
LBNL-51723

How the Grid will affect the Architecture of Future Visualization Systems
John Shalf 1 and E. Wes Bethel

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Abstract

Shaky City

 The promise of Grid computing, particularly Grid-
enabled visualization, is to employ a transparent
interconnect fabric to link data sources, computing
(visualization) resources and users into widely distributed
Virtual Organizations (VOs) for the purposes of tackling
increasingly complex problems. However, there exists a
wide gulf between current visualization technologies and
the vision of global, Grid-enabled visualization
capabilities. In this article, we discuss our views of how
visualization technology
must evolve in order to be
truly effective in a Grid
environment.

Data Caches HPC Resources
Simulations

The Vision

Sensor Nets

STM

Collaborators

Handheld
Dr Jane

Dr. Jane is a geophysics
researcher who is studying
the effects of how a new
material, code-named
“zorbs,” can mitigate the
effects of earthquakes on
urban structures. The
material works by isolating
structures from direct
exposure to shock damage
through direct injection into
porous media upon which
structures are built. In the
course of her studies, she
runs experiments at the
molecular scale, where she
observes molecule-molecule
interactions, and also at the urban scale, where she uses
large equipment to induce shock waves into the ground.
She has access to instrumentation attached directly to
urban structures in Shaky City, where real-time data is
collected and stored at a nearby data center. Dr. Jane runs
large-scale simulations that spawn off subsimulations
around the world, wherever cycles are available. The
subsimulations, when complete, report back to the master
simulation with the results of parameter studies. Because
the simulations routinely generate terabytes of results,
data is stored on data caches located close to the
computational resource and is later analyzed and
visualized. She routinely uses experimental data to seed
her simulations, and in turn, uses simulation results to
modify her experimental parameters. When an earthquake

hits, she is able to immediately connect to a vast network
of sensors to observe first-hand how her handiwork has
reduced direct shock damage caused by the pressure and
shear waves generated by earthquake shaking. Such
observation can occur using a desktop workstation, or
using a handheld telephone. Dr. Jane is part of a large,
multidisciplinary team that is scattered around the world.
All collaborators have access to the entire collection of
experimental and simulation data, which may reside at
any one of the member institutions.

Figure 1. Grid-Based Visualization and Computing
Applications Comprised of Heterogeneous Resources

As you may have guessed, this description is fiction.
However, the scope of activities performed by Dr. Jane is
not far fetched, and is reasonably characteristic of many
modern research scientists. Indeed, the promise of
“Grids” is the ability to weave together a collection of
disparate resources into a single application in exactly the
fashion we have suggested. As visualization researchers
and developers who work with Dr. Jane’s on a routine
basis, and who are tasked with designing and building
visualization tools that provide such capabilities, it is our
position that the current state of visualization software is
not Grid-ready. In fact, we believe that a fundamental

Page 1 of 5

paradigm shift is needed in order to create fully global

1. The authors can be contacted at jshalf@lbl.gov
and ewbethel@lbl.gov.

mailto:jshalf@lbl.gov

LBNL-51723

visualization applications. What is needed is a new
framework for distributed visualization that is Grid-
aware, that is easy-to-use, and that is modular, exten
and which permits us to reuse our existing investments in
visualization technology.

sible,

Getting From Here to There
ation

ickly

are

hereas the characteristics of such systems deployed on a

o

n

e listed

bled

istributed, Heterogeneous Components. Building upon

-

le-

esult.

t of

n systems

t

undamental Graphics and Visualization Algorithms.

broad

ktop
ze

A number of successful, contemporary visualiz
systems, such as VTK, AVS and OpenDX, are
constructed using a pipelined, component-based
architecture. In such an architecture, a user can qu
assemble modular software components into a “finished
application.” These systems have been successful because
they are both flexible and extensible. They are flexible in
the sense that components can be combined in a multitude
of ways, thereby allowing an application developer to
accomplish a wide variety of visualization tasks. They
extensible as they offer the means for developers to add
new components to the system, thereby extending the
system’s functionality.

W
single machine are relatively well understood, and some
even offer the capability of running distributed across a
limited number of machines, deploying such systems ont
the Grid requires consideration of new conditions not
likely to have been anticipated during their initial desig
and implementation. It is our viewpoint that these
additional design considerations, some of which ar
below, are best met through a Distributed Visualization
Architecture (DiVA), a completely new framework
designed for distributed, component-based, Grid-ena
visualization.

D
the architecture of successful, contemporary systems,
future Grid-based systems will likely use a component
based architecture. At their core, these distributed
components will likely be quite similar to their sing
machine cousins – they will perform a well-defined
operation on strongly typed input data to produce a r
Currently, modules from one system are most likely
incompatible with those of another or are bound to a
particular user interface paradigm, which has the effec
creating isolation among users and within the
visualization community. Users of visualizatio
want to be able to use the best tool for the job, regardless
of its source1. In order to achieve such a goal, a plethora
of engineering issues and cultural differences must be
resolved. One of these issues is the nature of a flexible
HPC-oriented component interface, which is the subject
of active research. For instance, the Common Componen
Architecture2. (CCA) effort seeks to create an Interface
Description Language and automatic language wrappers
that are oriented towards HPC application requirements.

The Advanced Collaborative Environments Research
Group3 (ACE) of the Global Grid Forum4 (GGF) is
defining the security requirements for this sort of
component architecture.

F
The hallmark of Grid-based deployments is a focus on
remote visualization. Typical approaches to remote
visualization in the past have focused on one of two
approaches. The first approach is to perform all the
visualization on the server, and send image data (or X-
protocol streams) to the client. The alternative approach
has been to transfer subsets of the large scientific data
from the server to the client workstation, where
visualization is performed completely on the des
machine. The former approach works best when the si
of the dataset is large. The latter approach works best
when interactivity is most important. However, these
requirements can change dynamically at runtime as we
show in the Sidebar. New trends in graphics and
visualization have produced a new family of algori
that will be increasingly important for future Grid-based
visualization systems. These latency tolerant algorithms
seek to maintain interactivity on the desktop, while
providing the ability to perform visualization of very
datasets. Visapult5 is an example of pipelined-parallel
IBR-accelerated volume rendering, while the TeraScale
Browser6 uses multiresolution methods and pipelined dat
caching to achieve interactive, latency tolerant
visualization. More algorithms of this type need
integrated into a common framework in order to perfor
interactive, desktop visualization of large, remotely
located data sources using distributed visualization
components.

thms

 large

a

 to be
m

istributed Execution and Dynamic Scheduling. Most

ta

o

s

D
contemporary component-based visualization systems,
which manage the tasks of component launching and da
movement, are typically designed for use on a single
platform. As such, these systems will likely not prove
effective in Grid environments. A common practice is t
use a manual “staging” of components on machines into
an execution pipeline. This approach is impractical in
Grid environments where there may be hundreds or
thousands of resources used by a single application. A
better approach is the notion of a database or directory
service that distributes and keeps track of components,
both executables and running instances, on heterogeneou
resources. Fledgeling services of this form are provided in
Grids based upon the Globus7 architecture in the form of
Monitoring and Discovery Service8 (MDS), which is
essentially an LDAP-based hierarchical directory of
resources for a given Virtual Organization (VO).

Page 2 of 5

LBNL-51723

End-to-end Performance. The practice of static pipeline
configuration for distributed resources offers no guarantee
of better performance than would result from having all
components run on a single machine. While the
performance of an individual component in a system is
straightforward to quantify, modeling the performance of
the overall system of distributed components is needed in
order to effectively use all resources. In order to select a
reasonable pipeline arrangement, we need to predict the
performance of candidate pipelines before they are
launched. Such modeling is non-trivial, and will have a
profound impact on the architecture of future systems.
However, since the underlying resources change
dynamically in typical Grid Computing Environments and
the performance of the various visualization algorithms is
highly dependent on parameter choices and the data they
are fed, distributed visualization architectures must have
continuous runtime performance monitoring to
dynamically select between different resources, work
distributions, and algorithm alternatives. The Grid
Application Development Software9 project (GrADS) is
starting to grapple with performance prediction for
distributed applications. Other efforts like the EU
GridLab10 project seek to create API’s that hide the
complex dynamic nature of Grid resources from
application developers. The impact of such dynamic
selection on performance is illustrated in the Sidebar.

Conclusion
Extending current visualization tools so that they are
Grid-enabled is a daunting challenge due to the breadth
and depth of issues, which we have lightly examined in
this column. At one end of the spectrum, careful
performance analysis and optimization is needed to make
effective use of resource in dynamic environments. At the
other end of the spectrum, new fundamental graphics and
visualization algorithms are needed in order to implement
a family of latency-tolerant tools suitable for use in
remote and distributed visualization settings. In this
article, we have briefly mentioned only a few of the
numerous issues related to implementing and deploying
effective Grid-based solutions. The approach we favor
leverages upon lessons learned from successful,
contemporary visualization packages. Specifically, it is
our position that the best solution is for a new framework
that “hides” the complexity of implementing fully Grid-
enabled distributed visualization tools built from software
components. Our vision is for a DiVA, a framework that
supports high performance, latency tolerant, and
heterogeneous components, with an underlying theme of

reuse of existing component-based visualization
technology. Such a vision serves to promote growth of
visualization technology into Grid environments, and to
promote unity within the visualization and computational
science communities.

Acknowledgement
This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing
Research, Mathematical, Information, and Computational
Sciences Division, U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

References and Further Reading
1. Findings of NERSC Visualization Greenbook

Workshop,
http://vis.lbl.gov/Publications/2002/VisGreenFinding
s-LBNL-51699.pdf

2. http://www.cca-forum.org.
3. http://calder.ncsa.uiuc.edu/ACE-grid/main.html.
4. http://www.gridforum.org.
5. W. Bethel, B. Tierney, J. Lee, D. Gunter, S. Lau,

“Using High-Speed WANs and Network Data
Caches to Enable Remote and Distributed
Visualization,” in Proceedings of SC00, November
2000.

6. V. Pascucci and R. Frank, “Global Static Indexing for
Real-time Exploration of Very Large Regular Grids,”
Proceedings of Supercomputing 2001 Conference,
Denver, CO, Nov 10-16 2001. UCRL-JC-144754.

7. http://www.globus.org.
8. http://www.globus.org/mds.
9. http://hipersoft.cs.rice.edu/grads/gradsoft.htm.
10. http://www.gridlab.org.

Sidebar 1: Performance Modeling
and Pipeline Partitioning of
Distributed Visualization Systems
Most remote and distributed visualization applications use
a static partitioning of the visualization pipeline, and hope
that such a partitioning works well for all situations. The
example in this sidebar serves to illustrate the importance
of dynamic partitioning for distributed visualization
applications. Figure S1 shows the components of the
visualization pipeline used to create an image of an
isosurface. The links between the blocks indicate data
flow.

Page 3 of 5

http://vis.lbl.gov/Publications/2002/VisGreenFindings-LBNL-51699.pdf
http://vis.lbl.gov/Publications/2002/VisGreenFindings-LBNL-51699.pdf
http://www.cca.org/
http://www.globus.org/
http://www.globus.org/mds

LBNL-51723

Page 4 of 5

Figure S1: Components and Data Flow for our
hypothetical example. Arrows indicate potential data
flow paths. There are three potential partitionings in
this graph.

In Figure S1, there are three possible ways to partition the
visualization pipeline. The Desktop Only pipeline places
the isosurface and rendering components on the desktop
machine. The Cluster Isosurface pipeline places a
distributed-memory implementation of the isosurface
component on the cluster, and transfers triangles over the
network to a serial rendering component on the desktop.
The Cluster Render pipeline performs isosurface
extraction and rendering on the cluster, then transfers
images to the desktop for display. The colors used in
Figure S2 correspond to the groupings of components
shown in Figure S1: cyan for the Desktop Only pipeline,
yellow for the Cluster Isosurface pipeline, and magenta
for the Cluster Render pipeline. In order to measure the
performance of each of these pipelines, we make the
following optimisting and simplifying assumptions:
• All triangles produced by the isosurface component

are triangle strips. Each incremental triangle of the
strip is represented with a single vertex, which
consumes twenty four bytes (six, four-byte floats
comprising vertex and normal information).

• All graphics hardware is capble of rendering 50M
triangles/second. An 8-node system can render 400M
triangles/second.

• Isosurface creation takes 1 second on the desktop,
and .125 seconds on the eight node system.

• The image transfer assumes a 24-bit High Definition
1920/1080p CIF framebuffer

• Interconnects use a 1 Gigabit network with perfect
performance.

• The performance model does not consider the cost of
data reads, the cost of scatter-gather operations, or
the cost of displaying cluster-rendered images on the
desktop.

Whereas Figure S2 shows the absolute runtime of each
pipeline for varying numbers of triangles, Figure S3
presents the relative runtime of all components for
varying numbers of triangles. In Figure S3, the absolute

runtime of all components is summed, producing 100%,
and the size of each colored segment in each vertical bar
shows the relative time consumed by that particular
component. Each component’s execution time is
normalized by the sum of all component execution times
so that we can quickly determine which components, or
network transfers, will dominate the execution time. Note
that some components are used in more than one pipeline
configuration. The vertical bars in Figure S3 are color-
coded by component: those in shades of green are
desktop-resident, those in shades of red are network
transfers, and those in shades of orange are cluster-
resident. The components are arranged vertically so the
reader can visually integrate groups of adjacent
components into their respective pipeline partitionings. In
the 500K triangles case, the cost of desktop isosurface
extraction dominates in the Desktop Only pipeline. In
contrast, the Cluster Isosurface pipeline would perform
very well – about six times faster. In the 500M triangles
case, the Cluster Render pipeline is about five times faster
than the Desktop Only pipeline, and about eight times
faster than the Cluster Isosurface pipeline.

Figure S2. Absolute Runtime for Each Pipeline.
Desktop Only performance is the sum of components A
and B. Cluster Isosurface performance is the sum of
components D, C and B. Cluster Render performance
is the sum of components D, E and F.

This example serves to illustrate how optimal pipeline
partitioning can change as a function of a simple
parameter change. Creating and deploying such dynamic
repartitioning strategies on the Grid requires consideration
of many more variables than we have discussed in this
article, and a more accurate performance model. Grid-
based services are intended to help measure and provide
such information to applications, but they do not perform
the kind of dynamic partitioning needed to support Grid-

LBNL-51723

Page 5 of 5

based visualization. A substantial body of new
infrastructure work is required in order to support
effective Grid-based visualization tools.

Figure S3. Relative Performance Components in the
Three Pipelines

	How the Grid will affect the Architecture of Future Visualization Systems
	Abstract

	The Vision
	Getting From Here to There
	Conclusion
	Acknowledgement
	References and Further Reading
	Sidebar 1: Performance Modeling and Pipeline Partitioning of Distributed Visualization Systems

