Object
Programming

IDL Version 6.3

April 2006 Edition
Copyright © RSI
All Rights Reserved

Restricted Rights Notice

The IDL®, ION Scri pt™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RS reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, asto any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantahility, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of I TT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ isatrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ s atrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDFS5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1
The Basics of Using Objects iN IDLcoooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeies 13
Object-Oriented Programming CONCEPRLSevveeveerieereenieerieeseesieestesseeeseeseeseesaesssessneens 14
USING IDL OBJECES ...eveeieiti ettt sttt sttt st s be e e e tesbeene e e e nneneas 15
(= (] 1o T o] =" £ S 17
Acting on Objects USINg MENOUScoeiviiiieieiese e s 18
ODbjeCt MEthOO SYNLBXccueeieeiieiec ettt e e e s esreesreens 18
ATGUMENTS .ttt ettt b e s sate e sae e e s aee e sbe e e snaeesabeesabeesabeanns 19
Modifying ObJECt PrOPEIMIESccveeciieieeiie e ccie et e e s ee e e sreesneesreesreesreens 21
Properties and the Property Sheet Interfaceccocvecevviececce v 21
Setting Properties at INitialiZationcccceeveeieeiecie e 22
Setting Properties of EXiSting ODJECLSccveveiiiiiecee e 22
Retrieving Property SEIINGSooevrereneeerese s 23
About Object Property DESCIIPLIONScccveeieeieeiee e seeseeseeseesie e e esee e eseeeee s 23
DeStroying ODJECEScouiriiriiieiiisie st b e 25

Object Programming 3

Using Operations With OBJECESccceiiiiiiccese e 26
(@ o= ot NS T 0] 01 | 26
Object Equality and INEQUEAIILYccccceivieieie et 27

ODJECE EXAMPIES ...ttt ettt et e et te e e et e seeereenaensesaesneas 28

Chapter 2

Creating an Object Graphics Displayccccccceeviiiiiiiiieeeeeeeeeeeeeeiiins 29

Overview of Object GraphiCS ClIaSSEScccvviiiviiiicece e 30
NaMING CONVENTIONSoviieiieiiriistesieiee sttt e b e ns e nesneneens 30

Creating an Object GraphiCS DISPlayccccvecueeiriie e 31

Object Graphics Display HI€rarchy ... 33
Components of an Object Graphics Hierarchyccccovcvvevievin e 34

Destination OBJECESc..ceeiriiriiieieisiese ettt b e b e 35

(DTS o = @ o= £ 36

ViSUaliZatioN ODJECESc.ecueieireiieiesere bbb 38

File FOrmat ODJECESvveieeie et eere e neeennas 42

Color in ODJECE GIaPhICSocveeeeriesterieeee ettt ettt sr e e 44

Color and Destination OBJECLSccccceiieeiieeiie e e e e e e 46
A Note about Draw WIAJELScccovereiiinisieeeiriesie e 46
Indexed Color Model in Object GraphiCscccceveevieerieesie e 46
RGB Color Model in Object GraphiCsccoeoerirerienieereseeeeeee s 47

[L ST]] = £ 48
Creating Palette ODJECESccoiviiiiieieiseree e 48
USING Palette ODJECEScvvcieciecee ettt ettt e nee s 48

SPECITYiNG ODJECE COIONveieiieieiesieree et 49
Example Specifying RGB VAIUES ..o it 49

How IDL INterpretS Color VAIUEScooieieiirinierieeee sttt 51
INdeXed Color MOOE!ooiiieeee et e 51
€ @] o g/ o L= 51

(S 10 (< T 0o T] o] = £ 53
SIMPIE PIOL EXAMPIE ..ot 54

Controlling the Depth of ODJECtSIN AVIEWocviiee e 56

Controlling OBJeCt TraNSPaArENCYcoeeeeeririereieesirte ettt sre e e 58
Opacity and TraNSPAIENCYcecveeeierreereeeeeriesreeseesesseessesseesseesresssessseesseessesssessseenns 59
Blending MathemaLiCsccveiriririeieerie et 59
S 10 L= T 0o T [R 60

Contents Object Programming

Viewing and ROLEEIONccceiiiieiieie ettt ne e sne e 61
Depth BUFfEr UPOaLIiNGccovverierieeeesesieeeiesese s 63
Performance Tuning ObjeCt GraphiCscccvieeieie st 64
Chapter 3
Positioning ODJectS iN & VIBWooooiiiiiiiiiiiiiieieeeeeeee e 65
Positioning VisSualiZatioNS iN @ VIBWccccoirieiieiinireieeeese e 66
Y177 0 66
0o 1 o o R 66
Coordinate Systems and SCAlINGccceevieeiieieerieseee e ere et e e e e e e e sreens 66
RV L= V1] oo ST TSP PP USURORPRSTSON 67
Location and DIMENSIONccccoieeerierieieeieriesee st ee e s e eeseesae e eneesee e 67
PrOJECTION ...ttt ettt bbb e st b n e ens 69
Parallel ProJECLIONSc.coieeieeiie ettt st e e sneesneesnne s 69
PErspECtiVe PrOJECLIONScoeiirierieieieriesieee ettt 70
= 0 1 (1 SRS 71
VIBW VOIUME .ottt sttt te st s ne e et e tesbe e e e seseesreeneensenne s 73
Viewplane RECLaNGIEooovv et 73
Near and Far Clipping Plan€Sccciriiiieireneseee e 73
Finding an Appropriate VIiew VOIUMEccoociiiiir e see e 74
Converting Data to Normal COOTAINGLEScoereeeririenieieisie e 76
A Function for Coordinate CONVEISIONcccooeeeeiereneneeeenesieseee e enee e 77
Example: Centering an IMaJE ...t e 79
Example: Transforming @ SUMACEcocveciice it 82
Zooming Within an ODJECt DISPlaYcceoeeriririeieeeerere e 84
Zooming in on an Object Graphics Image Displaycccccvveveeveececce e, 84
Tranglating, Rotating and Scaling ODJECEScceeririreiieresee e 87
L= 15 = 1o L PSP 88
L]0 o U 88
1o | o SRS 89
Combining TranSfOrMELIONScieieeiiriririeeeese e sneeeneas 20
Interactive 3D TransfOrMationscoeeeeieriie e 91
Chapter 4
Working with Image ODJECTSoovvvviiiiiiiiiiie e 93
Overview Of IMage ObJECESccivie ettt e e e %!
Defining IMage PalEESocoiieeeeecee et 9

Object Programming Contents

Configuring Common Object Propertiesccceeveveiiieeeesese e 95
Creating 1Mage ODJECLSeiueereiereeeiere ettt st e e e seesreenaeeesaesneas 96
Displaying Binary Images with Object GraphiCscccceeieeverieiicieciese e 96
Displaying Grayscale Images with Object GraphicCsccoccevvvreeienieneneerereeeee 98
Positioning Image ObJECIS IN @VIBWcc.ecueeeeiiiececeese e 101
Displaying Multiple Imagesin Object GraphiCsccccceroerereeieeniene e 102
Panning in Object GraphiCsc.ccceve i e 107
Defining Transparency in ImMage ObJECEScovverieierereeeeese e 111
Transparency and ImMage WarPingccccecvveieeeese et 111
Image Transparency EXamMPIEScoooeeeeienieeeeere e 111
Warping Image ObJECLScoiiiiiceeie ettt st st reenaenaesrenneas 117
Mapping an Image Object ONt0 & SPhErecoovieeieeeee e 128
T ngt=e TSI T 1T oo TS 132
IMAgE PYramIidScooiiii ettt e nne e 133
Ttz o TS I SO 135
Adding Tiling to Your APPIICALTIONoeeeeeieiieeeeres e 136
QUENYING REQUITED TIIES ..ouviiveieieieie ettt sttt saesaesreereas 137
Panning Tiled IMBOEScccveeeeeieeiieeee st e e eee e 138
Z00MING TIlEA IMAGESeeiecieceeeeee sttt s sa e e ens 139
Copying and Printing a Tiled IMageccccvvieeeieieceee e 142
= 07z o [T aTo I =S 143
Example: JPEG2000 F1EeSTOr TiliNG ..coeieerereieeeeiesese e 146
Chapter 5
Working with Plots and Graphs ..., 147
(001 (01U 1 g @ o] 1="ox 148
Creating Contour ODJECEScciiuirieirirerieeee e s 148
0L 1o @0 01 (010 10 o] = £ 148
PLOE ODJECES ...ttt ettt nr e e s 151
(O (g To T = (010 @ o= o £ 151
USING PIOE ODJECES ...t 151
POIAE PlOLS ...ttt st et b e b e ee b ene e 154
AXIS ODJECES ..ttt sttt b ettt b e st s e b e e s e b e nn b e 155
Creating AXISODJECES ...ocviie et e e s neesnne s 155
USING AXIS OBJECES ...ttt 156
LOQarthMIC AXES ...uveeieeiecie ettt ee e st e st e ae e te et et e et eneesneesnne e 158

Contents Object Programming

Displaying Date/Time Data on AXiS ODJECEScccevveeeviiiiiiciese e 159
Displaying Date/Time Dataon aPlot DiSplayccccccererereieeieneneseeeesesee e 159
Displaying Date/Time Data on a Contour Displaycccevevevevceeciseceeece e 164

AXisTitlesand TICKMArK TEXLEccoeeeiiriiiieeeesese e 168
ReVErse AXIS PIOING ...ocvveiiiiiicee ettt 168

Y100 I o= ot £ 170
Creating Symbol ODJECESccvieeieie e 170
UsSiNg SYmMBOl ODJECLSooiiiiiieeese e 172

A PIOtING ROULINE ...ttt sttt r et s ne e ne e 174
Improvements to the OBJ PLOT ROULINEcccoeieririiieene e 175

Chapter 6

Working with Surface ObJECtScovviiiiiiiiiiiiie e, 177

U= oS @ o = £ 178
Creating SUface ODJECLSccoovveieeirierireieeese ettt 178
UsSIiNG SUIfaCe ODJECLScuvvceecee e et 179

An Interactive SUrface EXaMPIEccooveiiiiiieeee e 183

Chapter 7

Creating Volume ODJECES ...oocvciiiiiiiiiiiiiiiieeeeee e 187

Creating @V olumeE OJECEooeeeie ettt st e e e 188
USING VOIUME ODJECESeeuviiiieiceesie ettt st a et nne e 189

Setting Volume ObjeCt AITDULESccoveiiiieieeeese e 190
VOIUME OPBCILY ..ovveviitieieiie sttt se sttt sttt e st e s besne e e e saestesreeneenaennens 190
RV o 180T @0 o S TRRR 191
VOIUME LIGNLING ooveieieecee et 191
(001001 1 oo R 192
b =1V 1 1= 11 oo S 192
T 1= 0 0] F= 1 o o RS PTRRR 193
a0 (] o R 0= o P 193

Chapter 8

Polygon and Polyline ODJEeCtSoouuiiiiiiiiiiiiin 195

About Polygon and Polyling ObJECLSceeeieririiiere e 196
Creating Polygon and Polyling ODJECLScccocvivevieiicieceee e 196

POIYGON ODJECES ...ttt e e 198
Creating Polygon ODJECLScccveieieiiceceestese ettt 198

Object Programming Contents

Configuring Polygon OBJECESccvceeieie et e 198
TESSEIAtOr ODJECEScueeiecee ettt seesreeneas 201
Creating Tessallator ODJECESccvevvieieicece ettt 201
Using Tessellator ODJECEScveoeiieiieee e 201
[LS £ T O o= £ S 202
Creating Pattern ODJECESooveiieee e e 202
USING PatterN ODJECLSocviiuieeeiicie sttt sne e 202
(0] 1Yo o] g 1@ o 11 4 11= 1 o] o N 204
Polygon Mesh OptimiZationccceeceeieieiesie s 204
2 F 01 = ot OB T oo 207
NOrmal COMPULBLIONSccveiuieeeeesie et e se et sa e s re e besbesre s e e nesrenne s 208
POIYIING ODJECLS ...ttt sttt e s e eeseeseeeneenes 209
Creating POIYIINE ODJECLSveiueeiece ettt sae e ere s 209
USING POIYIING ODJECESoeieieeeeise et 209
Polygon and Polyline Object EXamMPIESccccveeeiiieiice e 210
Chapter 9
Annotating an Object DISPlaYuueeciiiiiiiiiieeeeiieeeeeeir e 211
Annotating Object GraphiC DiSPlaySccccvevereririeeere e 212
L= (RO o= o £ 213
Creating TeXt ODJECLSvviiiecieese ettt enaesrenreas 213
L0 LS g To T I o] = ot £ 213
A TEXE EXAMPIE .ttt ettt a et ste e aenee e enn 216
0] 81 o= £ 217
Creating FONt ODJECLSeoviviecieese ettt esaesrenrees 218
Assigning aFont Object to aText ODJECEcccvvceviii i 219
Font Objects and RESOUICE USEcceieereeriesieeiesie e see sttt sne s 220
@ IO o 1= £ RS 221
(=01 10 [o] = £ S 222
Creating Legend ODJECEScvii it eeste ettt e ee s snee s 222
USING LeGENd ODJECESocvvieieeeeicie st 222
(01 [0]5 o 7= g @ o] 1= ox 1SR 225
Creating Colorbar ODJECESvcvecierrceeieese ettt enaesrenrees 225
OIS g To I @0 FoTg o= g @ o] =" £ 225
[T 01 o= £ S 227
Creating Light ODJECESvviiicee ettt 227

Contents Object Programming

Configuring Light ODJECLSccueeeecieiiceceee sttt e 228
Optimizing Light ODJECt USE ..o e 229
Custom Image Object ANNOLELIONSccecviiieieeiicieseese et 230
Annotating Indexed IMage ODJECESceveiiiiiieeere e 230
Annotating RGB Image ODJECESccceeeeiiiiceceeese e 234
Chapter 10
ANIMAting ODJECTS ...uuiiiiiiiiiii e 239
Overview of ObJeCt ANIMELIONcccorireeieirie e e 240
Configuring an Animation Model OBJECLccccvvirvir v 242
USING MUILIPIE MOTELS ...t 242
Controlling the ANIMation RALEcccuvvieiiriie e 244
Designing aBehavior ODJECTccoiiiiiiiineeeeere e 245
Factors Affecting Animation Performanceccocceveeveeveesiee st 247
MUILIPIE IMBJE COPIES ...ttt e 247
Graphics Display ReEfresh RAEoccveiiiiicece et e e 248
Example: Interactive Cine ANIMELIONcccvveieieririneeeeeesee e 249
Chapter 11
Selecting ODJECES oo e 251
Selection and Data PICKiNgooiiiieeeee e 252
(@ o L= ot TS 1= (o) RS 253
SEIECHING VIBWS ..ottt s 253
Selecting Visualization OBJECEScccvivieeeeieseceeee e 254
SElECtING MOEIS ...ttt nee e 254
A SElECHION EXAMPIE ..ot sttt 255
D= = T o RS PTRRNS 256
A DataPicking EXAMPIE ...cc.ecueeiiiicecese sttt 257
Chapter 12
Displaying, Copying and Printing ODJectscccovviiiiiiiiiiiiiiiinnnn. 259
Overview of Object Graphic DeStiNalioNScccovveeeerere e 260
WiINAOW ODJECES ...ttt sttt s re e nenne e 261
Creating WindOW ODJECEScoeiieieieeeeiceiese e eee e see st ne e e e 261
(000] Lo g 1Y oo = TP 261
Note 0N WiIiNAOW SIZ€ LIMILScoiiieieieieere e 262
USINg WINAOW OBJECESvvcieiiiieceeese ettt st st srenneas 263

Object Programming Contents

10

Erasing @WINCQOWcooiiiiieeeie sttt eene e sne s 263
Exposing or Hiding @WINCOWcc.coeiiiiniieieeseseeees e 263
Koo T8 YT oo =AY/ T oo o1 S 263
Setting the WINdOW CUISOEccuiiiieeieese et see e eneas 264
Saving/REStONNG WINAOWSooveieiiesiieie et sttt sreeneas 264
Saving Window ContentSto @ Fileooeeoeieiieieie e 264
Improving Window Drawing Performancecccoceeeveeeneece s 266
Hardware vs. Software RENAENNGcccooeieiieeie e 266
Retained Graphics and EXPOSE EVENLSccceeieveiiciecese e, 267
Instancing to Improving Redraw Performancecccovveeeeeieniesenieesene e 267
101 A=]] o £ RS 269
Creating BUFfer ODJECESoieeeeieeeee et eneas 269
(Ot TTo] 070720 @] o] =0 £SO 270
Creating Cliphoard ODJECLScceieieeeeere et see st neesee e 271
D10 @ o= £ S 272
Creating Printer ODJECESooiieeee et eneas 272
COlOr MO ... bbbt b e e 272
110 O = oo 272
Drawing to @ PNlccooiiie e et 273
Positioning Objects Within @Pageccccooiieeere e 274
Starting aNew Page on @aPrintercocveiiiiiceeese e 278
SUbMIttiNG @ Printer JODooeiieie e e 278
Bitmap and Vector Graphic OQULPULcceeeviiereeese e 279
Bitmap GraphiCscveeeeiiiiee et 279
RV = ot (0] BT =TT oSS 280
Guidelines for Choosing Bitmap or Vector GraphicCsccocveeeeerenrseesesnsennas 281
Controlling What is Displayed in Vector GraphiCscccccvveieeveevesesieeieesie e 282
Chapter 13
Creating Custom ODbjJects iN IDLccccuuiiiiiiiiiiiiieeeee s 289
Creating CUSIOM ODJECESccueeeeriiriirieieesieste et r e e 290
DL ObJECE OVEIVIEW ...euvirieeieieiiriesieeetestesie e sae st e et ste e esessesteseeneeseseesseseenessesseseas 291
ClasseS aNd INSEANCEScovviieiieiereseeieese e eeee e eee e ssesseeseestesreeseenseseesseas 291
[g0 01 U o] o 291
=10 L 291
0] Y 070 0] T o 291

Contents Object Programming

INNEITANCE ...viieiiee ettt 292
S B 1 (< 10 S 292
Undocumented ODJECE CIASSEScoviueevieiiiiecieie et s e e e re st ennesaesne s 293
Creating an ObjeCt Class SIIUCIUIEc.ooeieieiiereieeeee e 294
Automatic Class Structure DEfINITIONc.coveiirineneeree s 295
INNETTANCE ...ttt e et e st e seeeseenaeneeneeas 296
NI o SRS 297
Object HEap VariabIesooe oot 298
Dangling REFEIENCEScceeiiriiiiceece ettt sr s 299
Heap Variable “Leakage” ..ot 299
Freeing Heap Variables ..ottt s 299
The ODJECE LITECYCIE ...ttt 301
Creation and INItTAlIZALTONocveeriiiiriiee e 301
11 0o o S 303
Creating Custom Object Method ROULINESccccviivieieie e 304
Defining Method ROULINEScooieieieieeeere et 304
The Implicit SEf ArQUMENTceoececeee e 305
Calling Method ROULINESccoouiiieie et 306
Searching for Method ROULINESc.cccvviieeiese e 307
Y T= gToTe @,V 4 o [o U RRRS 308
Specifying Class Namesin Method Callsccccveveveviececce s 309
(@ o= ot B = 0] 0= S 311
Creating Composite Classes OF SUDCIASSESccceevevieiveeiere e 311
10 1= PP 313

Object Programming Contents

Chapter 1

The Basics of Using
Objects in IDL

The following topics are covered in this chapter:

Object-Oriented Programming Concepts .. 14
UsingIDL Objects. 15
Creating Objects
Acting on Objects Using Methods

Object Programming

Modifying Object Properties 21
Destroying Objects 25
Using Operations with Objects 26
ObjectExamples 28

13

14 Chapter 1: The Basics of Using Objects in IDL

Object-Oriented Programming Concepts

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functionsin the case of IDL)
and data to be acted upon by the routines. Object-oriented programming beginsto
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides a layer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for developing object-oriented
applications. IDL’s Object Graphics engine is object-oriented, and a class library of
graphics objects allows you to create applications that provide equivaent graphics
functionality regardless of your (or your users') computer platform, output devices,
etc. Asan IDL programmer, you can use IDL’straditional procedures and functions
aswell asthe new object features to create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to create, configure and destroy inherent IDL graphic
objects. For information on how to create and use custom object that you create, see
Chapter 13, “ Creating Custom Objectsin IDL”. If you are developing a custom i Tool
or components of an iTool (such as an operation or manipulator) see theiTool
Developer’s Guide for complete details and examples.

A complete discussion of object orientation is beyond the scope of this book—if you
are new to object oriented programming, consult one of the many references on
object oriented program that are available.

Object-Oriented Programming Concepts Object Programming

Chapter 1: The Basics of Using Objects in IDL 15

Using IDL Objects

The IDL Object Graphics system isacollection of pre-defined object classes, each of
which is designed to encapsulate a particular visual representation. Actions (such as
the modification of attributes, or data picking) may be performed on instances of
these object classes by calling corresponding pre-defined methods. These objects are
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAXxis object provides an encapsulation of all of the
components associated with agraphical representation of an axis. One of the actions
that can be performed on an axis is retrieving the current value of one or more of its
attributes (such asits color, tick values, or datarange). This action may be performed
viathe IDLgrAXxis::GetProperty method. See * Graphic Objects—Visualization” in
the functional category “Object Class Library” in the IDL Quick Reference manual
for acomplete listing of these types of objects.

Object Graphics should be thought of as a collection of building blocks. In order to
display something on the screen, the user selects the appropriate set of blocks and
puts them together so that as a group they provide a visual result. In this respect,
Object Graphics are quite different than Direct Graphics. A singleline of codeis
unlikely to produce a complete visualization. Furthermore, a basic understanding of
the IDL object system isrequired (for instance, how to create an object, how to call a
method, how to destroy an object, etc.). Because of the level at which these objects
are presented, Object Graphics are aimed at application programmers rather than
command line users.

Object Graphics do not interact in any way with the system variables (such as!P, !X,
1Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structuresis not condoned. The
advantage of this approach is that once an object is created, it will always behavein
the same way even if the system state is modified by another program, or if the object
is moved to another user’s IDL session, where the system state may have been
customized in a different way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualization
applications. Direct manipulation tools (such as the Trackball object) are provided to
aid the application devel oper. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more time
focusing on domain specific data analysis and visualization features.

Object Programming Using IDL Objects

16 Chapter 1: The Basics of Using Objects in IDL

Over time, RSI will continue to build higher-level applications with these objects,
applications that are suitable for users who prefer not to become programmers to
interact with their data. The IDL Intelligent Tools (iTools) are good examples of
currently available applications built using Object Graphics. For more information,
see theiTools User’s Guide.

Additional examples based on Object Graphics can be found in the IDL demo.

Using IDL Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 17

Creating Objects

To create an object from the IDL object class library, use the OBJ NEW function.
See“OBJ NEW” inthe|DL Reference Guide manual. The Init method for each class
describes the arguments and keywords available when you are creating a new object.

For example, to create a new object from the IDLgrAXis class, use the following call
to OBJ_NEW aong with the arguments and keywords accepted by the
IDLgrAXxis::Init method:

nyAxis = OBJ_NEWIDLgrAxis, DIRECTION = 1, RANGE = [0.0, 40.0])

When you create an object, it is persistent, meaning it exists in memory until you
destroy it. You use an object reference (ny Axi s) to access the data associated with
the object. This object reference actually accesses an object heap variable. (See
“Object Heap Variables’ on page 298 for details.)

Once an object has been created, you can access and modify it as needed. (See“ The
Object Lifecycle” on page 301 for additional information.) However, you should
aways explicitly clean up object references before ending a program. See
“Destroying Objects’ on page 25 for more information.

Object Programming Creating Objects

18 Chapter 1: The Basics of Using Objects in IDL

Acting on Objects Using Methods

In order to perform an action on an object’s instance data, you must call one of the
object’s methods. In addition to their own specific methods, all object classes shipped
with IDL except for the IDL_Container class have four methods in common:
Cleanup, Init, GetProperty, and SetProperty. The Cleanup and Init methods are life-
cycle methods, and cannot be called directly except within asubclass’ Cleanup or Init
method. (See“ The Object Lifecycle” on page 301.) The GetProperty and SetProperty
methods allow you to inspect (get) or change (set) the various properties associated
with a given object. See “Maodifying Object Properties’ on page 21 for details.

To call amethod, you must use the method invocation operator,-> (the hyphen
followed by the greater-than sign).

Object Method Syntax

In the IDL Reference Guide, the Syntax section of each object method shows the
proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:
Obj->Procedure_Name, Argument [, Optional_Arguments]

where Obj isavalid object reference, Procedure_Name is the name of the procedure
method, Argument is arequired parameter, and Optional_Argument is an optional
parameter to the procedure method. The square brackets around optional arguments
are not used in the actual call to the procedure, they are simply used to denote the
optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:
Result = Obj->Function_Name(Argument [, Optional _Arguments])

where Obj isavalid object reference, Result is the returned value of the function
method, Function_Name is the name of the function method, Argument is arequired
parameter, and Optional_Argument is an optional parameter. The square brackets
around optiona arguments are not used in the actual call to the function, they are
simply used to denote the optional nature of the arguments within this document.

Acting on Objects Using Methods Object Programming

Chapter 1: The Basics of Using Objects in IDL 19

Note
All arguments and keywords to functions should be supplied within the parentheses

that follow the function’s name.

Arguments

The Arguments section describes each valid argument to the method.

Note
These arguments are positional parameters that must be supplied in the order

indicated by the method's syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“output arguments”) are described as accepting “named variables.” A hamed
variableis simply avalid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for anamed variable, only a named variable can be used—sending an
expression causes an efror.

Keywords

The Keywords section describes each valid keyword argument to the method.

Note
Keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=") and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTY LE keyword can be abbreviated to XST.

Note
In the case of Init, GetProperty and SetProperty methods, keywords often
correspond to object properties. See “Modifying Object Properties’ on page 21 for
additional discussion.

Object Programming Acting on Objects Using Methods

20 Chapter 1: The Basics of Using Objects in IDL

Setting Keywords

When the documentation for a keyword says something similar to, “ Set this keyword
to enablelogarithmic plotting,” the keyword issimply aswitch that turns an option on
and off. In general, setting such keywords equal to 1 (or using the /KEY WORD
syntax) causes the option to be turned on. Explicitly setting the keyword to zero (or
not including the keyword) turns the option off.

Acting on Objects Using Methods Object Programming

Chapter 1: The Basics of Using Objects in IDL 21
Modifying Object Properties

Some IDL abjects have properties associated with them — things like color, line
style, size, and so on. Properties are set or changed by supplying property-value pairs
in acall to the object class’ Init or SetProperty method:

hj - >0BJ_NEW' Obj ectd ass', PROPERTY = value, ...)
or
hj - >Set Property, PROPERTY = value, ...

where PROPERTY is the name of a property and value is the associated property
value.

Property values are retrieved by supplying property-value pairsin acall to the object
class' GetProperty method:

hj - >CGet Property, PROPERTY = variable, ...

where PROPERTY is the name of a property and variable is the name of an IDL
variable that will hold the associated property value.

Note
Property-value pairs behave in exactly the same way as Keyword-value pairs. This
means that you can set the value of a boolean property to 1 by preceding the name
of the property with a“/” character. The following are equivalent:

Cbj - >Set Property, PROPERTY = 1

bj - >Set Property, /PROPERTY

If you are familiar with IDL Direct Graphics, you will note that many of the
properties of IDL objects correspond to keywords to the Direct Graphics routines.
Unlike IDL Direct Graphics, the IDL Object Graphics system allows you to change
the value of an object’s properties without re-creating the entire object. Objects must
be redrawn, however, with acall to the destination object’s Draw method, for the
changes to become visible.

Properties and the Property Sheet Interface

In addition to being able to set and change object property values programmatically,
IDL providesaway for usersto change property values viaagraphical user interface.
TheWIDGET_PROPERTY SHEET function creates a user interface that allows users
to select and change property values using the mouse and keyboard.

Object Programming Modifying Object Properties

22

Chapter 1: The Basics of Using Objects in IDL

For an object property to be displayed in a property sheet, the property must be
registered.

See “Registered Properties’ in Chapter 4 of the IDL Reference Guide manual for
additional discussion.

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for thefirst time,
which is done by specifying any keywordsto the object’s Init method directly in the
call of OBJ_NEW that creates the object. For example, suppose you are creating a
plot and wish to use ared line to draw the plot line. You could specify the COLOR
keyword to the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ_NEW' IDLgrPlot', xdata, ydata, COLOR = [255, 0, O0])

In most cases, an abject’s Init method cannot be called directly. Arguments to
OBJ NEW are passed directly to the Init method when the object is created.

For some graphics objects, you can specify a keyword that has the same meaning as
an argument. In Object Graphics, the value of the keyword overrides the value set by
the argument. For example,

myPlot = OBJ_NEW ' IDLgrPlot', xdata, ydata, DATAX = newXDat a)
The Plot object uses the datain newXDat a for the plot’s X data.

Setting Properties of Existing Objects

After you have created an object, you can also set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ NEW shown above:

myPlot = OBJ_NEW' IDLgrPlot', xdata, ydata)
nmyPl ot - >Set Property, COLOR = [255, 0, 0]

Note
Not all keywords available when the object is being initialized are necessarily

available via the SetProperty method. Keywords avail able when using an object’s
SetProperty method are noted with the word “ Set” in the table included after the
text description of the property.

Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 23

Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty

method. The GetProperty method accepts alist of keyword-variable pairs and returns
the value of the specified properties in the variables specified. For example, to return
the value of the COLOR property of the plot object in our example, use the statement:

nmyPl ot - >Get Property, COLOR = pl otcol or
The value of the COLOR property is returned in the IDL variable pl ot col or.

You can retrieve the values of all of the properties associated with a graphics object
by using the ALL keyword to the object’s GetProperty method. The following
statement:

myPl ot - >Get Property, ALL = all props

returns an anonymous structure in the variable al | pr ops; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily

available viathe GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word “Get” in the table included after the
text description of the property.

About Object Property Descriptions

In the documentation for the IDL object class library, the description of each classis
followed by a section describing the properties of the class. Each property description
isfollowed by atable that looks like this:

Property Type Boolean

Name String Hide

Get: Yes Set: No Init: Yes Registered: Yes
where

* Property Type describes the property type associated with the property. If the
property is registered, the property type will be one of anumber of registered
property datatypes. If the property is not registered, thisfield will describe the
generic IDL datatype of the property value.

Object Programming Modifying Object Properties

24 Chapter 1: The Basics of Using Objects in IDL

e Name String isthe default value of the Name property attribute. If the
property isregistered, thisis the value that appears in the left-hand column
when the property is displayed in aproperty sheet widget. If the property isnot
registered, this field will contain the words not displayed.

e Get, Set, and Init describe whether the property can be specified as a keyword
to the GetProperty, SetProperty, and Init methods, respectively.

* Registered describes whether the property is registered for display in a
property sheet widget.

See Registered Property Data Types and “ Registered Properties’ in Chapter 4 of the
IDL Reference Guide manual for additional information.

Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 25

Destroying Objects

Use the OBJ DESTROY procedure to destroy an object. When an object is created
using OBJ NEW, memory is reserved for the object on the heap (see “ Object Heap
Variables’ on page 298 for details). You must explicitly destroy objectsin order to
clean up the reference and the remove the data from memory. Objects are released as
with acall to OBJ_DESTROY. Internally, this calls the object’s Cleanup method (see
“Destruction” on page 303 for details).

For example, if you have created an axis object called myAxis, use the following
syntax to clean up the object reference:

OBJ_DESTROY, nyAXxis
See“OBJ DESTROY” in the IDL Reference Guide manual for further details.

Object Programming Destroying Objects

26

Chapter 1: The Basics of Using Objects in IDL

Using Operations with Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables. assignment,
method invocation (described in “Acting on Objects Using Methods’ on page 18),
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for object references and are not defined.

Note
The structure dot operator (.) is alowed within methods of a class of a custom
object. See “The Implicit Self Argument” on page 305 for details.

Many non-computational functions and proceduresin IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It isworth
noting that the only 1/0 allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. Thisis merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that I/O on the contents of non-object
instance data contained in heap variables is not alowed. Passing non-object instance
data contained in an object heap variable to the PRINT command is asimple example
of thistype of 1/0.

You can aso get information about an object as described in “ Returning Object Type
and Validity” on page 189.

Object Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after executing
the statements:

;Define a class structure.
struct = { cnane, datal:0.0 }

; Create an object.
A = OBJ_NEW' cnane')

Using Operations with Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 27

;Create a second object reference.

B=A
HELP, A B
IDL prints:
A OBJREF = <Obj HeapVar 1(CNAMVE) >
B OBJREF = <nj HeapVar 1(CNAME) >

Note that both A and B are references to the same object heap variable.
Object Equality and Inequality

The EQ and NE operators allow you to compare object references to seeif they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cnane, data:0.0}

; Create an object.
A = OBJ_NEW' CNAME')

;B refers to the sane object as A
B=A

;C contains a null object reference.

C = OBJ_NEW)

PRINT, "AEQB ', AEQB& $

PRINT, "ANEB ', ANEB&S$

PRINT, "AEQC ', AEQC& $

PRINT, 'C EQ NULL: ', C EQ OBJ_NEW) & $

PRINT, 'C NE NULL:', C NE OBJ_NEW)
IDL prints:

A EQ B: 1

A NE B: 0

A EQC 0

C EQ NULL: 1

C NE NULL: O

Object Programming Using Operations with Objects

28 Chapter 1: The Basics of Using Objects in IDL

Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimesin expanded form — intheexanpl es/ doc/ obj ect s subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“IPATH” in the IDL Reference Guide manual for information on IDL's path.

Object Examples Object Programming

Chapter 2

Creating an Object
Graphics Display

This chapter discusses creating and configuring Object Graphic displays.

Overview of Object GraphicsClasses 30
Creating an Object Graphics Display 31
Object Graphics Display Hierarchy 33
Destination Objects 35
Display Objects 36
VisudizationObjects 38
FileFormat Objects 42
Color in Object Graphics. 44

Object Programming

Color and Destination Objects 46
PaetteObjects L. 48
Specifying Object Color 49
How IDL Interprets Color Values 51
Rendering Objects 53
Controlling the Depth of ObjectsinaView 56
Controlling Object Transparency 58
Performance Tuning Object Graphics 64

29

30 Chapter 2: Creating an Object Graphics Display

Overview of Object Graphics Classes

The following sections provide an overview of the different types of objectsincluded
inthe IDL Object Graphics class library. In order to describe the attributes of the IDL
Object Graphics classes, we have grouped the objects into functional categories:
Display Objects, Visualization Objects, Destination Objects, and File Format
Objects.

Note
These category names are purely descriptive; for example, display objects contain
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named display.

See “Object Graphics Display Hierarchy” on page 33 for adiscussion of the object
tree, which shows the relationships between object classes.

There is some commonality among visualization object properties Following sections
provide information about common properties including color, depth-buffering (how
objects are layered in aview), and alpha-channel setting (transparency).

Naming Conventions

In general, object classes shipped with IDL have names of the form:
| DLxxYyyy

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, and an for analysis, for example). Yyyy isthe class name itself
(such as Axi s or Sur f ace). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping code
entirely (IDL_Container). All object classes shipped with IDL are prepended with the
letters IDL—we strongly suggest that you do not use this prefix when writing your
own object classes, as we will continue to add new object classes using this
convention.

The typographical convention used to describe IDL objectsis dlightly different from
that used for non-object functions and procedures. Whereas non-object procedures
are presented in upper case letters, object classes and methods use mixed case. For
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method names
are also presented in mixed case (IDLgrAXxis.:GetProperty).

Overview of Object Graphics Classes Object Programming

Chapter 2: Creating an Object Graphics Display 31

Creating an Object Graphics Display

All Object Graphics applications require at least two basic building blocks. These
include:

¢ A destination object - the device (such as awindow, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered.

* A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into that
rectangle).

For example:

Create a destination object, in this case a wi ndow
oW ndow = OBJ_NEW' | DLgr W ndow)

Create a viewport that fills the entire w ndow
oView = OBJ_NEW' I DLgr Vi ew)

Draw the view within the w ndow
OW ndow >Dr aw, oVi ew

By themselves, awindow and a single view are not particularly enlightening, but you
will find that these two types of objects are utilized by all Object Graphics
applications. To change an attribute of an object, you do not have to create a new
instance of that object. Instead, use the SetProperty method on the original object to
modify the value of the attribute.

For example, to change the color of the view to gray:

Set the color property of the view
OVi ew >Set Property, COLOR=[60, 60, 60]
Redr aw:
OW ndow >Dr aw, oVi ew

If more than one view isto be drawn to the destination, then an additional object is
required:

e A sceneabject - acontainer of views
For example:

Create a scene and add our original viewto it:
OScene = OBJ_NEW'' | DLgr Scene’)
oScene- >Add, oVi ew
Modi fy our original view so that it covers
; the upper left quadrant of the wi ndow.
OVi ew >Set Property, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $
UNI TS=3
Create and add a second red view that covers

Object Programming Creating an Object Graphics Display

32

Chapter 2: Creating an Object Graphics Display

; the right half of the w ndow.
Oview2 = OBJ_NEW' IDLgrView , LOCATION=[0.5,0.0], $
DI MENSI ONS=[0. 5, 1. 0], UNI TS=3, COLOR=[255, 0, 0])
OScene- >Add, oVi ew2
Now draw t he scene, rather than the view, to the w ndow
OW ndow >Dr aw, oScene

In the examples so far, the views have been empty canvases. For data visualization
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

* A model object - atransformation node

* A visualization graphic object - agraphical representation of data (such asan
axis, plot line, or surface mesh). For more information, see “Visualization
Objects’” on page 38.

For example, to include atext label within aview:

Create a nodel and add it to the original view
oModel = OBJ_NEW' | DLgr Model ')
oVi ew >Add, oMbdel
Create a text object and add it to the nodel:
oText = OBJ_NEW' I DLgrText', ' Hello World', ALI GNMVENT=0. 5)
oMbdel - >Add, oText
Redr aw t he scene:
OW ndow >Dr aw, o0Scene

Notice that the scene, views, model, and text are all combined together into a self-
contained hierarchy. It isthe overal hierarchy that is drawn to the destination object.

The transformation associated with the model can be modified to impact the text it
contains. For example:

Rotate by 90 degrees about the Z-axis:
oMbdel - >Rotate, [0,0,1], 90

Redr aw.
OW ndow >Dr aw, o0Scene

When the objects are no longer required, they need to be destroyed. Destination
objects must be destroyed separately, but the graphic hierarchies can be destroyed in
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oW ndow
OBJ_DESTROY, o0Scene

In this example, the destruction of the scene will cause the destruction of all of its
children (including the views, model, and text).

Creating an Object Graphics Display Object Programming

Chapter 2: Creating an Object Graphics Display 33

Object Graphics Display Hierarchy

An Object Graphics display can be thought of as a group of graphics objects
organized into a hierarchy or tree. For example, a graphics object tree with four
graphics atoms (visualization objects) might be contained in three separate model
objects, which are in turn contained in two distinct view objects, both of which are
contained in one scene object, which isthe root of the graphics tree.

graphics| |graphics| |graphics graphics
atom atom atom atom
Model Model Model
View View
Scene

Figure 2-1: A Graphics Object Tree

Object Programming Object Graphics Display Hierarchy

34

Chapter 2: Creating an Object Graphics Display

Components of an Object Graphics Hierarchy

An object graphics display is commonly made up of the following components:

Destination objects — awindow, printer, clipboard or memory buffer that
contains the display. One of these abjectsis required for any graphics tree. For
more information, see “ Destination Objects’ on page 35. In the tree analogy,
one of these abjectsis the ground.

Display objects— a scene, view, or viewgroup that contains one or more
models. Each model controlsthe spatial positioning of the visualization objects
that it contains. See “Display Objects’ on page 36.

Note
IDL_Container, like aview, can act as a container for other objects. Adding

objects to a container object allows you to group disparate IDL objectsinto
single object, and allows you to easily move or destroy the objects within the
container. See “A Plotting Routing” on page 174 for an example that uses an
IDL_Container object.

Visualization objects — these low-level objects (shown as graphic atomsin
Figure 2-1) are the used to create visualizations such as plot, contour, surface,
and image displays. These objects contain data and have attributes such as
size, color, or associated color palette. Visualization objects do not have an
independent transformation matrix and do not contain other objects. See
“Visualization Objects’ on page 38 for more information.

Object Graphics Display Hierarchy Object Programming

Chapter 2: Creating an Object Graphics Display 35

Destination Objects

Destination objects are objects on which object trees can be rendered (displayed on a
screen or printed on a printer). Detailed information about destination objectsis
available in Chapter 12, “Displaying, Copying and Printing Objects”.

Destination Description
Buffer Objects of the IDLgrBuffer class represent an off-screen, in-
memory data area that may serve as a graphics source or
destination.
Clipboard Objects of the IDLgrClipboard class send Object Graphics to

the operating system’s native clipboard or to afilein bitmap or
vector format. See “ Clipboard Objects’ on page 270 for
examples.

Printer Objects of the IDLgrPrinter class represent a hardcopy
graphics destination. By default, printer objects represent the
default system printer; you can use the IDL routines
DIALOG_PRINTJOB and DIALOG_PRINTERSETUP to
change the printer associated with a printer object. See
“Printer Objects’” on page 272 for examples.

Window Objects of the IDLgrWindow class represent an on-screen area
on adisplay device in which graphic objects can be rendered.
See “Window Objects’ on page 261 for more information.
Also see* Saving Window Contentsto aFile” on page 264 for
information on how to save aview of displayed objects to an
imagefile.

Table 2-1: Destination Objects

Note
When creating an iTool display, there is no need to manually configure a window
object or destination abjects. Thisis automatically done for you. See Chapter 3,
“Visualizations” in theiTool User’'s Guide manual for more information.

Object Programming Destination Objects

36

Display Objects

Chapter 2: Creating an Object Graphics Display

Minimally, you must have aview object in an Object Graphics display. However, it is
likely that you will use acombination of the following display objectsin any display.
The“Object Graphics Display Hierarchy” on page 33 shows the rel ationship between
these objects as a tree structure.

The advantage of organizing graphic objectsinto atree structureis that by
manipulating any of the branches of the tree, all of the sub-branches of that branch
can be atered simultaneoudly. In Figure 2-1, changes to the spatial transformation
associated with the model containing two graphics atoms will affect both of the
visualization objects. Similarly, calling awindow or printer object’s Draw method on
the scene abject will render al of the objects in the tree to that window or printer.

Object

Description

IDLgrScene

A sceng, or instance of the IDLgrScene class, isthe root-level
object of most graphics trees. Instances of the IDLgrScene
class have Add and Remove methods, which allow you to
include or remove IDLgrView or IDLgrViewgroup objectsin
ascene. A scene object is one of the possible arguments for a
destination object’s Draw method.

It is not necessary to create a scene object if your graphicstree
contains only one view object; in that case, the view can serve
astheroot of the tree.

IDLgrViewgroup

A viewgroup, or instance of the IDLgrViewgroup class, isa
simple container object, similar to the Scene object. The
Viewgroup differs from the Scene in two ways:

1. It will not cause an erase to occur on a destination when
the destination object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and
therefor do not typically serve as the root-level object of a
graphics tree. However, aviewgroup object can be an
argument for a destination object’s Draw method. | nstances of
the IDLgrViewgroup class have Add and Remove methods,
which alow you to include or remove objects in a viewgroup.

Display Objects

Table 2-2: Display Support Objects

Object Programming

Chapter 2: Creating an Object Graphics Display 37

Object Description

IDLgrView A view, or instance of the IDLgrView class, can serve asthe
root-level object of agraphicstree. Instances of the
IDLgrView class have Add and Remove methods, which
alow you to include or remove IDLgrModel objectsin aview.
A view object is one of the possible arguments for a
destination object’s Draw method.

Every graphics tree must contain at |east one view object.
Often, it is convenient to divide the objects being rendered
into separate views, which are then contained by a viewgroup
or scene object.

IDLgrModel A model, or instance of the IDLgrModel class, serves as
containers for individual graphic objects (plot lines, axes, text,
etc.) and for other model objects. Model objectsinclude a
three-dimensional transformation matrix that describes how
the model and all of its components are positioned in space.

Altering the model’s transformation matrix changes the
position and orientation of any objects the model contains. If a
model object contains another model object, the contained
model is positioned according to both its own transformation
matrix and that of its container. See Chapter 3, “Positioning
ObjectsinaView” for more information.

Table 2-2: Display Support Objects (Continued)

See “Creating an Object Graphics Display” on page 31 for an example that
introduces the use of these objects. “ Rendering Objects’ on page 53 provides
additional information.

“Mapping an Image onto Elevation Data” in Chapter 3 of the Image Processing in
IDL manual provides an example using the display objects to support texture-

mapping.
Note
When creating an iTool display, there is no need to manually configure a window

object or destination objects. Thisis automatically done for you. See Chapter 3,
“Visualizations’ in theiTool User’s Guide manual for more information.

Object Programming Display Objects

38 Chapter 2: Creating an Object Graphics Display

Visualization Objects

Visualization objects contain data that is designed to produce a visualization. These
graphic objects are the basic drawable elements of the IDL Object Graphics system,
and are container for other objects. Visualization objects are added to a model object,
which controls the spatial positioning of all the objectsit contains. Visualization
objects combined in amodel object (using the model object’s Add method) share the
same transformation matrix and can be rotated, scaled, or translated together.

Within the category of visualization objects, there is a sub-category of attribute
objects. Attribute objects define the appearance of a visualization object, but
themselves are not drawn, and thus do not need to be added to a model object. For
example, an IDLgrFont object is associated with an IDLgrText object through the
FONT property of the text object and defines the type characteristics of the text.
Attribute objects are instances of one of the following classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, or IDLgrSymbol.

Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 39

The following table introduces objects that are commonly seein different types of
object graphics displays. Your display need not contain these specific combinations.

Display Type Description

Plot Objects of the IDLgrPlot class are individual plot lines,
created from a user-supplied vector of dependent data values
(and, optionally, avector of independent data values). Plots do
not automatically include axes. See Chapter 5, “Working with
Plots and Graphs” for information on plot, symbol and axis
objects. A plot display may include the following objects:

« Axis— IDLgrAxis objects show data ranges (one object
required for each axis to be rendered)

« Legend — IDLgrLegend objects annotate individual data
items or linesin avisualization. See “Legend Objects’ on
page 222.

e Colorbar — IDLgrColorbar objects annotate the data
val ues associated with colors used in avisualization. See
“Colorbar Objects’ on page 225.

* Symbol — IDLgrSymbol objects define a graphical
element that can be used when plotting data.

Contour Objects of the IDLgrContour class are lines representing
contour information plotted from user data. Contour displays,
like plot display, may also include legend, colorbar, or symbol
objects. See Chapter 5, “Working with Plots and Graphs’. You
can also use the following:

o Pattern — IDLgrPattern objects defines which pixels are
filled and which are left blank when a graphic object is
filled. Patterns can be applied to successive contour levels.

Table 2-3: Visualization Object Displays

Object Programming Visualization Objects

40 Chapter 2: Creating an Object Graphics Display

Display Type Description

Image Objects of the IDLgrImage class are two-dimensional arrays
of data with an associated mapping of the data values to pixel
values. See Chapter 4, “Working with Image Objects’.
Displays containing image objects my also include:

» Palette — IDLgrPalette objects define a color lookup
table that maps indices to red, green, and blue values.

e ROI — IDLgrROI objects are representations of aregion
of interest. Regions of interest are described as a set of
vertices that may be connected to generate a path or a
polygon, or may be treated as separate points. Objects of
the IDLgrROIGroup class are representations of a group
of regions of interest.

Surface Objects of the IDLgrSurface class are individual three-
dimensional surfaces, created from a user-supplied array of
data values. See Chapter 6, “Working with Surface Objects’.

e Light — IDLgrLight objects are light sources that
illuminate visualization objects. Light objects are not
actually rendered, but must be contained in amodel object
so that they can be positioned and transformed along with
the graphic objects they illuminate. If no light object is
included in a particular view, default lighting is supplied.

Volume Objects of the IDLgrVolume class map a three-dimensiona
array of datavaluesto athree-dimensional array of voxel
colors, which, when drawn, are projected to two dimensions.
Volume displays, like surface displays, can aso include lights.
See Chapter 7, “Creating Volume Objects’.

Table 2-3: Visualization Object Displays (Continued)

Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 41

Display Type

Description

Polygon and
Polyline

Polygons and polylines are low-level graphic objects that can
be displayed by themselves or with other objects. See Chapter
8, “Polygon and Polyline Objects’ for more information.

Objects of the IDLgrPolygon class are individual polygons,
created from a user-supplied array of datavalues.

o Tesselator — IDLgrTessellator objects convert asimple
concave polygon (or a simple polygon with holes) into a
number of simple convex polygons (general triangles).
Tessellation is useful because IDL’s polygon object
accepts only convex polygons.

Objects of the IDLgrPolyline class are individual polylines,
created from a user-supplied array of data points. L ocations of
the data points supplied are connected by asingleline.

Text

Objects of the IDLgrText class are text strings that can be
positioned within the rendering area. See “ Text Objects’ on
page 213.

* Font — IDLgrFont object define the typeface, size,
weight, and style of atext object with whichitis
associated. See “Font Objects’ on page 217.

Text objects are applicable to any of the previous displays.

Table 2-3: Visualization Object Displays (Continued)

See the “Graphic Objects—Visualization” category of the “Object Class Library” in
the IDL Quick Reference manual for an alphabetical list of visualization objects.

Note

Objects of the TrackBall class provide a simple interface to allow the user to
translate and rotate three-dimensional Object Graphics hierarchies displayed in an
IDL WIDGET_DRAW window using the mouse. The trackball object translates
widget events from a draw widget (created with the WIDGET_DRAW function)
into transformations that emulate a virtual trackball (for transforming object
graphicsin three dimensions). See “Interactive 3D Transformations’ on page 91
and “TrackBall” in the IDL Reference Guide manual for further details.

Object Programming

Visualization Objects

42

Chapter 2: Creating an Object Graphics Display

File Format Objects

File format object classes provide access to data stored within files of certain types.
For example, the IDLFfXMLSAX and IDLffXMLDOM classes provide access to
attribute information stored in .xm files. The IDLffLangCat class aso provides
accessto XML data. However, this object allows you to access XML data stored in
language catalog files (.cat), which can be used to support internationalization. File
format abjects may or may not have a graphical element that can be displayed.

Format

Object Class Information

DICOM

Objects of the IDLffDICOM class contain the data for one or
more images embedded in a DICOM Part 10 file. Use this
object for read-only access to the data.

The IDLffDicomEXx class represents an extended IDL
interface to DICOM format files, which includes read and
write capabilities. The IDLffDicomEXx object isavailable asa
separately-purchased IDL module, and is described in
Medical Imagingin IDL.

DXF

Objects of the IDLffDXF class contain geometry,
connectivity and attributes for graphics primitives.

Note - Also see“XDXF’ inthe IDL Reference Guide manual
for information on directly displaying a.dxf file.

JPEG 2000

Objects of the IDLffIPEG2000 class provide an interface to
filesin the JPEG 2000 format.

Language Catalogs

Objects of the IDLffLangCat class provide an interface to
IDL language catalog files. See Chapter 19, “Using
Language Catalogs’ in the Building IDL Applications
manual for usage details and examples.

Motion JPEG2000

Objects of the IDLffMJIPEG2000 class provide away to
create and display Motion JPEG2000 animations. See
Chapter 9, “Animations’ in the Using IDL manual for more
information.

File Format Objects

Table 2-4: File Format Objects

Object Programming

Chapter 2: Creating an Object Graphics Display 43

Format

Object Class Information

MrSID

Objects of the IDLffMrSID class are used to query
information about and load image datafromaMrSID (. si d)
imagefile.

MPEG

Objects of the IDLgrMPEG class allow you to save an array
of image frames as an MPEG movie.

ShapeFiles

Objects of the IDLff Shape class contain geometry,
connectivity and attributes for graphics primitives accessed
from ESRI Shapefiles.

VRML

Objects of the IDLgrVRML class allow you to save the
contents of an Object Graphics hierarchy asaVRML 2.0
format file.

XML

XML Parser — Objects of the IDLffXMLSAX class
represent an XML SAX level 2 parser. The XML parser
allowsyou to read an XML file and store arbitrary data from
thefilein IDL variables. See Chapter 20, “Using the XML
Parser Object Class” in the Building IDL Applications
manual for further details.

XML DOM — The Document Object Model (DOM)
describesthe content of XML datain the form of a document
object, which contains other objects that describe the various
data elements of the XML document. Objects of the
IDLfFXMLDOM Classes classes represent itemsin an XML
document; the items can be modified and the XML document
fileitself written to disk using these classes. See Chapter 21,
“Using the XML DOM Object Classes’ in the Building IDL
Applications manual for further details.

Table 2-4: File Format Objects (Continued)

See the “File Format Objects’ category of the “Object Class Library” in the IDL
Quick Reference manual for alist of file format objects.

Object Programming

File Format Objects

44

Chapter 2: Creating an Object Graphics Display

Color in Object Graphics

Color in an Object Graphics display is the result of interaction between the color
model defined for the destination object (e.g. window or printer), the destination
object’sinherent color model, and the color assigned to any visualization objects (e.g.
plot, text or image objects) being displayed. This section explains how to specify
color when using Object Graphics and how IDL interacts with the destination devices
on which graphics are finally displayed.

Note
For general information on color systems (RGB, HSV, HLS, and CMY), and
display color schemes (Indexed and RGB) see“Color Systems” or “Display Device
Color Schemes’ in Chapter 8 of the Using IDL manual.

Object Graphics supports two color models for newly created destination objects
(such as an IDLgrWindow): an Indexed Color Model and an RGB Color Model.
Indexed color allows you to map data values to color values using a color palette.
RGB color allows you to specify color values explicitly, using an RGB triple. See
“Indexed Color Model” on page 51 and “RGB Color Model in Object Graphics’ on

page 47.

Note
For some X 11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for al display situations.

The devices on which graphics are rendered—computer displays, printers, plotters,
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on any
physical device. That is, the color model used by IDL is entirely independent of the
color model used by the physical device. “How IDL Interprets Color Values’ on
page 51 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or red,
green, and blue (RGB) value, regardless of the color model used by the destination
object or the physical destination device. See* Specifying Object Color” on page 49
for details.

Color in Object Graphics Object Programming

Chapter 2: Creating an Object Graphics Display 45

The majority of graphic visualization objects have a COLOR property that can be set
to an indexed value or an RGB triple. You can set the color of any visualization
object when it isfirst created and later change it using this property. In addition to the
COLOR property, you can also associate a palette object (an instance of the
IDLgrPalette class) with many visualization objects using the PALETTE property.

One exception is the IDLgrlmage object, which does not have a COLOR property.
Instead, you use the PALETTE property to specify arelated color table for an
indexed image, or set the INTERLEAVE property to define the arrangement of the
image channelsin a RGB image. Palette objects can aso be associated with
destination objects. See “Palette Objects’ on page 48 for more information.

Object Programming Color in Object Graphics

46

Chapter 2: Creating an Object Graphics Display

Color and Destination Objects

Each destination object has one of the two color models associated with it (an
Indexed Color Model, and the RGB Color Model), shown in the following table.Once
a destination object has been created, you cannot change the associated color model.
You can, however, create destination objects that use different color modelsin the
same IDL session. That is, it is possible to have two window objects—one using the
Indexed color model and one using the RGB color model—on your computer screen
at the same time.

Color Model Keyword Value
INDEXED COLOR_MODEL=1
See “Indexed Color Model in Object Graphics’ on page 46.
RGB COLOR_MODEL=0 (default)
See “RGB Color Model in Object Graphics’ on page 47

Table 2-5: Destination Object Color Models

You can specify the color of any graphic object using either a color index or an RGB
value, regardless of the color model used by the destination object or the physical
destination device. The main distinction between the two color models liesin how
IDL manages the color lookup table (if any) of the physical destination device. See
“How IDL Interprets Color Values’ on page 51 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET _DRAW function deserve a specia
mention. When a draw widget is created with the GRAPHICS LEVEL keyword set
equal to 2, the widget contains an instance of an IDLgrWindow object rather than an
IDL Direct Graphics drawable window. By default, the window object uses the RGB
color model; to use the indexed color model, set the COLOR_MODEL keyword to
WIDGET_DRAW equal to 1 (one).

Indexed Color Model in Object Graphics

In the Indexed color model, you have control over how colors are loaded into a color
lookup table. If the Indexed Color Model is used, a color value (or individual image
pixel) is expected to be an index into the pal ette associated with the destination
object. To load a particular color table, create a palette object, then set it as a property

Color and Destination Objects Object Programming

Chapter 2: Creating an Object Graphics Display 47

of the destination object in which the graphics are to be drawn (using the PALETTE
keyword in the SetProperty method of the destination object). If a palette is not
explicitly provided for a given destination object, agray scale ramp is loaded by
default.

When the contents of your destination object are rendered on the physical device
(that is, when you call the Draw method for the destination object), the RGB values
from the palette are either:

e passed directly through to the physical device (if it uses RGB values), or
« loaded into the physical device'slookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting the
COLOR_MODEL property of the object equal to 1 (one):
myW ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL = 1)
Specify a palette object by setting the PALETTE property equal to a pal ette object:
myW ndow >Set Property, PALETTE=nyPalette

When you assign a color index to a visualization object that is drawn on the
destination device, the color index is used to look up an RGB value in the specified
palette. When you assign an RGB value to an object that is drawn on the destination
device, the nearest match within the destination object’s palette is found and used to
represent that color.

See “How IDL Interprets Color Values’ on page 51 for information on how a color
assignment to avisualization object isinterpreted by a destination object using either
an RGB or Indexed color mode.

RGB Color Model in Object Graphics

In the RGB color model, IDL takes responsihility for filling the color lookup table on
the destination device (if necessary). When the contents of your destination object are
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

« passed directly through to the physical device (if it uses RGB values), or

* matched as nearly as possible with colors loaded in the physical device's
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to 0 (zero). Thisisthe default color
model value for newly created destination objects.

nyW ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL = 0)

Object Programming Color and Destination Objects

48 Chapter 2: Creating an Object Graphics Display

Palette Objects

Objects of the IDLgrPalette class are used to create color lookup tables. Color lookup
tables assign individual numerical values to color vaues; this allows you to specify
the color of a graphic object with a single number (a color index) rather than
explicitly providing the red, green, and blue color values (an RGB triple). Palettes are
most useful when you want data values to correspond to color values—that is, if you
want a data value of 200, for example, to always correspond to asingle color. This
correspondence is one of the main uses of the Indexed Color Model.

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the pal ette when
you call the IDLgrPalette::Init method. The valuesin the red, green, and blue vectors
must be integers between zero and 255, and the length of each vector must not exceed
256 elements. For example, the following statements create a pal ette object that
reverses a standard grayscale ramp pal ette:

rval = (gval = (bval = REVERSE(| NDGEN(256))))
nmyPal ette = OBJ_NEW' I DLgrPal ette', rval, gval, bval)

Using Palette Objects

Pal ettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic visualization objects:

myW ndow >Set Property, PALETTE=nyPal ette
or
nmyl mage- >Set Property, PALETTE=nyPal ette
Note
Pal ettes associated with graphic visualization objects are only used when the

destination object uses an RGB color model; if the destination object uses an
indexed color model, the destination object’s palette is always used.

See“IDLgrPalette::Init” in the IDL Reference Guide manual for details on creating
palette objects and complete examples.

Palette Objects Object Programming

Chapter 2: Creating an Object Graphics Display 49
Specifying Object Color

The color of most graphic objects are specified by the COLOR property of that
object. (The IDLgrImage object has a PALETTE property, not a COLOR property.
See"IDLgrPalette::Init” in the IDL Reference Guide manual for examples.) In IDL
Object Graphics, colors used for drawing visualization objects (such asan IDLgrText
object) aretypically represented in one of two ways:

e Indexed - acolor isan index into a palette

* RGB - acalor isathree-element vector, [red, green, blug]. See “Color
Systems’ in Chapter 8 of the Using IDL manual for complete details.

You can set the color of an object either when the object is created or afterwards. For
example, the following statement creates a view object and setsits color value to the
RGB triple [60, 60, 60] (adark gray).

nyView = OBJ_NEW' I DLgrView , COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis object.

myAxi s- >Set Property, COLOR=100

The interpretation of this color depends upon the color model associated with the
destination object, described in “Color and Destination Objects’ on page 46.

Note
Remember that color palettes associated with individual graphic visualization
objects are only used when the destination object uses an RGB color model. If the
destination object uses an Indexed color model, the destination object’s paletteis
aways used.

Example Specifying RGB Values

RGB values are specified with RGB triples. An RGB triple is a three-element vector
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zerois
the darkest possible value for each of the three channels—thus an RGB triple of

[0, O, O] represents black, [0, 255, O] represents bright green, and [255, 255, 255]
represents white.

For example, suppose we create a plot line with the following statements:

myW ndow = OBJ_NEW' | DLgr W ndow)
nyView = OBJ_NEW' I DLgrView , VIEWLANE_RECT=[0, O, 10, 10])
nmyModel = OBJ_NEW' | DLgr Mbdel ')

Object Programming Specifying Object Color

50 Chapter 2: Creating an Object Graphics Display

nyPlot = OBJ_NEW'IDLgrPlot', FINDGEN(10), TH CK = 5)
nmyModel - >Add, nyPl ot

nmyVi ew >Add, nyModel

myW ndow >Dr aw, nyVi ew

Notice the following aspects of the above example:

1. The newly-created window (destination) object uses an RGB color mode (the
default).

2. Thedefault color of the view object—the background against which the plot
lineis drawn—is white ([255, 255, 255]).

3. Thedefault color of the plot object (and all objects, for that matter) is black.
Try changing the colors with the following statements:

nmyPl ot - >Set Property, COLOR
myVi ew >Set Property, COLOR
nyW ndow >Dr aw, nyVi ew

[150, 0, 150]
[75, 250, 75]

To destroy the window and remove the objects created from memory, use:
OBJ_DESTROY, [myW ndow, nyVi ew]

Specifying Object Color Object Programming

Chapter 2: Creating an Object Graphics Display 51

How IDL Interprets Color Values

IDL determines colors to display differently based on whether the destination object
uses an Indexed or RGB color model, and on whether the physical destination device
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

» If the physical device usesan Indexed color model, the specified color index is
used as an index into the physical device'slookup table. (Remember that the
physical device's color lookup table isloaded viathe PALETTE keyword to

the destination object.)

» If the physical device uses an RGB color model, the specified color index is
used as an index into the destination object’s palette. The RGB triple stored at
the index’s location in the palette is used as the physical device's color value.

If an RGB Triple is Specified

e |f the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

« If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calculated
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a pal ette associated
with it, the RGB triple at that palette’s color index is retrieved. Otherwise, the RGB
triple at the specified index in the destination object’s paletteis retrieved.

» If the physical device uses an Indexed color model, the RGB triple retrieved is
mapped to the index of the nearest match in the device's color lookup table.

Object Programming How IDL Interprets Color Values

52 Chapter 2: Creating an Object Graphics Display

« If the physical device uses an RGB color model, the RGB tripleretrieved is
passed directly to the device.

If an RGB Triple is Specified

» If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

« If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

If the RGB color model is used, the palette associated with a destination object does
not necessarily have a one-to-one mapping to the hardware color lookup table for the
device. For instance, the destination object may have a grayscale ramp loaded as a
palette, but the hardware color lookup table for the device may be loaded with an
even sampling of colors from the RGB color cube. When a user requests that a
graphical object be rendered in a particular color, that object will appear in the
nearest approximation to that color that the device can supply.

How IDL Interprets Color Values Object Programming

Chapter 2: Creating an Object Graphics Display 53

Rendering Objects

In Object Graphics, rendering occurs when the Draw method of a destination object
iscalled. A scene, viewgroup, or view istypically provided as the argument to this
Draw method. This argument represents the root of a graphics hierarchy. When the
destination’s Draw method is called, the graphics hierarchy istraversed, starting at
the root, then proceeding to children in the order in which they were added to their
parent.
For example, suppose we have the following hierarchy:

oW ndow = OBJ_NEW' | DLgr W ndow)

oView = OBJ_NEW' | DLgr Vi ew)

oMbdel = OBJ_NEW' | DLgr Model ')

oVi ew >Add, oMbdel

OXAxis = OBJ_NEW'IDLgrAxis', 0)

oModel - >Add, oXAxi s

OYAXi s = OBJ_NEW' I DLgr Axis', 1)

oMbdel - >Add, oYAXi s
To draw the view (and its contents) to the window, the Draw method of the window
is called with the view as its argument:

oW ndow >Dr aw, oVi ew

The window’s Draw method will perform any window-specific drawing setup, then
ask the view to draw itself. The view will then perform view-specific drawing (for
example, clearing arectangular areato a color), then calls the Draw method for each
of its children (in this case, thereis only one child, amodel). The model’s Draw
method will push its transformation matrix on a stack, then step through each of its
children (in the order in which they were added) and ask them to draw themselves. In
this example, oX Axiswill be asked to draw itself first; then oYAxiswill be asked to
draw itself. Once each of the model’s children is drawn, the transformation matrix
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three steps:
e Perform setup drawing for this object.
e Step through list of contained children and ask them to draw themselves.
e Perform follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on when
the objects are drawn. Drawing order can be changed by using the Move method of a
scene, viewgroup, view, or model to change the position of a specific object within
the hierarchy.

Object Programming Rendering Objects

54 Chapter 2: Creating an Object Graphics Display

Thefirst time a visualization object (such as an axis, plot line, or text) isdrawn to a
given destination, a device-specific encapsulation of its visual representation is
created and stored as a cache. Subsequent draws of this visualization object to the
same destination can then be drawn very efficiently. The cache is destroyed only
when necessary (for example, when the data associated with the visualization object
changes). Graphic attribute changes (such as color changes) typically do not cause
cache destruction. To gain maximum benefit from the caches, modification of object
graphic properties should be kept to bare minimum.

Note
See “Performance Tuning Object Graphics’ on page 64 for other performance
enhancing strategies.

Simple Plot Example

The following section shows the IDL code used to create a simple object tree. While
you are free to enter the commands shown at the IDL command line, remember that
the IDL Object Graphics API isdesigned as a programmer’s interface, and is not as
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

The following IDL commands construct a simple plot of an array versus the integer
indices of the array. Note that no axes, title, or other annotations are included; the
commands draw only the plot lineitself. (This exampleis purposefully simple; itis
meant to illustrate the skeleton of a graphicstree, not to produce a useful plot.)

Create a view 2 units high by 100 units w de
; Wthits origin at (0,-1):
view = OBJ_NEW' | DLgrView , VIEWLANE RECT=[O0, -1, 100, 2])
Create a nodel:
nmodel = OBJ_NEW' | DLgr Model ')
Create a plot line of a sine wave:
plot = OBJ_NEW'IDLgrPlot', SINFINDGEN(100)/10))
Create a window into which the plot Iine will be drawn:
wi ndow = OBJ_NEW' | DLgr W ndow)
; Add the plot line to the nodel object:
nodel - >ADD, pl ot
; Add the nodel object to the view object:
vi ew >ADD, npdel
Render the contents of the view object in the w ndow
wi ndow >DRAW Vi ew

Rendering Objects Object Programming

Chapter 2: Creating an Object Graphics Display 55

To destroy the window and remove the objects created from memory, use the
following commands:

; Destroy the wi ndow and the view.

; Destroying the view object destroys all
; of the objects contained in the view
OBJ_DESTROY, [w ndow, view]

Object Programming Rendering Objects

56 Chapter 2: Creating an Object Graphics Display

Controlling the Depth of Objects in a View

In graphics rendering, the depth buffer isan array of depth values maintained by a
graphics device, one value per pixel, to record the depth of primitives rendered at
each pixel. It isusually used to prevent the drawing of objects located behind other
objects that have already been drawn in order to generate a visually correct scene. In
IDL, smaller depth values are closer to the viewer.

Depth buffer properties provide maore control over how Object Graphics primitives
are affected by the depth buffer. You can now control which primitives may be
rejected from rendering by the depth buffer, how the primitives are rejected, and
which primitives may update the depth buffer.

Control of the depth buffer is achieved through a test function or by completely
disabling the buffer. The depth test function isalogical comparison function used by
the graphics device to determine if a pixel should be drawn on the screen. This
decision is based on the depth value currently stored in the depth buffer and the depth
of the primitive at that pixel location.

Thetest function is applied to each pixel of an object. A pixel of the object isdrawn if
the object’s depth at that pixel passes the test function set for that object. If the pixel
passes the depth test, the depth buffer value for that pixel is also updated to the
pixel’s depth value.

The possible test functions are:
¢ INHERIT - usethetest function set for the parent model or view.
* NEVER - never passes.

e LESS- passesif the depth of the object’s pixel isless than the depth buffer’'s
value.

« EQUAL - passesif the depth of the object’s pixel is equal to the depth buffer's
vaue.

e LESSOR EQUAL - passesif the depth of the object’s pixel islessthan or
equal to the depth buffer's value.

* GREATER - passesif the depth of the object’s pixel is greater than or equal to
the depth buffer’s value.

* NOT EQUAL - passesif the depth of the object’s pixel isnot equal to the
depth buffer’'s value.

Controlling the Depth of Objects in a View Object Programming

Chapter 2: Creating an Object Graphics Display 57

« GREATER OR EQUAL - passesif the depth of the object’s pixel is greater
than or equal to the depth buffer’'s value.
e ALWAYS - aways passes
The IDL default is LESS. Commonly used values are LESS and LESS OR EQUAL,
which alow primitives closer to the viewer to be drawn.

Disabling the depth test function allows all primitives to be drawn on the screen

without testing their depth against the values in the depth buffer. When the depth test
is disabled, the graphics device effectively uses the painter’s algorithm to update the
screen. That is, the last item drawn at alocation is the item that remains visible. The
depth test function of ALWAY S produces the same result as disabling the depth test.

Moreover, you can disable updating the depth buffer. Disabling depth buffer writing
prevents the updating of depth information as primitives are drawn to the frame
buffer. Such primitives are unprotected in the sense that any other primitive drawn
later at that location will draw over it asif it were not there.

Most visualization objects now have the following properties related to the depth
buffer:

« DEPTH_TEST DISABLE
« DEPTH_TEST_FUNCTION
- DEPTH_WRITE_DISABLE

For more details on these properties, see each object’s property list inthe IDL
Reference Guide.

Object Programming Controlling the Depth of Objects in a View

58 Chapter 2: Creating an Object Graphics Display

Controlling Object Transparency

IDL objects which support an alpha channel are:

» IDLgrAxis « IDLgrContour
» IDLgrImage » IDLgrPlot
» IDLgrPolygon « IDLgrPolyline
* IDLgrROI « |IDLgrSurface
» IDLgrSymbol e IDLgrText

* IDLgrVolume

Note
The transparency of an IDLgrlmage object can be defined using a band of data
defining the alpha values, and/or the ALPHA_CHANNEL property. Regardless of
which way the image transparency is defined, you also need to set
BLEND_FUNCTION property. See “Defining Transparency in Image Objects’ on
page 111 for details.

The alpha channel has many uses. One of the most important is drawing primitives
semi-transparently, which can be used to enhance your object graphics scene. An
example might be atext label drawn semi-transparently to let other graphical details
“show through” the text label. Thiswould allow you to use alarger text font size,
rather than using asmall font size to squeeze text between details in a scene. Another
use for apha channel might be to draw polygons and surfaces semi-transparently,
alowing you to see “inside” certain objects and structures.

Some of the most important uses for semi-transparent rendering are discussed in the
following sections.

e “Opacity and Transparency” on page 59
¢ “Blending Mathematics’ on page 59

¢ “Rendering Order” on page 60

e “Viewing and Rotation” on page 61

o “Depth Buffer Updating” on page 63

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 59

Opacity and Transparency

Opacity describes the degree to which an object blocks the appearance of other
objects. In IDL, the value used for the ALPHA_CHANNEL propertiesin IDLgr*
objectsisameasure of the object's opacity. A value of 1.0 indicates complete opacity.
The object completely blocks the appearance of other objects. Conversely, an opacity
value of 0.0 indicates that the object does not block the appearance of objects at all.
Intermediate values indicate varying degrees of visibility for covered objects.

Transparency is essentially the opposite of opacity. Transparency indicates the
degree to which an object does not block the appearance of other objects. Complete
or full transparency isindicated by an opacity value of 0.0, while an object that is not
transparent at al has an opacity value of 1.0.

By default all IDLgr* graphic objects use an ALPHA_CHANNEL value of 1.0,
indicating full opacity (zero transparency), matching the rendering behavior before
the addition of the ALPHA_CHANNEL property. To change the opacity of the
object, simply change the this property to a value between 0.0 (zero opacity or full
transparency) and 1.0.

Blending Mathematics

Blending is the drawing of semi-transparent objects on a screen already containing
objects. During rendering, the color of the pixels belonging to the primitive being
rendered are blended with the color of the pixelsthat are aready on the screen,
producing the desired blending effect. This process is accomplished on a pixel-by-
pixel basis.
IDL uses this well-established blending equation:

newCol or = oldColor * (1 - alpha) + primtiveColor * al pha

An example might suppose that you want to draw ared square in an area of the screen
that is completely green. By default, the alphavalueis 1.0, so the result is:

[255, 0, 0] =[O0, 255 0] * (1.0 - 1.0) + [255, 0, 0] * 1.0

The green color is removed completely and replaced by red, the expected result of
conventional non-blended rendering.

If the alphavalue is changed to equal 0.5, the result is:
[127, 127, 0] = [0, 255, 0] * (1.0-0.5) + [255, O, 0] * 0.5

Theresulting color is the half of the red of the polygon combined with half of the
green of the background, a pale yellow.

Object Programming Controlling Object Transparency

60 Chapter 2: Creating an Object Graphics Display

If you draw another red square in the same place with the same alpha, the red square
is blended with the now current contents of the screen:

[190, 63, 0] = [127, 127, 0] * (1.0-0.5) + [255, 0, O] * 0.5

Note
Large levels of semi-transparent rendering may reduce rendering performance. This
is because the graphics blending operation that is performed involves reading the
destination pixel from the frame buffer, combining it with the new color value and
then writing the result back to the frame buffer. Thisis more expensive than simply
overwriting the frame buffer contents with the new color value. The degreeto
which your performance will be impacted depends heavily on the hardware and
software components of your graphics system.

Rendering Order

The colors of the pixels on the screen are important when drawing a blended
primitive. Similarly, the order in which the primitives are drawn is also very
important when drawing scenes with blended primitives.

In computer graphics, depth sorting presents a similar challenge. Without depth
sorting, a scene would have to be drawn from back to front to obtain a correct result.
IDL handles depth sorting by providing a"depth buffer" (also known asa"Z-buffer")
allowing you to draw the primitives in any order while allowing the primitives closer
to the viewer to still appear to be on top.

There is no similar feature for alpha-blended primitives. Be sure to draw the blended
primitives carefully so that all primitives behind a blended primitive are drawn before
the blended primitive.

If your scene consists of many primitives that are not blended and afew text labels
that are drawn with blending, it is a good ideato defer the drawing of the labels until
after everything elseis drawn. Thiswill allow usersto see through al labels and to
see the objects beneath. If a non-blended primitive is drawn on top of and after a
blended primitive, it will cover the blended primitive. If any primitiveis drawn
behind but after ablended primitive, the primitive drawn later will not appear where
the blended primitive coversit, due to depth buffering. In other words, it is not
possible to blend primitives unless al objects behind the blended primitive which are
to be blended are already drawn.

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 61

Note
If you have acomplex scene where many primitives are blended, it may be difficult

to determine the proper ordering.

Inter- and Intra-primitive Rendering Orders

Inter-primitive rendering order deals with the ordering of primitive objects within an
IDLgrModel. For primitives which do not intersect each other, it is straightforward to
order these in a back-to-front viewing order, particularly if your sceneisfixed so it
cannot be rotated by the user. Thisis done by arranging your primitives along the Z
direction so that the objects farthest away appear first in the IDLgrModels, which
makes them draw first.

If primitives intersect, it may be necessary to divide the object so that the back parts
of each primitive are drawn first, and then the front parts. This can be a very difficult
issue.

Intra-primitive rendering order deals with the ordering of graphical items within an
IDL graphics primitive. Some primitives, such as IDLgrSurface and |DLgrPolygon
actually consist of alarge number of individual polygons. They are not all drawn at
once, and the order in which they are drawn is also important when drawing with
blending.

You can control the order in which the individual polygons are drawn in an
IDLgrPolygon object by ordering the vertices or specifying the order in the
POLY GONS property. Polygons specified first in the POLY GONS list are drawn
first.

Viewing and Rotation
If you draw atypical height field with IDLgrSurface and invoke blending, the object

might look right from some viewing orientations.

For example, try the following:

XOBJVI EW OBJ_NEW'idl grsurface',$
BESELJ(shi ft (di st (40),20,20)/2,0) * 20, STYLE=2, $
ALPHA_CHANNEL=0. 5)

Object Programming Controlling Object Transparency

62

Chapter 2: Creating an Object Graphics Display

£l Xobjview 10l =]

File Edit View

| | [5alels]

Figure 2-2: Viewing Alpha Channel in an Object

Notice in the previous figure that you can see-through the waves in the object to see
other waves, but only when you view the object from certain directions. From other
directions, all you see are the waves closer to you.

Solving this problem can be extremely difficult. A complete solution would generate
ascenefor every possible viewing angle, where the polygons are drawn back to front,
splitting them if necessary. There are several techniques available for accomplishing
this, one of them being the Binary Space Partition Tree, however thisis not supported
directly in IDL. If the objects are simple, it might be possible to construct afew
scenes that give correct or passable results.

For example, if you wanted to look at a semi-transparent sphere from all angles,
creating eight models might suffice. Each of the eight models contains the polygons
sorted in back-to-front order for a viewing direction corresponding to each of the
eight octants formed by the half spaces of the three principle axes. Asthe user rotates
the scene with atrackball, the program would select the appropriate model, based on
the current viewing direction. More complex scenes may require more models.

Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 63

Depth Buffer Updating

For any value of the ALPHA_CHANNEL property, IDL updates the depth buffer
when the primitive is drawn, unlessthe DEPTH_WRITE_DISABLE property is set
to avaue that disables depth buffer updates. Thus, even if you draw a completely
transparent primitive, the depth buffer is updated as if there were avisible primitive
drawn there. This means that subsequent primitives drawn behind the transparent
object are not visible. Though potentially confusing, this can also be a useful way to
hide objects in certain situations.

After drawing atransparent object, that there may be gapsin objects drawn later. For
example, suppose linesin aplot are drawn with ALPHA_CHANNEL=0
(transparent), and then symbols are drawn. Where the symbols and lines intersect,
there are gapsin the symbols. The gaps are caused by the invisible lines changing the
depth buffer, thus masking out the symbols that are drawn later. At times, the ability
to modify the depth buffer without changing the color buffer is a useful tool for
clever clipping operations. In other contexts, you may consider using invisible
polygons to mask out entire areas. However, if the partial or entire invisibility of
objects drawn after atransparent object is unintended use one of the following
options:

e Setthe DEPTH_TEST_FUNCTION=4, or disable depth testing entirely using
the DEPTH_WRITE_DISABLE property.

e Setthe HIDE property to 1if ALPHA_CHANNEL becomes 0.

Either of these options would erase the gaps in the symbols caused by the transparent
plot lines as described in the previous situation.

Object Programming Controlling Object Transparency

64 Chapter 2: Creating an Object Graphics Display

Performance Tuning Object Graphics

The Object Graphics subsystem is designed to provide arich set of graphical
functionality that can be displayed in reasonable time. This section offers suggestions
on how to utilize the object graphicsin such away as to take full advantage of
performance enhancement benefits.

See the following topics for details:
« “Polygon Optimization” on page 204
e “Optimizing Light Object Use” on page 229

* “Improving Window Drawing Performance’ on page 266

Performance Tuning Object Graphics Object Programming

Chapter 3

Positioning Objects in a

View

The following topics are covered in this chapter:

Positioning VisudizationsinaView 66
Viewport i 67
Projection........................... 69
EyePosition......................... 71
ViewVolume 73

Object Programming

Tranglating, Rotating and Scaling Objects . 87

Example: Centeringanimage 79
Example: Centeringanimage 79
Example: Transforming a Surface 82
Interactive 3D Transformations 91

65

66 Chapter 3: Positioning Objects in a View

Positioning Visualizations in a View

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatically
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspects to this transformation from a generic depiction of your datato
arepresentation that can be rendered to an output device (a graphics destination
object, such asawindow or printer) with the perspective, size, and location you want.

Viewport

The first aspect is the view of the graphics objects to be rendered: the size of the
viewing area (the viewport), the type of projection used, the position of the viewer's
eye asit looks at the graphics objects, and the particular view volumein three-
dimensional space that will be rendered to the viewing area. These elements of the
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered. See “Viewport” on page 67.

Location

The second aspect of the transformation is the location and position of your graphics
objects with respect to the viewing area. Graphics objects can be translated, rotated,
or scaled by setting the appropriate properties of the IDLgrModel object that contains
them. See " Trandating, Rotating and Scaling Objects’ on page 87.

Note
The viewport and location of an object are independent: It is possible, for example,
to translate a graphic object so that it is no longer within the viewing areathat is
rendered in awindow or on a printer.

Coordinate Systems and Scaling

The third aspect of the transformation is the conversion between data, device, and
normalized coordinates. The IDL Object Graphics system gives you full control over
which data values are used, which are displayed, and which coordinate systems are
used. This means that you must explicitly ensure that the objects to be rendered and
the view object to which they belong use the same coordinate system and are scaled
appropriately. This chapter discusses the properties and methods used to size and
position both your viewing area and the graphics objects you wish to render. See
“Converting Datato Normal Coordinates’ on page 76.

Positioning Visualizations in a View Object Programming

Chapter 3: Positioning Objects in a View 67

Viewport

Several elements of an IDLgrView object control how objects appear when
displayed:
e “Location and Dimension” on page 67 — define the viewport within the
destination object

* “Projection” on page 69 — define either aparallel or perspective projection

« “EyePosition” on page 71 — define the distance of eye from the viewing
plane for perspective projections

¢ “View Volume’ on page 73 — define the view volume that is projected into the
viewport

Location and Dimension

One of the first stepsin determining how graphics objects will appear when rendered
on a graphics destination object is to select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will be
displayed. Set the location and dimensions of the viewport using the LOCATION and
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method).

For example, the following statement creates a view object with aviewport that is
300 pixels by 200 pixels, with its lower |eft corner located 100 pixels up from the
bottom and 100 pixels to the right of the left edge of the destination object:

nyView = OBJ_NEW' | DLgr Vi ew , LOCATI ON=[100, 100], $
DI MENSI ONS=[300, 200])

Object Programming Viewport

68

Viewport

Chapter 3: Positioning Objects in a View

DIMENSION][0]

Viewport

[TINOISNAWIA

LOCATION (x,y)

Origin (0,0)

Figure 3-1: Positioning a View on the Screen

Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of unitsin which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method:
myVi ew >Set Property, LOCATI ON=[0, 0], DI MENSI ONS=[200, 200]

changesthe location of the viewport to haveits lower left corner at (0, 0) and asize of
200 pixels by 200 pixels.

Note
The eyeispositioned in only one dimension (along the z-axis) and always pointsin
the —z direction.

Object Programming

Chapter 3: Positioning Objects in a View 69

Projection

When three-dimensional graphics are displayed on aflat computer screen or printed
on paper, they must be projected onto the viewing plane. A projection is away of
converting positionsin 3D space into locationsin the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A parallel projection projects objectsin 3D space onto the 2D viewing plane along
paralle rays. The figure below shows a parallel projection; note that two objects that

are the same size but at different locations still appear to be the same size when
projected onto the viewplane.

<— +Zaxis Z=0 -Zaxis —>

Figure 3-2: In a Parallel Projection, Rays Do Not Converge at the Eye

View objects use a parallel projection by default. To explicitly set aview object to
use aparalle projection, set the PROJECTION keyword to the IDLgrView::Init
method equal to 1 (or use the SetProperty method to set the projection for an exiting
view object):

nmyVi ew >Set Property, PRQJIECTION = 1

Object Programming Projection

70 Chapter 3: Positioning Objects in a View

Perspective Projections

A perspective projection projects objectsin 3D space onto the 2D viewing plane
aong raysthat converge at the eye position. The figure below shows a perspective
projection; note that objects that are farther from the eye appear smaller when
projected onto the viewplane.

Eye B

€— +Zaxis Z=0 -Zazis —>

Figure 3-3: In a Perspective Projection, Rays Converge at the Eye

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use the
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:

myVi ew >Set Property, PRQIECTION = 2

Projection Object Programming

Chapter 3: Positioning Objects in a View 71

Eye Position

The eye position isthe position along the z-axis from which a set of objects contained
in aview object are seen. Use the EY E keyword to the IDLgrView::Init method to
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to alter the eye position of an existing view object). The eye
position must be az value larger than the z value of the near clipping plane (see“Near
and Far Clipping Planes’” on page 73) or zero, whichever is greater. That is, the eye
must always be located at a positive z value, and must be outside the volume bounded
by the near and far clipping planes.

For example, the following moves the eye positionto z=5:
nmyVi ew >Set Property, EYE=5

The eyeisaways positioned directly in front of the center of the viewplane rectangle.
Thatis, if the VIEWPLANE_RECT property isset equal to[-1, -1, 2, 2], theeyewill
be located at X=0, Y=0.

Changing the position of the eye has no effect when you are using a parallel
projection. Changing the eye position when you are using a perspective projection
has a somewhat counter-intuitive affect: moving the eye closer to the near clipping
plane causes objects in the volume being rendered to appear smaller rather than
larger. To understand why this should be true, consider the following diagram.

<— +Zaxis Z=0 -Zaxis —>

Figure 3-4: Moving the Eye Closer to the Viewplane
Causes Objects to Appear Smaller

Object Programming Eye Position

72

Eye Position

Chapter 3: Positioning Objects in a View

In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eye is close to the viewing plane, the
projected rays cross the viewing plane (where rendering actually occurs) ina
relatively small area. When the eye moves farther from the viewing plane, the
projected rays become more nearly parallel and occupy alarger area on the viewing
plane when rendered.

Object Programming

Chapter 3: Positioning Objects in a View 73

View Volume

The view volume defines the three-dimensional volume in space that, once projected,
isto fit within the viewport. There are two parts to the view volume: the viewplane
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will be
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is dways located
at Z=0.

Usethe VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the location
and extent of the viewplane rectangle. Set the keyword equal to afour-element
floating-point vector; the first two elements specify the X and Y location of the lower
left corner of the rectangle, and the second two elements specify the width and height.
The default rectangleislocated at (-1.0, -1.0) and is two units wide and two units
high ([-1.0, -1.0, 2.0, 2.0]). For example, the following command changes the
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

nmyVi ew >Set Property, VIEWLANE RECT = [0.0, 0.0, 1.0, 1.0]

Note
See " Panning in Object Graphics’ on page 107 for an example that modifies the
VIEWPLANE_RECT to control what portion of an image is displayed in aview.

Near and Far Clipping Planes

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the eye
than the near clipping plane or farther from the eye than the far clipping plane will not
be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have aready created the view object) to set the near and far clipping
planes. Set the keyword equal to atwo-element floating-point vector that defines the
positions of the two clipping planes: [near, far]. The default clipping planes are at

Object Programming View Volume

74 Chapter 3: Positioning Objects in a View

Z=10and Z=-1.0([1.0,-1.0]). For example, the following command changes the
near and far clipping planesto be located at Z = 2.0 and Z = —3.0, respectively.

myVi ew >Set Property, ZCLIP =[2.0, -3.0]

he B T
1 I
1 1
1 I -
| et
1 Lt 1
1 R 1
1 : 1
i { : Yoo
S 1
I TR
RO ° |
< Wy ST
N 1
Eye . | :
[R > B
g [
v B < [AR
5.0 = 58
Hefi=s o] or=y
|:v—g_] 2 ':"D
=e. ’p__..d l*uE'
=3 E =
= - =
= o =
=
- !
- o = -
€<— +Zagls Z=0 -Zaxis —>

Figure 3-5: Near and Far Clipping Planes. Object 2 is not rendered, because it
does not lie between the near and far clipping planes.

Finding an Appropriate View Volume

Finding an appropriate view volume for a given object treeis relatively simplein
theory. To find the appropriate viewplane rectangle, you must find the overall X and
Y range of the object (usually amodel or scene object) that contains the items drawn
in the object tree, accounting for any transformations of objects contained in the tree.
Similarly, to find the appropriate near and far clipping planes, you can find the Z
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for alarge object tree can be
complicated.

View Volume Object Programming

Chapter 3: Positioning Objects in a View 75

Example Code
Two routines contained in the IDL distribution provide an example of how the view
volume can be computed in many cases. These routines are defined in the files
set _vi ew. pro andget _bounds. pr o, located in the
exanpl es/ doc/ utilities subdirectory of the IDL distribution. To view either
filein an IDL Editor window, enter . COVPI LE set _vi ew. pro or. COVPI LE
get bounds. pro.

The SET_VIEW procedure accepts as arguments the object references of aview
object and a destination object, computes an appropriate view volume for the view
object, and sets the VIEWPLANE_RECT property of the view object accordingly.
The SET_VIEW procedure callsthe GET_BOUNDS procedure to compute the X, Y,
and Z ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examplesin this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routines do
not produce the desired result, we encourage you to copy and alter the code to suit
your own needs.

Inspect the SET_VI EW PROand GET_BOUNDS. PROfiles for further details.

Object Programming View Volume

RSI_PROCODE/examples/doc/utilities/set_view.pro
RSI_PROCODE/examples/doc/utilities/get_bounds.pro

76 Chapter 3: Positioning Objects in a View

Converting Data to Normal Coordinates

Most transformations are handled by the transformation matrix of amodel object. For
convenience, however, visualization objects may aso have asimplified
transformation applied to them. Coordinate transformations applied to individual
graphic visualization objects allow you to change only the trand ation (position) and
scale; thisis useful when converting from one coordinate system to another.

For example, you may build your view object using normalized coordinates, so that
values range between zero and one. If you create a graphic object—a surface object,
say—based on the range of data values, you would need to convert your surface
object (built with a data coordinate system) to match the view object (built with a
normal coordinate system). To do this, use the [XYZ]COORD_CONYV keywordsto
the graphic object in question. The [XY Z]COORD_CONV keywords take as their
argument a two-element vector that specifies the tranglation and scale factor for each
dimension.

Suppose you have a surface object whose data is specified in arange from [0, O,
ZMin] to [xMax, yMax, zMax]. If you wanted to work with this surface asif it werein
anormalized [-1, -1, —1] to [1, 1, 1] space, you could use the following coordinate
conversions:

;. Create sone data:

nmyZdata = DI ST(60)

; Use SIZE to deternine size of each dinension of myZdat a:
sz = Sl ZE(nyZdat a)

; Create a scale factor for the X di nension:

xs = 2.0/ (sz[1]-1)

; Oreate a scale factor for the Y dinension:

ys = 2.0/ (sz[2]-1)

; Create a scale factor for the Z di nension:

zs = 2.0/ MAX(nyZdat a)

Now, use the [XYZ]COORD_CONYV keywordsto the IDLgrSurface::Init method to
trangdlate the surface by minus one unit in each direction, and to scale the surface by

the scale factors:
nySurface = OBJ_NEW' I DLgr Surface', nyZdata, $
XCOORD_CONV = [-1, xs], YCOORD CONV = [-1, ys], $
ZCOORD_CONV = [-1, zs])

Remember that using the [XYZ]COORD_CONV keywordsissimply a
convenience—the above example could aso have been written as follows:

; Create some data:
nmyZdata = DI ST(60)
; Use SIZE to deternine the size of each di mension of nyZdata:

Converting Data to Normal Coordinates Object Programming

Chapter 3: Positioning Objects in a View 77

sz = Sl ZE(nyZdat a)

Create a scale factor for the X di mension:
xs = 2.0/ (sz(1)-1)

Create a scale factor for the Y dinmension:
ys = 2.0/ (sz(2)-1)

Create a scale factor for the Z dimension:
zs = 2.0/ (MAX(myZdat a)

Create a nodel object:
myModel = OBJ_NEW' | DLgr Mbdel ")
; Apply scale factors:
myModel - >Scal e, xs, ys, zs
; Transl ate:
nmyModel - >Transl ate, -1, -1, -1

Create surface object:
nmySurface = OBJ_NEW' I DLgr Surface', nyZdata)
; Add surface object to nodel object:
myModel - >Add, nySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that they fit
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding the
code to make this coordinate conversion to your code in each placeit isrequired, you
may wish to define a coordinate conversion function.

For example, the following function definition accepts atwo-element array
representing minimum and maximum values returned by the XY ZRANGE keyword
to the GetProperty method, and returns two-element array of scaling parameters
suitable for the XYZCOORD_CONV keywords:

FUNCTI ON NORM_COCORD, range
scale = [-range[0]/(range[1]-range[0]), 1/(range[l]-range[0])]
RETURN, scal e

END

If you define afunction like thisin your code, you can then call it whenever you need
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of the X and Y ranges
for the plot, and the use the XY COORD_CONV keywordsto the SetProperty method
and the NORM_COORD function to set the coordinate conversion.

plot = OBJ_NEW' IDLgrPlot', data)

pl ot - >Get Property, XRANGE=xr, YRANGE=yr

pl ot - >Set Property, XCOORD_CONV=NORM COORD(xr), $

YCOORD_CONV=NORM_COORD(yr)

Object Programming Converting Data to Normal Coordinates

78 Chapter 3: Positioning Objects in a View

Example Code
The function NORM_COORD is defined in the file nor m_coor d. pro inthe
exanpl es/ doc/ utilities subdirectory of the DL distribution. Enter
. COWPI LE norm coord. pro atthelDL command lineto open thefilein and
IDL Editor window.

Converting Data to Normal Coordinates Object Programming

RSI_PROCODE/examples/doc/utilities/norm_coord.pro

Chapter 3: Positioning Objects in a View 79

Example: Centering an Image

The following example steps through the process of creating an image object and
provides two options for centering it within awindow.

The first method establishes a viewplane rectangle within aview object. The image
object is added to amodel object. The model object is then translated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

You can aso position an image in aview using the LOCATION property of the
image object. For additional information and examples, see “Positioning Image
Objectsin aView” on page 101.

This example uses the image from thewor | del v. dat filefound inthe
exanpl es/ dat a directory.

PRO Cent eri ngAnl nage

Determne path to file.
wor | del vFil e = FI LEPATH(' worl delv.dat', $
SUBDI RECTORY = ['exanples', 'data'])

Initialize i nage paraneters.
wor | del vSi ze = [360, 360]
wor | del vl mage = BYTARR(wor | del vSi ze[0], worl del vSi ze[1])

pen file, read in inmage, and close file.
OPENR, unit, worldelvFile, /GET_LUN
READU, unit, worl del vl nage
FREE_LUN, wunit

Initialize wi ndow paraneters.
wi ndowSi ze = [400, 460]
wi ndowMar gi n = (w ndowSi ze - worl del vSi ze)/ 2

First Method: Defining the Viewl ane and
Transl ating the Mdel.

Object Programming Example: Centering an Image

80 Chapter 3: Positioning Objects in a View

; Initialize objects required for an Object G aphics
; display.
oW ndow = OBJ_NEW ' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = "World Elevation: First Method')
oView = OBJ_NEW' IDLgrView, $
VI EWPLANE_RECT = [0., 0., w ndowsSi ze])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize palette with STD GAMVA-II color table and

; use it to initialize the inmage object.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ett e- >LOADCT, 5

ol mage = OBJ_NEW' | DLgr I mage', worl del vi mage, PALETTE = oPal ette)

; Add inmage to nodel, which is added to view. Mbdel

; is translated to center the image within the w ndow.
; Then view is displayed i n wi ndow.

oMbdel - >Add, ol mage

oVi ew >Add, oMbdel

oMbdel - >Transl ate, w ndowivargi n[0], wi ndowMvargi n[1], O.
oW ndow >Dr aw, oVi ew

; C ean-up object references.
OBJ_DESTROY, [oView, oPalette]

; Second Method: Using Coordinate Conversi ons.

; Initialize objects required for an Object G aphics
; display.
oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = "World El evation: Second Method')
oView = OBJ_NEW' | DLgr Vi ew)
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize palette with STD GAMVA-1I| col or table and

; use it toinitialize the imge object.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ett e- >LOADCT, 5

ol mage = OBJ_NEW' I DLgr |l mage', worl del vl mage, $
PALETTE = oPal ette)

; Oobtain initial coordinate conversions of inmage object.

ol mage- >Get Property, XCOORD CONV = xConv, $
YCOORD_CONV = yConv, XRANGE = xRange, YRANGE = yRange

Example: Centering an Image Object Programming

Chapter 3: Positioning Objects in a View 81

; Qutput initial coordinate conversions.
PRINT, '"Initial xConv: ', xConv
PRINT, 'Initial yConv: ', yConv

; Applying margins to coordi nate conversions.

xTransl ation = (2. *FLOAT(w ndowMar gi n[0])/ wi ndowSi ze[0]) - 1.
xScal e = (-2.*xTransl ation)/worl del vSi ze[0]

xConv = [xTransl ati on, xScal e]

yTransl ati on = (2. *FLOAT(wW ndowVar gi n[1])/ wi ndowSi ze[1]) - 1.
yScale = (-2.*yTransl ation)/worl del vSi ze[1]

yConv = [yTransl ation, yScal e]

; Qutput resulting coordi nate conversions.
PRI NT, 'Resulting xConv: ', xConv
PRI NT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the inmage object.
ol mage- >Set Property, XCOORD _CONV = xConv, $
YCOORD_CONV = yConv

; Add image to nodel, which is added to view Display
; the view in the w ndow.

oMbdel - >Add, ol mage

oVi ew >Add, oMbdel

oW ndow >Dr aw, oVi ew

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END

Object Programming Example: Centering an Image

82 Chapter 3: Positioning Objects in a View

Example: Transforming a Surface

The following example steps through the process of creating a surface object and all
of the supporting objects necessary to display it.

Example Code
The procedurefilet est _sur f ace. pr o, located intheexanpl es/ doc/ obj ect s
subdirectory of the IDL distribution, contains this example’'s code. You can run the
example procedure by entering t est _sur f ace at the IDL command prompt or
view thefilein an IDL Editor window by entering . COVPI LE
test _surface. pro.

When creating this procedure, we allow the user to specify keywords that will return
object references to the view, model, surface, and window objects. This allows usto
mani pul ate the objects directly from the IDL command line after the procedure has
been run.

Play with the example to learn how object transformations work and interact. Try the
following commands at the IDL prompt to observe what they do:

First, compilet est _surf ace. pro:
.RUN test_surface. pro

Now, execute the procedure. The variables you supply viathe SURFACE, MODEL,
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line;

test _surface, VIEWnyvi ew, MODEL=nynodel, $
SURFACE=nysurf, W NDOMnmyw n

Thiswill create awindow object and display the surface. Now try the following to
tranglate the object to the right:

nmynodel - >Transl ate, 0.2, 0, O

The model transformation changes as soon as you issue this command. The window
object, however, will not be updated to reflect the new position until you issue a
Draw command:

nmywi n->Draw, nyvi ew
Try arotation in they direction:

nynodel - >Rotate, [0,1,0], 45
nyw n->Draw, nyvi ew

Repeat the commands several times and observe what happens.

Example: Transforming a Surface Object Programming

RSI_PROCODE/examples/doc/objects/test_surface.pro

Chapter 3: Positioning Objects in a View 83

Try some of the following. Remember to issue a Draw command after each changein
order to see what you have done.

mynodel - >Scale, 0.5, 0.5, 0.5

nmynodel - >Scale, 1, 0.5, 1

nmynodel - >Scale, 1, 2, 1

nmynodel - >Rotate, [0,0, 1], 45

mysurf->Set Property, COLOR = [0, 255, 0]

nmyvi ew >Set Property, PRQIECTION = 2, EYE = 2
nyvi ew >Set Property, EYE = 1.1

nyvi ew >Set Property, EYE = 6

Object Programming Example: Transforming a Surface

84 Chapter 3: Positioning Objects in a View

Zooming within an Object Display

Enlarging a specific section of an image is known as zooming. How zooming is
performed within IDL depends on the graphics system. In Direct Graphics, you can
use the ZOOM procedure to zoom in on a specific section of an image. If you are
working with RGB images, you can use the ZOOM _24 procedure.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. Using this method, the entireimage is still contained within the image object,
while the view is changed to only show specific areas of the image object. See the
following section for more information.

Zooming in on an Object Graphics Image Display

The following example imports a grayscale image from the convec. dat binary file.
This grayscal e image shows the convection of the Earth’s mantle. Theimage contains
byte data values and is 248 pixels by 248 pixels. The VIEWPLANE RECT keyword
to the view object is updated to zoom in on the lower left corner of the image.

Example Code
See zooni ng_obj ect . pro intheexanpl es/ doc/ obj ect s subdirectory of the
IDL installation directory for code that duplicates this example.

1. Determinethe path to the convec. dat file:

file = FI LEPATH(' convec.dat', $
SUBDI RECTORY = ['exanples', 'data'])

2. Initialize the image size parameter:

i mageSi ze = [248, 248]
3. Import the image from thefile:

i mge = READ_BI NARY(file, DATA DI M5 = innageSi ze)
4. Initialize the display objects:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i nmageSi ze, $
TITLE = ' A Grayscal e | mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inmageSize])

oMbdel = OBJ_NEW'' | DLgr Model ')

5. Initialize the image object:
ol mage = OBJ_NEW' I DLgr I nage', inmage, / GREYSCALE)

Zooming within an Object Display Object Programming

RSI_PROCODE/examples/doc/objects/zooming_object.pro

Chapter 3: Positioning Objects in a View 85

6. Add theimage object to the model, which is added to the view, then display
the view in the window:

oMbdel -> Add, ol mage
oView -> Add, oMbdel
oW ndow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 3-6: A Grayscale Image in Object Graphics

7. Initialize another window:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, TITLE = ' Zooned | nage')

8. Change the view to enlarge the lower left quarter of the image:

oView -> SetProperty, $
VI EWPLANE_RECT = [0., 0., inmmgeSize/?2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

9. Display the updated view in the new window:

oW ndow -> Draw, oVi ew

Object Programming Zooming within an Object Display

86 Chapter 3: Positioning Objects in a View

The following figure shows the resulting zoomed image.

Figure 3-7: Enlarged Image Area in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Zooming within an Object Display Object Programming

Chapter 3: Positioning Objects in a View 87

Translating, Rotating and Scaling Objects

An|DLgrModel object isa container for any visualization objects that are to be
rotated, translated, or scaled. Each IDLgrModel object has a transformation property
(set viathe TRANSFORM keyword to the IDLgrModel::Init or SetProperty method),
which isa4 x 4 floating-point matrix. For a general discussion of transformation
matrices and three-dimensional graphics, see “Coordinates of 3-D Graphics’ in
Chapter 8 of the Using IDL manual.

Note
A model object’s transformation matrix is akin to the transformation matrix used by
IDL Direct Graphics and stored in the !PT system variable field. Transformation
matrices associated with a model object do not use the value of !P.T, however, and
are not affected by the T3D procedure used in Direct Graphics.

By default, amodel object’s transformation matrix is set equal to a4-by-4 identity
matrix:

1.0 0.0 0.0 0.0
0.01.00.000
0.00.01.000
0.00.00.0 1.0

Figure 3-8:
You can change the transformation matrix of amodel object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:

nmyModel = OBJ_NEW' | DLgr Mbdel ', TRANSFORM = tmatri x)

where tmatrix is a4-by-4 transformation matrix. Alternatively, you can use the
Trandate, Rotate, and Scale methods to the IDLgrModel object to alter the model’s
transformation matrix.

Object Programming Translating, Rotating and Scaling Objects

88 Chapter 3: Positioning Objects in a View

Translation

The IDLgrModel:: Trand ate method takes three arguments specifying the amount to
translate the model object and its contentsin the X, Y, and Z directions. For example,
to translate amodel and its contents by 1 unit in the X-direction, you could use the
following statements:

dx =1 &dy =0 &dz =0
nyModel - >Transl ate, dx, dy, dz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

Define transl ation val ues:
dx =1 &dy =0 &dz =0
; Get existing transformation matri x:
myModel - >Get Property, TRANSFORM = ol dT
; Provide a transformation matrix that perforns the translation:
transT = [[1.0, 0.0, 0.0, dx], $
0, 1.0, 0.0, dy], $
0, 0.0, 1.0, dz], $
0, 0.0, 0.0, 1.0]]
; Miultiply the existing transformation matrix by
; the matrix that perforns the translation:
newl = ol dT # transT
Apply the new transformation matrix to the nodel object:
myModel - >Set Property, TRANSFORM = newTl

[0.
[0.
[0.

Rotation

The IDLgrModel::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degrees to rotate the model object and its contents.
For example, to rotate amodel and its contents by 90 degrees around the y-axis, you
could use the following statements:

axis =[0,1,0] & angle = 90
myModel - >Rot ate, axi s, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define rotation val ues:

axis =[0,1,0] & angle = 90

; Get existing transformation matri x:
nmyModel - >CGet Property, TRANSFORM = ol dT
; Define sine and cosine of angle:
cosa = COS(! DTOR*angl e)

si na SI N(! DTOR* angl e)

Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 89

; Provide a transformation matrix that perforns the rotation:
rotT = [[cosa, 0.0, sina, 0.0], $
[0.O, 1.0, 0.0, O0.0], $
[-sina, 0.0, cosa, 0.0], $
[0.O, 0.0, 0.0, 1.0]]
; Miultiply the existing transformation matrix
; by the matrix that perfornms the rotation.
newl = ol dT # rotT
; Apply the new transformation matrix to the nodel object:
nmyModel - >Set Property, TRANSFORM = newTl

Scaling

The IDLgrModel::Scale method takes three arguments specifying the amount to scale
the model object and its contentsin the x, y, and z directions. For example, to scale a
model and its contents by 2 unitsin they direction, you could use the following
Statements:

sXx =1 &sy =2 &sz =1
nyModel - >Scal e, sx, sy, sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

Defi ne scaling val ues:
sx =1 &sy =2 &sz-=1
; Get existing transformation matri x:
nmyModel - >Get Property, TRANSFORM = ol dT
; Provide a transformation matrix that perforns the scaling:
scaleT = [[sx, 0.0, 0.0, 0.0], $
[0.0, sy, 0.0, 0.0], $
[0.0, 0.0, sz, 0.0], $
[0.O, 0.0, 0.0, 1.0]]
; Miultiply the existing transformation matrix
; by the matrix that performs the scaling.
newl = ol dT # scal eT
Apply the new transformation matrix to the nodel object:
nmyModel - >Set Property, TRANSFORM = newTl

Object Programming Translating, Rotating and Scaling Objects

90 Chapter 3: Positioning Objects in a View

Combining Transformations

Note that model transformations are cumulative. That is, amodel object contained in
another model is subject to both its own transformation and to that of its container.
All transformation matrices that apply to a given model object are multiplied together
when the object is rendered. For example, consider amodel that contains another
model:

nmodel 1 OBJ_NEW ' | DLgr Model ', TRANSFORM = transl)

nmodel 2 = OBJ_NEW ' | DLgr Model ', TRANSFORM = trans2)
nodel 2- >Add, nodel 1

The model 1 object is how subject to both its own transformation matrix (t r ans1)
and to that of its container (t r ans2). Theresult isthat when nodel 1 isrendered, it
will be rendered with atransformation matrix =t rans1 #trans2.

Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 91

Interactive 3D Transformations

To create truly interactive object graphics, you must allow the user to transform the
position or orientation of objects using the mouse. One way to do thisisto provide a
virtual trackball that lets the user manipulate objects interactively on the screen.

Note
TheiTools provide extensive interactivity for all types of object datadisplayed in
aniTool. Thisinteractivity is automatically available when suitable datais
displayed in an iTool. See the iTool User’s Guide for complete details.

The procedurefilet rackbal | _ _defi ne. pro, foundinthel i b directory of the
IDL distribution, contains the object definition procedure for avirtual trackball
object. Thistrackball object is used in several of the examples presented in this
volume, and is also used by other example and demonstration code included with
IDL. The trackball object has three methods: Init, Update, and Reset. These methods
alow you to retrieve mouse movement events and alter your model transformations
accordingly.

The trackball object behaves as if there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state and the
model transformation of the objects displayed in the draw widget’s window object.
When the user clicks and dragsin the draw widget, objectsin the draw widget rotate
asif the user were manipulating them with a physical trackball.

See“TrackBall” in the IDL Reference Guide manual for details on creating and using
trackball objects. Several of the other example files located in the

exanpl es/ doc/ obj ect s subdirectory of the IDL distribution include trackball
objects, and may be studied for further insight into the mechanics of transforming
object hierarchies based on user input.

Note
The XOBJVIEW procedure is a utility used to quickly and easily view and
manipulate IDL Object Graphics on screen. Pre-built functionality allows you to
select, rotate, pan and zoom objects contained within the model(s) passed to the
procedure. See “XOBJVIEW” in the IDL Reference Guide manual for details.

Object Programming Interactive 3D Transformations

92

Interactive 3D Transformations

Chapter 3: Positioning Objects in a View

Object Programming

Chapter 4

Working with Image

Objects

The following topics are covered in this chapter:

Overview of ImageObjects 94
Creating ImageObjects 96
Positioning Image ObjectsinaView 101
Panning in Object Graphics............ 107

Defining Transparency in Image Objects . 111

Object Programming

Warping Image Objects
Mapping an Image Object onto a Sphere .
ImageTilingon.t.
Adding Tiling to Your Application
Example: JPEG2000 Filesfor Tiling

128
132
136
146

93

94 Chapter 4: Working with Image Objects

Overview of Image Objects

An object of the IDLgrImage class (see “IDLgrimage’ in the IDL Reference Guide
manual) represents a two-dimensional array of pixel values, rendered on the plane
z= 0. The image object stores image data using the byte data type, and can take any
of the following forms:

* Anarray with dimensions [n, m]. Each pixel isinterpreted as an index into a
palette, or as an explicit gray scale value (if the GREY SCALE keyword is set).

e Anarray withdimensions[2, n, m] or [n, 2, m] or [n, m, 2]. Each pixel consists
of agray scale value and an associated alpha channel value (alphais used for
transparency effects).

e Anarray withdimensions[3, n, m] or [n, 3, m] or [n, m, 3]. Each pixel consists
of an RGB triple.

e Anarray with dimensions[4, n, m] or [n, 4, m] or [n, m, 4]. Each pixel consists
of an RGB triple and an associated alpha channel value.

Theindex or RGB triple for each pixel isinterpreted according to the color model set
for the destination object in which it isto be drawn. The Alpha channel, if present,
determines the transparency of the pixel.

Note
The position of the color bandsin an RGB image array is know as interleaving. See
“RGB Image Interleaving” in Chapter 8 of the Using IDL manual for details. The
INTERLEAVE property of the image object describes this arrangement.

Defining Image Palettes

If your image array contains indexed color data (that is, if it isan m-by-n array), you
can specify a palette object to control the conversion between the image data and the
palette used by an RGB-mode destination object. (See“How IDL Interprets Color
Values’ on page 51 for adiscussion of the interaction between indexed color objects
and RGB color destinations.) Set the PALETTE property of the image object equal to
an instance of an IDLgrPalette object:

nmyi mage- >Set Property, PALETTE = nypalette

To specify that an image be drawn in greyscale mode rather than through an existing
color palette, set the GREY SCALE property equal to 1 (one). The GREY SCALE
property isonly used if the image datais a single channel (an m-by-n array).

Overview of Image Objects Object Programming

Chapter 4: Working with Image Objects 95

Note
A 2-by-m-by-n array is considered to be a greyscale image with an Alpha channel.
An image containing indexed color data cannot have an alpha channel.

For examples, see " Displaying Indexed Images with Object Graphics’ in the
Examples section of “IDLgrPalette” in the IDL Reference Guide manual.

Configuring Common Object Properties

IDLgrlmage properties allow you to configure how image objects are displayed. You
can alter the transparency (using the ALPHA_CHANNEL keyword), or the color
(using the PALETTE keyword for indexed images, or the INTERLEAV E keyword for
RGB images). You may want to fit one image to another using warping or create a
texture map by mapping an image onto a geometric shape. See the following sections
for more information.

e “Creating Image Objects’ on page 96 provides examples and resources for
creating image objects containing a variety of data

« “Positioning Image Objectsin aView” on page 101

« “Defining Transparency in Image Objects’ on page 111
e “Warping Image Objects’ on page 117

e “Mapping an Image Object onto a Sphere” on page 128

If you want to display very large images, you can do so with imagetiling. See“Image
Tiling” on page 132 for information.

Object Programming Overview of Image Objects

96 Chapter 4: Working with Image Objects

Creating Image Objects

To create an image object, supply an array of pixel values to the IDLgrImage::Init
method. If the image has more than one channel, be sure to set the INTERLEAVE
property of the image object to the appropriate value. (See“ RGB Image Interleaving”
in Chapter 8 of the Using IDL manual for details and an example showing how to
determine the interleaving within an image array.) See“IDLgrImage” in the IDL
Reference Guide manual for details on object properties and methods.

Note
IDLgrImage does not treat NaN data as missing. If the image dataincludes NaNs, it
is recommended that the BY TSCL function be used to appropriately handle those
values. For example:

ol nage- >Set Property, DATA = BYTSCL(nyData, /NaN, M N=O,
MAX=255)

In Object Graphics, binary, grayscale, indexed, and RGB images are contained in
image objects. For display, the image object is contained within an object hierarchy,
which includes amodel object and aview object. The view aobject isthen drawn to a
window object. Some types of images must be scaled with the BY TSCL function

prior to display.
For more information, refer to the following examples:
e “Displaying Binary Images with Object Graphics’ below
« “Displaying Grayscale Images with Object Graphics’ on page 98

» “Displaying Indexed Images with Object Graphics’ in the Exampl es section of
“IDLgrPalette” in the IDL Reference Guide manual.

* “RGB Image Interleaving” in Chapter 8 of the Using IDL manual
Displaying Binary Images with Object Graphics

Binary images are composed of pixels having one of two values, usualy zero or one.
With most color tables, pixels having values of zero and one are displayed with
amost the same color, such as with the default grayscale color table. Thus, a binary
image is usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the
conti nent _mask. dat binary file. In thisimage, the oceans are zeros (black) and
the continents are ones (white). Thistype of image can be used to mask out (omit)

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 97

data over the oceans. The image contains byte data values and is 360 pixels by 360
pixels.

Example Code
Seedi spl aybi naryi nage_obj ect. pro intheexanpl es/ doc/ obj ect s
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe pathtotheconti nent _mask. dat file:

file = FI LEPATH(' continent _mask.dat', $
SUBDI RECTORY = ['exanples', 'data'])

2. Initidize theimage size parameter:

i mgeSi ze = [360, 360]
3. Use READ_BINARY to import the image from the file:

i mmge = READ BI NARY(file, DATA DIMs = imageSize)
4. Initialize the display objects:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, $
TITLE = ' A Binary |Inmage, Not Scal ed')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inageSize])

oMbdel = OBJ_NEW' | DLgr Model ')

5. [Initiaize the image object:
ol mage = OBJ_NEW' I DLgr | mage', inmage)

6. Addtheimage object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oView -> Add, oMbdel
oW ndow -> Draw, oView

The resulting window should be al black (blank). The binary image contains
zeros and ones, which are almost the same color (black). A binary image
should be scaled prior to displaying in order to show the ones as white.

7. Initialize another window:

oWndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i nmageSi ze, $
TITLE = " A Binary | mage, Scal ed')

8. Update the image object with a scaled version of the image:
ol rage -> SetProperty, DATA = BYTSCL(i nage)

Object Programming Creating Image Objects

RSI_PROCODE/examples/doc/objects/displaybinaryimage_object.pro

98 Chapter 4: Working with Image Objects

9. Display the view in the window:

oW ndow -> Draw, oView

The following figure shows the results of scaling this display.

Figure 4-1: Binary Image in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTRQY on the view object.

OBJ_DESTROY, oView

Displaying Grayscale Images with Object Graphics

Since grayscale images are composed of pixels of varying intensities, they are best
displayed with color tables that progress linearly from black to white. IDL provides

several such pre-defined color tables, but the default grayscale color tableis generaly
suitable.

The following example imports a grayscale image from the convec. dat binary file.
This grayscal e image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the datatypeis byte, this
image does not need to be scaled before display. If the datawas of any type other than
byte and the data values were not within the range of 0 up to 255, the display would

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 99

need to scale the image in order to show itsintensities. Complete the following steps
for a detailed description of the process.

Example Code
Seedi spl aygrayscal ei mage_obj ect . pro intheexanpl es/ doc/ obj ect s
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe pathtotheconvec. dat file

file = FI LEPATH(' convec.dat', $
SUBDI RECTORY = ['exanples', 'data'l])

2. Initidize theimage size parameter:

i mageSi ze = [248, 248]
3. Using READ_BINARY, import the image from thefile:

i mmge = READ BI NARY(file, DATA DIMs = imageSize)
4. Initialize the display objects:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, $
TITLE = ' A Grayscal e |1 mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

5. [Initiaize the image object:
ol mage = OBJ_NEW' | DLgr I nage', image, / GREYSCALE)

6. Addtheimage object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oView -> Add, oMbdel
oW ndow -> Draw, oView

Object Programming Creating Image Objects

RSI_PROCODE/examples/doc/objects/displaygrayscaleimage_object.pro

100 Chapter 4: Working with Image Objects

The following figure shows the resulting grayscale image display.

Figure 4-2: Grayscale Image in Object Graphics

7. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ DESTROY on the view object.

OBJ_DESTROY, oView

Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 101

Positioning Image Objects in a View

By default, IDLgrImage objects are drawn at Z=0 and are positioned and sized with
respect to two points:

pl = [LOCATI ON(0), LOCATION(1), O]
p2 = [LOCATI ON(0) + DI MENSI ON(0), LOCATI ON(1) + DI MENSI ON(1), 0] .

where LOCATION and DIMENSION are properties of the image object. These two
points are transformed in three dimensions, and then projected onto the screen to
form the opposite corners of a 2-D rectangle resulting in screen space points
designated aspl' and p2' :

[[p1[0], p1'[1]], [[p2'[O], p1'[1]],
[[p2°[0], p2'[1]], [[p1'[O], p2'[1]]]
The image datais drawn on the display as a 2-D image within this 2-D rectangle
whose sides are parallel to the screen sides. The image datais scaled in two
dimensions (not rotated) to fit into this projected rectangle and then drawn with Z
buffering disabled.

To draw an image with the current full 3D transformation (the same way other objects
such as polygons are transformed), set the IDLgrimage TRANSFORM_MODE
property to 1. See the IDLgrimage TRANSFORM_MODE property in the IDL
Reference Guide for details.

Objects are drawn to a destination devicein the order that they are added (viathe Add
method) to the model, view, or scene that contains them. By default, image objects do
not take into account the depth locations of other objects that may be included in the
view object unless you enable depth testing (see“DEPTH_TEST _DISABLE” in the
IDL Reference Guide manual for details).

This means that objects that are drawn to the destination object (window or printer)
after theimage is drawn will appear to bein front of the image, even if they are
located behind the image object. And this also means that objects drawn after the
imageis drawn will appear to bein front of the image even if they are located behind
theimage. Since the image is drawn by default with depth testing disabled, you can
think of the image primitive as ‘painting’ the image onto the screen without regard
for other objects that might already have been drawn there.

This behavior can be changed by enabling depth testing to make the image primitive
behave like other primitives such as polygons when they are drawn with depth testing
enabled.

Object Programming Positioning Image Objects in a View

102 Chapter 4: Working with Image Objects

The following example uses the LOCATION keyword to control image position. For
information on other ways to define the position of an image object in aview, see
“Example: Centering an Image” on page 79.

Displaying Multiple Images in Object Graphics

The following example imports an RGB image from ther ose. j pg imagefile. This
RGB image is a close-up photograph of ared rose and is pixel interleaved. This
example extracts the three color channels of thisimage, and displays them as
grayscale images in various locations within the same window. Complete the
following steps for a detailed description of the process.

Example Code
Seedi spl aymul ti pl es_obj ect. pro intheexanpl es/ doc/ obj ect's
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe pathtother ose. j pg file:

file = FILEPATH(' rose.jpg', $
SUBDI RECTORY = ['exanples', 'data'])

2. Use QUERY_IMAGE to query thefile to determine image parameters:
queryStatus = QUERY_I MACE(fil e, inmagelnfo)

3. Set the image size parameter from the query information:
i mageSi ze = i magel nf o. di mensi ons

4. Use READ_IMAGE to import the image from thefile:
i mage = READ | MAGE(fil e)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM i mage[0, *, *])
greenChannel = REFORM i mage[1, *, *])
bl ueChannel = REFORM i mage[2, *, *])

The LOCATION keyword to the Init method of the image object can be used to
position an image within awindow. The LOCATION keyword uses data
coordinates, which are the same as device coordinates for images. Before
initializing the image objects, you should initialize the display objects. The
following steps display multiple images horizontally, vertically, and
diagonally.

Positioning Image Objects in a View Object Programming

RSI_PROCODE/examples/doc/objects/displaymultiples_object.pro

Chapter 4: Working with Image Objects 103

6. Initialize the display objects:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $

DI MENSI ONS = i mageSi ze*[3, 1], $

TITLE = ' The Channel s of an RGB | nage')
oView = OBJ_NEW'IDLgrView, $

VI EWPLANE_RECT = [0., 0., imageSize]*[0, 0, 3, 1])
oModel = OBJ_NEW' | DLgr Mbdel ')

7. Now initialize the image objects and arrange them with the LOCATION
keyword, see IDLgrImage for more information:

oRedChannel = OBJ_NEW' I DLgrl mage', redChannel)
0GreenChannel = OBJ_NEW' I DLgrl mage', greenChannel, $
LOCATI ON = [i mageSi ze[0], 0])
oBl ueChannel = OBJ_NEW' I DLgr |l mage', blueChannel, $
LOCATI ON = [2*i mageSi ze[0], O0])
8. Add the image objects to the model, which is added to the view, then display
the view in the window:
oMbdel -> Add, oRedChannel
oMbdel -> Add, oG eenChannel
oMbdel -> Add, oBl ueChannel

oView -> Add, oMbdel
oW ndow -> Draw, oView

The following figure shows the resulting grayscal e images.

Figure 4-3: Horizontal Display of RGB Channels in Object Graphics

These images can be displayed vertically in another window by first
initializing another window and then updating the view and images with
different location information.

Object Programming Positioning Image Objects in a View

104 Chapter 4: Working with Image Objects

9. Initialize another window object:

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[1, 3], $
TITLE = ' The Channel s of an RGB | nage')

10. Change the view from horizontal to vertical:

oView -> SetProperty, $
VI EWPLANE_RECT = [0., 0., imageSize]*[0, 0, 1, 3]

11. Change the locations of the channels:

oG eenChannel -> SetProperty, LOCATION = [0, inageSize[1]]
oBl ueChannel -> SetProperty, LOCATION = [0, 2*inageSi ze[1]]

12. Display the updated view within the new window:
oW ndow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-4: Vertical Display of RGB Channels in Object Graphics

Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 105

These images can aso be displayed diagonally in another window by first
initializing the other window and then updating the view and images with
different location information.The LOCATION can also be used to create a
display overlapping images. When overlapping images in Object Graphics,
you must remember the last image added to the model will be in front of the
previous images.

13. Initialize another window object:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[2, 2], $
TITLE = ' The Channel s of an RGB | nage')

14. Change the view to prepare for adiagonal display:

oView -> SetProperty, $
VI EWPLANE_RECT = [0., 0., imageSize]*[0, 0, 2, 2]

15. Change the locations of the channels:
oG eenChannel -> SetProperty, $

LOCATI ON = [i mageSi ze[0]/ 2, inmageSi ze[1]/ 2]
oBl ueChannel -> SetProperty, $
LOCATI ON = [i mageSi ze[0], i nmageSize[1]]

16. Display the updated view within the new window:
oW ndow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-5: Diagonal Display of RGB Channels in Object Graphics

Object Programming Positioning Image Objects in a View

106 Chapter 4: Working with Image Objects

17. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTRQY on the view object.

OBJ_DESTROY, oView

Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 107

Panning in Object Graphics

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. The entire image is still contained within the image object, but the view is
changed to pan over specific areas of the image object.

The following example imports a grayscale image from the nyny. dat binary file.
Thisgrayscale imageis an aeria view of New York City. The image contains byte
datavaluesand is 768 pixels by 512 pixels. The VIEWPLANE_RECT keyword to
the view object is updated to zoom in on the lower left corner of the image. Then the
VIEWPLANE RECT keyword is used to pan over the bottom edge of the image.
Complete the following steps for a detailed description of the process.

Example Code
Seepanni ng_obj ect. pro intheexanpl es/ doc/ obj ect s subdirectory of the
IDL installation directory for code that duplicates this example.

1. Determinethe path to the nyny. dat file:

file = FILEPATH(' nyny.dat', $
SUBDI RECTORY = [' exanples', 'data'])

2. Initidize theimage size parameter:

i mageSi ze = [768, 512]
3. Import the image from the file:

i mge = READ _BI NARY(file, DATA DI M5 = inageSi ze)
4. Resizethislargeimageto entirely display it on the screen:

i mageSi ze = [256, 256]
i mage = CONGRI D(i nmage, imageSize[0], inmageSize[1l])

5. [Initialize the display objects:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, $
TITLE = ' A Grayscal e | mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inageSize])

oMbdel = OBJ_NEW' | DLgr Model ')

6. Initiaize theimage object:
ol mage = OBJ_NEW' | DLgr I nage', inmage, / GREYSCALE)

Object Programming Panning in Object Graphics

RSI_PROCODE/examples/doc/objects/panning_object.pro

108 Chapter 4: Working with Image Objects

7. Addtheimage object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 4-6: A Grayscale Image Of New York in Object Graphics

8. Initialize another window:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' Panni ng Enl arged | nage')

9. Change the view to zoom into the lower left quarter of the image:

viewplane = [0., 0., inmgeSize/?2]
oView -> SetProperty, $
VI EWPLANE_RECT = [0., 0., imageSize/?2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

10. Display the updated view in the new window:

oW ndow -> Draw, oView

Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 109

The following figure shows the resulting enlarged image area.

Figure 4-7: Enlarged Image Area of New York in Object Graphics

11. Pan the view from the left side of the image to the right side of the image:
FORi =0, ((imageSize[0]/2) - 1) DOBEGN & $
vi ewpl ane = viewplane + [1., 0., 0., 0.] &%
oView -> SetProperty, VIEWLANE RECT = viewplane & $

oW ndow -> Draw, oView & $
ENDFOR

Note
The & after BEGIN and the $ alow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in Panni ng_Qbj ect . pro in
the exanpl es/ doc/ obj ect s subdirectory of the IDL installation directory.

Object Programming Panning in Object Graphics

110 Chapter 4: Working with Image Objects

The following figure shows the resulting enlarged image area panned to the
right side.

Figure 4-8: Enlarged New York Image Area Panned to the Right in Object
Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTRQY on the view object.

OBJ_DESTROY, oView

Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 111

Defining Transparency in Image Objects

In Object Graphics, atransparent image can be created by adding an alpha channel to
theimage array or by setting the ALPHA_CHANNEL property. The alpha channel is
used to define the level of transparency in an image object. If you have an image
containing both alpha channel data and a value for the ALPHA_CHANNEL
property, the alpha values are combined by multiplying each image pixel alphavalue
by the ALPHA_CHANNEL property value.

If your image data includes an alpha channel, or if you set the ALPHA_CHANNEL
property, use the BLEND _FUNCTION property of the image object to control how
the alpha channel values will be interpreted. (See BLEND_FUNCTION property of
IDLgrlmage for details on how the blending is calculated.) This is known as alpha
blending. For example, setting BLEND_FUNCTION = [3, 4] creates an imagein
which you can see through the foreground image to the background to the extent
defined by the alpha channel values of the foreground image.

Transparency and Image Warping

Creating atransparent image is useful in the warping process when you want to
overlay atransparency of the warped image onto the reference image (theimagein
which Xo, Yo control points were selected). See “Warping Image Objects’ on

page 117 for an example that uses transparent image objects.

For background information on warping images and selecting control points, see
“Overview of Warping Images’ in Chapter 5 of the Image Processing in IDL manual.

Image Transparency Examples

See the following topics for examples of creating transparent image objects:

« “Example: Applying a Transparent Image Overlay” on page 112 — layerstwo
medical scan images of the brain. The opacity of the top imageis controlled
using the IDLgrimage ALPHA_CHANNEL property.

e “Example: Cumulative AlphaBlending” on page 114 — adds an a phachannel
to an RGB image, masks out values, and then uses the ALPHA_CHANNEL
property to control the image transparency.

Object Programming Defining Transparency in Image Objects

112 Chapter 4: Working with Image Objects

Example: Applying a Transparent Image Overlay

The following example readsin two medical images, a computed tomography (CT)
file that contains structural information, and a PET (positron emission tomography)
file that contains metabolic data. A color table is applied to the PET file, and the
transparency is set using the ALPHA_CHANNEL property. The PET image object is
then overlaid on top of the base CT image. Thisis done by adding the transparent
PET imageto the model after (and therefore displayed in front of) the base CT image.

Example Code
Seeal phai mage_obj _doc. pro intheexanpl es/ doc/ obj ect s subdirectory
of the IDL installation directory for code that duplicates this example.

To replicate this example, create anew . pr o file and complete the following steps:
1. Load CT and PET images and get the image dimensions.

file_pt = FILEPATH(' head_pt.dcm, $
SUBDI RECTORY=[' exanpl es', 'data'])

file_ct = FILEPATH(' head_ct.dcm, $
SUBDI RECTORY=[' exanpl es', 'data'])

i m_pt = READ DI COMfile_pt)
i mg_ct = READ DI COMfile_ct)
dinms_ct = Sl ZE(ing_ct, /Dl MENSI ONS)
dims_pt = Sl ZE(i ng_pt, /Dl MENSI ONS)

2. Check for dimension equality and resize if different.

IF dims_pt[0] NE dims_ct[0] THEN BEG N
x = dims_ct[0]/dinms_pt[O]
img_pt = REBIN(inmg_pt, dins_pt[0]*x, dins_pt[1]*x)
di ms_pt = x*di nms_pt
If dims_pt[0] NE dims_ct[0] THEN BEG N
status = DI ALOG_MESSAGE ('Inconpatible images', /ERROR
ENDI F
ENDI F

3. Changethe datato byte type before creating the base CT image.

img_ct = BYTSCL(ing_ct)
ol mageCT = OBJ_NEW ' I DLgrl mage', ing_ct)

4. Create display objects and display the CT image.

oW ndow = OBJ_NEW' I DLgr Wndow , RETAIN=2, $
DI MENSI ONS=[dins_ct[0], dins_ct[1]], TITLE='CT | nage')
oView = OBJ_NEW'IDLgrView , VIEWLANE RECT=[0., 0., $
dims_ct[0], dims_ct[1]])
oMbdel = OBJ_NEW'' | DLgr Model ')

Defining Transparency in Image Objects Object Programming

RSI_PROCODE/examples/doc/objects/alphaimage_obj_doc.pro

Chapter 4: Working with Image Objects 113

oMbdel - >Add, ol mageCT
oVi ew >Add, oMbdel
oW ndow >Dr aw, oVi ew

5. Create a palette object and load the red-temperature table.

oPal ette = CBJ_NEW' I DLgrPal ette')
oPal ette->Loadct, 3

6. Change the datatype to byte and create the PET image object. Set the
BLEND_FUNCTION and ALPHA_CHANNEL properties to support image
transparency.

i mg_pt = BYTSCL(ing_pt)

ol magePT = OBJ_NEW' I DLgrlmage', ing_pt, $
PALETTE=oPal ette, BLEND FUNCTI ON=[3, 4], $
ALPHA_CHANNEL=0. 50)

7. Create a second window, add the semi-transparent image to the model
containing the original image and display the overlay.

oW ndow2 = OBJ_NEW' | DLgr Wndow , RETAIN=2, $

DI MENSI ONS=[di ns_pt[0], dims_pt[1]], $

LOCATI ON=[di ms_ct [0] +10, O], TITLE=" CT/ PET Transparency')
oMbdel -> Add, ol magePT
oW ndow2 -> Draw, oView

8. Clean-up object references.
OBJ_DESTROY, [oView, ol mgeCT, ol magePT]
The results of this example are shown in the following figure.

Figure 4-9: CT Image (Left) and CT with Semi-transparent PET Overlay (Right)

Object Programming Defining Transparency in Image Objects

114 Chapter 4: Working with Image Objects

Example: Cumulative Alpha Blending

The following example shows the additive effects of displaying an image object with
apha channel data and an image with an ALPHA_CHANNEL property setting. In
this example, the alpha channel is used to mask out values, and the
ALPHA_CHANNEL property is used to control the object transparency. However, it
is easy to modify the code and investigate the relationship between setting image
transparency using the alpha channel dataand ALPHA_CHANNEL property. For
example, defining 50% transparency for each results in 25% opacity overall.

The two initial images are displayed in the following figure. The black portion of the
land classification image (left) will be removed and this image will then be overlaid
on top of the map image.

Figure 4-10: Original Land and Map Images

Example Code
Seeal phaconposi te_i nage_doc. pro intheexanpl es/ doc/ obj ect s
subdirectory of the IDL installation directory for code that duplicates this example.

To replicate this example, create anew . pr o file complete the following steps:
1. Open the political map, the base image.

mapFil e = FILEPATH(' afrpolitsmpng' , $
SUBDI RECTORY = [' exanples', 'data'])
mapl g = READ _PNGE nmapFil e, mapR, nmapG mapB)

2. Assign the color table of the map image to a pal ette object.
mapPal ette = OBJ_NEW' I DLgrPal ette', mapR nmapG mapB)

Defining Transparency in Image Objects Object Programming

RSI_PROCODE/examples/doc/objects/alphacomposite_image_doc.pro

Chapter 4: Working with Image Objects 115

3. Create an image object containing the map data.

oMapl mg = OBJ_NEW' I DLgr I mage', maplng, $
DI MENSI ONS=[600, 600], PALETTE=mapPal ette)

4. Open the land cover characteristics image.

| andFi |l e = FI LEPATH(' africavlc.png', $

SUBDI RECTORY = ['exanples', 'data'])
I andl ng = READ_PNE | andFi | e, | andR, | andG, | andB)
I andl ngDi rs = Sl ZE(| andl ng, / DI MENSI ONS)

5. To mask out the black values of the land classification image, create a4
channel array for the red, green, blue, and apha data.

al phaLand = BYTARR(4, |andlngDi ns[0], |andlngbi ns[1])

6. Get thered, green and blue values used by the image and assign them to the
first three channels of the alphaimage array.

al phaLand[0, *, *] = Il andR[| andl ng]
al phaLand[1, *, *] = | and{d | andl ng]
al phaLand[2, *, *] = Il andB[I| andl ng]

7. Mask out the black pixels with avalue of 0. Multiply the mask value by 255
for complete opacity. You could set thisto a value between O (completely
transparent) and 255 (opaque) to control the transparency. Any value set here
will be combined with any value set for the ALPHA_CHANNEL property on
the image object.

mask = (landlnmg GT 0)
al phaLand [3, *, *] = mask*255B
8. Create the semi-transparent image object. ALPHA CHANNEL values can

range from 0.0 (transparent) to 1.0 (opague). The image will appear semi-
transparent when the BLEND_FUNCTION property is set to [3,4].

0Al phaLand = OBJ_NEW' | DLgr | mage', al phaLand, $
DI MENSI ONS=[600, 600], BLEND FUNCTION=[3,4], $
ALPHA_CHANNEL=0. 35)

9. Createthe display objects.

oW ndow = OBJ_NEW' | DLgrWndow , $

DI MENSI ONS=[600, 600], RETAIN=2, $

TI TLE=' Overlay of Land Cover Transparency')
viewRect = [0, 0, 600, 600]
oView = OBJ_NEW' I DLgrView , VI EWLANE _RECT=vi ewRect)
oMbdel = OBJ_NEW' | DLgr Model ")

Object Programming Defining Transparency in Image Objects

116 Chapter 4: Working with Image Objects

10. Add the semi-transparent image to the model after the base image.

oMbdel - >Add, oMapl ng
oMbdel - >Add, oAl phalLand
oVi ew >Add, oMbdel

oW ndow >Dr aw, oVi ew

11. Clean up objects.
OBJ_DESTROY, [oView, oMplng,
The results appear in the following figure.

oAl phaLand, mapPal ette]

g &

pabouti
DI

JTapaya

u 3 c Saun S g
o DIVCIRE, 3 g
Sanperla 5. r CENTRAL APRICAN
H A o AR HEFUBLIC
= el o i Hangul

T coNso oy oL
ety JHEE O singin /A
wﬂ sasin

DEM. RER. {98 £ 41
weiavilie g/ OINBQON%W‘

e N oo
h TANZANIA ar es
‘*uunda 5 § alaam
X O\ by
I IMMMIW. h iy
1 ANGOLA - L s Likongiwell | ciage |
| glsbango b, deNacalh
ik j e . Jptienyre 7
7 ;

MOZATBIQUE

Figure 4-11: Land Image (35% Opaque) Overlaid the Map Image

Note

You can use control points to warp the images and properly align the transparent
image over the map image. See “Warping Image Objects’ on page 117 for details.

Defining Transparency in Image Objects Object Programming

Chapter 4: Working with Image Objects 117
Warping Image Objects

Object Graphics allows precise control over the color palettes used to display image
objects. By initializing a palette object, both the reference image object and the
transparent, warped image object can be displayed using individual color palettes.

The following example warps an African land-cover characteristicsimageto a
political map of the continent. After displaying the images and selecting control
points in each image using the XROI utility, the resulting warped image is altered to
include an alpha channel, enabling transparency. |mage objects are then created and
displayed in an IDL Object Graphics display. Complete the following steps for a
detailed description of the process.

Example Code
Seetranspar ent war pi ng_obj ect. pro intheexanpl es/ doc/ obj ect s
subdirectory of the IDL installation directory for code that duplicates this example.

Note
For background information on warping images and selecting control points, see
“Overview of Warping Images’ in Chapter 5 of the Image Processing in IDL
manual.

1. Select the political map image. Thisisthe reference image to which the land
cover image will be warped:

mapFi | e= FI LEPATH(' afrpolitsmpng', $
Subdirectory = ['exanples', 'data'])

2. Use READ_PNG routineto read in the file. Specify mapR, mapG, mapB to
read in the image's associated color table:

mapl ng = READ PNG napFil e, mapR, napG mapB)

3. Using IDLgrPalette::Init, assign the image’s color table to a pal ette object,
which will be applied to an image object in alater step:

mapPal ette = OBJ_NEW' I DLgrPal ette', mapR nmapG mapB)
4. Select and open the land cover input image, which will be warped to the map:

| andFile = FILEPATH(' africavlc.png', $
Subdirectory = ['exanples', 'data'])
| andl ng = READ PNG (Il andFile, |andR, |andG | andB)

Object Programming Warping Image Objects

RSI_PROCODE/examples/doc/objects/transparentwarping_object.pro

118 Chapter 4: Working with Image Objects

Selecting Control Points for Image Object Warping

This section describes using the XROI utility to select corresponding control points
in the two images. The arrays of control pointsin the input image, (Xi,), will be
mapped to the array of points selected in the reference image, (Xo, Yo).

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control points in the reference image as
you select in the input image. The control points must also be selected in the same
order since the point Xil, Yil will be warped to Xol, Yol.

The following figure shows the points to be selected in the input image.

CP7 CP8 CP9 CP10
(xi7, yi7) (xi8, yi8) (%9, yi9) (xi10, yi10)

/Cpﬂ_
(xi11,yi11)

ki

CP 6 ,
CENT e o CP12
T - /{x|12,y|12)
CP5 cRis
{xi5, yi5) (xi13, yi13)
CP 4.
(xid, yid)
ens, cP14
{xi3, yi3) (xi14,yi14)
CP2 i
(xi2. yiz) \
CP1 “~.CP186 P15
(xi1, yi1) (xi16, yi16) &I15,y|15]

Figure 4-12: Selecting Control Points in the Input Image

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 119

Reasonably precise warping of the land classification image to the political map
requires sel ecting numerous control points because of the irregularity of the
continent’s border. Select the control pointsin the land classification image as
described in the following steps.

1. Load theimage and its associated color table into the XROI utility, specifying
the REGIONS_OUT keyword to save the region defined by the control points
in the landROI out object:

XRA, landlng, |landR, |andG |andB, $
REG ONS_QUT = | andRO out, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar shown in the
following figure. Position the crosshairs symbol over CP1, shown in the
previous figure, and click the left mouse button. Repeat this action for each
successive control point. After selecting the sixteenth control point, position
the crosshairs over the first point selected and click the right mouse button to
close the region. Your display should appear similar to the following figure.

Object Programming Warping Image Objects

120 Chapter 4: Working with Image Objects

Draw Polygon

ilRoI =]
File Edit

ETRERENME

w 479 w 406 z 0 [Dutside]

Figure 4-13: Selecting Control Points Using XROI

Note
It is of no concern that portions of the continent lie outside the polygonal

boundary. The EXTRAPOLATE keyword to WARP_TRI enables warping of
the image areas lying outside of the boundary of control points. However,
images requiring more aggressive warp models may not have good results
outside of the extent of the control points when WARP_TRI is used with the
/IEXTRAPOLATE keyword.

2. Closethe XROI window and assign the landROIl out object datato the Xi and i
control point vectors:

| andRO out -> Get Property, DATA = | andRO data
Xi = landRO dat a[0, *]
Yi = landRO data[1, *]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 121

The following figure displays the corresponding control pointsto be selected
in the reference image of the political map. These control points will make up
the Xo and Yo arrays required by the IDL warping routines.

CP 7 cPg CPO CP 10
(xo7, yoT7) {xo8B, yo8) {x09, yo9) {x010, yo10)

._*_‘.,qiri‘-x;)l'! CP 11
Je (xo11, yoii)
T . ALGERIA
CP 6 d .
{)(QG yC}G] 'M:.;:;ﬁ'.\nu CP 12
= (xo12, yoi12)
o ;
CP5. % x
xob, yob) " CP13
{x05, yob)
(x013, yo13)
CP 4
(xo4, yod)
CP 3
(xo3, yo3)

P 2 (xo14, yo14)
(xo2, yo2)

CP 15
(xol1, yo1) {(x018, yo186) {xo15, yo15)

Figure 4-14: Control Points to be Selected in the Reference Image

3. Load theimage of the political map and its associated color table into the
XROI utility, specifying the REGIONS_OUT keyword to save the selected
region in the mapROI out object:

XRO, maplny, mapR, nmapG napB, $
REG ONS_OUT=nmepRO out, / BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol over CP1, shown in the previous figure, and click the left

Object Programming Warping Image Objects

122 Chapter 4: Working with Image Objects

mouse button. Repeat this action for each successive control point. After
selecting the sixteenth control point, position the crosshairs over thefirst point
selected and click the right mouse button to close the region. Your display
should appear similar to the following figure.

Algjers

ggggggggg

ALGERIA

.....

Figure 4-15: Selecting Control Points Using XROI

4. Close the XROI window and assign the mapROIl out object data to the Xo and
Yo control point vectors:

mapRO out -> CetProperty, DATA=mapRO dat a
Xo = mapRO dat a[0, *]
Yo = mapRO dat a[1, *]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 123

Warping and Displaying a Transparent Image Object

The following section describes warping the land cover image to the political map
and creating image objects. The resulting warped image will then be made into a
transparency by creating an alpha channel for the image. Finally, the transparent
object will be displayed as an overlay to the original political map.

1. Warp theinput image, landimg, onto the reference image using WARP_TRI.
Thisfunction usestheirregular grid of the reference image, defined by Xo, Yo,
asabasisfor triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image
[, OQUTPUT_SI ZE=vector][, /QU NTIC] [, /EXTRAPOLATE])

set the OUTPUT _SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of selected control points:

warplmg = WARP_TRI (Xo, Yo, Xi, Yi, landling, $
QUTPUT_SI ZE=[600, 600], /EXTRAPOLATE)

2. Whilenot required, you can quickly check the precision of the warp in aDirect
Graphics display before proceeding with creating a transparency by entering
the following lines:

DEVI CE, DECOWPCSED = 0

TVLCT, |andR |andG | andB

W NDOW 3, XSIZE = 600, YSIZE = 600, $
TITLE = "I mage Warped with WARP_TRI'

TV, warpl ng

Precise control point selection resultsin accurate warping. If thereislittle
distortion, asin the following figure, control points were successfully selected
in nearly corresponding positions in both images.

Object Programming Warping Image Objects

124 Chapter 4: Working with Image Objects

Figure 4-16: Resulting Warped Image

3. A transparent image object must be a grayscale or an RGB (24-bit) image
containing an alpha channel. The apha channel controls the transparency of
the pixels. See IDLgrImage::Init for more information.

The following lines convert the warped image and its associated color table
into a RGB image containing four channels (red, green, blue, and alpha). First,
get the dimensions of the warped image and then use BY TARR to create
alphawarp, a 4-channel by xdim by ydim array, where (xdim, ydim) are the
dimensions of the warped image:

war pl ngDi ms = SI ZE(war pl ng, / Di nensi ons)

al phavarp = BYTARR(4, warpl ngDi ns[0], warplngbi ns[1])

4. Loadthered, green and blue channels of the warped land characteristicsimage

into the first three channels of the alphaWarp array:

al phavarp[0, *, *] = | andR war pl ng]
al phavarp[1, *, *] = | andd war pl ng]
al phavarp[2, *, *] = | andB[war pl ng]

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 125

5. Definethe transparency of the alpha channel. First, create an array, masking
out the black background of the warped image (where pixel values equal 0) by
retaining only pixels with values greater than O:

mask = (warplnmg GI 0)

Apply the resulting mask to the alpha channel, the fourth channel of the array.
This channel creates a 50% transparency of the pixels of the first three
channels (red, green, blue) of the alphaWarp by multiplying the mask by 128B
(byte). Alpha channel values range from O (completely transparent) to 255
(completely opaque):

al phavarp [3, *, *] = mask*128B

Note
You can set the transparency of an entire image. To set the transparency of
all pixels at 50% in this example, your could replace the two previous steps
with the following two lines:

mask = BYTARR(s[O], s[1]) + 128
al phavarp [3, *, *] = nmask

6. Initialize the transparent image object using IDLgrimage::Init. Specify the
BLEND_FUNCTION property of the image object to control how the alpha
channel isinterpreted. Setting the BLEND_FUNCTION to [3, 4] allowsyou to
see through the foreground image to the background. The foreground opacity
is defined by the alpha channel value, specified in the previous step:

0Al phaVarp = OBJ_NEW' I DLgr | nage', al phaVarp, $
DI MENSI ONS = [600, 600], BLEND_FUNCTION = [3, 4])

7. Initialize the reference image object, applying the pa ette created earlier:

oMapl ng = OBJ_NEW' | DLgr | mage', maplng, $
DI MENSI ONS = [600, 600], PALETTE = nmpPal ette)

8. Using IDLgrWindow::Init, initialize a window object in which to display the
images:

oW ndow = OBJ_NEW' | DLgr W ndow , DI MENSI ONS = [600, 600], $
RETAIN = 2, TITLE = 'Overlay of Land Cover Transparency')

Object Programming Warping Image Objects

126

0.

10.

11.

Chapter 4: Working with Image Objects

Create aview object using IDLgrView::Init. The VIEWPLANE_RECT
keyword controls the image display in the Object Graphics window. First
create an array, viewRect, which specifies the x-placement, y-placement, width,
and height of the view surface. The values0, 0 place the (0, O) coordinate of
viewing surface in the lower-left corner of the Object Graphics window:
viewRect = [0, 0, 600, 600]
oView = OBJ_NEW' I DLgrView , VIEWLANE_RECT = vi ewRect)
Using IDLgrModel::Init, initialize a model object to which the images will be
applied. Add the base image and the transparent a phaimage to the model:
oMbdel = OBJ_NEW' | DLgr Model ')

oMbdel -> Add, oMaplng
oMbdel -> Add, oAl phaVarp

Note
Image objects appear in the Object Graphics window in the order in which

they are added to the model. If atransparent object is added to the model
before an opague object, it will not be visible.

Add the model, containing the images, to the view and draw the view in the
window:

oView -> Add, oMbdel
oW ndow -> Draw, oView

The following figure shows the warped image transparency overlaid onto the
origina reference image, the political map.

Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 127

Figure 4-17: Object Graphics Display of the Political Map with a Transparent
Land Cover Overlay

12. Use OBJ DESTROQY to clean up unneeded object references including the
region objects:

OBJ_DESTROY, [oView, oMaplnmg, oAl phaWarp, $
mapPal ette, | andRA out, nmapRA out]

Object Programming Warping Image Objects

128 Chapter 4: Working with Image Objects

Mapping an Image Object onto a Sphere

This example maps an image containing world el evation data onto the surface of a
sphere and displaysthe result using the XOBJVIEW utility. Thisutility automatically
creates the window object and the view object. Therefore, this example creates an
object based on IDLgrModel that contains the sphere, the image and the image
palette, as shown in the conceptual representation in the following figure.

4«— oM odel - an IDLgrModel object
containing the sphere, image, and
palette

oPolygon - an object defining the sphere,
containing the image and palette

4_

ol mage - an object containing the image
oPalette - an object defining the color table

Figure 4-18: Conceptualization of XOBJVIEW Object Graphics Example

Note

For an example that maps a satellite image onto Digital Elevation Model data, see

“Mapping an Image onto Elevation Data” in Chapter 3 of the Image Processing in
IDL manual.

Complete the following steps for a detailed description of the process.

Example Code

Seemaponspher e_obj ect. pro intheexanpl es/ doc/ obj ect s subdirectory
of the IDL installation directory for code that duplicates this example.

1. Select the world elevation image. Define the array, read in the data and close
thefile.

file = FI LEPATH(' worl delv.dat', $
SUBDI RECTORY = ['exanples', 'data'])
i mage = READ _BI NARY(file, DATA DI Ms = [360, 360])

Mapping an Image Object onto a Sphere Object Programming

RSI_PROCODE/examples/doc/objects/maponsphere_object.pro

Chapter 4: Working with Image Objects 129

2. Usethe MESH_OBJprocedure to create a sphere onto which the image will be
mapped. The following invocation of MESH_OBJ uses avalue of 4, which
represents a spherical mesh:

MESH OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)

When the MESH__OBJ procedure compl etes, the vertices and polygons
variables contain the mesh vertices and polygonal mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining all the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh verticeswill increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of vertices that are located in a sphere shape with aradius of 0.25.

3. Initidize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObj ect = OBJ_NEW ' O ass_Nane'), create the model,
palette and image objects:

oMbdel = OBJ_NEW' | DLgr Model ')
oPalette = CBJ_NEW' I DLgrPal ette')
oPal ette -> LOADCT, 33

oPal ette -> Set RGB, 255, 255, 255, 255
ol mage = OBJ_NEW' | DLgr | nage', inage, PALETTE = oPal ette)

The previous lines initialize the oPalette object with the color table and then
set the final index value of thered, green and blue bandsto 255 (white) in order
to use white (instead of black) to designate the highest areas of elevation. The
palette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModel::Init, IDLgrPalette::Init and IDLgrlmage::Init.

4. Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at a vertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across a texture, so atexture coordinate of [0.5, 0.5] at a vertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex.

Object Programming Mapping an Image Object onto a Sphere

130 Chapter 4: Working with Image Objects

In this example, we want to do a simple linear mapping of the texture around
the sphere, so we create a convenience vector that describes the mapping in
each of the texture’s x- and y-directions, and then create these texture
coordinates:

vector = FI NDGEN(101)/100.

texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] vector # REPLI CATE(1l., 101)
texure_coordinates[1, *, *] REPLI CATE(1., 101) # vector

The code above copies the convenience vector through the array in each
direction.

5. Enter the following line to initialize a polygon object with the image and
geometry data using the IDLgrPolygon::Init function. Set SHADI NG = 1 for
gouraud (smoother) shading. Set the DATA keyword equal to the sphere defined
with the MESH_OBJfunction. Set COLOR to draw a white sphere onto which
the image will be mapped. Set TEXTURE_COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MAP keyword and force bilinear
interpolation:

oPol ygons = OBJ_NEW' I DLgr Pol ygon', SHADING = 1, $
DATA = vertices, POLYGONS = pol ygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordi nates, $
TEXTURE_MAP = ol mage, / TEXTURE_| NTERP)

Note
When mapping an image onto an IDLgrPolygon object, you must specify
both TEXTURE_MAP and TEXTURE_COORD keywords.

6. Add the polygon containing the image and the palette to the model object:
oMbdel -> ADD, oPol ygons
7. Rotate the model -90° along the x-axis and y-axis:

oMbdel -> ROTATE, [1, 0, 0], -90
oMbdel -> ROTATE, [0, 1, 0], -90

8. Display the results using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVI EW oMdel , /BLOCK

Mapping an Image Object onto a Sphere Object Programming

Chapter 4: Working with Image Objects 131

&l Xobjview M= E3
File Edit “iew

(] o] [#[A]

Figure 4-19: Magnified View of World Elevation Object

After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near the
middle of the sphere. Drag your mouse away from the center of the display to
magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display. The
previous figure shows a rotated and magnified view of the world elevation
object.

9. After closing the XOBJVIEW display, remove unneeded object references:
OBJ_DESTROY, [oModel, ol nage, oPalette]

Object Programming Mapping an Image Object onto a Sphere

132

Chapter 4: Working with Image Objects

Image Tiling

Image Tiling

The IDLgrImage object supports tiling, which lets you display images that are too
large to be read entirely into memory. For example, some satellite images can be over
agigabytein size, which isimpossible to fit into memory and display as asingle unit
on atypical computer. However, it can be displayed by segmenting it into smaller,
more manageable image tiles.

When tiling is enabled for an IDLgrlmage object, theimageisinitially created
without any data. The image pixels are only loaded when a tile section comesinto
view through panning. Also, you can create an image pyramid to support level-of -
detail (LOD) rendering for large images. This changes the resolution of an image
when you zoom in or out within an image display. As you zoom out, successively
smaller, less detailed images can be displayed. This quickly provides afull view of
the larger image, lets you choose an area of interest, and zoom in on that area. Asyou
zoom in, progressively detailed image layers can be loaded. The IDLgrlmage object
isaware of the LOD required and will communicate that to the application when the
application requests the tile visibility information. See the following sections for
more tiling information:

* “Image Pyramids’ on page 133 and “Image Tiles” on page 135
* “Adding Tiling to Your Application” on page 136
e “Example: JPEG2000 Filesfor Tiling” on page 146

Object Programming

Chapter 4: Working with Image Objects 133

Image Pyramids

The use of image tiling and image pyramids supports the display of high-resolution
images with ahigh level of performance. An image pyramid consists of a base image
and a series of successively smaller sub-images, each at half the resolution of the
previous image. The following figure shows the base image and successively smaller
sub-images. The sub-images corresponds to lower resolution levels.

Figure 4-20: Image Pyramid

Creating Image Pyramids

You have two optionsif your image file does not already contain an image pyramid:

e Create an IDLffJPEG2000 object from your image data. You can define the
number of levels, the size of the tiles and other properties when you create the
image. Thetiles and image levels are then automatically created for you.

e Create the image pyramid manually by creating a series of images, each with
half the resolution of the previousimage. You can use Gaussian or Laplacian
filtering in combination with the subsampling if desired.

Object Programming Image Tiling

134 Chapter 4: Working with Image Objects

For example, taking a 4096 by 4096 base image (level 0), you could create the
pyramid as follows:

Level Resolution
0 4096 by 4096 pixels
1 2048 by 2048 pixels
2 1024 by 1024 pixels

Table 4-1: Sample Resolutions of Image Pyramid Levels

The resolution of level n+1 should be half that of level n. If level nisnot
wholly divisible by two, then level n+1 should be rounded down as shown in
the following table.

Level and Resolution Comment
Level 0: 20105 by 20005 Baseimage. Divide by 2.
Level 1: 10052 by 10002 Rounded down 20005/2 to 10002
Level 2: 5026 by 5001 Divided Level 1 by 2.
Level 3: 2513 by 2500 Rounded down 5001/2 to 2500

Table 4-2: Rounding Down Resolutions of Image Pyramid Levels

Note
See “Zooming Tiled Images’ on page 139 for information on which IDLgrImage
properties are typically set to take full advantage of an image pyramid, and for
information on how to calculate exactly how many image levels you need based on
the image and tile size.

Image Tiling Object Programming

Chapter 4: Working with Image Objects 135

Image Tiles

Tiling an image segmentsit into a number of smaller rectangular areas called tiles. If
you are using a JPEG2000 image, thetile size is defined in theimage, and you should
use this value when creating the IDLgrlmage object. If you are creating your own

image pyramid, which does not have an inherent tile size defined, it is recommended
that you accept the default tile size of the IDLgrImage object (1024 by 1024 pixels).

The size of the drawing area, thetile size, and the image level al play apart in the
display of atiled image. With alarge, full-resolution image, only a portion of it
appearsin the view, so only a subset of theimagetiles are displayed. In the following
figure, the full-resolution, level 0 image is shown on theleft. Only two of the 1024 by
1024 tiles are loaded to support what is shown in the 800 by 800 pixel drawing area,

indicated by the dotted box.
3500
-4 >
1024 1024 1024 428
1750
1024 726
875
b B b I b I
	! I	
	! I	
	: I	
L_____Jl L_____JI I._____JI
Level 0 Levell Level 2

Figure 4-21: Dotted Box Showing Size of Drawing Area and Visible Tiles

If you zoom out to azoom level of 50% or less, IDL can show the level 1 image
(which is half the resolution of the level 0 image). Only asingletileisrequired to fill
the drawing area. If you reduce the zoom level by another 50%, the level 2 image can
be displayed, and the entire image is visible in the drawing area.

Object Programming Image Tiling

136 Chapter 4: Working with Image Objects

Adding Tiling to Your Application

Large image tiling results from the interaction between an IDLgrlmage object, an
IDLgrView object, and a destination object (IDLgrWindow, IDLgrClipboard,
IDLgrBuffer, or IDLgrPrinter). The destination and view objects are key in
determining what data the image object should contain. Each destination object has a
QueryRequiredTiles method that determines the visible data based on the view and
zoom level, and returns information about the visible image tiles. Thisinformation
and image data are then passed to the image object SetTileData method. Initially,
however, an image that supports tiling does not contain data.

To create an image that supports tiling, you must minimally set two IDLgrImage
object properties:

e TILING =1 enablestiling

e TILED_IMAGE_DIMENSIONS = [width, height] in pixelsisthe size of the
image
You can aso define how tiles from image levels in an image pyramid are accessed
usingthe TILE_LEVEL_MODE mode property. Set it to 1 (automatic mode) to have
IDL automatically request the proper tilelevel based on the zoom level. Thisisuseful
when you have an image pyramid and want to use lower resolution images when
zooming out.

Note
You should not set TILE LEVEL_MODE to automatic unless you have an image
pyramid. Otherwise IDL will request non-existent |ower-resolution data.

Thedefault TILE_ LEVEL MODE vaueis zero (manua mode), meaning your
application must specify which level should be used (where

TILE CURRENT_LEVEL definesthat tile level). QueryRequiredTiles will always
request tiles at thislevel and the image will aways render using thislevel. Thisis
useful if you will be panning the image without zooming. If your application does
alow zooming, it is best to create an image pyramid so that you can take advantage
of the memory savings afforded by displaying lower resolution images when the
view is zoomed out.

Even after you have set the necessary image properties that enable tiling, the image
still does not contain data. If you attempt to draw the image at this point, it will be the
color of the TILE_COLOR property. You must call the QueryRequiredTiles method
on the destination object (awindow, printer, buffer, or clipboard object) to determine
what portion of the image needs to be drawn.

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 137

Note
The following sections provide general information and code examples using tiling
elementsin IDL. For acomplete, working example, see Example: JPEG2000 Files
for Tiling” on page 146.

Querying Required Tiles

The QueryRequiredTiles method requires references to a view object and an image
object. It returns an array of structures (one for each required tile) that contains
information about the tile data needed to fill the view. Once this information has been
passed to the IDLgrlmage object SetTileData method, call the destination object’s
Draw method to display the tiled image data.

For example, suppose your application displays aregion of alarge image (20,000 by
20,000 pixels at full resolution, where one image pixel mapsto one screen pixel).
Your application window is 800 by 800 pixels, which means that only this much of
the image isvisible at any one time. To enable tiling in thisinstance, create the
IDLgrwindow object and then create the IDL grlmage object that supportstiling as
follows:
ol mage = OBJ_NEW' IDLgrimage', TILING1, $
TI LED_I MAGE_DI MENSI ONS=[20000, 20000], $
TI LE_LEVEL_MODE=0)

Setting TILING=1 denotes thisimage will contain tile data, and
TILED_IMAGE_DIMENSIONS defines the size of the full resolution image. The
TILE LEVEL _MODE=0 indicates manual level control (by default, the full

resolution, level 0 image is always displayed). Not setting the TILE_DIMENSIONS
accepts the default tile size, 1024 by 1024 pixels.

Initialize the IDLgrView object so the lower-left corner of the image is displayed.
Wherewi ndowDi s = [800, 800] , configure the viewplane rectangle as follows:

oView = OBJ_NEW' I DLgrView , VIEWLANE RECT=[O0,0, $
wi ndowDi ns[0] , wi ndowDi ns[1]])

CreatealDLgrModel object and add the image. After you add this model to the view,
you can call QueryRequiredTiles to determine which tiles are visible in the view and
need data as follows:

ReqTi | es = oW ndow >Quer yRequi redTi | es(oVi ew, ol nage, $
COUNT=NTi | es)

ReqTi | es isannTi | es element array of named structures describing the tiles
required. See “I1DLgrWindow::QueryRequiredTiles’ in the IDL Reference Guide
manual for information on the fields in this structure. The destination objects that

Object Programming Adding Tiling to Your Application

138 Chapter 4: Working with Image Objects

support tiling share this method and named structure. Your application will need to
iterate through this array, extracting the tile data from the image dataand passing it to
IDLgrImage::SetTileData.

For aTIFFimage (I ar gei mage. ti f), you can use the READ_TIFF routine's
SUB_RECT keyword to extract the tile data from the image as follows:

FORi =0, nTiles - 1 DO BEG N
SubRect = [ReqTiles[i].X, ReqTiles[i].Y, $
ReqTiles[i].Wdth, ReqTiles[i].Height]
TileData = READ TI FF(' 1 argei mage. tif', SUB_RECT=SubRect)
TileData = BYTSCL(Til eData, M N=0, MAX=1024)
ol mage->Set Ti | eData, ReqTiles[i], TileData
ENDFOR

For a JPEG2000 image (oJP2Fi | e) with the same SubRect variable as that defined
in the previous example, you can use the IDLffJPEG2000::GetData method's
REGION keyword to extract the data as follows:

Load the data.
Ti | eData = 0JP2Fi | e- >Get Dat a(REG ON=SubRect)
ol mage->Set Ti |l eData, ReqTiles[i], TileData

When the destination object’s Draw method is called, the display will contain the
correct portion of the image since the data associated with the visible tiles has been
loaded.

Note
You do not need to pass only asingletileto SetTileData. You can pass arow of
tiles or load tiles without a prior call to QueryRequiredTiles (tile caching). See
“Preloading Tiles’” on page 143 for details.

Panning Tiled Images

To pan an image, you can query and assign the tile data without regard for image
level as shown in the previous section, “ Querying Required Tiles’ on page 137.
Panning is accomplished by changing the x and y elements of the view object’s
VIEWPLANE_ RECT property, where [x, y, width, height] describe the visible view
area. After changing the VIEWPLANE_RECT, call the window object’s
QueryRequiredTiles method to determine if new datais required. If so, load the data
as before. The following code shows an example of modifying the viewplane for
panning:

oVi ew >Get Property, VI EWPLANE RECT=vp

Panning. This is done by changing the position of the

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 139

i VIEWPLANE_RECT (vp) which is described by [x,y,w dth, hei ght]

; Where x and y are the lower-left corner. How far to nove it

; is conputed fromthe distance of the nouse fromthe center of

; the window (xDelta,yDelta) and the 'zoomfactor',

; (vp[2] / windowbDins[0]), which is the viewplane

; width divided by the wi ndow x di mensi on. The farther

; the cursor is fromthe center of the window, the faster the
Vi ew pans

factor = (vp[2] / w ndowDi ns[0])

vp[0] += xDelta * factor

vp[1l] += yDelta * factor

(*pState).oVi ew >Set Property, VI EWPLANE_RECT=vp

See “Example: JPEG2000 Filesfor Tiling” on page 146 for information on where to
locate the full tiling example.

Zooming Tiled Images

As with panning, you can use the view object’'s VIEWPLANE_RECT to zoom (by
changing the width and height elements). However, care must be taken when
zooming out as many tiles of high-resolution data may need to be loaded, which
could exhaust the tile cache. It is best to enable zooming for very large images only
when you have an image pyramid of lower resolution images.

When you zoom out to view more of animage, multiple image pixels are mapped to a
single pixel on the screen. When dealing with large tiled images, you can take
advantage of this situation by displaying a series of lower resolution images (an
image pyramid), which uses memory more efficiently. Thereisno need to use thefull
resolution image. For example, say you have an image that is 20,000 by 20,000 pixels
and over 300 MB. Without an image pyramid, if you zoom out so that the entire
image isvisiblein an 800 by 800 pixel view, the entire image (381 MB) will be
loaded into memory. While this might be possible, it isn't efficient. With an image
pyramid, you could easily display alower resolution image that fit the window size.
Thisimage would likely be less than one MB in size, would easily fit into memory,
and would still be of a sufficient resolution for identifying general areas of interest.

Note
Unless theimage file format automatically includes an image pyramid (such as
JPEG2000 files), you will need to either create a JPEG2000 file that contains your
image data or create an image pyramid manually. See “Image Pyramids’ on
page 133 for details.

Object Programming Adding Tiling to Your Application

140 Chapter 4: Working with Image Objects

Thefollowing code shows how to modify the viewplane rectangle associated with the
view object to support zooming:

Zoomi ng. This is done by changing the position and di mensions
; of the VIEWPLANE_RECT (vp), is described by [x,y,w dth, hei ght]
; Where x and y are the lower-left corner. Wien zoonming in, a
smal l er portion of the total image is displayed in the viewpl ane
; rectangle, which is reflected in smaller vp width and hei ght
; values. The rectangle size is conputed from
factor - the vp width divided by the w ndow x di nensi on.
delta - yDelta (the absolute vertical change fromthe
; center of the image tinmes the factor. The
; further the nouse cursor is fromthe center,
; the faster the zoom

aspect - the window y dinension divided by the x di nension.
factor = (vp[2] / wi ndowDi ns[0])
delta = yDelta * factor
aspect = float(w ndowDi ns[1]) / w ndowDi ns[0]
vp[0] += deltal/2
vp[1l] += delta * aspect /2
vp[2] -= delta
vp[3] -= delta * aspect

oVi ew >Set Property, VIEWLANE RECT=vp
zoom = wi ndowDi ns[0] / vpl[2]

See “Example: JPEG2000 Filesfor Tiling” on page 146 for information on where to
locate the full tiling example. See “Using Image LEVEL When Zooming” on
page 141 for information on how to request tile data based on zoom level.

Calculating the Number of Image Pyramid Levels

When you have an image pyramid, you will want to set the IDLgrImage

TILE LEVEL_MODE property to 1 (automatic). Doing so causes

TILE NUM_LEVELSto automatically calculate the number of levels needed unless
you set a different value. IDL requestslevelsup to TILE NUM_LEVELS- 1. This
property is based on the original (level 0) image size and the tile size such that the
lowest resolution image isjust slightly smaller than thetile size. See
“TILE_NUM_LEVELS' inthe IDL Reference Guide manual for an example.

To figure out how many levels are needed, create an image object with dimensions
equal to the dimensions of your image, the tile mode to automatic, and tiling equal to
1. For example, for the 20,000 by 20,000 image, with the default tile size (1024 by
1024 pixels), create an image object as follows:
ol mage = OBJ_NEW'IDLgrlmage', $
TI LED_I MAGE_DI MENSI ONS=[20000, 20000], $
TILING=1, TILE_LEVEL_MODE=1)

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 141

Here TILE LEVEL MODE isset to 1 (automatic) so the level requested by the
destination object’s QueryRequiredTiles method is calculated automatically from the
view information. Return the number of levels that are needed in an image pyramid
asfollows:

ol mage- >CGet Property, TILE NUM LEVELS=nLevel s

ThenLevel s variable contains the number of levels IDL will request. You will need
nLevel s - 1 levelsinyour pyramid since level Oisthe full resolution image.

Using Image LEVEL When Zooming

In an application that has an image pyramid and supports zooming, you will use
information returned by QueryRequiredTiles to load different resolution image tiles.
Asin the basic query example (“ Querying Required Tiles’ on page 137), create and
initialize the view so the lower-left corner of the imageisinitially displayed:

oView = OBJ_NEW'IDLgrView , VIEWLANE RECT=[0, 0, 800, 800])

Again, create an IDLgrModel, and add the image. Once the model has been added to
the view (not shown), call QueryRequiredTiles to determine which tiles are visible
and need data.

ReqTi | es = oW ndow >Quer yRequi redTi | es(oVi ew, ol nage, $

COUNT=NTi | es)

Rather than reading from the original, full-resolution image, determine which image
to use based on the LEVEL field of the returned structure contained in ReqTi | es. If
you have created an image pyramid for TIFF images, consider using the following
naming scheme to return the correct resolution image based on the LEVEL field:

filenames = strarr(6)

filenames[0] = 'largeimage.tif' ; Full-resolution inage
filenames[1] = 'largeimagel.tif' ; Half-resolution imge
filenames[2] = 'largeimage2.tif' ; Quarter-resol ution inmge
filenames[3] = 'largeimage3.tif' ; Eighth-resolution imge
filenames[4] = 'largeimage4.tif' ; 1/16-resol ution inage
filenames[5] = 'largeimage5.tif' ; 1/32-resol ution i nage

You can then request the correct image level (1 evel) and set tile data as follows:

FORi =0, nTiles - 1 DO BEG N
SubRect = [ReqTiles[i].X, ReqTiles[i].Y, $
ReqTiles[i].Wdth, ReqTiles[i].Height]
level = ReqTiles[i].Leve
Til eData = READ_TI FF(fil enanes[Level], SUB_RECT=SubRect)
TileData = BYTSCL(Til eData, M N=0, MAX=1024)
ol mage->Set Ti |l eData, ReqTiles[i], TileData
ENDFOR

Object Programming Adding Tiling to Your Application

142 Chapter 4: Working with Image Objects

For a JPEG2000 image (oJP2Fi | e), you can use the I DLffJPEG2000::GetData
method’'s DISCARD_LEVELS keyword to return the correct image level as follows:

FORi =0, nTiles - 1 DO BEG N
SubRect = [ReqTiles[i].x, ReqTiles[i].y, $
ReqTiles[i].width, ReqTiles[i].height]

; Convert to JPE&000 canvas coords.
level = ReqTiles[i].level

Scal e = | SHFT(1, level)

SubRect = SubRect * Scal e

;. Load the data.
Til eData = 0JP2Fi | e- >Get Dat a(REG ON=SubRect, $
DI SCARD LEVELS=| evel , ORDER=1)
ol mage->Set Ti |l eData, ReqTiles[i], TileData
ENDFOR

Animage that supports TILE LEVEL MODE=1 (automatic) can be panned and
zoomed using VIEWPLANE_RECT and the above QueryRequiredTiles and
SetTileData combination. This determinestile visibility and loads the appropriate
data. Astheimage is zoomed out, lower resolution data will be automatically
reguested to ensure physical memory does not run out.

Note

See " Example: JPEG2000 Filesfor Tiling” on page 146 for the complete
JPEG2000 tiling example.

Copying and Printing a Tiled Image

The IDLgrClipboard and IDLgrPrinter objects have a QueryRequiredTiles method
just like IDLgrWindow. Return the visible tiles using QueryRequiredTiles, set the
data on the image object, and use the Draw method of the printer or clipboard object
to output the portion of thetilesthat are visiblein the view. Thisisall that is required
for aclipboard object. For a printer object, you need to take the view dimensionsinto

account when printing. The following code excerpt shows this for the object,
oPrinter:

; Set the dimensions of the view so the aspect ratio is
; correct when printed.

wi ndowAspect = FLOAT(w ndowDi ms[0]) / w ndowDi ns[1])
oPrinter->GetProperty, DI MENSIONS = pageSi ze

pageSi ze[1] = pageSi ze[0] / wi ndowAspect

oVi ew >Set Property, DI MENSI ONS=pageSi ze

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 143

Call QueryRequiredTiles on the printer object and set the tile data using SetTileData
on the image object (as described in “Querying Required Tiles” on page 137). It is
then simple to print the outpult:

;... PRINT!...
oPrinter->Draw, oView, VECTOR=0
oPri nt er - >NewDocumnent
Note
Clipboard and printer vector output (VECTOR=1) is not supported for tiled images.

An examplein the IDL distribution provides working examples of copying and
printing atiled image. See “ Example: JPEG2000 Filesfor Tiling” on page 146 for
information on where to locate the full tiling example.

Preloading Tiles

You can load more tiles of data than what are currently visiblein aview in acouple
of ways:

e Passarow of tile datato SetTileData based on aninitial query (see“Loading a
Row of Tiles’ on page 143 below)

» Passdatato SetTileData without a query (see “Caching Non-Visible Tiles’ on
page 144)

Loading a Row of Tiles

SetTileData can accept more than asingle tile's worth of datain one call. In some
cases, it can be more efficient to read an entire row of tiles rather than extract single
tiles from that row. In general, raw binary image formats (such as TIFF) that are not
stored on disk in a blocked manner can be tiled more efficiently by passing rows of
data. The following code shows how to load entire scanlines at once when using these
image formats.

Asin the example shown in “ Querying Required Tiles’ on page 137, which creates
view and image objects, call the destination object’s QueryRequiredTiles method to
determine what tile dataisinitially visible in the viewport as follows:

Return structure information for visible tiles.
ReqTi | es = oW ndow >Quer yRequi redTi | es(oVi ew, ol mage, $
COUNT=nTi | es)

; Wiile there are tiles, determine the width of the information to
be requested by dividing the width of the original imge by the

; current level.

WH LE (nTiles gt 0) DO BEG N

Object Programming Adding Tiling to Your Application

144 Chapter 4: Working with Image Objects

Tilelnfo = ReqTil es[0]
|l evel Ti | el nfo. Level
wi dth i mageDi ms[0] / (2 " level)

Set the area to be read (equal to inage width) to the SubRect
; variabl e.
SubRect = [0, Tilelnfo.Y, width, Tilelnfo.Height]

Insert code here to read the tile data, passing SubRect to the
correct data access procedure for your file type.

Update the tile structure.
Tilelnfo. X = OL
Tilelnfo.Wdth = width

Set the row of tile data to the image.
ol mage->Set Til eData, Tilelnfo, TileData

ReqTi | es = oW ndow >Quer yRequi redTi | es(oVi ew, ol mage, $
COUNT=NTi | es)
ENDWHI LE

SubRect is set such that the entire width of theimageis read at the requested level
for the given vertical position and height. The tile structure is updated to reflect the
fact that the information being passed to SetTileData starts at X=0 and isthe entire
width of theimage. Notice that rather than iterate through the entire ReqTi | es array
the code calls QueryRequiredTiles again after calling SetTileData since the
remaining tilesin the array can now be loaded.

Caching Non-Visible Tiles

You do not need to call QueryRequiredTiles before passing data to the SetTileData
method. The QueryRequiredTiles call just limits the requested data to those tiles that
arevisiblein the view. Setting tile data without first requesting it has a coupl e of
important uses: loading an entire level and predictive tile caching.

When an application starts, it can automatically load an entire level of low-resolution
tile data. If higher resolution data is requested but not currently available, the lower
resolution tiles are used. For example, if level 3 tile data has been loaded, but you
attempt to zoom in so that the level 0 datais needed, level 3 datawill continue to be
displayed until the higher resolution data can be loaded. Thisresultsin ablurred or
blocky version of the image, which can still be used until the required level has been
loaded.

To load an entire level (assumed to be level 3, 2500 by 2500 pixelsin this example),
you first need to request that level of datafrom your image pyramid. How you access

Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 145

this data depends on the file type. For example, if you have created a series of TIFF
files, access the image data using the file name:

Til eData = READ_TI FF(' I argei mage3.tif')
If you have created a JPEG2000 image, access the image data using the GetData
method where level should be set to the level of data you want to return (e.g., 3):

Ti |l eData = 0JP2Fi | e- >Get Dat a(DI SCARD_LEVELS=I evel)

Create atile structure that encompasses the entire level and pass the datato
SetTileData:
tile = { IDLIMAGETILE, X:0, Y:0, Wdth: 2500, Height:2500, $

Level : 3, Dest: oW ndow }
ol mage->Set Til eData, tile, TileData

The second use for preloading tilesis predictive tile loading. For example, if the user
is panning right, but tilesto the right of the view that are not yet visible, these tiles
can be preloaded if there is any idle time. Then when the view reaches those tiles,
there will be no interruption as the tiles have already been loaded.

Object Programming Adding Tiling to Your Application

146

Chapter 4: Working with Image Objects

Example: JPEG2000 Files for Tiling

Thetiling example provided in the IDL distribution takes a 5000 by 5000 pixel JPEG
file containing an aerial photograph of Chicago’s O’ Hare International Airport and
creates a JPEG2000 file from the data. Thisfile type provides inherent support for
image tiles.

Example Code
Seetilingjp2_doc. pro intheexanpl es/ doc/ obj ect s subdirectory of the
IDL installation directory for the tiling application code.

Note
Thefirst time you run this application, it generates the JPEG2000 file. This might
take a noticeable amount of time, depending on your system speed. However, once
the JPEG2000 image is created, this file will be used instead of being recreated.

The following figure shows the O’ Hare image. When the application opens, the view
is positioned in the upper-left corner of the full-resolution image.

Figure 4-22: O’Hare Image

Example: JPEG2000 Files for Tiling Object Programming

RSI_PROCODE/examples/doc/objects/tilingjp2_doc.pro

Chapter 5
Working with Plots and
Graphs

This chapter describes the use of contour, polygon, polyline, and plot objects to create plots and
graphs. The following topics are covered in this chapter:

Contour Objects 148 Symbol Objects 170
PlotObjects ...t 151 APottingRoutine 174
AXisObjects oL, 155

Object Programming 147

148 Chapter 5: Working with Plots and Graphs

Contour Objects

Contour objects create a set of contour lines from data stored in arectangular array or
in aset of unstructured points. Contour objects can consist either of lines or of filled
regions.

Creating Contour Objects

To create a contour object, provide a vector or two-dimensional array containing the
valuesto be contoured to the IDLgrContour::Init method. For example, the following
statement creates a contour from a two-dimensional array returned by the IDL DIST
function:

mycont our = OBJ_NEW' | DLgr Contour', DI ST(20))

See “IDLgrContour” in the IDL Reference Guide manual for details on creating
contour objects.

Using Contour Objects

Contour objects have a number of properties that determine how they are rendered.
See “IDLgrContour Properties’ in the IDL Reference Guide manual for a complete
listing. The following code displays the contour object created above in the X-Y
plane.

Note
In order to display the contour as on the plane (rather than as a three-dimensional

image), you must set the PLANAR property of the contour object equal to one and
explicitly set the GEOMZ property equal to zero.

mywi ndow = OBJ_NEW' | DLgr W ndow)

nyview = OBJ_NEW ' I DLgrView , VI EWPLANE_RECT=[O, 0, 19, 19])

nmynodel = OBJ_NEW' | DLgr Mbdel ")

data = DI ST(20)

nycontour = OBJ_NEW' | DLgr Contour', data, COLOR=[100, 150,200], $
C _LINESTYLE=[O, 2, 4], /PLANAR, GEOWZ=0, C_VALUE=| NDGEN(20))

nmyvi ew >Add, nynodel

nmynodel - >Add, nycont our
mywi ndow >Dr aw, nyvi ew

Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 149

Thisresultsin the following figure.

Figure 5-1: Contour Object

Object Programming Contour Objects

150 Chapter 5: Working with Plots and Graphs

A more complex example using a contour object is shown in the contour demo. To
start the demos, type deno at the IDL command prompt. Both the terrain elevation
and vehicle tire data sets are displayed using the contour object.

Figure 5-2: Complex Contour Object

Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 151

Plot Objects

Plot objects maps a set of abscissa values to a set of ordinate values and creates a
polyline connecting the points. Note that plot objects do not automatically create axes
for the plot lines they create.

Creating Plot Objects

Create aplot line by providing a vector of Y values, and, optionally, a vector of X
values. If no X values are provided, the Y values are plotted against the element
indices of the Y vector.

The following statement creates a plot object plotting the values[2, 9, 4, 4, 6, 2, 8]
against their own indices:

myplot = OBJ_NEW'IDLgrPlot', [2,9,4,4,6,2,8])
The following statements plot the same data versus a series of primes:

dat ay [2,9,4,4,6, 2, 8]

datax = [0,1,2,5,7,11, 13]

nmyplot = OBJ_NEW ' IDLgrPlot', datax, datay)
See“IDLgrPlot” inthe IDL Reference Guide manual for details on creating plot
objects.

Using Plot Objects

Plot objects can be configured to draw regular X vs. Y, histogram, or polar plots. Set
the HISTOGRAM property to create a histogram plot, or the POLAR property to
create apolar plot. The following example uses the same data set to create a standard
plot, a histogram plot, and a standard plot using a boxcar filter. All three plots are
displayed in the same view.

mywi ndow = OBJ_NEW' | DLgr W ndow)

nyvi ew = OBJ_NEW' | DLgr Vi ew , VI EWPLANE_RECT=[- 10, - 10, 20, 20])

nmynodel = OBJ_NEW' | DLgr Mbdel ")

x = (FINDGEN(21) / 10.0 - 1.0) * 10.0
y =[3.0, -2.0, 0.5, 4.5 3.0, 9.5 9.0, 4.0, 1.0, -8.0, $
-6.5, -7.0, -2.0, 5.0, -1.0, 0, -6.0, 3.0, 5.5, 2.5, -3.0]

2.
myplotl = OBJ_NEW' IDLgrPlot', x, y, COLOR=[120, 120, 120])
nyplot2 = OBJ_NEW' | DLgr Pl ot' , X, Yy, /H STOGRAM LI NESTYLE=4)
y2 = SMOOTH(y, 5)
nyplot3 = OBJ_NEW' IDLgrPlot', X, y2, LINESTYLE=2)

Object Programming Plot Objects

152 Chapter 5: Working with Plots and Graphs

myvi ew >Add, nynodel
nmynodel - >Add, nyplot1l
nmynodel - >Add, nypl ot 2
nynodel - >Add, nypl ot3
nywi ndow >Dr aw, nyvi ew

A
i
: \
a
[
L] 3
/ - 'I, \ Y
- 5 IE,{! \\\l '!\\ _fﬂ A\
(. \\ I T
L T
) \ | I AU '
/ & [,]
) ‘r X ! ._l/ ! .
\p }. [+ =N ! Ny
L i} A 1) A
1\ 4/}' \ ; LY
f \ -
y b
| j A\
Vo
O ?‘:'.!'
A

Figure 5-3: Plot Object

Minimum and Maximum Values

You can control the minimum and maximum values of data plotted by a plot object.
Set the MAX_VALUE property of the plot object to disregard data val ues higher than
aspecified value. Set the MIN_VALUE property to disregard data values lower than
a specified value. Floating-point Not-a-Number (NaN) values are also treated as
missing data and are not plotted.

For example, the following statement changes the minimum and maximum values of
the histogram plot, and re-draws the view object:

nypl ot 2- >Set Property, MAX_VALUE=8, M N_VALUE=2
mywi ndow >Dr aw, nyvi ew

Plot Objects Object Programming

Chapter 5: Working with Plots and Graphs 153

Using Plotting Symbols

Set the SYMBOL property of aplot object equal to the object reference of a symbol
object to display that symbol at each data point. For example, to use atriangle symbol
at each data point, create the following symbol object, set the plot object’'s SYMBOL

property, and re-draw:

mySymbol = OBJ_NEW' | DLgr Synbol ', 5, SIZE=[.3,.3])
nmypl ot 1- >Set Property, SYMBOL=nySynbol

nywi ndow >Dr aw, nyvi ew

Figure 5-4: Plotting Symbols

Averaging Points
Use the NSUM property of the plot object to average the values of a group of data
points before plotting. If there are m data points, m/NSUM data points are plotted.

For example, the following statement causes IDL to average pairs of data points

when plaotting the line for the histogram plot.

Plot Objects

Object Programming

154

Plot Objects

Chapter 5: Working with Plots and Graphs

nmypl ot 2- >Set Property, NSUM=2
mywi ndow >Dr aw, nyvi ew

Polar Plots

To create a polar plot, provide a vector of radius values, a vector of theta values, and
set the POLAR property to a nonzero value. The following example creates asimple
polar plot:

mywi ndow = OBJ_NEW' | DLgr W ndow)

nyvi ew = OBJ_NEW' | DLgr Vi ew , VI EWPLANE_RECT=[- 100, - 100, 200, 200])
nynodel = OBJ_NEW' | DLgr Model ')

r = FI NDGEN(100)

theta = r/5

nmypol arpl ot = OBJ_NEW'IDLgrPlot', r, theta, /POLAR

nmyvi ew >Add, nynodel

nmynodel - >Add, nypol ar pl ot

nywi ndow >Dr aw, nyvi ew

Figure 5-5: Polar Plot

Object Programming

Chapter 5: Working with Plots and Graphs 155

AXxis Objects

AXxis objects provide a visual notation of data values in two- and three-dimensional
plots and graphs. Each axisis represented by an individual axis object; that is, if you
have aplot in X and Y, you will need to create an x-axis object and a y-axis object.

Note
Axis objects do not take their range values from data values or other objects, asyou
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAXis::Init method
when calling OBJ_NEW. Specify 0 (zero) to create an x-axis object, 1 (one) to create
ay-axisobject, or 2 to create a z-axis object:

xaxis = OBJ_NEW' I DLgr Axis', 0)
yaxis = OBJ_NEW' I DLgrAxis', 1)
zaxis = OBJ_NEW' | DLgr Axis', 2)

The various keywords to the Init method allow you to control the number of major
and minor ticks, thetick length and direction, the data range, and other attributes. For
example, to create an x-axis object whose data range is between —5 and 5, with the
tick marks below the axis line, use the following command:

xaxis = OBJ_NEW ' IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKD R=1)
To suppress minor tick marks:
xaxi s->Set Property, M NOR=0

See“IDLgrAXxis’ in the IDL Reference Guide manual for details on creating axis
objects.

Object Programming Axis Objects

156

Chapter 5: Working with Plots and Graphs

Using Axis Objects

Axis Objects

Suppose you wish to create an X-Y plot of some data and wish to include both x- and
y-axes.

Example Code
Thefollowing example codeisincluded in aprocedure file named obj _axi s. pr o,
located in the exanpl es/ doc/ obj ect s subdirectory of the IDL distribution. You
can run the example code by entering obj _axi s at the IDL prompt. You can also
examinethe. pr o filein an IDL Editor window for examples of some of the topics
discussed in this section by entering . COMPI LE obj _axi s. pro atthelDL
prompt.

First, we create some data to plot, the plot object, and the axis objects:

data = FI NDGEN(100)

nmyplot = OBJ_NEW ' IDLgrPlot', data)
xaxi s OBJ_NEW' | DLgr Axi s', 0)
yaxi s OBJ_NEW'' | DLgr Axi s', 1)

Next, we retrieve the data range from the plot object and set the x- and y-axis objects
RANGE properly so that the axes will match the data when displayed:

mypl ot - >Get Property, XRANGE=xr, YRANGE=yr
xaxi s->Set Property, RANGE=xr
yaxi s->Set Property, RANGE=yr

By default, mgjor tickmarks are 0.2 data unitsin length. Since the datarangein this
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl = 0.02 * (xr[1] - xr[0])
ytl = 0.02 * (yr[1] - yr[0])
xaxi s->Set Property, Tl CKLEN=xt |
yaxi s->Set Property, Tl CKLEN=yt|

Create model and view objects to contain the object tree, and a window object to
display it:

mynodel = OBJ_NEW' | DLgr Mbdel ")

myview = OBJ_NEW ' I DLgr Vi ew)

mywi ndow = OBJ_NEW' | DLgr W ndow)

nynodel - >Add, nypl ot

nmynodel - >Add, xaxi s

nmynodel - >Add, yaxi s

myvi ew >Add, nynodel

Object Programming

RSI_PROCODE/examples/doc/objects/obj_axis.pro

Chapter 5: Working with Plots and Graphs

157

Usethe SET_VIEW procedure to add an appropriate viewplane rectangle to the view
object. (See “Finding an Appropriate View Volume” on page 74 for information on

SET_VIEW).
SET_VIEW nyvi ew, nmywi ndow
Now, display the plot:

mywi ndow >Dr aw, nyvi ew

100

80

60

40

20

0 20 40 60 80

Figure 5-6: Axis Object

Object Programming

0‘...!...!...I...I..

100

Axis Objects

158

Chapter 5: Working with Plots and Graphs

Logarithmic Axes

Axis Objects

Creating aplot of logarithmic datarequires that you create alogarithmic axis aswell.
The example referenced here first creates alinear plot, then takes alogarithm of the
same data and creates alog-linear plot.

Example Code
The example code for logarithmic axes isincluded in a procedure file named
obj _| ogaxi s. pr o, located inthe exanpl es/ doc/ obj ect s subdirectory of the
IDL distribution. You can run the example code by entering obj _| ogaxi s at the
IDL prompt. You can also examinethe. pro filein an IDL Editor window by
entering . COVPI LE obj _| ogaxi s. pr o at the IDL prompt.

When you run this example, notice that you need to position your mouse cursor at the

IDL command prompt and hit you Enter key to step through the program and arrive
at the following output.

1000

[] IIIII||

100

Logarithmic Y Axis

10 0 10 20 30 40 50
Linear X Axis

Figure 5-7: Logarithmic Axes

Object Programming

RSI_PROCODE/examples/doc/objects/obj_logaxis.pro

Chapter 5: Working with Plots and Graphs 159

Displaying Date/Time Data on Axis Objects

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data). For information on Julian dates and times, the Precision of
Date/Time data, and information on how to generate Date/Time data, see “ Date/Time
Data” in Chapter 13 of the Building IDL Applications manual.

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (X, y or 2).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data:

» “Displaying Date/Time Data on a Plot Display” below
« “Displaying Date/Time Data on a Contour Display” on page 164

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after theinitial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

nunber _sanpl es = 37
date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

di spl acement = SI N(10. *! DTOR* FI NDGEN(nunber _sanpl es))
Normally, this type of datawould be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from afile; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional datawith the IDLgrPlot object, the format of
the date/time values is specified through the LABEL_DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = [' % :%5'])
where %l represents minutes and %S represents seconds.

Object Programming Displaying Date/Time Data on Axis Objects

160

Chapter 5: Working with Plots and Graphs

Before applying the results from LABEL_DATE, we must first create (initialize) our
display objects:

oPl ot Wndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [800, 600])
oPlotView = OBJ_NEW' I DLgrView , /DOUBLE)
oPl ot Mbdel = OBJ_NEW' | DLgr Mbdel ")
oPlot = OBJ_NEW' IDLgrPlot', date_tine, displacenment, $

/ DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAXis objects. The
oPlotView object contains the oPlotModel object with the DOUBLE keyword. The
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time

datais made up of double-precision floating-point values.

Although the date/time part of the datawill actually be contained and displayed
through the IDLgrAXis object, the oPlot object is created first to provide a display

region for the axes:

oPl ot - >Get Property, XRANGE = xr,

xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5

oPl ot - >Set Property, XCOCORD_CONV = xs,

YRANGE = yr

YCOCORD_CONV = ys

The NORM_COORD routine is used to create anormalized (0 to 1) display
coordinate system. This coordinate system will aso apply to the IDLgrAxis objects:

X-axis title.

oText XAxi s = OBJ_NEW' | DLgr Text",

"Time (seconds)')

Displaying Date/Time Data on Axis Objects

X-axis (date/tinme axis).

oPl ot XAxi s = OBJ_NEW' I DLgrAxis', 0, /EXACT, RANGE = xr, $
XCOORD_CONV = xs, YCOORD CONV = ys, TITLE = oText XAxis, $
LOCATION = [xr[0], yr[0O]], TICKDOR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])), $
TI CKFORMAT = [' LABEL_DATE'], TICKINTERVAL = 5, $
TICKUNITS = ["Tinme'])
Y-axis title.

oText YAxis = OBJ_NEW' | DLgr Text', 'Displacenent (inches)')
Y- axi s.

oPl ot YAxis = OBJ_NEW' I DLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD_CONV = xs, YCOORD_CONV = vys, TITLE = oText YAxis, $
LOCATION = [xr[0], yr[O]], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])))
Plot title.

oPl ot Text = OBJ_NEW' I DLgrText', 'Measured Signal', $
LOCATIONS = [(xr[0] + xr[1])/2., $

(yr[1] + (0.02*(yr[O] + yr[1])))]. $

Object Programming

Chapter 5: Working with Plots and Graphs 161
XCOORD_CONV = xs, YCOORD CONV = ys, $
ALl GNVENT = 0. 5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as a date/time axis.

These abjects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPI ot Mbdel - >Add, oPI ot

oPI ot Mbdel - >Add, oPI ot XAxi s
oPl ot Mbdel - >Add, oPI ot YAXi s
oPl ot Mbdel - >Add, oPI ot Text
oPl ot Vi ew >Add, oPI ot Mbdel

Now the oPlotView abject, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPl ot W ndow >Dr aw, oPl ot Vi ew

The Draw method to the oPlotWindow object produces the following results:

Measured Signal

1.0

Displacement (inches)

PRI T T TR T S S A T NS R S N S S | P IR
5335 59:40 5345 59:50 59:55 00:00 00:05
Time (seconds)

Figure 5-8: Displaying Date/Time data with IDLgrPlot

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the TICKUNITS keyword. You

Object Programming Displaying Date/Time Data on Axis Objects

162

Chapter 5: Working with Plots and Graphs

can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%:9%8, "%, 'Y 9 %W'])
where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, thefirst level (closest to the axis) will contain minute and second
values separated by a colon (%l :%S). The second level (just below thefirst level) will
contain the hour values (%H). Thethird level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL _DATE routine, we must also change the
settings of the IDLgrAXxis properties to specify amultiple level axis:
OPl ot XAxi s->Set Property, $

TI CKFORMAT = [' LABEL_DATE , 'LABEL _DATE, 'LABEL DATE'], $
TICKUNITS = [' Tine', 'Hour', 'Day']

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 163

The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Measured Signal

1.0

Displacement (inches)
=) =)
o 3

&
P

10 L

PRI S T T T T T S T N T T S T NS S S | P IR
59:35 59:40 59:45 59:50 59:55 00:00 00:05
15

Mar 30, 2000
Time (seconds)

Figure 5-9: Displaying Three Levels of Date/Time data with IDLgrPlot
Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL’s memory, the object references for oPlotView, oTextX Axis, and
oTextYAXxis should be destroyed. Therefore, after the display is drawn, the
OBJ DESTROQOY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oText YAXis]

The display will remain until closed, but the object references are now freed from
IDL’'s memory.

Object Programming Displaying Date/Time Data on Axis Objects

164 Chapter 5: Working with Plots and Graphs

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds
after the initial recording of 59 minutes and 30 seconds after 2 o’ clock pm (14
hundred hours) on the 30th day of March in the year 2000:

nunber _sanmpl es = 37

date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

angl e = 10. *FI NDGEN(nurber _sanpl es)

tenperature = BYTSCL(SI N(10.*!DTOR* $
FI NDGEN(nunber _sanpl es)) # COS(! DTOR*angl e))

Aswith the one-dimensional case, the format of the date/time valuesis specified
through the LABEL_DATE routine as follows:

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%:9%, "%, '9D %M %])

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second val ues separated
by acolon (%l :%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year val ue separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will be filled, we should define a color paléette:

oContourPal ette = OBJ_NEW ' I DLgrPal ette')
oCont our Pal ette->LoadCT, 5

Asin the one-dimensional example, the display must be initialized:

oCont our Wndow = OBJ_NEW' I DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [800, 600])

oCont our View = OBJ_NEW' | DLgr Vi ew , / DOUBLE)

oCont our Model = OBJ_NEW' | DLgr Model ')

oContour = OBJ_NEW'' I DLgr Contour', tenperature, $
GEOWX = angle, GEOW = date time, GEOMZ = 0., $
/ PLANAR, /FILL, PALETTE = oContourPalette, $
/ DOUBLE_GEOM C_VALUE = BYTSCL(I NDGEN(8)), $
C _COLOR = BYTSCL(| NDGEN(8)))

; Applying contour lines over the original contour display.

oCont ourLines = OBJ_NEW' I DLgr Contour', tenperature, $
GEOWX = angle, GEOW = date_tine, GEOMZ = 0.001, $
/ PLANAR, /DOUBLE_GEOM C VALUE = BYTSCL(| NDGEN(8)))

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 165

The oContourModel object will contain the IDLgrContour and IDLgrAXxis objects.
The oContourView object contains the oContourModel with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
oContour objects because date/time datais made up of double-precision floating-
point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAXxis object, the oContour object is created first to provide a
display region for the axes:

oCont our - >CGet Property, XRANGE = xr, YRANGE = yr, ZRange = zr
Xxs = NORM_COORD(xr)

xs[0] = xs[0] - 0.5

ys = NORM COORD(yr)

ys[0] = ys[0] - 0.5

oCont our - >Set Property, XCOORD_CONV = xs, YCOORD CONV = ys
oCont our Li nes->Set Property, XCOORD_CONV = xs, YCOORD _CONV = ys

The oContourLines object is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from the filled contours. This
difference is provided to display the lines over the filled contours and not in the same
view plane. The NORM_COORD routine is used to create anormalized (0 to 1)
display coordinate system. This coordinate system will also apply to the IDLgrAXxis
objects:

X-axis title.

oText XAxis = OBJ_NEW' | DLgrText', 'Angle (degrees)')
X-axi s.

oCont our XAxi s = OBJ_NEW ' I DLgr Axis', 0, /EXACT, RANGE = xr, $
XCOORD_CONV = xs, YCOORD_CONV = vys, TITLE = oText XAxis, $
LOCATION = [xr[O], yr[O], zr[O] + 0.001], TICKDOR =10, $
TI CKLEN = (0.02*(yr[1] - yr[0])))
Y-axis title.

oText YAxis = OBJ_NEW' | DLgr Text', 'Time (seconds)')
Y-axis (date/time axis).

oContour YAXi s = OBJ_NEW ' I DLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD_CONV = xs, YCOORD _CONV =vys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[O], zr[O] + 0.001], TICKDOR =0, $
TICKLEN = (0.02*(xr[1] - xr[0])), $
TI CKFORMAT = [' LABEL_DATE , 'LABEL_DATE , 'LABEL_DATE'], $
TICKUNNTS = ['Time', "Hour', 'Day'], $
TI CKLAYQUT = 2)

oCont our Text = OBJ_NEW' IDLgrText', $
' Measured Tenperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[1])/2., $

(yr[1] + (0.02*(yr[O] + yr[1])))]., $

XCOORD_CONV = xs, YCOORD _CONV = ys, $
ALI GNMENT = 0. 5)

Object Programming Displaying Date/Time Data on Axis Objects

166

Chapter 5: Working with Plots and Graphs

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as adate/time axis, which contains three levels related to the formats presented
in the call to the LABEL_DATE routine. This example aso contains the
TICKLAYOUT keyword. By default, this keyword is set to O, which provides the
date/time layout shown in the plot example. In this example, TICKLAYOUT isset to
2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to
the oContourView object:

oCont our Mbdel - >Add, oCont our

oCont our Mbdel - >Add, oCont our Li nes

oCont our Mbdel - >Add, oCont our XAxi s

oCont our Mbdel - >Add, oCont our YAXi s

oCont our Mbdel - >Add, oCont our Text
oCont our Vi ew >Add, oCont our Model

Now the oContourView object, which contains all of these objects, can be viewed in
the oContourWindow object:

oCont our W ndow >Dr aw, oCont our Vi ew

The Draw method to oContourWindow produces the following results:

Measured Temperature (degrees Celsius)

o

15

Mar 30, 2000

Time (seconds)

(N

0 100 200 300
Angle {degrees)

Figure 5-10: Displaying Date/Time data with IDLgrContour

Notice the three levels of the Y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 167

To maintain IDL's memory, the object references for oContourView,
oContourPalette, oTextX Axis, and oTextYAXis should be destroyed. Therefore, after
the display is drawn, the OBJ DESTROY routine should be called:

OBJ_DESTROY, [oContourView, oContourPalette, $
oText XAxi s, oText YAXi s]

The display will remain until closed, but the object references are now freed from
IDL's memory.

Object Programming Displaying Date/Time Data on Axis Objects

168 Chapter 5: Working with Plots and Graphs

Axis Titles and Tickmark Text

You can supply an axistitle for an axis by setting the TITLE property equal to the
object reference of an IDLgrText object. Text objects connected to axis objects via
the TITLE property are automatically centered under or next to the axis they belong
with.

Note
Titles and tickmark text inherit the color specified for the IDLgrAXxis object itself,
even if the COLOR property is specified for the IDLgrText object specified, unless
the USE_ TEXT_COLOR property for the axis is nonzero.

By default, mgjor tick marks are labelled with the data values. You can supply a set
of tickmark text values by setting the TICKTEXT property equal to either asingle
instance of an IDLgrText object containing a vector of text strings or to a vector of
IDLgrText objects, each of which contains a single text string.

Note
Make sure that you have the same number of tick label strings as there are major
tick marks for the axis.

Reverse Axis Plotting

IDL aso allowsyou to plot datain Object Graphics by reversing the order of axistick
values. Thisis known as reverse axis plotting.

When using Object Graphics, each core object is abuilding block. Any number of
building blocks may be combined together in a hierarchical treeto create an overall
scene. Anindividual object is not aware of the other objectsin the hierarchy;
therefore, the designer of the hierarchy must control all interactions between the
objects. For example, to properly display areverse axis plot in Object Graphics, the
designer must appropriately set the properties on the X axis, the Y axis, and the plot
line, each of which contribute to the overall displayed results.

Example Code
You can run this example by entering EX_REVERSE_PLOT at the IDL command
line. You can view the source for this example, ex_r ever se_pl ot. pro, inthe
exanpl es/ doc/ obj ect s directory. Alternately, enter .COMPILE
ex_reverse_pl ot. pro at the DL command line to open the file in an Editor
window.

Axis Titles and Tickmark Text Object Programming

RSI_PROCODE/examples/doc/objects/ex_reverse_plot.pro

Chapter 5: Working with Plots and Graphs 169

The following figure demonstrates how you can reverse the order of axistick values
using Object Graphics.

40 |
60 |

80 |

9020 a0 60 80 100

Figure 5-11: Reverse Axis Plotting Example

Object Programming Axis Titles and Tickmark Text

170 Chapter 5: Working with Plots and Graphs

Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, either in
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects that
display one of seven pre-defined symbols, any visualization object, or any model
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.
To Use a Pre-defined Symbol

Specify one of the following values for the symbol type:

Plus sign (the default)
Asterisk
Period

Diamond

Triangle

Square
X

N ol B~ WO N| P

For example, to create a symbol object using ared triangle for the symbol, use the
following statement:

mySynbol = OBJ_NEW' I DLgr Synbol ', 5, COLOR=[255, 0, 0])
To Use a Graphic Object as a Symbol

You can use an visualization object or amodel object as a symbol. For best results,
create an object that fills the domain between —1 and 1 in all directions. For example,
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:
pent agon=0BJ_NEW' | DLgr Pol ygon', [-0.8,0.0,0.8,0.4,-0.4], $
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0, 255])
mySynbol = OBJ_NEW' | DLgr Synbol ', pent agon)

Symbol Objects Object Programming

Chapter 5: Working with Plots and Graphs 171

Note that we create the pentagon to fit in the plane between —1 and 1 in both the X
and Y directions. We could also have created the pentagon to fit in a unit square and
then scaled it to fit the domain between —1 and 1.

For example:

pent agon=0BJ_NEW' | DLgr Pol ygon', [0.1,0.5,0.9,0.7,0.3], $
[0.6,0.9,0.6,0.1,0.1], COLOR=[O, 0, 255])

symvbdel = OBJ_NEW' | DLgr Model ")

synibdel - >Add, pent agon

synm\bdel - >Scale, 2, 2, 1

symvbdel - >Transl ate, -1, -1, O

mySynmbol = OBJ_NEW' | DLgr Synbol ', synivbdel)

Note
We create the symbol object to use the model object rather than the polygon object.

Using amodel object as a symbol allows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent. Set
the SIZE property of the symbol object to atwo-element vector that describes the
scaling factor in X and Y to apply to the symboal to change the size of the symbolsthat
are rendered. For example, to scale a symbol so that it extends one tenth of a unit to
each side of the data point, use the statement:

nmySynbol - >Set Property, SIZE=[0.1, 0.1]
Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symbol, the
symbol’s color is determined by the color of the graphic object and the setting of the
COLOR property of the symbol object itself isignored. For example, the following
statements create a symbol object that uses ared triangle:

nmySynbol = OBJ_NEW' I DLgr Synbol ', 5, COLOR=[255, 0, 0])

See “IDLgrSymbol” in the IDL Reference Guide manual for details on creating
symbol objects.

Object Programming Symbol Objects

172 Chapter 5: Working with Plots and Graphs

Using Symbol Objects

To use asymbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline object
equal to the symbol object reference:

myPl ot - >Set Pr operty, SYMBOL=nySynbol

Suppose you wish to create a symbol object using the pentagon we created above.
Suppose also that you wish to be able to use the pentagon code in more than one
instance, and would like to be able to make changes to the pentagon object’s color,
size, and orientation. You might create a procedure to define a pentagon object
contained in amodel object, and return the object references.

Example Code
Seefilepent a. pr o, located in the exanpl es/ doc/ obj ect s subdirectory of the
IDL distribution to view the source code for this example. Enter . COVPI LE
pent a. pr o at the IDL command line to open thefile in the IDL Editor window.

Once you have compiled the penta procedure, call it with the SYMBOL and MODEL
keywords set equal to named variables that will contain the object references of the
model and polygon objects:

PENTA, SYMBOL=sym MODEL=synmmodel
Next, create a symbol object using the pentagon:

mySynbol = OBJ_NEW' | DLgr Synbol ', synmmodel)
Now, create a plot object using the pentagon as the plot symbol:

nmyPl ot = OBJ_NEW' IDLgrPlot', FINDGEN(10), SYMBOL=nySynbol)
Next, display the plot:

nyView = OBJ_NEW' I DLgr Vi ew , VI EWPLANE_RECT=[O0, 0, 10, 10])
myModel = OBJ_NEW' | DLgr Mbdel ')

nmyVi ew >Add, nyModel

nmyModel - >Add, nyPl ot

myW ndow = OBJ_NEW' | DLgr W ndow)

myW ndow >Dr aw, nyVi ew

Note that the plotting symbols are larger than you might wish. Try making them
smaller:

nmySynbol - >Set Property, SIZE=[0.2,0. 2]
myW ndow >Dr aw, nyVi ew

Symbol Objects Object Programming

RSI_PROCODE/examples/doc/objects/penta.pro

Chapter 5: Working with Plots and Graphs 173

Or, create the following procedure to spin the pentagons around the z-axis (enter
. RUN at the command prompt, followed by these statements):

PRO SPI N, nodel, view, w ndow, steps
FORi = 0, steps do begin
nodel - >Rotate, [0,0,1], 10
w ndow >Dr aw, Vi ew
END
END

After compiling the SPIN procedure, call it from the command line and watch the
pentagons spin:
SPIN, symodel, nyView, nyWndow, 100

Whileit is unlikely that you will wish to create spinning plot symbols, this example
demonstrates one of the key advantages of IDL Object Graphics over IDL Direct
Graphics—once created, graphics objects can be easily manipulated in avariety of
ways without the need to recreate the entire graph or image after each change.

Object Programming Symbol Objects

174 Chapter 5: Working with Plots and Graphs

A Plotting Routine

This section devel ops a plotting routine that uses many of the object graphics features
discussed here and in previous chapters.

Example Code
The code for this exampleis contained in the file obj _pl ot . pr o, located in the
exanpl es/ doc/ obj ect s subdirectory of the IDL distribution. Enter . COVPI LE
obj _pl ot . pro at theIDL command lineto open thefilein the IDL Editor window
or enter obj _pl ot to run the example.

The OBJ_PLOT routine will create awindow object, and display within it aview of a
single model object, which will contain a plot object, x- and y-axis objects, and an x-
axistitle object. It will use the Times Roman font for the axistitle.

In creating the procedure, we allow the user to specify the data to be plotted, and we
define keyword variables which can return the object references for the view, model,
window, axis, and plot objects. This allows the user to manipulate the object tree after
it has been created. We also specify the _EXTRA keyword, which allows the user to
include other keyword parametersin the call. OBJ_PLOT itself passes any extra
keyword parameters only to the plot object, but a more complex program could pass
keyword parameters to any of the objects created. The following lines begin the
procedure.

Note
See “A Function for Coordinate Conversion” on page 77 for adiscussion of the
NORM_COORD function used in this example. Also, SET_VIEW isdiscussed in
“Finding an Appropriate View Volume” on page 74. (Thefilesset _vi ew. pr o and
nor m_coor d. pr o areincluded in the exanpl es/ doc/ uti | i ti es subdirectory
of the IDL distribution. NORM_COORD is also defined inthe obj _pl ot. pro
file))

Now, the OBJ_PLOT routine can be called with only the data parameter, if you
choose. For example, the statement

OBJ_PLOT, FI NDGEN(10)

creates and displays the object hierarchy with asimple plot line. However, if you do
not retrieve the window, view, and other object references via the keywords, there is
no way you can interactively modify the plot.

A Plotting Routine Object Programming

RSI_PROCODE/examples/doc/objects/obj_plot.pro

Chapter 5: Working with Plots and Graphs 175

A better way to call OBJ_PLOT would be:

OBJ_PLOT, FINDGEN(10), W NDOW:wi n, VI EWsvi ew, PLOT=pl ot ,

CONTAI NER=cont
This statement creates the same object hierarchy, but returns the object references for
the window, view, and plot objectsin named variables. Having access the object
references alows you to do things like change the color of the plot:

pl ot - >Set Property, COLOR=[255, 255, 255]
wi ndow >Dr aw, view

enlarge the viewplane rectangle by 10 percent:

vi ew >Get Property, VI EWPLANE_RECT=vr

vr2 = [vr[0]-(vr[0]*0.1), vr[1]-(vr[1]*0.1), $
vr[2] +(vr[2]*0.1), vr[2]+(vr[2]*0.1)]

vi ew >Set Property, VIEWLANE RECT = vr2

w ndow >Dr aw, Vi ew

or just clean it up:
OBJ_DESTROY, cont

Note that when using the OBJ_DESTROY procedure, any object added to the
specified object (using the Add method) are also destroyed, recursively. We use a
container object to collect all of the objects, including attribute objects and text object
that are not explicitly added to the object tree, which allows you to destroy the entire
collection with asingle call to OBJ_DESTROY.

Improvements to the OBJ_PLOT Routine
A number of improvements to the OBJ_PLOT routine are |eft as exercises for the
programmer:

e Provide error checking on the input arguments.

« Provide away to set properties of the axis and text objects when calling
obj _plot.

e Provideagraphical user interface to using IDL widgets.

« Do the object cleanup (destroying the objects created by obj _pl ot) when the
user isfinished with the routine. (Thisis easily accomplished if the routine has
awidget interface.)

« Provide away to retrieve data values once the data has been plotted, using the
mouse to select data points.

Object Programming A Plotting Routine

176 Chapter 5: Working with Plots and Graphs

A Plotting Routine Object Programming

Chapter 6
Working with Surface
Objects

This chapter describes the use of surface and light objects. The following topics are covered in this
chapter:

SurfaceObjects 178 AnInteractive Surface Example........ 183

Object Programming 177

178

Chapter 6: Working with Surface Objects

Surface Objects

Surface objects create a representation of functions of two variables. Surfaces are
presented as three-dimensional objectsin three-dimensional space, and thus are good
candidates for interactive rotation, and scaling. Examplesin this chapter discuss
interactive manipulation of surface objects.

Note
Also see “Mapping an Image onto Elevation Data’ in Chapter 3 of the Image
Processing in IDL manual for additional examples using the surface object.

Creating Surface Objects

To create a surface object, provide atwo-dimensional array of surface values (Z
values) to the IDLgrSurface::Init method. Optionally, you can supply two vectors or
arrays X and Y that specify the locationsin the XY plane of the Z values provided. If
X andY arenot provided, the surfaceis generated as afunction of the array indices of
each element of the Z array.

For example, the following statements create a surface object from the two-
dimensional array created by the IDL command DIST, as a function of the Z data
array indices:

zdata = DI ST(40)
mysurf = OBJ_NEW' | DLgrSurface', zdata)

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 179

Figure 6-1: Surface Object

Similarly, if xdata and ydata are either 40-element vectors or 40x40 element arrays
specifying the X and Y values which, when evaluated by some function, result in the
zdata array, you would create the surface object with the following statement:

mysurf = OBJ_NEW' I DLgrSurface', zdata, xdata, ydata)

See"IDLgrSurface” in the IDL Reference Guide manual for details on creating
surface objects.

Using Surface Objects
Surface objects have numerous properties controlling how they are rendered. You

can set these properties when creating the surface object, or use the SetProperty
method to the surface object to change these properties after creation.

Object Programming Surface Objects

180 Chapter 6: Working with Surface Objects

Style
Set the STY LE property to an integer value that controls how the surface is rendered.
Set the STY LE property equal to one of the following integer values:
0 = Display asingle pixel for each data point.
1 = Display the surface as awire mesh. (Thisisthe default.)
2 = Display the surface asa solid.
3 = Display the surface using only lines drawn parallel to the x-axis.
4 = Display the surface using only lines drawn parallel to the y-axis.
5 = Display awire mesh lego-type surface (similar to a histogram plot).
6 = Display a solid lego-type surface (similar to a histogram plot).
For example, the following statement changes the surface object to display the
surface as awire mesh, with the lines drawn in blue:
mysur f->Set Property, STYLE=1, COLOR=[O, O, 255]
The following statement draws the surface as a solid lego-type surface in green:
nmysur f - >Set Property, STYLE=6, COLOR=[O0, 255, 0]

Vertex Colors

You can supply avector of vertex colorsviathe VERT _COLORS property. The
colorsin the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COL ORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcol ors =[[0, 100, 200], [200, 150, 200], [150, 200, 250], [250, 0, 100]]
mysurf->Set Property, STYLE=1, VERT_COLORS=vcol ors

Shading

IDL provides two types of shading for surfaces. In Flat shading, the color of the first
vertex in the surface is used to define the color for the entire surface. The color hasa
constant intensity. In Gouraud shading, the colors along each line are interpol ated
between vertex colors, and then along scanlines from each of the edge intensities.

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 181

Note
By default, only ambient lighting is provided for surfaces. If you do not supply a
light source for your object hierarchy, solid surface objects will appear flat with
either Flat or Gouraud shading. See “Light Objects’ on page 227 for details on
creating and using light objects.

Set the SHADING property of the surface object equal to 0 (zero) to use flat shading
(thisisthe default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mysur f->Set Property, STYLE=2, SHADI NG=1
creates a surface in which the color values areinterpolated between the vertex colors.

Figure 6-2: Surface Object Shading

Skirts

You can draw a skirt around the bottom edge of your surface object by setting the
SHOW_SKIRT property of the surface object to 1. The skirt extends from the edge of
the surface to a Z value specified by the SKIRT property. For example, the following
statements draw the surface in wire mesh mode, with a skirt extending from the
bottom of the surface to the value z= 0.1:

mysur f - >Set Property, STYLE=1, /SHOW SKI RT, SKIRT=0.1

Object Programming Surface Objects

182 Chapter 6: Working with Surface Objects

Hidden Line Removal

Set the HIDDEN_LINES property to the surface object equal to one to remove lines
that are behind the visible parts of the surface from the rendering. By default, hidden
lines are drawn. The following statement alters the surface to remove the hidden
lines:

nmysurf->Set Property, /H DDEN_LI NES

Warning
Hidden line removal can be time-consuming.

Figure 6-3: Surface Object Hidden Lines

Texture Mapping

You can map an image onto a surface object by specifying an | DLgr | mage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individua data points within the image data are mapped to the surface’s vertices. If
the TEXTURE_COORD property is not specified, the surface object will map the
texture onto the entire data space (the region between 0.0 and 1.0 in normalized
coordinates). See Chapter 3, “Mapping an Image onto Geometry” in the Image
Processing in IDL manual for examples.

Surface Objects Object Programming

Chapter 6: Working with Surface Objects 183

An Interactive Surface Example

With alittle programming, we can create an application that allows the user to
display a surface object and transform its model tree interactively using the mouse.

Example Code
Example codeislocated insurf _t rack. pro intheexanpl es/ doc/ obj ect s
subdirectory of the IDL distribution. Enter . COVPI LE surf _track. pro at the
IDL command line to open the filein an IDL Editor window.

This example uses IDL widgets to create agraphical user interface to an object tree.
The SURF_TRACK procedure creates a surface object from user-specified data (or
from default data, if none is specified), and places the surface object in an IDL draw
widget. The SURF_TRACK interface allows the user to specify several attributes of
the object hierarchy via pull-down menus. Finally, the SURF_TRACK procedure
uses the exampl e trackball object (see “Interactive 3D Transformations’ on page 91
for details) to alow the user to rotate the surface in three dimensions.

Call the SURF_TRACK procedure without an argument to use the default surface (a
Bessel function) or with atwo-dimensional array as its argument:

Make up sone data:
zdata = DI ST(40)
SURF_TRACK, zdata

Object Programming An Interactive Surface Example

RSI_PROCODE/examples/doc/objects/surf_track.pro

184 Chapter 6: Working with Surface Objects

We encourage you to inspect the code in sur f _t r ack. pr o for hints on how to
create awidget application around a draw widget that uses Object Graphics. Note
especially that the SURF_TRACK procedure is well-behaved when it exits,
destroying all of the objectsit creates so as not to tie up memory with leftover objects
for which object references are no longer available.

Figure 6-4: STYLE=3 (Ruled xz), HIDDEN_LINES=1 (hidden lines removed)

Figure 6-5: SHADING=1 (Gouraud), STYLE=2 (Solid)

An Interactive Surface Example Object Programming

Chapter 6: Working with Surface Objects 185

Figure 6-6: SKIRT=-0.402645

Object Programming An Interactive Surface Example

186 Chapter 6: Working with Surface Objects

An Interactive Surface Example Object Programming

Chapter 7
Creating Volume
Objects

This chapter describes the process of creating and displaying volume objects. The following topics
are covered in this chapter:

Creating aVolume Object 188 Setting Volume Object Attributes. 190

Object Programming 187

188 Chapter 7: Creating Volume Objects

Creating a Volume Object

A volume object contains athree dimensional data array of voxel values and a set of
rendering attributes. The voxel array is mapped to colors and opacity values through
a set of lookup tables in the volume object. Several rendering methods are provided
to draw the volume to a destination.

To create avolume object, create a three dimensional array of voxels and pass them
to the IDLgrVolume::Init method. Voxel arrays must be of BY TE type. For example,
the following will create a simple volume data set and create a volume object which
usesit:

data = BYTARR(64, 64, 64)

FOR i =0,63 DO data[*,i,0:i] = i*2

data[5: 15, 5:15, 5:55] = 128

dat a[45: 55, 45:55, 5:15] = 255

nmyvol une = OBJ_NEW' | DLgr Vol une', dat a)

The volume contains a shaded prism aong with two brighter cubes (one located
within the prism).

See “IDLgrVolume” in the IDL Reference Guide manual for details on creating
volume objects.

Example Code
The exampl e code discussed in the following sectionsis contained in the procedure
fileobj _vol . pro, located in theexanpl es/ doc/ obj ect s subdirectory of the
IDL distribution. Enter . COVPI LE obj _vol . pro to display thefilein the IDL
Editor window. You can run the example procedure by entering OBJ VOL at the
IDL command prompt. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Creating a Volume Object Object Programming

RSI_PROCODE/examples/doc/objects/obj_vol.pro

Chapter 7: Creating Volume Objects 189

Using Volume Objects

A volume object has spatial dimensions equal to the size of the datain the volume. In
the example, the volume object occupies the range 0-63 in the x-, y-, and z-axes. To
make the volume easier to manipulate, we use the XCOORD_CONYV,
YCOORD_CONV, and ZCOORD_CONYV properties of the volume object to center
the volume at 0,0,0 and scale it to fit in a unit cube.

Figure 7-1: Volume Object

Object Programming Creating a Volume Object

190 Chapter 7: Creating Volume Objects

Setting Volume Object Attributes

Volume objects have numerous properties controlling how they are rendered. These
properties can be set when the object is created or set using the SetProperty method.

Example Code
The example code discussed in the following sections is contained in the procedure
fileobj _vol . pro, located in theexanpl es/ doc/ obj ect s subdirectory of the
IDL distribution. Enter . COVPI LE obj _vol . pro to display thefilein the IDL
Editor window. You can run the example procedure by entering OBJ VOL at the
IDL command prompt. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Volume Opacity

The opacity table controls the transparency of a given voxel value. Manipulation of
the opacity tableis critical to improving the quality of arendering. The following
figure reflect the sample code, which makes the prism transparent and the cubes
opaque, alowing the cube within the prism to be seen. Thisis done by setting the
OPACITY_TABLEQ array to low values for the prism and high values for the cubes.

Setting Volume Object Attributes Object Programming

RSI_PROCODE/examples/doc/objects/obj_vol.pro

Chapter 7: Creating Volume Objects 191

Figure 7-2: Volume Object Opacity

Volume Color

Each voxel value can be assigned an individual color aswell. This color mapping can
be changed by changing the RGB_TABLEO property. To further highlight the cubes,
we change their colors to blue and red, as shown in the example code,

obj _vol . pro, located in the exanpl es/ doc/ obj ect s subdirectory of the IDL
distribution.

Volume Lighting

Adding lights enhances the edges of volumes. Gradients within the volume are used
to approximate a surface normal for each voxel, and the lightsin the current view are
then applied. The gradient shading is enabled by setting the LIGHTING_MODEL
property equal to one. The ambient volume color is selected by setting the
AMBIENT property of the volume object to a color value. Setting the TWO_SIDED
property allows both sides of avoxel to be lighted. Seeobj _vol . pro inthe
exanpl es/ doc/ obj ect s subdirectory of the IDL distribution for an example of
using alight source.

Object Programming Setting Volume Object Attributes

192 Chapter 7: Creating Volume Objects

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxelsin alighted view, enabling light sources
increases the rendering time.

See “Light Objects’ on page 227 for more details on creating and using light objects.
Compositing

The volume object supports a number of methods for blending the projected voxels
together to form an image. By default, Alphablending is used. (In Alphablending,
each voxel occludes voxels behind it according to the opacity of the voxel in front).
Another common compositing technique is the maximum intensity projection (MIP).
Set the volume object to use MIP compositing by setting the
COMPOSITE_FUNCTION property equal to one as shown in obj _vol . pro,
located in the exanpl es/ doc/ obj ect s subdirectory of the IDL distribution. See
“IDLgrVolume Properties’ in the IDL Reference Guide manual for other options.

ZBuffering

When combining a volume with other geometry in the Object Graphics system,
volume objects should in general be drawn last to ensure they intersect the other
(solid) objects properly. To increase rendering speed, the intersection operation is
disabled by default. To enable the intersection calculations, set the ZBUFFER
property of the volume object equal to one.

Additionally, volume objects alow for control over the rendering of invisible
(opacity equals zero) voxels. By default, the zbuffer will be updated for such voxels
(even though no change is made in the image color). This writing to the zbuffer by
transparent voxels be disabled by setting the ZERO_OPACITY _SKIP property.

These properties are set near the beginning of the obj _vol . pr o file, located in the
exanpl es/ doc/ obj ect s subdirectory of the IDL distribution.

Note
In volumes with large numbers of voxels with their opacity set to zero, enabling
ZERO_OPACITY_SKIP can improve rendering performance.

Setting Volume Object Attributes Object Programming

Chapter 7: Creating Volume Objects 193

Interpolation

By default, when rendering a volume object, values between the voxels are estimated
using nearest neighbor sampling. When higher quality rendering is desired, trilinear
interpolation can be selected instead by setting the INTERPOLATE property equal to
one.

nmyvol une- >Set Property, | NTERPOLATE=1

Note
Trilinear interpolation will cause the rendering to take considerably longer than
nearest neighbor interpolation. See “Interpolation Methods” in Chapter 8 of the
Using IDL manual for more information on interpolation.

Rendering speed

Rendering speed can be improved by reducing the quality of the rendering. Use the
RENDER_STEP property to control this speed/quality trade-off. The value of the
RENDER_STEP property specifies a step size in the screen dimensions which is
used to skip voxels during the rendering process. Larger valuesyield faster rendering
times, but lower final image quality. For example, to render only half as many voxels
in the screen Z dimension, use the following statement:

nmyvol une- >Set Property, RENDER STEP=[1, 1, 2]

A more complex example using a volume object is shown in the volume visualization
demo. To start the demos, type demo at the IDL command prompt.

Figure 7-3: Volume Object Rendering

Object Programming Setting Volume Object Attributes

194 Chapter 7: Creating Volume Objects

Setting Volume Object Attributes Object Programming

Chapter 8

Polygon and Polyline

Objects

This chapter describes the use of polygon, polyline objects. The following topics are covered in

this chapter:

About Polygon and Polyline Objects 196
PolygonObjects. 198
Tessellator Objects. 201
Pattern Objects.t 202

Object Programming

Polygon Optimization
PolylineObjects 209
Polygon and Polyline Object Examples .. 210

195

196 Chapter 8: Polygon and Polyline Objects

About Polygon and Polyline Objects

Polygon and Polyline objects are both defined by set of vertices that share rendering
attributes. This chapter introduces how to create and configure polygon and polyline
objects.

Creating Polygon and Polyline Objects

You can define the shape of apolygon or polyline object by either setting vertex data
directly (by passing a 2-by-n or a 3-by-n array to the DATA property), or by passing
adescriptive array to the IDLgrPolygon POLY GONS property or the IDLgrPolyline
POLY LINES property. This section describes the later method, which uses a
connectivity array to define the shape of an IDLgrPolygon or IDLgrPolyline object.

Note
The following description of the connectivity array applies to polygons and
polylines with the exception that for a polyline mesh, vertex dataincludes color, but
not normals or texture coordinates.

A polygon description is anumeric list of theform: [n, ig, iy, ..., In.1], where nisthe
number of vertices that define the polygon, and i..i,,.1 are indicesinto polygon vertex
list. For example, thelist [5, 0, 1, 2, 3, 4] describes a polygon with 5 vertices
comprised of thefirst 5 vertices in the vertex list.

The polygon description list, also known as a connectivity array, allows an individual
object to contain more than one polygon. The polygons can be independent and
distinct, sharing no vertices amongst the polygons. Alternatively, the connectivity
array can describe a mesh, where vertices are shared by a number of polygons,
usualy triangles or quads, in the mesh. In the case of a mesh, the vertex information,
including normals, colors, and texture coordinates, is also shared by the polygons
composing the mesh. See “Polygon Mesh Optimization” on page 204 for more
information.

A polygon description list may contain “skipped” polygon descriptions by replacing
a description with zeroes. Thismay be more convenient than building a new array.
For example, if we have a polygon description list containing three triangles:

[3, 14, 90, 21, 3, 4, 5, 34, 3, 6, 1, 2]
we can skip drawing the middle triangle by setting the array to:
[3, 14, 90, 21, 0, 0, O, O, 3, 6, 1, 2]

About Polygon and Polyline Objects Object Programming

Chapter 8: Polygon and Polyline Objects 197

The same effect can be achieved by:
twoList = [threeList[0:3], threelList[8:11]]

A polygon description list can also be terminated early by putting a-1inthearray in
the position after the last polygon to be drawn.

[3, 14, 90, 21, 3, 4, 5, 34, -1, 6, 1, 2]

The -1 at index 8 effectively makesthisalist of two polygon descriptions. Entries
after the -1 are ignored.

See “Polygon Objects’ on page 198 and “ Polyline Objects’ on page 209 for more
information about configuring these object.

Object Programming About Polygon and Polyline Objects

198 Chapter 8: Polygon and Polyline Objects

Polygon Objects

Polygon objects represent one or more filled polygons that share a given set of
vertices and rendering attributes. All polygons must be simple (the edges of the
polygon should not intersect) and convex (the shape of the polygon should not have
any indentations). Concave polygons can be converted into convex polygons using
the helper object IDLgrTessellator. See “ Tessellator Objects’ on page 201 for more
on tessellator objects.

Creating Polygon Objects

To create a polygon object, provide atwo- or three-dimensional array (or two or three
vectors) containing the locations of the polygon’s vertices to the IDLgrPolygon::Init

method. For example, the following statement creates a square with sides one unit in
length, with the lower left corner at the origin:

mypol ygon = OBJ_NEW' I DLgr Pol ygon', [[0,0], [0O,1], [1,1], [1,0]])

Setting vertex data upon initialization is the same as using the DATA property. You
can also use the POLY GONS property to define the object shape as described in
“Creating Polygon and Polyline Objects’ on page 196.

See “IDLgrPolygon” in the IDL Reference Guide manual for complete reference
information.

Configuring Polygon Objects

Polygon objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polygon object, or use the SetProperty
method to the polygon object to change these properties after creation.

Style

Set the STY LE property to an integer value that controls how the polygon is rendered.
Set the STY LE property equal to O (zero) to render only the vertices. The following
statement changes the polygon to display only the vertex points, in blue:

nmypol ygon- >Set Property, STYLE=0, COLOR=[O0, 0, 255]

Set the STYLE property equal to 1 (one) to render the vertices and lines connecting
them. The following statement draws the polygon’s outline in green:

nmypol ygon- >Set Property, STYLE=1, COLOR=[O0, 255, 0,]

Polygon Objects Object Programming

Chapter 8: Polygon and Polyline Objects 199

The default setting for the STY LE property is 2, which produces afilled polygon. The
following statement draws the filled polygon in red:

nypol ygon- >Set Property, STYLE=2, COLOR=[255, 0, 0]

Vertex Colors

You can supply avector of vertex colorsviathe VERT_COLORS property. The
colorsin the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COL ORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0, 100, 200], [200, 150, 200], [150, 200, 250], [250, 0, 100]]
nmypol ygon- >Set Property, STYLE=1, VERT_COLORS=vcol ors

Fill Patterns

Asdemonstrated in “ Pattern Objects’ on page 202, you can fill a polygon with a
pattern contained in an IDLgrPattern object. Set the FILL_PATTERN property equal
to the object reference of the pattern object. If you have created a pattern object called
mypattern, the following statement uses that pattern as the polygon’sfill pattern:

mypol ygon- >Set Property, STYLE=2, FILL_PATTERN=nypattern
Shading

IDL provides two types of shading for filled objects. In Flat shading, the color of the
first vertex in each polygon is used to define the color for the entire polygon. The
polygon color has a constant intensity. In Gouraud shading, the colors along each line
are interpolated between vertex colors, and then along scanlines from each of the
edge intensities.

Set the SHADING property of the polygon object equal to 0 (zero) to use flat shading
(thisisthe default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

nmypol ygon- >Set Property, STYLE=2, SHADI NG=1

creates a polygon fill in which the color values are interpolated between the vertex
colors.

Object Programming Polygon Objects

200 Chapter 8: Polygon and Polyline Objects

Texture Mapping

You can map an image onto a polygon object by specifying an IDLgrlmage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the polygon’s vertices.

Note that you must specify both TEXTURE_MAP and TEXTURE_COORD to
enable texture mapping.

Polygon Objects Object Programming

Chapter 8: Polygon and Polyline Objects 201

Tessellator Objects

The IDLgrTessellator classis ahelper class that converts a simple concave polygon
(or asimple polygon with holes) into a number of simple convex polygons (general
triangles). A polygonissimpleif it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the DL grPolygon object accepts only convex
polygons. Using the IDLgrTessellator object, you can convert a concave polygon into
agroup of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::1nit method takes no arguments. Use the following statement
to create a tessellator object:

myTess = OBJ_NEW ' | DLgr Tessel | ator')

See“IDLgrTessellator” in the IDL Reference Guide manual for details on creating
tessellator objects.

Using Tessellator Objects

Theobj _tess. pro procedure creates a concave polygon, attempts to draw it, and
then tessellates the polygon and re-draws. Finally, the procedure demonstrates adding
aholeto apolygon. (You will be prompted to press Return after each step is
displayed.) You can also inspect the source code inthe obj _t ess. pr o filefor hints
on using the tessellator object.

Example Code
The procedurefile obj _t ess. pr o, located in the exanpl es/ doc/ obj ect s
subdirectory of the IDL distribution, provides an example using the
IDLgrTessellator object. To run the example, enter OBJ _TESS at the IDL prompt.
Enter . COVWPI LE obj _t ess. pro toopenthefilein an IDL Editor window.

Object Programming Tessellator Objects

RSI_PROCODE/examples/doc/objects/obj_tess.pro

202 Chapter 8: Polygon and Polyline Objects

Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon class.
Pattern objects can create a solid fill (the default), aline fill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using abyte
pattern you specify). Pattern objects do not have a color of their own; patterns take
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify afill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create a solid fill, equal to oneto create a
line pattern, or equal to two to use abitmap byte array asthefill pattern. For example,
the following statement creates a pattern object with a solid fill:

myPattern = OBJ_NEW' I DLgrPattern', 0)

The following statement creates a pattern object with lines ten pixels apart, 5 pixels
wide, at an angle of 30 degrees:

nyPattern = OBJ_NEW' IDLgrPattern', 1, SPACING=10, THI CK=5, $
ORI ENTATI ON=30)

To create a pattern fill, specify a 32-by-4 byte array viathe PATTERN property of
the pattern object. The byte array you specify will be tiled over the area of the
polygon to befilled. For example, the following statements create a pattern fill with a
random speckle. Thefirst statement creates a 32-by-4 byte array with random values
ranging between 0 and 255. The second statement creates the pattern object.

pattern = BYTE(RANDOVN(seed, 32, 4)*255)
nmyPattern = OBJ_NEW' | DLgrPattern', 2, PATTERN=pattern)

See “IDLgrPattern” in the IDL Reference Guide manual for details on creating
pattern objects.

Using Pattern Objects

To fill apolygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPol ygon- >Set Property, FlILL_PATTERN = nyPattern

The following statements create a triangle and fills it with the random speckle
pattern:

pattern = BYTE(RANDOVN(seed, 32, 4)*255)
nmyPattern = OBJ_NEW' | DLgrPattern', 2, PATTERN=pattern)

Pattern Objects Object Programming

Chapter 8: Polygon and Polyline Objects 203

nyView = OBJ_NEW' I DLgrView , VI EWLANE_RECT=[O, 0, 10, 10])

myModel = OBJ_NEW' | DLgr Mbdel ")

nyPol ygon = OBJ_NEW' I DLgr Pol ygon', [4, 7, 3], [8, 6, 3],9%
col or=[255, 0, 255], fill _pattern=nyPattern)

myVi ew >Add, nyModel

nyModel - >Add, nyPol ygon

myW ndow = OBJ_NEW' | DLgr W ndow)

myW ndow >Dr aw, nyVi ew

Object Programming Pattern Objects

204 Chapter 8: Polygon and Polyline Objects

Polygon Optimization

Polygon object can be used in awide variety of graphic displays. Consider consulting
the following topics for information on improving the performance of polygon
creation and rendering:

e “Polygon Mesh Optimization” on page 204 — describes how to optimize
polygon meshes associated with a polygon through the POLY GON keyword

» “Back-face Culling” on page 207 — lets you skip rendering the unseen side of
closed polygons

¢ “Normal Computations’ on page 208 — uses normals that can be computed by
COMPUTE_MESH_NORMALS instead of the expensive generation of
default normals each time a polygon is drawn

Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally—viathe

POLY GON keyword—a connectivity array describing how those vertices are to be
connected to form one or more polygons. Internally, IDL can identify three special
types of polygona meshes that may be represented very efficiently and therefore
displayed substantially faster than individually described polygons. These special
mesh types are characterized by repetitive patternsin the connectivity of the vertices.
In performance terms, it isto your advantage to utilize this optimization whenever
possible by appropriately preparing the connectivity list according to the rules
described for the corresponding type of mesh. The special mesh types are as follows:

e “Quad Strips’ on page 205
e “Triangle Fans’ on page 206
e “Triangle Strips’ on page 206

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 205

Quad Strips

A quad strip is a connected set of four-sided polygons. To take advantage of
accelerated quad strips, the connectivity should be set up so that the first and last
vertex for one quad are the same as the second and third of the previous quad. See the

figure below.
0 1 2 3
4 5 6 7
8 9 10 11

Figure 8-1: Quad Strip Mesh

For example, to use a quad strip optimization for the polygons shown above, the
connectivity for the vertices should be as follows:

verts = [vO0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,vil]
oPoly = OBJ_NEW I DLgr Pol ygon, verts, $

POLYGON=[4, 0, 1, 5, 4, $
4, 1, 2,6, 5 $
4, 2, 3, 7, 6, $
4, 4, 5 9, 8, $
4, 5, 6, 10, 9, $
4, 6, 7, 11, 10])

An dternate connectivity list that still uses quad strip optimization can aso be used
asin the following example, which orients each quad in the opposite direction of the
first example.

oPoly = OBJ_NEW' I DLgr Pol ygon', verts, $
POLYGON=[4, 4

4, 5,

6,
8
9
10,

ol

Object Programming Polygon Optimization

206 Chapter 8: Polygon and Polyline Objects

Triangle Fans

A triangle fan is a set of connected triangles that all share a common vertex. To take
advantage of accelerated triangle fans, the connectivity should be set up so that the
first vertex in every triangle is the common vertex, and the second vertex is the same
asthe last vertex of the previous triangle, as shown below.

Figure 8-2: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

For example, to use atriangle fan optimization for the polygons shown in the left side
of the figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, vb5]

oPoly = OBJ_NEW I DLgr Pol ygon, verts, $
POLYGON=[3, 0, 1, 2, $

$

$

eee
roDN
abkw

1)
Triangle Strips

A triangle strip is a set of connected triangles, each of which share two vertices with
the previous triangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two verticesin every triangle must have
been in the previous triangle and ordered in the same direction (counter-clockwise or
clockwise) and the final vertex must be new, as shown in the right side of the
previous figure.

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 207

For example, to use the triangle strip optimization for the polygons shown in the
right-hand figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, vb5]
oPoly = OBJ_NEW I DLgr Pol ygon, verts, $
POLYGON=[3, 0, 1, 2, $
3, 2,1, 3, %
3, 2, 3, 4, %
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any given
polygon object. A single POLY GON keyword value might contain any combination
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

Asthe length of the strips or fans grows, and as the percentage of vertex connections
that are optimized by the rules described above increases, the performance upgrade
becomes more perceptible. The optimizations are aresult of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherwise
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In any
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimization
automatically without programmer intervention.

Back-face Culling

For polygonal meshes that describe a closed shape (for example, a sphere), it is often
wasteful to spend any time rendering the polygons whose normal vector faces away
from the eye because it is known that the polygons whose normals face toward the
eye will obscure those back-facing polygons. Therefore, for efficiency, it may be
beneficia to employ back-face culling, which is simply the process of choosing to
skip the rasterization of any polygons whose normal vector faces away from the eye.

On an IDLgrPolygon object, set the REJECT property to avalue of 1 to enable
back-face culling.

Object Programming Polygon Optimization

208

Chapter 8: Polygon and Polyline Objects

Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each vertex by
averaging the normals of the polygons that share that vertex. These normals are then
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time the
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant anew internal cache (for example, if the
connectivity, vertices, shading, or style have changed). In some cases, the normals do
not actually change as other modifications are made. In these cases, the expense of
default normal computation can be bypassed if the user provides the normals
explicitly (viathe NORMALS keyword). These normals can be computed by using
the COMPUTE_MESH_NORMALS routine in the IDL Reference Guide. The
resulting normals, if passed in viathe NORMALS keyword of the IDLgrPolygon
object, will be reused every time the polygon is drawn (without further computation)
until they are replaced explicitly by the user.

Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 209

Polyline Objects

Polyline objects lines connect a series of pointsin two- or three-dimensional space.
Creating Polyline Objects

To create a polyline abject, provide a 2-by-n or 3-by-n array (or two or three vectors)
containing the locations of the polyline’s constituent pointsto the IDLgrPolyline:Init
method. For example, the following statement creates a line from the origin, to the
point X=1,Y=2,thentothepoint X=4,Y=3:

mypol yline = OBJ_NEW' IDLgrPolyline', [[0,0], [1,2], [4,3]])

Setting vertex data upon initialization is the same as using the DATA property. You
can also use the POLY LINES property to define the object shape as described in
“Creating Polygon and Polyline Objects’ on page 196.

See “IDLgrPalyling” in the IDL Reference Guide manual for complete reference
information.

Using Polyline Objects

Polyline objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polyline object, or use the SetProperty
method to the polyline object to change these properties after creation.

Symbols

You can specify asymbol to render at each point in the polyline's path by setting the
SYMBOL property to the object reference of an IDLgrSymbol object (or to an array
of IDLgrSymbol objects). See “ Symbol Objects’ on page 170 for details.

Shading and Vertex Coloring

Polyline object can be shaded or their vertex points colored in the same manner as
polygon objects. See “ Shading” and “Vertex Colors’ in *“ Configuring Polygon
Objects’ on page 198 for details.

Object Programming Polyline Objects

210 Chapter 8: Polygon and Polyline Objects

Polygon and Polyline Object Examples

These objects can be used as underlying structures for other objects (such as when
texture-mapping an image onto a polygon), or can create an independent
3-dimensional visualization of data as shown in the following examples:

e “Mapping an Image Object onto a Sphere” on page 128

» “Creating a Surface Mesh of an ROI Group” in the Image Processing in IDL
manual

Polylines and polygons can aso be used in plotting to represent plot data or support
the display of plot data as shown in the following examples:

« “DENDROGRAM” inthe IDL Reference Guide manual contains an example
that uses an IDLgrPolyline

» “Custom Image Object Annotations” on page 230 uses polylines and polygons
to construct a custom legend col orbar

Polygon and Polyline Object Examples Object Programming

Chapter 9

Annotating an Object

Display

The following topics are covered in this chapter:

Annotating Object Graphic Displays. 212
TextObjectso vii i 213
FontObjects........................ 217
ROIObjects 221

Object Programming

LegendObjects.o..... 222
Colorbar Objects 225
Light Objects 227
Custom Image Object Annotations 230

211

212 Chapter 9: Annotating an Object Display
Annotating Object Graphic Displays

Additional objects can be added to the main subjects of an object graphic display
(such as aplot, surface, image or volume) to provide explanatory notes or otherwise
enhance the information displayed. The objects discussed in this chapter are typically
used to further illustrate characteristics of the main subjects of a display. For
example, text objects can add descriptive titles, legend objects can distinguish plot
data, and light objects can reveal characteristics of surfaces or volumes,

Annotating Object Graphic Displays Object Programming

Chapter 9: Annotating an Object Display 213

Text Objects

Text objects contain string values that are drawn to the destination object at alocation
you specify. You have control over the font used (viaan IDLgrFont object), the angle
of the text baseline, and the vertical direction of the text.

Creating Text Objects

To create atext object, specify astring or an array of strings to the IDLgrText::Init
method when calling OBJ NEW.

nytext = OBJ_NEW' |DLgrText', 'A Text String')
or

nytextarr = OBJ_NEW' IDLgrText', $
["First String', 'Second String', 'Third String'])
See“IDLgrText” in the IDL Reference Guide manual for details on creating text
objects.

Using Text Objects

Creating text annotationsin their simplest form—two-dimensional text displayed at a
given location—involves only specifying the text, and the location. For example, to
display the words Text String in awindow in the default font, the following
statements suffice:

mywi ndow = OBJ_NEW' | DLgr W ndow , DI MENSI ONS=[400, 400])

nyview = OBJ_NEW' | DLgr Vi ew , VI EMWPLANE_RECT=[0O, 0, 10, 10])

nynodel = OBJ_NEW' | DLgr Model ')

nytext = OBJ_NEW' IDLgrText', 'Text String', LOCATION=[4,4], $
COLOR=[50, 100, 150])

nmyvi ew >Add, nynodel

nynodel - >Add, nyt ext

nywi ndow >Dr aw, nyvi ew

The text is drawn at the specified location, with the baseline parallel to the x-axis.
Location and Alignment

Specifying alocation viathe LOCATION property picks a point in space where the
text object will be placed. By default, text objects are aligned with their lower |eft
edge located at the point specified by the LOCATION property.

Object Programming Text Objects

214

Text Objects

Chapter 9: Annotating an Object Display

You can change the horizontal position of the text object with respect to the point
specified by LOCATION by changing the ALIGNMENT property to afloating-point
value between 0.0 and 1.0. The default value (0.0) aligns and left-justifies text at the
location specified. Setting ALIGNMENT to 1.0 right-justifies the text; setting it to
0.5 centers the text above the point specified. The vertical position with respect to
location can also be set using the VERTICAL_ALIGNMENT property. The default
value (0.0) bottom-justifies the text at the given location. A vertical alignment of 1.0
top-justifies the text.

3D Text and Text “On the Glass”

Text objects, like al graphics atoms, are located and oriented in three-dimensional
space. (We often ignore the third dimension when making simple plots and graphs—
in these cases we simply use the default z value of zero.) With text objects, however,
there is an option to project text on the glass.

Projecting text on the glass ensures that it is displayed asif it werein flat, two-
dimensional space no matter what its true orientation in three-dimensional space may
be. In cases where text objects may be rotated at arbitrary angles, projecting on the
glass ensures that the text will be readable.

To project text on the glass, set the ONGLASS property of the text object to avalue
other than zero.

rOj eCted D T

ONGLASS Text

Figure 9-1: 3D Text and Text “On the Glass”

Object Programming

Chapter 9: Annotating an Object Display 215

Baseline

The text baseline can be altered from its default orientation (parallel to the x-axis) by
setting the text object’s BASELINE property to atwo- or three-element array. The
new baseline will be oriented parallel to aline drawn between the origin and the
coordinates specified. For example, the following statement makes the text baseline
parallel to aline drawn between the points [0, O] and [1, 2]:

myt ext - >Set Property, BASELI NE=[1, 2]

@
S

@
&
>
9
S
9

o

§
N
K
g

Figure 9-2: Baseline

The following statement makes the baseline parallel to aline drawn between the
origin and a point located at [2, 1, 3]:
myt ext - >Set Property, BASELI NE=[2, 1, 3]

Notice that the orientation of the baseline is only an orientation; changing value of
the BASELINE property does not change the location of the text object.

Object Programming Text Objects

216

Chapter 9: Annotating an Object Display

Upward Direction

In addition to the baseline orientation, you can control the upward direction of the
text object. (The upward direction is the direction defined by a vector pointing from
the origin to the point specified.) The upward direction defines the plane on which
text isdrawn; by specifying a baseline and an upward direction, you define the plane.

Note
The upward direction does not specify aslant angle. That is, even if you specify a
direction that is not perpendicular to the baseline for the upward direction, the text
will still be perpendicular to the baseline. All that mattersisthe plane defined by the
baseline and upward direction.

For example, in the default situation, the baselineis oriented parallel to the x-axis,
and the upward direction is parallel to the y-axis, pointing in the positive y direction.

Warning
If the baseline and upward direction are coincident—that is, if they do not define a
plane on which to draw the text—IDL generates an error message.

Fonts

The type style and size of the characters displayed in atext object are controlled by
the FONT property. Set the FONT property equal to the object reference of an
IDLgrFont object to use that font’s properties for the text object. If no font object is
specified, IDL uses the default font (12 point Helvetica regular).

Font objects are discussed in “Font Objects’ on page 217.

A Text Example

Text Objects

Ther ot _t ext . pr o example creates asimpletext string, rotates it around the y- and
z-axes using the BASELINE and UPDIR properties, and displays severa different
fonts. Also see“ Object Graphics Embedded Formatting Examples’ on page 219.

Example Code
The procedurer ot _t ext . pr o isincluded in the exanpl es/ doc/ obj ect s
subdirectory of the IDL distribution. You can run the example code by entering
rot _text at thelDL prompt. You can aso examinethe. pr o fileitself for
examples of some of the topics discussed in this section by entering .COMPILE
rot _text.pro atthelDL prompt.

Object Programming

RSI_PROCODE/examples/doc/objects/rot_text.pro

Chapter 9: Annotating an Object Display 217

Font Objects

Font objects allow you to specify the type style and size used when rendering objects
of the IDLgrText class. You can use either TrueType outline fonts or IDL’s built-in
Hershey vector fonts. IDL’s default font is 12 point Helveticaregular.

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey vector fonts will not be returned
asthey are constant—see Appendix H, “Fonts” in the IDL Reference Guide manual
for more information. To return all of the TrueType fonts that can be displayed in a
window object (oW ndow), use the following code:

f ont name=oW ndow >Get Font nanes("*")

PRI NT, fontname
See the destination object’s GetFontnames method for information on how to return
fonts that match specific characteristics.

TrueType Fonts

IDL provides five TrueType outline fonts for use in font objects: Courier, Helvetica,
Monospace Symbol, Symbol, and Times. Your system may support additional
TrueType fonts —use them in the same way as those supplied by IDL.

A string containing the font name and modifiers defines the characteristics of afont
object, as described in “ Creating Font Objects’ on page 218. The TrueType fonts
provided by IDL support the following modifiers:

Font Modifier
Courier bold, italic
Helvetica bold, italic
Monospace Symbol none
Symbol none
Times bold, italic

Table 9-1: TrueType Font Modifiers

Object Programming Font Objects

218

Font Objects

Chapter 9: Annotating an Object Display

Hershey Fonts

IDL supplies a set of vector fonts designed by Dr. A.J. Hershey. See “About Hershey
Vector Fonts” in Appendix H of the IDL Reference Guide manual for information on
Hershey fonts.

Creating Font Objects

Fonts used by font objects are specified in a string constant constructed from afont
name and one or more optional modifiers. When you create afont object, assign the
font name string to the NAME property or useit asthe IDLgrFont::Init Fonthame
argument. See the following sections for an introduction to creating and configuring
font objects. See“IDLgrFont” in the IDL Reference Guide manual for all available
options when creating font objects.

Specifying a TrueType Font

Thefont name isthe name by which your computer system knows the font (Times for
the Times Roman font, for example). Modifiers specify the weight, angle, and other
attributes of the font (bold specifies aweight, italic an angle). The font name string
looks like this:

' f ont name*wei ght *angl e* ot her _nodi fiers’

where other_modifiers can be any other font property supported by a given font, such
asadant. For example, the font name string for Helvetica bold italicis:

"hel vetica*bol d*italic'
The font name string for Times Roman Regular is:

"times'
While the font name must come first in the font name string, the order in which the
modifiers are specified is not important. The following statement creates a font object

using a bold version of the Times Roman font, with a size of 20 points by replacing
the Fontname argument with ' t i nes*bol d' :

myFont = OBJ_NEW' I DLgrFont', 'times*bold , SIZE=20)
See “TrueType Fonts’ on page 217 for alist of supported modifiers.

Specifying a Hershey Vector Font

To create afont object using a vector Hershey font, use a string of the format
Her shey* f ont numwhere f ont numisthe Hershey font’s index number. The

Object Programming

Chapter 9: Annotating an Object Display 219

following statement creates afont object using the Duplex Roman Hershey font, with
asize of 14 points:

myHer sheyFont = OBJ_NEW' | DLgr Font', NAME=' hershey*5', S| ZE=14)

See "Hershey Vector Font Samples’ in Appendix H of the IDL Reference Guide
manual for descriptions of the Hershey fonts shipped with IDL.

Assigning a Font Object to a Text Object

To use afont object, use the FONT keyword to the IDLgrText::Init method (or
change the text object’s font via the SetProperty method):

nmyText = OBJ_NEW' | DLgrText', 'Ay, Carunba', FONT = myFont)
or

nyText - >Set Property, STRING=' Angstrom synbol: ' + STRING "305B), $
FONT=myHer sheyFont

This last example prints the Angstrom symbol by specifying an octal code. See “1SO
Latin 1 Encoding” in Appendix H of the IDL Reference Guide manual for details.

If no font object is specified, IDL uses the default font—12 point Helvetica.
Object Graphics Embedded Formatting Examples

Embedded formatting commands are in-line commands that allow you to position

text and change fonts within a single line of text. The following examples use both

the positioning commands and the font selection commands. All available embedded

formatting commands are listed in “ Embedded Formatting Commands” in Appendix

H of the IDL Reference Guide manual.

Tip
Set the ENABLE_FORMATTING property on the IDLgrText object to use
formatting commands in Object Graphics.

For example, the following lines of code produce the same output as the Direct
Graphics example output shown in “Formatting Command Examples’ in Appendix
H of the IDL Reference Guide manual. This example applies embedded formatting
commands that control text positioning.

oText = OBJ_NEW' I DLgr Text', /ENABLE_FORVATTI NG
oText - >Set Property, STRING='!LLower!S! EExponent!RlI|ndex' + $
"IN Nornmal! STEEXp! R 1Ind!NSIU Up' + $
'R D Down! Nl SI' A Above! R B Bel ow
XOBJVI EW oText

Object Programming Font Objects

220

Fon

Font Objects

Chapter 9: Annotating an Object Display

You can also change what fonts are used within the text string. For example, you can
use the special math symbols available in the Hershey vector font character set (Font
9). When you use the 'M formatting command, this applies the font change to the
single character immediately following the IM. Subsequent characters return to the
preceding font. The following example produces the same equation as that shown in
“A Complex Equation” in Appendix H of the IDL Reference Guide manual.

; String to produce equation:

SS = "I6F(s) = (2!'4p)le-1/2!n !m!slalelmM + STRI NG "44B) +$
"Iribli " o+ -1l + STRING("44B) + $
"I'nF(x)e le-i2!4p!3xs! ndx’

myHer sheyFont = OBJ_NEW' | DLgr Font', NAME=' hershey*5', S| ZE=24)

otext = OBJ_NEW' I DLgrText', /ENABLE_FORVATTI NG

oText - >Set Property, STRI NG=ss, FONT=myHer sheyFont

XOBJVI EW oText

The font object in this example must use a Hershey font to create the desired results.
If no font is specified, the default 12 point Helvetica (not a vector font) is used, and
the formatting commands create a different result. See “ Changing Fonts within a
String” in Appendix H of the IDL Reference Guide manual, which defines how
formatting commands are applied to Hershey vector and TrueType fonts.

See “Text Objects’ on page 213 for details on creating Text objects.
t Objects and Resource Use
Because font objects are relatively complex, each font object uses arelatively large

amount of system resources. Asaresult, it is better to re-use an existing font object
than to create a second identical font object.

Object Programming

Chapter 9: Annotating an Object Display 221

ROI Objects

A region of interest (ROI) is an area of an image defined for further analysis or
processing. ROIs can be defined programmatically and interactively. The XROI
utility letsyou interactively define single or multiple regions from an image using the
mouse. The utility displays defined ROIs and can output ROI data to specified ROI
objects. Any ROI object, whether defined programmeatically or interactively, can
undergo further processing as an analysis-oriented IDLanROI object, or can be used
for display as an IDLgrROI object.

See “Regions of Interest” under the functional category, “Image Processing” in the
IDL Quick Reference manual for alist or ROI creation and manipulation routines.
Also see “Working with Regions of Interest (ROIS)” in the Image Processingin IDL
manual for extensive examples.

Object Programming ROI Objects

222 Chapter 9: Annotating an Object Display

Legend Objects

Legend objects provide asimple interface for displaying legends. The legend itself
consists of a(filled and/or framed) box around one or more legend items (arranged in
asingle column) and an optional title string. Each legend item consists of aglyph
patch positioned to the left of atext string. The glyph patch is drawn in a square
which is afraction of the legend label font height.

Creating Legend Objects

To create alegend object, you must provide an array of item names, along with arrays
of symboals, line styles, or objects, along with arrays of attributes (such as color or
thickness) for the items. The following simple example creates alegend object with
two items. Thefirst item (Cows) is represented by the predefined symbol humber
four (adiamond), and the second item (Weasels) is represented by aline-filled box.
itemNaneArr = [’ Cows’, 'Wasels’]
mytitle = OBJ_NEW' | DLgrText’, My Legend’)
nmysynmbol = OBJ_NEW' | DLgr Synbol *, 4)
nmypattern = OBJ_NEW' | DLgrPattern’, 1)
nmyLegend = OBJ_NEW ' | DLgrLegend’, itemNaneArr, TITLE=nytitle, $
| TEM TYPE=[0, 1], | TEM OBJECT=[nysynbol , nypattern], $
/ SHOW QUTLI NE)

See“IDLgrLegend” in the IDL Reference Guide manual for details on creating
legend objects. See the next section for amore detailed explanation of the elements of
the legend.

Using Legend Objects

Thelegend object allows you to define the annotations that correspond to the array of
strings used as legend names in a variety of ways. The length of the argument string
array is used to determine the number of items to be displayed. Each item is defined
by taking one element fromthe ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors, if they are defined. If
the number of items (as defined by the argument array or the ITEM_NAME array)
exceeds any of the attribute vectors, the attribute defaults will be used for any
additional items.

Specify alist of item names either via the argument to IDLgrLegend::Init, or viathe
ITEM_NAME property. The length of this array determines the size of the legend.

Usethe ITEM_TY PE property to define whether an element in the legend is
represented by aline (with an optional plotting symbal) or by afilled or unfilled box.

Legend Objects Object Programming

Chapter 9: Annotating an Object Display 223

There should be one element of the ITEM_TY PE array per element in the input array
or ITEM_NAME array.

Usethe ITEM_LINESTYLE and ITEM_THICK properties to define the style and
thickness of lines used aslegend items. These arrays are ignored for elementsthat are
not lines. Usethe ITEM_COL OR property to specify the color of each legend
element independently.

Usethe ITEM_OBJECT property to specify that a graphic object be used as an
annotation.

Dimensions

Until the legend is drawn to the destination object, the [XY Z]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation.

The following example builds and displays a three-element legend.

Create a wi ndow, view, and nodel:
nmywi ndow = OBJ_NEW ' | DLgr W ndow)
nyvi ew = OBJ_NEW' | DLgr Vi ew)
mynodel = OBJ_NEW' | DLgr Mbdel ")
nmyvi ew >Add, nynodel
Create the legend with two itemns:
itemNaneArr = ['Original Data', 'HistogramPlot', $
'Boxcar-filtered (Wdth=5)"]
nytitle = OBJ_NEW' | DLgr Text', 'Plot Legend')
mysynmbol = OBJ_NEW' I DLgrSynbol ', 5, SIZE=[0.3, 0.3])
nyLegend = OBJ_NEW' I DLgrLegend', itenNameArr, TITLE=nytitle, $
BORDER_GAP=0. 8, GAP=0.5, $
I TEM TYPE=[O, 1], | TEM LI NESTYLE=[O,4,2], $
| TEM OBJECT=[nysynbol, OBJ_NEW), OBJ_NEW)], $
GLYPH_W DTH=2. 0, / SHOW QUTLI NE)
; Add the legend to the nodel:
nmynodel - >Add, nyl egend
Center the legend in the wi ndow.
Note that you must use the ComputeDi nensi ons net hod
; to get the dinensions of the |egend.
di n8 = nyl egend- >Conput eDi mensi ons(nywi ndow)
nmynodel - >Transl ate, -(dims[0]/2.), -(dims[1]/2.), O
Draw t he | egend:
mywi ndow >Dr aw, nyvi ew

Object Programming Legend Objects

224 Chapter 9: Annotating an Object Display

Plot Legend
—&— QCriginal Data

-- — Histogram Plot
— — Boxcar Filtered (Width=>5)

Figure 9-3: Legend Object

Legend Objects Object Programming

Chapter 9: Annotating an Object Display 225

Colorbar Objects

The IDLgrColorbar object consists of a color-ramp with an optional framing box and
annotation axis. The object can be horizontal or vertical.

Creating Colorbar Objects

To create a colorbar object, you must provide a set of red, green, and blue values to
be displayed in the bar. Axis values are determined from the number of elementsin
the color arrays unless otherwise specified viathe TICKVALUES property. The
following creates a colorbar one tenth of the window dimension wide by four-tenths
of the window dimension high, with a red-green-blue color ramp:

mytitle OBJ_NEW' I DLgr Text', "My Col orbar")

bar Di s [0.1, 0.4]

redVal ues = Bl NDGEN(256)

greenVal ues = redVal ues

bl ueVal ues = REVERSE(r edVal ues)

nycol orbar = OBJ_NEW' | DLgr Col orbar’, redVal ues, $

greenVal ues, blueVal ues, TITLE=mytitle, $
DI MENSI ONS=bar Di ns, / SHOW AXI S, /SHOW OUTLI NE)

See“IDLgrColorbar” in the IDL Reference Guide manual for details on creating
colorbar objects. See the next section for a more detailed explanation of the elements
of the legend.

Using Colorbar Objects

The colorbar object allows you to define the size, colors, and various annotations.
Dimensions

Until the legend is drawn to the destination object, the [XY Z]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation.

The following example builds and displays the colorbar described above:

;. Create a wi ndow, view, and nodel:

mywi ndow = OBJ_NEW' | DLgr W ndow)

nyvi ew = OBJ_NEW' | DLgr Vi ew)

nynodel = OBJ_NEW' | DLgr Model ')

myvi ew >Add, nynodel

; Create the colorbar. Make the bar one tenth of

Object Programming Colorbar Objects

226

Chapter 9: Annotating an Object Display

the wi ndow size horizontally and four tenths of
the wi ndow size vertically. Show the axis values (using the
; default axis annotations) and draw an outline around the bar.
mytitle = OBJ_NEW' I DLgrText', 'My Col orbar')
barDins = [0.1, 0.4]
redVal ues = Bl NDGEN(256)
greenVal ues = redVal ues
bl ueVal ues = REVERSE(redVal ues)
nycol orbar = OBJ_NEW' I DLgr Col orbar', redVal ues, $
greenVal ues, blueValues, TITLE=nytitle, $
DI MENSI ONS=bar Di ns, /SHOW AXI S, /SHOW OUTLI NE)
nynodel - >Add, nycol or bar
;. Center the colorbar in the w ndow.
; Note that you must use the ConputebDi mensi ons nmethod to
; get the dinmensions of the col orbar.
bar Pl usText Di ns = nycol or bar - >Conput eDi nensi ons(mywi ndow)
nynodel - >Transl ate, -barDi ns[0] +(barPl usTextDins[0]/2.), $
-barDi ns[1] +(bar Pl usTextDi nms[1]/2.), O
: Draw the col orbar:
mywi ndow >Dr aw, nyvi ew

My Colorbar

Figure 9-4: Colorbar Object

For more examples of IDLgrColorbar use, see “Displaying Indexed Images with
Object Graphics’ in the Examples section of “IDLgrPalette::Init” in the IDL
Reference Guide manual.

Also see “Custom Image Object Annotations’ on page 230 for information on
configuring a colorbar legend using IDLgrPolygon, IDLgrPolyline and IDLgrText
objects.

Colorbar Objects Object Programming

Chapter 9: Annotating an Object Display 227

Light Objects

Objects of the IDLgrLight class represent sources of illumination for graphic objects.
Although light objects are not rendered themselves, they are part of the model tree
and thus can be transformed along with the graphic objects they illuminate.

If no light sources are specified for a given model, a default ambient light source is
supplied. This allows you to display many objects without explicitly creating alight
source. The use of only ambient light becomes problematic, however, when solid
surfaces and other objects constructed from polygons are displayed. With only
ambient lighting, all solid surfaces appear flat—in fact, they appear to be single two-
dimensional polygons rather than objectsin three-dimensional space.

Note
Graphic objects do not automatically cast shadows onto other objects.

Creating Light Objects

There are no arguments to the IDLgrLight::Init method. Keywords to the Init method
alow you to control a number of properties of the light object, including the
attenuation, color, cone angle (area of coverage), direction, focus, intensity, location,
and type of light.

The following statement creates a default light object. The default light object isa
white positional light, located at the origin.

nmyl i ght = OBJ_NEW' | DLgr Li ght")

There are four types of light objects available. Set the TY PE property of the light
object to one of the following integer values:

e 0= Ambient light. An ambient light is a universal light source, which has no
direction or position. An ambient light illuminates every surface in the scene
equally, which means that no edges are made visible by contrast. Ambient
lights control the overall brightness and color of the entire scene. If no valueis
specified for the TY PE property, an ambient light is created.

* 1=Positiona light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

e 2=Directiona light. A directional light supplies paralel light rays. The effect
isthat of apositional light source located at an infinite distance from scene.

Object Programming Light Objects

228

Chapter 9: Annotating an Object Display

e 3= Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

See“IDLgrLight” in the IDL Reference Guide manual for details on creating light
objects.

Configuring Light Objects

In addition to the type of light source, you can control several other properties of a
light object. The following example creates a solid surface object and displaysit first
with only ambient lighting, then adds various light objects to the scene.

Note
The SET_VIEW function is discussed in “Finding an Appropriate View Volume”

on page 74.

Begin by creating some data, the surface object, and supporting objects:

Light Objects

zdata = DI ST(40)

mywi ndow = OBJ_NEW' | DLgr W ndow)

nyvi ew = OBJ_NEW' | DLgr Vi ew)

nynmodel = OBJ_NEW ' | DLgr MODEL')

mysurf = OBJ_NEW'IDLgrSurface', zdata, STYLE=2)

Create the object hierarchy:
nmyvi ew >Add, nynodel
nynodel - >Add, nysurf

Retrieve the X, Y, and Z ranges fromthe surface object:
mysurf->Get Property, XRANGE=xr, YRANGE=yr, ZRANGE=zr

Convert x, y, and z ranges to nornalized coordinates.
xnorm= [-xr[O]/(xr[1]-xr[0]), 1/(xr[1]-xr[O])]
ynorm = [-yr[O]/(yr[1]-yr[O]), 1/(yr[1]-yr[0O])]
znorm = [-zr[0]/(zr[1]-zr[O]), 1/ (zr[1]-2r[0])]

nysur f - >SSETPROPERTY, XCOORD_CONV=xnorm $
YCOORD_CONV=ynorm ZCOORD_CONV=znor m

Rotate the surface to a convenient orientation:
mynodel - >Rotate, [1,0,0], -90
nmynodel - >Rotate, [0,1,0], 30
nmynodel - >Rotate, [1,0,0], 30

Use the SET_VIEWroutine to set an appropriate viewpl ane

Object Programming

Chapter 9: Annotating an Object Display 229

; rectangle and zclip region for the view
SET_VIEW nyvi ew, mywi ndow

Draw t he contents of the view
nywi ndow >Dr aw, nyvi ew

Once the surface object is drawn, we see that there is no definition or apparent three-
dimensional shape to the surface. If we add a positional light one unit in the Z
direction above the XY origin, however, details appear:

nylight = OBJ_NEW' IDLgrLight', TYPE=1, LOCATI ONS[O, 0, 1])

nmynodel - >Add, nyli ght
nywi ndow >Dr aw, nyvi ew

We can continue to ater the lighting characteristics by changing the properties of the
existing light or by adding more light objects. (You can have up to eight lightsin a
given view object.) We can change the color:

nmyl i ght - >Set Property, COLOR=[200, 0, 200]
mywi ndow >Dr aw, nyvi ew

We can change the intensity of the light:
nyl i ght ->Set Property, | NTENSI TY=0.7
nywi ndow >Dr aw, nyvi ew
Note
Also see “Volume Lighting” on page 191 for volume object specific lighting
information.

Optimizing Light Object Use

Lighting computations are generally set up to compute thelight intensity based on the
normal vector for the polygon. If the polygon normal faces away from the eye, the
lighting model will likely determine that the light intensity for that polygon is zero.
When the polygonal mesh being rendered is a closed surface, thisis not a problem
because the back-facing polygons will always be obscured. However, when the
polygon mesh represents an open shape (for which back-facing polygons may be
visible), the dark appearance of these polygons may hinder the user’s perception of
the overall shape. In such acase, two-sided lighting can be useful. Two-sided lighting
isthe process of reversing the normalsfor all back-facing polygons before computing
the light intensities for that polygon.

In IDL’s Object Graphics, two-sided lighting is enabled by default. When the
additional lighting calculation is not required, one-sided lighting can be used to
improve rendering performance. On an IDLgrModel object, set the LIGHTING
property to avalue of 1 to enable one-sided lighting.

Object Programming Light Objects

230 Chapter 9: Annotating an Object Display

Custom Image Object Annotations

Many images are annotated to explain certain features or highlight specific details.
Color annotations are more noticeable than plain black or white annotations. This
section includes the following examples:

« “Annotating Indexed Image Objects’
« “Annotating RGB Image Objects’ on page 234

Annotating Indexed Image Objects

When using Object Graphics, the original color table does not need to be modified.
The color table (palette) pertains only to the image object not the window, view,
model, polygon, or text objects. Color annotations are usually applied to label each
color level within the image or to allow color comparisons. This section shows how
to label each color level on an indexed image in Object Graphics. As an example, an
image of average world temperature is imported from the wor | dt np. png file. This
file does not contain a color table associated with thisimage, so a pre-defined color
table will be applied. This table provides the colors for the polygons and text used to
make a colorbar for thisimage. Each polygon usesthe color of each level in thetable.
The text represents the average temperature (in Celsius) of each level. Complete the
following steps for a detailed description of the process.

Example Code
Seeappl ycol or bar _i ndexed_obj ect . pro inthe exanpl es/ doc/ obj ect's
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determine the path to thewor | dt np. png file:

wor | dt npFi |l e = FI LEPATH(' worl dtnp. png', $
SUBDI RECTORY = [' exanples', 'demp', 'denodata'])

2. Import theimage from thewor | dt np. png fileinto IDL:
wor | dt npl mage = READ_PNG(wor | dt mpFi | e)
3. Determine the size of the imported image:
wor | dt mpSi ze = Sl ZE(wor | dt npl mage, / DI MENSI ONS)
4. Initialize the display objects necessary for an Object Graphics display:

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = [wor | dt npSi ze[0], worl dtnmpSize[1]], $
TITLE = ' Average Worl d Tenperature (in Celsius)')
oView = OBJ_NEW'IDLgrView, $

Custom Image Object Annotations Object Programming

RSI_PROCODE/examples/doc/objects/applycolorbar_indexed_object.pro

Chapter 9: Annotating an Object Display 231

VI EWPLANE_RECT = [0, O, worldtnpSize[0], $
wor | dt mpSi ze[1]])
oModel = OBJ_NEW' | DLgr Model ')
5. Initialize the palette object, |oad the Rainbow18 color table into the palette,
and then apply the palette to an image object:
oPal ette = OBJ_NEW' I DLgrPalette')
oPal ette -> LoadCT, 38
ol mage = OBJ_NEW' | DLgr | mage', worl dt npl mage, $
PALETTE = oPal ette)
6. Add theimage to the model, then add the model to the view, and finally draw
the view in the window:
oMbdel -> Add, ol mage

oView -> Add, oMbdel
oW ndow -> Draw, oView

The following figureis displayed.

Figure 9-5: Temperature Image and Rainbow18 Color Table (Object Graphics)

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has
only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elementsranging from0to 17 in
value, where each element contains the index of that element. Then you can

Object Programming Custom Image Object Annotations

232

Chapter 9: Annotating an Object Display

use the BY TSCL routine to scale these values to range from 0 to 255. The
resulting array containsthe initial color value (from 0 to 255) of the associated
range (from 0 to 17, equalling 18 elements).

Initialize the color level parameter:
fill Col or = BYTSCL(| NDGEN(18))

Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperatureis linearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used astext:

tenperature = STRTRIMFI X(((20.*fillColor)/51.) - 60), 2)

Note
When the fillColor variable in the previous statement is multiplied by the
floating-point value of 20 (denoted by the decimal after the number), the
elements of the array are converted from byte values to floating-point values.
These elements are then converted to integer values with the FIX routine so
the decimal part will not be displayed. The STRTRIM routine converts the
integer values to string values to be displayed as text. The second argument
to STRTRIM isset to 2 to note the leading and trailing black values should be
trimmed away when the integer values are converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use a polygon object to draw each polygon and text objects
to display each element of text. The processis repetitive from level to level, so
aFOR/DO loop is used to display the entire colorbar. Since each polygon and
text is drawn individually within the loop, you only need to determine the
location of a single polygon and an array of offsets for each step in the loop.
The following two steps describe this process.

Initialize the polygon and the text location parameters. Each polygon is 35
pixelsin width and 18 pixelsin height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5., 5.]

y [5., 5., 23., 23., 5.] + 5.
of fset = 18. *FI NDGEN(19) + 5.

10. Initialize the polygon and text objects:

oPol ygon = OBJARR(18)

oText = OBJARR(18)

FORi = 0, (N_ELEMENTS(oPolygon) - 1) DO BEGAN & $
oPol ygon[i] = OBJ_NEW' I DLgrPolygon', x, $

Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display 233

y + offset[i], COLOR = fillColor[i], $
PALETTE = oPalette) & $
oText[i] = OBJ_NEW'IDLgrText', tenperature[i], $
LOCATIONS = [x[0] + 3., y[O] + offset[i] + 3.], $
COLOR = 255*(fillColor[i] LT 255), $
PALETTE = oPalette) & $

ENDFOR

Note
The & after BEGIN and the $ alow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed inan IDL program as shown in
Appl yCol or bar _I ndexed_Chj ect . pro inthe
exanpl es/ doc/ obj ect s subdirectory of the IDL installation.

11. Add the polygons and text to the model, then add the modéd to the view, and
finally redraw the view in the window:

oModel -> Add, oPol ygon
oMbdel -> Add, oText
oW ndow -> Draw, oView

The following figure displays the colorbar annotation applied to the image.

H

Figure 9-6: Temperature Image and Colorbar (Object Graphics

Object Programming Custom Image Object Annotations

234 Chapter 9: Annotating an Object Display

12. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed

by the user), you only need to use OBJ_DESTROY on the view and the palette
objects:

OBJ_DESTROY, [oView, oPalette]

Annotating RGB Image Objects

When using Object Graphics, colors can be defined just by the values of their red,
green, and blue components. In this example, a color spectrum of additive and
subtractive primary colors will be drawn on an RGB image for comparison with the
colorsin that image. The gl owi ng_gas. j pg file (which is provided by the Hubble
Heritage Team, made up of AURA, STScl, and NASA) contains an RGB image of an
expanding shell of glowing gas surrounding a hot, massive star in our Milky Way
Galaxy. Thisimage contains al the colors of this spectrum. Complete the following
steps for adetailed description of the process.

Example Code
Seeappl ycol orbar _rgb_obj ect. pro intheexanpl es/ doc/ obj ect's
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determinethe pathtothegl owi ng_gas. j pg file

cosm cFile = FILEPATH(' gl owi ng_gas.jpg', $
SUBDI RECTORY = ['exanples', 'data'])

2. Import theimage from the gl owi ng_gas. j pg fileintoIDL:
READ JPEG, cosmicFile, cosm cl nmage

3. Determinethe size of theimported image. The image contained within thisfile
is pixel-interleaved (the color information is contained within the first

dimension). You can use the SIZE routine to determine the other dimensions
of thisimage:

cosm cSi ze = Sl ZE(cosni cl mage, /DI MENSI ONS)
4. Initialize the display objects required for an Object Graphics display:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = [cosmicSize[1], cosmicSize[2]], $
TITLE = ' gl owi ng_gas. j peg')

oView = OBJ_NEW' IDLgrView, $
VI EWPLANE RECT = [0., 0., cosmicSize[1], $

Custom Image Object Annotations Object Programming

RSI_PROCODE/examples/doc/objects/applycolorbar_rgb_object.pro

Chapter 9: Annotating an Object Display 235

cosmi cSi ze[2]])
oMbdel = OBJ_NEW' | DLgr Model ')
5. Initialize theimage object. The INTERLEAVE keyword is set to 0 because the
RGB image is pixel-interleaved:
ol mage = OBJ_NEW' I DLgrl mage', cosm clmage, $
I NTERLEAVE = 0, DI MENSIONS = [cosmicSize[1l], $
cosmi cSi ze[2]])

6. Add theimage to the model, then add the model to the view, and finally draw
the view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

The following image contains all of the colors of the additive and subtractive
primary spectrum. A colorbar annotation can be added to compare the colors
of that spectrum and the colors within the image. The color of each box is
defined in the following array.

Figure 9-7: Cosmic RGB Image (Object Graphics)

You can use the following to determine the color and location parameters for
each polygon.

Object Programming Custom Image Object Annotations

236

7.

8.

10.

Custom Image Object Annotations

Chapter 9: Annotating an Object Display

Initialize the color parameters:

fillColor = [[0, O, O], $; black
[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, O, 255], $; blue
[255, O, 255], $; mmgenta
[255, 255, 255]] ; white

After defining the polygon colors, you can determine their locations. Initialize
polygon location parameters:
x = [5., 25., 25., 5.,

5.]
y [5., 5., 25., 25., 5.] + 5.
of fset = 20. *FI NDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.
Since the image is made up of mostly ablack background, the x border of the
colorbar is aso determined to draw a white border around the polygons.

Initialize location of colorbar border:

Xx_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

They border is aready defined by the y variable.

These parameters are used when initializing the polygon and polyline objects
These objects will be used draw the boxes of the color spectrum and the
colorbar border. Each polygon is 20 pixels wide and 20 pixels high. The offset
will move the y-location 20 pixels every time a new polygon is displayed.

Initialize the polygon objects. The processis repetitive from level to level, so a
FOR/DO loop will be used to display the entire colorbar. Since each polygonis
drawn individually within the loop, you only need to determine the location of
asingle polygon and an array of offsets for each step in the loop:

oPol ygon = OBJARR(8)

FOR i = 0, (N_ELEMENTS(oPol ygon) -
OBJ_NEW' | DLgr Pol ygon',
COLOR = fillColor[*, i])

1) DO oPolygon[i] = $
x + offset[i], vy, $

Object Programming

Chapter 9: Annotating an Object Display 237

11. The colorbar border is produced with a polyline object. This polyline object
requires az variable to define it slightly above the polygons and image. The z
variable is required to place the polyline in front of the polygons. Initiaize the
polyline (border) object:

z = [0.001, 0.001, 0.001, 0.001, 0.001]

oPolyline = OBJ_NEW' I DLgrPolyline', x_border, vy, z, $
COLOR = [255, 255, 255])

12. The polygon and polyline objects can now be added to the model and then
displayed (re-drawn) in the window. Add the polygons and polyline to the
model, then add the model to the view, and finally redraw the view in the
window:

oMbdel -> Add, oPol ygon
oMbdel -> Add, oPolyline
oW ndow -> Draw, oView

The following figure shows the colorbar annotation applied to the image.

Figure 9-8: Specified Colors on an RGB Image (Object Graphics)

13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object:

OBJ_DESTROY, oView

Object Programming Custom Image Object Annotations

238 Chapter 9: Annotating an Object Display

Custom Image Object Annotations Object Programming

Chapter 10

Animating Objects

The following topics are covered in this chapter:

Overview of Object Animation 240 Designing aBehavior Object 245
Controlling the Animation Rate 244 Factors Affecting Animation Performance 247
Configuring an Animation Model Object . 242 Example: Interactive Cine Animation ... 249

Object Programming 239

240 Chapter 10: Animating Objects

Overview of Object Animation

The animation functionality in IDL lets you draw a series of imagesin rapid
succession, the speed of which has no limit other than that of system capabilities and
graphics hardware. You can easily control the rate and order of the image display, or
synchronize several displays. You can also display overlaysthat contain other types
of information (such astext, ROIs, or contours) that are either specific to the currently
displayed image or common to al displayed images. In addition to images, other
objects such as surface and volume objects can also be animated.

The key to thisflexibility is due to the fact that animation capabilities are provided in
part by an IDLgrModel object, to which you can add any combination of graphic
objects. As shown in the following figure, the object hierarchy for animation is very
similar to a standard window-scene-view-model hierarchy of atypical display. When
the animation model is used in conjunction with an IDLitWindow and a custom
behavior object, the animation display possibilities are nearly limitless.

(IDLitWindow)

Custom
“Behavior”

(Custom class
supporting Window
Event Observer
Interface)

Model supports “Active

Position” rendering (IPLgrodel)

Currently
Selected
Iodel

| Image | ‘ Image ‘ ‘ ROI |

Figure 10-1: Object Interaction in Animation Support

Overview of Object Animation Object Programming

Chapter 10: Animating Objects 241

While the graphicstree of an animation display isvery similar to astandard display, it
isimportant to note the differences. Animation relies on an IDLitWindow (not
IDLgrWindow), which has a built-in timer mechanism, and an IDLgrModel object
that has an awareness of “Active Position” rendering. Thereis also a user-defined
object that determines how the contentsin the animation model are modified. This
behavior object can incorporate any action, but it will commonly iterate through a
series of images or transform amodel object in response to atimer signal received
from the window. See the following topics for more information on adding animation
functionality to a program or application:

e “Configuring an Animation Model Object” on page 242 — describes how
IDLgrModel properties enable animation

» “Controlling the Animation Rate” on page 244 — describes how to
incorporate behavior objects, and how to set IDLgrwindow methods and
parametersto start, stop, and control the rate of an animation

« “Designing aBehavior Object” on page 245 — describes the most important
elements of a behavior object, and provides access to two working animation
examples (asimple Cine loop, and a timer-based surface rotation)

For an example that incorporates animation elements into a widget application that
letsyou interactively control the playback of a series of image frames, see “ Example:
Interactive Cine Animation” on page 249.

Note
For information on how scene contents, image sizes, and display refresh rates
influence animation performance, see “ Factors Affecting Animation Performance”
0N page 247.

Object Programming Overview of Object Animation

242

Chapter 10: Animating Objects

Configuring an Animation Model Object

AnIDLgrModel object that supports animation acts as a container for any number of
objects. However, instead of displaying all objects when the model is drawn, a model
object that supports animation lets you instruct the object to draw only one of the
objectsin its container. For example, thisallowsyou to display a succession of single
images from a series of images that has been added to the animation model.

To create amodel object that supports animation, set the RENDER_METHOD
property value to 1 to display single objects from the model collection. Use the
ACTIVE_POSITION property of the model, a zero-based index into the model
collection, to define what object to display. The default RENDER_METHOD value
(0), draws all objectsin amodel. If your animation model contains a single object
(e.g., when you are rotating a surface), you do not need to set the
RENDER_METHOD property.

The index of the item to draw does not automatically increment when the model is
drawn, so redrawing the scene graph always draws the same content. This maintains
the window contents when the window is refreshed or resized. Therefore, the model
object must be explicitly told which item to draw. The logic that determines which
item to draw isleft to the application and is typically encapsulated in a user-defined
behavior class. See“Designing a Behavior Object” on page 245 for more
information.

Using Multiple Models

It is suggested that you create a main-level display model (that rendersin the
traditional all-object fashion) in addition to the animation model (that sets the
RENDER_METHOD property). This compartmentalization provides moreflexibility
interms of display content. For example, suppose you have a Cine display. The main-
level display model could contain atext object that is displayed on all image frames.
If you did not have the main-level model, the text would only appear as part of the
Cine, according to its position in the animation model.

If you are adding more than just images to an animation model (e.g., you want a
contour or ROI overlaying an image), then you can create additional sub-models.
These are useful when each frame of an animation is a composite of several

Configuring an Animation Model Object Object Programming

Chapter 10: Animating Objects 243

individual, data-specific objects. The following figure provides asimpleillustration
of a possible model hierarchy in animation.

Model supports “Active
Position” rendering

{IDLgrModel)

‘ Image ‘ ‘ Image | ‘ EOI ‘

Figure 10-2: Possible Model Object Hierarchy in an Animation Display

Typically, images can be added directly to amodel object. However, if your
application provides away to interactively change the properties of the images (e.g.,
by filtering or modifying the color table), you should add the images to an object
collection. You can then pass a pointer to this object array, and access the images
when needed. Thisis significantly easier than accessing the image data from the
animation model. The following short segment of code shows such an image
collection, ol mageCol | , and the animation model, oAni mat i onhvbdel :

Access the i nage data.
head = READ BI NARY(FILEPATH(' head.dat', $
SUBDI RECTORY=[' exanpl es','data']), $
DATA DI M5=[80, 100, 57])

Initialize an object array with dinensions equal to the
nunber of inages in the series.
ol mageCol | = OBJARR(57)

; Create the imge objects, add each to the inmage collection and
; the animati on nodel .
FOR i =0, 56 DO BEG N
ol mageCol I [i] = OBJ_NEW' IDLgrlmage', head[*,*,i],
PALETTE=0Pal ette, /| NTERP)
0Ani mat i onMbdel - >Add, ol nageCol | [i]
ENDFOR

Object Programming Configuring an Animation Model Object

244 Chapter 10: Animating Objects

Controlling the Animation Rate

A custom behavior object typically controls the display of objectsin amodel that
supports animation. However, it isthe IDLitWindow object that controlsthe timing of
the animation, and notifies the behavior object that it istime to initiate an action. To
define what behaviors are initiated when atimer event occurs, add one or more
behavior objects to the AddWindowEventObserver method observer list.

To enabletimer events for awindow, you need to use the SetEventMask method. This
effectively lets you to turn on or turn off an animation by enabling or disabling a
window’s ability to respond to timer events. (Use the GetEventMask method to
determine which events are enabled in a window.)

The SetTimerInterval method determines the animation rate. Use the
SetTimerInterval method to set a value that specifies how many seconds pass before
the next timer event occurs. In the following sample code, oAni nBehavi or isthe
custom behavior object, oAni mat i onModel isthe model that contains the
animation, and oW n isan IDLitWindow object.

Create a custom animati on object and initialize it with
; the animation nodel. Add the new object to the Iist

of wi ndow observers and set the display rate (10 frames

per second).
0Ani nmBehavi or = OBJ_NEW' MyAni mati on', oAni mati onMbdel)
oW n- >AddW ndowEvent Cbserver, oAni nBehavi or
oWn->SetTinmerlnterval, 0.1

Pl ay the ani mation.
oW n- >Set Event Mask, /TI MER_EVENTS

To turn off an animation, set TIMER_EVENTS equal to O.

The SetTimerInterval method interval value determines how often an IDLitWindow
object calls the OnTimer method for the behavior objects in the observer list.
Therefore, each animation behavior object must implement the OnTimer method. See
“Designing a Behavior Object” on page 245 for more information.

Controlling the Animation Rate Object Programming

Chapter 10: Animating Objects 245

Designing a Behavior Object

A behavior object is an instance of a custom class that controls the display of the
object(s) contained in amodel object that supports animation. This behavior object
determines what action to take in response to atimer event. When atimer event
occurs, the window object calls the OnTimer method of each window observer (each
behavior object) that implementsit. The following figure shows the interaction
between the window and a behavior object.

(IDLitWindow)

Custom
“Beharior™
obiect

(Customeclass
supporting Window
Ewent Observer
Interface)

Model supports “Active

Position” rendering (IDLgrhdodel)

Figure 10-3: Interaction Between Window, Behavior Object, and Animation
Model

In the example of a Cine, the behavior object’s OnTimer method tells the model
object which model or graphic to display the next time the sceneis drawn. The
behavior object completesits action by signaling the window object to draw the scene
with the updated model. The system is quiescent until the next timer interval expires,
at which point the process begins again. In widget applications, widget events and
other application processing may occur during the quiet time.

The OnTimer method of the behavior object need not be complex. The following
simple OnTimer method of the user-defined behavior object, MyAni mat i on, simply
iterates through the framesin an image series. The OnTimer method parameter
specifies the IDLitWindow object in which the timer event occurred.

Object Programming Designing a Behavior Object

246

Chapter 10: Animating Objects

PRO MyAni mation:: OnTi mer, oWn

;. Add one to the current frane nunber.
sel f.current Franme++

Iterate through the image franes. Define the frane to display

; by setting the ACTI VE_POSTI ON property on the nodel .

I F self.currentFrane GE sel f. 0Ani mati onModel - >Count () THEN $
self.currentFrane = 0

sel f. oAni mati onModel - >Set Property, $

ACTI VE_POSI Tl ON=sel f. current Frame

: Draw the scene.
oW n->Dr aw

END

Example Code
For the simple Cine animation example, see ani mat i on_i mage_doc. pro inthe
exanpl es/ doc/ obj ect s subdirectory of the IDL installation directory. To run
the example, type ani mat i on_i mage_doc at the command line. This example
shows a simple animation in awindow that continues until the window is closed.

More than one behavior object can be associated with awindow, which lets you
create synchronous animations. The window triggers all behaviors associated with it
by calling al observersthat are interested in OnTimer notifications. Also, a behavior
can be programmed to perform any arbitrary operation. It is not limited to cycling
through a series of images. For example, it could ater atransform in amodel object
to implement atime-based rotation.

Example Code
For a simple surface rotation animation example, see
ani mati on_surface_doc. pro intheexanpl es/ doc/ obj ect s subdirectory
of the IDL installation directory. To run the example, type
ani mat i on_surface_doc at thecommand line.

Designing a Behavior Object Object Programming

RSI_PROCODE/examples/doc/objects/animation_image_doc.pro
RSI_PROCODE/examples/doc/objects/animation_surface_doc.pro

Chapter 10: Animating Objects 247

Factors Affecting Animation Performance

Animation performance depends on alarge number of factors that include the amount
of graphic content in each frame and the capabilities of the hardware. You adjust the
animation rate by setting the timer interval value of the IDLitWindow object. When
the timer interval expires, IDL callsthe OnTimer method of the behavior objects that
are observing the window. If the hardware can draw the entire scene graph within the
requested timer interval, IDL waits until the timer interval expires before calling the
OnTimer methods again, in order to produce the requested animation rate. If IDL was
performing another operation or computation when the timer interval began, it returns
to that task after drawing the scene and until the time interval expires again. If IDL
cannot draw the entire scene graph before the timer interval expires, it finishes
drawing the scene graph and immediately moves on to the next frame by calling the
OnTimer method again, as long as the window timer is running. Any excess timer
expirations are discarded so they do not “pile up” behind the animation. Therefore,
you may experience a“maximum possible frame rate” that depends on the graphic
content and the capahilities of the machine you are using.

Scene graphs that contain alarge amount of graphical information and/or render
slowly can reduce the maximum achievable frame rate. Very large polygonal meshes
and volumes are examples of graphical content that will reduce animation
performance.

Multiple Image Copies

If you are animating avery large amount of image data, the maximum frame rate may
aso be reduced if the total amount of image data exceeds the space available on the
video card and system memory. IDL attempts to optimize image rendering by
keeping image data in the video card memory and in system memory as video card
memory is exhausted. If the image memory requirements exceed the amount of space
availablein“fast” memory, (video and system memory), the system may moveimage
dataout to “slow” memory (paging space). This can reduce image animation
performance as older images need to be swapped back into video memory when they
need to be displayed again. If this occurs, consider using a single IDLgrlmage object
in your animation and replace the image data in the image object with image data for
the next frame in the OnTimer method. This reduces the total number of copies of
image data stored in memory at once and still provides good performance. It isbest to
put al your image datainto | DL grlmage objects when the images dl fit into memory
and thereisarequirement to rapidly animate all theimagesin aloop. If al theimages
do not fit into memory or if rapid access to al the images is not necessary, it may be
better to use asingle IDLgrlmage object.

Object Programming Factors Affecting Animation Performance

248 Chapter 10: Animating Objects

Graphics Display Refresh Rate

Maximum frame rates may also be restricted by the refresh rate of your graphics
display deviceif the screen refresh rate is tied to applications. This can prevent the
application from exceeding the refresh rate of the display device, whichisoften inthe
range of 60-120 frames per second. If you find that you cannot create an animation
faster than the refresh rate, look for a setting on your video card control software to
disable this synchronization. It is often referred to as VSYNC, vertical
synchronization, or “refresh rate override”.

Using application frame rates in excess of display device frame rates with
synchronization turned off is often not useful and can even be distracting because of
missing or “dropped” frames. For example, if you try to display a 10-image
animation on adisplay device using a60 Hz refresh rate at 600 frames per second, the
animation will appear stalled, since the user will see the same image over and over.
The other 9 images are drawn to the display between display device refreshes and are
“dropped”.

Factors Affecting Animation Performance Object Programming

Chapter 10: Animating Objects 249

Example: Interactive Cine Animation

You can incorporate animation into awidget application by using the CLASSNAME
keyword to assign an IDLitWindow object to WIDGET_DRAW and using the
properties and methods documented in this chapter. The following widget application
lets you start and stop an animation, and set the frame rate and frame increment. It is
limited to this functionality only to highlight the essential features of animation. You
could incorporate zooming, panning, or the addition of annotative objects (such as
text, ROIs, or contours) in either the main-level model or inindividua object models.
See "Using Multiple Models’ on page 242 for information on how the placement of
objects and models in the graphics hierarchy affects the display.

Example Code
See ani mat i on_doc. pro intheexanpl es/ doc/ obj ect s subdirectory of the

IDL installation directory for the complete widget animation example. To run the
example, type ani mat i on_doc at the command line.

#1 Object Graphics Animation Demo

10

Rate [fps) Al » Frame Advance: Al 1J] ﬂﬂﬂﬂ

Figure 10-4: Simple Widget Animation Interface

Object Programming Example: Interactive Cine Animation

RSI_PROCODE/examples/doc/objects/animation_doc.pro

250 Chapter 10: Animating Objects

Example: Interactive Cine Animation Object Programming

Chapter 11

Selecting Objects

This chapter will describe the IDL Object Graphics selection and direct manipulation features. The
following topics are covered in this chapter:

Selection and DataPicking 252 DaaPicking 256
Object Selection 253 A DataPickingExample 257
A SelectionExample 255

Object Programming 251

252 Chapter 11: Selecting Objects

Selection and Data Picking

When graphical items are drawn to awindow, it is often useful to be ableto click the
mouse on a certain location and request alist of the itemsthat are displayed at that
particular location. In IDL, thisis called selection. Because IDL object graphics are
retained in memory, they can be uniquely identified by their individual object
references, and therefore can be reported as having been selected.

In many cases, it is also useful to be able to request the data value of the object at the
user-selected location. In IDL, thisis called data picking.

Selection and Data Picking Object Programming

Chapter 11: Selecting Objects 253

Object Selection

With object graphics, the process of selectionisvery similar to drawing, except that
nothing is displayed on the screen, and information about which objects were
selected is returned to the user. Selection is performed via the Select method of an
IDLgrwindow object.

Three types of objects may be selected: view objects, model objects, and
visualization objects. For a given scene that contains more than one view, you can
use the Select method to determine which view is selected at a given location.
Likewise, for agiven view, you can use the Select method to determine which
models and/or visualization objects within that view are selected.

An object is considered to be selected if its graphical rendering falls within a box
centered on a given location. The dimensions of the box are set viathe
DIMENSIONS keyword to the Select method. Both the location argument and
dimensions keyword values are measured in units specified viathe UNITS keyword.

The Select method returns a vector of objects, sorted in depth order (nearest to the
eyeisfirst), that meet the criteria of having been selected at the given location. If no
objects are selected at the given location, the Select method returns —1.

See “IDLgrWindow::Select” in the IDL Reference Guide manual for a detailed
description of the Select method.

Selecting Views

To determine which of a set of views within a given scene are selected at agiven
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrScene object asitsfirst argument, and the location at which the selectionisto
occur as its second argument:

myLoc = [nmyMouseEvent.x, nyMuseEvent.y]
nmySel ect edVi ews = nyW ndow >Sel ect (myScene, nyLoc)

Object Programming Object Selection

254 Chapter 11: Selecting Objects

Selecting Visualization Objects

To determine which visualization objects within a given view are selected at a given
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrView object asitsfirst argument, and the location at which the selectionisto
occur as the second argument:

nmyLoc = [nmyMouseEvent. x, nyMouseEvent.y]
nmySel ect edG aphi cs = nyW ndow >Sel ect (nmyVi ew, myLoc)

Note
If amodel within the view is set as a selection target, the model object, rather than
its contained visualization objects, is returned in the vector of selected objects.

Selecting Models

In some cases, a group of visualization objects may be considered subcomponents of
the model in which they are contained. Asaresult, you may want to know when a
model object (rather than one or more of its contained visualization objects) has been
selected. To enable selection of amode (rather than its visualization objects), the
model object must be marked as a selection target.

To mark amodel as being a selection target, set the SELECT_TARGET property of
the model object to a nonzero value.

myW ndow = OBJ_NEW' | DLgr W ndow)
nyView = OBJ_NEW' | DLgr Vi ew)

nyModel = OBJ_NEW' | DLgr Model ')

myVi ew >Add, nyModel

nmyModel - >Set Property, /SELECT_TARGET
nmyAxis = OBJ_NEW' I DLgr Axis', 0)
nyModel - >Add, nyAxi s

nyW ndow >Dr aw, nyVi ew

In the above example, if aselection at location [myX, myY] would normally select the
axis object, the returned value of the Select method will be the object reference to
myModel rather than the object reference to myAxis.

Object Selection Object Programming

Chapter 11: Selecting Objects 255

A Selection Example

An example procedure named sel _obj . pr o creates two views, places models
within the views, and provides an interface to let you choose between selecting
models or visualization objects. A mouse click in one of the views will update alabel
that identifies the current selections.

Example Code
Thisexample, sel _obj . pro, isincluded in the exanpl es/ doc/ obj ect s
subdirectory of the IDL distribution. Enter the. COVPI LE sel _obj . pro at the

IDL command lineto open thefilein an IDL Editor window or typesel _obj to
run the example.

Object Programming A Selection Example

RSI_PROCODE/examples/doc/objects/sel_obj.pro

256

Chapter 11: Selecting Objects

Data Picking

Data Picking

To get the data value that corresponds to a particular window location, use the
PickData method of an IDLgrWindow object. Note that you must draw the view to
the window before calling the PickData method.

nmyLoc = [nmyMouseEvent. x, nyMouseEvent.y]
result = myW ndow >Pi ckDat a(nyVi ew, nyModel, myLoc, returnedXYZ)

The PickData method returns one of the following values:
e 0(zero) if the pick hit the background of the view
e 1(one) if the pick hit the one of the visualization objectsin the view

» —lif anerror occurred (for instance, if the pick location lies outside of the
given view)

The data value at the pick is returned in the returnedXYZ argument. This value
represents the mapping of the window location to the data space of the model.

Object Programming

Chapter 11: Selecting Objects 257

A Data Picking Example

The example proceduresur f _t r ack. pr o includes code using the PickData method
to retrieve data values from a surface object. Thi s exanpl e isdescribedin“An
Interactive Surface Example” on page 183.

Example Code
Seesurf _track. pro,located in the exanpl es/ doc/ obj ect s subdirectory of
the IDL distribution. Enter . COWPI LE surf _track. pro at the | DL command

prompt to open thefilein an IDL Editor window or enter sur f _t r ack to run the
example.

Object Programming A Data Picking Example

RSI_PROCODE/examples/doc/objects/surf_track.pro

258 Chapter 11: Selecting Objects

A Data Picking Example Object Programming

Chapter 12

Displaying, Copying
and Printing Objects

The following topics are covered in this chapter:

Overview of Object Graphic Destinations . 260
Window Objects 261
Using Window Objects 263
Improving Window Drawing Performance 266

Object Programming

Buffer Objects 269
Clipboard Objects. 270
Printer Objects 272
Bitmap and Vector Graphic Output 279

259

260

Chapter 12: Displaying, Copying and Printing Objects

Overview of Object Graphic Destinations

Once a graphic abject tree has been created, it can be displayed, or drawn, to a
physical destination device (such as a computer screen or printer), to a memory
location (such as a buffer or the operating system clipboard), or to a particular file
format (such asa VRML file). Destination objects represent the final locations to
which object graphics are drawn, and provide methods that allow you to control the
properties of the physical device, memory buffer, or file format.

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey fonts will not be returned as they
are fixed—see Appendix H, “Fonts” in the IDL Reference Guide manual for more
information.

There are five destination abjects:
« buffers (IDLgrBuffer objects)
e clipboards (IDLgrClipboard objects)
e printers (IDLgrPrinter objects)
* VRML files (IDLgrVRML objects)
* windows (IDLgrWindow objects)

Of the five destination objects, Window objects are the most common and most often
used, and will be addressed first.

Note
Output to IDLgrClipboard and IDLgrPrinter objects can be in bitmap or vector
format. See “Bitmap and Vector Graphic Output” on page 279 for information on
choosing a suitable graphics output type based on scene content.

Overview of Object Graphic Destinations Object Programming

Chapter 12: Displaying, Copying and Printing Objects 261

Window Objects

Objects of the IDLgrWindow class represent arectangular area on a computer screen
into which graphics hierarchies can be rendered. Window objects can be either stand-
alone windows on the screen or drawable areasin an IDL draw widget.

Creating Window Objects

There are two ways to create window objects: directly viathe window object’s Init
method and indirectly by creating a draw widget that uses a window object as its
drawable area.

Using the Init Method
The IDLgrWindow::Init method takes no arguments. Use the following statement to
create a window object:
nyW ndow = OBJ_NEW ' | DLgr W ndow)
The window is displayed on the screen as soon as it has been created.

Creating a Draw Widget that Uses a Window Object

To create adraw widget that uses an Object Graphics window object rather than a
Direct Graphics window for its drawable area, set the GRAPHICS_LEVEL keyword
to the WIDGET_DRAW function equal to 2:

drawmvi d = W DGET_DRAW base, GRAPHI CS_LEVEL=2)

Once the draw widget has been realized, you can then retrieve the object reference to
the draw widget's window object using the WIDGET_CONTROL procedure:

W DGET_CONTROL, draww d, CGET_VALUE=nmyW ndow
Color Model

By default, window objects use the RGB color model. To create awindow that uses
the Indexed color model, set the COLOR_MODEL property of the window object
equal to 1 (one) when creating the window:

myW ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL=1)
You cannot change the color model used by awindow after it has been created.
See “Coalor in Object Graphics’ on page 44for a discussion of the two color models.

Object Programming Window Objects

262 Chapter 12: Displaying, Copying and Printing Objects
Note on Window Size Limits

The OpenGL libraries IDL usesimpose limits on the maximum size of a drawable
area. The limits are device-dependent — they depend both on your graphics hardware
and the setting of the RENDERER property. Currently, the smallest maximum
drawable areaon any IDL platform is 1280-by-1024 pixels; the limit on your system
may be larger.

Window Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 263
Using Window Objects

To render a graphics tree to awindow, call the IDLgrWindow::Draw method. The
argument must be either an IDLgrView object or an IDLgrScene object.

nyW ndow >Dr aw, nyVi ew
or

nyW ndow >Dr aw, myScene

All objects contained within the view or scene object will be drawn to the window.

Erasing a Window

To erase the contents of awindow, call the IDLgrWindow::Erase method. You can

optionally supply acolor to useto clear the window. By default, the window is erased
to white.

For example, to erase the window to black:
myW ndow >Er ase, COLOR=[0, 0, 0]

Exposing or Hiding a Window

To expose awindow so that it is the front-most window on the screen, call the
IDLgrwWindow::Show method with a nonzero value as the argument:

myW ndow >Show, 1

To hide awindow, call the IDLgrWindow::Show method with a zero value as the
argument:

nyW ndow >Show, O
Iconifying a Window

To iconify (minimize) awindow, call the IDLgrWindow::lconify method with a
nonzero value as its argument:

myW ndow >l coni fy, 1

To restore an iconified window, call the IDLgrWindow::lconify method with a zero
value as its argument:

nyW ndow- >i coni fy, O

Object Programming Using Window Objects

264 Chapter 12: Displaying, Copying and Printing Objects

Setting the Window Cursor

To set the appearance of the mouse cursor in an IDLgrWindow object, call the
IDLgrwWindow::SetCurrentCursor method with a string argument representing the
name of the cursor. Valid string values for the cursor name argument are:

ARROW CROSSHAIR
ICON IBEAM
MOVE ORIGINAL
SIZE_NE SIZE_NW
SIZE_SE SIZE_SW
SIZE NS SIZE_EW
UP_ARROW

The following statement sets the cursor to an up arrow:

myW ndow >Set Cur rent Cur sor, ' UP_ARROW
The ORIGINAL cursor sets the cursor to the window system’s default cursor.
See “IDLgrWindow:: SetCurrentCursor” in the IDL Reference Guide manual for
details on cursor values.

Saving/Restoring Windows

When an instance of an IDLgrWindow object is restored viathe RESTORE
procedure), it is not immediately displayed on the screen. 1t will be displayed as soon
as one of its methods (Draw, Erase, Iconify, etc.) is called.

Saving Window Contents to a File

If you have created a scene or view containing graphical objects and wish to save the
rendering to afile, you will first need to create an image object from which to retrieve
the image data. The following steps render an object to awindow, create an image
object from the window, and save the image dataasa TIFF file.

Using Window Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 265

First, create the view to be rendered. Use an indexed color model for the window
object, setting the background color to white and the foreground color of the plot
object to black.

mywi ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL=1)
nyview = OBJ_NEW' IDLgrView , $
VI EWPLANE_RECT=[0, - 4, 10, 8], COLOR=255)
mynodel = OBJ_NEW' | DLgr Mbdel ")
nypl ot = OBJ_NEW' IDLgrPlot', RANDOW(seed, 10), COLOR=0, $
THI CK=3)

Organi ze the object hierarchy:
nyvi ew >Add, mynodel
nmynodel - >Add, nypl ot
; Draw to the w ndow
mywi ndow >Dr aw, nyvi ew
; Next, use the wi ndow object’s Read nethod to create

an inmage object with the rendered scene as its inmge data:
nyi mage = nyw ndow >Read()
; Retrieve the image data using the GetProperty nethod
; of the image object:
nyi mage- >Cet Property, DATA=i nage
; Display the inmage data using Direct G aphics:
TV, inmage
; Wite the image to a TIFF file named nyfile.tif:
VWRITE TIFF, 'nyfile.tif', image

Object Programming Using Window Objects

266 Chapter 12: Displaying, Copying and Printing Objects

Improving Window Drawing Performance

The following sections describe how to optimize your settings and programs to
enhance the display of your object graphics program.

Hardware vs. Software Rendering

The RENDERER property to the IDLgrWindow object (or the IDL Preference
system) allows you to select between the operating system’s native (hardware)
rendering system and a platform independent (software) rendering system for IDL
Object Graphics displays.

Hardware rendering allows IDL to make use of 3D graphics accelerators that support
OpenGL, if any areinstalled in the system. In general, such accelerators will provide
better rendering performance for many object graphicsdisplays. Thisistypically true
for images rendered using texture-mapped polygons (the default behavior for
IDLgrImage beginning with IDL 6.2).

The software rendering system will generally run more slowly than the hardware
rendering system. However, use of the software rendering system has afew
important advantages:

» Software rendering is available in situations where hardware rendering is not
(remote display to non-OpenGL capable X servers, for example).

e Thenumber of expose events an IDL application will have to respond to is
much smaller when software rendering is used.

* The software rendering system is generally much faster than the hardware
rendering system for Instancing.

» Software rendering can be used to avoid bugs in hardware rendering system
driver software (over which RSI has no control).

« Finally, on some displays (most notably SGI systems with 24 or fewer
bitplanes), the quality of the screen display will be better when using the
software rendering system because its design allows more bitplanes to be used.

Note
By default, IDL uses the renderer specified by the IDL_GR_WIN_RENDERER
preference (Microsoft Windows) or the IDL_GR_X RENDERER preference
(UNIX). If your platform does not have a native OpenGL implementation, IDL uses
its own software implementation regardless of the preference value or the value of
the RENDERER property.

Improving Window Drawing Performance Object Programming

Chapter 12: Displaying, Copying and Printing Objects 267

Retained Graphics and Expose Events

During the course of an IDL session, it is possible that an IDL window will be
obscured by another window. When the hidden window is brought to the front, its
contents need to be regenerated. The user interface toolkit portions of the window are
repaired automatically. However, the drawable portion of the window (in which
graphics are rendered) requires special attention. The user can choose between two
methods to handle this situation. The first option is to set the RETAIN property on
the IDLgrWindow object to 2, which suggeststhat IDL isrequired to retain abacking
store of the entire contents of the window. When the window is exposed, the backing
store will be copied to the screen. The second option isto set the RETAIN property to
0 (no retention), and to request that expose events are to be reported for draw
widgets. Whenever a portion of the window becomes exposed, an event is generated.
The event handler for the drawable can then re-issue a draw of the appropriate
contents for that window.

While the second option may seem a bit more complicated, it isto the users
advantage to take this approach for performance reasons. When RETAIN is 0, the
window device drivers are able to utilize a double-buffered rendering scheme that
can capitalize on hardware acceleration. For interactive applications, this hardware
acceleration can have a crucia impact on the perceived manipulation capabilities of
theinterface. When RETAIN is 2, on the other hand, IDL will render to an off screen
pixmap, which often relies on a software implementation. If several drawing callsare
issued in arow, the performance may be noticeably slower.

Instancing to Improving Redraw Performance

Within interactive graphics applications, it is often necessary to redraw agiven view
over and over again (for example, as the user clicks and drags within the view to
manipulate one or more objects). During those redraws, it may be that only a small
subset of the objects within the view is changing, while the remaining objects are
static. In such a case, it may be more efficient to take a snapshot of the unchanged
portion of the view. This snapshot can be reused for each draw, and only the
changing portion of the view needs to be re-rendered. This processis called
instancing.

It isto your advantage to use instancing only in cases where displaying the snapshot
image is faster than rendering each of the objects that remain unchanged.

The following example shows how atypical instancing loop would be set up. First,
hide the objectsin the view that will be changing. In this example, we assume that the
objects that change continuously are contained by a single model object, with the

Object Programming Improving Window Drawing Performance

268 Chapter 12: Displaying, Copying and Printing Objects

object reference myChangingModel. We set the HIDE property for this model to
remove it from the rendered view.

myChangi nghvbdel - >Set Property, H DE=1

; Next, create an instance of the remaining portion

;of the view by setting the CREATE_| NSTANCE keyword to
:the wi ndow s Draw net hod:

myW ndow >Dr aw, myScene, [/ CREATE_| NSTANCE

; Next, hide the unchangi ng objects.

; Assume t hat the unchanging portion of the
;scene is contained in a single nodel object.
nmyUnchangi nghbdel - >Set Property, H DE=1

; Set the HI DE property for the changi ng nodel
; obj ect equal to zero, revealing the object:
myChangi nghvbdel - >Set Property, H DE=0

; Set the view object’s TRANSPARENT property.

; This ensures that we will not erase the
;instance data (the unchangi ng part of the scene)
; when drawi ng the changi ng nodel .

myVi ew >Set Property, [/ TRANSPARENT

; Next, we set up a drawing loop that will render
;the changi ng nodel . For exanple, this | oop m ght
;rotate the changing nodel in 1 degree increnents.
ROT = 0
FOR i =0, 359 DO BEGA N

ROT=ROT+1

myChangi ngvbdel - >Rotate, [0, 1,0], ROT

nyW ndow >Dr aw, nyVi ew, / DRAW | NSTANCE
ENDFOR

;After the drawing loop is done, ensure nothing is hidden,
;and that the view erases as it did before:

nmyUnchangi nghbdel - >Set Property, H DE=0

nmyVi ew >Set Pr operty, TRANSPARENT=0

Improving Window Drawing Performance Object Programming

Chapter 12: Displaying, Copying and Printing Objects 269

Buffer Objects

Objects of the IDLgrBuffer class represent amemory buffer into which graphics
hierarchies can be rendered. Object trees can be drawn to instances of the
IDLgrBuffer object and the resulting image can be retrieved from the buffer using the
Read() method. The off-screen representation avoids dithering artifacts by providing
afull-resolution buffer for objects using either the RGB or Color Index color models.

Creating Buffer Objects

The IDLgrBuffer::Init method takes no arguments. Use the following statement to
create a buffer object:

nmyBuffer = OBJ_NEW' | DLgrBuffer')

This creates an object that is available as a destination device to be rendered into or
copied from.

See “IDLgrBuffer” in the IDL Reference Guide manual for details on creating and
using buffer objects.

Object Programming Buffer Objects

270 Chapter 12: Displaying, Copying and Printing Objects

Clipboard Objects

Objects of the IDLgrClipboard class send Object Graphics output to the operating
system native clipboard or to afile in bitmap or vector format. The file type and
destination is dependent upon the platform and the values of Draw method keywords.

Note
What appears when producing bitmap or vector output is dependent upon several
factors. See “Bitmap and Vector Graphic Output” on page 279 for details.

Writing to a File from IDLgrClipboard

Thefile type produced when the IDLgrClipboard::Draw method is passed an
IDLgrView, IDLgrViewgroup, or | DLgrScene object varies depending upon keyword
settings and the platform on which the call isissued. If the FILENAME keyword is
set to anon-empty string, the name of thefile IDL createsis specified by the string. If
the FILENAME keyword is a non-zero, numeric value, IDL creates afile named

i dl . ext whereext isreplaced with the appropriate extension shown in
parentheses in the following table.

Keyword Settings | Windows File Type UNIX File Type
VECTOR =1, Encapsulated Encapsulated PostScript
POSTSCRIPT =1 PostScript (EPS) (EPS)

VECTOR =1, Enhanced MetaFile Encapsulated PostScript
POSTSCRIPT =0 (EMF) (EPS)
VECTOR =0, Encapsulated Encapsulated PostScript
POSTSCRIPT =1 PostScript (EPS) (EPS)
VECTOR =0, Bitmap (BMP) Encapsul ated PostScript
POSTSCRIPT =0 (EPS)

Table 12-1: File Types Produced by IDLgrClipboard Draw Method

Note
PostScript clipboard output can be generated using the CMYK color model. Seethe
IDLgrClipboard::Draw method in the IDL Reference Guide for details.

Clipboard Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 271

Writing to the Clipboard from IDLgrClipboard

Objects can be written to the operating system clipboard using
IDLgrClipboard::Draw. When the FILENAME keyword equals an empty string (" "),
equals 0 (zero), or is not specified, the output is written to the clipboard.

Note
The IDLgrClipboard object empties the Windows clipboard before writing to it.

Creating Clipboard Objects

The IDLgrClipboard::Init method takes no arguments. Use the following statement to
create a clipboard object that represents the system-native clipboard buffer:

myd i pboard = OBJ_NEW' | DLgrd i pboard')

The following code creates an IDLgrClipboard object and outputs the contents of an
IDLgrView, IDLgrViewgroup, or IDLgrScene to various files based on the platform.
Thisisuseful to determine exactly how the contents of the window are trandated into
bitmap or vector graphics. In the following code, nyvi ew denotes the name of the
object (view, viewgroup, or scene) to be output. Vector postscript output isaso
generated using the CMYK color mode.

oClip = OBJ_NEW' I DLgrd i pboard')

; Create Wndows-only output file types.
if !'VERSION. OS_FAM LY eq ' Wndows' then begin
oCd i p->Draw, nyview, VECTOR=0, POSTSCRI PT=0, $
FI LENAME="cl i pboar d. bnp"
oC i p->Draw, nyview, VECTOR=1, POSTSCRI PT=0, $
FI LENAME="cl i pboard. enf"
endi f

; Create bitmap and vector PostScript files.

od i p->Draw, nyview, VECTOR=0, PCSTSCRI PT=1, $
FI LENAME="cl i pboar d_bi t map. eps”

odip->Draw, nyview, VECTOR=1, POSTSCRI PT=1, $
FI LENAME="cl i pboard_vect or. eps"

oCip->Draw, nyview, VECTOR=1, POSTSCRI PT=1, $
/ CMYK, FI LENAME="cl i pboard_cnyk. eps"

obj _destroy, oCip
See“IDLgrClipboard” in the IDL Reference Guide manual for details.

Object Programming Clipboard Objects

272 Chapter 12: Displaying, Copying and Printing Objects
Printer Objects

Objects of the IDLgrPrinter class represent a physical printer onto which graphics
hierarchies can be rendered in either bitmap or vector mode. What appears when
producing bitmap or vector output depends upon severa factors. See “Bitmap and
Vector Graphic Output” on page 279 for details.

Creating Printer Objects

The IDLgrPrinter::Init method takes no arguments. Use the following statement to
create a printer object:

nmyPrinter = OBJ_NEW'IDLgrPrinter")

This creates an object that maintains information about the printer. By default, this
information pertains to the default printer installed for your system. To select a
different printer or setup attributes of the printer, use the printer dialogs described in
the next section.

See“IDLgrPrinter” in the IDL Reference Guide manual for details on creating printer
objects. Also see “Printing in IDL” in Chapter 2 of the Using IDL manual for
information on defining a printer.

Color Model

By default, printer objects use the RGB color model. To create a printer that uses the
Indexed color model, set the COLOR_MODEL property of the printer object equal to
1 (one) when creating the printer:

myW ndow = OBJ_NEW' I DLgrPrinter', COLOR_MODEL=1)
You cannot change the color model used by a printer after it has been created.

See “Color in Object Graphics’ on page 44 for a discussion of the two color models.

Printer Dialogs

IDL includes two functions useful for controlling printers and print jobs.

Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 273

DIALOG_PRINTERSETUP

Call the DIALOG_PRINTERSETUP function with the object reference of a printer
object asits argument to open an operating system native dialog for setting the
applicable properties of a particular printer. DIALOG_PRINTERSETUP returns a
nonzero value if you pressed the OK button in the dialog, or zero otherwise.

result = DI ALOG PRI NTERSETUP(nyPri nter)
See DIALOG_PRINTERSETUP in the IDL Reference Guide for details.

DIALOG_PRINTJOB

Call the DIALOG_PRINTJOB function with the object reference of a printer object
as its argument to open an operating system native dialog to initiate a printing job.
DIALOG_PRINTJOB returns anonzero value if you pressed the OK button in the
dialog, or zero otherwise.

result = DI ALOG PRI NTJOB(nyPrinter)
See DIALOG_PRINTJOB in the IDL Reference Guide for details.

Drawing to a Printer

To draw a graphicstreeto a printer, call the IDLgrPrinter::Draw method. The
argument must be either an IDLgrView object, an IDLgrViewGroup object, or an
IDLgrScene object.

nmyPrinter->Draw, nyView
or
nmyPrinter->Draw, nyScene

All objects contained within the scene, viewgroup, or view will be drawn to the
printer.

Note
The scene or view to be drawn may be the same as the scene or view being
displayed in one or more windows.

Object Programming Printer Objects

274

Chapter 12: Displaying, Copying and Printing Objects

Printing in Bitmap or Vector Graphic Mode

The IDLgrPrinter::Draw method VECTOR keyword specifies whether the output is
in bitmap or vector format. The following table shows the keyword options and
results for each platform.

Keyword . . .
Settings Windows Printer Output UNIX File Type
VECTOR =0 Bitmap (BMP) Encapsulated PostScript (EPS)
file (e.g. xpri nter. eps)
VECTOR =1 Enhanced MetaFile (EMF) Encapsulated PostScript (EPS)

file(e.g. xprinter.eps)

Table 12-2: File Types Produced by IDLgrPrinter Draw Method

VECTOR=0 isthe default. Because Windows printer output is usually sent directly to
the printer, EMF and BMP files are not viewable. On UNIX, the printer output is

directed to afilenamed xpr i nt er . eps by default. For more information on printing
views, scenes, or viewgroups, see“IDLgrPrinter::Draw” in the IDL Reference Guide

manual.

Positioning Objects Within a Page

Objects can be positioned in a printed page by first determining the size of the page.
Usethe IDLgrPrinter object DIMENSIONS property to return the size of the
“drawable” area of the page. You can then use these dimensions to draw a view of
specified dimensions in the center of the printed page. The following two examples
show positioning objects within the printed page:

« Thefirst example scales an orb object based on the page size and draws the
view containing the orb to the center of the hardcopy page. See Example:
Centering an Orb” on page 275.

* The second example creates two IDLgrAXxis objects and an orb object, each
with aUNITS property value set to centimeters. The view is positioned in the
center of the page, but the other object locations are specified in centimeters
and drawn to the view in precise positions. See “Example: Precisely
Positioning Vector and Bitmap Output” on page 276.

Printer Objects

Object Programming

Chapter 12: Displaying, Copying and Printing Objects 275

Example: Centering an Orb

The following example positions a view containing an orb object in the center of a
page when it is printed. Centering the view is a common task. Using this example as
aguideline, you can easily adapt it to meet your own needs.

PRO cent er _doc

; Define dimensions in centineters (cm.
dinms = [5.0, 5.0]

; Create a viewwi th centineters as units. Add the view to a nodel.
oView = OBJ_NEW'IDLgrView, $
UNI TS=2, $
VI EWPLANE_RECT=[-di n8[0] /2, -dins[1]/2, dins[0], dins[1]], $
ZCLI P=[MAX(di ms), -MAX(dins)], EYE=MAX(dins)+1, $
COLOR=[200, 200, 200])
oMbdel = OBJ_NEW' | DLgr Model ')
oVi ew >Add, oModel

; Create an orb object and add it to the nodel.

oObl = OBJ_NEW ' orb', COLOR=[O, 255,0], SHADI NG=1, $
STYLE=2, H DDEN=0)

oMbdel - >Add, oOrbl

; Make radius 40% of wi ndow wi dt h.
oMbdel - >Scal e, dins[0]*0.4, dins[0]*0.4, dins[0]*0.4
oMbdel - >Rotate, [1,1,0], 10

; Create a light and add it to the nodel.
oLight = OBJ_NEW' I DLgrLight', TYPE=1, LOCATION=[1.5,1.5,2])
oMbdel - >Add, olLi ght

; Create a printer object, setting centimeters as the units.
oPrinter=0BJ_NEW' I DLgrPrinter', UN TS=2)

Retrieve the drawabl e area of the page in the pagesize
; variable and use this to position the view
oPrinter->Get Property, DI MENSI ONS=pageSi ze
centering = ((pageSize - dins)/2.)
oVi ew >Set Property, LOCATI ON=centering, DI MENSI ONS=di ns

Print the view
oPrinter->Draw, oView, VECTOR=1

OBJ_DESTROY, [oPrint er]
OBJ_DESTROY, [oVi ew]

END

Object Programming Printer Objects

276

Chapter 12: Displaying, Copying and Printing Objects

The following figure shows a subset of the output. The orb is positioned in the center
of a printed page when you run this example.

Figure 12-1: Output Centered in Printed Page

Example: Precisely Positioning Vector and Bitmap Output

The following example creates a model and draws some IDLgrAXxis objects to the
printer in vector mode. It then creates a second model for an orb object and plots the
orb, drawing it to the printer in bitmap mode. The entire view is centered in the page,
as shown in the previous example. However, this example precisely positions the orb
and axes within the view using data units (defined as centimeters).

Printer Objects

PRO center2_doc

; Set the view dinmensions in units of centimeters (cn).
viewDi rs = [10.0, 10.0]

Set the orb originincm relative to the |ower left
; corner of the view
orbLoc = [3.0, 4.0]

; Set the Ob radius in cm
orbRadius = 2.2

; Create the Orb object.

; The Orb object creates a unit orb with a default radius of 1.
oOr bModel = OBJ_NEW' | DLgr Model ')

oOb = OBJ_NEW'orb', COLOR=[0, 255,0], SHADI NG=1, STYLE=2)

oOr bMbdel - >Add, oOrb

; Create axes nodel. Create and position the axis objects.
oAxesMbdel = OBJ_NEW' | DLgr Mbdel ")
oX = OBJ_NEW'IDLgrAxis', 0, RANGE=[1,viewDins[0]-1], $

/ EXACT, LOCATI ON=[or bLoc[0] - or bRadi us, 1])

Object Programming

Chapter 12: Displaying, Copying and Printing Objects 277

oAxesMbdel - >Add, oX

oY = OBJ_NEW' I DLgrAxis', 1, RANGES[1, viewDins[1]-1], $
/ EXACT, LOCATI ON=[1, orblLoc[1]-orbRadi us])

0oAxesMddel - >Add, oY

; Add a box to show view extent.

oAxesModel - >Add, OBJ_NEW' I DLgr Pol ygon', $
[0, viewDins[0O], viewDins[0O], O], $
[0, O, viewDinms[1], viewDi ns[1l]], STYLE=1)

; Create the view using the previously defined di mensions.

oView = OBJ_NEW' IDLgrView, $
UNI TS=2, VI EWPLANE_RECT=[0, 0, viewDins[0], viewDi nms[1]], $
ZCLI P=[MAX(vi ewDi ms), -MAX(viewDins)], EYE=MAX(viewDi ns)+1, $
COLOR=[255, 255, 255])

oTopModel = OBJ_NEW' | DLgr Model ')

oVi ew >Add, oTopModel

; Add a light.
oLight = OBJ_NEW' IDLgrLight', TYPE=1, LOCATIONS[1.5,1.5,2])
oTopModel - >Add, oLi ght

; Set up printer to print user-requested view Center

; entire printer output in the page.

oPrinter=0BJ_NEW' I DLgrPrinter', UN TS=2)

oPrinter->Get Property, DI MENSI ONS=pageSi ze

centering = ((pageSize - viewbins)/2.)

oVi ew >Set Property, LOCATI ON=centering, DI MENSI ONS=vi ewDi ns

; Print view containing axes in vector node then renove nodel.
oTopMbdel - >Add, oAxesModel

oPrinter->Draw, oView, VECTOR=1

oTopMbdel - >Renpve, oAxesMbdel

; Now float the orb into the view and print it in bitmap node.
oTopModel - >Add, oOr bivbdel
oVi ew >Set Property, VI EWPLANE RECT = $
[-orbRadius, -orbRadius, 2 * orbRadius, 2 * orbRadius], $
LOCATI ON=[or bLoc[0] - or bRadi us, or bLoc[1] - or bRadi us] +centering, $
DI MENSI ONS=[2* or bRadi us, 2*or bRadi us]
oPrinter->Draw, oView, VECTOR=0

: oPrint er - >NewDocunent
OBJ_DESTROY, [oPrinter]
OBJ_DESTROY, [oVi ew]

END

Object Programming Printer Objects

278 Chapter 12: Displaying, Copying and Printing Objects

The following figure shows a subset of the output. The entire plot areais positioned
in the center of a printed page when you run this example.

Figure 12-2: Positioning Objects Within a Printed Page

Starting a New Page on a Printer

To ensure that any subsequent callsto the IDLgrPrinter::Draw method occur on a
new page, call the IDLgrPrinter::NewPage method:

nyPri nt er - >NewPage
Submitting a Printer Job

To submit a printer job, call the IDLgrPrinter::NewDocument method. This method
submits the printing job (consisting of al previous callsto IDgrPrinter::Draw and
IDLgrPrinter::NewPage) to the printer.

After this method has been called, the printer is prepared to accept a new batch of
graphics calls (viaIDLgrPrinter::Draw).

nyPri nt er - >NewDocunent

Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 279

Bitmap and Vector Graphic Output

The IDLgrClipboard and IDLgrPrinter destination objects allow objectsin a scene,
viewgroup, or view to be output as vector or bitmap graphics. Which output is
suitable depends upon the contents of the scene being sent to the output destination
object. Understanding the difference between bitmap and vector graphics will help
clarify why there is a difference in how the final output is displayed, and how the
output can be edited.

Bitmap Graphics

Bitmaps are a collection of bits that describe the individual pixels within an image.
Each pixel isaspecific color, and the matrix of these pixels compose theimage. In
bitmap graphics, the contents of aview, viewgroup. or scene are captured as an image
and are drawn with pixelsin the bitmap. They can be edited only by altering
individual pixels. The following figure shows the individual pixelsthat are visible
when a small segment of an image is greatly enlarged.

Figure 12-3: Sample Bitmap Image

IDLgrClipboard bitmap graphic output can be edited by any pixel-based paint
program. In IDL, bitmap graphics can be stored as Bitmap (BMP) or PostScript
(EPS) files under Windows, and as PostScript files under UNIX. Characteristically,
bitmaps are large files, and image quality degrades when the image is substantially
enlarged or reduced.

Object Programming Bitmap and Vector Graphic Output

280 Chapter 12: Displaying, Copying and Printing Objects

Vector Graphics

Vector graphics are described by simple graphic primitives. In the following figure,
the vector output of the plot, shown on the left, is composed of multiple individual
line segments that are defined mathematically. The IDLgrText objects are rendered as
text primitives. All these primitives can be edited in vector graphic files. For
example, in the following figure the final line segments in the plot have been
repositioned in the right-hand image.

0.8

0.4

1 1)
i

\
\|
!
lLlL-IIIIIIIIIIIIIIJJJJJIl _I_LI_J_IJ
10 20

30 30

02

]'_III |I\I|I|l_|\||| III|

0.0
X Title

Figure 12-4: Sample Vector Image

IDLgrClipboard vector graphic output can be edited by an object-based graphical
editor. In IDL, vector graphics can be stored as Enhanced MetaFile (EMF) or
Encapsulated PostScript (EPS) files under Windows, and as Encapsul ated PostScript
(EPS) files under UNIX.

The main advantages of vector graphics are excellent scalability, and the ability to
easily edit text and graphic features of the objects in the display. The graphic quality
is maintained regardless of whether the graphic size isincreased or decreased. The
capabilities of the graphic editor determines what can be successfully edited. Simple
lines and horizontal text can be easily edited in an EMF file inserted into a Microsoft
Word document. However, more sophisticated graphic editors provide support for
editing intricate graphic features and non-horizontal text. See “ Text Rendering in
Vector Graphics’ on page 282 for more information. Vector graphicsfile sizes are
generally smaller compared to bitmap graphics.

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 281

Guidelines for Choosing Bitmap or Vector Graphics

Advanced 3-D graphics rendering system output does not always map perfectly to a
2-D vector graphics system. The vector output is an approximation of what is
displayed on the screen. How closely the vector output matches what is displayed
depends upon the scene contents. Vector output may differ dramatically from bitmap
output, and may also differ between the vector file formats (Encapsul ated PostScript,
Xprinter, and Enhanced MetaFile).

In general, scenes containing multiple, intersecting surfaces with various shading,
transparency and lighting definitions are displayed with greater accuracy in a bitmap
format than a vector format. However, simple 2-D plots are perfectly suited to vector
output. Views containing the following items should not be output to vector graphic
files:

e Transparent or semi-transparent objects — transparent objectsin aview are
not rendered in vector graphic files. Semi-transparent objects are rendered

fully opague.

e Textured or patterned objects — surfaces and polygons with textures or
patterns are rendered without their textures or patterns.

¢ Hidden lines— polygon and surface objects drawn with the HIDDEN_LINES
property set may experience missing lines.

e Volumes — volumes, other than those drawn in low quality wire frame mode
(where the destination device QUALITY =0), are not rendered.

¢ Clipped objects — text strings and image objects do not appear clipped by
clipping planesin vector graphic files. These objects only appear clipped by
view boundaries.

e Smoothly shaded polygons and surfaces — Gouraud (smooth) shaded
IDLgrPolygon and I DL grSurface objects are displayed with smooth shading
only in vector PostScript files generated by DL grClipboard, not in Enhanced
MetaFile (EMF) vector format files, or in IDLgrPrinter vector EPSfiles.
Polygons and surfaces appear with flat shading in EMF files and when printed.

e Linesandtextin Xprinter — line style dash length islimited, and line style
patterns cannot start and end with a‘1’ bit when vector output is generated by
Xprinter under UNIX. Also, text is adways drawn as a set of trianglesin
Xprinter vector output, and cannot be edited.

« Objects dependent on depth buffering — depth buffering controls are not
respected in vector graphic files. See " Primitive Object Sorting in Vector
Graphics’ on page 284 for more information.

Object Programming Bitmap and Vector Graphic Output

282 Chapter 12: Displaying, Copying and Printing Objects

Controlling What is Displayed in Vector Graphics

Several factors beyond the differences between bitmap and vector graphics
(described in the previous section) affect avector graphicsfilein terms of content and
the ability to edit text. Keywords provide control over factors such as object sorting,
polygon shading, and text rendering when using the Draw method of the
IDLgrClipboard or IDLgrPrinter destination objects. See the following sections for
more information:

* “Smooth Shading in Vector Graphics® in the following section
e “Text Rendering in Vector Graphics’ on page 282
« “Primitive Object Sorting in Vector Graphics’ on page 284

Smooth Shading in Vector Graphics

The IDLgrClipboard Draw method supports the VECT_SHADING keyword, which
affects the appearance of the surfaces and polygons when the VECTOR and
POSTSCRIPT keywords have also been set. When SHADING=1 (Gouraud shading)
for IDLgrSurface or IDLgrPolygon, use this keyword to control the rendering quality.
Set the VECT_SHADING keyword to one of the following:

* 0= disable smooth shading. Setting this keyword causes all polygons and
surfaces to be rendered with flat shading. Thiswill override the SHADING
value assigned to a surface or polygon object. This may be valuable when
using slower PostScript interpreters.

¢ 1= enable smooth shading. Setting this keyword renders smoothly shaded
polygons in the Encapsulated PostScript file. Thisis the default.

Note
Polygons and surfacesin Enhanced MetaFiles (EMF) will be rendered using flat
shading. Only the output in Encapsul ated PostScript (EPS) filesis affected by this
keyword, and only when the VECTOR keyword has been set.

Text Rendering in Vector Graphics

Text can be easily edited in vector graphic files when the text is output as text
primitives. In bitmap files, text glyphs cannot be edited except by modifying
individual pixels. In avector graphic file, IDLgrText objects are rendered as graphic
primitives that can be edited. The IDLgrClipboard or IDLgrPrinter
VECT_TEXT_RENDER_METHOD keyword controls whether text appears asfilled

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 283

triangles or text primitives when the VECTOR keyword is also set. Set the
VECT _TEXT_RENDER METHOD keyword to one of the following:

e 0 =render text as text primitives. This uses the output device's text primitives
when rendering text. This allows the text to be edited by object-based graphics
programs. Thisisthe default.

e 1 =render text astriangles. This produces text glyphs that closely match the
text on the display device. The output file sizeis larger and contains filled
triangles to represent text. This can preserve backward compatibility with the
display of text objects prior to IDL 6.1, which introduced text primitives.

Note
When using the IDLgrPrinter object under UNIX, the Xprinter output isregarded as
write-only. Asthereisno support for 3-D text, IDL always generatesfilled triangles
when rendering text in the X printer output. See“IDL Printer Setupin UNIX or Mac
OS X” in Chapter 2 of the Using IDL manual for more information on Xprinter.

Setting VECT_TEXT_RENDER_METHOD=0 creates a vector graphics file with
text rendered as primitives. The text associated with the graphic can be scaled,
transformed or repositioned when edited in an object-oriented graphics application.

Original Text Adding Text Scaling Text

" oo

Figure 12-5: Editing Text Objects Output as Vector Graphics

0.0 —

Y Axis Title
Y Tilte

An Enhanced MetaFile (EMF) inserted into a Microsoft Word document can be
edited. However, not all versions of Microsoft Word support advanced 3-D graphic
primitives such as those associated with obliquely or vertically aligned text.
Choosing to edit afile with non-horizontally aligned text may result in the text being
flattened into two dimensions. Typically, each |etter becomes its own string and
alignment is altered. To edit non-horizontal text and preserve the original quality,

Object Programming Bitmap and Vector Graphic Output

284

Chapter 12: Displaying, Copying and Printing Objects

create an Encapsulated PostScript (EPS) file that can be modified in amore
sophisticated object-oriented image editing program.

Setting VECT_TEXT_RENDER_METHOD=1 creates text that is rendered asfilled
triangles. Elements of the plot in the following figure are composed of line segments
that can be edited, but the text characters cannot be individually edited. The triangles
composing the letters of the text object are visible in the right-hand image.

Original Text Composed of Triangles Detail of Text Triangles

Title

é 0.0
o= -

Figure 12-6: Text Objects Output as Triangles

Primitive Object Sorting in Vector Graphics

The IDLgrPrinter and IDLgrClipboard Draw methods support the VECT_SORTING
keyword, which affects the appearance of the output when the VECTOR keyword
has also been set. Use this keyword to simulate the depth buffer in Object Graphicsin
the output vector graphicsfile. Set the VECT _SORTING keyword to one of the
following:

» 0O=disable sorting. The object primitives appear in the vector output filein the
same order they are drawn on the display device. Thisisthe order in which
they appear in the graphics tree.

e 1= -enable sorting. Objects are ordered from back to front based on each
primitive object’s average depth value. Thisisthe default.

The following figure shows the results of changing the VECT_SORTING keyword.
When sorting is disabled (VECT_SORTING=0) asin the left image, the first object
added to the model is drawn first in the display and in the destination device. In the
code used to create the left image, the text is added to the model before the surface.
Therefore it appears behind the surface in the vector graphics file. When the order is

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 285

reversed, the text is drawn on top of the surface. When sorting is enabled
(VECT_SORTING=1) asin theright image, primitive objects are sorted according to
their depth in the view. Most distant objects are drawn first. When two objects have
the same average depth, the object added to the model first is drawn first and will
appear behind subsequent objects.

Original View in Window

VECT_SORTING =0 VECT_SORTING =1

ext String |DEQrText String

Figure 12-7: Controlling the Sorting of Object Primitives

Note
Vector output does not support depth test functions. Vector output resolves Z
(depth) ties by using the DEPTH_TEST_FUNCTION default LESS depth test.

There are two instances in which the above sorting model is not applicable:
e Inawindow containing overlapping, transparent views
* Inawindow containing IDLgrlmage objects

See the following sections for details.

Sorting Issues with Transparent Views

When awindow contains multiple views, the objects in each view are sorted as a
separate group. This simulates the default clear operation that IDL performs when
drawing each view to a destination, clearing the depth buffer and repainting the view
with the view color. Depending upon the ordering and transparency of the views, the
vector output might not match what is displayed, regardless of the value of
VECT_SORTING. Consider objects in atransparent view that are positioned behind
an object in anon-transparent view. In the display, objectsin the transparent view are
occluded by the object that appears closer to the viewer. However, in the vector
output, the objects in the transparent view interact with and are visible in the output.
This occurs because IDL does hot clear the depth buffer or repaint the view wheniitis
transparent.

Object Programming Bitmap and Vector Graphic Output

286 Chapter 12: Displaying, Copying and Printing Objects

In the simple example shown in the following figure, the IDLgrText object is added
to atransparent view and is positioned behind the surface. The view associated with
the IDLgrSurface is not transparent. The view containing the surface and the
transparent view containing the text are added to an IDLgrViewgroup and displayed
in the window. The left image shows the vector file output, and the right image shows
the bitmap file output. In the vector output, al of the text is visible because the views
are sorted independently. This behavior occurs because the transparent view
containing the text is added to the viewgroup after the view containing the surface. If
the view containing the text is added first, then only the surface (whose view is not
transparent) is drawn.

Original View in Window

Vector Output Bitmap Output

Text String

Text String

Figure 12-8: Interaction of Object Primitives with Transparent Views

Transparent Images

When IDL draws a semi-transparent image with vector output, it must draw it
completely opague, asit does with other primitives. Therefore, if you use image
layers, where one image is semi-transparent in order to et you see another image
drawn before it, the output will not be correct with vector output since the semi-
transparent image will be drawn opaquely, completely hiding the image drawn before
it. You should use bitmap output to get the desired results because semi-transparent
rendering is not available with vector outpuit.

Note
Asdescribed in “Guidelines for Choosing Bitmap or Vector Graphics’ on page 281,
all transparent objects (not just image objects) are rendered opague in vector output.

Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 287

Sorting Issues Among Image and Non-Image Objects

On adisplay device, IDLgrImage objects are drawn as “pixel primitives,” which
means that they do not update the depth buffer when they are written to the screen
and also are not tested against the depth buffer to determine if they should be drawn
or not by default. In such a case, images are rendered at Z=0 in viewing coordinates.
This means:

* Images always overwrite any graphical data on the screen in the areain which
they are drawn, regardless of their relative depth in the scene. Even objects that
are rendered closer to the viewer than the image are overwritten.

e Objectsthat are drawn after an imageison the screen are drawn asif theimage
was not there. Since rendering the image did not update the depth buffer in the
region where the image was rendered, the objects drawn after the image are not
depth-tested against the image. This means that if you render an object, after
rendering an image, so that it appears deeper than theimage (Z < 0 in viewing
coordinates), the object will render “on top” of the image, even thoughiitis
physically behind it in the scene.

Note
Thisistrue unless you specifically enable depth testing (see
“DEPTH_TEST _DISABLE” in the IDL Reference Guide manual for details).
When depth testing is enabled, images behave just like any other 3-D object that
supports depth buffer controls.

For these reasons, IDL applications often place image objectsin the graphics tree so
that they render first, unless the application wishes to make use of the behaviors
described in the above two points. IDL emulates this behavior with vector graphics
when VECT_SORTING ison as follows:

* Image objects are drawn in the order that they are positioned in the graphics
tree.

« Non-image objects positioned before, after, or between image objectsin the
graphics tree are sorted amongst themselves. That is, non-image objects that
are positioned in the tree before the first image are sorted and drawn first. Then
the image is drawn. Then the next group of non-image objects are sorted and
drawn, etc.

These steps assure consistency between bitmap and vector output for overlapping
image and non-image primitives. However, some sorting differences may occur
between non-image primitives that overlap each other but do not overlap images. For
example, consider two non-image primitives drawn on the screen so that they do not

Object Programming Bitmap and Vector Graphic Output

288 Chapter 12: Displaying, Copying and Printing Objects

overlap an image, and one of these primitivesis positioned in the graphics tree before
(drawn before) the image, and the other is positioned in the graphicstree after (drawn
after) the image. These two primitives are not sorted with respect to each other and
are always drawn so that the second primitive is drawn after the first, regardless of
their relative depth in the scene. If these primitives overlap, the result may not be
correct if thefirst primitive is closer to the viewer than the second. Again, in this
case, consider using bitmap output for more accurate output.

Bitmap and Vector Graphic Output Object Programming

Chapter 13

Creating Custom
Objects in IDL

The following topics are covered in this chapter:

Creating Custom Objects 290
IDL Object Overview 291
Undocumented Object Classes 293
Creating an Object Class Structure 294
Object Heap Variables 298

Object Programming

The Object Lifecycle 301
Creating Custom Object Method Routines 304

Method Overriding 308
ObjectExamples 311
289

290 Chapter 13: Creating Custom Objects in IDL

Creating Custom Objects

This chapter describes the underlying structure of IDL objects and provides the
information needed to create a custom object in IDL. Thisincludes information on
the object lifecycle, object methods (defining, using, and overriding methods) and
custom object examples.

If you are creating objectsin iTools, the concepts covered in this chapter are
applicable, but you should use the iTool Developer’s Guide as your reference when
creating custom iTools, or iTool components. The iTool Developer’s Guide provides
information and examples of each of the mgjor iTool elements (such asfile readers
and writers, manipulators, operations, and visualizations), and contains valuable
discussions on data and property management within theiTool system.

Creating Custom Objects Object Programming

Chapter 13: Creating Custom Objects in IDL 291

IDL Object Overview

IDL objects are actually special heap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables can
only be accessed via object references. Object references are discussed in this
chapter. Heap variables in general are discussed in detail in “Heap Variables’ in the
Building IDL Applications manual.

Briefly, IDL provides support for the object concepts and mechanisms discussed in
the following sections.

Classes and Instances

IDL objects are created as instances of aclass, which isdefined in theform of an IDL
structure. The name of the structureis also the class namefor the object. The instance
data of an object isan IDL structure contained in the object heap variable, and can
only be accessed by special functions and procedures, called methods, which are
associated with the class. Class structures are discussed in “ Creating an Object Class
Structure” on page 294.

Encapsulation

Encapsulation isthe ability to combine data and the routines that affect the datainto a
single object. IDL accomplishes this by only allowing access to an object’s instance

data viathat object’s methods. Data contained in an object is hidden from all but the

object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging to
an object class via a routine naming convention. Methods are discussed in detail in
“Creating Custom Object Method Routines’” on page 304.

Polymorphism
Polymorphism s the ability to create multiple object types that support the same
operations. For example, many of 1DL’s graphics objects support an operation called

“Draw,” which sends graphics output to a specified place. The “Draw” operation is
different in different contexts; sending a graphic to a printer is different from writing

Object Programming IDL Object Overview

292 Chapter 13: Creating Custom Objects in IDL

it to afile. Polymorphism allows the details of the differences to remain hidden—all
you need to know is that a given object supports the “Draw” operation.

Inheritance

Inheritance is the ability of an object classto inherit the behavior of other object
classes. This means that when writing a new object classthat is very much like an
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object can
inherit qualities from any number of other existing object classes. Inheritanceis
discussed in detail in “Inheritance” on page 296.

Persistence

Persistence is the ability of objects to remain in existence in memory after they have
been created, allowing you to alter their behavior or appearance after their creation.
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditional IDL
programs) to re-execute IDL commands that create an item (a plot, for example) in
order to change a detail of the item. For example, once you have created a graphic
object containing a plot, you can alter any aspect of the plot “on the fly,” without re-
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an image file, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.

IDL Object Overview Object Programming

Chapter 13: Creating Custom Objects in IDL 293

Undocumented Object Classes

Several of IDL’s graphics objects are subclassed from more generic IDL objects. You
may see references to the generic IDL objects when using IDL’s HEL P procedure to
get information on an object, or when you use the OBJ_ISA or OBJ CLASS
functions. You may also notice that the generic objects are not documented in the
“Object Class and Method Reference” in the IDL Reference Guide manual. Thisis
not an oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to make
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from them.
Research Systems, Inc. does not guarantee that user-written code that uses
undocumented features will continue to function in future releases of IDL.

Object Programming Undocumented Object Classes

294 Chapter 13: Creating Custom Objects in IDL

Creating an Object Class Structure

Object instance datais contained in named IDL structures. We will use the term class
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are no
limits on what a class structure contains. Class structures can include data of any type
or organization, including pointers and object references. When an object is created,
the name of the class structure becomes the name of the classitself, and thus servesto
define the names of all methods associated with the class. For example, if we create
the following class structure:

struct = { Cassl, datal:OL, data2: FLTARR(10) }

any objects created from the class structure Classl would have the same two fields
(datal, along integer, and data2, aten-element floating-point array) and any methods
associated with the class would have the name Classl::method, where method is the
actual name of the method routine. Methods are discussed in detail in “Creating
Custom Object Method Routines’” on page 304.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data. This
istrue of objects aswell; anewly created object will contain a zeroed copy of the
class structure as its instance data.

It isimportant to realize that creating a class structure does not create an object.
Objects can only be created by calling the OBJ NEW or OBJARR function with the
name of the class structure as the argument, and can only be accessed viathe returned
object reference. In addition, object methods can only be called on objects, and not on
class structures themselves.

Once defined, a given class structure type cannot be changed. If a structure definition
is executed and the structure already exists, each tag name and the structure of each
tag field must agree with the original definition. To redefine a structure, you must
either reset or exit the current IDL session.

Creating an Object Class Structure Object Programming

Chapter 13: Creating Custom Objects in IDL 295

Automatic Class Structure Definition

If IDL finds areference to a structure that has not been defined, it will search for a
structure definition procedure to defineit. (Thisistrue of all structure references, not
just class structures.) Automatic structure definition is discussed in “Automatic
Structure Definition” on page 364. Briefly, if IDL encounters a structure reference for
astructure type that has not been defined, it searches for aroutine with aname of the
form

STRUCT___DEFI NE

where STRUCT is the name of the structure type. Note that there are two underscores
in the name of the structure definition routine.

The following is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFI NE
struct = { CNAME, datal:OL, data2: FLTARR(10) }
END

This defines a structure named CNAME with 2 data fields (datal, along integer, and
data2, aten-element floating-point array). If you tell IDL to create an object of type
CNAME before this structure has been defined, IDL will search for the procedure
CNAME__DEFINE to define the class structure before attempting to create the
object. If the CNAME__DEFINE procedure has not yet been compiled, IDL will use
its normal routine searching algorithm to attempt to find a file named

CNAME__ DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possibility existsthat you will
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may already exist. This can be a problem if
you are devel oping object-oriented applications for others, since you probably do
not have much control over the IDL environment on your clients' systems. You can
avoid most problems by creating a unique namespace for your routines; RSI does
this by prefixing the names of objects with the letters“IDL”. To help avoid
namespace conflict, consider using a custom prefix (not “IDL"). To be completely
sure that the objects created by your programs are what you expect, however, you
should have the program inspect the created structures and handle errors

appropriately.

Object Programming Creating an Object Class Structure

296 Chapter 13: Creating Custom Objects in IDL

Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” asfollows:

struct = { circle, x:0, y:0, radius:0 }
we can define a subclass of the “circle” class like this:
struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when the
structure being defined is a class structure (that is, an object will be created from the
structure), inheritance affects both the structure definition and the object methods
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 350.

When a class structure inherits from another class structure, it is said to be a subclass
of the classit inherits from. Similarly, the classthat isinherited from iscalled a
superclass of the new class. Defining a subclass of an existing classin this manner
has two consequences. First, the class structure for the subclassis constructed as if
the elements of the inherited class structure were included in-line in the structure
definition. In our example, the command defining the “filled_circle” class above
would create the followings structure definition:

{ filled_circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at the
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from another
class structureisthat when an object is created from the subclass structure, that object
inherits the methods of the superclass aswell asitsdatafields. That is, if an object of
the superclass type has a method, that method is available to objects created from the
subclass as well. In our example above, say we create an object of type circle and
define a Print method for it. Any objects of typefilled circle will also have access to
the Print method defined for circle.

IDL allows multiple inheritance. This meansthat you can include the INHERITS
specifier as many times as you desire in a structure definition, aslong as all of the
resulting data fields have unique names. Data fields must have unique names because
when the class structure definition is built, the tag names are included in-line at the
point where the INHERITS specifier appears. Duplicate tag names will cause the
structure definition to fail; it is your responsibility as a programmer to ensure that tag
names are not used more than once in a structure definition.

Creating an Object Class Structure Object Programming

Chapter 13: Creating Custom Objects in IDL 297

Note

The requirement that names be unique applies only to data fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the same
names as methods belonging to the superclass. See “Method Overriding” on
page 308 for details.

If astructure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 295.

Null Objects

The Null Object is a special object reference that is guaranteed to never point at a
valid object heap variable. It isused by IDL to initialize object reference variables
when no other initializing value is present. It is also a convenient value to use when
defining structure definitions for fields that are object references, since it avoids the
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not specify a
class structure to be used as the new object’s template. The following statement
creates anull object:

nul | obj = OBJ_NEW)

Object Programming Creating an Object Class Structure

298 Chapter 13: Creating Custom Objects in IDL

Object Heap Variables

Object heap variables are IDL heap variables that are accessible only via object
references. While there are many similarities between object references and pointers,
it isimportant to understand that they are not the same type, and cannot be used
interchangeably. Object heap variables are created using the OBJ_NEW and
OBJARR functions. For more information on heap variables and pointers, see”IDL
Pointers” on page 376.

Heap variables are aspecial class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are called pointer heap
variables, and heap variables accessible via object references are called object heap
variables.

Note
Pointers and object references have many similarities, the strongest of which isthat
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use bothin
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.

e Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

Object Heap Variables Object Programming

Chapter 13: Creating Custom Objects in IDL 299

« Aremanipulated primarily via pointers or object references using built in
language operators rather than specia functions and procedures.

e Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Dangling References

If aheap variable is destroyed, any remaining pointer variable or object reference that
il referstoit is said to contain adangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best optionisto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.

See “Heap Variables’ on page 371 for additional details.

Freeing Heap Variables

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
al array elements and structure fields. When avalid pointer or object referenceis
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variablesto be freed. In thisway, all heap variablesthat
are referenced directly or indirectly by the input argument are located. Once all such
heap variables areidentified, HEAP_FREE releasesthem in afinal pass. Pointers are
released asif the PTR_FREE procedure was called. Objects are released as with a
call to OBJ DESTROY.

Object Programming Object Heap Variables

300 Chapter 13: Creating Custom Objects in IDL

HEAP_FREE is recommended when:

e The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

e Thedatastructures are opague, and the code cleaning up does not have
knowledge of the structure.

See“HEAP_FREE” in the IDL Reference Guide manual for further details.

Object Heap Variables Object Programming

Chapter 13: Creating Custom Objects in IDL 301

The Object Lifecycle

Objects are persistent, meaning they exist in memory until you destroy them. We can
break the life of an abject into three phases: creation and initialization, use, and
destruction. Object lifecycle routines allow the creation and destruction of object
references; lifecycle methods associated with an object alow you to control what
happens when an object is created or destroyed.

This section will discussthefirst and last phases of the object lifecycle; the remainder
of this chapter discusses manipulation of existing objects and use of object method
routines. To get information about an object, see “ Returning Object Type and
Validity” in Chapter 7 of the Using IDL manual.

Creation and Initialization

Object references are created using one of two lifecycle routines: OBJ_NEW or
OBJARR. Newly created objects are initialized upon creation in two ways.

1. Theobject referenceis created based on the class structure specified,

2. Theobject’sInit method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the object
does not have an Init method, the object’s superclasses (if any) are searched for
an Init method.

The Init Method

An object’slifecycle method Init is a function named Class::Init (where Classisthe
actual name of the class). The purpose of the Init method is to populate a newly-
created object with instance data. Init should return ascalar TRUE value (such as 1) if
theinitialization is successful, and FALSE (such as 0) if theinitialization fails.

The Init method is unusual in that it cannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the Init
method on an object directly. You can, however, call an object’s Init method from
within the Init method of a subclass of that object. This allows you to specify
parameters used by the superclass’ Init method along with those used by the Init
method of the object being created. In practice, thisis often done using the EXTRA
keyword. See"Keyword Inheritance” on page 95 for details.

Object Programming The Object Lifecycle

302

Chapter 13: Creating Custom Objects in IDL

The OBJ_NEW Function

Use the OBJ _NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ NEW
creates anew object containing an instance of that class structure. Note that the fields
of the newly-created object’s instance data structure will all be empty. For example,
the command:

obj1 = OBJ_NEW' C assNane')

creates a new object heap variable that contains an instance of the class structure
ClassName, and places an object reference to this heap variablein obj 1. If you do not
supply an argument, the newly-created object will be anull object.

When creating an object from a class structure, OBJ_NEW goes through the
following steps:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. See “Automatic Class Structure
Definition” on page 295 for details. If the structureis till not defined,
OBJ NEW fails and issues an error.

2. If the class structure has been defined, OBJ NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ NEW looks for a
method function named Class::Init (where Class is the actual name of the
class). If an Init method exists, it is called with the new object asitsimplicit
SELF argument, aswell as any arguments and keywords specified in the call to
OBJ _NEW. If the class has no Init method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “ Creating Custom Object Method Routines’
on page 304.

Note
OBJ _NEW does not call all the Init methods in an abject’s class hierarchy. Instead,
it ssimply calsthefirst oneit finds. Therefore, the Init method for aclass should call
the Init methods of its direct superclasses as necessary.

4. If the Init method returnstrue, or if no Init method exists, OBJ NEW returns
an object reference to the heap variable. If Init returns false, OBJ NEW
destroys the new object and returns the NULL object reference, indicating that
the operation failed. Note that in this case the Cleanup method is not called.

See“0OBJ NEW” in the IDL Reference Guide manual for further details.

The Object Lifecycle Object Programming

Chapter 13: Creating Custom Objects in IDL 303

The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimensions.
Every element of the array created by OBJARR is set to the null object. For example,
the following command creates a 3 by 3 element object reference array with each
element contain the null object reference:

obj 2 = OBJARR(3, 3)
See“OBJARR” in the IDL Reference Guide manual for further details.

Destruction

Usethe OBJ DESTROY procedure to destroy an object. If the object’s class, or one
of its superclasses, supplies a procedure method named Cleanup, that method is
called, and all arguments and keywords passed by the user are passed to it. The
Cleanup method should perform any required cleanup on the object and return.
Whether a Cleanup method actually exists or not, IDL will destroy the heap variable
representing the object and return.

The Cleanup method is unusual in that it cannot be called outside an object-
destruction operation. This means that—unlike most object methods—you cannot
call the Cleanup method on an object directly. You can, however, call an object’s
Cleanup method from within the Cleanup method of a subclass of that object.

Note that the object references themselves are not destroyed. Object references that
refer to nonexistent object heap variables are known as dangling references, and are
discussed in more detail in “Dangling References’ on page 383.

See“0OBJ DESTROY” inthe IDL Reference Guide manual for further details.
Implicit Calling of Superclass Cleanup Methods

If you create an object class and do not implement a Cleanup method for it, when you
destroy an object of your class IDL will call the Cleanup method of the class
superclass, if it has one.

If your class has multiple superclasses, on destruction IDL will attempt to call the
Cleanup method of the first superclass. If that superclass has a Cleanup method, IDL
will execute it and then destroy the object. If the first superclass does not have a
Cleanup method, IDL will proceed through the list of superclassesin the order they
are specified in the class structure definition statement until it either finds a Cleanup
method to execute or reaches the end of thelist.

To ensure that Cleanup methods from multiple superclasses are called, create a
Cleanup method for your class and call the superclass’ Cleanup methods explicitly.

Object Programming The Object Lifecycle

304 Chapter 13: Creating Custom Objects in IDL

Creating Custom Object Method Routines

IDL objects can have associated procedures and functions called methods. Methods
are called on objects viatheir object references using the method invocation operator.

While object methods are constructed in the same way as any other IDL procedure or
function, they are different from other routines in the following ways:

e Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs. See “ Defining
Method Routines’ below.

¢ All method routines automatically pass an implicit argument named self,
which contains the object reference of the object on which the method is
called. See“The Implicit Self Argument” on page 305.

* Object methods cannot be called on their own. You must use the method
invocation operator and supply avalid object reference, either of the classthe
method belongs to or of one of that class' subclasses. See “ Calling Method
Routines” on page 306.

Note
Keyword inheritance is an extremely important concept to understand when
working with object methods. See “Keyword Inheritance” on page 95 for details.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and functions,
with the exception that the name of the class to which they belong, along with two
colons, is prepended to the method name:

PRO C assNane: : Met hod
| DL statenents
END

or

FUNCTI ON C assName: : Met hod, Argunentl
| DL statenents

RETURN, val ue

END

For example, suppose we create two objects, each with its own “print” method.

Creating Custom Object Method Routines Object Programming

Chapter 13: Creating Custom Objects in IDL 305

First, define two class structures:

struct = { classl, datal:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERITS classl }

Now we define two “print” methods to print the contents of any objects of either of
these two classes. (If you are typing this at the IDL command line, enter the .RUN
command before each of the following procedure definitions.)

PRO cl assl::Printl
PRI NT, self.datal
END
PRO cl ass2::Print2
PRI NT, self.datal
PRI NT, self.data2a, self.data2b
END

Once these procedures are defined, any objects of classl have access to the method
Print1, and any objects of class2 have accessto both Print1 and Print2 (because class2
is asubclass of—it inherits from—classl). Note that the Print2 method prints the
datal field inherited from classl.

Note
Itis not necessary to give different method names to methods from different classes,

as we have done here with Printl and Print2. In fact, in most cases both methods
would have simply been called Print, with each object class knowing only about its
own version of the method. We have given the two procedures different names here
for instructional reasons; see “Method Overriding” on page 308 for amore
complete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the method is
called. In the method routines created above, self is used to specify which object the
data fields should be printed from using the structure dot operator:

PRI NT, sel f.datal

You do not need to explicitly pass the self argument; in fact, if you try to specify an
argument called self when defining a method routine, IDL will issue an error.

Object Programming Creating Custom Object Method Routines

306 Chapter 13: Creating Custom Objects in IDL

Calling Method Routines

You must use the method invocation operator (->) to call amethod on an object. The
syntax is:

ObjRef->Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. Method may be specified either partially
(using only the method name) or completely using both the class name and method
name, connected with two colons:

ObjRef->Class:: Method
See " Specifying Class Namesin Method Calls’ on page 309 for more information.
The exact method syntax is dlightly different from other routine invocations:

For a procedure nethod.
bj Ref - >Met hod

For a function nethod.
Resul t = Obj Ref - >Met hod()

Where ObjRef is an object reference belonging to the same class as the Method, or to
one of that class' subclasses. We can illustrate this behavior using the Print1 and
Print2 methods defined above.

First, define two new objects:

A = OBJ_NEW' classl')
B = OBJ_NEW' cl ass2')

We can call Printl on the object A asfollows:
A->Printl

IDL prints:
0. 00000

Similarly, we can call Print2 on the object B:
B->Print2

IDL prints:

0. 00000
0 0

Creating Custom Object Method Routines Object Programming

Chapter 13: Creating Custom Objects in IDL 307

Since the object B inherits its properties from classl, we can also call Printl on the
object B:

B->Printl
IDL prints:
0. 00000

We cannot, however, call Print2 on the object A, since classl does not inherit the
properties of class2:

A->Print2
IDL prints:
% Attenpt to call undefined nethod: 'CLASSL:: PRI NT2'.

Searching for Method Routines

When amethod is called on an object reference, IDL searches for it as with any
procedure or function, and callsit if it can be found, following the naming convention
established for structure definition routines. (See “Automatic Class Structure
Definition” on page 295.) In other words, IDL discovers methods asit needsthemin
the same way as regular procedures and functions, with the exception that it searches
for files named

cl assname__net hod. pro
rather than simply
met hod. pro

Remember that there are two underscores in the file name, and two colons in the
method routine’s name.

Note
If you are working in an environment where the length of filenamesis limited, you
may want to consider defining all object methodsin the same . pr o file you useto
define the class structure. This practice avoids any problems caused by the need to
prepend the classname and the two underscore characters to the method name. If
you must use different . pr o files, make sure that all class (and superclass)
definition filenames are unique in the first eight characters.

Object Programming Creating Custom Object Method Routines

308 Chapter 13: Creating Custom Objects in IDL

Method Overriding

Unlike datafields, method names can be duplicated. Thisis an important feature that
allows method overriding, which in turn facilitates polymorphism in the design of
object-oriented programs. Method overriding alows a subclass to provide its own
implementation of a method already provided by one of its superclasses. When a
method is called on an object, IDL searchesfor amethod of that classwith that name.
If found, the method is called. If not, the methods of any inherited object classes are
examined in the order their INHERITS specifiers appear in the structure definition,
and the first method found with the correct nameis called. If no method of the
specified name is found, an error occurs.

The method search proceeds depth first, left to right. This means that if an object’s
class does not provide the method called directly, IDL searches through inherited
classes by first searching the left-most included class—and all of its superclasses—
before proceeding to the next inherited class to the right. If amethod is defined by
more than a single inherited structure definition, the first one found is used and no
warning is generated. This means that class designers should pick non-generic names
for their methods as well astheir data fields. For example, suppose we have defined
the following classes:

struct = { classl, datal}

struct = { class2, data2a:0, data2b:0.0, inherits classl }
struct = { class3, data3:'', inherits class2, inherits classl }
struct = { class4, data4:0L, inherits class2, inherits class3 }

Furthermore, suppose that both classl and class3 have a method called Print defined.
Now suppose that we create an abject of class4, and call the Print method:

A = OBJ_NEW' cl ass4')
A->Print

IDL takesthe following steps:
1. Searchesclass4 for a Print method. It does not find one.

2. Searchesthe left-most inherited class (class?2) in the class definition structure
for a Print method. It does not find one.

3. Searchesany superclasses of class2 for a Print method. It finds the classl Print
method and callsit on A.

Notice that IDL stops searching when it finds a method with the proper name. Thus,
IDL doesn't find the Print method that belongs to class3.

Method Overriding Object Programming

Chapter 13: Creating Custom Objects in IDL 309

When are Methods Associated with Object Classes?

It isimportant to note that IDL will associate a method with objects of a given class
the first time the method is called on an object of that class. This meansthat if anew
method definition is compiled after the first time a method with a particular name is
called, the new definition will not be used until anew IDL session begins.

Extending the example above, suppose that after calling the Print method you
compile anew class4::Print method. Subsequent calls to the Print method will still
invoke the classl::Print method even though the object instance A's “own” Print
method now exists. Once an association has been formed between an object class and
amethod, that association is not changed for the duration of the IDL session.

To ensure that the correct method is selected, either ensure that the method is
compiled before thefirst timeit is called or explicitly specify the class name when
calling the method, as described below.

Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:
bj Ref - >cl assnane: : et hod

Where classname is the name of one of the object’s superclasses, IDL will search
classname and any of classname’s superclasses for the method name. IDL will not
search the object’s own class or any other classes the object inherits from.

Thistype of method call is especially useful when a class has a method that overrides
a superclass method and does its job by calling the superclass method and then
adding functionality. In our simple example from “ Calling Method Routines’ on
page 306, above, we could have defined a Print method for each class, as follows:

PRO cl assl1:: Print
PRI NT, self.datal
END
PRO cl ass2:: Print
sel f->classl::Print
PRI NT, self.data2a, self.data2b
END

In this case, to duplicate the behavior of the Printl and Print2 methods, we make the
following method calls:

A->Print
IDL prints:
0. 00000

Object Programming Method Overriding

310 Chapter 13: Creating Custom Objects in IDL

And now the B:
B->Pri nt
IDL prints:

0. 00000
0 0

Now we'll use the second method:
B->cl assl::Print

IDL prints:
0. 00000

And now A:
A->cl ass2:: Print

IDL prints:

% CLASS2 is not a superclass of object class CLASSL.
% Execution halted at: $MAI N$

Method Overriding Object Programming

Chapter 13: Creating Custom Objects in IDL 311

Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimesin expanded form — intheexanpl es/ doc/ obj ect s subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“IPATH” in the IDL Reference Guide manual for information on IDL's path.

Also see the iTool Developer’s Guide for additional examples of creating custom
objectsincluding file reader and writers, manipulators, and operators that can be used
within a custom iTool.

Creating Composite Classes or Subclasses

RSI has provided arich set of basic objectsthat an be used for creating visualizations.
You may find that you are using a certain combination of these objects again and
again within your applications for a particular purpose. If thisis the case, you might
want to consider defining a composite object class that encapsulates the combination
of those subcomponents.

In fact, RSI has already defined afew composite classes on your behalf. These
include the IDLgrColorbar object and the IDLgrLegend object found in the IDL
Reference Guide. You will find the IDL code for these objectsinthel i b directory of
your IDL distribution.

Example Code
Another example can be found inthei dl exshow3_ _defi ne. prointhe
exanpl es/ doc/ utilities subdirectory. In this case, an image, surface, and
contour representation are combined into a single object called the IDLexShow3
object. To see this object being used in an application, run the show3_track routine,
defined inthefileshow3_t r ack. pro intheexanpl es/ doc/ obj ect s directory.

Object Programming Object Examples

RSI_PROCODE/examples/doc/utilities/idlexshow3__define.pro
RSI_PROCODE/examples/doc/objects/show3_track.pro

312 Chapter 13: Creating Custom Objects in IDL

The program show3_t r ack. pr o creates the following visualization:

Figure 13-1: Show3_track example

You may also find that you want to customize one or more of the classes available in
Object Graphics. For instance, you may want to create a specialized image object that
can handle 16-bit pal ettes.

Example Code
An examplethat creates a specialized image object that can handle 16-bit palettesis

providedini dl expal i mage_ _defi ne. prointheexanpl es/ doc/utilities
subdirectory of the IDL distribution.

Object Examples Object Programming

RSI_PROCODE/examples/doc/utilities/idlexpalimage__define.pro

Index

Numerics
3D, text objects, 214

A

aligning text, text objects, 214
aphablending, 111, 192
apha channel
image object data, 94
image object transparency, 111
objects supporting, 58
alphacomposit_image_doc, 114
aphaimage_obj_doc, 112
animation
animating objects
about, 240
behavior object, 245
display object hierarchy, 240

Object Programming

model object, 242
object example, 249
controlling rate, 244
performance, 247
animation_doc.pro, 249
animation_image_doc.pro, 246
animation_surface _doc.pro, 246
annotating
object graphics display
about, 212
annotated image examples, 230
colorbar object, 225
font object, 217
indexed images, 230
legend object, 222
light object, 227
RGB images, 234
ROI object, 221
text object, 213

313

314

text objects, 213
applycolorbar_indexed_object.pro, 230
applycolorbar_rgb_object.pro, 234
arguments, described, 19
assignment, using, 26
attribute objects, 38
automatic, class structure definition, 295
axes

adding to, objects, 155
axis object

tick labels, 168

title, 168

visualization object, 39

working with, 155

B

back-face culling, 207
baseline changes to text objects, 215
behavior object, 241, 245
binary images
displaying, Object Graphics, 96
bitmap graphics
defined, 279
IDLgrClipboard, 270
IDLgrPrinter, 272
text rendering, 279
Versus vector, 279
when to use, 281
buffer objects
creating, 269
destination object, 35
overview, 269

C

calling sequence
function methods, 18
procedure methods, 18
channels

Index

apha, 94

image objects, 94
Cine, 249
class

object, 291

structure, 294

structures, zeroed, 294
Cleanup method

implicit calling, 303

of superclasses, 303
clipboard objects

creating, 271

destination object, 35
clipping planes, 73
color

mapping voxel values, 191

Object Graphics, 44
color model

destination objects, 46

indexed, 46

printers, 272

RGB, 44, 47

window objects, 261

color property of abjects, 49

colorbar objects
creating, 225
overview, 225
using, 225
visualization object, 39
coloring vertices, 209

combining transformations, 90
common methods in object classes, 18

composite classes, 311
concave polygons, 201
contour object
about, 148
visualization object, 39
control points, 118
convex polygons, 201

coordinate conversion, 76, 79

coordinate systems

Object Programming

scaling coordinates, 66
transformation, 66
coordinate transformations, 76
copying, tiled image, 142
creating
objects
axis, 155
buffer, 269
clipboard, 271
colorbar, 225
contour, 148
image, 96
legend, 222
light, 227
plot, 151
polygon, 198
polyline, 209
printer, 272
surface, 178
text, 213
tiled image, 136
volume, 188
window, 261
culling to improve performance, 207

D

dangling references, 299
data, coordinate conversion, 77
data picking, 252, 256
date/time data
displaying, on axis objects, 159
default font, 216, 217
defining, method routines, 304
depth buffering objects
about, 56
test functions, 56
destination device, 260
destination objects, 35, 35, 35, 35, 35
color models, 46
drawing, 260

Object Programming

315

destroying, objects, 25, 303
diaogs, printer, 272
DICOM object, file format object, 42
display support objects, 36
displaybinaryimage_objectt.pro, 97
displaygrayscaleimage_object.pro, 99
displaying
Object Graphics
binary images, 96
grayscaleimages, 98
multiple images, 102
displaymultiples_object.pro, 102
dot operator, 305
draw widgets
object graphics window
color mode, 46
setting, 261
drawing
destination device, 260
object graphics displays, 53
to aprinter object, 273

E

EMF file, 280

encapsulation, 291

EQ operator, comparing object references, 27

erasing, window objects, 263

ex_reverse _plot.pro, 168

examples

objects

aphacomposite image doc, 114
alphaimage_obj_doc, 112
animation_doc.pro, 249
animation_image_doc.pro, 246
animation_surface doc.pro, 246
applycolorbar_indexed_object.pro, 230
applycolorbar_rgb_object.pro, 234
displaybinaryimage_object.pro, 97
displaygrayscaleimage_object.pro, 99
displaymultiples_object.pro, 102

Index

316

ex_reverse plot.pro, 168 freeing

maponsphere _object.pro, 128 heap variables, objects, 299
obj_axis.pro, 156 objects, about, 299

obj_logaxis.pro, 158 function methods, calling sequence for, 18

obj_plot.pro, 174
obj_tess.pro, 201
obj_vol.pro, 188, 190 G
panning_object.pro, 107
penta.pro, 172
rot_text.pro, 216
sel_obj.pro, 255

graphics
surf_track.pro, 183, 257 '
test_surface,pro, 82 bitmap versus vector, 279

tilingjp2._doc.pro, 146 visualization objects, 38
transpare_ntwarpi ng_object.pro, 117 graphics object tree, 33

get_bounds.pro, 75
GetProperty method, about, 21
graphic objects, 38

X . graphs, 147
utﬁ(i)t(ijgl ng_object.pro, 84 oray <al e imag es |
get_bounds.pro, 75 glosc?rlrﬁggéf bject Graphics, 98
idlexpalimage __define.pro, 312 '
idlexshow3__define.pro, 311
norm_coord.pro, 78 H
set_view.pro, 75
expose events, 267 heap variables
exposing window objects, 263 freeing, variables, 299
eye position, 71 leakage, 299
objects, 298
Hershey fonts, 218
F hidden line removal, 182

hidden object classes, 293

far clipping plane, 73 hiding, window objects, 263

f”gcr)ll?/gons, with pattern, 199 hierarchy, graphic objects, 33

font object
about, 217 I
setting text object font, 216
visualization object, 41 iconifying, windows, 263

fonts idlexpalimage__define.pro, 312
default, object graphics, 217 idlexshow3__define.pro, 311
Hershey, 218 IDLffDXF object, file format object, 42
TrueType, 217 IDLffIPEG2000
type size, 216 file format object, 42
type style, 216 IDLgrImage, See also image objects.

Index Object Programming

IDLgrText

rendering
bitmap graphics, 279
vector graphics, 280

tiling application, 136

warping atransparency, 111
implicit self argument, 305
indexed color model, 44, 46

317

image display indexed images, color annotations, 230
multiple images, 102 inheritance
object graphics defined, 296
binary, 96 object, 292
grayscale, 98 initializing, objects, 22
multiple images, 102 instance, object, 291
image objects instancing
about, 96 back-face culling, 207
alphablending, 111 lighting, 229

array configurations, 94 redraw performance, 267

channels, 94 window objects, 267
creating, 96 interpolation, voxel values, 193
displaying
binary, 96
grayscale, 98 K
palette, 94
saving to afile, 264 keé/(\;rvp r_d_s
. . o inition, 19
tiling. See imagettiling. satting, 20
transparency, 111 '
visualization object, 40
warping, 117 L
image pyramid, 133
imagetiling language catalog object, file format object, 42
about, 132 legend object
about tiles, 135 about, 222
application, 136 visualization object, 39
copying, 142 lifecycle
example, 146 methods, 18
panning, 138 routines, 301
preloading tiles, 143 light objects
printing, 142 adding to avolume, 191
pyramid, 133 creating, 227
guerying required tiles, 137 overview, 227
zooming, 139 types of lights, 227
images using, 228
manipulating in Object Graphics, panning, visualization object, 40
107 lights, performance, 229

ROI objects, 221 location

Object Programming Index

318

object graphics to view area, 66
text object, 213
logarithmic, plots, 158

M

mani pul ating images
panning, Object Graphics, 107
zooming, Object Graphics, 84
maponsphere_object.pro, 128
mapping
images onto a sphere
creating display objects, 128
Object Graphics, 128
transparent images, 117
transparent overlays, 117
maximum intensity projection, 192
maximum value, in aplot, 152
maximum window size, 262
method overriding, 308
methods
about, 304
defining routines, 304
invocation, 18
object, 291
minimum value, in aplot, 152
MIP. See maximum intensity projection
model class, methods, 87
model object
display object, 37
rotation, 88
scaling, 89
selecting models, 254
translation, 88
Motion JPEG2000
file format object, 42
mouse, cursor, 264
MPEG object, file format object, 43
MrSID image files, file format object, 43
multiple images, displaying in Object Graph-
ics, 102

Index

N

named, variables, 19

NE operator, comparing object references, 27
near and far clipping planes, 73

new page, 278

NORM_COORD function, 77
norm_coord.pro, 78

normal, computations, 208

null object, 297

O

obj_axis.pro, 156
OBJ DESTROY procedure, using, 25, 303
obj_logaxis.pro, 158
OBJ _NEW function, using, 302
obj_plot.pro, 174
obj_tess.pro, 201
obj_vol.pro, 188, 190
OBJARR function, using, 303
object classes
attribute objects, 38
attributes, 217
axis, 39, 155
buffer, 35, 269
clipboard, 35
colorbar, 39
common methods
Cleanup, 18
GetProperty, 18
Init, 18
SetProperty, 18
contour, 39, 148
destination objects, 35
DICOM, 42
display support, 36
DXF, 42
file format objects, 42
font, 41, 217
IDLffIPEG2000, 42

Object Programming

IDLffMJIPEG2000, 42

image, 40

LangCat, 42

legend, 39, 222

light, 40, 227

model, 37

MPEG, 43

MrSID, 43

naming conventions, 30

palette, 40, 48

pattern, 39, 202

plot, 39, 151

polygon, 41, 198

polyline, 41, 209

printer, 35

ROI, 40

ROIGroup, 40

scene, 36

ShapeFile, 43

surface, 40, 178

symbol, 39, 170

tessellator, 41, 201

text, 41, 213

TrackBall, 41

view, 37

viewgroup, 36

visualization object, 38

volume, 40

VRML, 43

window, 35

XMLDOM, 43

XMLSAX, 43
object concepts

class, 291

class structures, 294

clean up, 303

encapsulation, 291

heap variables, 298

inheritance, 292

inheritance, specifying, 296

instances, 291

Object Programming

319

lifecycle, 301
method routines, 304
null object, 297
persistence, 292
polymorphism, 291
properties, 21
self, 305
object graphics
animating objects, 240
animation example, 249
color annotations
indexed images, 230
RGB images, 234
composite classes, 311
displaying
binary images, 96
grayscaleimages, 98
multiple images, 102
transparent images, 111
expose events, 267
hierarchy, 36
indexed color model, 44
instancing, 267
mani pul ating images
panning, 107
zooming, 84
polygon optimization, 204
typographical conventions used, 30
object heap variables, 298
object hierarchy, 33
object properties, setting, 21
object reference, about heap variables, 298
object tree
display objects, 36
graphic objects, 33
object-oriented programming, 14
objects
about, 291
animating, 239
color of, 49
controlling depth, 56

Index

320

data picking, 252
depth buffering, 56
destroying
custom, 303
how to, 25
graphics hierarchy, 33
null, 297
selecting, 252
self argument, 305
undocumented classes, 293
on-the-glasstext, 214
opacity table, 190
operations, on objects, 26
orientation, text objects, 216

P

palette object
indexed color data, 94
using, 48
visualization object, 40
panning images, Object Graphics, 107
panning_object.pro, 107
paralel projection, 69
pattern filling of polygon objects, 199
pattern object
about, 202
visualization object, 39
penta.pro, 172
performance
lighting optimization, 229
object graphics, 64
polygon optimization, 204
window drawing, 266
persistence, about, 292
perspective projection, 70
pixmap objects, using, 263
plot objects
averaging points, 153
minimum and maximum vaues, 152
plotting symbols, 153

Index

using, 151

visualization object, 39
plotting

logarithmic axes, 158

object graphics, 147

object graphics example, 174

reverse axis, Object Graphics, 168
pointer heap variables, 298
pointers, freeing al, 299
polygon mesh optimization, 204
polygon objects

back-face culling, 207

normal computations, 208

optimization, 204

using, 198

visualization object, 41
polygons, converting to convex, 201
polyline object

using, 209

visualization object, 41
polymorphism, objects, 291
position of graphics, 66
positioning

objectsin aview, 66

text objects, 213
printer object

about, 272

color model, 272

creating, 272

destination object, 35

drawing, 273

print diaogs, 272

starting new page, 278

submitting job, 278
printing

object graphics, 272, 272

tiled image, 142

procedure methods, calling sequence for, 18

projections
overview, 69
paralel, 69

Object Programming

perspective, 70
properties

objects, setting, 21, 21

retrieving, 23

setting, 22

R

rendering

graphics objects, 53

hardware versus software, 266

polygon objects, 198

polyline objects, 209

speed of volumes, 193

surface objects, 179
restoring, windows, 264
retained graphics, 267
retrieving object properties, 23
revealing window objects, 263
reverse axis, Object Graphics, 168
RGB color system, in object graphics, 44, 47
RGB images, color annotations, 234
ROI, visualization object, 40
ROIGroup object, 40
rot_text.pro, 216
Rotate method, 88
rotating

model objects, 88

objectsin aview, 87

S

saving, windows, 264
Scale method, 89
scaling
about, 89
coordinate systems, 66
visualization objects, 87
scanlines, 143
scene objects, display object, 36

Object Programming

sel_obj.pro, 255
selecting
in window objects, 253
model objects, 254
objectsin aview, 254
viewsin awindow object, 253
self argument (objects), 305
set view.pro, 75
SetProperty method, about, 21
setting
keywords, 20
properties of objects, 21
window object cursor, 264
setting properties
existing objects, 22
initialization, 22
objects, 21
shading
polygon objects, 199
polylines, 209
ShapeFile object, file format object, 43
simple polygons, 201
skirts, 181
software rendering, about, 266
structures
automatic definition, 295
dot operator, 305
zeroed, 294
submitting print job, 278
surf_track.pro, 183, 257
surface objects
creating, 178
hidden line removal, 182
interactive example, 183
overview, 178
rendering style, 180
shading, 180
skirts, 181
texture mapping, 182
using, 179
visualization object, 40

321

Index

322

symbol object

about, 170

visualization object, 39
symbol use for polylines, 209
symbols, pre-defined, 170

T

tessellator object, 41, 201
test_surface.pro, 82
text object
creating and using, 213
editing output, 282
setting font, 216
visualization object, 41
texture maps
polygon objects, 200
surfaces, 182
tick labels, 168
tiling images
about, 132
about tiles, 135
creating tiling application, 136
example, 146
image pyramids, 133
panning, 138
preloading tiles, 143
querying required tiles, 137
zooming, 139
tilingjp2_doc.pro, 146
timers, IDLitWindow, 244
TrackBall, about, 41
transformations
combining, 90
coordinate, 76
model class example, 79, 82
model objects, 87
rotation, 87, 88
scaling, 87, 89
translation, 87, 88
Transglate method, 88

Index

trandation, 87
transparency

adding an alpha channel, 111

aphachannel, 94

image objects, 111

in vector graphics, 281

of voxels, 190
transparentwarping_object.pro, 117
TrueType fonts, about, 217
typographical conventions, 30

U

undocumented object classes, 293
upward direction of text objects, 216
using

colorbar objects, 225

pixmap objects, 263

volume objects, 189

window objects, 261, 263

Vv

variables, named, 19
vector graphics
defined, 280
display results, 282
IDLgrClipboard, 270
IDLgrPrinter, 272
inserting EMF file, 280
object sorting, 284
object sorting issues
IDLgrlmage objects, 287
transparent views, 285
smooth shading, 282
text rendering, 280, 282
transparency, 281
versus bitmap, 279
when to use, 281
view area, 66

Object Programming

view object, display object, 37
view volume
finding, 74
overview, 73
viewplane rectangle, 73
viewgroup object, display object, 36
viewplane rectangle, 73, 79
viewport, 66, 67
volume objects
attributes, 190
color values, 191
compositing, 192
creating, 188
interpolating values, 193
lighting, 191
opacity table, 190
overview, 188
rendering speed, 193
using, 189
visualization object, 40
Zbuffering, 192
voxel
transparency, 190
values, 188
VRML objects, file format object, 43

W

warping images, Object Graphics display, 117
window object, destination object, 35

Object Programming

323

window objects
color model, 261
creating, 261
draw widgets, 261
erasing, 263
exposing, 263
hiding, 263
iconifying, 263
instancing, 267
maximum size, 262
restoring, 264
saving, 264
selection, 253
setting the cursor, 264
using, 261, 263

X

XMLDOM abject, file format object, 43
XMLSAX object, file format object, 43
Xprinter, vector graphics, 281

Z

Z-buffer, volume objects, 192

zeroed structures, 294

zooming images, Object Graphics, 84
zooming_object.pro, 84

Index

	Online Manuals
	IDL Documentation
	What's New in IDL 6.3
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Object Programming
	Contents
	The Basics of Using Objects in IDL
	Object-Oriented Programming Concepts
	Using IDL Objects
	Creating Objects
	Acting on Objects Using Methods
	Object Method Syntax
	Arguments

	Modifying Object Properties
	Properties and the Property Sheet Interface
	Setting Properties at Initialization
	Setting Properties of Existing Objects
	Retrieving Property Settings
	About Object Property Descriptions

	Destroying Objects
	Using Operations with Objects
	Object Assignment
	Object Equality and Inequality

	Object Examples

	Creating an Object Graphics Display
	Overview of Object Graphics Classes
	Naming Conventions

	Creating an Object Graphics Display
	Object Graphics Display Hierarchy
	Components of an Object Graphics Hierarchy

	Destination Objects
	Display Objects
	Visualization Objects
	File Format Objects
	Color in Object Graphics
	Color and Destination Objects
	A Note about Draw Widgets
	Indexed Color Model in Object Graphics
	RGB Color Model in Object Graphics

	Palette Objects
	Creating Palette Objects
	Using Palette Objects

	Specifying Object Color
	Example Specifying RGB Values

	How IDL Interprets Color Values
	Indexed Color Model
	RGB Color Model

	Rendering Objects
	Simple Plot Example

	Controlling the Depth of Objects in a View
	Controlling Object Transparency
	Opacity and Transparency
	Blending Mathematics
	Rendering Order
	Viewing and Rotation
	Depth Buffer Updating

	Performance Tuning Object Graphics

	Positioning Objects in a View
	Positioning Visualizations in a View
	Viewport
	Location
	Coordinate Systems and Scaling

	Viewport
	Location and Dimension

	Projection
	Parallel Projections
	Perspective Projections

	Eye Position
	View Volume
	Viewplane Rectangle
	Near and Far Clipping Planes
	Finding an Appropriate View Volume

	Converting Data to Normal Coordinates
	A Function for Coordinate Conversion

	Example: Centering an Image
	Example: Transforming a Surface
	Zooming within an Object Display
	Zooming in on an Object Graphics Image Display

	Translating, Rotating and Scaling Objects
	Translation
	Rotation
	Scaling
	Combining Transformations

	Interactive 3D Transformations

	Working with Image Objects
	Overview of Image Objects
	Defining Image Palettes
	Configuring Common Object Properties

	Creating Image Objects
	Displaying Binary Images with Object Graphics
	Displaying Grayscale Images with Object Graphics

	Positioning Image Objects in a View
	Displaying Multiple Images in Object Graphics

	Panning in Object Graphics
	Defining Transparency in Image Objects
	Transparency and Image Warping
	Image Transparency Examples

	Warping Image Objects
	Mapping an Image Object onto a Sphere
	Image Tiling
	Image Pyramids
	Image Tiles

	Adding Tiling to Your Application
	Querying Required Tiles
	Panning Tiled Images
	Zooming Tiled Images
	Copying and Printing a Tiled Image
	Preloading Tiles

	Example: JPEG2000 Files for Tiling

	Working with Plots and Graphs
	Contour Objects
	Creating Contour Objects
	Using Contour Objects

	Plot Objects
	Creating Plot Objects
	Using Plot Objects
	Polar Plots

	Axis Objects
	Creating Axis Objects
	Using Axis Objects
	Logarithmic Axes

	Displaying Date/Time Data on Axis Objects
	Displaying Date/Time Data on a Plot Display
	Displaying Date/Time Data on a Contour Display

	Axis Titles and Tickmark Text
	Reverse Axis Plotting

	Symbol Objects
	Creating Symbol Objects
	Using Symbol Objects

	A Plotting Routine
	Improvements to the OBJ_PLOT Routine

	Working with Surface Objects
	Surface Objects
	Creating Surface Objects
	Using Surface Objects

	An Interactive Surface Example

	Creating Volume Objects
	Creating a Volume Object
	Using Volume Objects

	Setting Volume Object Attributes
	Volume Opacity
	Volume Color
	Volume Lighting
	Compositing
	ZBuffering
	Interpolation
	Rendering speed

	Polygon and Polyline Objects
	About Polygon and Polyline Objects
	Creating Polygon and Polyline Objects

	Polygon Objects
	Creating Polygon Objects
	Configuring Polygon Objects

	Tessellator Objects
	Creating Tessellator Objects
	Using Tessellator Objects

	Pattern Objects
	Creating Pattern Objects
	Using Pattern Objects

	Polygon Optimization
	Polygon Mesh Optimization
	Back-face Culling
	Normal Computations

	Polyline Objects
	Creating Polyline Objects
	Using Polyline Objects

	Polygon and Polyline Object Examples

	Annotating an Object Display
	Annotating Object Graphic Displays
	Text Objects
	Creating Text Objects
	Using Text Objects
	A Text Example

	Font Objects
	Creating Font Objects
	Assigning a Font Object to a Text Object
	Font Objects and Resource Use

	ROI Objects
	Legend Objects
	Creating Legend Objects
	Using Legend Objects

	Colorbar Objects
	Creating Colorbar Objects
	Using Colorbar Objects

	Light Objects
	Creating Light Objects
	Configuring Light Objects
	Optimizing Light Object Use

	Custom Image Object Annotations
	Annotating Indexed Image Objects
	Annotating RGB Image Objects

	Animating Objects
	Overview of Object Animation
	Configuring an Animation Model Object
	Using Multiple Models

	Controlling the Animation Rate
	Designing a Behavior Object
	Factors Affecting Animation Performance
	Multiple Image Copies
	Graphics Display Refresh Rate

	Example: Interactive Cine Animation

	Selecting Objects
	Selection and Data Picking
	Object Selection
	Selecting Views
	Selecting Visualization Objects
	Selecting Models

	A Selection Example
	Data Picking
	A Data Picking Example

	Displaying, Copying and Printing Objects
	Overview of Object Graphic Destinations
	Window Objects
	Creating Window Objects
	Color Model
	Note on Window Size Limits

	Using Window Objects
	Erasing a Window
	Exposing or Hiding a Window
	Iconifying a Window
	Setting the Window Cursor
	Saving/Restoring Windows
	Saving Window Contents to a File

	Improving Window Drawing Performance
	Hardware vs. Software Rendering
	Retained Graphics and Expose Events
	Instancing to Improving Redraw Performance

	Buffer Objects
	Creating Buffer Objects

	Clipboard Objects
	Creating Clipboard Objects

	Printer Objects
	Creating Printer Objects
	Color Model
	Printer Dialogs
	Drawing to a Printer
	Positioning Objects Within a Page
	Starting a New Page on a Printer
	Submitting a Printer Job

	Bitmap and Vector Graphic Output
	Bitmap Graphics
	Vector Graphics
	Guidelines for Choosing Bitmap or Vector Graphics
	Controlling What is Displayed in Vector Graphics

	Creating Custom Objects in IDL
	Creating Custom Objects
	IDL Object Overview
	Classes and Instances
	Encapsulation
	Methods
	Polymorphism
	Inheritance
	Persistence

	Undocumented Object Classes
	Creating an Object Class Structure
	Automatic Class Structure Definition
	Inheritance
	Null Objects

	Object Heap Variables
	Dangling References
	Heap Variable “Leakage”
	Freeing Heap Variables

	The Object Lifecycle
	Creation and Initialization
	Destruction

	Creating Custom Object Method Routines
	Defining Method Routines
	The Implicit Self Argument
	Calling Method Routines
	Searching for Method Routines

	Method Overriding
	Specifying Class Names in Method Calls

	Object Examples
	Creating Composite Classes or Subclasses

	Index

