimum of 3-5TB of RAM. Still more memory is required to
move the outer boundaries far enough away from the event to perform accurate gravitational wave
extractions necessary to assist in the signal processing performed on LIGO data.

Figure 1: Images of black hole simulations showing the Schwartzchild, Misner, and spiraling merger
cases respectively. The first image shows the event horizon of the Schwartzchild spinning black hole
colorized by its extrinsic curvature. The Misner visualization in the center shows the real component

of the gravitational potential (psi4 of the Weyl tensor) as blue, grey, and yellow isosurfaces (cut open
so you can see inside) and the event horizon of the merging black holes as a green surface. The last
image is a volume rendering of the lapse with a cut-open wireframe isosurface of the real part of the
gravitational waves emanating from an offset inspiraling merger of two black holes.

Cactus contains some extremely advanced Grid computing capabilities used to reap the benefits of a
globally distributed supercomputing infrastructure that serves a globally distributed virtual organization of
astrophysicists. In one Grid computing paradigm, the Cactus simulation can be distributed across multiple
computing sites to form a virtual supercomputer far larger than any individual machine in the world.
Cactus employs runtime adaptive metacomputing techniques that adjust the number of ghostzones used on
boundaries that cross the WAN, as well as dynamic adjustment of the compression level used to transport
data for the boundary. In one experiment using more than 3000 processors distributed across
supercomputing sites on multiple continents, the adaptive techniques were able to improve the Cactus
speedup from 15% to nearly 80% of peak. In another Grid application scenario, the Cactus Worm is a
nomadic application that can discover more capable resources on the Grid: checkpoint itself and migrate to
better resources using Grid standard protocols and information services. The migratory and world-wide
distributed nature of this application requires a visualization/analysis infrastructure that is similarly Grid-
savvy.

These simulations are so large that it is often impossible to use traditional visualization tools to see and
understand their results. Since gravitational physicists do not know, a-priori, the nature of the gravity wave
signals they are studying, data mining/feature extraction techniques are inappropriate for this activity. It is
not feasible to download all of the data from the supercomputer center to a remote site for later analysis.
Consider that a 3-5Terabyte dataset would take 11-18 hours to download if you could reliably sustain a
1Gigabit stream using TCP (very unlikely). Even pre-loading the datasets on your local visualization
system is a dubious proposition due to the large size of the computed data sets. Few high end visualization
systems have more than a few Gigabytes of memory, or more than a few processors. The platform needed
to analyze the data must be similar in scale to that used to produce the data, unless significant data
reduction or non-interactive out-of-core methods are employed. Otherwise, some form of real-time
dynamic data reduction would be needed before the data gets delivered to the scientist’s desktop in order
for data analysis to be practical. This sort of data reduction is a natural consequence of many visualization
methods.

Typically, visualization is performed at a particular supercomputer in-situ with the running simulation, with
the results made available to a remote viewer located, possibly, halfway around the world. Such remote
monitoring improves the effective use of supercomputers by allowing the Cactus users to cut short runs that
have gone awry, or to steer the code or restart it with more appropriate parameters or initial conditions. The
interactive, remote visualization and monitoring methodology requires latency-tolerant visualization
algorithms with an emphasis on maximizing Wide Area Network (WAN) throughput and interactivity
approximating that of locally hosted applications.

Visapult and the Latency-Tolerant Direct Volume Rendering Algorithm

As described in earlier papers [2], Visapult is composed of three components: a raw data source, a viewer,
and an MPI-based back end (see figure 2). The back end first reads data from the raw data source, which
may be either local or remote. Next, the back end domain decomposes the volume of data into smaller
units, each of which is direct volume rendered to produce a single image of that particular sub-domain.
Relatively little communication is required between the back end processes, so the system scales very well
to large numbers of processors. Each of these images is then transmitted to a viewer, where they are
texture mapped onto static geometry, and rendered using OpenGL. This process takes advantage of both
the computing horsepower of MPP’s for partial rendering as well as the benefits of hardware-accelerated
rendering available on many low-cost client workstations. It also decouples interactivity on the desktop
from the latencies involved in moving data over the network. Our implementation of this technique using
large MPPs, high performance networks and desktop viewer is a high-performance extension to the
IBRAVR algorithm described in previous literature [4], and was presented in previous publications [2].

Scientific data is read into the Visapult back end in a domain-decomposed fashion, where each PE of the
back end volume renders its block of data in software, and sends the resulting image to the viewer. This
architecture results in drastically different I/O requirements along the processing pipeline. Whereas O(NA3)
bandwidth is required into the Visapult back end, only O(NA2) bandwidth is required between the back end
and the viewer. During the NGI project, our objective was to make use of "network-centric" resources, such
as network-based storage and network-based compute farms, to solve a single scientific problem. For this
reason, we were very much interested in studying the WAN performance of moving data across the WAN
into the Visapult back end. The O(NA3) to O(NA2) reduction in bandwidth requirements between data and
back end and viewer made Visapult ideally suited for deployment on network topologies in which
resources were connected by high-speed links, but links to the viewer were over slower links. The multi-
streaming I/O of Visapult's back end reader, combined with the flexibility to extend it to new types of data
sources has proven to so effective at utilizing network resources that Visapult, combined with custom code
for moving data across networks, has won the SC Bandwidth Challenge two years in a row.

Figure 2: Diagram of the Visapult processing pipeline. The data source (either a running Cactus
simulation or DPSS), feeds the Visapult back-end using multiple parallel network data streams. Each
process of the Visapult back-end volume renders its portion of the spatially decomposed domain into an
image. These images are in turn sent to a client application running on the user’s workstation that uses the
texturemapping capabilities of commodity hardware-accelerated graphics cards to composite these images
into a single scene at interactive rates.

Grids, WANSs, and TCP Performance

The various components of Visapult must communicate with one-another using IP connections over a LAN
or WAN, depending on the deployment of the components. I/O between data source and back-end is
performed asynchronously so that it overlaps the volume rendering computations (see figure 3). Despite
this, the effective performance of the application when operating with maximum fidelity is network-1/0
bound unless the network communications are extremely efficient. Visapult has parameters that allow us to
reduce I/O utilization in order to fit within the network-imposed limits, but this requires a commensurate
trade-off in visual fidelity. Therefore, improvements in the effectiveness of network I/O are critical to
maximizing application performance.

I/O followed by processing

V_FRAME_END
V_HEAVYPAYLOAD_END
V_HEAVYPAYLOAD_ START
V_LIGHTPAYLOAD_END
V_LIGHTPAYLOAD_START
V_FRAME_START

BE_HEAVY_END

V_HEAVYPAYLOAD_END
V_HEAVYPAYLOAD START
V_LIGHTPAYLOAD_END

overlapped I/O and processing

process.previo

BE_HEAVY_SEND

Next 10 starts::
when‘processi
ends BE_LOAD_END

BE_LOAD_START

0 20 40 60 %0 100 0 100

us |
block =™~y | |
BE_HEAVY_SEND |
BE_RENDER END |
remote 10~ :
BE_LOAD_START)

i 20 40 60 80

kend d

backend-worker-even — 4 er-odd —— ewer-master ——

en —— backend-master-odd ——

Figure 3: By placing network I/O into a background thread, the visapult volume rendering computations
could be overlapped with the data transfers, thereby doubling the duty cycle of the application. This
overlap fails if network I/O takes longer than the volume rendering calculation, so optimizing network
performance is critical to improving overall application efficiency. Netlogger was used for this
performance analysis.

Single-stream TCP performance on the WAN is often disappointing. Even with aggressive tuning of the
TCP window size, buffer sizes, and chunking of transfers, typical performance is still a fraction of the
available bandwidth on the WAN on OC-12 or faster links. While there are a number of factors involved,
the behavior of the TCP congestion avoidance algorithm has been implicated as a leading cause of this
performance deficit. Indeed, the preamble to Sally Floyd’s High Speed TCP RFC draft
(http://www.ietf.org/internet-drafts/draft-floyd-tcp-highspeed-00.txt) points out that in order to achieve
steady-state 10Gigabits/sec throughput using standard TCP implementations with 1500 MTU and 100ms
round-trip latency, one must have at most only one congestion event for every 5,000,000,000 transmitted
packets. That means one lost packet every 1 2/3 hours in order to reach this bandwidth! This is clearly not
practical under any circumstance and yet wide-area distributed supercomputing systems like the Teragrid
that use multiple transcontinental 10Gigabit links are already coming online. Alternative methods must
clearly be employed to make effective use of these expensive national assets.

TCP Multistreaming

The typical solution to work around TCP congestion avoidance is to use multiple simultaneous TCP
connections. This is actually a very old solution that is most commonly employed in web-browsers dating
back to xmosaic, and is well described in Stevens’ classic book on network programming. This technique
works because streams don’t share packet loss/window-size information with one-another, so a lost packet
will only cause one of the streams to back off rather than all of them. The effect is to make the
hypersensitive TCP congestion avoidance algorithm artificially less sensitive to frame loss, but this undoes
the “fairness” implicit in the congestion avoidance algorithm. In effect, a multistreaming application
becomes a network “bully” that competes rather unfairly with its peers. Moreover, it is difficult to tune the
parameters of TCP multistreaming in order to maximize performance. If you wanted to use this technique
to reach 10Gigabits, as per the Floyd example, you would have to employ approximately 4000
simultaneous TCP streams to reach full line rate. This kind of protocol arrangement is typically
implemented at the application level in an ad-hoc application-level manner, but GridFTP
(http://www.globus.org/datagrid/gridftp.html) formalizes this methodology into a standard protocol.

TCP Implementation of Visapult

This multi-streaming method was used for the first implementation of Visapult, developed under the NGI
program for the Combustion Corridor project. The Distributed Parallel Storage System (DPSS), developed
by LBL’s Distributed Computing Group, provides a data source that improved multi-streamed TCP
performance by striping the network streams across multiple hosts and network adaptors [5]. The TCP
window sizes, buffer sizes, and blocking parameters were carefully tuned to maximize performance. In
order to achieve complete overlap of computation and I/O, the network performance must be extremely
high; hence the aggressive use of TCP multi-streaming. At SCOO0 in Dallas Texas, we were able to achieve
peak throughput rates of 1.5Gigabits/sec on an OC48, with a sustained rate of about 660Mbps over a 60-

minute window (see Figure 4). While this was sufficient to win the SC 2000 Bandwidth Challenge with
nearly twice the performance of the nearest competitor, this was still only 60% (peak) and 25% (sustained)
of the theoretical line rate, respectively, of the OC-48 link used during the contest. The network throughput
was extremely erratic as shown in Fig 4. On a shared WAN, >50% utilization is still admirable, but these
were dedicated links that were entirely uncongested. Furthermore, the aggressive tuning of the TCP
parameters indicates that we cannot idly blame the “wizard gap” for this performance deficit. So even with
tuning and a dedicated link, we cannot efficiently exploit the link bandwidth using the TCP protocol.

2500.00

2000.00

150000 |-

Mby's

inoo.on -

Soo.0n |-

w00 " L
22255 25103 2306 2511 25114 23815 2521 23128 3129 2532 23136 340 25143 23147 2350 25154 231

Time
Figure 4: Graph of network throughput for Visapult during the SC2000 Bandwidth Challenge. The
performance was extremely erratic over a sixty minute time span, despite a nominally dedicated network
connection and use of 32 parallel TCP streams to mitigate the effects of packet loss. This points to the
extreme sensitivity and instability of TCP congestion control in practice.

Moving to Unreliable Protocols

For data transfer and replication, data integrity is paramount. Response time and performance is of
comparable importance to data integrity for visualization applications. Visualization tools almost invariably
use reliable transport protocols to connect distributed components, since there is a general concern that
lifting the guarantee of data integrity would compromise the effectiveness of the data analysis. However,
visualization researchers find other forms of lossy data compression acceptable, like JPEG, wavelet
compression and even data resampling. Such acceptance may be due to the fact that degradation in visual
quality is well behaved in these cases. Networking experts have long turned to connectionless/UDP
protocols when maximum responsiveness and low-latency is required by an application. An unreliable
transport mechanism that deals with packet loss gracefully and doesn’t exhibit extreme visual artifacts
could compete well with other well-accepted data reduction techniques. Furthermore, when tuned to fit
within the available bandwidth of a dedicated network connection, the loss rates for unreliable transport are
extremely small - a few tenths of a percent of all packets sent if the packets are paced to stay within the
limits of the slowest link in the network path.

Visualization applications also require extremely low-latency transport in order to maintain interactive
responsiveness. Consider also that the response time for TCP is 2x(RTT+HostProcessingLatency) at a
minimum whereas UDP offers responses that are simply RTT+HostProcessinglLatency in the worst case.
TCP responsiveness gets far worse when retransmission and data buffering occur. During retransmissions
induced by packet loss, stream-oriented protocols will block the data stream until a successful
retransmission occurs. Retransmissions result in huge variations in responsiveness and throughput, such as
those observed during the SC2000 bandwidth challenge. A well-designed UDP protocol, by contrast,
provides the lowest possible latencies over the WAN with little buffering delays and nearly immediate
response.

Visapult Implementation Using Unreliable Transport in the SC01 Bandwidth Challenge

Rather than using static data stored on the DPSS as the data source as in our SCO0 implementation, we
connected Visapult directly to the Cactus code. Cactus’ modular code components are referred to as
“thorns”. We developed a custom “thorn” for Cactus that sends data to the Visapult back end to support
visual remote monitoring of executing codes. Combined with the Cactus web-based remote steering
interface, Visapult can be used as a visualization component of an interactive remote steering system
composed of Grid-distributed components [3].

For the SCO1 Bandwidth Challenge, we modified the back end of Visapult to work with our own custom
UDP transport protocol. The thesis of our work was that use of a connectionless protocol would produce
dramatically more efficient bandwidth utilization as well as more consistent and rapid responsiveness. The
Visapult reader used in the SCO0 Bandwidth Challenge, using a TCP protocol, requested data from the
network in a specific order, and TCP guarantees in-order delivery of data. In contrast, UDP makes no such
guarantees, so each UDP packet must contain information indicating the location in the domain-
decomposed array where the data payload must be placed by the Visapult back end (see figure 5).This
ensures that each packet can be treated independently so that packet ordering and packet loss have minimal
effect on destination processing. The Visapult back end was modified to render continuously rather than
waiting for all packets in a given frame to arrive. The visual effect of this choice is an immediate response
with progressive refinement of the image over time. Data from the previous frame was used to “prime” the
receive buffer and fill in gaps where packets were lost.

We contemplated a multi-buffering scheme to allow all possible packets to arrive before rendering. In
practice, such a technique would provide improvements in visual quality when the data in successive
frames is changes rapidly. However, due to the slow rate of evolution of the data for our remote
monitoring application, the single-buffered approach proved effective as a visualization tool. This sort of
multi-buffering continues to be an area of investigation.

32 bit int 32bit int 32bit float
x-dim y-dim Message
local local Payload
(x-wrap) (y-wrap)

Figure 5: Diagram of the UDP packet format. A 20-byte header was used to locate the payload of each
packet in the destination domain completely independently of one-another. Assuming a full 3D block
domain decomposition, the origin and dimension information is superfluous in the z-dimension. X/Y origin
global => the offset in grid coordinates with respect to the global data dimensions of the origin of the
domain decomposed block (local domain) in the data source. X/Y dim local => The x/y dimensions of the
local domain decomposed chunk in the data source (used to control wrap-around of data as it is written
into the destination data array). Localindex => The offset in cells counted from the start of the local
domain decomposed block in the data source. This source-based data indexing allows the component
sending the data to be ignorant of the domain decomposition at the destination, but provides enough
information at the destination to support unambiguous data re-assembly.

The Cactus/Visapult thorn (AlphaThorns/ShmServ) buffers data in a shared memory staging area that is
created when the code starts up. A set of background worker processes (NetWorkers) are spawned at
startup time that are dedicated to reading data out of the shared memory region and sending it over the
network to the Visapult back end. We chose to implement the NetWorkers as processes rather than threads
in order to get around the performance problems and scheduling overhead associated with some
particularly poor vendor implementations of pthreads. The NetWorkers require a dedicated CPU so that
they don’t interfere with scheduling and execution of the primary simulation code’s processes. The
NetWorkers have parameters that allow the code set a fixed packet rate that can be tuned to prevent

oversubscription of resources and thereby minimize packet loss. At least one asynchronous NetWorker is
required per network interface card (NIC), but we also found that multiple NetWorkers per NIC were
required to maximize GigE NIC utilization on larger SMP’s like the 16-way IBM Nighthawk SP nodes.
[Fig 6]. For our Dual-CPU Linux hosts, one processor was dedicated to network I/O while the other
performed computing functions. Under this arrangement, we could achieve 960Megabits/full-line-rate per
node. In July 2002, we demonstrated full utilization of a 10Gigabit Ethernet pipe using a modestly sized
(12 node) Linux cluster for the Visapult backend component
(http://www.supercomputingonline.com/nl.php?sid=2252)

8001
700-
600-
500+
400-
300-
200
10077 |
0+=
p 4p p 2p 3p 4p
gateway gateway direct direct direct direct

O Network Bandwidth (Mbits/sec)

NN NN NN\

Figure 6: UDP performance on the SP2 using the internal network (sending through GigE on the Gateway
node (1p-gatway and 4p-gateway mean 1processor on one node and 4 processes on 4 nodes routed through
the gateway node respectively) and 1-4 NetWorker processes (1p-4p direct) on 16 CPU Nighthawk nodes
with directly-attached GigE NICS. There is considerable benefit in using directly attached GigE NICs and
some moderate benefit to feeding the network interface using multiple processes on each node.

SC01 Bandwidth Challenge Results

This past year at SCO1 in Denver, we conducted another high performance Visapult run as part of the
Bandwidth Challenge. This run made use of the new UDP transport protocol between the data source and
the back end of the Visapult application. For the data source, we ran a binary black-hole merger
calculation using the Cactus code on 6 nodes of NERSC’s IBM SP-2 system. We also ran a related
apparent horizon finder on a 128node Origin 2000 system at NCSA. At NERSC, the GigE interfaces on 5
of the SP-2 nodes connected to a dedicated OC-48 link provided by Qwest and the remaining NIC
connected to an OC-12 link provided by ESNet. The Visapult application itself ran on an 8-node Linux
cluster on the show floor that was connected to a 10Gigabit Forcel0 switch. At NCSA, a single GigE on
the host fed the NCSA OC-12 uplink and fed a 32-way Sun Starfire SMP system in the Sun booth on the
showfloor.

The NERSC system alone was able to reach throughput rates of 2.38Gbps on the OC-48. That is 96% of its
theoretical capacity and reached this rate without the typical ramp-up associated with TCP-based
applications (see figure 7). The total aggregate throughput of the application from all sources was
3.3Gigabits, and was the winning performance number at the SCO1 Bandwidth Challenge. The visual
quality and interactivity of the application was greatly improved by the high average throughput sustained
by the application’s data feed. The visual quality of the volume visualization was not compromised by the
unreliable transport method (see figure 8). The gains in interactive performance were very dramatic.
While there were some lost packets, the loss rate was easily tailored to be less than 1% by throttling the

packet-sending rate. The resulting artifacts when packets were lost were rather innocuous, but obvious to
users who might study the image for them. However, the extremely high bandwidth efficiency resulted in
rapid recovery from these artifacts when they did indeed occur. Overall, the move to unreliable transport
greatly enhanced the effectiveness of the application for remote analysis of extremely large/dynamic
datasets.

2,54 t H
: |Vi§am]ltTe§ﬁn | : BW Challenoe |
/ \\
=
=
2 1.8q
(]
=
o
=N
" 1.0 G
.J—F
=
0.5¢
I "l A
0,) oo i R R AT
18:00 ao: oo 0g: oo 1200 18100 oo oo aE: 00

A Average bits in M Average bits out

Figure 7: The daily network traffic log from SciNET Corel router during the Bandwidth Challenge that
monitored the OC-48 traffic from NERSC. All three network traffic peaks that exceeded 2.0 Gigabits are
from Visapult testing (the last being the actual bandwidth challenge run). This traffic, combined with
another OC-12 from NERSC and an OC-12 from NCSA via Abilene resulted in a sustained performance
exceeding 3 gigabits.

Figure 8:Volume rendering of the real component of gravitational potential (psi4 of the Weyl tensor).

Discussion / Future Directions

The UDP method we have described so far relies on pacing of packets to meet, but not exceed, network
capacity. The are some concerns that selecting an appropriate packet rate for UDP-based methods is too
tedious to be practical. However, the same tuning must occur even for multi-stream TCP implementations.
Using too many TCP streams can quickly lead to the same congestion situations that occur with UDP [8],
and unlike the UDP method, there is no straightforward method to regulate the bandwidth utilization of
multi-stream TCP flows. Even with UDP, we can incorporate TCP-friendly methods described by
Mahdavi & Floyd [7] to provide guidelines for appropriate packet rates that limit impact on other network
users.

There is no reason that these methods cannot be applied to reliable transport protocols like TCP as well.
We refer to TCP/reliable transport without congestion control as “TCP Brooklyn” (a TCP implementation
that doesn’t back-off in the face of packet loss). It is clear that fixed-rate implementations of both reliable
and unreliable protocols would be disruptive to commodity networks, and are most appropriate for use on
dedicated network links, Private Virtual Circuits (PVC’s), Experimental Networks, or even for scheduled
access. Rate-limited flows will prove essential for Data Visualization Corridors and Ultrascale Grid
visualization architectures of the future. Such dedicated bandwidth is more typical in high performance
networks for the sciences like ESNet, Abilene, and CANARIE. We believe that Grid-based bandwidth
brokers such as those proposed for the Quanta QoS project [20] can be used to expand fixed-rate transport
services to a wider variety of configurations; even posting QoS feedback on an Globus MDS
(Metacomputing Directory Service).

More dynamic environments require continuous adjustment of the data rates. Multi-streaming TCP
techniques offer no advantage over UDP protocols in this regard as their performance advantage comes
from responding slowly to packet loss; even in cases of actual congestion. We argue that it is possible to
craft a congestion control algorithm that models the behavior of multi-stream TCP using a only single
stream by simply modifying its response to loss or, as in the case of Web100 Work-Around-Daemon
(WAD), using artificially large virtual-MTU’s to recover more quickly from packet loss [6]. Ideally, we
would like to see our network switching fabric provide detailed QoS hints through informational packets to
the endpoint hosts to indicate ideal send rates. Only the switching fabric can provide the necessary
information to help the end-points differentiate congestive from non-congestive packet loss. We could, for
instance, have a TCP or UDP implementation that uses these hints to ignore packet loss if the switching
fabric says that it is non-congestive, but defaults to the standard congestion avoidance algorithm when no
such hints are available. Even without intelligent switching fabric, we could create a system of peer-to-
peer feedback/auto-negotiation by having end-points multicast their path and current packet-rate
information on a fixed set of designated paths. This allows hosts to negotiate amongst themselves for
appropriate packet rates rather than involving a third-party, like a bandwidth broker or the switching fabric
itself.

The primary area of growth in considering custom UDP protocols is in the development of fault-
tolerant/fault-resilient encoding techniques. The simplest approach provides fault-tolerance by copying
data from the previous time step to fill in lost data. A more advanced methodology, could use a wavelet or
frequency domain encoding of the data so that any loss is hidden in missing spatial frequencies (similar to
JPEG compression). For transport of geometric models, we can look at packet encodings that support
progressively refined meshes using triangle bisection [10]. Such techniques make packet loss less visually
distracting and eliminate the need for data retention on the sending side. Any reliable technique requires
data to be retained at the source until its receipt is acknowledged. Given the large bandwidth-delay-
products involved for future “terabit” networks, the window sizes necessary for reliable transport will be
considerable. The buffering required to support TCP retransmission and large windows creates noticeable
lag in the responsiveness of remote visualization applications and produces low bandwidth utilization rates.
Fast response times are essential for creating the illusion of locality so low-latency connectionless
techniques will be essential for Grid visualization and collaborative interfaces. Overall, there are many
avenues to consider for information encoding that make performance enhancing, unreliable delivery
methods offer graceful degradation of visual quality in response of packet loss rather than simply settling
for degradation in interactivity.

Conclusions

The movement to well-behaved fault-tolerant UDP-based protocols is a significant area of exploration for
the future development of effective Grid-enabled visualization tools and distributed visualization
component architectures. Such aggressive methods are necessary to overcome the limitations of the aging
TCP protocol for high throughput applications on high speed Wide Area Networks. Use of such techniques
have produced a 300% improvement in I/O efficiency over the best available tuned, multi-streaming TCP
methods. While packet delivery is not guaranteed, the results are comparable to other lossy data reduction
techniques commonly employed in visualization. In addition, connectionless methods offer much lower
latency and better responsiveness than TCP streams under the same conditions. Ultimately, the architects
of the Grid must re-evaluate exclusive reliance on TCP-based reliable transport for distributed interactive

10

applications like visualization because it is greatly impeding our ability to exploit high performance
network-interconnected resources on the Grid.

Acknowledgements

This work was supported by the Director, Office of Science, of the U.S. Department of Energy under
Contract No. DE-ACO03-76SF00098. The Cactus Team: Especially Ed Seidel, Gabrielle Allen, and Peter
Diener; Chip Smith for setting up the cluster. ForcelO Networks for making such an awesome network
switch and Raju Shah for making it work. Mike Bennett and John Christman of LBLNet for finding and
testing this switch. Jim Ferguson, John Towns and Wayne-Louis Hoyenga at NCSA-University of Illinois
for use of their O2k array. ESNet and Qwest for setting up the OC-48 for the bandwidth challenge.
SciNET and Eli Dart who worked tirelessly to rewire the NOC (multiple times) over the course of
Supercomputing 2001. And finally to NERSC for use of their enormous SP2 supercomputer and David
Paul for helping fix the system to do our bidding.

Bibliography

[1] T. DeFanti, M. Brown editors, “Report to the National Science Foundation Directorate for Computer
and Information Science and Engineering (CISE) Advanced Networks Infrastructure & Research
Division,” Technical Report, Chicago, Dec 2001. Text of the final report available at
http://www.evl.uic.edu/activity/NSF/final.html

[2] W. Bethel, B. Tierney, J. Lee, D. Gunter, S. Lau.,”Using High-Speed WANs and Network Data Caches
to Enable Remote and Distributed Visualization” (LBNL-45365). In "Proceedings of SC00", November
2000.

[3] Gabrielle Allen, Werner Benger, Tom Goodale, Hans-Christian Hege, Gerd Lanfermann, André
Merzky, Thomas Radke, Edward Seidel, John Shalf, “Cactus Tools for Grid Applications”, Cluster
Computing 4, 179-188, 2001. (http://www.cactuscode.org/Showcase/Publications.html , Cactus info at
http://www.cactuscode.org)

[4] K. Meuller, N. Shareef, J. Huang, and R. Crafis, “IBR-Assisted Volume Rendering,” Proceedings of
IEEE Visualization 1999, Late Breaking Hot Topics, October 1999.

[5] B. Tierney, J. Lee, B Crowley, M. Holding, J. Hylton, F.Drake,” "A Network-Aware Distributed
Storage Cache for Data Intensive Environments", Proceedings of IEEE High Performance Distributed
Computing conference (HPDC-8), August 1999, LBNL-42896

[6] Web100 Concept Paper: http://www.web100.org/docs/concept _paper.php

[7] J. Mahdavi, S. Floyd, “ TCP-Friendly Unicast UDP Rate-Based Flow Control,” Technical Note, Jan
8,1997. (http://www.psc.edu/networking/papers/tcp _friendly.html)

[8] T. J. Hacker and B. D. Athey and B. D. Noble.d‘The end-to-end performance effects of parallel TCP
sockets on a lossy wide-area network”.00l'o appear in the Proceedings of the 16th International Parallel &
Distributed Processing Symposium, April, 2002, Fort Lauderdale, FL.
(http://mobility.eecs.umich.edu/papers/ipdps02.pdf)

[9] Quanta Testbed: QoS on high performance optical networks:
http://www.evl.uic.edu/cavern/teranode/quanta.html

[10] H. Hoppe, "Progressive Meshes," Proc. 23rd Int'l. Conf. on Computer Graphics and Interactive
Techniques SIGGRAPH '96, ACM, New York, NY, 1996, pp. 99-108.

11

