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Over the past decade, growth in memory
and data storage capabilities has out-

paced Moore’s law. This has led to a significant data
management and analysis problem. We can expect
more dramatic growth of the quantity of available data
in the observational sciences as high-resolution feeds
from remotely operated network and grid-connected
observatories and experimental equipment come
online.1 While statistical methods and feature detec-
tion/extraction algorithms have been proposed to auto-
mate the mining of useful information from these
enormous data stores, a strong need still exists for a
human component to the visualization process. It’s not
realistic to expect that every numerical simulation
domain will have suitable automated methods to mine
and detect features in large data sets. Detection of unex-
pected phenomena is still most often performed using
interactive visualization.

Consequently, supercomputing centers—such as the
National Energy Research Supercomputing Center
(NERSC)—are motivated to provide visualization tools
for effective interactive analysis of remote data stores
and remote monitoring of simulation code runs that can
span multiple days, or in some cases, weeks. Such tools
must balance the competing interests of interactivity
and fidelity to fit within the limits imposed by the avail-
able infrastructure. The emerging grid infrastructure
ties these resources together into a global fabric, inte-
grating distributed research teams and virtual organi-
zations with the remote research hardware, software,
and services that carry out their work.

The NERSC and Lawrence Berkeley National Labo-
ratory (LBNL) visualization group has developed the
Visapult2 tool to attack these sorts of grand challenge
problems. Visapult is a distributed, parallel, volume-
rendering application that leverages parallel computat-
ing and high-performance networking resources that are
on the same scale as the supercomputers generating the
data. Volume rendering is an important visualization
technique for exploring complex 3D data sets, but its high
computation and bandwidth requirements limit its

applicability for interactive visualization unless we
develop powerful hardware and software methods that
can handle these demands. Traditional serial ray-tracing
volume renderers can take many minutes or hours to ren-
der a single frame. Visapult supports volume rendering
at interactive rates by employing network-distributed
components, a high degree of paral-
lelism, and a technique called image-
based rendering-assisted volume
rendering (IBRAVR). The IBRAVR
algorithm, described more com-
pletely elsewhere,2,3 lets Visapult
trade additional computational
power in exchange for reduced
bandwidth requirements.

We’ve improved Visapult’s effec-
tiveness using aggressive network
tuning and network protocol modi-
fications. In particular, we used a
new connectionless user datagram
protocol (UDP) to improve network
efficiency from a 25 to 88 percent
line rate increase for multigigabit
networks. This connectionless pro-
tocol also dramatically reduces the latency of network
event delivery, improving the responsiveness of wide-
area distributed interactive graphics applications as
compared to transmission control protocol (TCP)
streams. We believe that this UDP protocol, as well as
transport encodings and algorithms that can tolerate
loss gracefully, will become a fundamental component
of future grid visualization architectures.

Numerical relativity
A motivating application for this kind of grid-

distributed visualization capability is the modeling of
black hole collisions. One of the most challenging prob-
lems in astrophysics is the numerical simulation of Ein-
stein’s equations to explore his theory of general relativity.
These equations are among the most complex in the
world of physics; a set of nonlinear, hyperbolic, elliptic,
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coupled equations containing thousands of terms when
fully expanded. The General Relativity Group at the
Albert Einstein Institute in Potsdam, Germany, devel-
oped the Cactus code4 to solve these equations on super-
computers. The group’s ultimate aim was to simulate
astrophysical phenomena with extremely high gravita-
tional fluxes, such as the collision of two black holes and
the gravitational waves that radiate from that event. 

The Cactus simulation code scales well on some of the
largest supercomputers in the world, including NERSC’s
5-teraflop IBM SP (named seaborg) that has more than
3,000  processors. Large-scale massively parallel proces-
sors (MPPs) like seaborg must reach the target regime
of the physics that they are used to explore, such as the
spiraling merger of two black holes. Simulations that
require comparatively small amounts of memory
(approximately 1 Terabyte) allow accurate modeling of
simpler phenomena like the Schwartzchild (spinning
black hole) and Misner (head-on collision of two black
holes) cases (see Figure 1). While simulating these cases
is important for validating and calibrating the solvers
used by the code, they’re of little consequence to the
endeavor of gravitational wave characterization and
detection. The spiraling merger of two black holes offers
a more compelling and astrophysically relevant source
for detectable gravitational waves. At a minimum, sim-
ulating a basic spiraling collision requires 1.5 Tbytes of
memory using bitant symmetry (reflection along the
plane of rotation). A full 3D evolution requires a mini-
mum of 3 to 5 Tbytes of RAM. It requires even more
memory to move the outer boundaries far enough away
from the event to perform the accurate gravitational
wave extractions necessary to assist in the signal pro-
cessing performed on Laser Interferometric Gravita-
tional Observatory (LIGO) data.

Cactus’ extremely advanced grid-computing capabil-
ities reap the benefits of a globally distributed super-
computing infrastructure that serves a globally
distributed virtual organization of astrophysicists. In
one grid-computing paradigm, we can distribute the
Cactus simulation across multiple computing sites to
form a virtual supercomputer far larger than any indi-
vidual machine. Cactus employs runtime adaptive meta-
computing techniques that adjust the number of

ghostzones on boundaries that cross the wide area net-
work (WAN), as well as dynamic adjustment of the com-
pression level that transports data for the boundary. In
one experiment that captured a 2001 Gordon Bell
Award, Cactus used more than 3,000 processors dis-
tributed across supercomputing sites on multiple con-
tinents and employed runtime adaptive techniques to
improve the Cactus speedup from 15 to nearly 80 per-
cent of its peak. In another scenario, the Cactus worm,
a nomadic application, can discover more capable
resources on the grid, then checkpoint itself and migrate
to better resources using grid protocols and information
services. The migratory, worldwide, and distributed
nature of this application requires a visualization and
analysis infrastructure that’s similarly grid savvy.

These simulations are so large that it’s often impossi-
ble to use traditional visualization tools to see and
understand their results. Because gravitational physi-
cists don’t know the nature of the gravity wave signals
they’re studying a priori, data mining and feature-
extraction techniques are inappropriate for this activi-
ty. It isn’t feasible to download all of the data from the
supercomputer center to a remote site for later analysis.
Consider that a 3- to 5-Tbyte data set would take 11 to
18 hours to download if your system could reliably sus-
tain a 1-Gbit stream using a single TCP stream (which is
unlikely). Even preloading the data sets on your local
visualization system is a dubious proposition because
of the computed data sets’ large size. Few high-end visu-
alization systems have more than a few Gbytes of mem-
ory, or more than a few processors. The platform needed
to analyze the data must be similar in scale to that used
to produce the data, unless a scientist can employ sig-
nificant data reduction or noninteractive out-of-core
methods. Otherwise, for data analysis to be practical,
some form of real-time dynamic data reduction would
be needed before the data gets delivered to the scien-
tist’s desktop. This sort of data reduction is a natural
consequence of many visualization methods.

Visapult allows the scientists using Cactus to view
their simulation results in situ on the supercomputer as
they’re being produced, with the results made available
to a remote viewer. Such remote monitoring improves
the effective use of supercomputers by letting Cactus
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1 Images of black hole simulations. (a) The event horizon of the Schwartzchild spinning black hole colorized by its
extrinsic curvature. (b) The Misner visualization  shows the real component of the gravitational potential as blue,
gray, and yellow isosurfaces (cut open so you can see inside), and the event horizon of the merging black holes as a
green surface. (c) A volume rendering of the lapse with a cut-open wireframe isosurface of the real part of the
gravitational waves emanating from an offset inspiraling merger of two black holes.
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users cut short runs that have gone awry, or steer the
code or restart it with more appropriate parameters or
initial conditions. The interactive, remote visualization
and monitoring methodology requires latency-tolerant
visualization algorithms with an emphasis on maxi-
mizing WAN throughput and interactivity approximat-
ing that of locally hosted applications.

Direct volume rendering
Visapult has three components: a raw data source, a

viewer, and an MPI-based back end (see Figure 2). The
back end first reads data from the raw data source,
which may be either local or remote. Next, the back-end
domain decomposes the volume of data into smaller
units, each of which is direct volume rendered to pro-
duce a single image of that particular subdomain. The
system requires relatively little communication between
the back-end processes, so the system scales well to large
numbers of processors. The back end then transmits
each of these images to a viewer, where they’re texture-
mapped onto static geometry and rendered using
OpenGL. This process takes advantage of both the com-
puting horsepower of MPPs for partial rendering as well
as the benefits of hardware-accelerated rendering avail-
able on many low-cost client workstations. It also
decouples interactivity on the desktop from the laten-
cies involved in moving data over the network. Our
implementation of this technique using large MPPs,
high-performance networks, and a desktop viewer is a
high-performance extension to the IBRAVR algorithm.

Scientific data can be read into the Visapult back end
in a domain-decomposed fashion, where each processing
element of the back-end volume renders its block of data
in software, and sends the resulting image to the viewer.
This architecture results in drastically different I/O
requirements along the processing pipeline. Whereas the
bandwidth requirement to read data into Visapult’s back
end is N3 (where N is the size of one axis of the computa-
tional grid), the bandwidth requirement between the back
end and viewer is only (N2). During the Department of
Energy’s Next-Generation Internet (NGI) Combustion
Corridor project, our objective was to use network-centric
resources—such as network-based storage and compute
farms—to solve a single scientific problem. For this rea-
son, we studied the performance of moving data across
the WAN into the Visapult back end (see Figure 2). The
O(N3) to O(N2) reduction in bandwidth requirements
between data, back end, and viewer ideally suit Visapult
for deployment on network topologies in which high-
speed links connect resources, but where links to the
viewer are over slower links. The multistreaming I/O of
Visapult’s back-end reader—combined with the flexibil-
ity to extend it to new types of data sources—has proven
effective at using network resources and Visapult has won
the Supercomputing/SCinet bandwidth challenge three
times.

Performance
The various components of Visapult must communi-

cate with one another using Internet protocol connec-
tions over a local area network (LAN) or WAN,
depending on component deployment. To achieve max-

imum efficiency in the back end, data loading is per-
formed asynchronously, so that I/O is overlapped with
software rendering. Despite this, the effective perfor-
mance of the application when operating with maxi-
mum fidelity is network I/O bound unless the network
communications are extremely efficient. Visapult’s
parameters let us reduce I/O use to fit within the net-
work-imposed limits, but this requires a commensurate
trade-off in visual fidelity. Therefore, improvements in
the effectiveness of network I/O are critical to maxi-
mizing application performance.

Single-stream TCP performance on the WAN is often
disappointing. Even with aggressive tuning of the TCP
window size, buffer sizes, and chunking of transfers,
typical performance is still a fraction of the available
bandwidth on the WAN on OC-12 or faster links. While
there are a number of factors involved, the behavior of
the TCP congestion avoidance algorithm has been impli-
cated as a leading cause of this performance deficit.
Indeed, the preamble to Sally Floyd’s High Speed TCP
request for comments (RFC) draft (http://www.ietf.
org/internet-drafts/draft-floyd-tcp-highspeed-00.txt)
points out that to achieve steady-state 10 Gbit/sec
throughput using standard TCP implementations with
1,500 maximum transmission units and 100 ms round-
trip latency, you must have at most only one congestion
event for every 5 billion transmitted packets. That
means only one lost packet every 1 2/3 hours to reach
this bandwidth. This is clearly not practical under any
circumstance and yet wide-area, distributed supercom-
puting systems like the Teragrid that use multiple
transcontinental 10-Gbit links are already coming
online. We must employ alternative methods to make
effective use of these expensive assets.

TCP multistreaming
The typical solution to work around TCP congestion

avoidance is to use multiple simultaneous TCP connec-
tions. This is an old solution most commonly employed
in Web browsers dating back to xmosaic, and is described
in Stevens’ classic book on network programming.5 This
technique works because streams don’t share packet loss
and window-size information with one another, so a lost
packet will only cause one of the streams to back off
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2 Visapult processing pipeline. The data source (either a running Cactus
simulation or distributed parallel storage system) feeds the Visapult back-
end using multiple parallel network data streams. Each process of the
Visapult back-end volume renders its portion of the spatially decomposed
domain into an image. These images are sent to a client application run-
ning on the user’s workstation that uses the texture-mapping capabilities of
commodity hardware-accelerated graphics cards to composite these
images into a single scene at interactive rates.

Source
volume



rather than all of them. The effect is to make the hyper-
sensitive TCP congestion avoidance algorithm artificial-
ly less sensitive to packet loss, but this undoes the fairness
implicit in the congestion avoidance algorithm. In effect,
a multistreaming application becomes a network bully
that competes unfairly with its peers. Moreover, it’s dif-
ficult to tune the parameters of TCP multistreaming to
maximize performance. If you wanted to use this tech-
nique to reach 10 Gbits, as per the Floyd example, you
would have to employ approximately 4,000 simultane-
ous TCP streams to reach full-line rate. We typically
implement this kind of protocol arrangement at the
application level in an ad hoc manner, but GridFTP
(http://www.globus.org/datagrid/gridftp.html) for-
malizes this methodology into a standard protocol.

Visapult’s TCP implementation
We used this multistreaming method for the first

implementation of Visapult, developed under the NGI
initiative’s combustion corridor project. The distributed
parallel storage system (DPSS), developed by LBNL’s
Distributed Computing Group, provides a data source
that improved multistreamed TCP performance by strip-
ing the network streams across multiple hosts and net-
work adaptors.6 We carefully tuned the TCP window
sizes, buffer sizes, and blocking parameters to maximize
performance. To achieve complete overlap of computa-
tion and I/O, the network performance must be
extremely high; hence, the aggressive use of TCP mul-
tistreaming. At the SC 2000 bandwidth challenge com-
petition, we achieved a peak throughput rate of 1.5 Gbps
on an OC-48 link and achieved a sustained throughput
rate of about 660 Mbps over a 60-minute window. While
this was sufficient to win the SC 2000 bandwidth chal-
lenge with nearly twice the performance of the nearest
competitor, this was still only 60 percent (peak) and 25
percent (sustained) of the theoretical line rate, respec-
tively, of the OC-48 link. The network throughput was
extremely erratic, as Figure 3 shows. The gap in Figure
3 (about halfway through the run) occurred as a result
of an application crash, which required a restart. On a
shared WAN, more than 50 percent use is still admirable,
but these were dedicated links that were entirely uncon-

gested. The networking research
community has surmised that the
deficiencies in TCP performance
may simply be a product of an appli-
cation programmer’s limited skill in
tuning network applications com-
pared to networking experts (the so-
called “wizard gap”). However, the
TCP throughput remained ineffi-
cient despite aggressive tuning of
the TCP parameters by scientists
from LBNL’s networking research
programs. This indicates that we
can’t simply blame the wizard gap.
Therefore, even with tuning and a
dedicated link, we can’t efficiently
exploit the link bandwidth using the
TCP protocol.

Moving to unreliable protocols
For data transfer and replication, data integrity is

paramount. Response time and performance is of com-
parable importance to data integrity for visualization
applications. Visualization tools almost invariably use
reliable transport protocols to connect distributed com-
ponents because of the general concern that lifting the
guarantee of data integrity would compromise the effec-
tiveness of the data analysis. However, visualization
researchers find other forms of lossy data compression
acceptable, like JPEG, wavelet compression, and data
resampling. Such acceptance is perhaps because degra-
dation in visual quality is well behaved in these cases.
Networking experts have long turned to connection-
less/UDP protocols when an application requires max-
imum responsiveness and low latency. An unreliable
transport mechanism that deals with packet loss grace-
fully without extreme visual artifacts could compete
well with other well-accepted data reduction tech-
niques. Furthermore, when tuned to fit within the avail-
able bandwidth of a dedicated network connection, the
loss rates for unreliable transport are extremely small—
a few tenths of a percent of all packets sent if the pack-
ets are paced to stay within the limits of the slowest link
in the network path.

Visualization applications also require extremely low-
latency transport to maintain interactive responsiveness.
Consider that the response time for TCP is twice the
roundtrip time (RTT) plus the additional overhead of
processing the information on the hosts involved in the
transfer. The TCP responsiveness gets far worse when
retransmission and data buffering occur. During retrans-
missions induced by packet loss, stream-oriented proto-
cols will block the data stream until a successful
retransmission occurs. Retransmissions result in huge
variations in responsiveness and throughput, such as
those observed during the SC 2000 implementation.
Application scientists often mistakenly attribute this
erratic responsiveness (caused by the TCP algorithm) to
network jitter. However, the network jitter is a layer 2
(transport layer in Ethernet jargon) phenomenon that’s
caused by the nonuniform delay of individual packets—
on the order of milliseconds—caused by buffering inside
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3 Graph of network throughput for Visapult during the SC 2000 bandwidth challenge. The
performance was erratic over a one-hour time span, despite a nominally dedicated network
connection and use of 32 parallel TCP streams to mitigate the effects of packet loss. This points
to the extreme sensitivity and instability of TCP congestion control in practice.



the network-switching hardware. Conversely, the errat-
ic behavior of TCP (layer 3 in Ethernet jargon) and the
application (layer 4) is the real culprit here and typical-
ly manifests itself on much larger time scales with much
broader and more noticeable effects to the person using
the application. A well-designed UDP protocol, by con-
trast, provides the lowest possible latencies over the WAN
with little OS buffering or protocol-induced delays and
nearly immediate response.

Visapult implementation using
unreliable transport

After the lessons learned during the SC 2000 band-
width challenge, we focused on performance improve-
ments that would result from employing more aggressive
use of network protocols. We modified Visapult’s band
end to connect directly to the Cactus code. Cactus’ mod-
ular code components are referred to as thorns. We devel-
oped a custom thorn for Cactus that sends data to the
Visapult back end to support visual remote monitoring of
executing codes. Combined with the Cactus Web-based
remote steering interface, we can use Visapult as a com-
ponent of an interactive remote steering system com-
posed of grid-distributed components.4

For the SC 2001 and 2002 bandwidth challenges, we
modified the back end of Visapult to work with our own
custom UDP transport protocol. The thesis of our work
was that using a connectionless protocol would produce
dramatically more efficient bandwidth use as well as
more consistent and rapid responsiveness. The SC 2000
Visapult reader  used a TCP protocol and requested data
from the network in a specific order;  TCP guarantees in-
order delivery of data. In contrast, UDP makes no such
guarantees, so each UDP packet must contain informa-
tion indicating the location in the domain-decomposed
array where the Visapult back end must place the data
payload (see Figure 4). This ensures that the system can
treat each packet independently so that packet ordering
and loss have minimal effect on destination processing.
We modified the Visapult back end to render continu-
ously rather than waiting for all packets in a given frame
to arrive. The visual effect of this choice is an immediate
response involving a coarser representation with pro-
gressive refinement of the image over time. Data from the
previous frame was used to prime the receive buffer and
fill in gaps where packets were lost.

We used a 20-byte header in the Figure 4 implemen-
tation to locate the payload of each packet in the desti-
nation domain independently of one another. Assuming
a full 3D block domain decomposition, the origin and
dimension information is superfluous in the z-dimension.
The packet header contains the following information:

� x/y origin global: the offset in grid coordinates with
respect to the global data dimensions of the origin of
the domain decomposed block (local domain) in the
data source. 

� x/y dim local: the x/y dimensions of the local domain
decomposed chunk in the data source (used to control
wrap-around of data as it is written into the destina-
tion data array). 

� Local index: the offset in cells counted from the start
of the local domain decomposed block in the data
source. 

This source-based data indexing lets the component
sending the data be ignorant of the domain decompo-
sition at the destination, but provides enough informa-
tion at the destination to support unambiguous data
reassembly.

We contemplated a multibuffering scheme to let all
possible packets arrive before rendering. In practice,
such a technique would provide improvements in visu-
al quality when the data in successive frames changes
rapidly. However, because of the slow rate of data evo-
lution for our remote monitoring application, the sin-
gle-buffered approach proved more effective for the
visualization tool. We continue to investigate this sort
of multibuffering.

The Cactus/Visapult thorn (AlphaThorns/ShmServ)
buffers data in a shared memory staging area created
when the code begins. The simulation code spawns a
set of background worker processes (which we term
NetWorkers) at startup time that are dedicated to read-
ing data out of the shared memory region and sending
it over the network to the Visapult back end. We imple-
mented the NetWorkers as processes rather than
threads to get around the performance problems and
scheduling overhead associated with some particular-
ly poor vendor implementations of Posix standard
threads. The NetWorkers require a dedicated CPU so
that they don’t interfere with scheduling and execu-
tion of the primary simulation code’s processes. Fill-
ing a Gigabit Ethernet connection to capacity will fully
engage even a powerful CPU. The NetWorkers have
parameters that let the code set a fixed packet rate that
we can tune at runtime to prevent oversubscription of
resources and thereby minimize packet loss. At least
one asynchronous NetWorker is required per network
interface card (NIC), but we also found that multiple
NetWorkers per NIC were required to fill the Gigabit
Ethernet interface on larger summetric multiproces-
sors like the 16-way IBM Nighthawk II SP nodes (see
Figure 5). For our dual-CPU Linux hosts, we dedicated
one processor to network I/O while the other per-
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format. 



formed computing functions. Under this arrangement,
we could achieve 960 Mbits per full-line-rate per node.

In 2002, we demonstrated full use
of a 10-Gbit Ethernet pipe using a
modestly sized (12 node) Linux
cluster for the Visapult backend
component (http://www.
supercomputingonline.com/nl.
php?sid=2252).

Bandwidth challenge
results

We previously discussed the SC
2000 results in the section “Visa-
pult’s TCP implementation.” These
results motivated us to completely
rewrite the networking code from
scratch (dropping the TCP in favor
of our own custom connectionless
protocol). At the SC 2001 high-
performance Visapult run, we used
the new UDP transport protocol
between the data source and the
back end of the Visapult application.
For the data source, we ran a binary
black-hole merger calculation using
the Cactus code on six nodes of
NERSC’s IBM SP system. We also ran
a related apparent horizon finder on
a 128-node Origin 2000 system at
NCSA. At NERSC, the Gigabit Ether-
net interfaces on five of the SP nodes
connected to a dedicated OC-48 link
provided by Qwest and the remain-
ing NIC connected to an OC-12 link
provided by ESNet. The Visapult
application ran on an eight-node
Linux cluster on the conference’s
show floor that was connected to a
10-Gbit Force10 switch. At NCSA, a
single Gigabit Ethernet on the host
fed the NCSA OC-12 uplink and fed
a 32-way Sun Starfire symmetric
multiprocessor system in the Sun

booth on the show floor.
The NERSC system reached throughput rates of 2.38

Gbps on the OC-48 link. This is 96 percent of its theo-
retical capacity, and it reached this rate without the typ-
ical ramp up associated with TCP-based applications
(see Figure 6). The total aggregate throughput of the
application from all sources was 3.3 Gbits. The visual
quality and interactivity of the application was greatly
improved by the high average throughput sustained by
the application’s data feed. The visual quality of the vol-
ume visualization wasn’t compromised by the unreli-
able transport method. The gains in interactive
performance were dramatic. While there were some
lost packets, the loss rate was easily tailored to be less
than 1 percent by regulating the packet-sending rate.
When packets were lost, the resulting visual artifacts
were minor to the casual observer, but quite obvious to
one familiar with the science. However, the high band-
width efficiency resulted in rapid recovery from these
artifacts. Overall, the move to unreliable transport
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5 UDP performance on the IBM Nighthawk II SP using the internal network sending through
Gigabit Ethernet on the gateway node (1 p-gateway and 4 p-gateway mean one processor on
one node and four processors on four nodes routed through the gateway node, respectively)
and one to four NetWorker processors (1p to 4p direct) on 16 CPU Nighthawk nodes with
directly attached Gigabit Ethernet NICS. 

6 The daily network traffic log from the SCinet Core1 router during the 2001 bandwidth chal-
lenge that monitored the OC-48 traffic from NERSC. All three network traffic peaks that exceed-
ed 2.0 Gbits are from Visapult testing (the last being the actual bandwidth challenge run).

7 Volume
rendering of the
real component
of gravitational
potential.
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greatly enhanced the effectiveness of the application
for remote analysis of extremely large or dynamic data
sets (Figure 7).

We used a very similar software configuration with
some protocol improvements that offered more accu-
rate rate control for the SC 2002 bandwidth challenge.
The 2002 effort involved a global grid testbed collab-
oration that assembled a globally distributed set of
resources to win the challenge with a sustained data rate
of 16.8 Gbits per second. This constitutes a more
than five-fold improvement over the bandwidth
record set in the previous year and demonstrates the
importance of network protocol improvements rela-
tive to advances in network hardware performance.

User impact
While visualization researchers have become quite

comfortable with data compression and reduction
methods, we have a concern that scientists might balk
at any artifacts or scintillation in the displayed images.
It’s too early to fully evaluate the impact on our scien-
tific users given the prototype nature of the current
tool. As we move this technology into production,
we’re considering many options to respond to these
potential concerns. The current implementation can
recover from loss quite rapidly by sending redundant
packets, which greatly reduces the probability of gaps
in the final representation. We can also offer a reliable
UDP or lower-performance TCP back channel that
operates in parallel with the primary data delivery
stream. This ensures that we can generate a final,
uncompromised visual representation after a suitable
delay. In addition to our own application-specific
implementation, a number of reliable UDP imple-
mentations are available in the networking commu-
nity, including Reliable UDP, Rapid, and SABUL.

Future directions
The UDP method we have described relies on pac-

ing packets to meet, but not exceed, network capac-
ity. Indeed, there’s no reason that we can’t apply
these fixed-data-rate methods trivially to reliable
transport protocols like TCP. It’s clear that fixed-rate
implementations of both reliable and unreliable pro-
tocols can be disruptive to commodity networks, and
are most appropriate for use on dedicated network
links, private virtual circuits, experimental net-
works, or even for scheduled access. While it’s
unreasonable to assume that all WAN connections
will be dedicated links, it’s quite reasonable to target
an architecture where high-performance dedicated
or schedulable links will exist between supercom-
puting centers and satellite data analysis centers on
high-performance production and experimental net-
work backbones. Such dedicated bandwidth is more
typical in high-performance networks for the sci-
ences like ESNet, Abilene, and Canarie. Rate-limit-
ed flows will prove essential for data visualization
corridors and ultrascale grid visualization architec-
tures of the future to take advantage of the capabil-
ity offered by these forthcoming ultra-high
performance backbones.

More dynamic shared environments require contin-
uous adjustment of the data rates. In this context, there
are some concerns that selecting an appropriate packet
rate for UDP-based methods to minimize loss is too
tedious to be practical. However, this problem isn’t
unique to UDP since the same tuning must occur even
for multistream TCP implementations. Multistreaming
TCP techniques offer no advantage over UDP protocols
in this regard, as their performance advantage comes
from responding slowly to packet loss, even in cases of
actual congestion. Using too many TCP streams can
quickly lead to the same congestion situations that occur
with UDP.7 However, unlike the UDP method, no
straightforward method exists to regulate bandwidth
use of multistream TCP flows. In this respect, multi-
stream TCP is superfluous because it’s possible to craft
a congestion avoidance algorithm for any single-stream
UDP-based protocol that models the behavior of single-
host multistream TCP by simply modifying its response
to loss. The Web100 workaround daemon uses an arti-
ficially large virtual maximum transmission unit to
recover more quickly from packet loss. (More informa-
tion on this Web100 concept paper is available at
http://www.web100.org/docs.concept_paper.php.)

Even with raw UDP, we can incorporate TCP-friend-
ly methods described by Mahdavi and Floyd8 for inter-
active rate control and provide guidelines for
appropriate packet rates to minimize loss and limit
impact on other network users. However, the TCP-
friendly assumption that any packet loss is indicative of
congestion is the very characteristic that leads to TCP’s
poor performance on high-bandwidth pipes.

Considerable research exists on traffic-shaping meth-
ods (active queue management) and statistical methods
to improve the quality of this assumption. Even the most
effective of these methods (random early detection) turns
out to be quite difficult to tune. However, we can hold the
extreme position that only the switching fabric can pro-
vide the necessary information to help the end points dif-
ferentiate congestive from noncongestive packet loss.

Ideally, the network-switching fabric should provide
detailed quality of service (QoS) hints through infor-
mational packets to the endpoint hosts to indicate ideal
send rates. We could, for instance, have a TCP or UDP
implementation that uses these hints to ignore packet
loss if the switching fabric says that it’s noncongestive,
but would default to the standard congestion avoidance
algorithm when no such hints are available. Proposed
methods like explicit control protocol (XCP), explicit
congestion notification (ECN), and core-stateless fair
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queueing (CSFQ) advocate this approach. These meth-
ods require significant modifications to existing router-
and network-switching hardware designs, which is a dis-
tant prospect.

Grid-based bandwidth brokers or networking-
monitoring services, such as LBNL’s Network Control Sys-
tem (NCS) or those proposed for the Quanta QoS project
(read more about this testbed project at http://www.
evl.uic.edu/cavern/teranode/quanta.html), offer a
means to provide direct feedback about network con-
gestion in the absence of new network hardware
designs. These methods can use existing QoS proto-
cols built into network equipment or post feedback
information on a Globus Metacomputing Directory
Service (MDS) to manage fixed-rate transport services
on these sorts of higher-performance network back-
bones so as to avoid congestive loss. Even without intel-
ligent switching fabric or QoS, we could create a
system of peer-to-peer feedback/autonegotiation by
having end points multicast their path and current
packet-rate information on a fixed set of designated
paths. This would let hosts negotiate between them-
selves for appropriate packet rates rather than involv-
ing a third party, such as a bandwidth broker or the
switching fabric itself.

Ultimately, it’s time to explore methods of coordinat-
ing fixed-data-rate flows as an alternative to current con-
gestion-avoidance methods that attempt to infer
congestion from packet loss statistics. The latter meth-
ods have clearly reached their scalability limit.

The primary area of growth in considering custom
UDP protocols is in the development of fault-tolerant
and fault-resilient encoding techniques. The simplest
approach provides fault tolerance by copying data
from the previous time step to fill in lost data. A more
advanced methodology could use a wavelet or fre-
quency domain data encoding so that any loss is hid-
den in missing spatial frequencies (similar to JPEG
compression). For transport of geometric models, we
can look at packet encodings that support progres-
sively refined meshes using triangle bisection.9 Such
techniques make packet loss less visually distracting
and eliminate the need for data retention on the
sending side. Any reliable technique requires data
retention at the source until its receipt is acknowl-
edged. Given the large bandwidth delay products
involved for future Terabit networks, the window
sizes necessary for reliable transport will be consid-
erable. The buffering required to support TCP
retransmission and large windows creates noticeable
lag in the responsiveness of remote visualization
applications and produces low bandwidth use rates.
Fast response times are essential for creating the illu-
sion of locality so low-latency connectionless tech-
niques will be essential for grid visualization and
collaborative interfaces. Overall, there are many
avenues to consider for information encoding that
make performance-enhancing, unreliable delivery
methods offer graceful degradation of visual quali-
ty in response to packet loss rather than simply set-
tling for degradation in interactivity.

Conclusions
The movement to well-behaved, fault-tolerant UDP-

based protocols is a significant area of exploration for
the future development of effective grid-enabled visu-
alization tools and distributed visualization compo-
nent architectures. Such aggressive methods are
necessary to overcome the limitations of the aging
TCP protocol for high throughput applications on
high-speed WANs. Using such techniques has pro-
duced a 300 percent improvement in I/O efficiency
over the best available tuned, multistreaming TCP
methods. While packet delivery isn’t guaranteed, the
results are comparable to other lossy data-reduction
techniques commonly employed in visualization. In
addition, connectionless methods offer much lower
latency and better responsiveness than TCP streams
under the same conditions. Ultimately, grid architects
must reevaluate exclusive reliance on TCP-based reli-
able transport for distributed interactive applications
like visualization, because this greatly impedes our
ability to exploit high-performance network-inter-
connected grid resources. �
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