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Context



Rocks, Shoals, Wrecks, and Other 
Hazards
• Data: size, complexity, I/O, formats, etc.

– It takes a long time to read, write big data.
– Incompatible formats cause big problems.

• Working with big data: visual data analysis.
– Can you run a 1TB file through gnuplot or IDL?
– Does gnuplot or IDL really do what you need?
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Remember When: 1981



This is no joke!



Data Problems

• Serial vs. parallel I/O.
– One vs. many write streams.

• Formats:
– How data is written out to disk: what order, storage 

format, etc.
– ASCII (ouch) vs. <many options>
– Want: format compatibility along the tool chain.
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Format Propagation Issues

• What happens if each application in a tool 
chain uses its own unique data 
model/format?

• What if one or more formats changes during 
a weekend coding session?

• What if you want to look at results from a few 
years ago?

• What if you want to share results with your 
colleagues?
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Data Format Solutions

– HDF, netCDF: partial solution (why partial?)
• Data layout inside HDF5 file: your choice.
• Data group naming inside HDF5 file: your choice.

– H5part: more complete solution.
• What is H5part? 

– Veneer API sits atop HDF5 (LBNL+PSI effort)
– Simplifies use of HDF5.

• Opaque group naming.
• Layout defined, managed by H5part.
• Open Source, see vis.lbl.gov
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Parallel I/O

• Achieving good I/O rates
– How many streams?
– Buffer sizes?
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Big Problem – Information Overload

• Our ability to create and store information 
exceeds our capacity to understand it.

• Information requires attention to process:
– “A wealth of information creates a poverty of 

attention.” – Hebert Simon, Nobel Prize, 1971.
• Major challenge: gain insight from data.

– Visualization, visual data analysis are excellent 
tools for accomplishing this objective.
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Query-Driven Visualization

• What is Query-Driven Visualization?
– Find “interesting data” and limit visualization, analysis, 

machine and cognitive processing to that subset.
• One way to define “interesting” is with compound 

boolean range queries.
– E.g., (CH4 > 0.1) AND (T1 < temp < T2)

• Quickly locate those data that are “interesting.”
• Pass results along to visualization and analysis 

pipeline.
• Another view: “remove the haystack to see needles.”
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Query-Driven Visualization

Data Vis Render

The Canonical Visualization Pipeline



Query-Driven Visualization
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Query-Driven Visualization

 CH4 > 0.3

 Temp < T1

 CH4 > 0.3 AND temp < T1

 CH4 > 0.3 AND temp < T2
 T1 < T2



Query-Driven Visualization

• Compare performance to isocontouring.
• For n data values and k cells intersecting the surface:

• Marching Cubes: O(n)
• Octtree methods: O(k + k log (n/k)) 

– Acceleration: pruning; sensitive to noisy data
• Span-space methods:

– NOISE: O(sqrt(n) + k)
– ISSUE: O(log (n/L) + sqrt(n)/L + k)

» L is a tunable parameter
– Interval Tree: O(log n + k)

• FastBit: O(k) – the theoretical optimum.
– Profound performance gain for Petascale visualization!

• Our approach supports multidimensional queries 
– Isocontouring is essentially a 1D query
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QDV Interfaces



Query-Driven Visual Data Analysis 
Challenges
• How to define “interesting?”
• Effective interfaces for:

– Supporting rapid interrogation, propagating query results 
from step to step in the analysis process.

– Multivariate visualization
– Drill-down (mining), linked/correlated views

• Adapting, applying and deploying these principles 
to many types of scientific data.

• Data file/format challenges.
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Visual Data Exploration of LWFA 
Simulation Output



Analysis Task(s)

1. Identify particles that form a beam
• Interactive visual data exploration
• Data subsetting: high energy, spatial coherency.

2. Track them over time
• Given particle ID’s from a given time step,
• Find all those particles in all time steps
• Subsequent visual data analysis.

1. Identify particles that form a beam
• Interactive visual data exploration
• Data subsetting: high energy, spatial coherency.

2. Track them over time
• Given particle ID’s from a given time step,
• Find all those particles in all time steps
• Subsequent visual data analysis.



Data Overview

• Simulation: VORPAL, 2D and 3D.
• Particle data:

– X,y,z (location), px,py,pz (momentum), id.
– No. of particles per timestep: ~ 0.4*106 – 30*106 (in 2D) and 

~80*106– 200 *106 (in 3D)
• Total size: ~1.5GB – >30GB (in 2D) and ~100GB – >1TB (in 3D)

• Field data:
• Electric, magnetic fields, RhoJ
• Resolution: Typically ~0.02-0.03μm longitudinally, and ~ 

0.1-0.2μm transversely
• Total size: ~3.5GB - >70GB (in 2D) and ~200GB - >2TB (in 

3D)
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Fundamental Problem #1 - Interface

Traditional 800 bins/variable

Lower gamma 80 bins/variable

• Parallel coordinates 
• An interface for subset selection.
• A mechanism for displaying multivariate data.

• Problems with large data:
• Visual clutter
• O(n) complexity

• Solution/Approach
• Histogram-based p-coords
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Histogram-Based Parallel Coordinates



Adaptive and Constant-sized Bins

32x32 uniform 32x32 adaptive



System Overview



3D Example



More Recent Results

• Understanding particle 
behavior over time:

– After finding interesting 
particles and tracing them 
through time,

– Particles start out slow 
(blue, left), undergo 
acceleration (reds), then 
slow again as the plasma 
wave outruns them (blue, 
right).

– Spiral structure shows 
particles oscillating 
transversely in the 
focusing field.
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Fundamental Problem #2 – Performance 

• How to efficiently construct a histogram?
– Naïve approach: O(n)
– Better approach: use FastBit

• How to efficiently do particle tracking?
– Naïve approach: O(n2)
– Better approach: O(H*t) (use FastBit)
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Parallel Performance I: HistogramsParallel Performance I: Histograms

Dataset:
• 3D dataset consisting of 100 timesteps
• ~177 million particles per timestep 
• ~10 GB per timestep 
• ~1TB total size

Test platform: (as of July.2008)
• franklin.nersc.gov
• 9,660 nodes,  19K cores Cray XT4 system 
• Filesystem: Lustre Parallel Filesystem
• Each node consists of: 

• CPU: 2.6 GHz, dual-core AMD Opteron 
• Memory: 4GB
• OS: Compute Node Linux

Test setup:
• Restrict operations to a single core of each node to 
maximize I/O bandwidth available to each process
• Assign data subsets corresponding to individual 
timesteps to individual nodes for processing
• Generate five 1024x1024 histograms for position 
and momentum fields at each timestep
• Conditon: px>7*1010

• Levels of parallelism: 1, 2, 5, 10, 20, 50, 100



Parallel Performance II: Particle TrackingParallel Performance II: Particle Tracking

Test setup:
• Same as for histogram computation
• Track 500 particles (Condition: px>1011) 
over 100 timesteps

Results:
• FastBit is able to track 500 particles 
over 1.5TB of data in 0.15 seconds

Performance of original IDL scripts:
• ~2.5 hours to track 250 particles in 
small 5GB dataset



More Than Just a Research Project

• Several technologies from this project have 
been “productized” in VisIt and are available 
to “the entire world.”
– Parallel coordinates interface (traditional and 

histogram-based)
– H5part, FastBit-enabled file loader to support 

parallel collective I/O, including index/query.
– ID-based, or “named” queries.

• Several technologies from this project have 
been “productized” in VisIt and are available 
to “the entire world.”
– Parallel coordinates interface (traditional and 

histogram-based)
– H5part, FastBit-enabled file loader to support 

parallel collective I/O, including index/query.
– ID-based, or “named” queries.



Concluding Remarks



Visualization Use Models

• Presentation visualization
– You know what’s there and 

want to show it to someone 
else

• Analytical Visualization
– You know what you are looking 

for
• Discovery Visualization

– You have no idea what you’re 
looking for
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Hazards at PScale and Beyond

• Computing hazards: out of scope for this talk.
– E.g., solvers, multicore, 10M-100M cores, programming and 

execution models, etc.

• I/O hazards:
– Serial vs. parallel I/O
– Data models and formats.

• Visual data analysis hazards
– What problem are you trying to solve?
– Sufficiently capable tools?
– Effective tools?
– I/O issues, data duplication?
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The End


