
NERSC is supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under

contract number DE-AC02-05CH11231.

Accelerating Remote Display Performance
for GUI-based Applications

DOE Computer Graphics Forum
April 28, 2008

Accelerating Remote Display Performance

Motivation

•  Complaints in 2006 NERSC User Survey about poor
performance of remote visualization applications

•  Poor X11 network performance …
–  … makes it tedious for users to use NERSC resources
–  … prevents some users from using NERSC resources

•  Help existing users!
•  Make NERSC analytics resources more attractive to

new users!
•  Prepare for increasing data size that prevents users

from moving data off-site!

Accelerating Remote Display Performance

Problems

•  X11 is a verbose protocol
•  Frequent blocking operations
•  Many network round-trips necessary, even when

drawing a simple menu

•  NERSC users often at the end of a high-latency
network link
–  High latency likely to be the main cause of

performance problems
–  Limited bandwidth may contribute, but likely to have

less impact

Accelerating Remote Display Performance

X11 Alternatives – Overview

•  Two major “players” under consideration:

–  Virtual Network Computing (VNC)
•  RealVNC, TightVNC, TurboVNC

–  (Free)NX

Accelerating Remote Display Performance

X11 Alternatives – VNC

•  Use Remote Framebuffer Protocol (RFB)
transmitting frame buffer updates instead of “draw
commands”

•  Local X Server (Xvnc) replaces remote X11
connection with RFB connection

•  Common versions:
–  RealVNC (Enhancement of original prototype created at

Olivetti & Oracle Research Lab)
–  TightVNC (Improved image compression)

•  TurboVNC (Enhancements relevant to visualization:
double buffering, compression speed)

•  Currently available on DaVinci

Accelerating Remote Display Performance

VNC Diagram

 NERSC (“DaVinci”)Remote User

Accelerating Remote Display Performance

X11 Alternatives – (Free)NX

•  Based on differential X protocol compressor
•  Compresses X11 traffic
•  Adds proxy/agent that caches images etc. and

“shortcuts” many operations requiring handshake
•  Commercial (NoMachine, Inc.) and open source

version (FreeNX) available
•  “Floating” window session (without desktop)

possible
•  Out-of-box GLX support via software rendering

Accelerating Remote Display Performance

Accelerating Remote Display Performance

Evaluation Criteria

•  Speed / Interactivity
–  How “usable” over high-latency link?
–  Measurements:

•  Time to finish update
•  Deployability

–  Complexity of remote setup?
•  Both solutions have easy to use clients
•  Other considerations?

•  Security
–  Any new security concerns by using new service?

Accelerating Remote Display Performance

Benchmarking X11 Alternatives

•  Simulate remote network conditions
– Obtain measurements of network characteristics

to remote users’ sites
•  Mainly latency and bandwidth / transfer rate

–  Derive realistic range of conditions
–  Simulate network

•  Measure performance
–  First subjective evaluation
–  Exact timings / measurements

•  Use of common applications
•  Definition of metrics that are “fair” despite differences

in protocol/implementation

Accelerating Remote Display Performance

10.0.1.*

Simulating the Network

•  Run most test applications locally on fake “DaVinci”
•  LBNL/NERSC network for connection to NERSC

license server (for Matlab, …)

“DaVinci”
Network

(Linux bridge�
with NISTNet) Remote User

10.0.0.*

10.0.0.2 10.0.1.1128.3.30.247

128.3.30.*

10.0.0.1 10.0.1.2

Accelerating Remote Display Performance

Measuring Performance

•  Test with existing applications (Matlab, Maple, IDL,
…)
–  Subjective speed experience
–  Time between “mouse click” and “last screen

update” (using XTrap and XDamage extensions)

Accelerating Remote Display Performance

Initial Performance Test Results –
“UCLA”

Action SSH VNC FreeNX
Establish connection n/a ~11s ~16s

Start Matlab (-nosplash) 9.6s 4.9s 5s

Open edit window 2.9s 1.3s 1.2s

Activate File menu 0.6s 0.1s 0.1s

Activate Edit menu 0.6s 0.1s 0.1s

Activate Text menu 0.5s 0.2s 0.1s

Close edit window, redraw
main window

1.5s 0.4s 0.3s

Close matlab 0.5s 0.6s 0.6s

Latency: 5ms each way, 10ms RTT, No bandwidth limitation via NISTNet
Measured bandwidth: 324 Mbits/sec (iperf)

Accelerating Remote Display Performance

Initial Performance Test Results –
“PPPL”

Action SSH VNC FreeNX
Establish connection n/a ~5.7s ~10.2s

Start Matlab (-nosplash) 39.5s 4.6s 5.4s

Open edit window 14.9s 1.3s 1.2s

Activate File menu 3.7s 0.3s 0.2s

Activate Edit menu 7.6s 0.4s 0.2s

Activate Text menu 5.1s 0.4s 0.3s

Close edit window, redraw
main window

7.3s 1.4s 1.8s

Close matlab 2.1s 1.54s 1.1s

Latency: 40ms each way, 80ms RTT, No bandwidth limitation via NISTNet
Measured bandwidth: 38.9 Mbits/sec (iperf)

Accelerating Remote Display Performance

Security Considerations

•  VNC
–  Security strength of RFB authentication (Hash + armoring of

data stream)
•  Simple encryption, probably more secure than X

–  Requires users to choose yet another password
•  Not automagically like X MAGIC-COOKIE

–  Tunneling via SSH possible
•  NX

–  Uses existing X11 and SSH protocols
–  Requires a separate user “nx” to initiate session
–  Clients connect with public key without pass phrase
–  Use regular user account passwords to initiate session

Accelerating Remote Display Performance

Anticipating Future Requirements

•  Any solution needs to provide OpenGL / GLX
functionality
–  Required by VisIt, some Matlab modules, IDL, …

•  Current NERSC machines: Software GL

•  Current (and future) data set sizes warrant hardware
rendering

•  Evaluate feasibility to use graphics hardware
remotely via Chromium Render Server and
VirtualGL

Accelerating Remote Display Performance

NX <-> VNC Advantages

•  Speed measurements almost a tie
•  NX

–  Moving windows “snappier”
–  Probably less network traffic and more tolerance of low-

bandwidth situations
–  Users completely “shielded” from having to start server etc.
–  Less protocol divergence and “viewer confusion”
–  Desktopless “floating window” mode – though somewhat “flaky”
–  SSH-based

•  VNC
–  Better hardware OpenGL/VirtualGL support
–  Existing Chromium Render server support
–  Java servers available
–  Pure web browser-based AJAX solutions in development

Accelerating Remote Display Performance

Current State of Affairs

•  Completed:
–  Network simulation setup
–  Simple user interaction timer using XTrap and XDamage

extensions
–  Set up VNC version and FreeNX on test network
–  Initial tests

•  In Progress
–  Evaluation with NERSC Networking and Security Group (NAST)
–  Perform further tests
–  Initial recommendation

•  To do:
–  ???Implement frame-rate measurement tool and GL Tests???
–  Evaluation with select NERSC users
–  HOWTOs and deployment

NERSC is supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under

contract number DE-AC02-05CH11231.

Questions?

