

<u>COMPUTATIONAL RESEARCH DIVISION</u>

Communication Analysis of Ultrascale Applications using IPM

John Shalf, Shoaib Kamil, Leonid Oliker, David Skinner NERSC/CRD jshalf@lbl.gov

DOE, NSA Review, July 19-20, 2005

- CPU clock scaling bonanza has ended
 - Heat density
 - New physics below 90nm (departure from bulk material properties)
- Yet, by end of decade mission critical applications expected to have 100X computational demands of current levels (*PITAC Report, Feb 1999*)
- The path forward for high end computing is increasingly reliant on massive parallelism
 - Petascale platforms will likely have hundreds of thousands of processors
 - System costs and performance may soon be dominated by interconnect
- What kind of an interconnect is required for a >100k processor system?
 - What topological requirements? (fully connected, mesh)
 - Bandwidth/Latency characteristics?
 - Specialized support for collective communications?

Questions

(How do we determine appropriate interconnect requirements?)

- **Topology:** *will the apps inform us what kind of topology to use?*
 - Crossbars: Not scalable
 - Fat-Trees: Cost scales superlinearly with number of processors
 - Lower Degree Interconnects: (*n-Dim Mesh, Torus, Hypercube, Cayley*)
 - Costs scale linearly with number of processors
 - Problems with application mapping/scheduling fault tolerance
- Bandwidth/Latency/Overhead
 - Which is most important? (trick question: they are intimately connected)
 - Requirements for a "balanced" machine? (eg. performance is not dominated by communication costs)
- Collectives
 - How important/what type?
 - Do they deserve a dedicated interconnect?
 - Should we put floating point hardware into the NIC?

- Identify candidate set of "Ultrascale Applications" that span scientific disciplines
 - Applications demanding enough to require Ultrascale computing resources
 - Applications that are capable of scaling up to hundreds of thousands of processors
 - Not every app is "Ultrascale!"
- Find communication profiling methodology that is
 - Scalable: Need to be able to run for a long time with many processors. Traces are too large
 - Non-invasive: Some of these codes are large and can be difficult to instrument even using automated tools
 - Low-impact on performance: Full scale apps... not proxies!

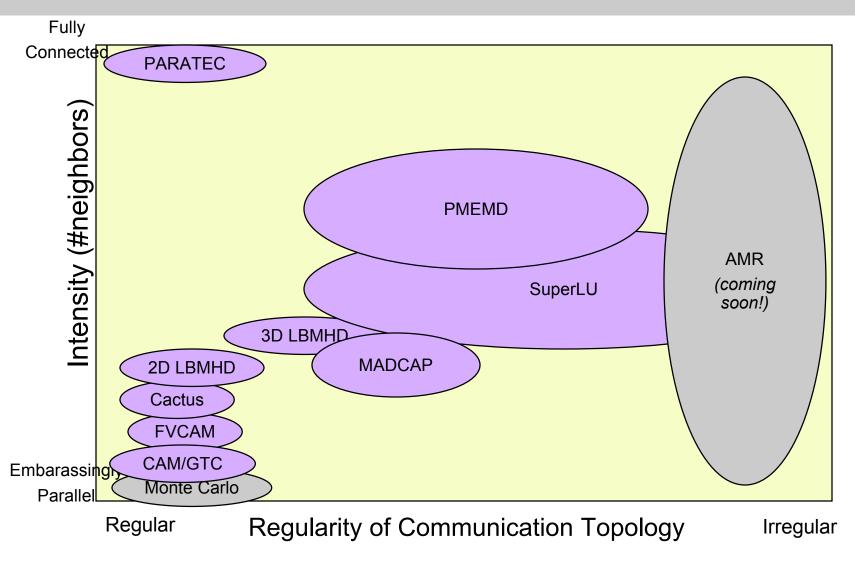
IPM (the "hammer")

Integrated Performance Monitoring

- portable, lightweight, scalable profiling
- fast hash method
- profiles MPI topology
- profiles code regions
- open source

```
MPI_Pcontrol(1,"W");
...code...
MPI_Pcontrol(-1,"W");
```

			####### /ESOS
			•
#			
# <mpi></mpi>	<user></user>	<wall></wall>	> (sec)
# 171.67	352.16	393.80	
#			
#######################################	###############	########	#########
# W			
# <mpi></mpi>	<user></user>	<wall< th=""><th>.> (sec)</th></wall<>	.> (sec)
# 36.40	198.00	198.36	
#			
# call	[time]	%mpi	%wall
<pre># MPI_Reduce</pre>	2.395e+01	65.8	6.1
<pre># MPI_Recv</pre>	9.625e+00	26.4	2.4
<pre># MPI_Send</pre>	2.708e+00	7.4	0.7
<pre># MPI_Testall</pre>	7.310e-02	0.2	0.0
<pre># MPI_Isend</pre>	2.597e-02	0.1	0.0
#######################################	##############	########	#########
	<pre># IPMv0.7 :: csr # madbench.x (cd # #</pre>	<pre># IPMv0.7 :: csnode041 256 ta # madbench.x (completed) 10/2 # #</pre>	<pre># madbench.x (completed) 10/27/04/14 # #</pre>



NAME	Discipline	Problem/Method	Structure
MADCAP	Cosmology	CMB Analysis	Dense Matrix
FVCAM	Climate Modeling	AGCM	3D Grid
CACTUS	Astrophysics	General Relativity	3D Grid
LBMHD	Plasma Physics	MHD	2D/3D Lattice
GTC	Magnetic Fusion	Vlasov-Poisson	Particle in Cell
PARATEC	Material Science	DFT	Fourier/Grid
SuperLU	Multi-Discipline	LU Factorization	Sparse Matrix
PMEMD	Life Sciences	Molecular Dynamics	Particle

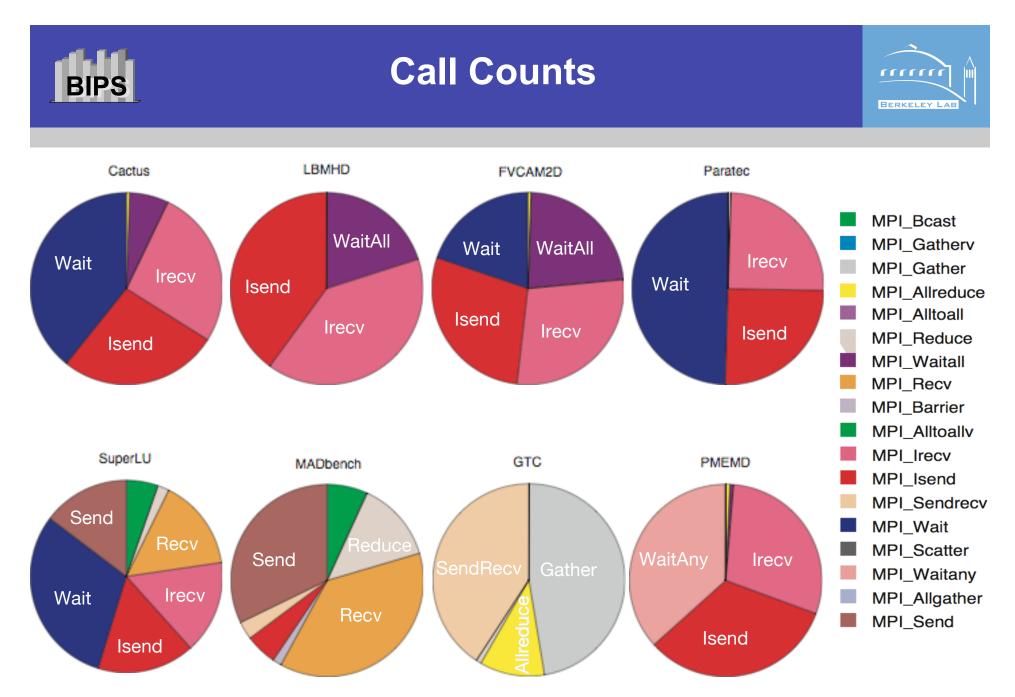
Presumed Communication Requirements

BIPS

rrrrr

BERKELEY LAP

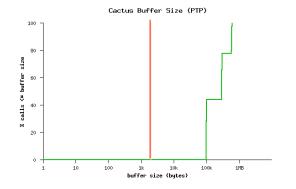
BIPS Latency Bound vs. Bandwidth Bound?

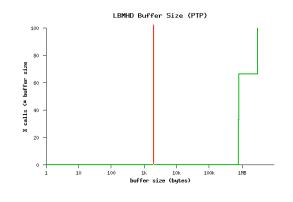


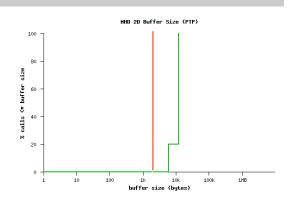
- How large does a message have to be in order to saturate a dedicated circuit on the interconnect?
 - N^{1/2} from the early days of vector computing
 - Bandwidth Delay Product in TCP

System	Technology	MPI Latency	Peak Bandwidth	Bandwidth Delay Product
SGI Altix	Numalink-4	1.1us	1.9GB/s	2KB
Cray X1	Cray Custom	7.3us	6.3GB/s	46KB
NEC ES	NEC Custom	5.6us	1.5GB/s	8.4KB
Myrinet Cluster	Myrinet 2000	5.7us	500MB/s	2.8KB
Cray XD1	RapidArray/IB4x	1.7us	2GB/s	3.4KB

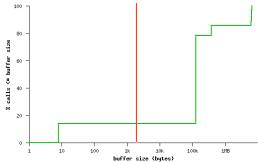
- Bandwidth Bound if msg size > Bandwidth*Delay
- Latency Bound if msg size < Bandwidth*Delay
 - Except if pipelined (unlikely with MPI due to overhead)
 - Cannot pipeline MPI collectives (but can in Titanium)







P2P Buffer Sizes

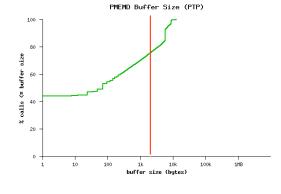


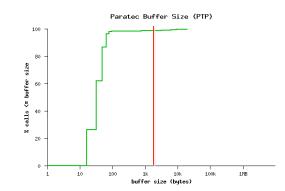
1k

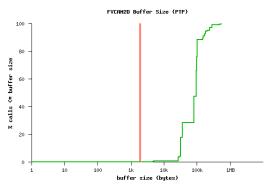
10k

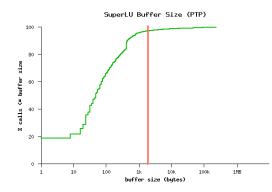
buffer size (bytes)

100k

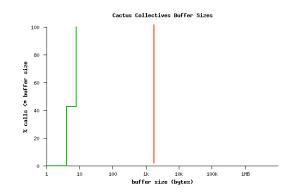

1MB

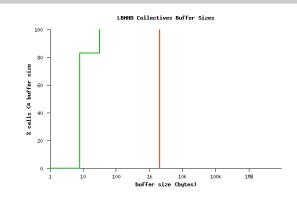

20

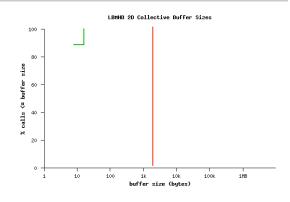

° + 1

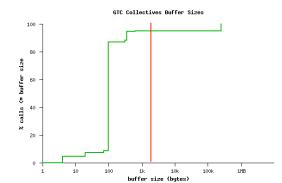

10

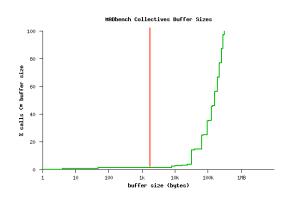
100

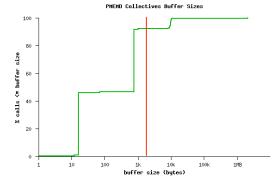


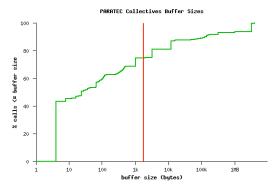


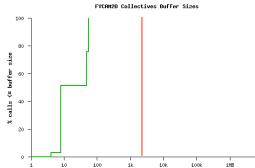


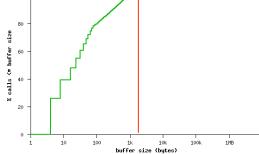

Collective Buffer Sizes



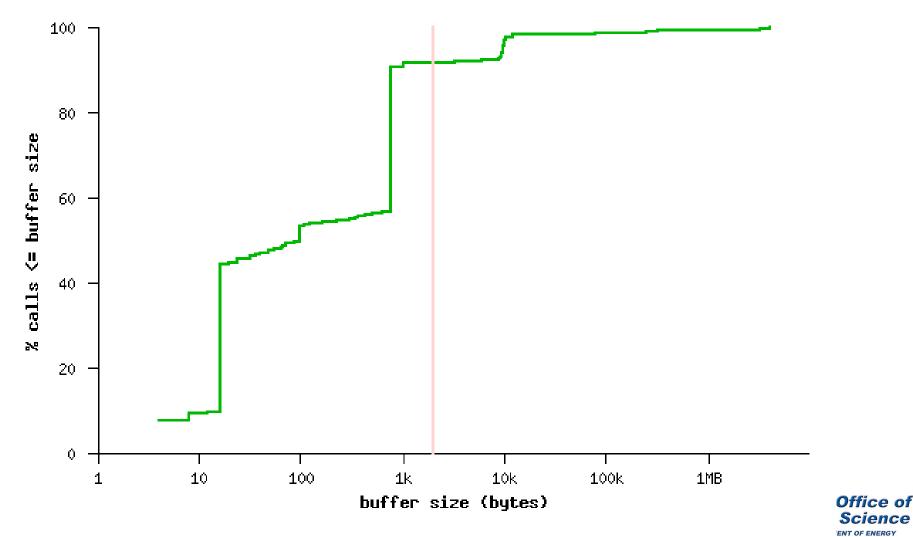


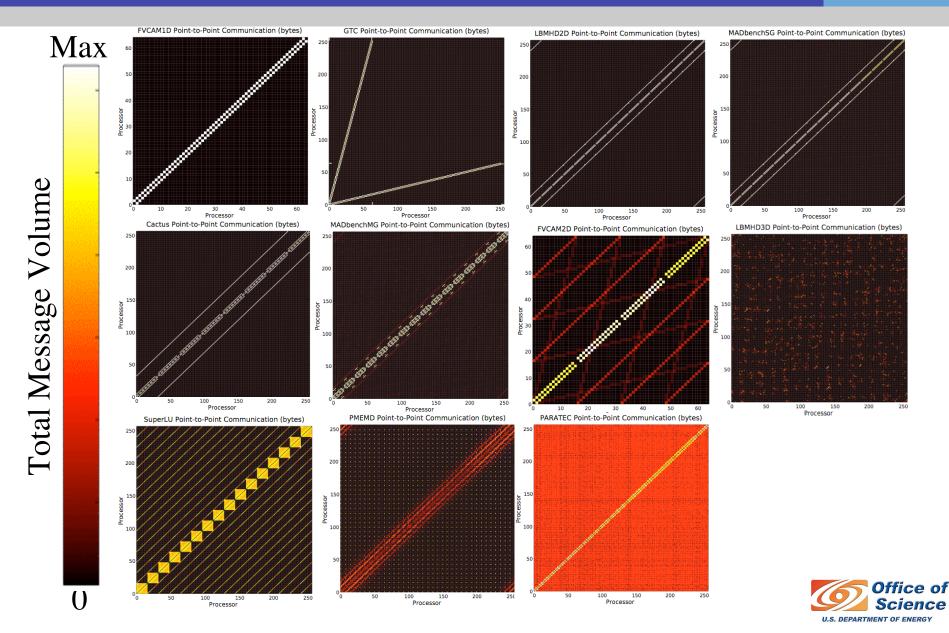


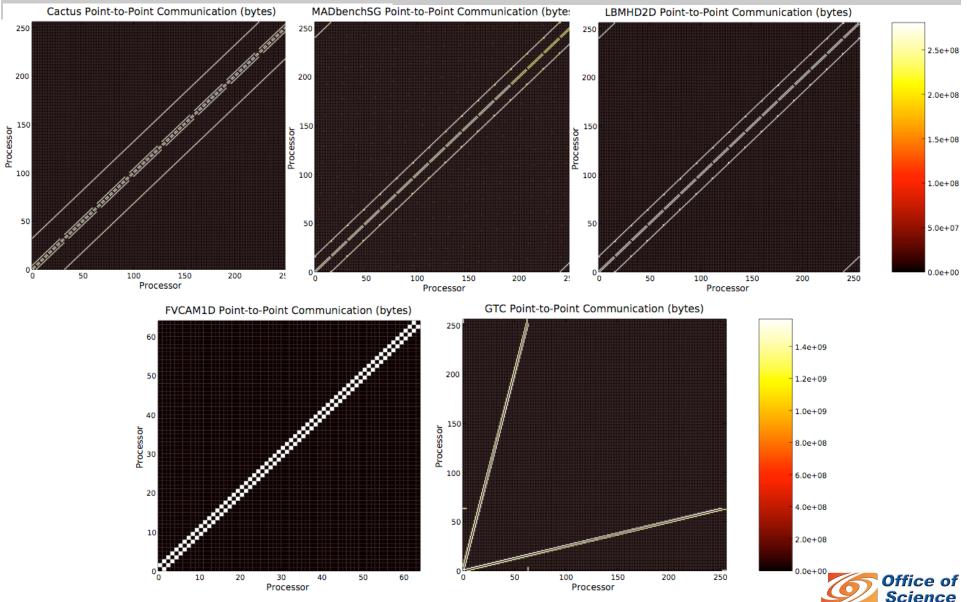




size

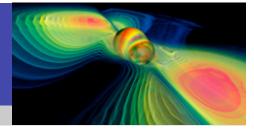

100


Collective Buffer Sizes for All Codes


P2P Topology Overview

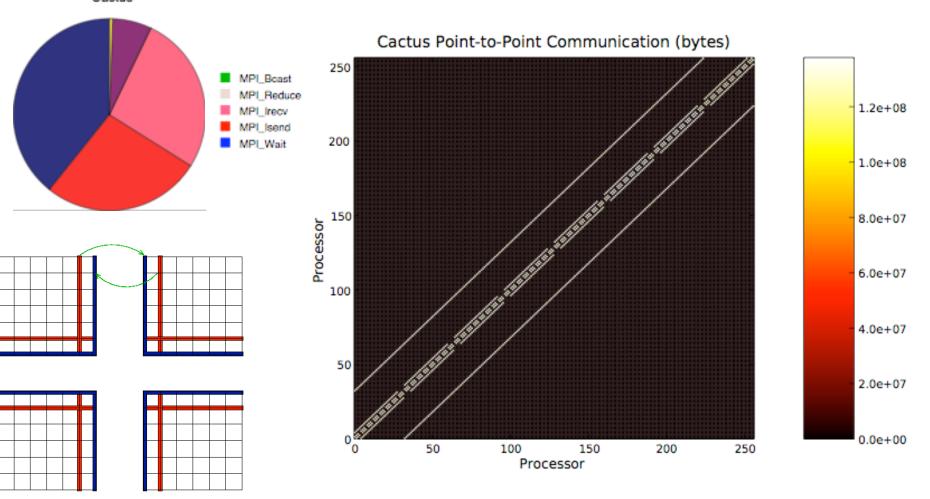
Fully Regular Communication Patterns

BIF



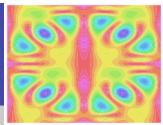
U.S. DEPARTMENT OF ENERGY

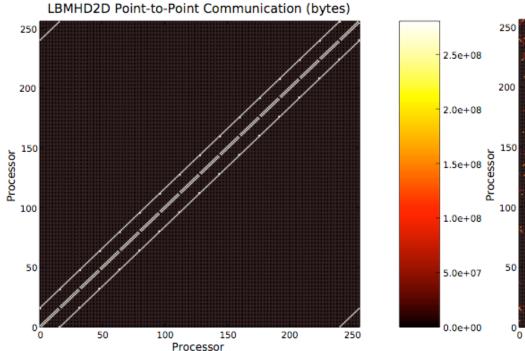
.....

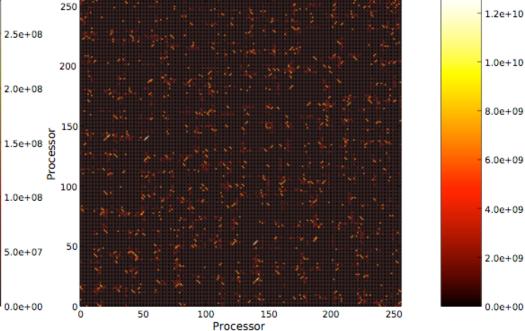

BERKELEY LAB

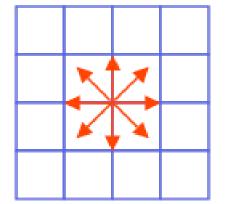
Cactus Communication PDE Solvers on Block Structured Grids

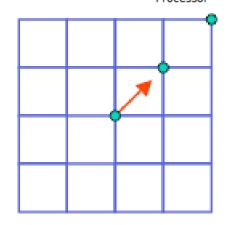
Cactus


BIP






LBMHD Communication



LBMHD3D Point-to-Point Communication (bytes)

GTC Communication BIF GTC Point-to-Point Communication (bytes) 250 Call Counts 1.4e+09 200 1.2e+09 1.0e+09 J50 Processor MPI_Gather MPI_Sendrecv 8.0e+08 C MPI_Allreduce 100 6.0e+08 4.0e+08 2.0e+08 100 Processor 0.0e+00 150 200 250 50 LBMHD 2D Collective Buffer Sizes MHD 2D Buffer Size (PTP) 100 100 80 80 calls <= buffer size % calls <= buffer size 60 60 40 40 N

20

0 -

1

Т

10

Т

100

Т

1k

buffer size (bytes)

10k

100k

1MB

20

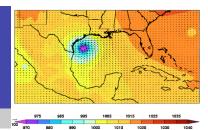
0

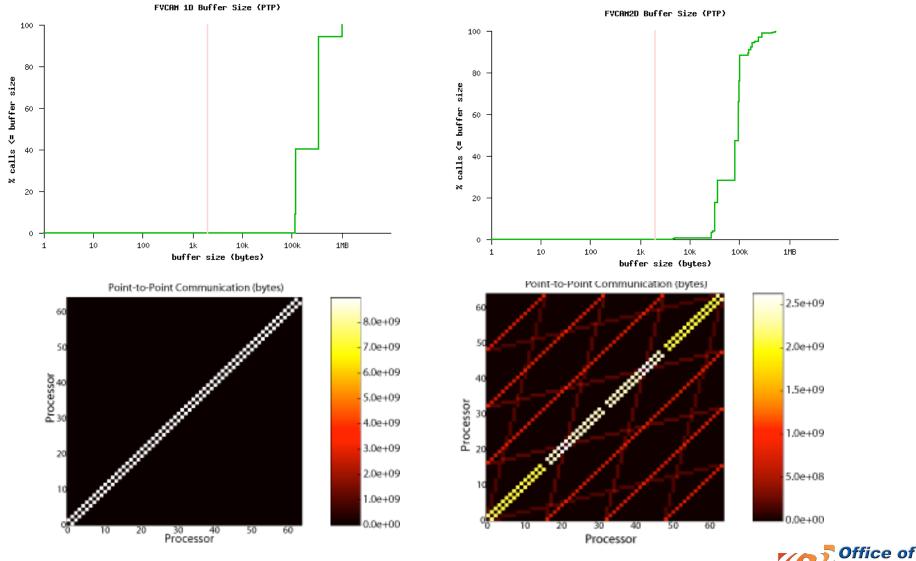
1

10

100

1k


buffer size (bytes)


10k

100k

FVCAM Communication

U.S. DEPARTMENT OF ENERGY

SuperLU Communication

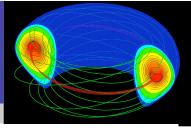
4.5e+08

4.0e+08

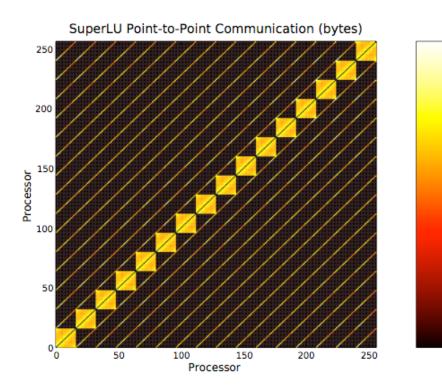
3.5e+08

3.0e+08

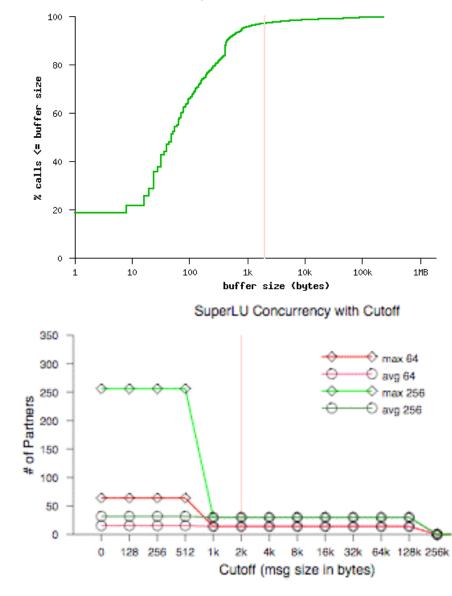
2.5e+08

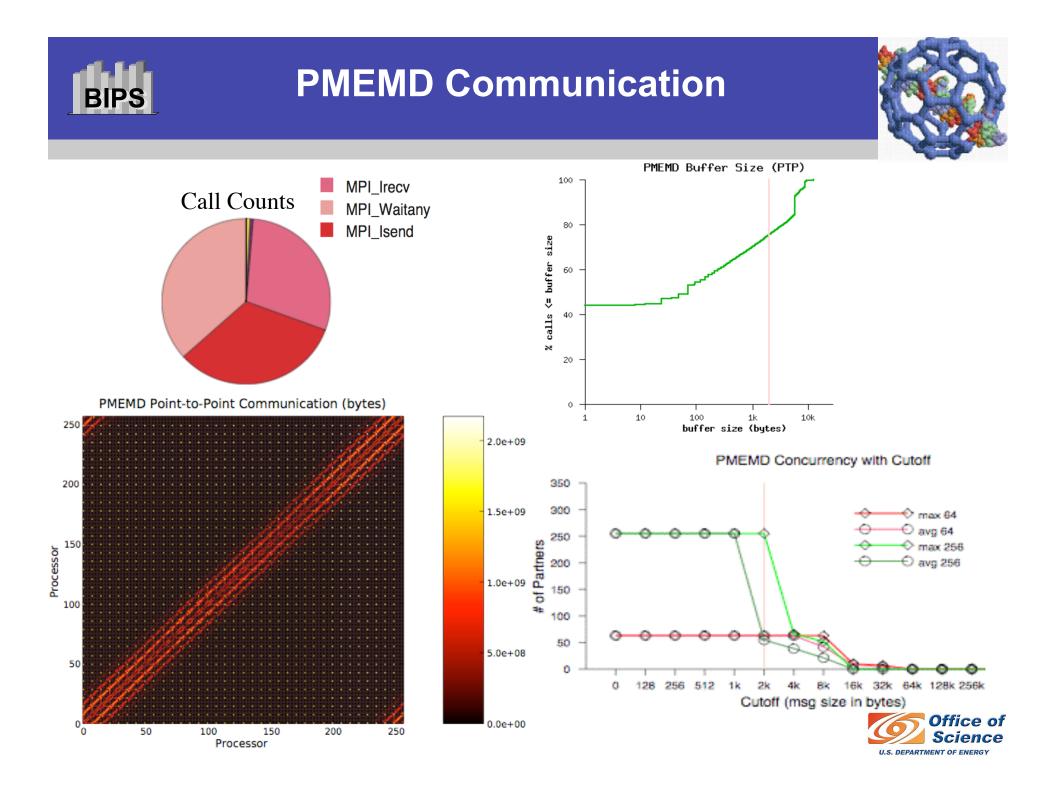

2.0e+08

1.5e+08

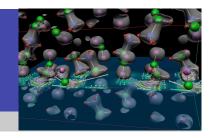

1.0e+08

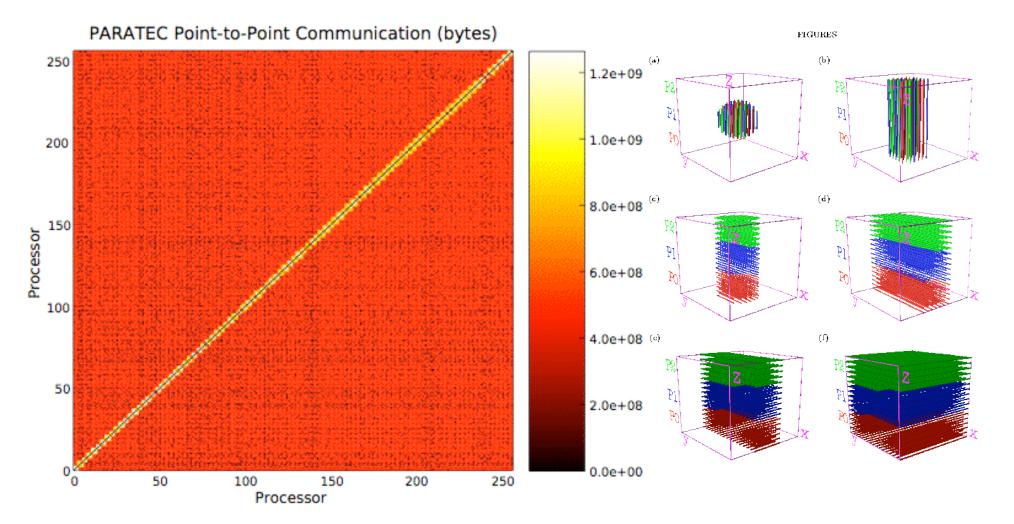
5.0e+07


0.0e+00



SuperLU Buffer Size (PTP)


BIPS



PARATEC Communication

Summary of Communication Patterns

BIPS

Code 256procs	%P2P : %Collective	Avg. Coll Bufsize	Avg. P2P Bufsize	TDC@2k max,avg.	%FCN Utilization
GTC	40% : 60%	100	128k	10,4	2%
Cactus	99% : 1%	8	300k	6,5	2%
LBMHD	99% : 1%	8	3D=848k 2D=12k	12 , 11.8	5% 2%
SuperLU	93% : 7%	24	48	30,30	25%
PMEMD	98% : 2%	768	6k or 72	255 , 55	22%
PARATEC	99% : 1%	4	64	255 , 255	100%
MADCAP-MG	78% : 22%	163k	1.2M	44 , 40	23%
FVCAM	99% : 1%	8	96k	20,15	16%

Revisiting Original Questions

- Topology
 - Most codes require far less than full connectivity
 - PARATEC is the only code requiring full connectivity
 - Many require low degree (<12 neighbors)
 - Low TDC codes not necessarily isomorphic to a mesh!
 - Non-isotropic communication pattern
 - Non-uniform requirements
- Bandwidth/Delay/Overhead requirements
 - Scalable codes primarily bandwidth-bound messages
 - Average message sizes several Kbytes
- Collectives
 - Most payloads less than 1k (8-100 bytes!)
 - Well below the bandwidth delay product
 - Primarily latency-bound (requires different kind of interconnect)
 - Math operations limited primarily to reductions involving sum, max, and min operations.
 - Deserves a dedicated network (significantly different reqs.)

.....

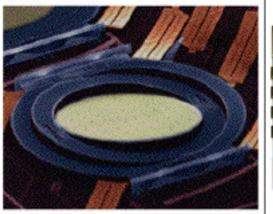
BERKELEY

Whats Next?

- What does the data tell us to do?
 - P2P: Focus on messages that are bandwidth-bound (eg. larger than bandwidth-delay product)
 - Switch Latency=50ns
 - **Propagation Delay = 5ns/meter propagation delay**
 - End-to-End Latency = 1000-1500 ns for the very best interconnects!
 - Shunt collectives to their own tree network (BG/L)
 - Route latency-bound messages along non-dedicated links (multiple hops) or alternate network (just like collectives)
 - Try to assign a direct/dedicated link to each of the distinct destinations that a process communicates with

- Can't afford to continue with Fat-trees or other Fully-Connected Networks (FCNs)
- Can't map many Ultrascale applications to lower degree networks like meshes, hypercubes or torii
- How can we wire up a custom interconnect topology for each application?

Switch Technology



- Packet Switch:
 - Read each packet header and decide where it should go fast!
 - Requires expensive ASICs for line-rate switching decisions
 - Optical Transceivers

Force10 E1200

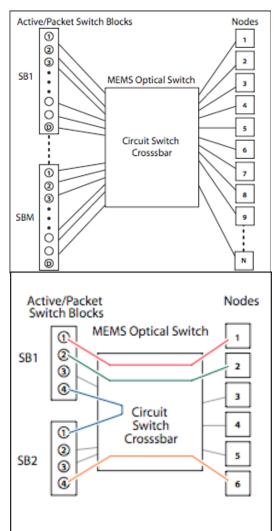
1260 x 1GigE 56 x 10GigE

Two-axis tilting micromirror (Hecht, 2001, p. 125)

400x400λ 1-40GigE Movaz iWSS

Circuit Switch:

- Establishes direct circuit from point-topoint (telephone switchboard)
- Commodity MEMS optical circuit switch
 - Common in telecomm industry
 - Scalable to large crossbars
- Slow switching (~100microseconds)
- Blind to message boundaries


BIPS

A Hybrid Approach to Interconnects HFAST

Hybrid Flexibly Assignable Switch Topology (HFAST)

- Use optical circuit switches to create custom interconnect topology for each application as it runs (adaptive topology)
- Why? Because circuit switches are
 - Cheaper: Much simpler, passive components
 - Scalable: Already available in 1024-port crossbars
 - Allow non-uniform assignment of switching resources
- GMPLS manages changes to packet routing tables in tandem with circuit switch reconfigurations

- HFAST Solves Some Sticky Issues with Other Low-Degree Networks
 - Fault Tolerance: 100k processors... 800k links between them using a 3D mesh (probability of failures?)
 - Job Scheduling: Finding right sized slot
 - Job Packing: n-Dimensional Tetris...
 - Handles apps with low comm degree but not isomorphic to a mesh or nonuniform requirements
- How/When to Assign Topology?
 - Job Submit Time: Put topology hints in batch script (BG/L, RS)
 - Runtime: Provision mesh topology and monitor with IPM. Then use data to reconfigure circuit switch during barrier.
 - Runtime: Pay attention to MPI Topology directives (if used)
 - Compile Time: Code analysis and/or instrumentation using UPC, CAF or Titanium.

- Simple linear-time algorithm works well with low TDC but not for TDC > packet switch block size.
- Use clique-mapping to improve switch port utilization efficiency
 - The general solution is NP-complete
 - Bounded clique size creates an upper-bound that is < NP-complete, but still potentially very large
 - Examining good "heuristics" and solutions to restricted cases for mapping that completes within our lifetime
- Hot-spot monitoring
 - Gradually adjust topology to remove hot-spots
 - Similar to port-mapper problem for source-routed interconnects like Myrinet

Conclusions/Future Work?

- Outgrowth of Lenny's vector evaluation work
- Future work == getting funding to do future work!
- Expansion of IPM studies
 - More DOE codes (eg. AMR: Cactus/SAMARAI, Chombo, Enzo)
 - Temporal changes in communication patterns (AMR examples)
 - More architectures (Comparative study like Vector Evaluation project)
 - Put results in context of real DOE workload analysis
- HFAST
 - Performance prediction using discrete event simulation
 - Cost Analysis (price out the parts for mock-up and compare to equivalent fattree or torus)
 - Time domain switching studies (eg. how do we deal with PARATEC?)
- Probes
 - Use results to create proxy applications/probes
 - Apply to HPCC benchmarks (generates more realistic communication patterns than the "randomly ordered rings" without complexity of the full application code)

BERKELEY