Feature Tracking Using Reeb Graphs

Gunther H. Weber^{1,2}, Peer-Timo Bremer³, Marcus S. Day¹, John B. Bell¹ and Valerio Pascucci⁴

¹Computational Research Division, Lawrence Berkeley National Lab ²Department of Computer Science, UC Davis ³Center for Applied Scientific Computing, Lawrence Livermore National Lab ⁴SCI Institute, University of Utah

Feature Tracking in Combustion Simulations

Application:

- Simulation of premixed lean hydrogen flames under different levels of turbulence
- Lean combustion reduces emissions
- Important for engine and power plant design (among other areas)
- Lean flames burn in cellular mode (non-uniform, time-dependent, difficult to characterize)

Scientific Goal:

- Understanding the temporal evolution of burning cells
- Influence of turbulence

Feature Tracking in Combustion Simulations

- Isotherm represents
 "flame surface"
- Fuel not evenly consumed: Burning cells separated by extinction regions
- Interested in evolution of burning cells

ullet

Individual Burning Regions

ERSC

- Threshold isotherm by fuel consumption rate
- Burning regions (connected components)
- When do regions emerge, die, split, or merge?

➔ Tracking graph

Individual Burning Regions

- Burning cells defined on isotherm
- Isotherm varies over time
- Tracking features defined over changing domain

Burning Region Boundaries

ERSC

Track burning cells by considering their boundaries

- Obtained by two successive contouring operations
- ➔ Trace evolution of burning regions by considering contours

•

Burning Region Boundaries

ERSC

Over time, boundaries create sweep surfaces

➔ Use Reeb graph (with time as Morse function)

Reeb Graph

[Reeb 1946, Sur les Points Singuliers d'une Forme de Pfaff Complétement Intégrable ou d'une Fonction Numérique]

Burning Region Boundaries

•

ERSC

Over time, boundaries create sweep surfaces

Use Reeb graph (with time as Morse function

Classification via Segmentation

[Bremer et al., submitted to IEEE TVCG, Analyzing and tracking burning structures in lean premixed hydrogen flames]

Tracking Graph Extraction Pipeline

- 1. Concatenate to obtain 4D mesh
- 2. Extract isotherm in 4D
- 3. Extract isotherm for original time steps
- 4. Segment vertices on 3D isosurface
- 5. Classify 4D isosurface vertices between time steps
- 6. Construct boundary surface
- 7. Extract Reeb-graph
- 8. Simplify Reeb-graph

1. Concatenate Time Steps

1. Concatenate Time Steps

2. Extract Time Surface with Associated Fuel Consumption Values

[Bhaniramka et al., IEEE TVCG 2004: Isosurface construction in any dimension using convex hulls]

ERSC

3. Extract Isosurface in Original Time Steps – Filter Operation

4. Classify 3D Isosurface Vertices – Compute Segmentation within Time Steps

[Bremer et al., submitted to IEEE TVCG, Analyzing and tracking burning structures in lean premixed hydrogen flames]

ERSC

5. Classify 4D Time Surface Vertices Between Time Steps – Simple Thresholding

6. Construct Swept Boundary – "Correct"

6. Construct Swept Boundary – Snapped to Vertices

• Preserve connectivity

ERSC

- Simple case table
- Reuse isosurface vertices (intersection points along original grid edges)

7. Compute Fully Augmented Reeb Graph

- Within each time step unique id per burning region
- Between time steps id not necessarily consistent
- Augment with degree two nodes to preserve correlation between graph and segmentation (and enable genus determination)

[Pascucci et al., ACM SIGGRAPH 2007: Robust On-line Computation of Reeb Graphs: Simplicity and Speed]

8. Simplify Reeb Graph

- Simplify loops that span less than one full time step
- Remove all loops spanning exactly one full time step
- Remove features with life span less than two time steps
- Construct simplified graph and layout using GraphViz
- Still "extended" merge/split events

ERSC

- Several split/merge events before "full" split/merge

Tracking Graph Example

Tracking Graph – Movie

Tracking Graph Comparison – Example

Coarse: Use original data set

- Interpolated: Create intermediate time steps using linear interpolation
- Averaged = "Ground Truth": Use finer simulation with more time steps and downsample

ERSC

Tracking Graph Comparison – Summary

- During period where fine data available approximately 29 burning regions existed in the domain
- Tracking graphs for 16 of these 29 regions differed between various analysis approaches
 - 3 differences due to data differences between coarse and fine simulation
 - 2 differences due to merging and splitting between coarse time steps
 - 1 difference: region splitting of and dying between coarse time steps
- Discounting those: correct tracking for 19 out of 29 regions
- Other problems mainly due to lack of temporal resolution

Related Work in Feature Tracking

- [Mascarenhas & Snoeyink, 2008] Comprehensive overview of isosurface tracking
- [Samtaney et al., 1994] track thresholded regions with image processing techniques
- [Silver & Wang, 1997 & 1998] use volume for correspondence

- [Laney et al., 2006] use similar approach for tracking in turbulent mixing
- [Reinders et al., 2001] use motion prediction to improve tracking
- [Ji et al., 2003 & 2004] extract time surface and use its connected components to track features

Related Work in Feature Tracking

- [Edelsbrunner et al., 2004] compute time-varying Reeb graphs using Jacobi [Edelsbrunner et al., 2002] sets to correlate critical points
- [Szymczak, 2005] presents related techniques for contour trees
- [Sohn and Bajaj, 2006] use a hybrid approach also defining correspondences between contour trees using volume matching similar to Silver & Wang.
- Also related work in tracking critical points in vector field analysis [Tricoche et al, 2000; Theisel et al., 2003; Garth et al., 2004; Weinkauf et al., 2005]

Conclusions and Future Work

Conclusions

- Tracking works if temporal resolution sufficient
- Artifacts due to insufficient temporal resolution easy to recognize
- Analysis on isotherm aggravates tracking problems somewhat, but fast moving burning zones would also cause problem to full 3D analysis

• Future Work

- Presentation
 - Layout of tracking graphs

- Link graphs and physical segmentation views
- Analysis
 - Integrate with simulation (access to more time steps)
 - Use graphs to compute derived quantities
 - Full 3D analysis eliminating need to restrict to isotherm (fewer varying parameter choices)

Acknowledgements

This work was supported by

- Director, Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET).
- U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
- National Energy Research Scientific Computing Center, supported by Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• We would like to thank

Members of the Vislt team

ERSC

- Members of VACET
- Members of LBNL Vis Group
- Members of LBNL Center for Computational Sciences and Engineering
- Terry Ligocki, LBNL Applied Numerical Algorithms Group

Questions?

