
www.vacet.org

LBNL Visualization Research Program
High Performance Remote Visualization

Highlights 2005-2007

E. Wes Bethel
Lawrence Berkeley National Lab

12 Feb 2008

E. Wes Bethel
Lawrence Berkeley National Lab

12 Feb 2008



vis.lbl.gov

Outline

• Remote visualization: definition, approaches.
• MBender: multiresolution remote vis.
• Chromium Renderserver: high performance 

parallel, hardware-accelerated remote vis.

• Remote visualization: definition, approaches.
• MBender: multiresolution remote vis.
• Chromium Renderserver: high performance 

parallel, hardware-accelerated remote vis.



vis.lbl.gov

The Visualization Pipeline

• The Vis pipeline consists of an “assembly 
line” of components.

• Remote visualization is all about how that 
pipeline is partitioned between remote and 
local resources.

• The Vis pipeline consists of an “assembly 
line” of components.

• Remote visualization is all about how that 
pipeline is partitioned between remote and 
local resources.

Data Vis Render Display



vis.lbl.gov

Pipeline Partitioning – Send Data

Data Vis Render

Remote Desktop

Display

• All visualization, rendering and display 
happens on “the desktop.”

• Data or data subsets moved between remote 
and local hosts.

• All visualization, rendering and display 
happens on “the desktop.”

• Data or data subsets moved between remote 
and local hosts.



vis.lbl.gov

Pipeline Partitioning – Send Geometry

Data Vis Render

Remote Desktop

Display

• All rendering and display happens on the 
desktop.

• Visualization results – e.g., isosurface 
triangles – moved across the network.

• All rendering and display happens on the 
desktop.

• Visualization results – e.g., isosurface 
triangles – moved across the network.



vis.lbl.gov

Pipeline Partitioning – Send Images

Data Vis Render

Remote Desktop

Display

• All data I/O, visualization, and rendering 
happen on the remote host.

• Only image data moves across the network.

• All data I/O, visualization, and rendering 
happen on the remote host.

• Only image data moves across the network.



vis.lbl.gov

Remote Visualization

• Which pipeline partitioning works the best?
• Answer(s):

– It depends on the problem and use model.
– “Send Images” appears, in general, to be the best 

option.
• The following slides explain this issue in more 

detail.

• Which pipeline partitioning works the best?
• Answer(s):

– It depends on the problem and use model.
– “Send Images” appears, in general, to be the best 

option.
• The following slides explain this issue in more 

detail.



vis.lbl.gov

Remote Visualization Performance 
Experiment
• Three partitions: send data, send geometry, 

send images.
• Three partitions: send data, send geometry, 

send images.



vis.lbl.gov

Absolute Runtime of Three Partitionings



vis.lbl.gov

Relative Performance of Three 
Partitionings



vis.lbl.gov

Analysis of Strategies

• Send images (Winner): nearly constant 
performance regardless of data size. Other 
advantages (to be discussed).

• Send geometry: performance worsens as 
data grows larger; implementation difficulties.
– E.g., isosurface produces ~O(N2/3) triangles.
– Not scalable to larger data, more users, more 

apps.
• Send data: performance worsens as data 

grows larger; implementation difficulties.

• Send images (Winner): nearly constant 
performance regardless of data size. Other 
advantages (to be discussed).

• Send geometry: performance worsens as 
data grows larger; implementation difficulties.
– E.g., isosurface produces ~O(N2/3) triangles.
– Not scalable to larger data, more users, more 

apps.
• Send data: performance worsens as data 

grows larger; implementation difficulties.



vis.lbl.gov

Two Remote Visualization Projects

• Both based on “send images” partitioning.
• MBender (“Media Bender”)

– First run the application to generate pre-computed 
imagery.

– Later, view/explore multidimensional, 
multiresolution imagery with web browser.

• Chromium Renderserver
– Harvest/encode/transmit imagery from hardware-

accelerated rendering of parallel vis app to remote 
viewer(s).

• Both based on “send images” partitioning.
• MBender (“Media Bender”)

– First run the application to generate pre-computed 
imagery.

– Later, view/explore multidimensional, 
multiresolution imagery with web browser.

• Chromium Renderserver
– Harvest/encode/transmit imagery from hardware-

accelerated rendering of parallel vis app to remote 
viewer(s).



vis.lbl.gov

MBender – Basic Idea

• Precompute ordered image sequences
– Ordering is sampling through vis or rendering 

space. E.g,. Isocontour level, viewpoint
• Encoding step

– Produce QuickTime VR Object Movies
– Produce MBender Catalogue/Map files

• Client-pull, vanilla web server
– JavaScript implementation – images, web browser
– QTVR player for QTVR Object movies
– MBender client for “the full Monty”

• Precompute ordered image sequences
– Ordering is sampling through vis or rendering 

space. E.g,. Isocontour level, viewpoint
• Encoding step

– Produce QuickTime VR Object Movies
– Produce MBender Catalogue/Map files

• Client-pull, vanilla web server
– JavaScript implementation – images, web browser
– QTVR player for QTVR Object movies
– MBender client for “the full Monty”



vis.lbl.gov

MBender Architecture Overview



vis.lbl.gov

MBender – Industry-Standard Clients

(example, requires network)• Apple’s QuickTime VR 
– “Inside” looking “out”
– 3D Navigation

• Apple’s QuickTime VR “Object Movies”
– “Outside” looking “in”
– Two-axis + zoom scientific vis example (requires network).
– One-axis + time scientific vis example (requires network).

• Web Browser/JavaScript example 
– 1D example (requires network)
– 2D example (requires network)

• Apple’s QuickTime VR (example, requires network)
– “Inside” looking “out”
– 3D Navigation

• Apple’s QuickTime VR “Object Movies”
– “Outside” looking “in”
– Two-axis + zoom scientific vis example (requires network).
– One-axis + time scientific vis example (requires network).

• Web Browser/JavaScript example 
– 1D example (requires network)
– 2D example (requires network)

http://vis.lbl.gov/Research/MBender/grandcentral.mov
http://vis.lbl.gov/Research/MBender/grandcentral.mov
http://vis.lbl.gov/Research/MBender/twoAxis.mov
http://vis.lbl.gov/Research/MBender/twoAxis.mov
http://vis.lbl.gov/Research/MBender/JSExample1/JSexample1.html
http://vis.lbl.gov/Research/MBender/JSExample1/JSexample1.html
http://vis.lbl.gov/Research/MBender/JSExample2/JSexample2.html
http://vis.lbl.gov/Research/MBender/JSExample2/JSexample2.html


vis.lbl.gov

About QTVR, JS Implementations

• Pro’s:
– Industry standard “players”: web browser, QT player.
– Industry standard “formats.”
– All examples served up by “garden variety” web server – no 

special server-side config required.
– Rapid, easy exploration of sci-vis results.

• Con’s:
– Fixed image resolution.
– Not friendly use of bandwidth or memory.
– Some prep work required before use.
– Fits many, but not all, remote vis use models.

• Pro’s:
– Industry standard “players”: web browser, QT player.
– Industry standard “formats.”
– All examples served up by “garden variety” web server – no 

special server-side config required.
– Rapid, easy exploration of sci-vis results.

• Con’s:
– Fixed image resolution.
– Not friendly use of bandwidth or memory.
– Some prep work required before use.
– Fits many, but not all, remote vis use models.



vis.lbl.gov

MBender Motivation

• Overcome limitations of previous approaches:
– Want support for multiresolution imagery.
– Want more efficient use of client memory.
– Want more friendly use of bandwidth.
– Want support for more browsable dimensions.

• Visualization parameter space.
• Rendering parameter space.

• Overcome limitations of previous approaches:
– Want support for multiresolution imagery.
– Want more efficient use of client memory.
– Want more friendly use of bandwidth.
– Want support for more browsable dimensions.

• Visualization parameter space.
• Rendering parameter space.



vis.lbl.gov

MBender – Multiresolution Remote Vis



vis.lbl.gov



vis.lbl.gov

MBender Demonstration

Demo• (requires network)• Demo (requires network)

http://morse.lbl.gov:8888/~jchen/LBL_MBClient.jnlp
http://morse.lbl.gov:8888/~jchen/LBL_MBClient.jnlp


vis.lbl.gov

MBender – Performance Modeling

• Tile Size
– Server-side storage requirements
– Client download speed

• Multi-threaded client
– Overlap I/O, rendering

• Client prefetching algorithm

• Tile Size
– Server-side storage requirements
– Client download speed

• Multi-threaded client
– Overlap I/O, rendering

• Client prefetching algorithm



vis.lbl.gov

Tile Size



vis.lbl.gov

Tile Size – Server-side Storage



vis.lbl.gov

Tile Size – Client Download Rate

• 128x128 overall winner across all networks, 
degrees of I/O parallelism

• 128x128 overall winner across all networks, 
degrees of I/O parallelism



vis.lbl.gov

Prefetching Algorithm

• Objective: predict which frames a user will want to 
see and download them ahead of time.

• Client does navigation through n-dimensional 
parameter space.

• Present client supports 4-d navigation:
– Pan (left/right/up/down)
– Rotate (azimuth/pitch)
– Zoom
– Data browsing

• Different prefetch algorithm depending upon 
navigation use mode.

• Objective: predict which frames a user will want to 
see and download them ahead of time.

• Client does navigation through n-dimensional 
parameter space.

• Present client supports 4-d navigation:
– Pan (left/right/up/down)
– Rotate (azimuth/pitch)
– Zoom
– Data browsing

• Different prefetch algorithm depending upon 
navigation use mode.



vis.lbl.gov

Prefetching Performance Improvement

• Test shows “delay time” – time client spends 
waiting for images to satisfy view.

• Prefetch produces 2x-3x improvement.

• Test shows “delay time” – time client spends 
waiting for images to satisfy view.

• Prefetch produces 2x-3x improvement.



vis.lbl.gov

MBender – Post-Game Show

• Great idea, works well.
– Serve up all images through a vanilla web server.
– No expensive, complex server-side machinery

• Huge potential use: precompute complex, expensive 
vis, store images for later use.

• Provides illusion of unconstrained navigation
– But without the bother of manually running the vis 

application.
• Supports two of three common visualization use 

modalities.
• Some challenges: lots of image files!

– 36 horizontal x 18 vertical views: 648 images
– Multiply by time, by vis parameter, by rendering parameter, 

pretty soon have *a lot* of images.

• Great idea, works well.
– Serve up all images through a vanilla web server.
– No expensive, complex server-side machinery

• Huge potential use: precompute complex, expensive 
vis, store images for later use.

• Provides illusion of unconstrained navigation
– But without the bother of manually running the vis 

application.
• Supports two of three common visualization use 

modalities.
• Some challenges: lots of image files!

– 36 horizontal x 18 vertical views: 648 images
– Multiply by time, by vis parameter, by rendering parameter, 

pretty soon have *a lot* of images.



vis.lbl.gov

Chromium Render Server

• Focus on remote delivery of imagery 
produced by vis applications.

• Special focus on support for distributed-
memory parallel, hardware-accelerated 
graphics applications.

• Our general solution suitable for use by 
literally *any* application that uses 
Xlib/OpenGL (all apps, basically).

• Supports all common visualization use 
modalities.

• Focus on remote delivery of imagery 
produced by vis applications.

• Special focus on support for distributed-
memory parallel, hardware-accelerated 
graphics applications.

• Our general solution suitable for use by 
literally *any* application that uses 
Xlib/OpenGL (all apps, basically).

• Supports all common visualization use 
modalities.



vis.lbl.gov

CRRS in action



vis.lbl.gov

Prior Work

• Send-images approaches
– Virtual Network Computing – VNC (Industry standard, no 

OpenGL support)
– SGI’s VizServer (comm., RIP)
– IBM’s Deep Computing Visualization (comm.)
– ThinAnywhere (comm.)
– HP’s Remote Graphics Software (comm.)

• Send-images/send-geom hybrid
– VirtualGL

• Send geometry
– CEI’s Ensight Gold Server-of-Servers

• Send-images approaches
– Virtual Network Computing – VNC (Industry standard, no 

OpenGL support)
– SGI’s VizServer (comm., RIP)
– IBM’s Deep Computing Visualization (comm.)
– ThinAnywhere (comm.)
– HP’s Remote Graphics Software (comm.)

• Send-images/send-geom hybrid
– VirtualGL

• Send geometry
– CEI’s Ensight Gold Server-of-Servers



vis.lbl.gov

CRRS Approach

• Communication protocol: extend VNC
– Ubiquitous viewer
– Well-understood protocol
– Open Source

• Rendering Infrastructure: extend Chromium
– Solid base for distributed memory, h/w 

accelerated graphics
– Open Source

• Communication protocol: extend VNC
– Ubiquitous viewer
– Well-understood protocol
– Open Source

• Rendering Infrastructure: extend Chromium
– Solid base for distributed memory, h/w 

accelerated graphics
– Open Source



vis.lbl.gov

CRRS Architecture



vis.lbl.gov

CRRS Optimizations

• RFB Caching
– Avoid re-encoding images at the VNC Proxy

• Bounding box tracking
– Limit RFB Updates to regions of OpenGL window 

that have changed since the last frame
• Double-buffering

– Overlap rendering with encoding/transmission
• Frame synchronization

– Synchronize parallel rendering streams

• RFB Caching
– Avoid re-encoding images at the VNC Proxy

• Bounding box tracking
– Limit RFB Updates to regions of OpenGL window 

that have changed since the last frame
• Double-buffering

– Overlap rendering with encoding/transmission
• Frame synchronization

– Synchronize parallel rendering streams



vis.lbl.gov

CRRS Baseline Performance



vis.lbl.gov

CRRS Performance w/RFB Caching



vis.lbl.gov

CRRS Performance w/Optimizations



vis.lbl.gov

CRRS Feature/Capability Summary

• Remote visualization capability
– Support for virtually any application
– Including hardware-accelerated rendering
– Supports multiple, collaborative participants (VNC)
– Ubiquitous client application (VNC)
– Completely Open Source (vncproxy.sf.net)
– Deployment activities at LBNL, ORNL.

• Security considerations (next slide)

• Remote visualization capability
– Support for virtually any application
– Including hardware-accelerated rendering
– Supports multiple, collaborative participants (VNC)
– Ubiquitous client application (VNC)
– Completely Open Source (vncproxy.sf.net)
– Deployment activities at LBNL, ORNL.

• Security considerations (next slide)



vis.lbl.gov

CRRS Security

• Zone 1 – open internet
• Zone 3 – intracluster fabric
• Zone 2 – intracenter fabric

• Zone 1 – open internet
• Zone 3 – intracluster fabric
• Zone 2 – intracenter fabric



vis.lbl.gov

The CRRS Team

• Tungsten Graphics, Inc.
– SBIR Small Business

• Lab participants: LLNL, ORNL, LBNL
• Peer-reviewed journal publication: IEEE 

Transactions on Visualization and Computer 
Graphics, May/June 2008.

• Tungsten Graphics, Inc.
– SBIR Small Business

• Lab participants: LLNL, ORNL, LBNL
• Peer-reviewed journal publication: IEEE 

Transactions on Visualization and Computer 
Graphics, May/June 2008.



vis.lbl.gov

The End – Remote Visualization

• Send images holds the most promise
• Two projects that deliver results

– Both garner peer-reviewed journal pubs in IEEE 
Transactions on Visualization and Computer 
Graphics

• Open source software release
• CRRS being deployed for production use at 

LBNL/NERSC and ORNL/CCS.

• Send images holds the most promise
• Two projects that deliver results

– Both garner peer-reviewed journal pubs in IEEE 
Transactions on Visualization and Computer 
Graphics

• Open source software release
• CRRS being deployed for production use at 

LBNL/NERSC and ORNL/CCS.


	LBNL Visualization Research ProgramHigh Performance Remote VisualizationHighlights 2005-2007
	Outline
	The Visualization Pipeline
	Pipeline Partitioning – Send Data
	Pipeline Partitioning – Send Geometry
	Pipeline Partitioning – Send Images
	Remote Visualization
	Remote Visualization Performance Experiment
	Absolute Runtime of Three Partitionings
	Relative Performance of Three Partitionings
	Analysis of Strategies
	Two Remote Visualization Projects
	MBender – Basic Idea
	MBender Architecture Overview
	MBender – Industry-Standard Clients
	About QTVR, JS Implementations
	MBender Motivation
	MBender – Multiresolution Remote Vis
	
	MBender Demonstration
	MBender – Performance Modeling
	Tile Size
	Tile Size – Server-side Storage
	Tile Size – Client Download Rate
	Prefetching Algorithm
	Prefetching Performance Improvement
	MBender – Post-Game Show
	Chromium Render Server
	CRRS in action
	Prior Work
	CRRS Approach
	CRRS Architecture
	CRRS Optimizations
	CRRS Baseline Performance
	CRRS Performance w/RFB Caching
	CRRS Performance w/Optimizations
	CRRS Feature/Capability Summary
	CRRS Security
	The CRRS Team
	The End – Remote Visualization

