
Visualization Development Environments 2000 Proceedings

1

Implementing a Visualization Tool for Adaptive Mesh Refinement Data
using VTK

Terry J. Ligocki1
Visualization Group

NERSC/LBNL

1 1 Cyclotron Road, M/S 50F, Berkeley, CA 94720, tjligocki@lbl.gov

Abstract

We are currently working with several research groups
who use adaptive mesh refinement, AMR, techniques for
calculations in computational fluid dynamics and
cosmology. The computational fluid dynamics group
needed a visualization tool to visualize AMR data and to
distribute with their AMR library. Since none of the
widely available visualization systems directly supported
visualizing AMR data, we chose to extend one, VTK, via
its Tcl/Tk interface.

This AMR data consists of grids at different resolutions.
Grids at the same resolution don’t overlap. In our initial
implementation we allow the user to select grids which are
then processed for visualization independently. The final
results are then rendered together. In this paper, we
describe why we did this, how we did this, the tool that
resulted, the advantages and limitations of this tool, and
future work (both short term and long term).

1. Introduction

This paper describes a tool we developed to visualize
adaptive mesh refinement, AMR, data. The tool was built
using the Visualization Toolkit, VTK, [VTK] and its
Tcl/Tk [Tcl/Tk] interface. First, we give some context,
define the problem we faced, and discuss why it was a
problem. Next, we present an overview of the
implementation that describes the structure of the tool.
Following that, we highlight some of the implementation
details and results. Finally, we discuss future work and
how if relates to the work done so far.

1.1 Context

The Applied Numerical Algorithms Group, ANAG,
[ANAG] at the National Energy Research Scientific
Computing Center, NERSC, [NERSC] have developed a
library, Chombo, [CHOMBO] to support Adaptive Mesh
Refinement, AMR, computations. They wanted to
distribute a visualization tool with Chombo for visualizing
AMR data sets. To meet the various needs for distribution
(e.g. low cost, availability, source code access,

expandability), we decided to use VTK and its Tcl/Tk
interface.

1.2 Overall Problem

Before we describe the specific structure of the ANAG
AMR data, it would be useful to look at a broader view of
this type of data and the problems visualizing it.
Basically, researchers are starting to use more
sophisticated data structures in their computations.
Instead of single grids/meshes they are using multiple
grids/meshes which may overlap. In addition, a given
region in the computational domain may be represented at
a variety of resolutions, which introduces a data hierarchy.
Finally, these grids/meshes usually change dynamically as
the computations proceed.

Most widely available scientific visualization systems
(e.g. AVS, IBM DX, and VTK) don’t directly provide the
functionality to visualize these types of data sets. These
systems are designed to visualize a predetermined number
of individual “units” of data (e.g. a uniform grid, an
irregular mesh, unstructured cell data, scatter data). In
some cases, AMR data can be represented in these systems
in some way (e.g. as unstructured cell data) but there are
several problems. Often the storage required for the data
set increases dramatically when converted and/or the
visualization tools cannot interactively handle even
moderately large AMR data sizes in their converted form.
There are two other problems. First, overlapping grids can
only be handled independently. Thus, in the overlap
region there is no possibility of using some combination of
data values from each grid to get data values within the
overlap. Second, all the information about grid
hierarchies is lost. This means, for example, that there is
no way to specify that data values from grids deeper in the
hierarchy should preempt data values from grids “above”
them.

We have been looking at three categories of
visualization for hierarchical collections of grids. In each
case, some selection mechanisms are applied before the
data is visualized. For example, all grids above some level
in the hierarchy are selected. Once this is done the
resulting hierarchical collection of grids would be
visualized as follows:

VDE 2000, Princeton, New Jersey, April 27-28, 2000

2

1) Each grid would be processed independently. All
the results would then rendered simultaneously. In
this case, overlapping grids might have overlapping
visualization results (e.g. isosurfaces). These
overlapping results, in general, wouldn’t coincide.

2) If a finer grid overlaps a coarser grid then the
visualization results from the finer grid would
supercede the results from the coarser grid in the
region of overlap. Thus, there would be no
overlapping results displayed. There still might be
gaps/seams between the results generated from
adjacent grids.

3) The entire hierarchical collection of grids could be
processed in a holistic fashion. Here interpolation
and extrapolation functions would be used to get
smoothly varying data values over the entire
computational domain. Thus, there would be only
one result (not a collection as in the previous two
cases) and this result wouldn’t contain overlays,
gaps, or seams due to the grid structure.

The first category is the easiest to implement since each
grid is handled entirely independently and at the end all
the results of all the visualizations are simply rendered
together. Various forms of parallelism can be used if
necessary and there are no synchronization issues until the
results are rendered.

There are several ways of implementing the second
category. Basically, data in overlapping regions can be
removed (based on the hierarchy) before any processing is
done or the processing can be done independently on each
grid and then superceded results in the overlapping
regions can be removed. For example, in an isosurface
computation, where a finer grid overlaps a coarser grid no
isosurface is computed for the coarser grid or both
isosurfaces are computed and the portion of the isosurface
generated by the coarser grid in the overlapping region is
removed. Much parallelism can be achieved in this case
as long as the hierarchical structure of the data is
respected.

The final category is the hardest to implement and will
in most case require knowledge of the computation being
preformed beyond simply possessing the data. The
appropriate interpolation and extrapolation methods
necessary to correctly blend the hierarchical data at all
points in the computational domain are often defined very
carefully by the researchers performing the computation.
These methods are almost always specific to the
computation being performed. These methods may also
make it more difficult to parallelize the visualization
processing because the grids are no longer treated
independently. This would give a representation of the

data that was the most consistent with the computation
that generated it.

1.3 Specific Problem

In our case we had a much more specific type of
hierarchical data and we chose to begin by implementing
the first category of visualization described above. We
chose the first category because we thought it was a good
starting point. We would be able to learn more about
Chombo and AMR data, VTK and its Tcl/Tk interface,
and visualizing AMR data. Since each of the grids was
handled independently, much of the specific structure of
the data is unimportant so only a simple overview will be
given in this paper. For more details see the Chombo
WWW page [CHOMBO]. In this paper we will refer to
the data Chombo generates as AMR data.

All the grids are axis aligned and all the cells in a given
grid are the same size. There is a hierarchy of grids. At
the coarsest level there is a grid which covers the entire
computational domain. No grids go outside the extents of
this grid since it coincides with the computational domain.
From one level in the hierarchy to the next there is a fixed
refinement ratio. Grids at any given level align with the
corner of a cell in a grid at the next coarser level. Grids at
any given level do not have to lie entirely inside any grid
at the next coarser level. Thus, there is no required
nesting or tree structure. Essentially, each level is a list of
grids all with the same size cells and there is a list (or
array) of levels.

This means that if any visualization system could
handle lists of grids or, better yet, nested lists (i.e. lists of
objects that might be lists) then we could directly perform
the visualizations in the first category mentioned above.
Unfortunately, this was not the case. At the time we were
first planning to create this tool, we became aware of work
being done at NCSA [NCSA] which involved parallelizing
VTK and extending it to a new class of objects designed to
address AMR data visualization. In fact, NCSA was
helping cosmologists who were using a predecessor of the
Chombo library. Thus, we began to collaborate with John
Shalf and Matthew Hall at NCSA.

Since they were targeting very large data sets (gigabytes
per time step) with a large number of levels of refinement
(thirteen to sixteen), their immediate needs did not
coincide with ours well enough for us to directly use they
work. Specifically, we needed to be able to access their
VTK extensions from Tcl/Tk so that we could more easily
build a user interface. Unfortunately, this wasn’t possible,
although it may be addressed in the future. Also, we felt it
might be difficult for the initial users of the Chombo
library to get, build, and install VTK and then build and
install the extensions correctly. We believe that in the
future, the evolution of VTK and of these AMR extensions
will make this easier. In the longer term, we are

Visualization Development Environments 2000 Proceedings

3

interesting in contributing to the efforts at NCSA and
using the resulting extensions.

For these and other reasons we decided to attempt to
extend VTK, via its Tcl/Tk interface to perform
visualizations consistent with the first category of
visualization described above. At the time we were unsure
if we would be able to do this and end up with a useable
visualization tool. We were pleasantly surprised that this
was possible.

2. Overview of Implementation

In this section we will present the overall structure of
the visualization tool we developed, ChomboVis
[CHOMBOVIS], and place it in context with VTK,
Tcl/Tk, and Chombo. The implementation breaks into
three pieces. First, the data produced by Chombo needed
to be read and put in some format compatible with VTK
and Tcl/Tk. Next, all the data and visualization
processing needed to be managed within Tcl/Tk. Finally,
a user interface had to be built using these pieces.

There were also explicit several goals:

• The data would only be read as it was selected. In
this way the user could quickly look at the coarser
grids without waiting for the finer grids to be read.

• A core of visualization functions (e.g. 2D slices,
isosurfaces) would be provided for AMR data.

• As much flexibility as possible would be retained so
that future extensions would be relatively easy. We
also wanted to structure the Tcl/Tk code and built
the user interface using this as a guideline.

We knew that ChomboVis would probably have some
limitations:

• It would not be able to be used directly with AMR
data that did not come from computations using the
Chombo library. Visualizing data generated with
ancestors of the Chombo library might be possible
by transforming the data into the current Chombo
data format.

• It would not be able to handle large data sets.
However, we didn’t know what “large” would mean
until we implemented ChomboVis. This will be
discussed later.

• It would not do certain types of visualization
correctly (e.g. volume visualization). Even in the
case of 2D slicing we had to add additional
functionality to handle slices through hierarchical
data (see section 3.1.4).

With this in mind we began designing and
implementing ChomboVis.

2.1 VTK and Tcl/Tk Interface Primer

At this point we need to digress a bit. It is important to
outline some of the functionality of VTK and Tcl/Tk and
how VTK integrates with Tcl/Tk. We needed to
understand all these things in some detail to implement
ChomboVis and we believe it will be of value to the reader
in understanding what follows. Conversely, we have tried
to present only what is necessary and not everything we
learned in the process of implementing ChomboVis. We
used VTK 2.3 and Tcl/Tk 8.0.4 for our initial
implementation. All that follows is based on our
experience with these specific versions but it is probably
applicable to more recent versions with some
modifications.

VTK itself is a C++ library that contains a great deal of
functionality, it is freely available, and it can be a
challenge to use effectively (we have found the VTK user
group invaluable in addressing this challenge). Also of
great benefit are the various interfaces between VTK and
other object-oriented languages/packages (e.g. Tcl/Tk,
Python, and Java). The Tcl/Tk interface is achieved by
“wrapping” original C++ code with additional C++ code,
compiling the result into Tcl/Tk libraries, and dynamically
loading these libraries into Tcl/Tk.

Essentially, a Tcl/Tk command is added for most VTK
classes. This command is called to create an object in that
class whose name is given as an argument. This name is
used to create a new Tcl/Tk command with that name.
This Tcl/Tk command allows access to all the methods
available to the object it represents. This is all done by
dynamically adding commands to Tcl/Tk. All the
underlying VTK data is passed around indirectly in
Tcl/Tk. A unique string name is generated and this is
used as a key into a hash table that contains pointers to the
actual data. All that is visible in Tcl/Tk are the unique
string names. We needed to use this technique to generate
Tcl/Tk objects that represented the data and could be
passed to VTK for processing.

In addition, we used similar techniques to extend
Tcl/Tk and add commands for reading in AMR data,
colormaps, etc. This capability was invaluable in adding
functionality and getting around limitations in Tcl/Tk and
VTK. This also allowed the different parts of ChomboVis
(i.e. VTK, HDF5, our Tcl/Tk code, our Tcl/Tk extensions)
to be developed and built separately and then dynamically
brought together.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

4

2.2 Accessing Chombo Data

The AMR data was stored using HDF5 [HDF5]. With
the help of ANAG we implemented several new Tcl/Tk
commands to read the AMR data. One command read and
returned the header information of the current data set
(e.g. number of levels, refinement ratios, physical
dimensions). This was used to initialize various global
variables and data structures within our Tcl/Tk code.

Another command read in a level of data and returned a
Tcl/Tk list that contained each grid as a VTK object
referred to by a unique string name and various other
useful data items. To do this, code from VTK was
duplicated in our Tcl/Tk extensions. Thus, this depended
strongly on the way VTK interfaces to Tcl/Tk and was
highly version dependent! Unfortunately, we were not
able to develop any other efficient method to achieve this
functionality.

2.3 Managing the Data and Visualization

We made extensive use of Tcl/Tk arrays to store and
retrieve data and to manage the VTK visualization
pipelines. Tcl/Tk arrays are indexed by strings and are
essentially efficient hash tables. By using a few global
arrays of this type we were able to get the functionality,
structure, and efficiency we needed.

The data was read in a level at a time as it was selected.
When a level was read in, all the grids for each data
variable on that level were read using HDF5 and converted
into VTK structured points. These were, in turn,
converted to Tcl/Tk commands in a manner consistent
with VTK. The commands that represented the AMR
grids were then stored in a Tcl/Tk array indexed by level
number, grid number, variable name, and a keyword
(“data”).

Once the data was read in, a VTK pipeline was set up
for each grid and visualization technique (e.g. 2D slicing,
isosurfaces). These pipelines were set up regardless of
whether a visualization technique was currently visible or
not. As a result, for each grid approximately half a dozen
VTK pipelines were created. These were also stored in the
same Tcl/Tk array as the data, indexed by level number,
grid number, and a keyword (e.g. “slice_x_actor”,
“iso_actor”). Note: the pipelines were not indexed by the
variable name because the only thing that changed when a
different data variable was selected was the input to the
pipeline, not the pipeline itself.

This method of organizing the data and the
visualization pipelines worked well. To extend
ChomboVis to more types of visualization was
straightforward and was done several times as ChomboVis
was developed. All that was necessary was the creation of
more VTK pipelines and the addition of entries in the
Tcl/Tk array with new keywords.

Visualization Development Environments 2000 Proceedings

5

2.4 Organizing the User Interface

In order to make the user interface useable and
extensible, we decided to have a portion of the ChomboVis
window dedicated to controlling the visualization (see
figure 1). Control was grouped by functionality (e.g. data
selection, grid display, isosurfaces) and each group had its
own control panel that was displayed when selected via a
menu at the top of the left-hand side of the screen. Thus,
to control the isosurfaces, the user would select
“Isosurface” on the menu and that would make visible the
isosurface controls. These controls could then be changed
as needed. This made it easy to add new types of control
and/or visualizations and still manage it all in a limited
area.

The ChomboVis Tcl/Tk code underlying this was also
organized in a way that reflected the organization of the
user interface. In addition to being organized by type of
control and/or visualization, the Tcl/Tk code was
organized into code that supported the user interface and
code that supported the VTK pipelines. Thus, changes
and additions to the user interface were made in one
Tcl/Tk file and these often referenced Tcl/Tk functions in
a different file (where the VTK pipeline was managed).

This kept the individual Tcl/Tk file sizes reasonable and
divided the files in a logical and consistent manner.

3. Details and Results

In this section we present some of the details of
ChomboVis and the results of using it with some initial
data sets. The goal is to give a solid idea of the
functionality that has been implemented, any interesting
issues that arose, how we addressed these issues, and our
view of the overall result.

3.1 Functionality

The functionality implemented in ChomboVis was
divided into six categories that correspond to the menu of
“Control Options” in figure 1. The user could control data
selection, colormaps, grid display, 2D slicing, isosurfaces,
and volume visualization. Additional functionality we
would like to add is described in section 4.1.

3.1.1 Data Selection

 The data set being used is specified when ChomboVis
is started (as a command line argument). It cannot be
changed after that time. The user was allowed to select
the scalar data variable of interest. In addition, a range of

Figure 1: AMR visualization showing grid bounding boxes, 2D slices, and isosurfaces.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

6

levels could be displayed varying from a single level to all
levels. There was no way to select group of levels that
were not contiguous (e.g. levels 1 and 3). Finally,
immediate rendering could be turned on or off. By turning
immediate rendering off, several parameters could be
changed without waiting for the renderer to redisplay.
Once this was done the user could turn immediate
rendering back on or explicitly tell ChomboVis to render
the visualization again.

As was stated above, once a level was selected all the
grids on that level were read in. Based on the currently
selected variable, VTK visualization pipelines were set up
for all the new grids. These may or may not be added to
the renderer depending on whether the given visualization
was selected by the user. All the forms of visualization
could be turned on or off. Once a level was read, the data
associated with that level was never deleted nor were any
of the VTK visualization pipelines. Thus, ChomboVis
always grew in size and complexity. Initially, the coarsest
grid was selected and read. A bounding box and three 2D
slices through the center of the grid were displayed.

3.1.2 Colormaps

 A very basic ability to select and read in colormaps was
provided. A default grayscale and full color colormap
could be selected or a user defined colormap could be read
in. The user defined colormap had 256 entries, which
specified a color (as RGB or HSV) and an opacity (or
alpha) value. The scalar data values were mapped to
colors linearly using the minimum and maximum values
in the data. The opacity was only used for volume
rendering. This could be extended to other types of
visualization (e.g. isosurfaces) but this hasn’t been done.

3.1.3 Grids

 The user was permitted to view the bounding box of the
entire domain at all times. For all the selected grids the
user could view nothing, all the bounding boxes, or all the
cells in all the grids. Viewing all the cells was not useful
most of the time because there were too many cells but this
could be helpful at times to see relationships between grids
at different resolutions. To use this more effectively it
would have helped to be able to select specific grids within
the already selected levels (see section 4.1).

One thing that wasn’t apparent to the user was that the
geometry for the bounding boxes of the grids and for the
cells were generated by the function that reads each level.
This was done because doing this within VTK was too
expensive, especially for the cell geometry. Basically,
VTK generated line segments for each edge of each cell of
each grid. For a grid in Chombo many fewer line
segments could be generated and give the same result.
This was a case where VTK provided the necessary
functionality in too general of a form for our needs and, in

this case, it proved too expensive for us to use. This
understandably happens in most visualization systems and
we were happy that it was possible to easily improve this
by using our Tcl/Tk extensions.

3.1.4 2D Slices

 The user could view 2D slices of the data that were
aligned with the coordinate planes. These slices were
rendered as they were oriented in the 3D data set. There
were three slices available, each of which corresponded to
one coordinate (x, y, or z) being held constant. The slices
could be individually moved throughout the data set and
made visible or invisible. For a single grid this was fairly
basic functionality. For AMR data there were some
subtleties.

If one level was selected and the grids on that level
didn’t cover the entire domain (which they usually didn’t),
what should be drawn outside the grids? We elected to
draw nothing in this case (seen figure 1). This appeared to
work well and it gave the user a good idea of how the grids
at a given level were abutting.

A more difficult problem appeared when multiple levels
were selected. If we held to the design choice that all the
grids are processed independently then a problem arose
where coarser grids overlapped finer grids. In the
overlapping region, geometry for each slice was rendered
and it coincided in 3D. Thus, the results were
indeterminate and, in most cases, were impossible to
interpret.

To address this problem, we chose introduce an
additional parameter into the visualization. We called the
parameter an offset and it was used as follows. If only one
level was selected a slice through that level was generated
(as before). If more than one level was selected then each
level was sliced independently. The coarsest slice was
rendered in the correct orientation and position. The next
coarsest slice was offset the amount specified in the
direction which was constant for that slice (e.g. a slice of
constant x was moved in the x direction). This results in
the slices from each level being layered and independently
visible when the offset was large enough. If the offset was
zero then the original problem discussed above occurred.

This was not a perfect solution to the problem. It could
be hard to see between the slices for each level, only the
coarsest and finest level’s slice could be viewed parallel to
the screen, and if slices in more than one direction were
visible the result was confusing.

3.1.5 Isosurfaces

 Of all the types of visualization, the generation of
isosurfaces was the most straightforward in this context.
Basically, each selected grid was handled independently
and all the geometry generated was rendered

Visualization Development Environments 2000 Proceedings

7

simultaneously. This, of course, resulted in overlapping
isosurfaces when multiple levels of grids were selected. In
addition, when only one level was selected there were
sometimes visible artifacts between adjacent grids. In
some cases these were gaps but in other cases the surface
was continuous but the surface normals didn’t match at the
boundary (see figure 1). One way to correct this would be
to extend the grids one cell (i.e. use ghost cells) and only
generate the isosurface and normals within in bounds of
the original grid.

In addition, isosurfaces could be made visible or
invisible, the isosurface value could be set, and the color
could be white or could be based on the current colormap.

3.1.6 Volume Rendering

 This was the most problematic type of visualization.
Superficially, it was very similar to the generation of
isosurfaces and was implemented in much the same way.
Unfortunately, in most cases, superimposing the results of
many independently generated volume rendering was not
the same as volume rendering the original data.

When only one level was selected, because the grids
don’t overlap, it was possible to get consistent results.
Volume rendering the grids separately and then
compositing them correctly (i.e. in the right order)
sometimes matched the results of volume rendering all the
data present as a whole. Even in this case, it wasn’t clear
that the results we were getting were correct. This may
have been due to a misunderstanding of the volume
rendering in VTK, a problem with the compositing order,
or a problem with volume rendering in VTK 2.3
(especially in the case of multiple volumes).

When there were overlapping grids (i.e. when more
than one level was selected) the results were definitely
incorrect. Deciding what “correct” was wasn’t obvious if
the grids were to be treated independently. This was
analogous to the case of 2D slices where multiple grids
and multiple levels overlapped. Viewed in this way, the
only solution might be to select one level at a time when
the grids are being treated independently. The alternative
would be to remove the coarser data in the regions of
overlap but this would change the type of visualization
being done from the first to the second category discussed
above. As a result, this would be difficult to implement in
the current framework of ChomboVis.

3.2 Results

As we implemented ChomboVis, we tested it on a
number of data sets generated by software built on top of
Chombo. In particular, a Poisson solver was used to
generate data where the coarsest grid was 8x8x8, the
refinement ratio was 2, and there were 5 levels of
refinement. Thus, at the finest level, a grid that was

128x128x128 would cover the entire computational
domain (no such grid was present in the data). There were
a total of 175 grids in this data set and the size of data set
was approximately 7 Mbytes. At the coarsest level of
resolution there was only one grid and it covered the entire
domain. This would be considered a medium size data set
which could be (and was) computed on workstation.

In this case, ChomboVis started in a few seconds on
several of our workstations (e.g. SGI Indigo 2 with Solid
Impact graphics). This time was spent starting VTK,
running some initial Tcl/Tk code, reading in the coarsest
grid, and producing three 2D slices. The next coarsest
level also contains 1 grid and that level could be selected,
read, and displayed in about a second. The next three
levels contained between 40 and 70 grids. It took between
4 and 7 seconds to select, read, and display three 2D slices.
Once levels had been read in, the selection and redisplay
time went down by a factor of about two. With this data
set, at all levels of resolution, it was reasonable to
interactively move slices and change isosurface values (i.e.
changes were redisplayed in less than a second).

We were pleasantly surprised by these results. Once all
the data was read in there were in excess of 1200 VTK
pipelines/actors being managed via Tcl/Tk. All these
actors were being added and removed from a single VTK
renderer as levels were selected and various forms of
visualization were made visible and invisible. This
happened fairly efficiently and without any of the software
crashing.

3.3 Comments

Although our initial results were surprisingly good, we
know that the entire design had some fundamental
problems. First, for data sets that are large (e.g.
containing thousands to tens of thousand of grids),
handling all the grids independently in Tcl/Tk will most
likely make ChomboVis too inefficient to use even if it
doesn’t crash. Second, as has been pointed out throughout
this paper, treating all the selected grids independently
lead to artifacts in the visualization that may not be
acceptable. Finally, none of the visualization
computations were done so that parallel processing could
be used to speed up ChomboVis.

On the other hand, we built an initial version of a
visualization tool that could be used to look at data sets of
interest to ANAG and, hopefully, other users of Chombo.
It has allowed us to explore VTK and its Tcl/Tk interface
and we have learned a great deal in the process. Without
doing this we would have been unaware of many of the
issues described in this paper.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

8

4. Future Work

There are many ways in which we would like to extend
and improve ChomboVis. There are also many ways the
users would like to see ChomboVis extended and
improved! Luckily, these two sets of extensions and
improvements have a lot in common.

4.1 Extending Functionality

As soon as ANAG began looking at ChomboVis and
using it they had suggestions for extending its
functionality. We viewed this as a good sign as it meant
they were using the tool. In general, they wanted to see
more information shown in a textual form somewhere in
the ChomboVis window (e.g. the number of levels, the size
of the computational domain, the number of grids
currently selected). This should not be hard to address and
was important.

Another extension they wanted was the ability to view
2D slices in a separate window shown as a colored image.
In this case they wanted data from finer grids to overwrite
data from overlapping coarser grids and grid boundaries
and/or cell boundaries to be shown. They wanted the
ability to do contour plots of the 2D slices and select
regions of data to see in some type of spreadsheet form
(i.e. view the data values and/or data structures directly).

Similarly, they wanted be able to select grids and
possibly cells directly from the visualization. They would
like to use this as a way to modify the set of grids that were
being visualized (e.g. visualize just this grid, remove this
grid from the set of grids being visualized). In addition,
they wanted to get more information about the selected
grid (e.g. what were its physical dimensions and
placement in space, what was the size of the data array).

Finally, they wanted to be able to view time varying
data. A first step in this direction would be to extend
ChomboVis so that the input data file could be changed
from within the tool. Currently, the input data file can
only be chosen when ChomboVis is started. This
limitation made it easier to write the initial version of
ChomboVis but will clearly have to be addressed. The
next step would be to iterate through a list of data files
under the control of the user.

4.2 Migrating Functionality

As the visualization tasks become more complicated
and the data becomes larger it will be necessary to migrate
functionality from the Tcl/Tk interface directly into VTK.
In particular, if VTK was extended to work with lists of
grids and/or lists of lists then much of what was being
done in Tcl/Tk could be done directly with VTK. An
additional benefit would be that various types of

optimizations could then be done. For example, at each
step in a VTK visualization pipeline, each grid could be
processed in parallel.

Selection, picking, and interrogation of the data could
be done more simply and made more powerful. By
removing the additional layer between VTK and Tcl/Tk,
we could have direct access to the data and data structures
via C or C++. In addition, removing one level of
indirection would make all the computations more
efficient and hide less. In Tcl/Tk it may be fairly difficult
to interpret what was picked and to what part of the data
structure it belongs.

4.3 Other Types of Visualization

Once some of the functionality has been migrated from
Tcl/Tk to VTK (see section 4.2), it would be possible to
implement the second and third category of visualization
(see section 1.2). Both categories do not treat all the grids
as entirely independent data objects. Thus, representing,
passing, and processing all the selected grids, as a single
data object, would allow more sophisticated visualizations
and it would still be possible to do all the visualization
done by ChomboVis.

5. Conclusions

We were able to extend VTK, via its Tcl/Tk interface, to
visualize AMR data sets. We did this in approximately
one month and we were able to structure the Tcl/Tk code
so that it was both modular and extensible. In the process,
we learned a great deal about VTK, Tcl/Tk, and
visualizing this type of data. This resulted in a useful tool,
ChomboVis, and many ideas for extending it.

Acknowledgments

This work was supported by the Directory, Office of
Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098. In addition, we would like to thank ANAG
and the NERSC/LBNL Visualization Group for their help
during the initial development of ChomboVis.
Specifically, we would like to thank Brian Van Straalen,
Dan Graves, Wes Bethel, John Shalf, and Nancy Johnston.

References

[ANAG] http://seesar.lbl.gov/anag/

[CHOMBO]
http://seesar.lbl.gov/anag/software/chombo.html

[CHOMBOVIS]
http://seesar.lbl.gov/anag/software/chombovis.html

Visualization Development Environments 2000 Proceedings

9

[HDF5] http://hdf.ncsa.uiuc.edu/HDF5/

[NCSA] http://zeus.ncsa.uiuc.edu/~jshalf/VTK/vtkSMP/

[NERSC] http://www.nersc.gov/

[Tcl/Tk] “Tcl and the Tk Toolkit”, John K. Ousterhout,
Addison-Wesley, 1994.

[VTK] “The Visualization Toolkit, 2nd Edition”, Will
Schroeder, Ken Martin, Bill Lorensen, Prentice-Hall
Inc., 1998.

