L L0 ® "W
BYS @ T

Parallelism in Graphics and
Visualization

Wes Bethel

Lawrence Berkeley National Laboratory
May 9, 2005

Office of
Science

AN SEPARTIENT OF EMEEGF

Qutline

e Why computer graphics and visualization?
e Ray Tracing and the Shading Equation.

e Graphics APIs and the Graphics Pipeline.
e Parallelism in Graphics.

e The Visualization Pipeline, and
parallelization.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Why Computer Graphics and
Visualization?

reeeeec| |

BERKELEY LAB

Why Computer Graphics and
Visualization?

* The visual cortex and associated machinery
occupy more than half our brains —we are
Innately visual creatures.

e Vision is our principal means for understanding
and interacting with the world.

* The best connection between humans and
computers is through the high-bandwidth
connection of our highly evolved visual system.

The Path Towards Graphics and
Visualization

. Geometry and
perspecitive

.\
i

rrerrerrerr
BERKEI.

The Invention of Drawing

° Painting based on mythical tale as told by Pliny the Elder:

Corinthian man traces shadow of departing lover. Detail from
The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell

p.1)

reeeeec| |

BERKELEY LAB

Office of
Science

AN SEPARTIENT OF EMEEGF

Understanding Perspective

Correct perspective,
Last Supper, Da Vinci, 1495

Alberti’s 1435 treatise, Della Pittura,
explained perspective for the first (receee

Office of . .
Science lIMe

N, DI PARTAE T OF FMEAGT

BERKELEY LaB

Ender, c. 1855

PrOJ eCtI ons | H(detail of clockwork)

Planar geometric
projections

/\

Parallel Perspective

_/\

Oblique One-point

Cabinet Two-point

Axonometric cavalier Three-point

elevation

elevation

Isometric
Other

Office of
Science

LK, SEPARTMENT OF EMERG Y

BERKELEY LaB

Color and Perception

Decades of Research in Computer
Graphics

ISM

The Quest for Photoreal

Movies and Games

* Digital extras.
e Motion capture.

Visualization — For Gaining Insight

P T T

o
WL
1

Lrig
@reante ¢

: rreereer

' Office of . -
Science SCIENCE 3

ALK, DEFARTIENT OF ST Simulation of Plazma Turbulence

BERKELEY LaB

Ray Tracing

reeeeec| |

BERKELEY LAB

Ray Tracing

e An Improved lllumination Mocdel for Snacled
Display, Whitted, SIGGRAPH 1980.

e The role of the illumination model is to determine
how much light is reflected to the viewer from a
visible point on a surface as a function of light
source direction and strength, viewer position,
surface orientation, and surface properties.

Science
AR, DEPARTARENT OF FMERGT

A

¥,

reecoeer| |

Office of — —\
BERKELEY LAaB

http://www.cs.utexas.edu/users/fussell/graphics/courses/CS395T-raytracing/readings/Whitted_Raytracing_SIG1980.pdf
http://www.cs.utexas.edu/users/fussell/graphics/courses/CS395T-raytracing/readings/Whitted_Raytracing_SIG1980.pdf
http://www.cs.utexas.edu/users/fussell/graphics/courses/CS395T-raytracing/readings/Whitted_Raytracing_SIG1980.pdf

Phong's lllumination Equation

i=f= f=ig
I=1,+ks ¥ (N-L)+ ks ¥ (N-L})",
J=1

J=1
where

= the reflected intensity,
reflection due to ambient light,
= diffuse reflection constant,
unit surface normal,
the vector in the direction of the jth light source,
= the specular reflection coefficient,
the vector in the direction halfway between the
viewer and the jth light source,
an exponent that depends on the glossiness of the
surface.

I
I,
kr.f
N
L

I

- &

B =

Science

LK, SEPARTMENT OF EMERG Y

BERKELEY LaB

Whitted's Improvement

¢ Retain diffuse term (computationally
overwhelming to account for scene objects as
light sources) from Phong Model.

e Refine specular term, add transmissive term.

jels

I=1I+ka S (N-L)+ kS + kT,)

J=1

where

S = the intensity of light incident from the R direction,
k:; = the transmission coefficient,
T = the intensity of light from the P direction.

O
Science

LK, SEPARTMENT OF EMERG Y

Whitted's Improvement, ctd.

Lizht sowwrce
.;;:I
1
\ Shadow test

! Iy
| J

; B eflected
Momal ooy 8y

vector
Viewing plane

Camera

,{3___— — Fay

]]:IJ ect

A
3,
receer| |

BERKELEY LaB

LK, SEPARTMENT OF EMERG Y

Example Rays — Simple Intersections

° (See)

ul T TH
-P_ ;E:___,_.—--"‘"'_:HH
‘_F._.___,___.-—"""'r.-r B -
Lo =
virtuil = viewpoint Seul
i AINENE Ny hl_l_"]‘J‘J anjects

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace1.htm

Shadow Rays

-
=T | | 1o light 1T
"]]
T 1 et BOUT SR ——
o] il -
| = o |
|ty | A=
L |
- mill =T
____..—-.-— '_____.___,.—-
. ._-_.-_l-.
-
F=1
et |
—— '--..____"_--_-
r— e
[: --.._______l-_' el |
o el [—
) ——l q"""----..._‘.l
wirkual Laak) L
BETEEN

rrerrerer 1}

Reflected Rays

\

o
1\
P4
L
L1
L

r rjhl i
- Office of
m ERKELEY =]

More Reflected Rays

- rrjhl m
@ %ffice of e
Science -

Refracted Rays

—t—

Parallelizing Ray Tracing

e Computation of color at each pixel is relatively
Independent.

° |mage-order parallelization.

e Requires (potential) duplication of the scene on each node.

¢ Challenges
¢ |Load balancing.

e Data distribution.

e vs. Accelerating Ray Tracing

A

!

: reeceer| i

' Office of " —\
BERKELEY LaB

Science
AR, DEPARTARENT OF FMERGT

Graphics APIs and the Graphlcs
Pipeline

(Images from Doom3)

= = ; —1"": -
reeeeec| |

BERKELEY LAB

The Question You Might Be Asking

e What does a discussion of graphics APIs
have to do with parallelism?

e Answer: you will better understand the
breadth and depth of parallelism In
graphics and visualization with some
background information about how it all
WOrks.

What i1s a Graphics API?

® Declarative: what, not how.
* Scene description: viewer here, trees there, lights just so.

* Can use a variety of rendering systems: Renderman, POVRay,
Performer, OpenRM Scene Graph, etc.

°* Imperative: how, not what.
* A series of draw commands.

* OpenGL, DirectX, D3D, Xlib, etc.

i offi ; r r:}l ||;|
' ce o — _\

Science
AR, DEPARTARENT OF FMERGT

OpenGL

* |[ndustry-standard graphics API.
* Supported on all major platforms.

* Relationship between OpenGL and window system.

e Basic primitives: lines, triangles, points.

* Higher level primitives (NURBS, quadrics) built using
fundamental geometry.

e Phong lighting model, but Gouroud
shading.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Example OpenGL Code

glBegin (GL_ POLYGON) ; glBegin (GL_ POLYGON) ;
glColor (RED) ; glColor (RED) ;

glVertex31(0,0,0); glVertex31(0,0,0) ;
glVertex31(1,0,0); glColor (BLUE) ;
glVertex31(0,1,0); glVertex3i1(1,0,0);
glEnd () glColor (BLUE) ;
glVertex31(0,1,0) ;
glEnd()

rrr r>| ||\i
Office of — ‘

Science

LY, DEFARTMENT OF TNENOT

BERKELEY LaB

General: Graphics Pipeline

offi ; rrl;}l ||\i|
ce o T \

Science

The Graphics Application

[

e Application
* Simulation
* Visualization
* Database Traversal

* User interaction (games!)

Office of
Science

Commands and Geometry

e Command
* (What are commands?)

* Buffering, parsing.

e Geometry Rasterization

° Transform, light.
* Automatic operations.

* Culling, clipping.

Office of

Rasterization

° Setup, sampling (produces Application
“fragments”, interpolation Command
(color, depth).

Y o

HEEEEEEEEEEEN
Screen-space triangles Fragments

Geometry

Rasterization i

B

B

B

B

B

B

-

E Fragment
= Display
B

. .

B

A
reeee f\l'l ||||
BERKELEY LaB

Texturing

e Texture transformation and Application
projection.

e Texture address calculation.
e Texture filtering.

Fragment Operations

Texture combiners and fog

Application

Owner, scissor, depth, alpha and stencil tests '

Command
Blending or compositing I

Geometry
|

Rasterization

Dithering and logical operations

Textured Fragments Framebuffer Pixels

rreer l}l |?i
Office of —
Science

N, DI PARTAE T OF FMEAGT

BERKELEY LaB

Display

Application

Framebuffer Pixels

OpenGL Processing Pipeline

Image
Unpack Rasterization

Pixels

Texture Fragment
Pack Memor -1 Operations

Pixels

Point, Line,
Polygon
asterization

Unpack

Geometry —»vatexes Dperation

A
!
reerreer 1]

oftice o

LY, DEFARTMENT OF TNENOT

Another Pipeline View

Application

|

Application

Command

|

Application

|

Geometry

|

Object

|

Rasterization

|

Vertex

|

Rasterization

|

Texture

|

Rasterization

|

Fragment

|

Image

|

Display

}

Fragment

Office of
Science

Display

|

Display

Performance: Frequency of
Operations

Geometry processing = per-vertex

Transformation and Lighting (T & L)

Floating point; complex operations
10 million vertices

Fragment processing = per-fragment
Blending and texture combination
Fixed point; limited operations

1 billion fragments

Office of
Science

rrerrerrerr
ERKE

A
|l

Processing and Communications

Rough estimate

Application
20 Mvert/s
.) .4 GB/s

l 0.880 GB/s

L

-~

> Framebuffer ‘

120 Mplx:"s \ 16 GB/s

v _
0.36 GB/s
Office of r [:}| mn

Science

BERKELEY LaB

SGI's Reality Engine and

InfiniteReality Graphics Ha
Application

Geometry Board

Haost Interface Processor
Geometry Distributor

Vertex

Geometry Geometry Geometry Geometry
Engine Engine Engine Engine

Geometry-Raster FIFQ ¢

Vertex Bus

Rasterizati
Fragment Generator I Fragment Generator I Fragment Generator Fragment Generator 1

Image
Engines

Fragment

Raster Memory Board Razter Memory Board Raster Memory Board Raster Memory Board

De-Interleaver 1
H
I D

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

L]
Dizplay Display Display Display Display Display Display Display
Channel Channel Channel Channal Channel Channel Channal Channal
1 | 1 | | 1 | 1

Display Generator
oard

The Geometry Board

° HOSt ComPUter Host System Bus
Int er f ace .-Geomew e
e Command
Interpretation and prm—
Geometry Distribution 5
_0gic

* Four Geometry Engine
processors in a MIMD :
ar ran g e m en t . : G\ﬂ.-u:umetryr Raster FIFO

reerreer

r |||‘
ERKE

i | Geometry Geometry Geometry Geometry | i
: | Engine Engine Engine Engine

Office of
Science

LK, SEPARTMENT OF EMERG Y

Geometry Distributor

The Geometry Distributor
passes incoming data and
commands from the Host
Interface Processor to
iIndividual Geometry Engines
for further processing.

Least-busy distribution
scheme.

Office of
Science

Host System Bus

Geometry | !
Engine ;

".\
reer f}l
BERKE

Geometry Engine

e The Geometry Engine is a
single instruction multiple
datapath (SIMD) arrangement
of three floating point cores,
each of which comprises an
ALU and a multiplier plus a 32
word register.

° A 2560 word on-chip memory
holds elements of OpenGL
state.

Office of
Science

R, DEPARTMENT OF EMERGY

Geometry Board

Host System Bus

Host Interface Processor

Geometry Distributor

Gaomatiy Gaomatry Gaomatry Gaomatiy

Enging Eniing Engina Engina

Geometry-Raster FIFO

rrrrrrrl‘m

BERKE

Geometry Engine, ctd.

e Each of the three cores From Goometry Engine Distributor
can perform two reads
and one write per
Instruction to working
memory.

2560 x 32 Working Mamory

* The working memory
allows data to be shared
easily among cores.

To Gaometry Engina Quiput FIFOs

Office of —

Science

BERKELEY LaB

Geometry FIFO

°* A FIFO large enough to Host System Bus
hold 65536 vertexes Is :Geometwenard
implemented in SDRAM. [

Geu:umetn.r DIStI’IbLItDI

e The merged geometry
engine output is written,
through the SDRAM
FIFO, to the Vertex Bus.

Office of —

Science

BERKELEY LaB

Where We Are

LLlLLLLLLL

_ A
. Frreererer m
Office of i —

Science

LK, SEPARTMENT OF EMERG Y

BERKELEY LaB

Vertex Bus

¢ The InfiniteReality system employs a
Vertex Bus to transfer only screen space
vertex information.

e Supports the OpenGL triangle strip and
triangle fan constructs, so the Vertex Bus
load corresponds closely to the load on
the host-to-graphics bus.

- Office of

Science
AR, DEPARTARENT OF FMERGT

A Fragment Generator

e The Scan Converter (SC)
and Texel Address
Calculator (TA) perform
scan conversion, color
and depth interpolation,
perspective correct
texture coordinate
Interpolation and LOD
computation.

Office of
Science

LK, SEPARTMENT OF EMERG Y

Image Engines

e Fragments output by a single Fragment
Generator are distributed equally among
the 80 Image Engines owned by that

generator.
e Each Image Engine controls a single 256K

X 32 SDRAM that comprises its portion of
the framebuffer.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Display Hardware

e Each of the 80 Image Engines on the
Raster Memory boards drives one or two
DIt serial signals to the Display Generator
poard.

* The base display system consists of two
channels, expendable to eight.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Parallelism in Graphics

“u

1 ; "‘i 3 i T
¥ 4 N ut . %
(s SRR 3 e
: ‘--F éﬂm
. B;RK!L:Y LaB

Parallelism in Graphics

e Parallelism
® Design a single component (either a single Application

stage or a complete graphics pipeline) and

replicate it to increase performance.
» Pipelining (work overlap). vertex

°* Communication r
.
¢ Connects components, allowing parallel

work to be load balanced.

e Considerations: dependencies and Fragment

ordering.

Office of
Science

Scaling Performance Areas

— Input Rate

Application

Command Triangle Rate

Rasterization

H Texture Memory

Fragment

— Fill Rate

— Display Resolution

Office of
Science

BERKELEY LaB

Sources of Parallelism

* Task parallelism
e Graphics Pipeline

e Data Parallelism
* Frame & image parallel.

® Object (geometry) parallel.

Office of
Science

N, DI PARTAE T OF FMEAGT

Sorting Taxonomy

Further reading: S. Molnar, M. Cox, D. Ellsworth, H.
Fuchs, A sorting classification of parallel rendering.

Application

¥

Command | > Sort-First

F 4

Geometry

«— Sort-Middle
Rasterization

'\.

Texture > Sort-Last Fragment

4

Fragment
«— Sort-Last Image Composition

‘ cecee?] f
Office of — \
ERKELE =]

Science

LK, SEPARTMENT OF EMERG Y

Sort Last — Pixels/Images

Sort First — Geometry

omium

M = I
— Ik
]
¥ “ [| =
= i e
- — L=a .
\“_‘_ 14 G~ = [
T = = et
.-'\‘
roerr 1]
Office

Scie

R, DEPARTMENT OF EMERGY

BERRELEY LAB

Cmd
-

Geom

¥
-

Rast
-

Tex

-

O
Science

Frag
¥

RCEI'E

Sort Middle — Broadcast

Cmd
-

Geometry work load-balanced,

except clipping and tesselation

Geom

*
: 3

Broadcast communication does

not scale, but supports ordering

Rast
+

Tex

Finely interleaved screen tiling
insures excellent load balance

¥

Frag
*

Disp

5GI Graphics Workstations: RealityEngine, InfiniteReality

BERKELEY LaB

App

+

App

+

Cmd
-

Cmd
-

Geom

Sort Middle — Point-to-Point

+
¥

Point-to-point communication
scales

Tex

+

Tex

+

Frag
-

-

Coarse tiling incurs load
imbalance

Disp

Frag
*

¥

UNC PixelPlanes, Stanford Argus

Office of
Science

Disp

_\l A
I_l_fll’.ll'

BERKELEY LaB

Parallelism in Graphics:
Observations

e Task & Data parallelism implemented in silicon
In InfiniteReality and modern GPUSs.

e Parallelism not an intrinsic part of graphics APIs.

e Chromium: Parallel, stream-based OpenGL
“replacement.” See chromium.sf.net.

e Parallel synchronization constructs implemented as OpenGL
“extensions.”

e Supports sort-first, sort-last.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Visualization

3
:

H

7.402e-07

4.352e-07
1.301e-07

=1.749¢-07

1.045e-06

Visualization

* Visualization is the art/science of
transforming abstract data into

Images.
: . : : Vertex
* Visualization algorithms:

 Produce data that can be then processed by a
traditional graphics pipeline, or

e Are rendering algorithms that produce images.

e Are highly data intensive (opportunity for
performance gain through parallelism!!)

A

3,
rreee M
=]

rr |
ERKE

Office of
Science

N, DI PARTAE T OF FMEAGT

Parallel Visualization Issues

°* What, exactly, Iis being optimized?
* Raw data access, manipulation or movement.

* Visualization task performance?

* Rendering performance?

e Architecturally, much overlap with parallel
graphics algorithms.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Parallel Visualization Algorithms

e Data Parallel.
* Divide data amongst PEs.

°* Image Parallel.
* Divide work to correspond to screen space.

e Hybrid Approaches.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Data Parallel, Serial Rendering

e Data distributed amongst PEs (scatter),
then rendered on a single host (gather).

e Considerations:

* Visualization load balance — evenly distributing the
data doesn’'t necessarily result in equal work. (E.g.,
Isosurface).

* Cost of data processing (vis) often outweighs any
concerns about algorithm load imbalance or

rendering costs.

’ Office of
Science

N, DI PARTAE T OF FMEAGT

Data Parallel, Sort-First Parallel

e Data divided
evenly amongst
PES.

¢ Resulting
geometry routed
to rendering PE
as a function of e
tile coordinates.

Office of
Science BERKELEY LAB

Data Parallel, Sort-Last Parallel

e Data distributed using k-d
partitioning.
e Ray-casting volume renderer

produces image of data subset
on each PE.

°* |mages from each PE combined
using binary swap compositing.

e Binary swap Is a specialized
form of a reduction operator, but

all PEs participate at each stage
of the reduction.

ice o
Science

LK, SEPARTMENT OF EMERG Y

Image Parallel

e Partition work (data) as a
function of screen-space
projection.

e Considerations

* Cost of moving data during
Interactive transformation.

* Cost of combining image tiles.

* (Ray tracing techniques)

- Office of

Science
AR, DEPARTARENT OF FMERGT

rrerrerrerr
BERKEI.

.\
i

Parallel Visualization

° Sort-last.
* Predictable communications costs, but performance
dominated by number of pixels in final display.
e Sort-first.

* Scales well with increasing data size, but communication
costs not easily predictable.

e Sort-middle.

* Not commonly used — high intermediate bandwidth not well
supported on modern architectures.

A

)

i reeceer| i

' Office of - —\
BERKELEY LaB

Science
AR, DEPARTARENT OF FMERGT

Remote Visualization

e Sort-first: send geometry to remote desktop.

* Offers possibility of retained-mode frame rates on remote
desktop, requires one-time performance “hit” (for static
scenes). Good approach to hide network latency.

e Sort-last: send images to remote desktop.

* Most flexible solution, but no chance of hiding latency or
network performance from remote user.

* People have grown accustomed to 60fps, and don’t readily
accept lesser performance.

A

!

: reeceer| i

' Office of " —\
BERKELEY LaB

Science
AR, DEPARTARENT OF FMERGT

Summary

e Computer graphics and visualization are
problem-rich environments for parallelization.

e There are many different types of parallelization
possible: data parallel, image parallel, pipelining.

°* |[mplementations of parallelism exist in both
hardware and software.

e We've just scratched the surface in this
presentation.

- Office of

Science
AR, DEPARTARENT OF FMERGT

Acknowledgement

e Material in these slides was gratuitously
borrowed from other sources. These
Include:

* Pat Hanrahan, Stanford.

* John van Rosendale, William & Mary.

* Silicon Graphics Computer Systems.

- Office of

Science
AR, DEPARTARENT OF FMERGT

http://graphics.stanford.edu/courses/cs448a-01-fall/

The End

	Parallelism in Graphics and Visualization
	Outline
	Why Computer Graphics and Visualization?
	Why Computer Graphics and Visualization?
	The Path Towards Graphics and Visualization
	The Invention of Drawing
	Understanding Perspective
	Projections
	Color and Perception
	Decades of Research in Computer Graphics
	The Quest for Photorealism
	Movies and Games
	Visualization – For Gaining Insight
	Ray Tracing
	Ray Tracing
	Phong’s Illumination Equation
	Whitted’s Improvement
	Whitted’s Improvement, ctd.
	Example Rays – Simple Intersections
	Shadow Rays
	Reflected Rays
	More Reflected Rays
	Refracted Rays
	Parallelizing Ray Tracing
	Graphics APIs and the Graphics Pipeline
	The Question You Might Be Asking
	What is a Graphics API?
	OpenGL
	Example OpenGL Code
	General: Graphics Pipeline
	The Graphics Application
	Commands and Geometry
	Rasterization
	Texturing
	Fragment Operations
	Display
	OpenGL Processing Pipeline
	Another Pipeline View
	Performance: Frequency of Operations
	Processing and Communications
	SGI’s Reality Engine and InfiniteReality Graphics Hardware
	The Geometry Board
	Geometry Distributor
	Geometry Engine
	Geometry Engine, ctd.
	Geometry FIFO
	Where We Are
	Vertex Bus
	A Fragment Generator
	Image Engines
	Display Hardware
	Parallelism in Graphics
	Parallelism in Graphics
	Scaling Performance Areas
	Sources of Parallelism
	Sorting Taxonomy
	Sort Last – Pixels/Images
	Sort First – Geometry
	Sort Middle – Broadcast
	Sort Middle – Point-to-Point
	Parallelism in Graphics: Observations
	Visualization
	Visualization
	Parallel Visualization Issues
	Parallel Visualization Algorithms
	Data Parallel, Serial Rendering
	Data Parallel, Sort-First Parallel
	Data Parallel, Sort-Last Parallel
	Image Parallel
	Parallel Visualization
	Remote Visualization
	Summary
	Acknowledgement
	The End

