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The Take-Home Message

< Gaining insight from large and complex datasets is a
major bottleneck.

< Thesis: effective software tools for gaining insight
from such data must use a blend of technologies
from:

= Scientific Data Management
» Visualization, Analytics
= Computer Science
< Query-Driven Visualization is one such approach.




Motivation

< Simulations and
experiments are generating
data faster than it can be
analyzed and understood.

< Science bottleneck:
information analysis and
understanding.

High Performance Visualization

< Observation: 80% of the code in any visualization application
does “data management.”
< Theses:
= “Scalable visualization” solutions do not necessarily
increase the likelihood of scientific insight.
= More visualization output can cause more problems than it
solves.
 Increased depth complexity.
* Increased cognitive workload.
= Our approach to high performance visualization is to focus
visualization processing on that subset of data deemed to
be scientifically interesting.
= Any tractable solution to “large data visualization” must
address scientific data management issues.

= Use SDM technology for data management.




Query-Driven Visualization

< What is Query-Driven Visualization?
» Find “interesting data” and limit visualization,
analysis, machine and cognitive processing to
that subset.

< One way to define “interesting” is with compound
boolean range queries.

= E.g,(CH,>0.1) AND (T, <temp<T,)
< Quickly locate those data that are “interesting.”

< Pass results along to visualization and analysis
pipeline.

Query-Driven Visualization
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The Canonical Visualization Pipeline




Query-Driven Visualization

FastBit

% CH,>0.3

<« Temp <T,;

<+ CH,>0.3ANDtemp < T,

% CH, > 0.3 AND temp < T,

" T, <T,




Query-Driven Visualization

< How fast is it?
= Comparison: Isosurface algorithms:
« Nice summary in: Sutton et. al., “A Case Study of Isosurface
Extraction Algorithm Performance,” 2nd Joint Eurographics-
IEEE TCCG Symposium on Visualization, May 2000
= For n data values and k cells intersecting the surface:
* Marching Cubes: O(n)
» Octtree methods: O(k + k log (n/k))
— Acceleration: pruning; sensitive to noisy data
* Span-space methods:
— NOISE: O(sqrt(n) + k)
— ISSUE: O(log (n/L) + sgrt(n)/L + k)
» L is atunable parameter
— Interval Tree: O(log n + k)
< FastBit: O(k) — the theoretical optimum.

= Profound performance gain for Petascale visualization!
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Query-Driven Visualization

< What do these timing results mean?

* In a one-sided matchup (DEX doing a lot more
work), our performance results are markedly
better for a given task than an industry-standard
isocontouring implementation.

< These are single-valued queries.
= DEX capable of n-dimensional queries.

» Tree-based indexing methods not capable of n-
dimensional queries.

< Why compare against isosurfacing?
= Familiar to the visualization community.

Query-Driven Visualization

< The previous work explored the feasibility of the
approach by performing a speed comparison with the
fastest industry-standard algorithm for finding
“interesting” scalar data.

< The next sequence of slides discusses application of
the work to a cybersecurity application — proof that
the idea is generally applicable to large data
visualization.




QDV - Detecting Distributed Scans

< The problem:
»= One day’s worth of traffic consists of tens of
millions of individual connections.

= Traffic increasing by an order of magnitude every
48 months.
« ESnet monthly traffic levels now exceed 1 PB.

» The Internet is a hostile environment, and it will
get worse.

= Objective: enable rapid forensic data analysis
(network flow records).

QDV - Detecting Distributed Scans

<% The data:

= 42 weeks’ of connection records from Bro
(NERSC).

= 281GB for raw data, 78GB for compressed
bitmap indices.

< “Hero-sized problem”
= No previous network analysis work has ever
attempted to perform interactive visual analytics
on data of this scale.

» Result: what once took days (if at all possible)
now takes seconds.
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QDV - Detecting Distributed Scans

1D Histogram, per-bin queries
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Conditional 2D histogram processing time
Query: (1000 < DP < 11000) AND (50 <=
tsyday <= 350) AND (state==1) AND (12 <=
tshour <=14), 10K total bins.




QDV - Detecting Distributed Scans

< The Case Study

Daily counts of STATE==1 && DP==5554 amwan Par-hour activiy around day 280

R0

1.  Query to produce a histogram of
unsuccessful connection attempts over a
42-week period at one-day temporal
resolution (upper left).

Hourly counts of STATE==1 and DP==5554

210670,

2. Drill into the data, query to produce a new
histogram covering a four-week period at
one-hour temporal resolution (lower left).

| 3. Generate a histogram of one-hour
| | resolution over a two-day period around
| ! | day 290 (upper right).
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QDV - Detecting Distributed Scans

Houry cpunin 9t STATEw=1 @rd OFaiosd 5. Query to generate a histogram of
unsuccessful connection attempts over a five-
day period sampled at one-minute temporal
resolution (middle, left). Regular attacks occur at
21:15L, followed by a second wave 50 minutes
later.

6. Query to generate histogram over a two-hour
period at one-minute temporal resolution (lower
left).

7. Query to generate a 3D histogram showing
the coverage of attacks in destination address
space (lower right).

Par-minuin counts of (STATE==1) &8 (DP==5554)




QDV - Detecting Distributed Scans

After establishing that (1) a temporally regular — |
activity is occurring, and (2) that it is in fact a 4
systematic probe (scan) of entire blocks of network |
addresses, the next task is to determine the set of |
remote hosts participating in the attack.

Working backwards, we isolate the A, B, C and D
address octets of the hosts participating in the _ |
attack. \ [

This image shows a 3D histogram of the destination
address space being attacked by each of 20 different
hosts. The vertical axis is time — a seven-minute
window at one-second temporal resolution.
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QDV - Detecting Distributed Scans

< Our analysis was performed in statistical space only.
= We never accessed the raw data.
= Our processing and visualization used only the index data.

< The same principles can be (and will be) applied to scientific
data.

< Challenges:
= How to define “interesting?”
= Effective user interfaces for:

« Support rapid interrogation, propagating query results from
step to step in the analysis process.

* Multivariate visualization

e Drill-down (mining), linked/correlated views
= Adapting, applying and deploying these principles to
scientific data (e.g., AMR, distributed data/computing
resources).
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Plasma-Wakefield Accelerators

< 1000s of times more powerful than
traditional RF-based accelerators.

< Short, intense laser pulses generate
waves in plasma fields.
< Electrons are “bunched” into the wake of

waves to a much higher degree than is
possible with RF-based methods.

< This 2004 image shows 2D simulation
results.

< Coincides with successful 2004
experiment at L’Oasis (LBNL)

< Present day — 3D simulations (DOE
INCITE program).

Plasma-Wakefield Accelerators
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Plasma-Wakefield Accelerators

Plasma-Wakefield Accelerators
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Plasma-Wakefield Accelerators

Plasma-Wakefield Accelerator Lessons

< This work has lead to new scientific discoveries that are
currently in press (at the request of the researchers, none of the
preceding images show the new science).

< A visualization of “all the particles” is not scientifically helpful —
only a small subset of particles “is interesting.”

= Limiting analysis and vis to “interesting particles” is very
interesting.

< An image of “all the data” isn't typically scientifically useful.
= However, those images show up on the cover of Nature.
= Those images are very helpful in communicating with the
public, funding agencies, etc.
= Those images are very useful in creating excitement about
science.
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QDV - Conclusion

< New capability: ability to focus visualization and analysis
processing on interesting data.

= Orders of magnitude faster than previous
approaches.

= Directly responsive to needs of scientific
researchers.

= Quantifiable reduction in data understanding duty
cycle.

< Leverages state-of-the-art Scientific Data Management
technology to accelerate searches.

< QDV concepts are general-purpose and scalable to
1000s of PEs.

The End
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