IO Performance of a Climate Modeling Application

0

Mark Howison Lawrence Berkeley National Lab

March 12, 2009

Acknowledgements

- NERSC / LBNL
 - Prabhat
 - John Shalf
 - Katie Antypas
 - Noel Keen
 - Tony Drummand
 - Andrew Uselton
 - Shane Canon
 - Hongzhang Shan
 - Michael Wehner
 - Wes Bethel
 - Janet Jacobsen

- Colorado State University
 - Dave Randall
 - Ross Heikes
- Pacific Northwest National Lab
 - Karen Schuchardt
 - Bruce Palmer
 - Annette Koontz
- Cray
 - David Knaak

Projects

- Design and Testing of a Global Cloud Resolving Model (GCRM) (Scidac / INCITE19 / Randall)
- Community Access to Global Cloud Resolving Model Data and Analyses (Scidac / Schuchardt)

Cloud resolving models

 Finer resolution (< 4km) can resolve cirrus clouds, which strongly influence weather patterns

cirrus

- Cloud-resolving models have been shown to agree with radar observations
- Could replace the cumulus and stratiform cloud parameterizations used in global models

"Cirrus Cloud Properties from a Cloud-Resolving Model Simulation..." Yali Luo, Steven K. Krueger, Gerald G. Mace, Kuan-Man Xu (2003) Images from Wikipedia

cumulus

Global Cloud Resolving Models

- Questionable "parameterizations" are used to represent cloud effects in lower-resolution global models
- Computationally expensive to extend a cloud-resolving model to a global model
 - Now possible on high-end systems like Franklin and Jaguar
- GCRM model will be verified using satellite, radar, and in-situ observations

"Counting the clouds." David Randall (2005)

Figure from Celal Konor, Joon Hee Jung, Ross Heikes, David Randall, Akio Arakawa

Geodesic grid

- Grid is constructed similar to a "subdivision surface"
- Cells can be ordered linearly using a spacefilling curve

Visualization in Vislt

temperature

- Custom Visit plug-in written by Prabhat
- Loads geodesic grid data
- Parallel version forthcoming

velocity

GCRM implementation

- 3.9 km resolution model
- 24 hour run on 30K nodes
- Generates 10TB of data
- Sustained 2GB/s write performance required for IO to take <5% runtime

GCRM IO pattern

Performance issues

- < 1GB/s write bandwidth when IO patterns do not align to lustre stripes
- Shared file performance is worse than file-per-proc, except in special cases
- MPI-IO collective mode (2-phase) is effectively broken in vendor library

Performance issues (MPI-IO)

Synchronous vs. Asynchronous Write Calls for Same IO Pattern

Cray's MPI-IO Implementation (1294 MB/s) ~ MPI-IO VFD collective mode

Test Parameters Nodes/stripes: Aggregate data: Stripe width: Write size: Writes per node:	80 40GB 8MB 8MB 64

Data collected and graphed using Noel Keen's (LBNL) ipmMEGA library + tools.

Key Open Read Write Seek Close

Performance issues (MPI-IO)

- MPI-IO synchronous issue affects pNetCDF and GCRM API
- Introduced PNNL group to IPM profiling of IO performance
 - <u>http://climate.pnl.gov/io/franklin/</u>

PNNL's API / pNetCDF (collective mode)

H5Block alternative (independent mode)

Performance issues (HDF5)

 H5Block and HDF5 (MPI-POSIX VFD) performance is close to POSIX Shared File

Performance issues (HDF5)

- Can only use chunking + padding in one dimension
- Splitting arrays into contiguous 1MB pieces without chunking is difficult
- Hongzhang Shan has created an unofficial HDF5 patch for multi-dimensional chunking/padding
 - Working with HDF5 group to integrate into official release

Performance issues (HDF5)

- 2-phase IO offers another solution:
 - Aggregate array on writer nodes
 - Writer node treats data as flat 1D array, which is split into 1MB segments

Upcoming IO improvements

- NERSC/HDF5 collaboration (recent workshop in January)
 - Add lustre hooks to HDF5 tunable parameters
 - Pad/align chunks to stripe boundaries
- New Cray MPI-IO implementation with improved 2-phase mode
 - Fewer writer nodes reduces burden on OSTs
 - Data shipping leverages SeaStar bandwidth
 - User space solutions are complicated: want solution at the MPI-IO level
- Hardware upgrades (just announced 3/11)