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Motivation and Problem 
Statement

• Too much data.
• Visualization “meat grinders” 

not especially responsive to 
needs of scientific research 
community.

• What scientific users want:
– Scientific Insight
– Quantitative results
– Feature detection, tracking, 

characterization
– (lots of bullets here omitted)

• See:
http://vis.lbl.gov/Publications/2002/VisGreenFinding

s-LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-

workshop-04/Final-report.pdf 
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What is FastBit?
(what is it’s role in data analysis?)



Using Indexing Technology to 
Accelerate Data Analysis

• Use cases for indexed datasets
– Support Compound Range Queries:  eg. Get me all cells where 

Temperature > 300k AND Pressure is < 200 millibars
– Subsetting:  Only load data that corresponds to the query.

• Get rid of visual “clutter”
• Reduce load on data analysis pipeline

– Quickly find and label connected regions
– Do it really fast!

• Applications
– Astrophysics:  

• Remove clutter from messy supernova explosions
– Combustion: 

• Locate and track ignition kernels
– Particle Accelerator Modeling: 

• identify and select errant electrons
– Network Security Data: 

• Pose queries against enormous packet logs
• Identify candidate security events



Architecture Overview: 
Generic Visualization Pipeline
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Architecture Overview: 
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Query-Driven Subsetting of 
Combustion Data Set

b) Q: temp < 3a) Query: CH4 > 0.3

d) Q: CH4 > 0.3 AND 
temp < 4

c) Q: CH4 > 0.3 AND 
temp < 3



DEX Visualization Pipeline

DataQuery

Visualization Toolkit
(VTK)

3D visualization of a
Supernova explosion 



Architecture Overview: 
Query-Driven Analysis Pipeline
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Binary



Architecture Overview: 
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How do Fast Bitmap Indices Work?



Why Bitmap Indices?

• Goal: efficient search of multi-dimensional read-only (append-
only) data:
– E.g. temp < 104.5 AND velocity > 107 AND density < 45.6

• Commonly-used indices are designed to be updated quickly
– E.g. family of BB--TreesTrees
– Sacrifice search efficiency to permit dynamic update

• Most multi-dimensional indices suffer curse of dimensionality
– E.g. RR--tree, Quadtree, Quad--trees, KDtrees, KD--treestrees, …
– Don’t scale to large number of dimensions ( < 10)
– Are efficient only if all dimensions are queried

• Bitmap indices
– Sacrifice update efficiency to gain more search efficiency
– Are efficient for multi-dimensional queries
– Query response time scales linearly in the actual number of 

dimensions in the query



What is a Bitmap Index?

• Compact: one bit per distinct 
value per object.

• Easy and fast to build: O(n) 
vs. O(n log n) for trees.

• Efficient to query: use 
bitwise logical operations.
(0.0 < H2O < 0.1) AND (1000 < 

temp < 2000)
• Efficient for multidimensional 

queries.
– No “curse of dimensionality”

• What about floating-point 
data?
– Binning strategies.
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Bitmap Index Encoding

•Equality encoding compresses very well
•Range encoding optimized for one-sided range queries, e.g. temp < 3

List of 
Attributes Equality Encoding Range Encoding



Performance



Bitmap Index Query Complexity 
and Space Requirements

• How Fast are Queries Answered?
– Let N denote the number of objects and H denote the number 

of hits of a condition.
– Using uncompressed bitmap indices, search time is O(N)
– With a good compression scheme, the search time is O(H) –

the theoretical optimum

• How Big are the Indices?
– In the worst case (completely random data), the bitmap index 

requires about 2x in data size for one variable (typically 0.3x).
– In contrast, 4x space requirement not uncommon for tree-based 

methods for one variable.
– Curse of dimensionality: for N points in D dimensions:

• Bitmap index size: O(D*N)
• Tree-based method: O(N**D)!!!



Compressed Bitmap Index 
Query Performance

• FastBit Word-Aligned Hybrid (WAH) compression 
performance better than commercial systems.

• Different bitmap compression technologies have 
different performance characteristics.



Queries Using Bitmap 
Indices are Fast

Log-log plot of query processing time for different size 
queries

The compressed bitmap index is at least 10X faster
than B-tree and 3X faster than the projection index



Size of Bitmap Index vs. Base 
Data (Combustion)

Average size per attribute index
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• Compressed bitmap index with 100 range-encoded bins is about 
same size as base data.

• Note: B-tree index is about 3 times the size of the base data.
• Building the index takes ~5 seconds for 100Megs on P4 2.4GHz 

workstation



Size of Bitmap Index vs. Base 
Data (Astrophysics)

Average size per attribute index
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• Size of compressed bitmap index is only 57% of base data.
• Building an index for all attributes takes ~17 seconds for 340 Megs.



Region Growing and
Connected Component Labeling

• The result of the bitmap index query
is a set of blocks.

• Given a set of blocks, find
connected regions and label them.
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• Region growing scales linearly
with the number of cells selected.



HDF5 - FastQuery File Organization



File Organization

• Current
– Data in HDF4, NetCDF converted to raw binary
– One file per species + one file per index
– ASCII file for metadata
– One directory per timestep
– Non-portable binary (must byte-swap data)

• HDF5 FastQuery
– Indices + data all in same file
– Machine independent binary representation
– Multiple time-steps per file
– Pose queries against data stored in “indexed” HDF5 file



Some Simplifying Assumptions

• Block structured data
– 0-3 Dimensional topology (arbitrary geometry)
– Limited Datatypes: float, double, int32, int64, byte
– Vectors and Tensors identified via metadata

• Two Level hierarchical organization
– TimeStep
– VariableName
– Queries can be posed implicitly across time dimension

• Future
– Arbitrary nesting 

• AMR “Level”
• CalibrationSet

– More Data Schemas
• Unstructured
• AMR
• NetLogs



HDF5 Data Organization to 
Support FastQuery

/H5_UC

Descriptor
for

Variable 1

Descriptor
for

Variable X

Descriptor
for

Variable 0

HDF5 ROOT Group

… Time Step 1 Time Step YTime Step 0

Variable Descriptors
Variable Data

…

D0

D1

DX

D0

D1

DX

D0

D1

DX… … …

Symbol Key
HDF5 group:
Contains user retrievable information
about sub-groups and datasets

HDF5 dataset:
Contains the actual data array of a given 
variable X at a time step Y

X variable descriptors
for X datasets

TOC



File Organization
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File Organization

B
itm

ap Indices

D2
(Base Data)

Name=“Pressure”
Dims={64,64,64}
Type=Double

Name=“Pressure.idx”
Dims=0.3*datasize
Type=Int32

Time Step 0
D0

D1



File Organization
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File Organization

B
itm

ap Indices

B
insBase Data

O
ffsets

Attribute
Name=“offsets”
Dims=nbins-1
Type=uInt64

Attribute
Name=“bins”
Dims=2*nbins or nbins
Type=Double
(same type as data)



File Organization

Query: Pressure < 0.5
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File Organization

Query: Pressure < 0.5
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File Organization

Query: Pressure < 0.5
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File Organization

Query: Pressure < 0.5
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Final Notes

• Need for Higher level data organization
– Demonstrated simple convention for index storage
– Require higher level data organization to support more 

complex queries demanded by our scientific applications
– Adoption of higher-level schema is a sociological problem 

rather than a technical problem

• Top Down (the Grand Unified Data Model)
– DMF: Describe everything in the known universe

• Bottom up (community building)
– Research Group: Store data fro Cactus
– Scientific Community: eg. HDF-EOS, NetCDF, FITS
– ?
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complex queries demanded by our scientific applications
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• Top Down (the Grand Unified Data Model)
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– World Domination



Questions?



Performance of Event Catalog

• The Event Catalog uses compressed bitmap indices
– The most commonly used index is B-tree
– The most efficient one is often the projection index

• The following table reports the size and the average query processing 
time
– 1-attribute, 2-attribute, and 5-attribute refer to the number of attributes in a 

query
• Compressed bitmap indices are about half the size of B-trees, and are 

10 times faster
• Compressed bitmap indices are larger than projection indices, but are 3 

times faster

2.2 Million Events
12 common attributes

B-tree Projection
index

Bitmap
index

Size (MB) 408 113 186
1-attribute 0.95 0.51 0.02
2-attribute 2.15 0.56 0.04

Query 
processing
(seconds) 5-attribute 2.23 0.67 0.17
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