
Challenges and Solutions
for Visual Data Analysis
on Current and Emerging

HPC Platforms

Wes Bethel & Hank Childs, Lawrence Berkeley Lab July 20, 2011

Outline

¨  Petascale & Exascale issues (Childs)
¨  Tools: how the community comes together to

collectively solve large data visual data analysis
problems (Childs)

¨  Achieving extreme performance in visual data
analysis (Bethel)

¨  Recent examples/case studies (Bethel)

Visualization 101

¨  Transformation of numbers (data) into readily
comprehensible images.

¨  Plays an integral part in the scientific and analytic
processes.

¨  Data intensive.

Why are supercomputing trends going to
change the rules for visualization and analysis?

¨  Michael Strayer (U.S. DoE Office of Science) in 2006:
“petascale is not business as usual”
¤  Especially true for visualization and analysis!

¨  Large scale data creates two incredible challenges:
 scale and complexity

¨  Scale is not “business as usual”
¤ Will discuss this assertion throughout this talk
¤ Solution: we will need “smart” techniques in production

environments
¨  More resolution leads to more and more complexity

¤ Will the “business as usual” techniques still suffice?

How does increased computing power
affect the data to be visualized?

Large # of time steps

Large ensembles

High-res meshes

Large # of variables
/ more physics

Your mileage may vary; some
simulations produce a lot of data

and some don’t.
Slide credit: Sean Ahern (ORNL) & Ken Joy (UCD)

Today’s production visualization tools
use “pure parallelism” to process data.

P0!
P1!

P3!

P2!

P8! P7!P6!
P5!

P4!

P9!

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0! P3!P2!

P5!P4! P7!P6!

P9!P8!

P1!

Parallel Simulation Code

Pure parallelism

¨  Pure parallelism: “brute force” … processing full
resolution data using data-level parallelism

¨  Pros:
¤ Easy to implement

¨  Cons:
¤ Requires large I/O capabilities
¤ Requires large amount of primary memory

I/O and visualization
n  Pure parallelism is almost

always >50% I/O and
sometimes 98% I/O

n  Amount of data to visualize
is typically O(total mem)

FLOPs	
 Memory	
 I/O	

Terascale	
 machine	

“Petascale	
 machine”	

n  Two big factors:
①  how much data you have to read
②  how fast you can read it

n  à Relative I/O (ratio of total memory and I/O) is key

Why is relative I/O getting slower?

¨  I/O is quickly becoming a dominant cost in the
overall supercomputer procurement.
¤ And I/O doesn’t pay the bills.

¨  Simulation codes aren’t as exposed.

We need to de-emphasize I/O in our
visualization and analysis techniques.

There are “smart techniques” that
de-emphasize memory and I/O.
¨  Out of core
¨  Data subsetting
¨  Multi-resolution
¨  In situ

¨  … the community is currently getting these
techniques deployed in production tools.

¨  This will be the primary challenge of the
<100PFLOP era.

Exascale hurdle: memory bandwidth
eats up the entire power budget

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
em

or
y

Po
w

er
 C

on
su

m
pt

io
n

in
 M

eg
aw

at
ts

 (
M

W
)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory ($150M
cumulative)

Feasible Power Envelope (20MW)

c/o John Shalf, LBNL

¨  Hard to get data off the machine.
¤ And we can’t read it in if we do get it

off.

¨ Hard to even move it around the
machine.

¨  à Beneficial to process the data in

situ.
.

Possible in situ visualization scenarios

Visualization could be a service in this system (tightly coupled)…

… or visualization could be done on a separate node located nearby dedicated to
visualization/analysis/IO/etc. (loosely coupled)

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

Physics #1
Physics #2

Physics #n
…

Services Viz

…

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

Physics #1
Physics #2

Physics #n
…

Services

One of many
nodes dedicated
to vis/analysis/IO

Accelerator, similar
to HW on rest of
exascale machine
(e.g. GPU)

… or maybe this is
a high memory
quad-core running
Linux!

Specialized vis &
analysis resources

… or maybe the data
is reduced and sent to
dedicated resources
off machine!

… And likely many more configurations

Viz

Viz

Viz

Viz

We will possibly need to run on:
- The accelerator in a lightweight way
- The accelerator in a heavyweight way
- A vis cluster (?)

We don’t know what the best technique
will be for this machine.

And it might be situation dependent.

Additional exascale challenges

¨  Programming language:
¤ OpenCL? Domain-specific language?
¤ We have a substantial investment in CPU code; we can’t

even get started on migrating until language is resolved.

¨  Memory efficiency
¨  How do we explore data?

¤  In situ reductions that are post-processed afterwards?

¨  Resiliency
¨  New types of data – massive ensembles, multi-

physics, etc – will require new techniques
¨  Reducing complexity

Tools: the VDA community achieves an
economy of scale by collectively developing
a shared infrastructure that is used by many

application areas.

Food co-op, Ralston, Iowa

VisIt is an open source, richly featured, turn-
key application for large data.

¨  Terribly named!!!:
¤ Visual debugging
¤ Quantitative & comparative

analysis
¤ Data exploration
¤ Presentations

¨  Popular
¤ R&D 100 award in 2005
¤ Used on many of the Top500
¤ >>>100K downloads

217 pin reactor
cooling simulation

Run on ¼ of
Argonne BG/P

Image credit: Paul
Fischer, ANL

1 billion grid points / time slice

VisIt is used to look at lots of types
of simulated and experimental data.

Fusion, Sanderson, UUtah

Particle accelerators, Ruebel, LBNL

Astrophysics, Childs

Nuclear Reactors, Childs

It has taken a lot of research to make VisIt work

Systems research:
Adaptively applying

algorithms in a
production env.

Algorithms research:
How to efficiently
calculate particle
paths in parallel.

Algorithms research:
How to volume

render efficiently in
parallel.

Methods research:
How to incorporate

statistics into
visualization.

Scaling research:
Scaling to 10Ks of

cores and trillions of
cells.

Architectural
research:

Hybrid parallelism
+ particle advection

Systems research:
Using smart DB
technology to

accelerate processing

Architectural
research:

Parallel GPU
volume rendering

Algorithms research:
Reconstructing

material interfaces
for visualization

Algorithms research:
Accelerating field
evaluation of huge
unstructured grids

VisIt recently demonstrated good
performance at unprecedented scale.

●  Weak scaling study: ~62.5M cells/core

18

#cores Problem Size Model Machine

8K 0.5T IBM P5 Purple

16K 1T Sun Ranger

16K 1T X86_64 Juno

32K 2T Cray XT5 JaguarPF

64K 4T BG/P Dawn

16K, 32K 1T, 2T Cray XT4 Franklin

Two trillion cell data set,
rendered in VisIt by

David Pugmire on ORNL
Jaguar machine

The VisIt team focuses on making a
robust, usable product for end users.

•  Manuals
–  300 page user manual
–  200 page command line interface manual
–  “Getting your data into VisIt” manual

•  Wiki for users (and developers)
•  Revision control, nightly regression testing, etc
•  Executables for all major platforms
•  Day long class, complete with exercises

Slides from the VisIt class

VisIt is a vibrant project with many
participants.

¨  Over 75 person-years of effort
¨  Over 1.5 million lines of code

¨  Partnership between: Department of Energy’s Office of Science,
National Nuclear Security Agency, and Office of Nuclear Energy,
the National Science Foundation XD centers (Longhorn XD and
RDAV), and more….

2004-6

User community
grows, including
AWE & ASC
Alliance schools

Fall ‘06

VACET is funded

Spring ‘08

AWE enters repo

2003

LLNL user
community
transitioned
to VisIt

2005

2005 R&D100

2007

SciDAC Outreach
Center enables
Public SW repo

2007

Saudi Aramco
funds LLNL to
support VisIt

Spring ‘07

GNEP funds LLNL
to support GNEP
codes at Argonne

Summer‘07

Developers from
LLNL, LBL, & ORNL
Start dev in repo

‘07-’08

UC Davis & UUtah
research done
in VisIt repo

2000

Project started

‘07-’08

Partnership with
CEA is developed

2008

Institutional support
leverages effort from
many labs

More developers
Entering repo all
the time

Achieving Extreme Performance

Achieving Extreme Performance

¨  The lessons of auto-tuning and multi-/many-core
architectures:
¤ Performance can vary by as much as 5x depending

upon how tunable algorithmic parameters.

¨  Hybrid-parallelism:
¤ MPI-only approaches not sustainable to extreme levels

of concurrency.
¤ Our results show hybrid parallelism runs faster,

consumes less memory, requires less data movement.

23

Algorithm Studied: Raycasting VR
¨  Overview of Levoy’s method

¤ For each pixel in image plane:
n Find intersection of ray and volume
n Sample data (RGBa) along ray,

integrate samples to compute final
image pixel color

24

Parallelizing Volume Rendering

¨  Image-space decomposition.
¤  Each process works on a disjoint subset of the final image (in

parallel)
¤  Processes may access source voxels more than once, will

access a given output pixel only once.
¤ Great for shared memory parallelism.

¨  Object-space decomposition.
¤  Each process works on a disjoint subset of the input data (in

parallel).
¤  Processes may access output pixels more than once.
¤ Output requires image composition (ordering semantics).
¤  Typical approach for distributed memory parallelism.

25

Autotuning and Performance
Optimization

26

Motivation

¨  Many algorithms have “tunable” parameters
¤  CUDA: size/shape of thread block.
¤  Image-parallel volume rendering: size of image tile.

¨  Choice of tunable parameters can have a huge impact on algorithm
performance.
¤  May vary by specific problem, architecture.
¤  Examples that follow:

n  Shared-memory volume rendering: 2.5x difference between best and worst
depending upon image tile size (unpublished work)

n  CUDA: 10x performance difference on stencil-based code (unpublished work,
led to half of work for SC09 paper submission).

¤  Other examples:
n  Multi-core CPU and GPU: 49x performance gain for a clinical medical

imaging application. (Submitted to SC09)
n  Autotuning framework and multi-core CPUs and GPUs applied to stencil-

based code. (CUG 2009, Best Paper Award)

27

Work Decomposition: Image Tile
Size
¨  Final image divided into spatially disjoint regions, or work

blocks.

¨  User specifiable block size/shape:

¤  E.g., 8x8, 64x64, 512x1, 1x512

¨  Do some block sizes and shapes result in better performance
than others?

28

Does Block Size/Shape Impact
Performance?

¨  Yes! Huge impact!
¤ Greater variation at increasing concurrency.
¤ Greater variation for more memory intensive

algorithmic configurations.

Percent variation in runtime across entire test battery.

29

Optimal Block Size/Shape?

¨  Raw render time normalized
by minimum render time value
(shows sweet spots)

¨  This example:
¤  2 threads, AMD/Italy
¤  X-axis/Y-axis: block sizes
¤  Blue: sweet spot
¤  Red: sour spot

30

Optimal Block Size/Shape?

¨  Avg render
time.

¨  1, 2, 4, 8
threads.

¨  NN, NL.
¨  Bw=128 is

really bad
at t=2, 4,
and bad at
t-8.

¨  Dual socket,
dual core
machine.

31

Optimal Block Size/Shape?

32

Optimal Block Size/Shape?

¨  AMD/Opteron-Italy
¨  Sweet spot/region:

¤ Block width: 23-24

¤ Block height: 22-26

¨  Sour spot/region:
¤ Block width: 27-28

¤ Block height: all

33

Cache Utilization and Block Size
¨  Correlation between L1 misses

and frame rate

Many-core Platform: GPU

¨  NV Fermi
¨  Vary: block size, etc.
¨  Measure:

¤ Runtime, L2 miss

¨  Results:
¤ Best runtime: medium-sized blocks
¤ Best memory utilization: small blocks
¤ Surprising: best performing configuration isn’t always

the one that makes the best use of the memory
hierarchy (platform specific issues).

Runtime L2 misses

Performance Optimization and
Auto-tuning: Summary
¨  Different settings for tunable algorithmic

parameters can have a huge impact on
performance on m-core platforms.

¨  Our results show roughly 2.5x variation on 6-core
CPUs, up to 4.5x variation on GPUs.

¨  Code: unstructured memory access, largely memory
bound rather than compute bound.

¨  Optimal settings from this study feed into the next
study…

Hybrid Parallelism

37

State of Parallelism in Scientific
Computing
¨  Most production codes written using MPI, vendor

MPI implementations optimized for their
architecture.

¨  HPC community wondering how well MPI will scale
to high concurrency, particularly on 100-core CPUs.

¨  What to do?
¤ Some alternatives: data parallel languages (CUDA),

PGAS languages (UPC), global shared memory (CAF).
¤ Various research projects explore different aspects of

this space: Chombo in Titanium, autotuning, hybrid
parallelism.

38

This Study

¨  First-ever study of hybrid parallelism on
visualization: raycasting volume rendering.
¤ Parallels similar work done for scientific computing.

¨  Hybrid-parallel implementation/architecture.
¨  Performance study.

¤ Runs at 216K-way parallel: 6x larger than any
published results (circa May 2010).

¤ Look at:
n Costs of initialization, Memory use comparison, Scalability,

Absolute runtime.

39

Hybrid Parallel Volume Rendering

¨  Hybrid-parallelism a blend of shared- and
distributed-memory parallelism.

¨  Distributed-memory parallelism:
¤  Each socket assigned a spatially disjoint subset of source data, produces

an image of its chunk.
¤  All subimages composited together into final image.

¤  MPI implementation.

¨  Shared-memory parallelism:
¤  Inside a socket, threads use image-space partitioning, each thread

responsible for a subset of the final image.
n  What is the best image tile size? (Autotuning presentation)

¤  Implementations (2): pthreads, OpenMP.

40

Hybrid Parallel Volume Rendering

¨  Our hybrid-parallel architecture:

Shared memory parallel

Distributed-memory parallel

41

Our Experiment

¨  Thesis: hybrid-parallel will exhibit favorable performance,
resource utilization characteristics compared to traditional
approach.

¨  How/what to measure?
¤  Memory footprint, communication traffic load, scalability characteristics,

absolute runtime.
¤  Across a wide range of concurrencies.
¤  Algorithm performance somewhat dependent upon viewpoint, data:

n  Vary viewpoints over a set that cut through data in different
directions: will induce different memory access patterns.

¨  Strong scaling study: hold problem size constant, vary amount
of resources.

42

Experiment: Platform and Source
Data
¨  Platform: JaguarPF, a Cray XT5 system at ORNL

¤  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

¨  Source data:
¤  Combustion simulation results, hydrogen flame (data courtesy J. Bell,

CCSE, LBNL)
¤  Effective AMR resolution: 10243, flattened to 5123, runtime upscaled to

46083 (to avoid I/O costs).

¨  Target image size: 46082 image.
¤  Want approx 1:1 voxels to pixels.

¨  Strong scaling study:
¤  As we increase the number of procs/cores, each proc/core works on a

smaller-sized problem.
¤  Time-to-solution should drop.

43

Memory Use – MPI_Init()

¨  Per PE memory:
¤ About the same at 1728, over 2x at 216000.

¨  Aggregate memory use:
¤ About 6x at 1728, about 12x at 216000.
¤ At 216000, -only requires 2GB of memory for

initialization per node!!!

44

Memory Use – Ghost Zones

¨  Two layers of ghost cells required for this problem:
¤  One for trilinear interpolation during ray integration loop.

¤  Another for computing a gradient field (central differences) for shading.

¨  Hybrid approach uses fewer, but larger data blocks.
¤  ~40% less memory required for ghost zones (smaller surface area)

¤  Reduced communication costs

45

Scalability – Raycasting Phase
¨  Near linear scaling since no

interprocess communication.
¨  -hybrid shows sublinear

scaling due to oblong block
shape.

¨  -only shows slightly better
than linear due to reduced
work caused by perspective
foreshortening.

46

Scalability – Compositing

¨  How many compositors to use?
¤  Previous work: 1K to 2K for 32K

renderers (Peterka, 2009).
¤  Our work: above ~46K renderers,

4K to 8K works better.
¤  -hybrid cases always performs

better: fewer messages.
¤  Open question: why the critical

point?

47

Absolute Runtime

¨  -hybrid outperforms –only at every concurrency
level.
¤ At 216K-way parallel, -hybrid is more than twice as

fast as –only.
¤ Compositing times begin to dominate: communication

costs.

48

Summary of Results

¨  Absolute runtime: -hybrid twice as fast as –only
at 216K-way parallel.

¨  Memory footprint: -only requires 12x more
memory for MPI initialization then –hybrid
¤  Factor of 6x due to 6x more MPI PEs.

¤  Additional factor of 2x at high concurrency, likely
a vendor MPI implementation (an N2 effect).

¨  Communication traffic:
¤  -hybrid performs 40% less communication than -

only for ghost zone setup.

¤  -only requires 6x the number of messages for
compositing.

¨  Image: 46082 image of a ~45003 dataset
generated using 216,000 cores on JaguarPF in
~0.5s (not counting I/O time).

Examples/Case Studies

¨  1995: Concurrent (in situ) visualization: UTCHEM
simulation code and AVS.

¨  2011: Advanced Simulation Capability for
Environmental Management (ASCEM).

Reservoir modeling and VDA

¨  Problem(s):
¤  Setting up inputs (well locations) to optimize

production (secondary, tertiary recovery, or EM
applications) is tricky; input “card deck.”

¤  Simulations generate tabular output, difficult to
quickly gain insight.

¨  Approach:
¤  Couple model setup with intuitive input devices.

¤  Couple simulation directly with VDA software.
¤  Closed-loop system easy to use, quickly converge

on optimal setup.

Problem Setup

¨  Placement of
production and
injection wells to
optimize recovery/
mobilization.

¨  Supplant manual
editing of card deck
with 3D input device
for easy well
placement.

¨  (movie, next slide)

UTCHEM+AVS

Movie file located here: http://vis.lbl.gov/Research/utchem-1993/images/utchem.mov

Environmental Management

Solving highly complex technical problems with transformational
technologies can lead to billions of dollars of savings and improved

clean up

• 6.4	
 trillion	
 liters	
 &	
 40	

million	
 cubic	
 meters	

of	
 contaminated	

groundwater	
 and	

soil	
 respecCvely	

• Distributed	
 across	
 30	

states	
 	
 and	
 10,000	

individual	
 sites	

Environmental	
 Management	
 -­‐	
 Mission	

“Complete the safe cleanup of the environmental legacy brought about from

five decades of nuclear weapons development, production, and
Government-sponsored nuclear energy research.”

U.S. DOE Nuclear Cleanup Site

Largest Sites

Waste Isolation Pilot Plant

Hanford Site

Waste Isolation
Pilot Plant

Oakridge Site

Savannah River
Site

Lawrence Livermore
National Laboratory

Nevada National
Security Site

Stanford Linear
Accelerator

Lawrence Berkeley
National Laboratory

Energy Technology
Engineering Center

General Atomics

Los Alamos
National Laboratory

Sandia National Laboratory

Pantex Plant

Idaho National Laboratory

Ames Laboratory

Paducah Gaseous Dif f usi onPlant

Argonne National Laboratory

Fermi National
Accelerator

Portsmouth Gaseous
Dif f usi onPlant

West Valley
Demonstration Project

Separations Process
Research Unit

Moab Site

The Challenge

v Some successes: SRS F-Area groundwater contaminated
with metals and radionuclides
•  Pump & treat system cost $1M/month to

operate and generated waste products
•  Barrier system installed in 2006 costs <$10K/month

and generates no waste products

v Need more options to address costly
systems and meet regulatory
requirements for closure of sites
•  Hanford pump & treat systems for the 200 Area cost ~

$10M/year

•  Oak Ridge mercury contamination in debris, soil,
groundwater, and stream systems is estimated to cost
$1B to meet regulatory requirements

55

q Current	
 pracCces	
 work	
 for	
 some	
 sites	
 and	
 lead	
 to	
 closure	

q Many	
 of	
 the	
 subsurface	
 contaminaCon	
 problems	
 at	
 DOE	
 sites	
 have	

no	
 pracCcal	
 remedy	

ASCEM Challenge and Impact
Ø  Challenge

•  Reduce time required and financial cost of remedial actions at sites within EM complex by
providing scientifically defensible modeling and simulation tools that accurately address complex
environmental management situations

•  Develop an integrated, high-performance computer modeling capability to simulate multiphase,
multi-component, multi-scale flow and contaminant transport, waste degradation and contaminant
release, including

•  Provide (software) tools for decision making: parameter estimation, visualization, uncertainty
quantification, data management, risk analysis, and decision support

•  Leverage investments made by SC, NE, RW, and FE as well as other Federal agencies to
capitalize on significant investments and reduce the lifecycle development time and costs

Ø Impact
•  Near-term: technically underpin” existing site RA’s
and PA’s
•  Inform strategic data collection for model improvement
•  Scientifically defensible and standardized EM RA’s and
PA’s

ASCEM Leverages SciDAC and ASC

¨  Significant leveraging of investments by Advanced Simulation and Computing
(ASC /DOE NNSA) and Advanced Scientific Computing Research (ASCR/DOE
SC)

¨  Examples include:
¤  VisIt – visualization and graphic analysis tool developed by ASC and ASCR SciDAC

Program
¤  PSUADE – uncertainty analysis tool developed by ASC

¤  Trilinos Framework – services for parallel programming and integrated software
packages developed by ASC and ASCR SciDAC program

¤  PETsc – Portable, Extensible Toolkit for Scientific Computation developed by ASCR
SciDAC Program

¤  BoxLib – parallel AMR framework developed by ASCR Base Math and SciDAC

¤  MFD – Mimetic Finite Difference discretization methods developed by ASCR Base
Math Program

¤  Geochemistry Toolset – developed by computational scientists funded through DOE
SC BER

ASCEM	
 Delivered	
 via	
 a	
 NaConal	
 	

Laboratory	
 ConsorCum	

Savannah River Site F-Area
Background
¨  Disposal of low-level radioactive, acid waste solutions (1955–1989) created

groundwater plume (pH 3–3.5, NO3, U, 90Sr, 129I, 99Tc, tritium)
¨  Ongoing remediation includes capping (1989), active pump and treat

(1997-2003), and pH manipulation since 2004
¨  Natural attenuation is desired as a long-term remediation strategy

Goals:	
 Phase/Year	
 1	
 DemonstraCon	

Pla2orm	
 Data	
 	

Management	
 	

Pla2orm	

Visualiza7on	

Pla2orm	

Uncertainty	

Quan7fica7on	
 HPC	

•  DeposiConal	
 data	

entered	
 into	

databases	

•  Contaminant	

concentraCons	

entered	
 into	

databases	

•  Browsing	
 and	

query	
 interface	

with	
 tabled	
 output	

•  3D	
 navigaCon	
 of	

concentraCon	
 data	

•  VisualizaCon	
 of	

Cme	
 lapse	

contaminant	

concentraCons	

through	
 subsurface	

domain	

•  SelecCvely	
 enable	

several	
 types	
 of	

data	

•  IniCal	
 Monte	
 Carlo	

sampling	
 capability	

•  AutomaCc	
 creaCon	

of	
 forward	

simulaCon	
 runs	

•  VisualizaCon	
 of	

relaConships	

between	
 key	

parameters	
 and	

model	
 outputs	

•  3D	
 simulaCon	

•  Richards’	
 equaCon	

•  Parallel	
 (100	
 cores)	

•  ReacCve	
 transport	

of	
 uranium	

•  AdvecCon	
 of	
 non-­‐

reacCve	
 species	

•  Aqueous	

speciation
•  SorpCon	

•  Mineral	

precipitaCon,	
 and	

dissoluCon	

ASCEM	
 VisualizaCon	
 Year	
 1	

ObjecCves	

¨  Visual	
 data	
 exploraCon	
 of	

¤ Part	
 1:	
 Historical	
 field	
 data.	

¤ Part	
 2:	
 SimulaCon	
 data.	

¤ Part	
 3:	
 Ensemble	
 data.	

VisualizaCon	
 –	
 Goals	
 and	
 Approach	

(Part	
 1)	

¨  Visual	
 data	
 exploraCon	
 of	
 different	
 types	
 of	
 geospaCally	

registered	
 data	
 for	
 the	
 F-­‐area	
 seepage	
 basin:	

¤  ObservaCon	
 wells,	
 surface	
 topography,	
 deposiConal	

environment,	
 observed	
 concentraCon	
 from	
 many	
 years,	
 GIS	

data.	

¨  Phase	
 I	
 DemonstraCon	
 ObjecCves:	

¤  3D	
 navigaCon	
 through	
 the	
 F-­‐area	
 historical	
 concentraCon	
 data.	

¤  Temporal	
 browsing	
 to	
 show	
 Cme	
 evolving	
 	
 contaminant	
 plume.	

¨  Approach	

¤  Add	
 new	
 capabiliCes	
 to	
 well-­‐established,	
 producCon-­‐quality,	

open	
 source	
 visual	
 data	
 analysis	
 and	
 exploraCon	
 soaware	

infrastructure	
 to	
 meet	
 ASCEM	
 needs.	
 	

¤  Demonstrate	
 viability	
 via	
 applicaCon	
 to	
 ASCEM-­‐specific	

problems.	
 	

ASCEM Animation

Movie file located here: http://vis.lbl.gov/Vignettes/ASCEM/ascem.mp4

Summary

¨  DOE and LBNL Visualization team studying different
aspects of scalable visualization and analysis,
deploying working technologies to the science
research community.

¨  Terascale: Easy. Petascale: lots of work to do.
Exascale: Hard.
¤ Exascale requires us to rethink everything, and requires

us to change course in terms of programming models/
languages, and in how we think about performance.

