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Abstract 

Shaky City

 The promise of Grid computing, particularly Grid-
enabled visualization, is to employ a transparent 
interconnect fabric to link data sources, computing 
(visualization) resources and users into widely distributed 
Virtual Organizations (VOs) for the purposes of tackling 
increasingly complex problems. However, there exists a 
wide gulf between current visualization technologies and 
the vision of global, Grid-enabled visualization 
capabilities. In this article, we discuss our views of how 
visualization technology 
must evolve in order to be 
truly effective in a Grid 
environment. 
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Dr. Jane is a geophysics 
researcher who is studying 
the effects of how a new 
material, code-named 
“zorbs,” can mitigate the 
effects of earthquakes on 
urban structures. The 
material works by isolating 
structures from direct 
exposure to shock damage 
through direct injection into 
porous media upon which 
structures are built. In the 
course of her studies, she 
runs experiments at the 
molecular scale, where she 
observes molecule-molecule 
interactions, and also at the urban scale, where she uses 
large equipment to induce shock waves into the ground. 
She has access to instrumentation attached directly to 
urban structures in Shaky City, where real-time data is 
collected and stored at a nearby data center. Dr. Jane runs 
large-scale simulations that spawn off subsimulations 
around the world, wherever cycles are available. The 
subsimulations, when complete, report back to the master 
simulation with the results of parameter studies. Because 
the simulations routinely generate terabytes of results, 
data is stored on data caches located close to the 
computational resource and is later analyzed and 
visualized. She routinely uses experimental data to seed 
her simulations, and in turn, uses simulation results to 
modify her experimental parameters. When an earthquake 

hits, she is able to immediately connect to a vast network 
of sensors to observe first-hand how her handiwork has 
reduced direct shock damage caused by the pressure and 
shear waves generated by earthquake shaking. Such 
observation can occur using a desktop workstation, or 
using a handheld telephone. Dr. Jane is part of a large, 
multidisciplinary team that is scattered around the world. 
All collaborators have access to the entire collection of 
experimental and simulation data, which may reside at 
any one of the member institutions. 

Figure 1. Grid-Based Visualization and Computing 
Applications Comprised of Heterogeneous Resources 

As you may have guessed, this description is fiction. 
However, the scope of activities performed by Dr. Jane is 
not far fetched, and is reasonably characteristic of many 
modern research scientists. Indeed, the promise of 
“Grids” is the ability to weave together a collection of 
disparate resources into a single application in exactly the 
fashion we have suggested. As visualization researchers 
and developers who work with Dr. Jane’s on a routine 
basis, and who are tasked with designing and building 
visualization tools that provide such capabilities, it is our 
position that the current state of visualization software is 
not Grid-ready. In fact, we believe that a fundamental 
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paradigm shift is needed in order to create fully global 
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visualization applications. What is needed is a new 
framework for distributed visualization that is Grid-
aware, that is easy-to-use, and that is modular, exten
and which permits us to reuse our existing investments in 
visualization technology.  

sible, 

Getting From Here to There 
ation 

 
ickly 

 

 

are 

hereas the characteristics of such systems deployed on a 

o 

n 

e listed 

bled 

istributed, Heterogeneous Components. Building upon 

-

le-

esult. 

t of 

n systems 

 
t 

 

undamental Graphics and Visualization Algorithms. 

broad 

 

ktop 
ze 

 

A number of successful, contemporary visualiz
systems, such as VTK, AVS and OpenDX, are 
constructed using a pipelined, component-based
architecture. In such an architecture, a user can qu
assemble modular software components into a “finished 
application.” These systems have been successful because
they are both flexible and extensible. They are flexible in 
the sense that components can be combined in a multitude
of ways, thereby allowing an application developer to 
accomplish a wide variety of visualization tasks. They 
extensible as they offer the means for developers to add 
new components to the system, thereby extending the 
system’s functionality. 
 
W
single machine are relatively well understood, and some 
even offer the capability of running distributed across a 
limited number of machines, deploying such systems ont
the Grid requires consideration of new conditions not 
likely to have been anticipated during their initial desig
and implementation. It is our viewpoint that these 
additional design considerations, some of which ar
below, are best met through a Distributed Visualization 
Architecture (DiVA), a completely new framework 
designed for distributed, component-based, Grid-ena
visualization.  
 
D
the architecture of successful, contemporary systems, 
future Grid-based systems will likely use a component
based architecture. At their core, these distributed 
components will likely be quite similar to their sing
machine cousins – they will perform a well-defined 
operation on strongly typed input data to produce a r
Currently, modules from one system are most likely 
incompatible with those of another or are bound to a 
particular user interface paradigm, which has the effec
creating isolation among users and within the 
visualization community. Users of visualizatio
want to be able to use the best tool for the job, regardless 
of its source1. In order to achieve such a goal, a plethora 
of engineering issues and cultural differences must be 
resolved. One of these issues is the nature of a flexible 
HPC-oriented component interface, which is the subject
of active research. For instance, the Common Componen
Architecture2. (CCA) effort seeks to create an Interface 
Description Language and automatic language wrappers
that are oriented towards HPC application requirements.  

The Advanced Collaborative Environments Research 
Group3 (ACE) of the Global Grid Forum4 (GGF) is 
defining the security requirements for this sort of 
component architecture. 
 
F
The hallmark of Grid-based deployments is a focus on 
remote visualization. Typical approaches to remote 
visualization in the past have focused on one of two 
approaches. The first approach is to perform all the 
visualization on the server, and send image data (or X-
protocol streams) to the client. The alternative approach
has been to transfer subsets of the large scientific data 
from the server to the client workstation, where 
visualization is performed completely on the des
machine. The former approach works best when the si
of the dataset is large. The latter approach works best 
when interactivity is most important. However, these 
requirements can change dynamically at runtime as we
show in the Sidebar. New trends in graphics and 
visualization have produced a new family of algori
that will be increasingly important for future Grid-based 
visualization systems. These latency tolerant algorithms 
seek to maintain interactivity on the desktop, while 
providing the ability to perform visualization of very
datasets. Visapult5 is an example of pipelined-parallel 
IBR-accelerated volume rendering, while the TeraScale
Browser6 uses multiresolution methods and pipelined dat
caching to achieve interactive, latency tolerant 
visualization. More algorithms of this type need
integrated into a common framework in order to perfor
interactive, desktop visualization of large, remotely 
located data sources using distributed visualization 
components. 
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D
contemporary component-based visualization systems, 
which manage the tasks of component launching and da
movement, are typically designed for use on a single 
platform. As such, these systems will likely not prove
effective in Grid environments. A common practice is t
use a manual “staging” of components on machines into 
an execution pipeline. This approach is impractical in 
Grid environments where there may be hundreds or 
thousands of resources used by a single application. A
better approach is the notion of a database or directory 
service that distributes and keeps track of components, 
both executables and running instances, on heterogeneou
resources. Fledgeling services of this form are provided in 
Grids based upon the Globus7 architecture in the form of 
Monitoring and Discovery Service8 (MDS), which is 
essentially an LDAP-based hierarchical directory of 
resources for a given Virtual Organization (VO). 
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End-to-end Performance. The practice of static pipeline 
configuration for distributed resources offers no guarantee 
of better performance than would result from having all 
components run on a single machine. While the 
performance of an individual component in a system is 
straightforward to quantify, modeling the performance of 
the overall system of distributed components is needed in 
order to effectively use all resources. In order to select a 
reasonable pipeline arrangement, we need to predict the 
performance of candidate pipelines before they are 
launched. Such modeling is non-trivial, and will have a 
profound impact on the architecture of future systems. 
However, since the underlying resources change 
dynamically in typical Grid Computing Environments and 
the performance of the various visualization algorithms is 
highly dependent on parameter choices and the data they 
are fed, distributed visualization architectures must have 
continuous runtime performance monitoring to 
dynamically select between different resources, work 
distributions, and algorithm alternatives. The Grid 
Application Development Software9 project (GrADS) is 
starting to grapple with performance prediction for 
distributed applications. Other efforts like the EU 
GridLab10 project seek to create API’s that hide the 
complex dynamic nature of Grid resources from 
application developers. The impact of such dynamic 
selection on performance is illustrated in the Sidebar. 

Conclusion 
Extending current visualization tools so that they are 
Grid-enabled is a daunting challenge due to the breadth 
and depth of issues, which we have lightly examined in 
this column. At one end of the spectrum, careful 
performance analysis and optimization is needed to make 
effective use of resource in dynamic environments. At the 
other end of the spectrum, new fundamental graphics and 
visualization algorithms are needed in order to implement 
a family of latency-tolerant tools suitable for use in 
remote and distributed visualization settings. In this 
article, we have briefly mentioned only a few of the 
numerous issues related to implementing and deploying 
effective Grid-based solutions. The approach we favor 
leverages upon lessons learned from successful, 
contemporary visualization packages. Specifically, it is 
our position that the best solution is for a new framework 
that “hides” the complexity of implementing fully Grid-
enabled distributed visualization tools built from software 
components. Our vision is for a DiVA, a framework that 
supports high performance, latency tolerant, and 
heterogeneous components, with an underlying theme of 

reuse of existing component-based visualization 
technology. Such a vision serves to promote growth of 
visualization technology into Grid environments, and to 
promote unity within the visualization and computational 
science communities. 
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Sidebar 1: Performance Modeling 
and Pipeline Partitioning of 
Distributed Visualization Systems 
Most remote and distributed visualization applications use 
a static partitioning of the visualization pipeline, and hope 
that such a partitioning works well for all situations. The 
example in this sidebar serves to illustrate the importance 
of dynamic partitioning for distributed visualization 
applications. Figure S1 shows the components of the 
visualization pipeline used to create an image of an 
isosurface. The links between the blocks indicate data 
flow.  
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Figure S1: Components and Data Flow for our 
hypothetical example. Arrows indicate potential data 
flow paths. There are three potential partitionings in 
this graph. 

In Figure S1, there are three possible ways to partition the 
visualization pipeline. The Desktop Only pipeline places 
the isosurface and rendering components on the desktop 
machine. The Cluster Isosurface pipeline places a 
distributed-memory implementation of the isosurface 
component on the cluster, and transfers triangles over the 
network to a serial rendering component on the desktop. 
The Cluster Render pipeline performs isosurface 
extraction and rendering on the cluster, then transfers 
images to the desktop for display. The colors used in 
Figure S2 correspond to the groupings of components 
shown in Figure S1: cyan for the Desktop Only pipeline, 
yellow for the Cluster Isosurface pipeline, and magenta 
for the Cluster Render pipeline. In order to measure the 
performance of each of these pipelines, we make the 
following optimisting and simplifying assumptions: 
• All triangles produced by the isosurface component 

are triangle strips. Each incremental triangle of the 
strip is represented with a single vertex, which 
consumes twenty four bytes (six, four-byte floats 
comprising vertex and normal information). 

• All graphics hardware is capble of rendering 50M 
triangles/second. An 8-node system can render 400M 
triangles/second.  

• Isosurface creation takes 1 second on the desktop, 
and .125 seconds on the eight node system. 

• The image transfer assumes a 24-bit High Definition 
1920/1080p CIF framebuffer 

• Interconnects use a 1 Gigabit network with perfect 
performance. 

• The performance model does not consider the cost of 
data reads, the cost of scatter-gather operations, or 
the cost of displaying cluster-rendered images on the 
desktop. 

 
Whereas Figure S2 shows the absolute runtime of each 
pipeline for varying numbers of triangles, Figure S3 
presents the relative runtime of all components for 
varying numbers of triangles. In Figure S3, the absolute 

runtime of all components is summed, producing 100%, 
and the size of each colored segment in each vertical bar 
shows the relative time consumed by that particular 
component. Each component’s execution time is 
normalized by the sum of all component execution times 
so that we can quickly determine which components, or 
network transfers, will dominate the execution time. Note 
that some components are used in more than one pipeline 
configuration. The vertical bars in Figure S3 are color-
coded by component: those in shades of green are 
desktop-resident, those in shades of red are network 
transfers, and those in shades of orange are cluster-
resident. The components are arranged vertically so the 
reader can visually integrate groups of adjacent 
components into their respective pipeline partitionings. In 
the 500K triangles case, the cost of desktop isosurface 
extraction dominates in the Desktop Only pipeline. In 
contrast, the Cluster Isosurface pipeline would perform 
very well – about six times faster. In the 500M triangles 
case, the Cluster Render pipeline is about five times faster 
than the Desktop Only pipeline, and about eight times 
faster than the Cluster Isosurface pipeline.  

Figure S2. Absolute Runtime for Each Pipeline. 
Desktop Only performance is the sum of components A 
and B. Cluster Isosurface performance is the sum of 
components D, C and B. Cluster Render performance 
is the sum of components D, E and F. 

 
This example serves to illustrate how optimal pipeline 
partitioning can change as a function of a simple 
parameter change. Creating and deploying such dynamic 
repartitioning strategies on the Grid requires consideration 
of many more variables than we have discussed in this 
article, and a more accurate performance model. Grid-
based services are intended to help measure and provide 
such information to applications, but they do not perform 
the kind of dynamic partitioning needed to support Grid-
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based visualization. A substantial body of new 
infrastructure work is required in order to support 
effective Grid-based visualization tools. 

Figure S3. Relative Performance Components in the 
Three Pipelines 
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