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Utilization and Presentation

2”‘;\\ of Topological Information

Branch of mathematics, developed before advent of visualization (Morse,
1925; Reeb, 1946; Milnor, 1963)

Topological information used for more than 15 years in visualization
(Shingawa et al., 1991; van Gelder & Wilhelms, 1994)
Utilization

— Transfer function design, rendering translucent isosurfaces (Fujishiro et al., 2000)

— Interval volumes (Takahashi et al., 2005)

— Acceleration of isosurface extraction (Bajaj et al., 1998)

— Flexible isosurfaces (Carr et al., 2003) and volume rendering (Weber et al., 2007)
Presentation

— Contour spectrum (Bajaj et al., 1997) and Safari (Kettner et al., 2003)

— Multiresolution topology and Toporerry (Pascucci et al., 2004)

— Nested rectangle representation of contour trees (Mizuta et al., 2004)

... and many more (refer to paper)
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. Presentation of Topological
% Information

Topological analysis powerful tool for identifying features
In scientific data

Contour tree summarizes isosurface behavior
Valuable for identifying relevant isovalues

Drawbacks:
— Not intuitive for novice users
— Clutter / layout problems for complicated contour trees

— Little degree of freedom for display of additional
guantities
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Using a Terrain Metaphor

71

e Contour trees originally defined on terrains (Boyell &

Ruston, 1963)

% \/ IAV




=~ Inverse Mapping: Creating a
@ Terrain for a Contour Tree
e (1)
« Contour trees originally defined on terrains (Boyell &
Ruston, 1963)

e ldea: Construct a 2D terrain with the same topology
as a contour tree
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A0 Using a Terrain Metaphor

71\

e Contour trees originally defined on terrains (Boyell &
Ruston, 1963)

e ldea: Construct a 2D terrain with the same topology
as a contour tree

* Advantages:

— Intuitive: humans trained to
understand landscapes

— Dimension independent
— Topology + metric properties
— Use efficient rendering techniques
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% Contour Trees

e Definitions:
— Isosurface := f -1({isoval})
— Contour := Connected component of isosurface

e Contour tree:
— Collapse each contour at given level to point
— Results in graph structure
= Node: Critical point that changes number of contours

= Edge: Evolving contour between contour creation/
merge/split/destruction events

L
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- Contour Tree — Example
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- Contour Tree — Example







4 Branch Decomposition
 Complex topology
— Inherent data complexity
— Noise

* Need to consider topology at
various scales

=» Hierarchical contour tree
representation

e Order based on simplification
measure, e.g., persistence

(Pascucci et al., 2004)
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Terrain Construction —
Root Branch

/Il\\

« Start with root branch of
branch decomposition

* Use two levels 4-8
subdivision hierarchy

* Assign value of “branch

c> O minimum” to center vertex

* Assign value of “branch
maximum” to boundary
vertices
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Terrain Construction —

@ Refinement (1/2)
|\
Q O O
* Adding two levels is
insufficient for placing
children
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. Terrain Construction —
@k\\ Refinement (2/2)

Q

* Adding four levels of

T refinement creates space
4 };{ }4 N } for four children
N N PA }
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. Terrain Construction —
(JE® Pizcing Child Branches
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e Assign branch maximum
(or minimum) value to
center vertex

* Assign branch saddle value
) to “boundary” vertices

» Space for children has
same configuration as root
level

=» Recursive construction
scheme
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Terrain Construction —

Placing More Child Branches
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@ Terrain Construction —
£=% Child Branch Layout

i T * Arrange child branches in
" spiral layout
* Avoids new maxima, minima
and thus new saddles

« Create “flat” regions for
vacant spots
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Terrain Construction —

Example
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Branch Decompositon Topological Landscape
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. Metric-based Distortion —
% Motivation

* Problem: Area assigned to a branch depends on
hierarchy level, not necessarily on importance

e Can result in “spikes” (small patches with high
persistence)

— Difficult to see
— Perceptual problem (interpretation as noise / outliers)

e Solution:
Map additional property, such as feature volume, to area

=» Increases expressiveness of landscape
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» Metric-based Distortion —
@ﬁ\\ Area Assignment
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» Area = Volume?", where n = dimension of data set
* Area assigned to triangles comprising patch for feature
* Use iterative reparametrization scheme
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% Results — Hydrogen Atom
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Spatial probability distribution of the electron in an hydrogen atom in
a strong magnetic field; 1.1% average volume to area error
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Spatial probability distribution of the electron in an hydrogen atom in
a strong magnetic field; 1.1% average volume to area error




/25 Results — Methane Molecule
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Electron distribution in methane molecule; 1.5 % average volume to

area error




Ao Results
i

CT scan of two cylinders of an engine block; 1.3 % average volume

t9 area error
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% Results — Nucleon
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Two-body distribution probability of a nucleon in the atomic nucleus
160 if a second nucleon is positioned in a distance of 2 fm; 0.6 %
average volume to area error
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I Results - silicium
' 711\

.:\\\\\\\\\\
\\\\u\||||||||

. i < < > 4 -
’ f - -‘-r" ey

A \ il ‘

p) »y N ‘
. N\ % 7 | | ‘\‘\

K \ \ hS \ |
Y " RO 4} \ ““‘\l ‘\
\ .

X N . ’y‘

\ 1 \ N \ |

\ ‘ At 11/ 722

‘Lx \ ‘ ‘l\\ Z /4

L TN

Simulation of a silicium grid; 1.0 % average volume to area error
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dE® Results - Silicium (Flipped)
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Simulation of a silicium grid; 1.0 % average volume to area error
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Results — Neghip

Spatial probability distribution of the electrons in a high potential
protein molecule; 1.9 % average volume to area error
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Results — Fuel
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Simulation of fuel injection into a combustion chamber; \%
4.1 % average volume to area error




Conclusions

\

* Introduced Topological Landscape as metaphor for
translating a scalar function f to two dimensions

* Preserve topological structure
* Preserve additional metric
* Promising results on commonly used example data sets

e Can be rendered as hierarchy corresponding to
persistence-based simplification

 Examples are 3D data sets, but concept applies to higher
dimensions
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@ﬁ\\ Future Work

* Apply to real world large-scale data and evaluate more
formally

— Improve layout
— Experiment with additional metrics
* Apply to higher dimensional data sets
* Link with volume rendered view, Toporrery view, etc.

e Link 2D contours in Topological Landscape to 3D
contours in data set
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