
Considerations for a
Distributed Visualization

Architecture (DiVA)

John Shalf
NERSC/CRD Visualization Group

Some nice image of the display wall…

The way things were…

But it got more complicated…

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Shaky City Data Caches HPC Resources

Sensor Nets

Simulations

STM

Handheld
Devices

Dr Jane

Collaborators

And even more complicated…

Canonical Data Analysis Pipeline

Read Data Filter
Extract Geom Render Presentation

GUI

Remote data analysis applications attempt to optimize pipeline
•Repartition the pipeline
•Collapse stages of the pipeline
•Parallelization: SIMD and pipelined
•Improve throughput between stages

•Data reduction / Progressive Transmission (info proc & encoding)
•Protocol/transfer acceleration (hardware, drivers & protocols)

•Each method optimal for a narrow set of conditions

Where are we now?
• Despite years of effort and demonstrations of remote vis technology, users

predominantly use serial desktop tools
- Download data to workstation and use locally
- Use serial tools over remote X11 connections (just to avoid moving the data to a local

workstation… that’s desperation!)
• Fractured component technology and remote vis efforts

- Open Source Frameworks (Parallel VTK, OpenDX)
- Commercial tools/frameworks (CEI Ensight, AVS Express, …
- Standalone tools (VisIT, Visapult, Terascale Browser)
- Lack of generality

• Do any of these tools offer a comprehensive solution that works on the emerging
Supercomputer Architectures?

- No?
• Will they ever interoperate?

- Not likely without common architecture to write to…

We Need a DiVA!
A “Distributed Visualization Architecture”

• We will not be able to tackle emerging data analysis problems without
distributed/parallel remote visualization systems!

- Remote visualization has repeatedly demonstrated advantages
• We won’t be able to do remote/distributed visualization effectively

without a common framework that enables us to share/combine our
work!

- There has been no common delivery platform to enable pervasive adoption
by users

• Frameworks/Architectures are
- Rigid formalisms encoding (enforcing) best practices
- A way to encode for well-understood (menial) tasks so developers can

focus on high level concepts
- A way to encode things we understand and have already thought out

(familiar/commonly used techniques are what we consider “menial”)
- A method that does not readily accommodate new concepts (but what

does?) So we should expect to primarily encode current practices.

What to Expect of a “Distributed
Visualization Architecture” (DiVA)

• Modular component framework supporting community contributions
- Supports discoververy of distributed/parallel components
- Supports remote analysis (eg. Latency tolerance, desktop interactivity)
- Supports streaming/out-of-core/progressive execution model

• Decouple BackEnd distributed components from presentation/GUI
- Permits reuse of same compute-intensive components for different

presentation methods and interfaces contexts
- Means we need a standard way to talk to back end components
- OGSA for visualization tools? (grid speak for service abstraction…)

• Requires Robust internal data model(s)
- Essential feature of other community frameworks like OpenDX, AVS, and

VTK
- Encode basic vis & science data structures (FEM, Geometry, Block-structured)
- Domain Decomposition, hierarchical representations, progressive encoding,

information indices (commonly neglected in current frameworks!)
- Must end current balkanization of data formats / data models.

What to Expect of a DiVA (cont…)
• Effortless selection and placement of components on distributed computers and

load-balancing
- Requires a mature Grid (eg. Grid Application Toolkits)
- Requires common data model (or collection thereof)
- Requires robust performance model and runtime instrumentation for “Mapping”

• Basic Data Transport between network-connected components
- Stream/discretized : reliable/unreliable)
- Negotiate QoS with new switched circuit networks.
- Can leverage heavily on data model for higher level info representation

• Integration with Storage Resource Management
- Replica Catalogs and shared virtual file spaces
- Includes data staging, cataloging, scheduling of preprocessing tasks
- Essential for efficient use of scarce network resources

• Needs are applicable beyond interactive visualization!
- Data Mining, feature extraction, data summarization (batch)
- Interactive Visualization and Analysis (interactive)
- Data Preprocessing, reorg. and indexing, for interactive vis. (batch)

DiVA needs to do….

• All of the stuff that vis people do *not*
want to do!

• All of the stuff that vis people are no good
at doing!

Simple Example (security)
• Launching our distributed components

- Secure launching
- Authenticated sockets
- Encrypted sockets

Vis Security (in practice)
• Commonly Used Security Options for Distributed Vis Applications

- .rhosts
- ssh
- GSI/PKI

• Examples in “the wild”
- SGI Vizserver: (who needs security? You’re on a VPN -- right??)
- Ensight & Visapult (login to rmt. host)
- VisIt & AVS3-5 (ssh to launch, but no authentication for TCP)
- Triana (everything is fine as long as you use a JVM)

Vis Security (in practice)
• Commonly Used Security Options for Distributed Vis applications

- .rhosts
- ssh
- GSI/PKI

• Examples in “the wild”
- SGI Vizserver: (who needs security?)
- Ensight & Visapult (login to rmt. host)
- VisIt & AVS3-5 (ssh to launch, but no authentication for TCP)
- Triana (everything is fine as long as you use a JVM)

• Overall Conclusion
- Vis people suck at security
- Security is not a core competency of vis application developers
- We need domain-specific APIs (simpler, easier, encode best practices)

Copy Data -- Globus/GASS
int CopyFile (const char* source,

const char* target)
{
globus_result_t result;
globus_url_t source_url;
globus_io_handle_t dest_io_handle;
globus_ftp_client_operationattr_t source_ftp_attr;
globus_gass_transfer_requestattr_t source_gass_attr;
globus_gass_copy_attr_t source_gass_copy_attr;
globus_gass_copy_handle_t gass_copy_handle;
globus_gass_copy_handleattr_t gass_copy_handleattr;
globus_ftp_client_handleattr_t ftp_handleattr;
globus_io_attr_t io_attr;
int output_file = -1;

if (globus_url_parse (source_URL, &source_url) != GLOBUS_SUCCESS)
{
printf ("can not parse source_URL \"%s\"\n", source_URL);
return (-1);

}

if (source_url.scheme_type != GLOBUS_URL_SCHEME_GSIFTP &&
source_url.scheme_type != GLOBUS_URL_SCHEME_FTP &&
source_url.scheme_type != GLOBUS_URL_SCHEME_HTTP &&
source_url.scheme_type != GLOBUS_URL_SCHEME_HTTPS)

{
printf ("can not copy from %s - unsupported protocol\n", source_URL);
return (-1);

}

globus_gass_copy_handleattr_init (&gass_copy_handleattr);
globus_gass_copy_attr_init (&source_gass_copy_attr);
globus_ftp_client_handleattr_init (&ftp_handleattr);
globus_io_fileattr_init (&io_attr);
globus_gass_copy_attr_set_io (&source_gass_copy_attr, &io_attr);
globus_gass_copy_handleattr_set_ftp_attr

(&gass_copy_handleattr, &ftp_handleattr);
globus_gass_copy_handle_init (&gass_copy_handle,

&gass_copy_handleattr);

if (source_url.scheme_type == GLOBUS_URL_SCHEME_GSIFTP ||
source_url.scheme_type == GLOBUS_URL_SCHEME_FTP)

{
globus_ftp_client_operationattr_init (&source_ftp_attr);
globus_gass_copy_attr_set_ftp (&source_gass_copy_attr,

&source_ftp_attr);
}
else {
globus_gass_transfer_requestattr_init (&source_gass_attr,

source_url.scheme);
globus_gass_copy_attr_set_gass (&source_gass_copy_attr,

&source_gass_attr);
}
output_file = globus_libc_open ((char*) target, O_WRONLY | O_TRUNC
| O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP);

if (output_file == -1)
{
printf ("could not open the destination file \"%s\"\n", target);
return (-1);

}

Copy Data -- Globus/GASS
if (globus_io_file_posix_convert (output_file, GLOBUS_NULL,
&dest_io_handle)

!= GLOBUS_SUCCESS)
{
printf ("Error converting the file handle\n");
return (-1);

}

result = globus_gass_copy_register_url_to_handle (
&gass_copy_handle,
(char*)source_URL,
&source_gass_copy_attr,
&dest_io_handle,
my_callback,
NULL);

if (result != GLOBUS_SUCCESS)
{
printf ("error: %s\n", globus_object_printable_to_string

(globus_error_get (result)));
return (-1);

}
globus_url_destroy (&source_url);

return (0);
}

Copy Data -- GT3/OGSA
Package org.globus.ogsa.gui;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.net.URL;
import java.util.Date;
import java.util.Vector;
import javax.xml.rpc.Stub;
import org.apache.axis.message.MessageElement;
import org.apache.axis.utils.XMLUtils;
import org.globus.axis.gsi.GSIConstants;
import org.globus.ogsa.ServiceProperties;
Import org.globus.ogsa.base.multirft.MultiFileRFTDefinitionServiceGridLocator;
import org.globus.ogsa.base.multirft.RFTOptionsType;
import org.globus.ogsa.base.multirft.RFTPortType;
import org.globus.ogsa.base.multirft.TransferRequestElement;
import org.globus.ogsa.base.multirft.TransferRequestType;
import org.globus.ogsa.base.multirft.TransferType;
import org.globus.ogsa.impl.security.authentication.Constants;
import org.globus.ogsa.impl.security.authorization.NoAuthorization;
import org.globus.ogsa.utils.AnyHelper;
import org.globus.ogsa.utils.GetOpts;
import org.globus.ogsa.utils.GridServiceFactory;
import org.globus.ogsa.utils.MessageUtils;
import org.gridforum.ogsi.ExtendedDateTimeType;
import org.gridforum.ogsi.ExtensibilityNotSupportedFaultType;
import org.gridforum.ogsi.ExtensibilityType;
import org.gridforum.ogsi.ExtensibilityTypeFaultType;
import org.gridforum.ogsi.Factory;

import org.gridforum.ogsi.HandleType;
import org.gridforum.ogsi.InfinityType;
import org.gridforum.ogsi.LocatorType;
import org.gridforum.ogsi.OGSIServiceGridLocator;
import org.gridforum.ogsi.ServiceAlreadyExistsFaultType;
import org.gridforum.ogsi.TerminationTimeType;
import org.gridforum.ogsi.WSDLReferenceType;
import org.gridforum.ogsi.holders.ExtensibilityTypeHolder;
import org.gridforum.ogsi.holders.LocatorTypeHolder;
import org.gridforum.ogsi.holders.TerminationTimeTypeHolder;
import org.globus.gsi.proxy.IgnoreProxyPolicyHandler;
import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class RFTClient {
public static void copy (String source_url, String target_url)
{

try {
File requestFile = new File (source_url);
BufferedReader reader = null;

try {
reader = new BufferedReader (new FileReader (requestFile));

} catch (java.io.FileNotFoundException fnfe) { }

Vector requestData = new Vector ();
requestData.add (target_url);

TransferType[] transfers1 = new TransferType[transferCount];
RFTOptionsType multirftOptions = new RFTOptionsType ();

Copy Data -- GT3/OGSA
multirftOptions.setBinary (Boolean.valueOf (

(String)requestData.elementAt (0)).booleanValue ());
multirftOptions.setBlockSize (Integer.valueOf (

(String)requestData.elementAt (1)).intValue ());
multirftOptions.setTcpBufferSize (Integer.valueOf (

(String)requestData.elementAt (2)).intValue ());
multirftOptions.setNotpt (Boolean.valueOf (

(String)requestData.elementAt (3)).booleanValue ());
multirftOptions.setParallelStreams (Integer.valueOf (

(String)requestData.elementAt (4)).intValue ());
multirftOptions.setDcau(Boolean.valueOf(

(String)requestData.elementAt (5)).booleanValue ());
int i = 7;

for (int j = 0; j < transfers1.length; j++)
{

transfers1[j] = new TransferType ();

transfers1[j].setTransferId (j);
transfers1[j].setSourceUrl ((String)requestData.elementAt (i++));
transfers1[j].setDestinationUrl ((String)requestData.elementAt (i++));
transfers1[j].setRftOptions (multirftOptions);

}

TransferRequestType transferRequest = new TransferRequestType ();
transferRequest.setTransferArray (transfers1);
int concurrency = Integer.valueOf

((String)requestData.elementAt(6)).intValue();
if (concurrency > transfers1.length) {

System.out.println ("Concurrency should be less than the number"
"of transfers in the request");

System.exit (0);
}
transferRequest.setConcurrency (concurrency);
TransferRequestElement requestElement =

new TransferRequestElement ();
requestElement.setTransferRequest (transferRequest);
ExtensibilityType extension =

new ExtensibilityType ();
extension = AnyHelper.getExtensibility (requestElement);
OGSIServiceGridLocator factoryService =

new OGSIServiceGridLocator ();
Factory factory = factoryService.getFactoryPort (

new URL (source_url));
GridServiceFactory gridFactory =

new GridServiceFactory (factory);
LocatorType locator = gridFactory.createService (extension);
System.out.println ("Created an instance of Multi-RFT");
MultiFileRFTDefinitionServiceGridLocator loc =

new MultiFileRFTDefinitionServiceGridLocator ();
RFTPortType rftPort = loc.getMultiFileRFTDefinitionPort (locator);
((Stub)rftPort)._setProperty (Constants.AUTHORIZATION,

NoAuthorization.getInstance());
((Stub)rftPort)._setProperty (GSIConstants.GSI_MODE,

GSIConstants.GSI_MODE_FULL_DELEG);
((Stub)rftPort)._setProperty (Constants.GSI_SEC_CONV,

Constants.SIGNATURE);
((Stub)rftPort)._setProperty (Constants.GRIM_POLICY_HANDLER,

new IgnoreProxyPolicyHandler ());
} catch (Exception e) { System.err.println (MessageUtils.toString (e)); } } }

Copy Data -- GAPI (SAGA)
#include <GAPI.h>

int CopyFile (const char* source_url,
const char* target_url)

{

try
{

GAPI_File *file = new GAPI_File (source_url);
file->copy (target_url);

}
catch (GATException e)
{
printf (e.ErrorString ());
return (e.ErrorCode ());

}
return (0);

}

Approaches
• Application developers gravitate towards APIs

- They don’t give a damn about protocols!
- (Chromium example)

• Get a bunch of apps people together to hammer out
“abstract APIs”
- GridLab GAT
- RealityGrid
- DiVA
- SAGA-RG

• Some APIs cannot be simplified (but many can)
- Experts in these areas (eg. Security) don’t seem to understand

just how little we need!

But there’s more to it than that
• Not all of the problems we face are related to

APIs
• There are some “systems” level issues

- Resource discovery
- Component discovery
- Brokers that understand workflow dependencies
- Vis-oriented transport protocols

• GridFTP is terrible for vis
• New network services like lambda switching & application

controlled PVCs

Example: Resource Discovery
• Current Approach

- Use MDS or else!!!
- MDS + info providers make data easy to read, but

hard for users edit! (not symmetric)
- Authentication, authorization, access

• What we want (for component discovery)
- Local
- Machine
- Organizational

A Simplified Example of Vis
Pipeline Responsiveness

Abstract Pipeline

Read
Data Isosurface Render Display

Mapping Problem

Mapping Problem

Shaky City Data Caches HPC Resources

Sensor Nets

Simulations

STM

Handheld
Devices

Dr Jane

Collaborators

Workflow Performance Parameters
• Dynamic Response Constraints and Parameters

- Responds dynamically to runtime/user-defined constraints
• Display Framerate
• Datasets/sec Throughput (eg. Shuttling through datasets)
• Recompute on param change (eg. Change isosurface level)

- Respond to runtime resource constraints
• Contract violation
• hardware/network failure (fault tolerance)

- Respond to runtime dynamic data requirements
• Different data payloads or algorithm performance based on algorithm

parameter choices
• Different data payloads or algorithm performance due to changing data

characteristics

Distributed Workflow Mapping
• Level 1: Baseline (map of the pipeline onto the virtual machine is

explicit)
- Uniform Security, I/O, data model compatability (basic Grid services)
- Ability to explicitly launch apps on a static map of machines.

• Level 2: Static Maps (optimal initial mapping of application to virtual
machine)

- Get a static mapping of resources that provides best overall performance
- Requires predictive performance models (heuristic,

parameterized/algorithmic, statistical/history-based)
• Level 3: Dynamic Maps (runtime optimization)

- Requires continuous instrumentation feedback to the parameterized models
of performance.

- Must support multiple parallel pipelines dynamically refactored depending
on response profile (which map can respond most rapidly)

- Requires commensurability between different methods that produce
the same image

Distributed Workflow Mapping
• Level 1: Baseline (map of the pipeline onto the virtual machine is

explicit)
- Uniform Security, I/O, data model compatability (basic Grid services)
- Ability to explicitly launch apps on a static map of machines.

• Level 2: Static Maps (optimal initial mapping of application to virtual
machine)

- Get a static mapping of resources that provides best overall performance
- Requires predictive performance models (heuristic,

parameterized/algorithmic, statistical/history-based)
• Level 3: Dynamic Maps (runtime optimization)

- Requires continuous instrumentation feedback to the parameterized models
of performance.

- Must support multiple parallel pipelines dynamically refactored depending
on response profile (which map can respond most rapidly)

- Requires commensurability between different methods that produce
the same image

A Simplified Example of Vis
Pipeline Responsiveness

• A simple (cooked) performance model
• 50M triangles/sec (24-byte tri-strips) Graphics HW (1/8 for 8 PEs)
• 1 Second to compute isosurface with one processor (1/8 for 8PEs)
• 1 Gigabit Network with perfect performance
• Perfect Speedup for parallel algorithms
• The real world will offer a more complex performance model (just an

example)

Read
Data

Desktop
Isosurface

Desktop
Render

Desktop
Display

8PE cluster
Isosurface

8PE cluster
Render

Yellow arrows indicate
choices in distributed
application data flow

Concrete Pipeline

Vis Pipeline Responsiveness

Vis Pipeline Responsiveness

Best Throughput

Vis Pipeline Responsiveness

Best Throughput

Conclusion on Pipeline Example
• Just simple change in isolevel completely changes

optimal pipeline selection!
• No single remote vis methodology is best in all

circumstances (even at runtime)!
• Must have commensurable visual output from many

different methods
• Simply scheduling resources for these overlapping

pipelines will be hard, muchless auto-selecting
between them!

• Must have a common framework to deliver a dynamic
multi-pipeline visualization capability.
- so we can focus our effort on the “hard stuff”!

Performance Modeling and
Pipeline Optimization

• Goal: automate the process of placing components on distribute
resources.

• Approach: model performance of individual components, optimize
placement as a function of performance target.
- Optimize for interactive transformation.
- Optimize for changing isocontour level.
- Optimize for data throughput.

• Find correct performance model
- Analytic
- Historical
- Statistical/Heuristic

• Ensure performance model is composable
• Results: Quadratic order algorithm, high degree of accuracy

Performance Modeling and
Pipeline Optimization

• Single workflow:
- Reader -> Isosurface -> Render -> Display

• Reader performance:
- Function of:

• Data Size
• Machine constant

- Treader (nv) = nv * Creader

Performance Modeling and
Pipeline Optimization

• Render Performance:
- Function of:

• Number of triangles,
• Machine constant.

- Trender = nt * Crender + Treadback

Performance Modeling and
Pipeline Optimization

• Isosurface Performance:
- Function of:

• Data set size,
• Number of triangles generated (determined by

combination of dataset and isocontour level).
- Dominated number of triangles generated!
- Tiso(nt,nv) = nv * Cbase + nt * Ciso

Performance Modeling and
Pipeline Optimization

• Precompute
histogram of data
values.

• Use histogram to
estimate number of
triangles as a
function of iso
level.

Performance Modeling and
Pipeline Optimization

• Optimize
placement using
Djikstra’s shortest
path algorithm.

• Edge weights
assigned based
upon performance
target.

• Low-cost
algorithm:
O(Edges + NlogN)

Conclusions
• “Microbenchmarks” to estimate individual component

performance.
- Per-dataset statistics can be precomputed and saved with the

dataset.

• Quadratic-order workflow-to-resource placement
algorithm.

• Optimizes pipeline performance for an specific
interaction target – relieves users from task of manual
resource selection.

Networks

Visapult Architecture

Source
Volume

3D
Gigabits

2D
Megabits

Visapult Architecture

Source
Volume

3D
Gigabits

2D
Megabits

SC2000 Demo Configuration

NTON

8 node Storage
Cluster (DPSS)

Network Throughput: 5 sec peak 1.48 Gbits/sec (72 streams: 20.5
Mbits/stream); 60 minute sustained average: 582 Mbits/sec

C
om

pu
te

 C
lu

st
er

 (8
 n

od
es

)

Berkeley Lab:
.75 TB, 4 server DPSS

ANL Booth
 Linux Cluster

OC-48OC-48

2 x 1000 BT

HSCC

SGI Origin (8 CPU)

1.5 Gb/s
4 x 1000BT

Qwest
ASCI Booth:

SGI Origin (8 CPU)

4 x 1000BT

Visapult Visualization
Application

File Transfer Application

SC2000 Network Throughput

Refactoring the Design
• Congestion avoidance

- Good for internet
- Bad bad baaaad for PVCs and other dedicated networks.

(switched lambdas?)
• Multistream TCP

- Erratic performance
- Requires a lot of tuning
- Unfriendly to other users
- Unfriendly to visualization applications

• We want full control of the “throttle”
- Very much like network video

Refactoring the Design
• TCP is the wrong thing for interactive vis!

- Layer 3 latency/jitter (all buffering effects)
- Poor response to bursty traffic
- Vis needs interactivity and minimal latency!

• Network Video / UDP streams
- Present packets to app. immediately (low latency)
- Full control of data rate
- Lossy, but effects of loss can be managed

• SOCK_RDM

Effect of Loss on Visapult

Evolving Binary Black Hole Merger Simulation (100 timesteps)

Steady @ 16+ Gigabits!

Whats Next?
• Manual throttle (UDP-based protocols) are here to stay.

- Hopefully SOCK_RDM will cover most needs
- Whaaa? Those idiots are going to burn down the network! Next big

thing: resource management
• RSVP & DiffServ were developed to manage this very situation

with regard to network video
• RSVP & DiffServ are never going to happen

- Gregory Bell, “Failure to Thrive: QoS and the Culture of Operational
Networking,” Proceedings of the ACM SIGCOMM 2003 Workshops,
RIPQoS Workshop.

• Next Big Thing? : Pluggable/Adaptive Congestion Management
- AIMD for internet (can even mimic multistream TCP behavior)
- Fixed rate for PVCs and switched lambdas

What is Needed?
• Vis Forum

- Agree on interfaces
- Hide the innards
- Multiple implementations of same interface
- Reference implementations / OpenSource

• DiVA
• GGF-ACE (vis security requirements

document)
• Vis participation in SAGA-RG

	Considerations for a Distributed Visualization Architecture (DiVA)
	The way things were…
	But it got more complicated…
	Canonical Data Analysis Pipeline
	Where are we now?
	We Need a DiVA!A “Distributed Visualization Architecture”
	What to Expect of a “DistributedVisualization Architecture” (DiVA)
	What to Expect of a DiVA (cont…)
	DiVA needs to do….
	Simple Example (security)
	Vis Security (in practice)
	Vis Security (in practice)
	Copy Data -- Globus/GASS
	Copy Data -- Globus/GASS
	Copy Data -- GT3/OGSA
	Copy Data -- GT3/OGSA
	Copy Data -- GAPI (SAGA)
	Approaches
	But there’s more to it than that
	Example: Resource Discovery
	A Simplified Example of Vis Pipeline Responsiveness
	Mapping Problem
	Mapping Problem
	Workflow Performance Parameters
	Distributed Workflow Mapping
	Distributed Workflow Mapping
	A Simplified Example of Vis Pipeline Responsiveness
	Vis Pipeline Responsiveness
	Vis Pipeline Responsiveness
	Vis Pipeline Responsiveness
	Conclusion on Pipeline Example
	Performance Modeling and Pipeline Optimization
	Performance Modeling and Pipeline Optimization
	Performance Modeling and Pipeline Optimization
	Performance Modeling and Pipeline Optimization
	Performance Modeling and Pipeline Optimization
	Performance Modeling and Pipeline Optimization
	Conclusions
	Networks
	Visapult Architecture
	Visapult Architecture
	SC2000 Demo Configuration
	SC2000 Network Throughput
	Refactoring the Design
	Refactoring the Design
	Effect of Loss on Visapult
	Steady @ 16+ Gigabits!
	Whats Next?
	What is Needed?

