

Current VACET/NERSC Analytics Efforts for Accelerator Modeling Data

> Gunther H. Weber LBNL 3 December 2008

Overview

- Deploying Vislt on Franklin @ NERSC
- Tech X Vizschema plugin parallelization support
- Deploying FastBit-accelerated Vislt prototype

Deploying Vislt on Franklin

- Problem size becoming larger
 - Requires parallel analysis, more processors for analysis
 - Moving data becomes increasingly cumbersome
- →Run analysis on in parallel on compute nodes
- Vislt now available on Franklin
 - Based on Jaguar @ ORNL effort
 - "Beta": Need to evaluate stability
 - Caveat: OS upgrade may require new install

VizSchema Plugin Parallelization Support

- TechX is developing a plugin for reading VORPAL etc. files in VisIt
- Using VisIt effectively requires multiple domain
- Limited memory on compute nodes
- Add support for automatic domain decomposition to Vs plugin
 - Currently: regular, rectiliner meshes
 - In progress: particle meshes

VACET

FastBit VisIt Protoype for Accelerator Modeling

- PI: C. Geddes (LBNL), part of SciDAC COMPASS project, Incite awardee.
- Accomplishment:
 - Algorithms and production-quality s/w infrastructure to perform interactive visual data analysis (identify, track, analyze beam particles) in multi-TB simulation data.
- Science Impact:
 - Replace serial process that took hours with one that takes seconds.
 - New capability: rapid data exploration and analysis.
- Collaborators:
 - SciDAC SDM Center (FastBit)

www.væceTech-X (Accelerator scientists)

Data Overview

- Simulation: VORPAL, 2D and 3D.
- Particle data:
 - X,y,z (location), px,py,pz (momentum), id.
 - No. of particles per timestep: ~ 0.4*10⁶ 30*10⁶ (in 2D) and ~80*10⁶ 200 *10⁶ (in 3D)
 - Total size: ~1.5GB >30GB (in 2D) and ~100GB >1TB (in 3D)
- Field data:
 - Electric, magnetic fields, RhoJ
 - Resolution: Typically ~0.02-0.03µm longitudinally, and ~
 0.1-0.2µm transversely
 - Total size: ~3.5GB >70GB (in 2D) and ~200GB >2TB (in 3D)

Analysis Task(s)

- Identify particles that form a beam
 - Interactive visual data exploration
 - Data subsetting
- Track them over time
 - Given particle ID's from a given time step,
 - Find all those particles in all time steps
 - Subsequent visual data analysis.

ASCR

Fundamental Problem #1 - Interface

- Parallel coordinates
 - An interface for subset selection.
 - A mechanism for displaying multivariate data.
- Problems with large data.
 - Visual clutter
 - O(n) complexity
- Solution
 - Histogram-based p-coords

www.vacet.org

Histogram-Based Parallel Coordinates

MACET

Histogram-based Parallel Coordinates

Histograms are computed on request:

- Enable rendering also of data subsets using histogram-based parallel coordinates
- Enable close zoom-ins and smooth drill-downs into the data
- Enable rendering with arbitrary number of bins

Allow use of adaptively binned histograms:

• Enable more accurate representation of the data in lower-level-of-.detail views

Beam Selection

Beam Refinement

Beam Evolution

3D Example

www.vacet.org

Recent Publications

- SC08 Technical Paper: High-Performance Multivariate Visual Data Exploration for Extremely Large Data. O. Rubel, et al.
- 2008 International Conference on Machine Learning: Automated Analysis for Detecting Beams in Simulations. D. Ushizima, et al.

The End

- Thanks for your time.
- More information: www.vacet.org