Wes Bethel

Visapult: A Prototype Remote and Distributed Lawrence Berkeley National Laboratory
Visualization Application and Framework and Ra3vis Corporation
The Problem

Remote visualization is the process of creating pictures from data, where the data and viewer are on differ-
ent platforms, often separated by a wide area network. Traditional approaches to remote visualization
have tended to fall into two broad categories. Render-remote approaches are implementations where data
storage and access, visualization, rendering and viewer involve a single machine. Render-local
approaches require transmission of data to the viewer’s machine, where it is then visualized and rendered.
The former approach has the potential to address large-data problems, but sacrifices interactivity. The lat-
ter approach has the potential to preserve interactivity, but assumes that the data will fit entirely on the
local workstation, and that it is practical to transmit the data across the network.

Our Approach

We present Visapult, a prototype visualization application and framework that strikes a balance between
render-local and render-remote approaches. Visapult was designed to address the needs of scientific
researchers who produce and need to visualize hundreds of gigabytes, if not terabytes, of time-varying
data. With data of this scale, neither transmission across a network nor local storage is practical, yet inter-
action with the visualization is crucial. We did not want to sacrifice the gains in understanding that result
from motion parallax and stereoscopic presentation [1]. To achieve these goals, we have implemented an
application that uses shared rendering. Shared rendering refers to a cooperative visualization and render-
ing framework in which some of the rendering is performed close to the data, and some rendering is per-
formed on the local workstation. Given the disparity between data transmission rates and the requirements
for rendering interactivity, it is desirable to keep frame rates isolated from, and independent of, the latency
characteristic of network-based applications.

How it Works

Visapult consists of two logical components: a local viewer and a remote, back end data engine. The back
end retrieves scientific data from some source, such as a network data cache [2], then performs visualiza-
tion and partial rendering in parallel. Results are then transmitted to a viewer, which is an interactive 3D
graphics application. The viewer and back end communicate over the network using a custom TCP-based
protocol. The back end volume visualization engine is an implementation of an image-based rendering
assisted volume renderer [3]. The IBR-assisted volume rendering model decomposes nicely into a remote,
parallel component and a local, serial component. The remote component scales with available computa-
tional resources using an object-order, domain decomposition for parallel volume rendering. The local
viewer, also a parallel application, provides rendering at interactive frame rates, even on low-cost hard-
ware or in stereo. In the viewer, a scene graph model is updated by parallel listener processes whenever
new data arrives from the back end, but is rendered continuously by a dedicated process, effectively sepa-
rating network latency from rendering frame rates. Arbitrary geometry can be included in the scene graph
so that volume visualization is complemented with grid visualization, isocontours or other visualization
techniques. The fundamental design paradigm is the combination of parallel network communication, com-
bined with asynchronous scene graph updates.

The Future

Based upon the results of ongoing performance and profiling analysis, future work in Visapult will focus
upon performance improvements. From an architectural perspective, aggressive and asynchronous data
prefetching will improve overall data throughput. From a “network awareness” perspective, dynamic analy-
sis of the state of the network can lead to parameter changes based upon current bit rate, reliability or
other Quality-of-Service attributes. In some cases, bandwidth reservation is needed to allow for visualiza-
tion of very large (terascale) scientific data, where the scientific data is located on a network cache, or oth-
erwise not local to the back end visualization and rendering engine.

Acknowledgment

LBNL-45215 April 17, 2000 1



Wes Bethel
Visapult: A Prototype Remote and Distributed Lawrence Berkeley National Laboratory
Visualization Application and Framework and Ra3vis Corporation

This work was supported by the Director, Office of Science, Office of Basic Energy Science, of the US
Department of Energy under Contract No. DE-AC03-76SF00098.

References

[1] Colin Ware and Glenn Franck, Evaluating Stereo and Motion Cues for Visualizing Information Nets in
Three Dimensions, ACM Transactions on Graphics, Volume 15, Number 2, April 1996.

[2] “A Network-Aware Distributed Storage Cache for Data Intensive Environments”, Tierney, B. Lee, J.,
Crowley, B., Holding, M., Hylton, J., Drake, F., Proceedings of IEEE High Performance Distributed Com-
puting conference, August 1999, LBNL-42896. see: http://www-didc.lbl.gov/DPSS/

[3] Klaus Meuller, Naeem Shareef, Jian Huang and Roger Crawfis, IBR-Assisted Volume Rendering, in
Proceedings of IEEE Visualization 1999, Late Breaking Hot Topics, October 1999.

LBNL-45215 April 17, 2000 2



Wes Bethel
Visapult: A Prototype Remote and Distributed Lawrence Berkeley National Laboratory
Visualization Application and Framework and Ra3vis Corporation

Figure 1.

Raw scientific data is domain-decomposed, then each
subset is volume-rendered in parallel, producing texture
maps that are transmitted to the viewer for insertion into
the scene graph and subsequent display.

Visualization of adaptive, hierarchi-
cal grids from the combustion simu-
lation are included with volume
rendering.

Figure 2.

LBNL-45215 April 17, 2000



