
MPI-hybrid Parallelism for Volume 
Rendering on Large, Multi-core 
Systems

E. Wes Bethel, LBNL
Astronum 2010
17 June 2010
San Diego, CA, USA



2

Hybrid Parallelism for Volume Rendering on Large, 
Multi-core Platforms

Overview
 Traditional approaches for implementing parallel 

visualization may not work well on future multi-core 
platforms: 100-1000 cores per chip.

 Hybrid-parallelism blends distributed- and shared-memory 
concepts.

 How well does hybrid-parallelism work for volume 
rendering at extreme concurrency?

 Experiment to compare performance shows favorable 
characteristics of hybrid-parallel, especially at very high 
concurrency.



3

Parallelism

 Mid 1970s-present: 
• Vector machines: Cray 1 ... NEC SX
• Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c.

 Early 1990s-present:
• The rise of the MPP based on the commodity 

microprocessor. Cray T3D, TM CM1, CM2, CM5, etc. 
• Message Passing Interface (MPI) becomes the gold 

standard for building/running parallel codes on MPPs.
• Using MPI is like writing assembler: you have to do 

everything.
 Mid 2000s-present.

• Rise of the multi-core CPU, GPU. AMD Opteron, Intel 
Nehalem, Sony Cell BE, NVIDIA G80, etc.

• Large supercomputers comprised of lots of multi-core 
CPUs.

• Shared memory programming on a chip: pthreads, 
OpenMP; data parallel languages (CUDA); global shared 
memory languages (UPC) and utilities (CAF).



4

State of Parallelism in Scientific Computing

 Most production codes written using MPI, vendor MPI 
implementations optimized for their architecture.

 HPC community wondering how well MPI will scale to high 
concurrency, particularly on 100-core CPUs.

 What to do?
• Some alternatives: data parallel languages (CUDA), PGAS 

languages (UPC), global shared memory (CAF).
• Various research projects explore different aspects of this space:

• Chombo implementation in Titanium.
• Autotuning work for multi-core platforms.
• Distributed memory, multi-core (hybrid parallelism).



5

Related work in Hybrid Parallelism

 Fundamental questions:
• What is the right balance of distributed- vs. shared-memory parallelism? 

How does balance impact performance?
• How to map algorithm onto a complex memory, communication hierarchy?

 Relatively new research area, not a great deal of published work.
 Studies focus on “solvers,” not vis/graphics.

• Parallel visualization applications all use MPI, none “multi-core” aware.
 Conclusions of these previous works.

• What is best? Answer: it depends.
• Many factors influence performance/scalability:

• Synchronization overhead.
• Load balance (intra- and inter-chip).
• Communication overhead and patterns.
• Memory access patterns.
• Fixed costs of initialization.
• Number of runtime threads.



6

This Study

 First-ever study of hybrid parallelism on visualization: 
raycasting volume rendering.
• Parallels similar work done for scientific computing.

 Hybrid-parallel implementation/architecture.
 Performance study.

• Runs at 216K-way parallel: 6x larger than any published results.
• Look at:

• Costs of initialization.
• Memory use comparison.
• Scalability.
• Absolute runtime.



7

Algorithm Studied: Raycasting VR

 Overview of Levoy’s method
• For each pixel in image plane:

• Find intersection of ray and volume
• Sample data (RGBa) along ray, 

integrate samples to compute final 
image pixel color



8

Parallelizing Volume Rendering

 Image-space decomposition.
• Each process works on a disjoint subset of the final image (in 

parallel)
• Processes may access source voxels more than once, will access 

a given output pixel only once.
• Great for shared memory parallelism.

 Object-space decomposition.
• Each process works on a disjoint subset of the input data (in 

parallel).
• Processes may access output pixels more than once. 
• Output requires image composition (ordering semantics).
• Typical approach for distributed memory parallelism.



9

Hybrid Parallel Volume Rendering

 Hybrid-parallelism a blend of shared- and distributed-
memory parallelism.

 Distributed-memory parallelism:
• Each socket assigned a spatially disjoint subset of source data, 

produces an image of its chunk.
• All subimages composited together into final image.
• MPI implementation.

 Shared-memory parallelism:
• Inside a socket, threads use image-space partitioning, each thread 

responsible for a subset of the final image.
• What is the best image tile size? (Autotuning presentation)

• Implementations (2): pthreads, OpenMP.



10

Hybrid Parallelism vs. Hybrid Volume Rendering

 Hybrid parallelism:
• Refers to mixture of distributed- and shared-memory parallelism.

 Hybrid volume rendering:
• Refers to mixture of object- and image-order techniques to do 

volume rendering.
• Most contemporary parallel volume rendering projects are hybrid 

volume renderers:
• Object order – divide data into disjoint chunks, each processor 

works on its chunk of data.
• Image order – parallel compositing algorithm divides work over 

final image, each composites over its portion of the final image.
• A two-stage algorithm, heavy communication load between 

stages.



11

Hybrid Parallel Volume Rendering

 Our hybrid-parallel architecture:

Shared memory parallel

Distributed-memory parallel



12

Our Experiment

 Thesis: hybrid-parallel will exhibit favorable performance, 
resource utilization characteristics compared to traditional 
approach.

 How/what to measure?
• Memory footprint, communication traffic load, scalability 

characteristics, absolute runtime.
• Across a wide range of concurrencies.

• Remember: we’re concerned about what happens at extreme 
concurrency.

• Algorithm performance somewhat dependent upon viewpoint, data:
• Vary viewpoints over a set that cut through data in different 

directions: will induce different memory access patterns.
 Strong scaling study: hold problem size constant, vary 

amount of resources.



13

Experiment: Platform and Source Data

 Platform: JaguarPF, a Cray XT5 system at ORNL
• 18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

 Source data:
• Combustion simulation results, hydrogen flame (data courtesy J. 

Bell, CCSE, LBNL)
• Effective AMR resolution: 10243, flattened to 5123, runtime 

upscaled to 46083 (to avoid I/O costs).
• 91B cells, ~3TB total memory footprint.

 Target image size: 46082 image. 
• Want approx 1:1 voxels to pixels.

 Strong scaling study:
• As we increase the number of procs/cores, each proc/core works 

on a smaller-sized problem.
• Time-to-solution should drop. 



14

Experiment – The Unit Test

 Raycasting time: view/data dependent
• Execute from 10 different prescribed views: forces 

with- and cross-grained memory access patterns.
• Execute 10 times, result is average of all.

 Compositing
• Five different ratios of compositing PEs to rendering 

PEs.

 Measure:
• Memory footprint right after initialization.
• Memory footprint for data blocks and halo exchange.
• Absolute runtime and scalability of raycasting and 

compositing.
• Communication load between RC and compositing.



15

Memory Use – Data Decomposition

 16GB RAM per node
• Sets lower bound on concurrency for this problem size: 1728-way 

parallel (no virtual memory!).

 Source data (1x), gradient field (3x)
 Want cubic decomposition. 

• 1x2x3 block configuration per socket for –only.

 -hybrid has ~6x data per socket than –only
• Would prefer to run study on 8-core CPUs to maintain cubic shape



16

Memory Use – MPI_Init()

 Per PE memory:
• About the same at 1728, over 2x at 216000.

 Aggregate memory use:
• About 6x at 1728, about 12x at 216000.
• At 216000, -only requires 2GB of memory for initialization per 

node!!!



17

Memory Use – Ghost Zones 

 Two layers of ghost cells required for this problem:
• One for trilinear interpolation during ray integration loop.
• Another for computing a gradient field (central differences) for 

shading.

 Hybrid approach uses fewer, but larger data blocks.
• ~40% less memory required for ghost zones (smaller surface area)
• Reduced communication costs



18

Scalability – Raycasting Phase

 Near linear scaling since no 
interprocess communication.

 -hybrid shows sublinear 
scaling due to oblong block 
shape.

 -only shows slightly better 
than linear due to reduced 
work caused by perspective 
foreshortening.



19

Scalability – Compositing 

 How many compositors to use?
• Previous work: 1K to 2K for 32K renderers (Peterka, 2009).
• Our work: above ~46K renderers, 4K to 8K works better.
• -hybrid cases always performs better: fewer messages.
• Open question: why the critical point?



20

Absolute Runtime

 -hybrid outperforms –only at every concurrency level. 
• At 216K-way parallel, -hybrid is more than twice as fast as –only.
• Compositing times begin to dominate: communication costs.



21

Summary of Results

 Absolute runtime: -hybrid twice as fast as –only at 216K-way parallel. 
 Memory footprint: -only requires 12x more memory for MPI 

initialization then –hybrid
• Factor of 6x due to 6x more MPI PEs.
• Additional factor of 2x at high concurrency, likely a vendor MPI 

implementation (an N2 effect).
 Communication traffic:

• -hybrid performs 40% less communication than -only for ghost zone setup.
• -only requires 6x the number of messages for compositing.

 Image: 46082 image of a ~45003 dataset generated using 216,000 
cores on JaguarPF in ~0.5s (not counting I/O time).



22

Open Questions

 What about weak scaling?
 What about other visualization algorithms?
 What about more cores? E.g., GPUs?
 What about alternatives to pthreads/OpenMP?
 What if cores don’t share memory?


