

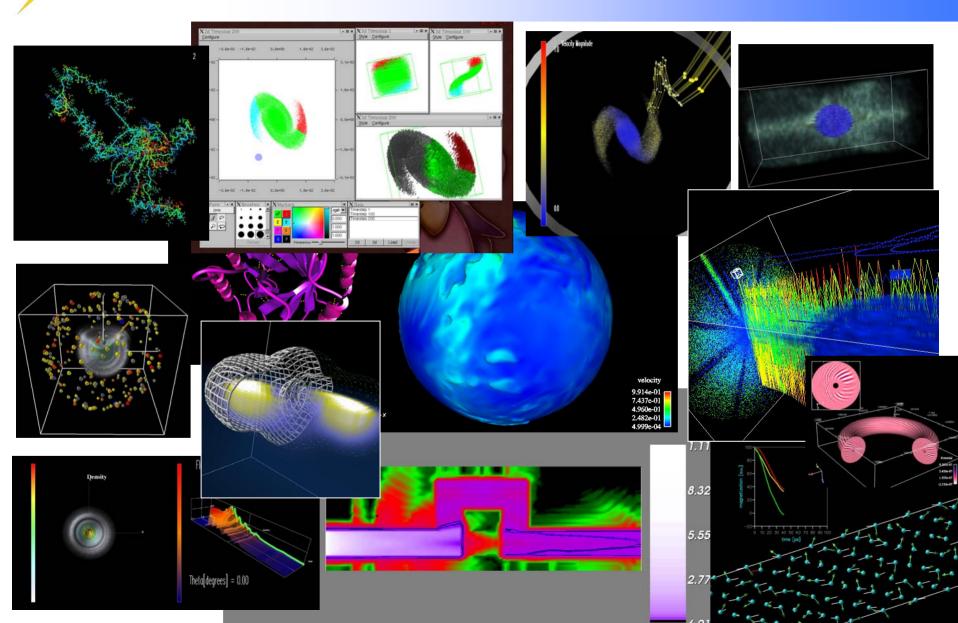
National Energy Research Scientific Computing Center (NERSC)

Visualization Tools and Techniques on Seaborg and Escher

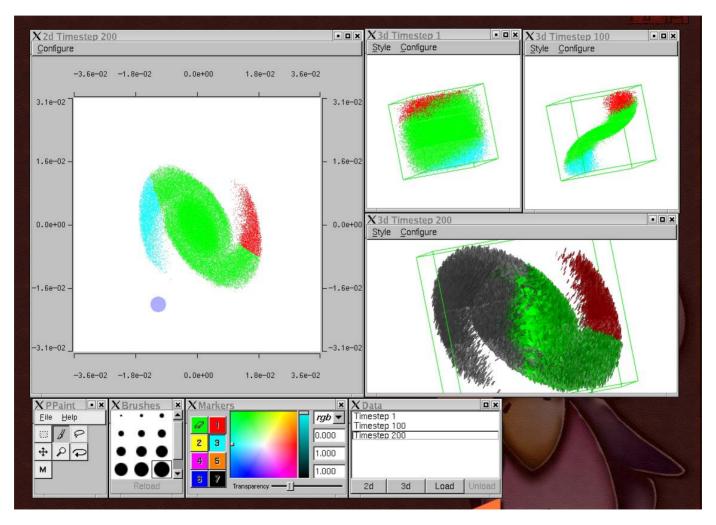
Wes Bethel & Cristina Siegerist NERSC Center Division, LBNL 24 June 2004

Outline

- NERSC has visualization capabilities?
- Overview of NERSC visualization resources.
 - The Visualization Group.
 - Escher.nersc.gov.
 - Software resources.
- Talk focus: remote visualization strategies
 - Render remote, render local, and hybrid strategies.
 - Pipelined-parallel remote visualization using escher or seaborg and CEI's Ensight (Cristina's talk).
- Request: provide feedback on the annual survey.


NERSC Visualization Resources Staff

- The Visualization Group
 - Website: http://vis.lbl.gov/
 - Email: vis@lbl.gov
 - Visgroup Staff: Cristina Siegerist, John Shalf, Wes Bethel
 - USG Staff: Harsh Anand, David Turner
 - Scope of activities:
 - Institutional visualization support for the NERSC user community in the form of in-depth collaborative relationships to *provide solutions where none exist.*
 - Technology pathfinding to determine solutions for tomorrow's data analysis and visualization challenges.



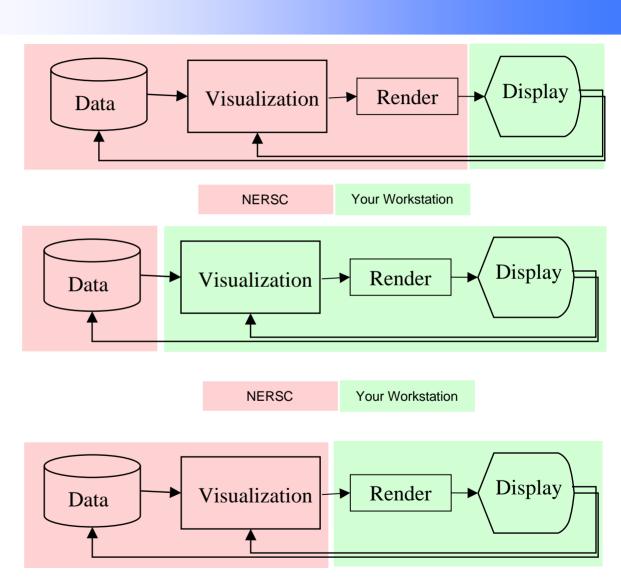
Recent Collaborations

Recent Collaborations, ctd. Accelerator SciDAC

NERSC Visualization Resources Escher.nersc.gov – Visualization Server

- Dedicated for interactive analysis and visualization.
 - http://www.nersc.gov/nusers/resources/servers/escher.php
 - SGI Onyx3700 (upgraded in 2002)
 - 12x 600Mhz R14K MIPS CPUs
 - 24GB of RAM!!
 - 4TB of scratch disk (no quotas)!!
 - Dual IR4 graphics accelerators.
 - Dual GigE channels to HPSS (use hsi to move data).
- Performance notes:
 - Our internal benchmarks show ~1GB/s read rates from and ~600MB/s in write rates to escher's local scratch storage.
 - Internal system bus bandwidth of about 1.2GB/s (cc-NUMA).
 - SMP system supports MPI as well as shmem/threaded codes.
 - (Escher is an I/O monster!)

NERSC Visualization Resources Visualization Software


- See http://vis.lbl.gov/NERSC/Software for a complete list.
- Taxonomy:
 - Applications for interactive 2D and 3D visualization
 - 3D CEI Ensight, IDL, AVS, AVS/Express.
 - 2D Gnuplot, IDL, grace, gsharp.
 - Domain-specific applications molecular visualization:
 VMD, garlic, rasmol.
 - Psuedo-development/programming environments: IDL, AVS, AVS/Express, vtk.
 - Image manipulation and format conversion.

Remote Visualization Tactics

- Render Remote
 - Move images:
 - setenv DISPLAY
 - SGI's Vizserver
 - Data too big to move.
- Render Local
 - Move data
 - ftp, scp
 - Logistical networking
- Hybrid approaches
 - Move "vis results" for local rendering
 - CEI's Ensight

Remote Visualization Tactics Which Approach is Best?

- It depends, but we provide you with options in each category to best meet your needs.
- Some questions to consider:
 - Is moving the data even an option?
 - Do you have adequate local storage?
 - How long will it take to transfer the data?
 - Do you need a quick look, or will you perform repeated analysis?
 - Will you be performing solo analysis, or do you require the ability to perform collaborative visualization?
 - Does NERSC provide the analysis capabilities you need?

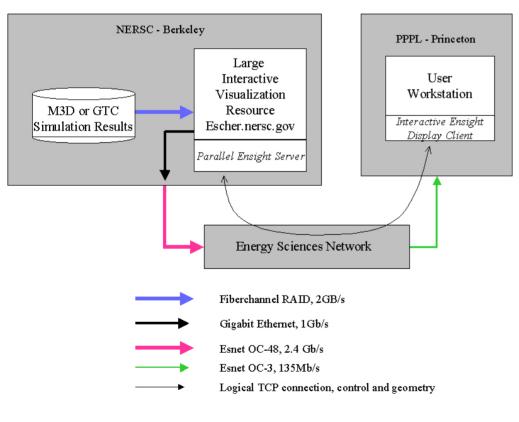
Remote Visualization Tactics Render Remote

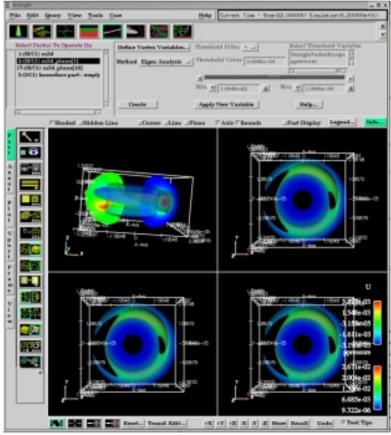
- Render pixels at NERSC, send images to your workstation.
 - Performance sensitive to network latency and bandwidth.
 - Count on no more than about 10fps at best.
 - Setenv DISPLAY yourworkstation:0
 - (BETA) Alternative implementation: SGI's Vizserver
 - Uses escher's graphics hardware to accelerate rendering.
 - Aggressive compression to achieve best possible fps throughput over a given network link.
 - Requires installing a Vizserver client on your workstation, all popular client architectures are supported (Windows, Linux, etc.)
 - Upper performance bound imposed by network latency and bandwidth. E.g.: 50ms one-way latency produces limit of 10fps.

Remote Visualization Tactics Render Local

- Move data to your workstation, and run your analysis/vis locally.
 - Assumes it is possible/feasible to move data to your workstation.
 - Best for demanding, low-latency 3D interactive visualization tasks.
 - (BETA) Need applications? NERSC is now offering remote use of licensed vis software for NERSC-hosted projects. For more information:
 - http://www.nersc.gov/nusers/services/licenses/
 - Requires you to install the app on your workstation.
 No NERSC help is available for that activity.

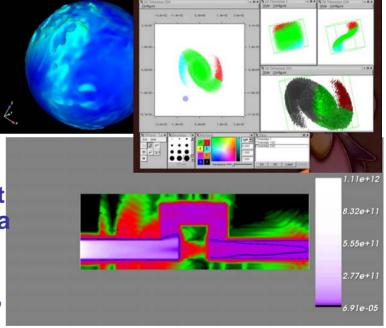
Remote Visualization Tactics Hybrid Strategies

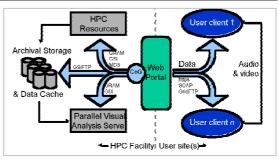

- Perform some visualization processing at NERSC, and then the rendering on your workstation.
 - Best for data intensive visualization where high frame rates are required.
 - Can leverage parallel platforms (escher, seaborg) at NERSC for high aggregate I/O rates and processing capabilities.
 - Cristina's talk will explain how to do exactly this using escher and a workstation to implement a visualization task that is too large to fit on a workstation.



Remote Visualization Tactics Hybrid Strategies, ctd.

 Distributed, pipelined-parallel remote and collaborative visualization with PPPL.





The Future (Next Year)

- Technology "harvesting"
 - Vislt from ASCI Views Program
 - ParaView from Kitware
- Remote license server
 - May increase demand for licensed software (a good thing).
- User Collaborations
 - Biggest challenges are in areas that combine data management and data analysis.
 - Pipelined-parallel architectures.
 - Fundamental visualization "magic."
- Deployment of Portal-Based Applications
- QTVR-like encoder; place more burden on office of the client while emphasizing retained-science mode approaches.

The End

