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Visualization 101 

¨  Transformation of numbers (data) into readily 
comprehensible images. 

¨  Plays an integral part in the scientific and analytic 
processes. 

¨  Data intensive. 



Why are supercomputing trends going to 
change the rules for visualization and analysis? 

¨  Michael Strayer (U.S. DoE Office of Science) in 2006:           
“petascale is not business as usual” 
¤  Especially true for visualization and analysis! 

¨  Large scale data creates two incredible challenges: 
 scale and complexity 

¨  Scale is not “business as usual” 
¤ Will discuss this assertion throughout this talk 
¤ Solution: we will need “smart” techniques in production 

environments 
¨  More resolution leads to more and more complexity 

¤ Will the “business as usual” techniques still suffice? 



How does increased computing power 
affect the data to be visualized? 

Large # of time steps 

Large ensembles 

High-res meshes 

Large # of variables 
/ more physics 

Your mileage may vary; some 
simulations produce a lot of data 

and some don’t. 
Slide credit: Sean Ahern (ORNL) & Ken Joy (UCD) 



Today’s production visualization tools 
use “pure parallelism” to process data.  
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Pure parallelism 

¨  Pure parallelism: “brute force” … processing full 
resolution data using data-level parallelism 

¨  Pros: 
¤ Easy to implement 

¨  Cons: 
¤ Requires large I/O capabilities 
¤ Requires large amount of primary memory 



I/O and visualization 
n  Pure parallelism is almost 

always >50% I/O and 
sometimes 98% I/O 

n  Amount of data to visualize 
is typically O(total mem) 

FLOPs	
   Memory	
   I/O	
  

Terascale	
  machine	
  

“Petascale	
  machine”	
  

n  Two big factors:  
①  how much data you have to read 
②  how fast you can read it 

n  à Relative I/O (ratio of total memory and I/O) is key 



Why is relative I/O getting slower? 

¨  I/O is quickly becoming a dominant cost in the 
overall supercomputer procurement. 
¤ And I/O doesn’t pay the bills. 

¨  Simulation codes aren’t as exposed. 

We need to de-emphasize I/O in our 
visualization and analysis techniques. 



There are “smart techniques” that    
de-emphasize memory and I/O. 
¨  Out of core 
¨  Data subsetting 
¨  Multi-resolution 
¨  In situ 

¨  … the community is currently getting these 
techniques deployed in production tools.   

¨  This will be the primary challenge of the 
<100PFLOP era. 



 
Exascale hurdle: memory bandwidth 
eats up the entire power budget 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.01 0.1 0.2 0.5 1 2 

M
em

or
y 

Po
w

er
 C

on
su

m
pt

io
n 

in
 M

eg
aw

at
ts

 (
M

W
) 

Bytes/FLOP ratio (# bytes per peak FLOP) 

Stacked JEDEC 30pj/bit 2018 ($20M) 

Advanced 7pj/bit Memory ($100M) 

Enhanced 4pj/bit Advanced Memory ($150M 
cumulative) 

Feasible Power Envelope (20MW) 

c/o John Shalf, LBNL 

¨  Hard to get data off the machine. 
¤ And we can’t read it in if we do get it 

off. 

¨ Hard to even move it around the 
machine. 

 
¨  à Beneficial to process the data in 

situ. 
. 



Possible in situ visualization scenarios 

Visualization could be a service in this system (tightly coupled)… 

… or visualization could be done on a separate node located nearby dedicated to 
visualization/analysis/IO/etc. (loosely coupled) 
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Services 

One of many 
nodes dedicated 
to vis/analysis/IO 

Accelerator, similar 
to HW on rest of 
exascale machine 
(e.g. GPU) 

… or maybe this is 
a high memory 
quad-core running 
Linux! 

Specialized vis & 
analysis resources 

… or maybe the data 
is reduced and sent to 
dedicated resources 
off machine! 

… And likely many more configurations 

Viz 

Viz 

Viz 

Viz 

We will possibly need to run on: 
- The accelerator in a lightweight way 
- The accelerator in a heavyweight way 
- A vis cluster (?) 

We don’t know what the best technique 
will be for this machine. 

And it might be situation dependent. 



Additional exascale challenges 

¨  Programming language: 
¤ OpenCL?  Domain-specific language? 
¤ We have a substantial investment in CPU code; we can’t 

even get started on migrating until language is resolved. 

¨  Memory efficiency 
¨  How do we explore data? 

¤  In situ reductions that are post-processed afterwards? 

¨  Resiliency 
¨  New types of data – massive ensembles, multi-

physics, etc – will require new techniques 
¨  Reducing complexity 



Tools: the VDA community achieves an 
economy of scale by collectively developing 
a shared infrastructure that is used by many 

application areas. 

Food co-op, Ralston, Iowa 



VisIt is an open source, richly featured, turn-
key application for large data. 

¨  Terribly named!!!: 
¤ Visual debugging 
¤ Quantitative & comparative 

analysis 
¤ Data exploration 
¤ Presentations 

¨  Popular 
¤ R&D 100 award in 2005 
¤ Used on many of the Top500 
¤ >>>100K downloads 

217 pin reactor 
cooling simulation   

Run on ¼ of 
Argonne BG/P   

Image credit: Paul 
Fischer, ANL 

1 billion grid points / time slice 



VisIt is used to look at lots of types 
of simulated and experimental data. 

Fusion, Sanderson, UUtah 

Particle accelerators, Ruebel, LBNL 

Astrophysics, Childs 

Nuclear Reactors, Childs 



It has taken a lot of research to make VisIt work 

Systems research: 
Adaptively applying 

algorithms in a 
production env. 

Algorithms research: 
How to efficiently 
calculate particle 
paths in parallel. 

Algorithms research: 
How to volume 

render efficiently in 
parallel. 

Methods research: 
How to incorporate 

statistics into 
visualization. 

Scaling research: 
Scaling to 10Ks of 

cores and trillions of 
cells. 

Architectural 
research: 

Hybrid parallelism 
+ particle advection 

Systems research: 
Using smart DB 
technology to 

accelerate processing 

Architectural 
research: 

Parallel GPU 
volume rendering 

Algorithms research: 
Reconstructing 

material interfaces 
for visualization 

Algorithms research: 
Accelerating field 
evaluation of huge 
unstructured grids 



VisIt recently demonstrated good 
performance at unprecedented scale. 

●  Weak scaling study: ~62.5M cells/core 
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#cores Problem Size Model Machine 

8K 0.5T IBM P5 Purple 

16K 1T Sun Ranger 

16K 1T X86_64 Juno 

32K 2T Cray XT5 JaguarPF 

64K 4T BG/P Dawn 

16K, 32K 1T, 2T Cray XT4 Franklin 

Two trillion cell data set, 
rendered in VisIt by 

David Pugmire on ORNL 
Jaguar machine 



The VisIt team focuses on making a 
robust, usable product for end users. 

•  Manuals 
–  300 page user manual 
–  200 page command line interface manual 
–  “Getting your data into VisIt” manual 

•  Wiki for users (and developers) 
•  Revision control, nightly regression testing, etc 
•  Executables for all major platforms 
•  Day long class, complete with exercises 

Slides from the VisIt class 



VisIt is a vibrant project with many 
participants. 

¨  Over 75 person-years of effort 
¨  Over 1.5 million lines of code 

¨  Partnership between: Department of Energy’s Office of Science, 
National Nuclear Security Agency, and Office of Nuclear Energy, 
the National Science Foundation XD centers (Longhorn XD and 
RDAV), and more…. 

2004-6 

User community 
grows, including 
AWE & ASC  
Alliance schools 

Fall ‘06 

VACET is funded 

Spring ‘08 

AWE enters repo 

2003 

LLNL user  
community 
transitioned         
to VisIt 

2005 

2005 R&D100 

2007 

SciDAC Outreach  
Center enables 
Public SW repo 

2007 

Saudi Aramco 
funds LLNL to  
support VisIt       

Spring ‘07 

GNEP funds LLNL  
to support GNEP  
codes at Argonne 

Summer‘07 

Developers from  
LLNL, LBL, & ORNL 
Start dev in repo 

‘07-’08 

UC Davis & UUtah  
research done  
in VisIt repo 

2000 

Project started 

‘07-’08 

Partnership with 
CEA is developed 

2008 

Institutional support 
leverages effort from  
many labs 

More developers 
Entering repo all 
the time 



Achieving Extreme Performance 



Achieving Extreme Performance 

¨  The lessons of auto-tuning and multi-/many-core 
architectures: 
¤ Performance can vary by as much as 5x depending 

upon how tunable algorithmic parameters. 

¨  Hybrid-parallelism: 
¤ MPI-only approaches not sustainable to extreme levels 

of concurrency. 
¤ Our results show hybrid parallelism runs faster, 

consumes less memory, requires less data movement. 
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Algorithm Studied: Raycasting VR 
¨  Overview of Levoy’s method 

¤ For each pixel in image plane: 
n Find intersection of ray and volume 
n Sample data (RGBa) along ray, 

integrate samples to compute final 
image pixel color 
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Parallelizing Volume Rendering 

¨  Image-space decomposition. 
¤  Each process works on a disjoint subset of the final image (in 

parallel) 
¤  Processes may access source voxels more than once, will 

access a given output pixel only once. 
¤ Great for shared memory parallelism. 

¨  Object-space decomposition. 
¤  Each process works on a disjoint subset of the input data (in 

parallel). 
¤  Processes may access output pixels more than once.  
¤ Output requires image composition (ordering semantics). 
¤  Typical approach for distributed memory parallelism. 
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Autotuning and Performance 
Optimization 
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Motivation 

¨  Many algorithms have “tunable” parameters 
¤  CUDA: size/shape of thread block. 
¤  Image-parallel volume rendering: size of image tile. 

¨  Choice of tunable parameters can have a huge impact on algorithm 
performance. 
¤  May vary by specific problem, architecture. 
¤  Examples that follow: 

n  Shared-memory volume rendering: 2.5x difference between best and worst 
depending upon image tile size (unpublished work) 

n  CUDA: 10x performance difference on stencil-based code (unpublished work, 
led to half of work for SC09 paper submission). 

¤  Other examples: 
n  Multi-core CPU and GPU: 49x performance gain for a clinical medical 

imaging application. (Submitted to SC09) 
n  Autotuning framework and multi-core CPUs and GPUs applied to stencil-

based code. (CUG 2009, Best Paper Award) 
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Work Decomposition: Image Tile 
Size 
¨  Final image divided into spatially disjoint regions, or work 

blocks. 

¨  User specifiable block size/shape: 

¤  E.g., 8x8, 64x64, 512x1, 1x512 

¨  Do some block sizes and shapes result in better performance 
than others? 
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Does Block Size/Shape Impact 
Performance? 

¨  Yes! Huge impact! 
¤ Greater variation at increasing concurrency. 
¤ Greater variation for more memory intensive 

algorithmic configurations. 

Percent variation in runtime across entire test battery. 
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Optimal Block Size/Shape? 

¨  Raw render time normalized 
by minimum render time value 
(shows sweet spots) 

¨  This example: 
¤  2 threads, AMD/Italy 
¤  X-axis/Y-axis: block sizes 
¤  Blue: sweet spot 
¤  Red: sour spot 
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Optimal Block Size/Shape? 

¨  Avg render 
time. 

¨  1, 2, 4, 8 
threads. 

¨  NN, NL. 
¨  Bw=128 is 

really bad 
at t=2, 4, 
and bad at 
t-8. 

¨  Dual socket, 
dual core 
machine. 
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Optimal Block Size/Shape? 
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Optimal Block Size/Shape? 

¨  AMD/Opteron-Italy 
¨  Sweet spot/region: 

¤ Block width: 23-24 

¤ Block height: 22-26  

¨  Sour spot/region: 
¤ Block width: 27-28 

¤ Block height: all 
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Cache Utilization and Block Size 
¨  Correlation between L1 misses 

and frame rate 



Many-core Platform: GPU 

¨  NV Fermi 
¨  Vary: block size, etc. 
¨  Measure:  

¤ Runtime, L2 miss 

¨  Results: 
¤ Best runtime: medium-sized blocks 
¤ Best memory utilization: small blocks 
¤ Surprising: best performing configuration isn’t always 

the one that makes the best use of the memory 
hierarchy (platform specific issues). 

Runtime                            L2 misses                            



Performance Optimization and 
Auto-tuning: Summary 
¨  Different settings for tunable algorithmic 

parameters can have a huge impact on 
performance on m-core platforms. 

¨  Our results show roughly 2.5x variation on 6-core 
CPUs, up to 4.5x variation on GPUs. 

¨  Code: unstructured memory access, largely memory 
bound rather than compute bound. 

¨  Optimal settings from this study feed into the next 
study… 



Hybrid Parallelism 
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State of Parallelism in Scientific 
Computing 
¨  Most production codes written using MPI, vendor 

MPI implementations optimized for their 
architecture. 

¨  HPC community wondering how well MPI will scale 
to high concurrency, particularly on 100-core CPUs. 

¨  What to do? 
¤ Some alternatives: data parallel languages (CUDA), 

PGAS languages (UPC), global shared memory (CAF). 
¤ Various research projects explore different aspects of 

this space: Chombo in Titanium, autotuning, hybrid 
parallelism. 
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This Study 

¨  First-ever study of hybrid parallelism on 
visualization: raycasting volume rendering. 
¤ Parallels similar work done for scientific computing. 

¨  Hybrid-parallel implementation/architecture. 
¨  Performance study. 

¤ Runs at 216K-way parallel: 6x larger than any 
published results (circa May 2010). 

¤ Look at: 
n Costs of initialization, Memory use comparison, Scalability, 

Absolute runtime. 



39 

Hybrid Parallel Volume Rendering 

¨  Hybrid-parallelism a blend of shared- and 
distributed-memory parallelism. 

¨  Distributed-memory parallelism: 
¤  Each socket assigned a spatially disjoint subset of source data, produces 

an image of its chunk. 
¤  All subimages composited together into final image. 

¤  MPI implementation. 

¨  Shared-memory parallelism: 
¤  Inside a socket, threads use image-space partitioning, each thread 

responsible for a subset of the final image. 
n  What is the best image tile size? (Autotuning presentation) 

¤  Implementations (2): pthreads, OpenMP. 
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Hybrid Parallel Volume Rendering 

¨  Our hybrid-parallel architecture: 

Shared memory parallel 

Distributed-memory parallel 
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Our Experiment 

¨  Thesis: hybrid-parallel will exhibit favorable performance, 
resource utilization characteristics compared to traditional 
approach. 

¨  How/what to measure? 
¤  Memory footprint, communication traffic load, scalability characteristics, 

absolute runtime. 
¤  Across a wide range of concurrencies. 
¤  Algorithm performance somewhat dependent upon viewpoint, data: 

n  Vary viewpoints over a set that cut through data in different 
directions: will induce different memory access patterns. 

¨  Strong scaling study: hold problem size constant, vary amount 
of resources. 
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Experiment: Platform and Source 
Data 
¨  Platform: JaguarPF, a Cray XT5 system at ORNL 

¤  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores) 

¨  Source data: 
¤  Combustion simulation results, hydrogen flame (data courtesy J. Bell, 

CCSE, LBNL) 
¤  Effective AMR resolution: 10243, flattened to 5123, runtime upscaled to 

46083 (to avoid I/O costs). 

¨  Target image size: 46082 image.  
¤  Want approx 1:1 voxels to pixels. 

¨  Strong scaling study: 
¤  As we increase the number of procs/cores, each proc/core works on a 

smaller-sized problem. 
¤  Time-to-solution should drop.  
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Memory Use – MPI_Init() 

¨  Per PE memory: 
¤ About the same at 1728, over 2x at 216000. 

¨  Aggregate memory use: 
¤ About 6x at 1728, about 12x at 216000. 
¤ At 216000, -only requires 2GB of memory for 

initialization per node!!! 
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Memory Use – Ghost Zones  

¨  Two layers of ghost cells required for this problem: 
¤  One for trilinear interpolation during ray integration loop. 

¤  Another for computing a gradient field (central differences) for shading. 

¨  Hybrid approach uses fewer, but larger data blocks. 
¤  ~40% less memory required for ghost zones (smaller surface area) 

¤  Reduced communication costs 
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Scalability – Raycasting Phase 
¨  Near linear scaling since no 

interprocess communication. 
¨  -hybrid shows sublinear 

scaling due to oblong block 
shape. 

¨  -only shows slightly better 
than linear due to reduced 
work caused by perspective 
foreshortening. 
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Scalability – Compositing  

¨  How many compositors to use? 
¤  Previous work: 1K to 2K for 32K 

renderers (Peterka, 2009). 
¤  Our work: above ~46K renderers, 

4K to 8K works better. 
¤  -hybrid cases always performs 

better: fewer messages. 
¤  Open question: why the critical 

point? 
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Absolute Runtime 

¨  -hybrid outperforms –only at every concurrency 
level.  
¤ At 216K-way parallel, -hybrid is more than twice as 

fast as –only. 
¤ Compositing times begin to dominate: communication 

costs. 
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Summary of Results 

¨  Absolute runtime: -hybrid twice as fast as –only 
at 216K-way parallel.  

¨  Memory footprint: -only requires 12x more 
memory for MPI initialization then –hybrid 
¤  Factor of 6x due to 6x more MPI PEs. 

¤  Additional factor of 2x at high concurrency, likely 
a vendor MPI implementation (an N2 effect). 

¨  Communication traffic: 
¤  -hybrid performs 40% less communication than -

only for ghost zone setup. 

¤  -only requires 6x the number of messages for 
compositing. 

¨  Image: 46082 image of a ~45003 dataset 
generated using 216,000 cores on JaguarPF in 
~0.5s (not counting I/O time). 



Examples/Case Studies 

¨  1995: Concurrent (in situ) visualization: UTCHEM 
simulation code and AVS. 

¨  2011: Advanced Simulation Capability for 
Environmental Management (ASCEM). 



Reservoir modeling and VDA 

¨  Problem(s): 
¤  Setting up inputs (well locations) to optimize 

production (secondary, tertiary recovery, or EM 
applications) is tricky; input “card deck.” 

¤  Simulations generate tabular output, difficult to 
quickly gain insight. 

¨  Approach: 
¤  Couple model setup with intuitive input devices. 

¤  Couple simulation directly with VDA software. 
¤  Closed-loop system easy to use, quickly converge 

on optimal setup.  



Problem Setup 

¨  Placement of 
production and 
injection wells to 
optimize recovery/
mobilization. 

¨  Supplant manual 
editing of card deck 
with 3D input device 
for easy well 
placement.  

¨  (movie, next slide) 



UTCHEM+AVS 

Movie file located here: http://vis.lbl.gov/Research/utchem-1993/images/utchem.mov 



Environmental Management 



Solving highly complex technical problems with transformational 
technologies can lead to billions of dollars of savings and improved 

clean up 

• 6.4	
  trillion	
  liters	
  &	
  40	
  
million	
  cubic	
  meters	
  
of	
  contaminated	
  
groundwater	
  and	
  
soil	
  respecCvely	
  

• Distributed	
  across	
  30	
  
states	
  	
  and	
  10,000	
  
individual	
  sites	
  

Environmental	
  Management	
  -­‐	
  Mission	
  
“Complete the safe cleanup of the environmental legacy brought about from  

five decades of nuclear weapons development, production, and  
Government-sponsored nuclear energy research.”  

U.S. DOE Nuclear Cleanup Site

Largest Sites

Waste Isolation Pilot Plant

Hanford Site

Waste Isolation
Pilot Plant

Oakridge Site

Savannah River
Site

Lawrence Livermore
National Laboratory

Nevada National
Security Site

Stanford Linear
Accelerator

Lawrence Berkeley
National Laboratory

Energy Technology
Engineering Center

General Atomics

Los Alamos
National Laboratory

Sandia National Laboratory

Pantex Plant

Idaho National Laboratory

Ames Laboratory

Paducah Gaseous Dif f usi onPlant

Argonne National Laboratory

Fermi National
Accelerator

Portsmouth Gaseous
Dif f usi onPlant

West Valley
Demonstration Project

Separations Process
Research Unit

Moab Site



The Challenge 

v Some successes:  SRS F-Area groundwater contaminated 
with metals and radionuclides 
•  Pump & treat system cost $1M/month to 

operate and generated waste products 
•  Barrier system installed in 2006 costs <$10K/month 

and generates no waste products 

v Need more options to address costly 
systems and meet regulatory 
requirements for closure of sites 
•  Hanford pump & treat systems for the 200 Area cost ~

$10M/year 

•  Oak Ridge mercury contamination in debris, soil, 
groundwater, and stream systems is estimated to cost 
$1B to meet regulatory requirements 
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q Current	
  pracCces	
  work	
  for	
  some	
  sites	
  and	
  lead	
  to	
  closure	
  
q Many	
  of	
  the	
  subsurface	
  contaminaCon	
  problems	
  at	
  DOE	
  sites	
  have	
  
no	
  pracCcal	
  remedy	
  



ASCEM Challenge and Impact 
Ø  Challenge 

•  Reduce time required and financial cost of remedial actions at sites within EM complex by 
providing scientifically defensible modeling and simulation tools that accurately address complex 
environmental management situations  

•  Develop an integrated, high-performance computer modeling capability to simulate multiphase, 
multi-component, multi-scale flow and contaminant transport, waste degradation and contaminant 
release, including 

•  Provide (software) tools for decision making:  parameter estimation, visualization, uncertainty 
quantification, data management, risk analysis, and decision support 

•  Leverage investments made by SC, NE, RW, and FE as well as other Federal agencies to 
capitalize on significant investments and reduce the lifecycle development time and costs 

Ø Impact 
•  Near-term: technically underpin” existing site    RA’s 
and PA’s    
•  Inform strategic  data collection for model improvement  
•  Scientifically defensible and standardized EM RA’s and 
PA’s 



ASCEM Leverages SciDAC and ASC 

¨  Significant leveraging of investments by Advanced Simulation and Computing 
(ASC /DOE NNSA) and Advanced Scientific Computing Research (ASCR/DOE 
SC)  

¨  Examples include: 
¤  VisIt – visualization and graphic analysis tool developed by ASC and ASCR SciDAC 

Program 
¤  PSUADE – uncertainty analysis tool developed by ASC 

¤  Trilinos Framework – services for parallel programming and integrated software 
packages developed by ASC and ASCR SciDAC program 

¤  PETsc – Portable, Extensible Toolkit for Scientific Computation developed by ASCR 
SciDAC Program 

¤  BoxLib – parallel AMR framework developed by ASCR Base Math and SciDAC 

¤  MFD – Mimetic Finite Difference discretization methods developed by ASCR Base 
Math Program 

¤  Geochemistry Toolset – developed by computational scientists funded through DOE 
SC BER 



ASCEM	
  Delivered	
  via	
  a	
  NaConal	
  	
  
Laboratory	
  ConsorCum	
  



Savannah River Site F-Area 
Background 
¨  Disposal of low-level radioactive, acid waste solutions (1955–1989) created 

groundwater plume (pH 3–3.5, NO3,  U, 90Sr, 129I, 99Tc, tritium) 
¨  Ongoing remediation includes capping (1989), active pump and treat 

(1997-2003), and pH manipulation since 2004 
¨  Natural attenuation is desired as a long-term remediation strategy 



Goals:	
  Phase/Year	
  1	
  DemonstraCon	
  

Pla2orm	
  Data	
  	
  
Management	
  	
  

Pla2orm	
  
Visualiza7on	
  

Pla2orm	
  
Uncertainty	
  

Quan7fica7on	
   HPC	
  
•  DeposiConal	
  data	
  

entered	
  into	
  
databases	
  

•  Contaminant	
  
concentraCons	
  
entered	
  into	
  
databases	
  

•  Browsing	
  and	
  
query	
  interface	
  
with	
  tabled	
  output	
  

•  3D	
  navigaCon	
  of	
  
concentraCon	
  data	
  

•  VisualizaCon	
  of	
  
Cme	
  lapse	
  
contaminant	
  
concentraCons	
  
through	
  subsurface	
  
domain	
  

•  SelecCvely	
  enable	
  
several	
  types	
  of	
  
data	
  

•  IniCal	
  Monte	
  Carlo	
  
sampling	
  capability	
  

•  AutomaCc	
  creaCon	
  
of	
  forward	
  
simulaCon	
  runs	
  

•  VisualizaCon	
  of	
  
relaConships	
  
between	
  key	
  
parameters	
  and	
  
model	
  outputs	
  

•  3D	
  simulaCon	
  
•  Richards’	
  equaCon	
  
•  Parallel	
  (100	
  cores)	
  
•  ReacCve	
  transport	
  

of	
  uranium	
  
•  AdvecCon	
  of	
  non-­‐

reacCve	
  species	
  
•  Aqueous	
  

speciation 
•  SorpCon	
  
•  Mineral	
  

precipitaCon,	
  and	
  
dissoluCon	
  



ASCEM	
  VisualizaCon	
  Year	
  1	
  
ObjecCves	
  
¨  Visual	
  data	
  exploraCon	
  of	
  

¤ Part	
  1:	
  Historical	
  field	
  data.	
  
¤ Part	
  2:	
  SimulaCon	
  data.	
  
¤ Part	
  3:	
  Ensemble	
  data.	
  



VisualizaCon	
  –	
  Goals	
  and	
  Approach	
  
(Part	
  1)	
  

¨  Visual	
  data	
  exploraCon	
  of	
  different	
  types	
  of	
  geospaCally	
  
registered	
  data	
  for	
  the	
  F-­‐area	
  seepage	
  basin:	
  
¤  ObservaCon	
  wells,	
  surface	
  topography,	
  deposiConal	
  

environment,	
  observed	
  concentraCon	
  from	
  many	
  years,	
  GIS	
  
data.	
  

¨  Phase	
  I	
  DemonstraCon	
  ObjecCves:	
  
¤  3D	
  navigaCon	
  through	
  the	
  F-­‐area	
  historical	
  concentraCon	
  data.	
  
¤  Temporal	
  browsing	
  to	
  show	
  Cme	
  evolving	
  	
  contaminant	
  plume.	
  

¨  Approach	
  
¤  Add	
  new	
  capabiliCes	
  to	
  well-­‐established,	
  producCon-­‐quality,	
  

open	
  source	
  visual	
  data	
  analysis	
  and	
  exploraCon	
  soaware	
  
infrastructure	
  to	
  meet	
  ASCEM	
  needs.	
  	
  

¤  Demonstrate	
  viability	
  via	
  applicaCon	
  to	
  ASCEM-­‐specific	
  
problems.	
  	
  



ASCEM Animation 

Movie file located here: http://vis.lbl.gov/Vignettes/ASCEM/ascem.mp4 



Summary 

¨  DOE and LBNL Visualization team studying different 
aspects of scalable visualization and analysis, 
deploying working technologies to the science 
research community. 

¨  Terascale: Easy. Petascale: lots of work to do. 
Exascale: Hard. 
¤ Exascale requires us to rethink everything, and requires 

us to change course in terms of programming models/
languages, and in how we think about performance.  




