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Qutline

e Why computer graphics and visualization?
e Ray Tracing and the Shading Equation.

e Graphics APIs and the Graphics Pipeline.
e Parallelism in Graphics.

e The Visualization Pipeline, and
parallelization.
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Why Computer Graphics and
Visualization?
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Why Computer Graphics and
Visualization?

* The visual cortex and associated machinery
occupy more than half our brains —we are
Innately visual creatures.

e Vision is our principal means for understanding
and interacting with the world.

* The best connection between humans and
computers is through the high-bandwidth
connection of our highly evolved visual system.




The Path Towards Graphics and
Visualization

. Geometry and
perspecitive
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The Invention of Drawing

° Painting based on mythical tale as told by Pliny the Elder:

Corinthian man traces shadow of departing lover. Detail from
The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell

p.1)

reeeeec| |

BERKELEY LAB

Office of
Science

AN SEPARTIENT OF EMEEGF




Understanding Perspective

Correct perspective,
Last Supper, Da Vinci, 1495

Alberti’s 1435 treatise, Della Pittura,
explained perspective for the first (receee
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Ender, c. 1855
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Color and Perception




Decades of Research in Computer
Graphics




ISM

The Quest for Photoreal




Movies and Games

* Digital extras.
e Motion capture.




Visualization — For Gaining Insight
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Ray Tracing
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Ray Tracing

e An Improved lllumination Mocdel for Snacled
Display, Whitted, SIGGRAPH 1980.

e The role of the illumination model is to determine
how much light is reflected to the viewer from a
visible point on a surface as a function of light
source direction and strength, viewer position,
surface orientation, and surface properties.
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http://www.cs.utexas.edu/users/fussell/graphics/courses/CS395T-raytracing/readings/Whitted_Raytracing_SIG1980.pdf
http://www.cs.utexas.edu/users/fussell/graphics/courses/CS395T-raytracing/readings/Whitted_Raytracing_SIG1980.pdf
http://www.cs.utexas.edu/users/fussell/graphics/courses/CS395T-raytracing/readings/Whitted_Raytracing_SIG1980.pdf

Phong's lllumination Equation

i=f= f=ig
I=1,+ks ¥ (N-L)+ ks ¥ (N-L})",
J=1

J=1
where

= the reflected intensity,
reflection due to ambient light,
= diffuse reflection constant,
unit surface normal,
the vector in the direction of the jth light source,
= the specular reflection coefficient,
the vector in the direction halfway between the
viewer and the jth light source,
an exponent that depends on the glossiness of the
surface.
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Whitted's Improvement

¢ Retain diffuse term (computationally
overwhelming to account for scene objects as
light sources) from Phong Model.

e Refine specular term, add transmissive term.

jels

I=1I+ka S (N-L)+ kS + kT, )

J=1

where

S = the intensity of light incident from the R direction,
k:; = the transmission coefficient,
T = the intensity of light from the P direction.
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Whitted's Improvement, ctd.
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Example Rays — Simple Intersections
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http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace1.htm

Shadow Rays
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Reflected Rays
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More Reflected Rays
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Refracted Rays
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Parallelizing Ray Tracing

e Computation of color at each pixel is relatively
Independent.

° |mage-order parallelization.

e Requires (potential) duplication of the scene on each node.

¢ Challenges
¢ |Load balancing.

e Data distribution.

e vs. Accelerating Ray Tracing
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Graphics APIs and the Graphlcs
Pipeline

(Images from Doom3)
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The Question You Might Be Asking

e What does a discussion of graphics APIs
have to do with parallelism?

e Answer: you will better understand the
breadth and depth of parallelism In
graphics and visualization with some
background information about how it all
WOrks.




What i1s a Graphics API?

® Declarative: what, not how.
* Scene description: viewer here, trees there, lights just so.

* Can use a variety of rendering systems: Renderman, POVRay,
Performer, OpenRM Scene Graph, etc.

°* Imperative: how, not what.
* A series of draw commands.

* OpenGL, DirectX, D3D, Xlib, etc.
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OpenGL

* |[ndustry-standard graphics API.
* Supported on all major platforms.

* Relationship between OpenGL and window system.

e Basic primitives: lines, triangles, points.

* Higher level primitives (NURBS, quadrics) built using
fundamental geometry.

e Phong lighting model, but Gouroud
shading.
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Example OpenGL Code

glBegin (GL_ POLYGON) ; glBegin (GL_ POLYGON) ;
glColor (RED) ; glColor (RED) ;

glVertex31(0,0,0); glVertex31(0,0,0) ;
glVertex31(1,0,0); glColor (BLUE) ;
glVertex31(0,1,0); glVertex3i1(1,0,0);
glEnd () glColor (BLUE) ;
glVertex31(0,1,0) ;
glEnd()
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General: Graphics Pipeline
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The Graphics Application

[

e Application
* Simulation
* Visualization
* Database Traversal

* User interaction (games!)
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Commands and Geometry

e Command
* (What are commands?)

* Buffering, parsing.

e Geometry Rasterization

° Transform, light.
* Automatic operations.

* Culling, clipping.

Office of



Rasterization

° Setup, sampling (produces Application
“fragments”, interpolation Command
(color, depth).
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Texturing

e Texture transformation and Application
projection.

e Texture address calculation.
e Texture filtering.



Fragment Operations

Texture combiners and fog

Application

Owner, scissor, depth, alpha and stencil tests '

Command
Blending or compositing I

Geometry
|

Rasterization

Dithering and logical operations

Textured Fragments Framebuffer Pixels
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Display

Application

Framebuffer Pixels




OpenGL Processing Pipeline

Image
Unpack Rasterization

Pixels

Texture Fragment
Pack Memor -1 Operations

Pixels

Point, Line,
Polygon
asterization

Unpack

Geometry —»vatexes Dperation
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Another Pipeline View
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Performance: Frequency of
Operations

Geometry processing = per-vertex

Transformation and Lighting (T & L)

Floating point; complex operations
10 million vertices

Fragment processing = per-fragment
Blending and texture combination
Fixed point; limited operations

1 billion fragments

Office of
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Processing and Communications

Rough estimate

Application
20 Mvert/s
. ) .4 GB/s

l 0.880 GB/s

L

-~

> Framebuffer ‘

120 Mplx:"s \ 16 GB/s

v _
0.36 GB/s
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SGI's Reality Engine and

InfiniteReality Graphics Ha
Application

Geometry Board

Haost Interface Processor
Geometry Distributor

Vertex

Geometry Geometry Geometry Geometry
Engine Engine Engine Engine
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The Geometry Board

° HOSt ComPUter Host System Bus
Int er f ace .-Geomew e
e Command
Interpretation and prm—
Geometry Distribution 5
_0gic

* Four Geometry Engine
processors in a MIMD :
ar ran g e m en t . : G\ﬂ.-u:umetryr Raster FIFO
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Geometry Distributor

The Geometry Distributor
passes incoming data and
commands from the Host
Interface Processor to
iIndividual Geometry Engines
for further processing.

Least-busy distribution
scheme.
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Geometry Engine

e The Geometry Engine is a
single instruction multiple
datapath (SIMD) arrangement
of three floating point cores,
each of which comprises an
ALU and a multiplier plus a 32
word register.

° A 2560 word on-chip memory
holds elements of OpenGL
state.

Office of
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Host System Bus

Host Interface Processor

Geometry Distributor

Gaomatiy Gaomatry Gaomatry Gaomatiy

Enging Eniing Engina Engina

Geometry-Raster FIFO
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Geometry Engine, ctd.

e Each of the three cores From Goometry Engine Distributor
can perform two reads
and one write per
Instruction to working
memory.

2560 x 32 Working Mamory

* The working memory
allows data to be shared
easily among cores.

To Gaometry Engina Quiput FIFOs
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Geometry FIFO

°* A FIFO large enough to Host System Bus
hold 65536 vertexes Is :Geometwenard
implemented in SDRAM. [

Geu:umetn.r DIStI’IbLItDI

e The merged geometry
engine output is written,
through the SDRAM
FIFO, to the Vertex Bus.
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Where We Are
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Vertex Bus

¢ The InfiniteReality system employs a
Vertex Bus to transfer only screen space
vertex information.

e Supports the OpenGL triangle strip and
triangle fan constructs, so the Vertex Bus
load corresponds closely to the load on
the host-to-graphics bus.
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A Fragment Generator

e The Scan Converter (SC)
and Texel Address
Calculator (TA) perform
scan conversion, color
and depth interpolation,
perspective correct
texture coordinate
Interpolation and LOD
computation.
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Image Engines

e Fragments output by a single Fragment
Generator are distributed equally among
the 80 Image Engines owned by that

generator.
e Each Image Engine controls a single 256K

X 32 SDRAM that comprises its portion of
the framebuffer.
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Display Hardware

e Each of the 80 Image Engines on the
Raster Memory boards drives one or two
DIt serial signals to the Display Generator
poard.

* The base display system consists of two
channels, expendable to eight.
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Parallelism in Graphics
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Parallelism in Graphics

e Parallelism
® Design a single component (either a single Application

stage or a complete graphics pipeline) and

replicate it to increase performance.
» Pipelining (work overlap). vertex

°* Communication r
.
¢ Connects components, allowing parallel

work to be load balanced.

e Considerations: dependencies and Fragment

ordering.
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Scaling Performance Areas

— Input Rate

Application

Command Triangle Rate

Rasterization

H Texture Memory

Fragment

— Fill Rate

— Display Resolution

Office of
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Sources of Parallelism

* Task parallelism
e Graphics Pipeline

e Data Parallelism
* Frame & image parallel.

® Object (geometry) parallel.
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Sorting Taxonomy

Further reading: S. Molnar, M. Cox, D. Ellsworth, H.
Fuchs, A sorting classification of parallel rendering.

Application

¥

Command | > Sort-First

F 4

Geometry

«— Sort-Middle
Rasterization

'\.

Texture > Sort-Last Fragment

4

Fragment
«— Sort-Last Image Composition
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Office of — \
ERKELE =]

Science

LK, SEPARTMENT OF EMERG Y




Sort Last — Pixels/Images




Sort First — Geometry
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Sort Middle — Broadcast

Cmd
-

Geometry work load-balanced,

except clipping and tesselation

Geom

*
: 3

Broadcast communication does

not scale, but supports ordering

Rast
+

Tex

Finely interleaved screen tiling
insures excellent load balance
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Disp

5GI Graphics Workstations: RealityEngine, InfiniteReality
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Geom

Sort Middle — Point-to-Point
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Point-to-point communication
scales

Tex

+

Tex
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Frag
-
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Coarse tiling incurs load
imbalance

Disp

Frag
*
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UNC PixelPlanes, Stanford Argus
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Parallelism in Graphics:
Observations

e Task & Data parallelism implemented in silicon
In InfiniteReality and modern GPUSs.

e Parallelism not an intrinsic part of graphics APIs.

e Chromium: Parallel, stream-based OpenGL
“replacement.” See chromium.sf.net.

e Parallel synchronization constructs implemented as OpenGL
“extensions.”

e Supports sort-first, sort-last.
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Visualization
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Visualization

* Visualization is the art/science of
transforming abstract data into

Images.
: . : : Vertex
* Visualization algorithms:

 Produce data that can be then processed by a
traditional graphics pipeline, or

e Are rendering algorithms that produce images.

e Are highly data intensive (opportunity for
performance gain through parallelism!!)
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Parallel Visualization Issues

°* What, exactly, Iis being optimized?
* Raw data access, manipulation or movement.

* Visualization task performance?

* Rendering performance?

e Architecturally, much overlap with parallel
graphics algorithms.
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Parallel Visualization Algorithms

e Data Parallel.
* Divide data amongst PEs.

°* Image Parallel.
* Divide work to correspond to screen space.

e Hybrid Approaches.
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Data Parallel, Serial Rendering

e Data distributed amongst PEs (scatter),
then rendered on a single host (gather).

e Considerations:

* Visualization load balance — evenly distributing the
data doesn’'t necessarily result in equal work. (E.g.,
Isosurface).

* Cost of data processing (vis) often outweighs any
concerns about algorithm load imbalance or

rendering costs.
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Data Parallel, Sort-First Parallel

e Data divided
evenly amongst
PES.

¢ Resulting
geometry routed
to rendering PE
as a function of e
tile coordinates.

Office of
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Data Parallel, Sort-Last Parallel

e Data distributed using k-d
partitioning.
e Ray-casting volume renderer

produces image of data subset
on each PE.

°* |mages from each PE combined
using binary swap compositing.

e Binary swap Is a specialized
form of a reduction operator, but

all PEs participate at each stage
of the reduction.
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Image Parallel

e Partition work (data) as a
function of screen-space
projection.

e Considerations

* Cost of moving data during
Interactive transformation.

* Cost of combining image tiles.

* (Ray tracing techniques)
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Parallel Visualization

° Sort-last.
* Predictable communications costs, but performance
dominated by number of pixels in final display.
e Sort-first.

* Scales well with increasing data size, but communication
costs not easily predictable.

e Sort-middle.

* Not commonly used — high intermediate bandwidth not well
supported on modern architectures.
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Remote Visualization

e Sort-first: send geometry to remote desktop.

* Offers possibility of retained-mode frame rates on remote
desktop, requires one-time performance “hit” (for static
scenes). Good approach to hide network latency.

e Sort-last: send images to remote desktop.

* Most flexible solution, but no chance of hiding latency or
network performance from remote user.

* People have grown accustomed to 60fps, and don’t readily
accept lesser performance.
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Summary

e Computer graphics and visualization are
problem-rich environments for parallelization.

e There are many different types of parallelization
possible: data parallel, image parallel, pipelining.

°* |[mplementations of parallelism exist in both
hardware and software.

e We've just scratched the surface in this
presentation.
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The End
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