
HDF5 FastQuery
Accelerating Complex Queries on HDF

Datasets using Fast Bitmap Indices

John Shalf, Wes Bethel
LBNL Visualization Group

Kensheng Wu, Kurt Stockinger
LBNL SDM Center

Luke Gosink, Ken Joy
UC Davis IDAV

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Motivation and Problem
Statement

• Too much data.
• Visualization “meat grinders”

not especially responsive to
needs of scientific research
community.

• What scientific users want:
– Scientific Insight
– Quantitative results
– Feature detection, tracking,

characterization
– (lots of bullets here omitted)

• See:
http://vis.lbl.gov/Publications/2002/VisGreenFinding

s-LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-

workshop-04/Final-report.pdf

Motivation and Problem
Statement

• Too much data.
• Visualization “meat grinders”

not especially responsive to
needs of scientific research
community.

• What scientific users want:
– Scientific Insight
– Quantitative results
– Feature detection, tracking,

characterization
– (lots of bullets here omitted)

• See:
http://vis.lbl.gov/Publications/2002/VisGreenFinding

s-LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-

workshop-04/Final-report.pdf

What is FastBit?
(what is it’s role in data analysis?)

Using Indexing Technology to
Accelerate Data Analysis

• Use cases for indexed datasets
– Support Compound Range Queries: eg. Get me all cells where

Temperature > 300k AND Pressure is < 200 millibars
– Subsetting: Only load data that corresponds to the query.

• Get rid of visual “clutter”
• Reduce load on data analysis pipeline

– Quickly find and label connected regions
– Do it really fast!

• Applications
– Astrophysics:

• Remove clutter from messy supernova explosions
– Combustion:

• Locate and track ignition kernels
– Particle Accelerator Modeling:

• identify and select errant electrons
– Network Security Data:

• Pose queries against enormous packet logs
• Identify candidate security events

Architecture Overview:
Generic Visualization Pipeline

Data
Vis /

Analysis Display

Architecture Overview:
Query-Driven Vis. Pipeline

Vis /
Analysis Display

Index

Data
Query

FastBit

Query-Driven Subsetting of
Combustion Data Set

b) Q: temp < 3a) Query: CH4 > 0.3

d) Q: CH4 > 0.3 AND
temp < 4

c) Q: CH4 > 0.3 AND
temp < 3

DEX Visualization Pipeline

DataQuery

Visualization Toolkit
(VTK)

3D visualization of a
Supernova explosion

Architecture Overview:
Query-Driven Analysis Pipeline

Vis /
Analysis Display

Index

Data
Query

FastBit

HDF4
NetCDF
Binary

Architecture Overview:
Query-Driven Analysis Pipeline

Vis /
Analysis DisplayHDF5

Data+Index
Query

FastBit

How do Fast Bitmap Indices Work?

Why Bitmap Indices?

• Goal: efficient search of multi-dimensional read-only (append-
only) data:
– E.g. temp < 104.5 AND velocity > 107 AND density < 45.6

• Commonly-used indices are designed to be updated quickly
– E.g. family of BB--TreesTrees
– Sacrifice search efficiency to permit dynamic update

• Most multi-dimensional indices suffer curse of dimensionality
– E.g. RR--tree, Quadtree, Quad--trees, KDtrees, KD--treestrees, …
– Don’t scale to large number of dimensions (< 10)
– Are efficient only if all dimensions are queried

• Bitmap indices
– Sacrifice update efficiency to gain more search efficiency
– Are efficient for multi-dimensional queries
– Query response time scales linearly in the actual number of

dimensions in the query

What is a Bitmap Index?

• Compact: one bit per distinct
value per object.

• Easy and fast to build: O(n)
vs. O(n log n) for trees.

• Efficient to query: use
bitwise logical operations.
(0.0 < H2O < 0.1) AND (1000 <

temp < 2000)
• Efficient for multidimensional

queries.
– No “curse of dimensionality”

• What about floating-point
data?
– Binning strategies.

Data
values

0
1
5
3
1
2
0
4
1

1
0
0
0
0
0
1
0
0

0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
1
0

b0 b1 b2 b3 b4 b5

0
0
1
0
0
0
0
0
0

Bitmap Index Encoding

•Equality encoding compresses very well
•Range encoding optimized for one-sided range queries, e.g. temp < 3

List of
Attributes Equality Encoding Range Encoding

Performance

Bitmap Index Query Complexity
and Space Requirements

• How Fast are Queries Answered?
– Let N denote the number of objects and H denote the number

of hits of a condition.
– Using uncompressed bitmap indices, search time is O(N)
– With a good compression scheme, the search time is O(H) –

the theoretical optimum

• How Big are the Indices?
– In the worst case (completely random data), the bitmap index

requires about 2x in data size for one variable (typically 0.3x).
– In contrast, 4x space requirement not uncommon for tree-based

methods for one variable.
– Curse of dimensionality: for N points in D dimensions:

• Bitmap index size: O(D*N)
• Tree-based method: O(N**D)!!!

Compressed Bitmap Index
Query Performance

• FastBit Word-Aligned Hybrid (WAH) compression
performance better than commercial systems.

• Different bitmap compression technologies have
different performance characteristics.

Queries Using Bitmap
Indices are Fast

Log-log plot of query processing time for different size
queries

The compressed bitmap index is at least 10X faster
than B-tree and 3X faster than the projection index

Size of Bitmap Index vs. Base
Data (Combustion)

Average size per attribute index

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

ba
se

 da
ta uz

pre
ss

ure uy

tem
p N2 ux O2

CH4

CO2

H2O

Attribute

S
iz

e
[b

yt
es

]

Total size of all indices vs. base data size

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

base data bitmap index
S

iz
e

[b
yt

es
]

• Compressed bitmap index with 100 range-encoded bins is about
same size as base data.

• Note: B-tree index is about 3 times the size of the base data.
• Building the index takes ~5 seconds for 100Megs on P4 2.4GHz

workstation

Size of Bitmap Index vs. Base
Data (Astrophysics)

Average size per attribute index

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

base data x_velocity density y_velocity z_velocity pressure entropy

Attribute

Si
ze

 [b
yt

es
]

Total size of all indices vs. base data size

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

base data bitmap index

S
iz

e
[b

yt
es

]

• Size of compressed bitmap index is only 57% of base data.
• Building an index for all attributes takes ~17 seconds for 340 Megs.

Region Growing and
Connected Component Labeling

• The result of the bitmap index query
is a set of blocks.

• Given a set of blocks, find
connected regions and label them.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10000 110000 210000 310000 410000

Number of line segments

re
gi

on
 g

ro
w

in
g

tim
e

(s
ec

)

• Region growing scales linearly
with the number of cells selected.

HDF5 - FastQuery File Organization

File Organization

• Current
– Data in HDF4, NetCDF converted to raw binary
– One file per species + one file per index
– ASCII file for metadata
– One directory per timestep
– Non-portable binary (must byte-swap data)

• HDF5 FastQuery
– Indices + data all in same file
– Machine independent binary representation
– Multiple time-steps per file
– Pose queries against data stored in “indexed” HDF5 file

Some Simplifying Assumptions

• Block structured data
– 0-3 Dimensional topology (arbitrary geometry)
– Limited Datatypes: float, double, int32, int64, byte
– Vectors and Tensors identified via metadata

• Two Level hierarchical organization
– TimeStep
– VariableName
– Queries can be posed implicitly across time dimension

• Future
– Arbitrary nesting

• AMR “Level”
• CalibrationSet

– More Data Schemas
• Unstructured
• AMR
• NetLogs

HDF5 Data Organization to
Support FastQuery

/H5_UC

Descriptor
for

Variable 1

Descriptor
for

Variable X

Descriptor
for

Variable 0

HDF5 ROOT Group

… Time Step 1 Time Step YTime Step 0

Variable Descriptors
Variable Data

…

D0

D1

DX

D0

D1

DX

D0

D1

DX… … …

Symbol Key
HDF5 group:
Contains user retrievable information
about sub-groups and datasets

HDF5 dataset:
Contains the actual data array of a given
variable X at a time step Y

X variable descriptors
for X datasets

TOC

File Organization

B
itm

ap Indices

D2
(Base Data)

Time Step 0
D0

D1

File Organization

B
itm

ap Indices

D2
(Base Data)

Name=“Pressure”
Dims={64,64,64}
Type=Double

Name=“Pressure.idx”
Dims=0.3*datasize
Type=Int32

Time Step 0
D0

D1

File Organization

B
itm

ap Indices

B
insBase Data

O
ffsets

File Organization

B
itm

ap Indices

B
insBase Data

O
ffsets

Attribute
Name=“offsets”
Dims=nbins-1
Type=uInt64

Attribute
Name=“bins”
Dims=2*nbins or nbins
Type=Double
(same type as data)

File Organization

Query: Pressure < 0.5

bitmaps

Base Data

0
1
2
3
4
5
6
7
8

idxoffsets bins
-
-
-
-
-
-
-
-
-

0.3
0.4

0.6
0.5

0.7
0.8
0.9
1.0
1.1

File Organization

Query: Pressure < 0.5

bitmaps offsets bins idx

Base Data

0
1
2
3
4
5
6
7
8

-
-
-
-
-
-
-
-
-

0.3
0.4

0.6
0.5

0.7
0.8
0.9
1.0
1.1

File Organization

Query: Pressure < 0.5

bitmaps offsets bins idx

Base Data

0
1
2
3
4
5
6
7
8

-
158
239

-
-
-
-
-
-

0.3
0.4

0.6
0.5

0.7
0.8
0.9
1.0
1.1

File Organization

Query: Pressure < 0.5

offsets

Base Data

0
1
2
3
4
5
6
7
8

idxbinsbitmaps
-
-
-
-
-
-
-
-
-

0.3
0.4

0.6
0.5

0.7
0.8
0.9
1.0
1.1

Final Notes

• Need for Higher level data organization
– Demonstrated simple convention for index storage
– Require higher level data organization to support more

complex queries demanded by our scientific applications
– Adoption of higher-level schema is a sociological problem

rather than a technical problem

• Top Down (the Grand Unified Data Model)
– DMF: Describe everything in the known universe

• Bottom up (community building)
– Research Group: Store data fro Cactus
– Scientific Community: eg. HDF-EOS, NetCDF, FITS
– ?

Final Notes

• Need for Higher level data organization
– Demonstrated simple convention for index storage
– Require higher level data organization to support more

complex queries demanded by our scientific applications
– Adoption of higher-level schema is a sociological problem

rather than a technical problem

• Top Down (the Grand Unified Data Model)
– DMF: Describe everything in the known universe

• Bottom up (community building)
– Research Group: Store data fro Cactus
– Scientific Community: eg. HDF-EOS, NetCDF, FITS
– World Domination

Questions?

Performance of Event Catalog

• The Event Catalog uses compressed bitmap indices
– The most commonly used index is B-tree
– The most efficient one is often the projection index

• The following table reports the size and the average query processing
time
– 1-attribute, 2-attribute, and 5-attribute refer to the number of attributes in a

query
• Compressed bitmap indices are about half the size of B-trees, and are

10 times faster
• Compressed bitmap indices are larger than projection indices, but are 3

times faster

2.2 Million Events
12 common attributes

B-tree Projection
index

Bitmap
index

Size (MB) 408 113 186
1-attribute 0.95 0.51 0.02
2-attribute 2.15 0.56 0.04

Query
processing
(seconds) 5-attribute 2.23 0.67 0.17

	HDF5 FastQueryAccelerating Complex Queries on HDF Datasets using Fast Bitmap Indices
	Motivation and Problem Statement
	Motivation and Problem Statement
	What is FastBit?(what is it’s role in data analysis?)
	Using Indexing Technology to Accelerate Data Analysis
	Architecture Overview: Generic Visualization Pipeline
	Architecture Overview: Query-Driven Vis. Pipeline
	Query-Driven Subsetting of Combustion Data Set
	DEX Visualization Pipeline
	Architecture Overview: Query-Driven Analysis Pipeline
	Architecture Overview: Query-Driven Analysis Pipeline
	How do Fast Bitmap Indices Work?
	Why Bitmap Indices?
	What is a Bitmap Index?
	Bitmap Index Encoding
	Performance
	Bitmap Index Query Complexity and Space Requirements
	Compressed Bitmap Index Query Performance
	Queries Using Bitmap Indices are Fast
	Size of Bitmap Index vs. Base Data (Combustion)
	Size of Bitmap Index vs. Base Data (Astrophysics)
	Region Growing andConnected Component Labeling
	HDF5 - FastQuery File Organization
	File Organization
	Some Simplifying Assumptions
	HDF5 Data Organization to Support FastQuery
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization
	Final Notes
	Final Notes
	Questions?
	Performance of Event Catalog

