Building IDL
Applications

IDL Version 6.3

April 2006 Edition
Copyright © RSI
All Rights Reserved

Restricted Rights Notice

The IDL®, ION Scri pt™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RS reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, asto any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantahility, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of I TT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ isatrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ s atrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDFS5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Part I: Application Programming

Chapter 1

Overview of IDL APPlICAtIONS ...cooeiiiiiiiie e 17
What isan IDL APPIHICALIONTceeeeeiiecie et ettt e e e re e e enee e 18
About Building ApplicatioNSiN IDLccooiiiieireseseeeeses e 19
Chapter 2

Creating and Running Programs in IDLcccoovviiiiiiiiiiiiiiin e, 21
Overview Of IDL Program TYPESccieeieeiieeieereesieesieesseesseeseesseestessesssesssesssssssesssesssenss 22
Creating SMAINS Programscccocvieieeieie ettt seesae e sre e eseestesne e enne s 24
ADOUL NaMEd Programsccceecieiiieciecieseesee e see e s ee e e s e saeestesste e se e sreesteenteeeeenseenns 27
Creating aSIMPIE Programccecv ettt sttt s ee e ne e 28
RUNNiNg Named ProgramsSccceciieiiiiie e cie e site e see e s esseesaeesneesressreesneesreessesssenss 29
(00 00! o 1 TTgTo ANV gl = (oo =0 [31
Making Code REBAENIEcceeieeie et 35

Building IDL Applications 3

Maximizing the Editor's CapabilitieSccceveieieeeese e 36
Command Line TipS and THCKS ...c.eeeeieiiieeeeiesese ettt 42
Recording IDL Command LiNe INPULeocveieiiieciee et 47
Interrupting or ADOIING EXECULIONcceiiiiiieeeeeeeese e 48
For More Information 0N Programmingccccceeeeeeeeseneseseesiesie s sieeee s sseesee e s 49
Chapter 3

Executing Batch JODS iN IDLuuuiiiiiiiiiie e 51
Overview Of BaICh FIlESocveie ettt 52
BaCh Fil@ EXECULION ...ttt st besne e 53
Interpretation Of BaICh SLAIEMENTSccoiiiieiierierieeesee s 55
A BatCh EXAMPIE ..ottt e 56
Chapter 4

Creating SAVE Files of Programs and Dataccccceeevvvvvveieeinnnnnnns 57
OVENVIEW OF SAVE FIlES ..ot 58
About Program and Data SAVE FlEScoo et 60
Creating SAVE Files of Program FilESoceeieiiie et 62
Saving Variables from an IDL SESSIONcc.eceeiererieeeesesie et ee e 71
EXECULING SAVE FIIES ..ottt st 73
Changesto IDL 5.4 SAVE FIIES ..ottt 76
Chapter 5

Creating Procedures and FUNCLIONScvvvuiiiiiiiiiiii e eeeeeeeeeececciiannns 79
Overview of Procedures and FUNCLIONScccooiieirinininieeeese e 80
DEfiNiNg @PrOCEAUIEcoiiiiieiieeeeeese e 81
DefiNiNG @FUNCLION ..ottt st ne e e resne e 84
Automatic Compilation and EXECULIONccceierieeriiniriereese e 85
PAIBIMELEN'Sottt a et b e bt it et be et e bt nae s 87
USiNg KeYWOrd ParaMeEterSccooeiereeieresiesieeeie e e steeee e see e sneeeesee e sneeneeneeseesneens 91
Determining if a KeyWOrd iS SELccoeiiiiieiese e 92
Supplying Values for Missing KEYWOIdScccoviieieereneieeeerese e 93
Supplying Values for Missing ArQUIMENTScceieiieieereresieceeseesee st eeesiesre e ssesre e 9
KeyWOrd INNEITANCEocveeeeeieieieee ettt ne e eneesee e 95
Entering Procedure DEfiNItIONSccccoviiieecece et 102
HOW IDL RESOIVES ROULINESoeieieiesieete ettt ettt 103
Parameter Passing MeChaniSmMcocevviieieie et 104

Contents Building IDL Applications

(O | 1T g To Y =T T o S 106
Calling Functions/ProcedureS INAIreCtlycooeveeoerireneeereseeeeese e 108
Chapter 6

Library AUTNOTING .oueeiiiii e 109
Overview of Library AULNOINGcccoooeviieiie e 110
Recognizing Potential Naming CONFlICtSccoeoeirininieerereeees e 111
Advice for Library AUINOIS ..ottt nree 114
Converting EXisting LIDIarESccoivereieeirieseeenese e 115
Chapter 7

Program CONtIOlciiiii i 117
Overview of Program CONIOlceecereierir e s ser e e see e e e e e ee e e eee s 118
COMPOUNG SEBEEMENTScueeveriirieieieeteree ettt be e e e b sseneneas 120
IF.. THENLLELSE .ottt e 123
CASE .t 125
SWITCH ettt b et e et b et b et b e ne b s 127
CASE VErSUS SWITCH ...ttt 128
FOR...DO ettt bbbttt e b e b e e e 131
REPEAT..LUNTIL oottt 136
WHILE...DO ..ottt ettt en e 137
JUMP SEELEIMENTSvveceiecieceie ettt et e e te st e eseeeseeeneesneesneesnaensenns 139
Definition of True and FalSeoovie oo 142
Chapter 8

Debugging and Error-Handlingciiiiiiiiiiiee e 145
Debugging and Error-Handling OVENVIEWcccevveeeieie e 146
What Happens When EXECULION SIOPSc..veeeierereriere e sieeee e 147
Working With BreakpOintSccccceeeriiriiinieie e e see e sreesae st st sre e sne e eae s 149
Stepping Through @Programcceoeeiieereeeee e 153
Monitoring Variabl@ ValUEScccecueeceiiieeeee sttt 155
Correcting Errors DUriNg EXECULIONccoiiiieieeeeee e 160
Obtaining Traceback INfOrMELIONccccciiiiiiieie e 161
Controlling and Recovering from EITOrScooovieieeienese e 162
Creating CUStOM EFror MESSAZESc.cccveiviiiiiieieitesiesee e stesteseessestessessaessessesneesessesees 164
NOLIfyiNg the USEr OF EITOISooiieieeeee et nee e 166
IMBEN ETTOIS ...ttt st e 167

Building IDL Applications Contents

Chapter 9

Building Cross-Platform Applicationscccccovvviiiiiiiiiiiciiee e, 173
Overview Of Cross-PlatfOrm ISSUESc.cccereririeireniniesee s 174
Which Operating System iS RUNNING?ccoiiiiiieieseee e 175
File and Path SPECIfiCalioNSccceveiiiiiceese et 176
[T =S3= 0 I L SRR 178
s et o o] = RS 180
Responding to Screen Size and COIOrScooeviieeeerenese e 181
11 o S 182
SAVE aN0d RESTOREoooiiiieieieisesiesee s se e sae e se st see s e sesssssensesensessensnns 183
Widgets in Cross-Platform Programsccccceiiiiccese e 184
USING EXLEINEl COUR ...ttt ettt st e e e sneseeens 187
[DL DELAMINET ISSUESveuveieieiirieieeste sttt st ae et bbb se e b st sae e e s b e 188
Chapter 10

Multithreading iN IDLcoooviiiieiiiiiiicee e 189
The IDL TRread POOIcov ettt st st naesnenneas 190
Controlling the IDL Thread POO0Icccvieiiiriie et 193
Routines that Use the Thread POOIcocveveiiieeieiesesc e 199
Chapter 11

Writing Efficient IDL Programsccccceeeeeeeiiiiiiiiissciiiivcineeeeeeeee 203
Overview of Program EffiCIENCYcooeiiiieieeseeere e 204
Use Vector and Array OPEralionNSccceeveereieseeeese s s esees e ste e eseesse e sseesaesseseesneenes 206
Use System FuNnctions and ProCEAUIESccovvieeieieniie e 209
ViITTUBI IMEBIMOTY ..ottt ettt ettt e e s teare e s e besbesreensentesresreennas 210
The IDL COUE PrOFIEN ...ttt 215

Part Il: Components of the IDL Language

Chapter 12

EXPressions and OPEratorsSeeeeeiiiiiiiieeeeeeneeeeeeseeiieeeeeeeeeeee 223
Overview of EXpressions and OPEratorsScocoeeeeerereneeeseseseeseeese e esse s 224
Mathemati Cal OPEIELOISc.ceceieeieeiie e e s e seereerte e ste e steete e aeseeeeesneesneesreennee e 225
Minimum and Maximum OPEIELOISc.cceeeruereereeerrerieneeresessesieseeesseseeseeseese e sseseenes 232
= D] = o = 234
LOGIiCal OPEIALOIS ..ottt sttt sttt se et b e e et s e se e se e b nre e s 236
B SX @ 1= = (0] £ 239

Contents Building IDL Applications

REIatiONal OPEIELOISccveiviieieieeiese ettt ettt e e e s te e e e e saesresreennensesreas 243
Assignment and Compound ASSIGNIMENTooviiiieieie e 246
(©]101C GO o= = (o] £ S 249
(@0 = (o gl 1= o= L= o S 252
Chapter 13

Working with Data in IDLoooiiiiiiiicccieeee e 257
D = R Y == PRSI 258
Data Type and Structure of EXPreSSIONSccccveererierieneeeseseeseeeeiesiesseseeses e ssessenens 262
Date/TIME DELAecueeeeeiitieeeeeee ettt sttt ae st e s eeseesreeneeneesneas 265
Defining and USING CONSEANEScoveeeirerierieieesiesiesie e 269
Accuracy and Floating POINt OPErationsccveveeveerieeseereeseeieeeeeeeeseesseeseesneesneens 276
Type CONVErSiON FUNCLIONSccouiiiirieieieisiese et 279
VAITADIES ...t sttt st r et b e ne e e e 282
SYSEEM VAITADIES ..ot bbb 284
Chapter 14

Y] Lo TP T P TRRPPP 285
OVENVIEW OF SITNGS ...ttt 286
S T 0o @] o1 = o LS 287
Non-string and NON-SCalar ATQUMENTSccerveeeireresiere e 288
S i1 0o @0 0107 1= 4 7= 1o L S 289
UsiNg STRING t0 FOrMat DaLAecueeieireieeeieiesie e see e 290
Byte ArgumentS @and SEHNGSoceiecieiese e e e reenaeneenne s 292
(@2 S 0! [o o S 294
LAY LSS o= o= SO 295
Finding the Length of @ StNGoovoeeiei e 297
SUDSEITINGS .veuvieveeteieitieeesiestestesae e st e sreeae e s be e e e aestesteeasesestesteeseensestesreensansestesnennneseenrn 298
Splitting and JOINING SEHNGS ..eoueeiereeeeee e e e e e seas 301
(@0 0107211 a0 S T 0 S 302
NON-Printing CharaClerscoooiieeieere et eee et sreeneenee e 306
Learning About Regular EXPIrESSIONScccvceeieiieieeeeieesie e eeesee e sseesse e sreessessesnens 307
Chapter 15

LN = | T PP PPPP TSP 311
(@ V=Y Vo A = TS 312
Understanding Array SUDSCHIPLS ...cvvcvvecieriieiieie e seeee s see e sae et naesne s 316

Building IDL Applications Contents

Assignment OPerations @A ATTAYSccvceereereieieereese e see e see e e saesre e sreeseessesresneas 320
Using Scalar Values @S SUDSCIIPLScoveeeuerreriinieiesese st 322
USING ATTaYS 8S SUDSCIIPLS ..veviiviieeeie i siesieeseeste e teete st e et aestesbe e eaesnesreens 324
Conditionally Altering Array EIEMENLSccccoiiiieieieeeeee e 327
01 o] 0 = 110 L= O 329
AVOoid USiNg RANGE SUDSCIIPLSveeeeiirieeieeieie st eeeree e eneenaesnesneas 333
COMDBINING SUDSCIIPLS ..e.vevieieiiesieeeee sttt e et e e st saesbesae e e e e resneeneens 334
= TN 01 o N = YA ST 336
Columns, ROWS, and Array MajOritycccceeceeieniiieiee et 342
Chapter 16

SEIUCTUIES et e et e e et e e e eenenans 347
OVENVIEW O SITUCIUIESveeieie ettt se e sne e 348
Creating and DefiNiNg SLIUCLUIEScccuvieeieeiee e see e ee e e e st see et eeeae s snesnee s 349
SITUCIUrE REFEIEINCESovivieeiesie ettt ae st e et besre e e e teneesneens 352
USING HELP With SETUCIUIESoeeee ettt 354
Parameter Passing With SITUCIUIESocueiiiiirieeee e 355
ATTAYS OF SLIUCLUIES ...ttt e st e sne e sreesreesneesneesreennee e 357
SrUCtUre INPUL/OULPULoveeeneeeriesie ettt b e e 359
AdvanCed SITUCIUNE USBJEcccueeeieiiecie et eie ettt s e s e e sneesneesreennee e 362
Automatic Structure DEfiNItIONc.ccvvieeeere e 364
Relaxed Structure ASSINMENToceiiee ettt e e s re e sne e e 366
Chapter 17

o 11 =] 369
OVENVIEW OF POINLEISoviiiiiiieriere ettt b e 370
HEAD VaITADIES ... 371
Creating HEap Variahl €Scov it 373
Saving and Restoring Heap Variablescccooiiieneiineeee e 374
Pointer HEap Variables ...t 375
DL POINLEY'S ... eeeieiteeeeeeesie st eeseeste st eeee e te st ese e eestesmeeeeseeseeeneenseseesaeeneeneessesneensesesenenes 376
OpErationS 0N POINLENSccieiieieseeiese st ettt saesre e seestesaesreereesensesneens 379
Dangling REFEIENCESooueeeeiieireere ettt e e e enes 383
Heap Variable@ LEAKAJEcceiviciiieee ettt st 384
Lo TH 1 Y=o [S 386
= T aTe o] 1 = £ 387
POINEEr EXAMPIES ...ttt st ettt e e e seeenes 388

Contents Building IDL Applications

Chapter 18

Files and INPUL/OULPUL ..ccooiee e 393
OVENVIEW Of FITE ACCESS ...oviiiiiiieieeierie ettt st 394
Formatted and Unformatted INPUY/OULPULc.coovrrerierieieeesenieseeeeese e 396
(@7 0= o110 1 T S 399
L@ o= o 1 =S 400
UNderstanding (LUNS) ...ocveiicicce ettt st enaenaesne s 401
Returning Information About @ File UNit ..o 404
File UNnit ManipUIGLiONSc.ccviiieeesie ettt st st eaesrenneas 407
Reading and Writing Very Large FilESooe oo 409
Using Free Format INPUL/OULPULc.eeeveiieiieciieie e ereete e see e e e st enneseesne s 411
Using Explicitly Formatted INPUL/OULPULccooeeeeieeeeeesese e 416
FOIMEL COUBS ..ottt st b et b et s b e a e 421
Using Unformatted INPUE/OULPULcceriieeieese e nee e 459
Portable Unformatted INPUE/OULPULeceeieiieciece ettt s enea 466
ASSOCiated INPUL/OULPULeeeeeeeeeeeeeiesie st e st reese e ee e eeeneesenee e 471
File Manipulation OPEratioNSccocererreririenieeeese s s se e sae e 477
Reading and Writing FORTRAN Dataccccceoeiiiieieiere e 478
Platform-Specific File [/O INfOrMationccevevirineienenisese e 482
Chapter 19

Using Language Catalogsccceeviiieiiiiiiiiiiiieeeeeee e 483
What IsaLanguage CatalOg?ccocererieirininienieesie s s 484
Creating aLanguage Catalog FIlEcvciv i 485
Using the IDLFFLANGCEE CIESSccoeeeirierierieeeesieseesie s 488
Widget EXAMPIE ...ttt et nnee 491
Chapter 20

Using the XML Parser Object Classccccccoeeiiiiiiiiiiiiiiiiiiiiieeeee 495
ADOUL XML ottt sttt sttt e 496
USING thE XIML PaISESccoiiieieeiiisiesieee sttt nan e 498
Example: Reading Data INt0 @n ATTAYcoceeeecieieii et et sre e eneas 503
Example: Reading Data INt0 SETUCLUIEScc.ceoviiiiieieese e 510
Building Complex Data SETUCLUIESoceiieeueeiesie s eeeeesie e eeesee e e sae st ennessesneas 517

Building IDL Applications Contents

10

Chapter 21

Using the XML DOM Object ClasSescceuvvevvveeiiiiiiiineeeeeeeeeieeennnns 519
About the Document ObjeCt MOElcceeeeiiiiiieceec e 520
About the XML DOM ODJECE CIASSESceeirvirieieeeesiesiesieesie e 523
USING the XML DOM ClaSSESoivevieiieiieiieeieeste e steeiesteste e esae st st seessessestesnaesasnesreenes 530
Tree-Walking EXAMPIE ..ottt 536

Part Ill: Creating Applications in IDL

Chapter 22

Creating IDL PrOJECTS ..oooiiiiiiieieeeeeeit ettt 541
OVENVIEW OF IDL PrOJECESoveueeieriisiisieieesi sttt 542
Where to Store the Filesfor @Projectcocovvceeciie s 546
Creating @PTOJECE ...c..oeeiieieiesiee ettt b e b nn e 548
Opening, Closing, and Saving ProjECEScccceriiirierene e 550
MOdifying ProjECt GIOUPScceieerieiiesiesieesiestesesteetestesteeeeee st st seesessesre e esesnesreenes 551
Adding, Moving, and ReEMOVING FIlESccoiiiiiiisceee e 553
Working With FIlESIN @ProjECtcccvviiieeeie i 557
Setting the OptioNS fOr aPrOJECEooueiieiceeee e 561
Selecting the BUild OFAEYccoivieeiece et 564
Compiling an Application from aProjectccooevereieieeere e 566
21U T Lo aTo = 0= o S 567
Running an Application from @ Projectccoceeeiiiieeee e 569
(oo L aTo Jr= W = SRS 570
Chapter 23

Providing Online Help For Your Applicationccccceeeeiiiiniininneennn. 577
Overview of Creating AppliCation HEIPccoieiiiiiirieee e 578
Providing Help Within the User INterfaceccooevevevivicceesece e 579
Displaying TEXE FIlESc.coiiiieeeeeeeee e e 582
USING N EXTErNAl VIBWELcviiiieeeee ettt st reene 583
About IDL’ S ONlINE HEIP SYSLEIM ... 584
Using Other Online HEIP VIBWESSc.oiviieieece ettt 595
Chapter 24

Distributing Runtime Mode Applicationscccccvvvviiiiiiciiiiiieneeeee, 601
What Isan IDL Runtime Made AppliCation?ccveeierieneneeieerene e 602
Limitations of RUNtIME APPlICALIONSccceeiieiiereere e 606

Contents Building IDL Applications

Steps to Distribute a Runtime AppliCationcccceieeieieve s 607
Preferences for Runtime APPliCaLIONSooeveirerinieieeesese e 608
RUNGIME LICENSING .ottt sttt st e s aesresreennenaenneas 612
Embedded LICENSING .. .ooiiiieeeeese ettt ee st sreeneenee e 616
Creating an Application DiStriDULIONcccoecieiiiiiecece e 617
Starting a RUNtiMe APPlICALIONoc.oeieieeie e 624
INstalling Y our APPHCALIONccoiieeeiicie et s ae s 628
Incorporating the IDL DaaMIiNErc.ooiiiieereeeeee e 629
Chapter 25

Distributing Virtual Machine Applicationscccccvvvvviiicccceeeennn. 631
What IsaVirtual Machine AppliCaiONTcccceevieveeie e 632
Limitations of Virtual Machine AppliCationscccooeeeeninineiieeeese e 633
Steps to Distribute Y our APPIICALIONcccuevceiiiir e eee s 634
Preferences for Virtual Machine AppliCationsccceoeenineneieinese e 635
Creating Application SAVE FIlESocviiie et 637
Starting aVirtual Maching ApPliCaLiONcooeieerirereere e 639
Installing the IDL Virtual MaChineccccvverierieeiiesee et eee e s s 643
Installing Your Virtual Maching AppliCatioNcoererrerereneeeese e 645
Distributing Y our Application on @CD-ROM ... iievieevieese e 646
Chapter 26

Distributing Callable IDL ApplicationsScccccceeeeeviivieieeieieeeenn 653
What Isa Callable IDL APPIICALIONT ..o 654
Limitations of Runtime Mode Callable IDL AppliCationsccccovvrerveriereseeienenens 655
Stepsto Distribute a Callable IDL APPHCALIONcceeceviieeeeese e 656
Preferences for Callable IDL APPliCatioNSccoocviieeeiere e 657
RUNGIME LICENSING .ottt st st a e st a e s aesresreennenaenneas 658
EmMbBedded LICENSING .. cooiiiieeeeese ettt seesreeneenee e 659
Creating an Application DiStriDULIONcccoeveiiiiiecece e 661
Starting a Callable IDL APPICALIONocceeiiiieieeie et 664
Installing Your Callable IDL APPlICALIONcceiveiiiiieie e 665
Chapter 27

Distributing ActiveX ApplicationsSccoiiiiiiiiiiieen 667
What [san ActiveX APPliCaHIONTccoiiiiieeeresre e 668
Limitations of Runtime Mode ActiveX APPlICatioNSccccvvveevevieiiecie s sie s 669

Building IDL Applications Contents

12

Steps to Distribute an ActiveX APPliCaLONccvivevevececiee e 670
Preferences for ActiveX APPliCaLIONScooeiiiieieesereeeeer e 671
RUNGIME LICENSING ..ottt ettt sttt b e aesne e ens 672
EmMbDedded LICENSING ...ocve ettt sttt e e e e ens 673
Creating an Application DiStriBULIONcccceeiiiiiieiese e 675
Starting Your ActiVeX APPIICALIONcccoviieieiieeeere e 676
Installing Your ACtiveX APPliCLHIONcccocveeeiiie e 677

Part IV: Creating Graphical User Interfaces in IDL

Chapter 28

Creating Widget Applicationsccoovviiiiiiiiicccee e, 681
User Interface OPtioNS TN IDLoceiiiiiee ettt 682
ADOUL WILGELS ...ttt 684
ADOUt Widget APPHICALIONSocveeeirieirerieeeeseries et 685
TYPES Of WIAGELS ..ottt et a e e st naenaesrenneas 686
Widget Programming CONCEPLSccerrerreerirrerierieesesressesesesse e s snese s sneneas 688
Example: A Simple Widget APPliCaHIONcccccvieeveecesiceceees e 691
Widget Application LITECYCIEooueeeeie et 693
ManipulEting WIAQELScoviuiiiiie ettt sre e enes 696
WOrKing With WiIdQEL IDSooveieeeese ettt see e 701
WiAQEL USEr VAIUES ...ttt ettt sttt st s reenaenaesrenneas 703
Widget EVENE PrOCESSINGeooveiieeieeienieee et eiesie st e et e et ee e seesseeneeneesnesneas 704
Example: Event Processing and USer ValUEScccocvieeeeveie e 710
Managing ApPPliCatioN SEALEcceereieieeeee et 712
Creating a Compound WIAGELceoveieiiiieeecese e 716
Example: Compound WIGGQELcooeiiiiieeere et 719
Debugging Widget APPHICALIONScc.coeiieiieiesie et ens 723
Chapter 29

Using the IDL GUIBUIIAETuuueiiiiiiieeee et 725
Overview Of IDL GUIBUIAENccociiiirerieereeereseeee e 726
Starting the IDL GUIBUIIAEr ocveeeee et 728
Creating an Example APPIICALIONccveiiiririeeeeeese e 730
IDL GUIBUIIAEr TOOIS ..ottt e 741
Using the PropertieS DIalOgcooeieiireeeresiesieeeese et enes 746
USING the WIAQEL BIrOWSES ..ottt ettt st sreene 749

Contents Building IDL Applications

USING the MENU EITOr ..ot naesre 751
Using the BitMap EQITOrcoiiiieieese et 755
USING the TrEE EQITOr ...c.viiviceeeee ettt st naenne s 758
Widget OPEIatioNSccccoeeeeieieseeeeie et se e esee st st eee e eeseeseeeneesenee e 760
(€1 e L aTo T =SS 763
IDL GUIBUIlAEr EXAMPIESoveeiicieieieeeecerie et 765
WidQEt PrOPErTIESeveiecieceece ettt st sttt re e ne e e 779
Chapter 30

Widget Application TEChNIQUESccooerriiiiiiiieeeee e 781
Working With Widget EVENES ..ot 782
Using Multiple Widget HIErarChi€Sscccocvieeier e 787
Crealing MENUSoouiiiiiiieiiiese ettt sb e et s e e 790
LTV T Lo S 74 o RS 802
Tipson Creating Widget APPliCaLIONScoererieiririererieiees s 808
USING BUON WIAGELSvveieciecee ettt ettt 810
USING DIraW WIGGQELSovviieieiniesiesiee sttt 815
Using Property Sheet WIAQELSocvvveriee et 827
USING TADIE WILGELS ..ottt bbb 852
L0 Lo T = o N AT o (o 874
USING TIrEE WITGELScvireiieeeeeieste sttt 880
Enhancing Widget Application USabilityccccveiiiriinvensiec e 901
10 =GP 917

Building IDL Applications Contents

14

Contents Building IDL Applications

Part |. Application
Programming

Chapter 1
Overview of IDL
Applications

This chapter includes information about the following topics:

What isan IDL Application?............ 18 About Building Applicationsin IDL

Building IDL Applications

17

18 Chapter 1: Overview of IDL Applications

What is an IDL Application?

We use theterm “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (a MAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing asmall program to analyze asingle data set or a
large-scale application for commercial distribution, it isuseful to understand the
programming concepts used by the IDL language.

Can | Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and otherswho use IDL. (If you intend to distribute your applications, it is a good
ideato avoid any code that depends on the qualities of a specific platform. See
“I'VERSION” in the IDL Reference Guide manual and “ Tips on Creating Widget
Applications’ on page 808 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have accessto an IDL license.

If you would like to distribute your IDL application to people who do not have access
toan IDL license, you have several options. Many IDL applicationswill run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 24, “Distributing Runtime Mode Applications’ for a

complete discussion of the different ways you can distribute an application written in
IDL.

What is an IDL Application? Building IDL Applications

Chapter 1: Overview of IDL Applications 19

About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL isatime-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

IDL isacomplete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’sflexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including
BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and
NetCDF).

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

IDL programs run the same across all supported platforms (Microsoft
Windows and awide variety of Unix systems) with little or no modification.
This application portability allows you to easily support avariety of
computers.

Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.

Building IDL Applications About Building Applications in IDL

20 Chapter 1: Overview of IDL Applications

About Building Applications in IDL Building IDL Applications

Chapter 2

Creating and Running
Programs in IDL

The following topics are covered in this chapter:

Overview of IDL Program Types 22
Creating SMAIN$ Programs 24
About Named Programs 27
CreatingaSimpleProgram 28
Running Named Programs 29
Compiling Your Program 31

Building IDL Applications

Making Code Readable
Maximizing the Editor’'s Capahilities.
Command Line Tipsand Tricks
Recording IDL Command Linelnput
Interrupting or Aborting Execution
For More Information on Programming . . .

21

22

Chapter 2: Creating and Running Programs in IDL

Overview of IDL Program Types

In addition to being a useful interactive data analysistool, IDL is a powerful
programming language. Many of IDL’s programming language features and
constructs can be used either interactively at the IDL command line or as part of a
larger program — which can itself be invoked at the IDL command line or by other
programs. A program may or may not be compiled before execution. The type of
programs you use in IDL will depend upon your tasks.

Program Type

Description

iTools State File
(.isv)

Restore or share an iTools session — you can save the current
state of aniTool asan iTools Sate (*.i sv) file. Whenever you
close an iTool window, you are prompted to save the current
state asan *.i sv file so that you can return to the current state
of the data later when you openthe *.i sv file. Other IDL
users running the same version or anewer version of IDL can
open *.i sv files. TheiTool State file includes the data
visualized at the time it was created. Thereis no need to
provide a separate datafile to support the visualization. See
theiTool User’s Guide for details.

SMAINS$
Program

Repeat a series of command line statements or interactively
change variable valuesin aprogram file. These short programs
or procedures are called $SMAINS$ (main-level) programs.
They are not explicitly named, and cannot be called from other
programs. See “Creating $SMAIN$ Programs’ on page 24 for
details.

Named Program
File (. pro)

Create programs and applications — you can create programs
for data analysis or visualization using one or more named
programfiles (*.pro). Program files are created in the IDLDE
Editor window or atext editor of your choice. See “About
Named Programs” on page 27.

Overview of IDL Program Types

Table 2-1: IDL Program Types

Building IDL Applications

Chapter 2: Creating and Running Programs in IDL

23

Program Type

Description

Batch File

Automate processing tasks — you can automate routine or
lengthy processing tasks using a batch file, which contains one
or more IDL statements or commands. Each line of thefileis
read and executed before proceeding to the next line. See
Chapter 3, “Executing Batch Jobsin IDL” for additional
information on batch files.

SAVE File
(. sav)

Share programs and distribute applications— you can create a
SAVE file containing data or named program filesina. sav
file to share with other users who may or may not have afull
IDL installation. See Chapter 4, “Creating SAVE Files of
Programs and Data’ for details.

Building IDL Applications

Table 2-1: IDL Program Types (Continued)

Overview of IDL Program Types

24 Chapter 2: Creating and Running Programs in IDL

Creating $MAINS$ Programs

A $MAINS$ (main-level) program can be created in two ways: at the command line
and in atext editor. You typically create a$MAIN$ program at the IDL command
line when you have afew commands you want to run without creating a separate file
to contain them. Creating a$ MAIN$ program in atext file allows you to combine
the functionality of named procedures and functions with the ability to have
command line access to variable data that is defined in the SMAIN$ scope.

$MAINS programs are not explicitly named; they consist of a series of statements
that are not preceded by a procedure (PRO) or function (FUNCTION) heading. They
do, however, require an END statement. Since there is no heading, the program
cannot be called from other routines and cannot be passed arguments. When IDL
encounters amain program either as the result of a. RUN executive command, or in a
text file, it compilesit into the special program named $MAI N$ and immediately
executesit. Afterwards, it can be executed again using the . GO executive command.

Creating a $MAINS$ Program at the Command Line

To create a$MAINS level program at the command line, start IDL and complete the
following steps:

1. Initializeavariable. At the IDL command line, enter the following:
A=2

2. Designatea command line $M AIN$ program. Enter .RUN at the IDL
command line:

. RUN
The command line prompt changes from | DL> to - .

3. Enter the program statements. Create a $SMAINS level program consisting
of the following statements:
A=A*2
PRINT, A
END

The $MAINS program isimmediately compiled and executed when you enter
the END statement. IDL prints 4.

4. Re-executethe SMAIN program. Enter .GO at the IDL command line:
ce)
The $MAINS$ program is executed again, and now IDL prints 8.

Creating $SMAIN$ Programs Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 25

Creating a $SMAINS$ Program in a Text File

When you create a SMAINS program in a named text file, you can execute the
program and have command line access to variables. Thisis an easy way to run and
test various variable values without having to modify the code and rerun the entire
program, or set breakpoints. The following example allows you to

1

Create the SMAINS$ program file. Enter the following into the Editor

window. This example consists of afunction that modifies the image data, and
a3$MAINS program. The SMAIN program displays the original image, solicits
athreshold value, passes this to the function, and displays the new image data:

FUNCTI ON stretchl mage, ing, value

Stretch i mage by input anount.
imge = inmg > val ue
RETURN, i mage

End

--- Begin $MAIN$ program ---------------------
Di splay the inmage, solicit threshold value and
di spl ay new results.

Set up displ ay.
DEVI CE, DECOWPOSED = 0, RETAIN = 2
LOADCT, O

; Access image data and displ ay.

i my = READ PNG(FI LEPATH(' mineral .png', $
SUBDI RECTORY = ['exanples', 'data']))

dins = Sl ZE(i ng, /DI MENSI ONS)

W NDOW 0, XSIZE = di ms[0], YSIZE = di ns[1]

TVSCL, iny

; Ask for a threshold value and stretch inage.
READ, threshold, PROWT='Enter Nunerical Value:
newl mg = stretchl mage(threshol d, ing)

Di splay the results.
TVSCL, new ng

END

2. Savethe $MAINS$ program. Savethefileasi nt er acti vestretch. pro. It

isimportant to note that a SMAIN$ program is not given a name that is the
same as any internal procedures or functions.

Building IDL Applications Creating $SMAINS$ Programs

26

Chapter 2: Creating and Running Programs in IDL

3. Runthe$MAIN program. Typethefollowing at the command line to run the

program:
.RUN interactiveStretch. pro

This compilesinternal functions and procedures, and executes the SMAIN
program. The command line prompt changes from | DL>to - .

Enter athreshold value. Enter 67 (or any value between 0-255) at the
command line and press Enter. This scales the image so that the remaining
pixel values are stretched across all possible intensities (0 to 255).

Test another threshold value. Enter .GO at the IDL command line;
ee

Enter adifferent value and press enter to see the results. These two final steps
can be repeated as many times as you like.

Creating $SMAIN$ Programs Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 27

About Named Programs

Longer routines and programs, consisting of more than afew lines, are typically
given their own explicit names, allowing them to be called from other programs as
well as executed at the IDL command line. Named programs are stored in disk files
created using atext editor. The IDL Development Environment includes a built-in
text editor, but any text editor can be used to create named IDL programs. Files
containing IDL programs, procedures, and functions are assumed to have the
filename extension . pr o.

Note
Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. See “Maximizing
the Editor’s Capabilities’” on page 36 for details on using the IDL Editor.

Most IDL applications consist of one or more IDL procedures, functions, object
definitions, and object method routines:

e Procedures— aprocedure is a self-contained sequence of IDL statements
with an unique name that performs awell-defined task. Procedures are defined
with the procedure definition statement, PRO.

e Functions— afunction is a self-contained sequence of IDL statements that
performs awell-defined task and returns a value to the calling program unit
when it is executed. Functions are defined with the function definition
statement, FUNCTION.

e Object definitions— an abject definition describes an IDL object, which can
encapsulate both instance data and method routines. For additional
information on IDL’s object-oriented programming features, see Chapter 1,
“The Basics of Using Objectsin IDL” in the Object Programming manual.

e Object methods — these routines are procedures and functions that act on
object instance data. See “Acting on Objects Using Methods” in Chapter 1 of
the Object Programming manual for additional information.

See the following section for a simple procedure that calls afunction. See Chapter 5,
“Creating Procedures and Functions” for details on creating and calling procedures
and functions, defining argument and keyword parameters, and using keyword
inheritance.

Note
See Chapter 6, “Library Authoring” for information on procedure naming.

Building IDL Applications About Named Programs

28

Chapter 2: Creating and Running Programs in IDL

Creating a Simple Program

In this section, we'll create asimple “Hello World” program consisting of two . pr o
files. Start the IDLDE and complete the following steps:

1

Open a new Editor window. Start the IDL Editor by selecting File — New or
clicking the New File button on the toolbar.

Create a procedure. Type the following in the IDL Editor window:

PRO hel | o_mai n
nane = "'
READ, nane, PROWPT='Enter Nane: '
str = HELLO WHQ(nane)
PRI NT, str
END

Savethe procedure. To save thefile, select File — Save or click Save button
on thetoolbar. Save the file with the namehel | o_mai n. pro inthemain IDL
directory (which the Save As dialog should aready show).

Create a function. Open anew Editor window by selecting File — New, and
enter the following code:

FUNCTI ON hel | o_who, who
RETURN, '"Hello ' + who
END

Savethefunction. Savethefileashel | o_who. pro inthemain IDL
directory. This simple program, consisting of a user-defined procedure, calls a
user-defined function.

Compilethe programs. Compilehel | o_mai n. pro and hel | o_who. pro
programs by selecting Run — Compile All.

Note
You can aso type. COVPI LE hel | o_who. pro, hel |l o_mai n. pro at the
IDL command prompt to compile the files. With functions, the compilation
order does matter. See “ Compiling Your Program” on page 31 for details.

Run the program. Select Run — Run hello_main.

Enter a name. Type aname at the IDL command line, which now reads
“Enter Name” and press the Enter key. This passes the text to the function
hel | o_who. The“Hello name” string is returned to the procedure and printed
in the Output window.

Creating a Simple Program Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 29

Running Named Programs

IDL program files, identified with a. pr o extension, can be compiled and executed
using the following methods:

¢ Running Programs Using the IDLDE Interface
¢ Running Programs From the IDL Command Line

* Running Programs Using Executive Commands
Running Programs Using the IDLDE Interface

Torunan IDL program using the IDLDE interface, do the following:

1. Openthefileinthe IDLDE editor. For example, select:
File - Open — RSI\IDL 63\examples\demo\demosr c\d_uscensus.pro

2. Compilethefile by selecting Run — Compile filename

where filename is the name of the file opened in the IDLDE editor
(d_uscensus. pro, inthisexample).

3. Execute thefile by selecting Run — run filename

where filename is the name of the file opened in the IDLDE editor
(d_uscensus. pr o, in this example).

Running Programs From the IDL Command Line

When afileis specified by typing only the filename at the IDL prompt, IDL searches
the current directory for filename.pro (where filename is the file specified) and then for
filename.sav. If no file is found in the current directory, IDL searchesin the same way
in each directory specified by 'PATH. If afileisfound, IDL automatically compiles
the contents and executes any functions or procedures that have the same name as the
file specified (excluding the extension). See “Automatic Compilation” on page 31 for
additiona details.

Using the previous example, run the US Census Data demo by entering the following
at the command line:

d_uscensus

Building IDL Applications Running Named Programs

30 Chapter 2: Creating and Running Programs in IDL

Running Programs Using Executive Commands

When afileis specified using either the .RUN, .RNEW, .COMPILE, or @ command
followed by the filename, IDL searches the current directory for fi | enane. pro
(wherefilenameisthefile specified) and thenfor f i | enane.sav. If nofileisfoundin
the current directory, IDL searches in the same way in each directory specified by
IPATH. If afileisfound, IDL compiles or runs the file as specified by the executive
command used. Executive commands can be entered only at the IDL command
prompt, and are often used when executing $MAIN$ program files. See “About
Executive Commands’ on page 44 for more information.

If you are compiling files that do not exist in your path, make sure to compile
functions before procedures. This keeps IDL from misinterpreting afunction call as
subscribed variable or array definition. See “Compiling Your Program” on page 31
for details.

Warning
If the current directory contains a subdirectory with the same name asfilename, IDL
will consider the file to have been found and stop searching. To avoid this problem,
specify the extension (. pr o or . sav, usually) when entering the run, compile, or
batch file executive command.

The details of how !PATH isinitialized and used differ between the various operating
systems, although the overall concept isthe same. See“!PATH” in Appendix D of the
IDL Reference Guide manual for more information.

Running Named Programs Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 31

Compiling Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (afunction or procedure built into IDL, such asiPLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compilesit automatically. When a user-defined function or procedureis called,
IDL must find the routine and then compileit. Compilation can be either automatic or
manual, as described below.

Warning

User-written functions must be defined before they are referenced, unless they:

1) Existinthe IDL 'PATH.

2) Existina. pr o file named the same as the function.

3) Arereserved using the FORWARD_FUNCTION statement.
Thisrestriction is necessary in order to distinguish between function calls and
subscripted variable references. See “About Calling and Compiling Functions’ on
page 85 for details.

Automatic Compilation

When you enter the name of an uncompiled user-defined routine at the command line
or call the routine from another routine, IDL searches the current directory for

fil enare. pro, thenfil enane. sav, where filename is the name of the specified
routine. If no fileisfound in the current directory, IDL searches each directory
specified by 'PATH. (For more on the IDL path, see“!PATH” in the IDL Reference
Guide manual.)

If no file matching the routine name is found, IDL issues an error:
% Attenpt to call undefined procedure/function: 'routine'
where routine is the name of the routine you specified.

If afileisfound, IDL automatically compilesthe contents of the file up to the routine
whose hame matches the name of the file (excluding the suffix), and then executes the
routine. If the file does not contain the definition of aroutine whose name matches
the name of thefile, IDL issues the same error as when the no file with the correct
name is found.

For example, suppose afile named pr oc1. pr o contains the following procedure
definitions:

PRO procl
PRI NT, 'This is procl'

Building IDL Applications Compiling Your Program

32

Chapter 2: Creating and Running Programs in IDL

END

PRO proc2
PRINT, 'This is proc2'
END

PRO proc3
PRI NT, 'This is proc3
END

If you enter procl at the IDL command line, only the pr oc1 procedure will be
compiled and executed. If you enter pr oc2 or pr oc3 at the command line, you will
get an error informing you that you attempted to call an undefined procedure.

In general, the name of the IDL program file should be the same as the name of the
last routine within the file. Thislast routine is usually the main routine, which calls
al the other routines within the IDL program file (or, in the case of object classes, the
class definition). Using this convention for your IDL program files ensures that all
the related routines within the file are compiled before being called by the last main
routine.

Program fileswithin the IDL distribution use this formatting style. For example, open
the program file for the XLOADCT procedure, x| oadct . pr o, inthe IDL Editor.
Thisfileisintheli b/ utilities subdirectory of the IDL distribution. Thisfile
contains several routines. The main routine (XLOADCT) is at the bottom of thefile.
When thisfileis compiled, the IDL Output Log notes all the routines within thisfile
that are compiled:

| DL> . COWPI LE XLQADCT

% Conpi | ed nodul e: XLCT_PSAVE.

% Conpi | ed nodul e: XLCT_ALERT_CALLER
% Conpi | ed nodul e: XLCT_SHOW

% Conpi | ed nodul e: XLCT_DRAW CPS.

% Conpi | ed nodul e: XLCT_TRANSFER.

% Conpi | ed nodul e: XLOADCT_EVENT.

% Conpi | ed nodul e: XLOADCT.

Note that the main XLOADCT procedure is compiled last.

Tip
When editing a program file containing multiple functions and/or proceduresin the
IDL Editor, you can easily move to the desired function or procedure by selecting

its name from the Functions/Procedures Menu. See * Navigating Among Procedures
and Functions’ on page 36 for more information.

Compiling Your Program Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 33

Manual Compilation

There are several ways to manually compile a procedure or function.

+ Usethe .COMPILE executive command at the IDL command line;
. COWPI LE nyFile

where myFileisthe name of a. pr o filelocated either in IDL’s current
working directory or in one of the directories specified by !PATH. All the
routines included in the specified file will be compiled, but none will be
executed automatically. If you are using the IDL Devel opment Environment,
the. pr o file will also be opened in the IDL Editor.

» If thefileisopeninthe IDL Editor, select Run — Compile or click the
Compile button on the toolbar. All routines within the file will be compiled,
but none will be executed automatically.

¢ Usethe .RUN or .RNEW executive command at the IDL command line;
.RUN nyFile

where myFileisthe name of a. pr o filelocated either in IDL’s current
working directory or in one of the directories specified by !|PATH. All the
routines included in the specified file will be compiled, and any SMAINS$ level
programs will be executed automatically. If you are using the IDL
Development Environment, the . pr o file will also be opened in the IDL
Editor.

e Usethe. RUN,. RNEWor . COVPI LE executive command with no filename
argument. Invoking any of these executive commands with no filename alows
you to interactively create and compile a $SMAINS level program. See
“Creating $SMAINS$ Programs’ on page 24 for additional details.

Note
Only . pr o files can be compiled using the manual compilation mechanisms.
Attempting to compile a SAVE (. sav) file using one of these mechanisms will
result in an error.

In the “Hello World” example shown in “Compiling Your Program” on page 31, we
have a user-defined procedure that contains a call to a user-defined function. If you
enter the name of the user-defined procedure, hel | o_mai n, a the command line,
IDL will compile and execute the hel | o_mai n procedure. After you provide the
requested input, acall to the hel | o_who function ismade. IDL searches for

hel | o_who. pr o, and compiles and executes the function.

Building IDL Applications Compiling Your Program

34 Chapter 2: Creating and Running Programs in IDL

Compilation Errors

If an error occurs during compilation, the error is reported in the Output Log of the
IDLDE. For example, because the END statement is commented out, the following
user-defined procedure will result in acompilation error:

PRO procedure_wi t hout _END

PRINT, ‘Hello Werld

; END
When trying to compile this procedure (after saving it into afile named
procedur e_w t hout _END. pr o), you will receive the following error in the IDL
Output Log:

I DL> . COWPI LE procedure_wi t hout _END

% End of file encountered before end of program
% 1 Conpilation errors in nodul e PROCEDURE_W THOUT_END.

Note
Under Microsoft Windows, the IDL Editor window displays ared dot to the left of
each line that contains an error.

Setting Compilation Options

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears. The syntax of COMPILE_OPT isas
follows:

COMPILE_OPT opt, [,opt, ..., 0pt,]

where opt,, is any of the available options documented in “COMPILE_OPT” in the
IDL Reference Guide manual. These options allow you to change default values of
true and false, hide routines from HEL P, and reserve the use of parentheses for
functions. See COMPILE_OPT for complete details.

Compiling Your Program Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 35

Making Code Readable

Commenting code and limiting line length both promote readability. See the
following sections for details.

Using Code Comments

In IDL, the semicolon (;) isthe comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully annotate programs with comments. There are no execution-time or space
penalties for commentsin IDL.

A comment can exist on aline by itself, or can follow another IDL statement, as

shown below:

; This is a coment

COUNT = 5 ; Set the variable COUNT equal to 5.
Note

You can a'so comment or uncomment blocks of codein the IDL Editor window.
See “Commenting Blocks of Code” on page 37 for details.

Using Line Continuations

The line continuation character ($) alows you to break asingle IDL statement into
multiple lines. The dollar sign at the end of aline indicates that the current statement
is continued on the following line. The dollar sign character can appear anywhere a
space islegal except within astring constant or between afunction name and the first
open parenthesis. Any number of continuation lines are all owed.

Building IDL Applications Making Code Readable

36 Chapter 2: Creating and Running Programs in IDL
Maximizing the Editor’s Capabilities

Although any text editor can be used to create an IDL program file, the IDL Editor
included in the IDL Development Environment contains features that simplify the
process of writing IDL code. For example, if you indent aline using the Tab key, the
following lines will be indented as well.

If you click the right mouse button while positioned over an editor window, a context
menu appears allowing you to quickly access several of the most convenient
commands. The context menu changes to display common debugging commands if
IDL isrunning a program. When you create programs in the Editor window, you also
have access to the following features:

¢ “Navigating Among Procedures and Functions’ on page 36

e “Commenting Blocks of Code” on page 37

e “Searching” on page 38

e “Changing Text Selection Modes (Windows Only)” on page 38
e “Modifying Chromacoding (Windows Only)” on page 39

e “Editor Window Keyboard Shortcuts” on page 39

If aprogram error or breakpoint is encountered, IDLDE displays the relevant file,
opening it if necessary. The line at which the breakpoint or error occurred is marked.
See Chapter 8, “Debugging and Error-Handling” for more on IDL’s debugging
commands.

If you use the IDL Development Environment, files are opened in the IDL Editor by
default. On UNIX platforms, you can simplify the process of using another editor;
see " Creating a Macro to Call a Text Editor in IDL for UNIX” in Chapter 4 of the
Using IDL manual for details.

If you have afile open in the IDL Editor and you modify the file using another editor
(on any platform), IDL will warn you that the filein the IDL Editor window has
changed, and give you a chance to reload the file.

Navigating Among Procedures and Functions
When you open afilein the IDL Editor, all functions and procedures defined in that
file are listed in the Functions/Procedures Menu. On Windows, this feature appears

as a pull-down menu located on the IDLDE toolbar. On Motif, this menu is accessed
through the () button in the upper left corner of the Editor window.

Maximizing the Editor's Capabilities Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 37

Select a procedure or function from the drop-down list to move the cursor to the
beginning of that procedure or function. Thisis especially useful for navigating large
program files containing multiple procedures and functions.

[HeslimieeesNnEs]
I example3_manippalette::Init
example3_manippalette:: SelectSinglePlanslmages :3_manippalette ;Iglll
exampled_ manlppalette Ontdouzel own ;I
example3 manlppalett Elp. oWin, =, ¥. iButton
example3_manippalette::DoRegisterCurzor
exampled_manippalette:: Cleanup
Configure mouse mnotion method. _I
pro exanpleld_manippalette: OnMouseMotion., oWin, =. v. KeyMods=
there i= not a walid image cobject, return.
IF (”OBJ VALID{=elf olmage)) THEN EEGIH
; Call our superclass.
=zelf->IDLitHanipulator: OnMouseMotion., oWin, =. v. KeyvMods=
RETURN
ENDIF hd
4 3 4

Figure 2-1: Function/Procedure Menu

Commenting Blocks of Code

The IDLDE provides methods to quickly comment and uncomment blocks of code
lines. To comment or uncomment lines of code, you may either select the linesto be
commented/uncommented or you may simply places the cursor somewhere on the
desired line. Commenting and uncommenting can be performed using:

Method Description
Toolbar Click the Comment or Uncomment toolbar items.
Comment —[i] [#F— Uncomment
Menu Use the Edit - Comment or Edit — Uncomment menu

items.

Context menu

Right click over aline (or block of selected lines) to display
the context menu. Select Comment or Uncomment.

Building IDL Applications

Table 2-2: Block Comment Methods

Maximizing the Editor's Capabilities

38 Chapter 2: Creating and Running Programs in IDL

Searching

The IDL Editor window provides a comprehensive search-and-replace mechanism,
alowing you to search for occurrences of atext string in one or more open files. See
“Search Menu” in Chapter 2 for detalls.

Changing Text Selection Modes (Windows Only)

Under Microsoft Windows, the IDL Editor provides three ways of selecting text:
stream mode, line mode, and column mode.

e Stream mode selects text in a stream, beginning with the first character
selected and ending with the last character, just asif you were reading the text.

puting environment for the
Wl vizuslization of data.

Figure 2-2: A selected stream of text.

* Linemode selects full lines of text.

nt for the
1 of data.

display technigues.

Figure 2-3: Text selection using Line Mode.

* Box mode selects text from one screen column to the next. Selecting text in
column mode is similar to drawing a rectangle around the text you wish to
select.

Maximizing the Editor's Capabilities Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 39

Figure 2-4: Column Mode Text Selection

Switch between the three modes by clicking the right mouse button while positioned
over an Editor window. Select the “ Selection Mode” option to access a pull-down
menu with the three text selection modes. The option with a check mark by it is the
currently selected text selection mode. If you have text already selected, the selected
areawill change to reflect the new mode.

Modifying Chromacoding (Windows Only)

The IDL Editor in IDL for Windows supports chromacoding — different types of
IDL statements appear in different colors. To change the default colors used for
different types of IDL statements, select File — Preferences, and select the Editor
tab.

Turning Chromacoding Off

By default, the Windows IDL Editor uses chromacoding. To turn off chromacoding,
select File — Preferences, select the Editor tab, and uncheck the Enable colored
syntax checkbox. Alternately, you can specify a

Editor Window Keyboard Shortcuts

The DL Editor window supports anumber of useful keyboard shortcuts, described in
the following table.

Note
See “Enabling Alt Key Accelerators on Macintosh” on page 35 for information on

using keyboard accelerators on the Macintosh platform.

Building IDL Applications Maximizing the Editor's Capabilities

40

Chapter 2: Creating and Running Programs in IDL

(Wirlfg?)/ws) (I\I/T(%f) SETEN
«->MN «->MN Move cursor |eft or right one character, up or
down oneline.
Ctrl+« Ctrl+B Move left one word.
Ctrl+— Ctrl+F Move right one word.
End Ctrl+E Move to end of current line.
Home Ctrl+A or Move to beginning of current line.
Home
Page Down Page Down Move to next screen.
Page Up Page Up Move to previous screen.
Shift+Tab Move cursor one tab-stop left.
Ctrl+Home Ctrl+Home Move to beginning of file.
Ctrl+End Ctrl+End Move to end of file.
Ctrl+V Delete word to the | eft of the cursor.
Ctrl+K Delete word to the right of the cursor.
Ctrl+K Delete everything in the current line to the right
of the cursor.
Ctrl+U Delete everything in the current line to the left of
the cursor.
Delete Ctrl+D Delete the next character.
Ctrl+U Make selected text (or the character to the right of
the cursor) lower-case.
Ctrl+Shift+U M ake selected text (or the character to theright of
the cursor) upper-case.
Ctrl+z Alt+Z Undo last action.
Ctrl+Y Alt+Y Redo last undone action.

Table 2-3: IDL Editor Window Key Definitions

Maximizing the Editor's Capabilities

Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 41

(Wi f§gws) (I\I/T(()?:f) A
Ctrl+X Alt+X Cut selection to clipboard.
Ctrl+Shift+Y Cut line containing cursor to clipboard.
Ctrl+C Alt+C Copy selection to clipboard.
Ctrl+Vv Alt+V Paste contents of clipboard at current cursor
location.
Ctrl+] Find matching (, {, or [character.
Tab Indent highlighted lines one tab-stop right.

Table 2-3: IDL Editor Window Key Definitions (Continued)

Building IDL Applications

Maximizing the Editor's Capabilities

42 Chapter 2: Creating and Running Programs in IDL

Command Line Tips and Tricks

Entering text at the command line allows you to perform ad hoc analysis, compile
and launch applications, and create $SMAINS$ programs. IDL provides some valuable
command line functionality to support these tasks. See the following sections for
details.

e “Copying and Pasting Multiple IDL Code Lines’ on page 42
e “Recdling Commands’ on page 43

e “Specia Command Line Characters’ on page 44

e “Specia Command Line Key Combination” on page 45

Note
Also see “Recording IDL Command Line Input” on page 47 for information on
maintaining the history of an IDL session in afile.

Copying and Pasting Multiple IDL Code Lines

You can paste multiple lines of text from the clipboard to the command line. You
simply need to place some text in the clipboard and paste it into the command line.
Any source of text is valid, with emphasis on the requirement that the text be
convertibleto ASCII. When copying text from an IDE editor, the selection mode can
be stream, line, or box. See “ Changing Text Selection Modes (Windows Only)” on
page 38 for details.

Note
Line and box modes automatically put atrailing carriage return at the end of the
text. When pasted, the last line is executed.

Be sure when you paste multiple lines that they only contain asingle IDL command
or are lines which include statements that utilize line continuation characters ($).
Multi-line statements will produce unintended IDL interpreter behavior or errors.
Lines are transferred to the command line as is. Namely, leading white space is not
removed and comment lines are sent to the IDL interpreter without distinction.

Note
Under Microsoft Windows, tabs are converted to white space based on the value of
the IDL_WDE_EDIT_TAB_WIDTH preference.

Command Line Tips and Tricks Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 43

Recalling Commands

By default, IDL savesthe last 20 commands entered in arecall buffer. These
command lines can be recalled, edited, and re-entered. The up-arrow key (1) on the
keypad recalls the previous command you entered to IDL, moving backward through
the command history list. Pressing it again recalls the previous line, and so on. The
down-arrow key (4) on the keypad moves forward through the command history.
When acommand isrecalled, it is displayed at the IDL prompt and can be edited
and/or entered.

You can view the contents of the recall buffer in the following ways:
¢ Usethe arrow keysto view the entries in the buffer one at atime.

¢ Usethe HELP procedure with the RECALL_COMMANDS keyword to
display the entire contents of the recall buffer in the IDL Output Log.

* Right-click on the Command Linein the IDL Development Environment.
The 20 most recent commandsin the command recall buffer are displayed, and
can be selected and re-executed.

The command recall feature is enabled by setting the IDL_EDIT_INPUT preference
to true, which setsthe system variable 'EDIT_INPUT to anon-zero value (the default
is1). See“!EDIT_INPUT” in Appendix D of the IDL Reference Guide manual for
details.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by setting the
IDL_RBUF_SIZE preference equal to a number other than one (in the IDL
Development Environment, you can set this value viathe General tab of the IDLDE
Preferences dialog aswell.) In order for the change to take effect, IDL must be ableto
process the assignment statement before providing a command prompt. This means
that you must put the assignment statement in the IDL startup file. See“ Startup Files’
in Chapter 1 of the Using IDL manual for more information on startup files.

For example, placing the line
I'EDI T_I NPUT = 50

inyour IDL startup file changes the number of lines saved in the command recall
buffer to 50.

See“!EDIT_INPUT” in Appendix D of the IDL Reference Guide manual and
“General Preferences’ in Chapter 3 of the Using IDL manual for additional details.

Building IDL Applications Recalling Commands

44 Chapter 2: Creating and Running Programs in IDL

Special Command Line Characters

Commands entered at the IDL prompt are usually interpreted as |IDL statementsto be
executed. Other interpretations include executive commands that control execution

and compilation of programs, shell commands, and so on. Input to the IDL prompt is
interpreted according to the first character of the line, as shown in the following table.

Note
The information in this section applies equally to IDL used in command-line mode
or viathe IDL Development Environment.

First Character Action

Executive command. See “About Executive
Commands’ on page 44 for details.

? Help inquiry.

$ Send an operating system commands to a subprocess.

Note - SPAWN procedure is amore flexible
aternative. It need not be used interactively and the
standard output of the command can be saved in an
IDL string array. See“ SPAWN” inthe IDL Reference
Guide manual for details.

@ Batch file initiation.
Tord key Recall/edit previous commands.
CTRL+D In UNIX command-line mode, exits IDL, closes al
files, and returns to operating system.
CTRL+Z In UNIX command-line mode, suspends IDL.
All others IDL statement.

Table 2-4: Interpretation of the First Character in an IDL Command
About Executive Commands

IDL executive commands compile programs, continue stopped programs, and start
previously compiled programs. All of these commands begin with a period and must
be entered in response to the IDL prompt. Commands can be entered in either

Special Command Line Characters Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 45

uppercase or lowercase and can be abbreviated. Under UNIX, filenames are case
sensitive; under Microsoft Windows, filenames can be specified in any case. See
“Executive Commands’ in the IDL Quick Reference manual for a descriptions of the
available executive commands.

Note
Comments (prefaced by the semicolon character in IDL code) are not allowed
within executive commands.

Executive commands are used to create SMAIN$ programs. See “ Creating SMAINS$
Programs’ on page 24 for details.

Special Command Line Key Combination

When working at the command line, key combinations can be used to quickly edit a
command. The line-editing abilities and the keys that activate them differ somewhat
between the different operating systems. To access the history of commands entered
at the command line, see “Recalling Commands’ on page 43.

Note
The behavior can also differ within the same operating system, between the
Command prompt for IDL and the Command line on the IDLDE.

Thetable below lists the edit functions and the corresponding keys.

Function UNIX Windows

Move cursor to start of line | CTRL+A or Home Home

Move cursor to end of line | CTRL+E or End End

Move cursor |eft one Left arrow Left arrow

character

Move cursor right one Right arrow Right arrow

character

Move cursor left oneword | CTRL+B, CTRL+l€eft arrow
(R13 on Sun Keyboard)

Move cursor right oneword | CTRL+F, CTRL+right arrow
(R15 on Sun Keyboard)

Table 2-5: Command Recall and Line Editing Keys

Building IDL Applications Special Command Line Characters

46

Chapter 2: Creating and Running Programs in IDL

Function UNIX Windows
Delete from current to start | CTRL+U
of line
Deletefrom currenttoend | CTRL+K
of line
Delete entireline
Delete current character CTRL+X or CTRL+D Delete
Delete previous character CTRL+H, or Backspace, | Backspace
or Delete
Delete previous word CTRL+W, or Esc-Delete
Generate IDL keyboard CTRL+C CTRL+break
interrupt
Move back onelinein CTRL+N, Up arrow Up arrow
recall buffer
Move forward onelinein Down arrow Down arrow
recall buffer
Redraw current line CTRL+R
Overstrike/l nsert Esc-I
EOF if current lineis CTRL+D
empty, else EOL
Search recall buffer for text | Available only in
command-line mode.
Enter A, then input
search string at prompt.
Insert the character at the any character any character

current Executive
Commands position

Table 2-5: Command Recall and Line Editing Keys (Continued)

Special Command Line Characters

Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 47

Recording IDL Command Line Input

Journaling provides arecord of an interactive session by saving in afile all text
entered from the terminal in responseto aprompt. Injournaling, all text entered to the
IDL prompt is entered directly into the file, and any text entered from the terminal in
response to any other input request (such aswith the READ procedure) isentered asa
comment. Theresult isafile that contains a complete description of the IDL session.
JOURNAL has the form:

JOURNAL[, Argument]

where Argument is either afilename (if journaling is not currently in progress) or an
expression to be written to the file (if journaling is active). Thefirst call to
JOURNAL starts the logging process. If no argument is supplied, ajournal file
namedi dl save. pr o is started.

Warning
Under all operating systems, creating a new journal file will cause any existing file
with the same name to be lost. Supply a filename argument to JOURNAL to avoid
destroying desired files.

When journaling is not in progress, the value of the system variable |l JOURNAL is
zero. When the journal file is opened, the value of this system variable is set to the
number of the logical file unit on which the file is opened. Thisallows IDL routines
to check if journaling is active. You can send any arbitrary datato thisfile using the
normal IDL output routines. In addition, calling JOURNAL with an argument while
journaling isin progress results in the argument being written to the journal file asif
the PRINT procedure had been used. In other words, the statement,

JOURNAL,
isequivalent to
PRI NTF, !JOURNAL, Argunent

with one significant difference—the JOURNAL statement is not logged to the file,
only its output; while the PRINTF statement will be logged to thefilein addition to
its output.

Journaling ends when the JOURNAL procedure is called again without an argument
or when IDL is exited. The resulting file serves as arecord of the interactive session
that went on while journaling was active. It can be used later as an IDL batch input
file to repeat the session, and it can be edited with any text editor if changes are
necessary. See “JOURNAL” in the IDL Reference Guide manual for examples.

Building IDL Applications Recording IDL Command Line Input

48 Chapter 2: Creating and Running Programs in IDL

Interrupting or Aborting Execution

To manually stop programs that are running, issue a keyboard interrupt by typing
Ctrl+C (UNIX) or Ctrl+Break (Windows). A message indicating the statement
number and program unit being executed is issued on the terminal or IDL Command
L og acknowledging the interrupt. The values of variables can be examined,
statements can be entered from the keyboard, and variables can be changed. The
program can be resumed by issuing the . CONTINUE executive command to resume
or the .STEP executive command to execute the next statement and stop.

Variable Context After Interruption

The variable context after a keyboard interrupt is that of the program unit in which
the interrupt occurred. By typing the statement RETURN, the program context will
revert to the next higher calling level. The RETALL command returns control to the
main program level. If any doubt arises as to which program unit in which the
interrupt occurred, the HEL P procedure can be used to determine the program
context. IDL checks after each statement to see if an interrupt has been typed.
Execution does not stop until the statement that was active finishes; thus,
considerable time can elapse from the time the interrupt is typed to the time the
program interrupts.

Aborting IDL

If you find it necessary to abort IDL rather than exiting cleanly using the EXIT
command, do one of the following:

e UNIX: Aswith any UNIX process, IDL can be aborted by typing Ctrl+\.This
isavery abrupt exit—all variables are lost, and the state of open fileswill be
uncertain. Thus, although it can be used to exit of IDL in an emergency, itsuse
should be avoided.

Note
After aborting IDL by using Ctrl+\, you may find that your terminal isleftin
the wrong state. You can restore your terminal to the correct state by issuing
one of the following UNIX commands:

% r eset or %stty echo -chreak

* Windows: Thereis no abort character for IDL for Windows.

Interrupting or Aborting Execution Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 49

For More Information on Programming

Here we have just touched on the possibilities that IDL offers for programmers. For
more information on how to prepare and run programs, see Chapter 5, “ Creating
Procedures and Functions’, which describes creating and calling procedures and
functions. It also describes argument and keyword parameters, and keyword
inheritance.

Building IDL Applications For More Information on Programming

50

For More Information on Programming

Chapter 2: Creating and Running Programs in IDL

Building IDL Applications

Chapter 3

Executing Batch Jobs
In IDL

The following topics are covered in this chapter:

Overview of Batch Files 52 Interpretation of Batch Statements
Batch FileExecution 53 ABatcchExample

Building IDL Applications

51

52 Chapter 3: Executing Batch Jobs in IDL

Overview of Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch fileis read and executed before proceeding to the next line. This makes batch
files different from main-level programs, which are compiled as a unit before being
executed, and named programs, in which all program modules are compiled as an
unit before being executed. A file created by the JOURNAL routine is an example of
an batch file. Program types and more information on journaling are described in
Chapter 2, “ Creating and Running Programsin IDL".

Note
Batch files are sometimes referred to as include files, since they can be used to
“include” the multiple IDL statements contained in the file in another file.

See the following topics for more information on batch files:
e “Batch File Execution” on page 53
e “Interpretation of Batch Statements’ on page 55
e “A Batch Example’ on page 56

Tip
For information on how to specify a batch file as a startup file that is automatically
executed when IDL is started, see “ Startup Files’ in Chapter 1 of the Using IDL
manual.

Overview of Batch Files Building IDL Applications

Chapter 3: Executing Batch Jobs in IDL 53

Batch File Execution

You can run IDL in non-interactive mode (batch mode) by entering the character @
followed by the name of afile containing IDL executive commands and statements.
Commands and statements are executed in the order they are contained in thefile, as
if they had been entered at the IDL command prompt.

Batch execution can be terminated before the end of thefile, with control returning to
interactive mode without exiting IDL, by calling the STOP procedure from the batch
file. Calling the EXIT procedure from the batch procedure has the usual effect of
terminating IDL.

Executing a Batch File

To execute a batch file, enter the name of thefile, prefaced with the“ @” character, at
the IDL prompt:

@atchfile

where batchfile is the name of the file containing IDL statements. Note that the @
symbol must be the first character on the linein order for it to be interpreted properly.

Note
This syntax can also be used within an IDL program file.

Thecnt our 01 batch file contains the following lines:

Restore Maroon Bells data into the | DL variable "elev".
REST(RE FI LEPATH(' mar bel | s. dat', SUBDI R=[' exanpl es','data'])
Make the x and y vectors givi ng the colum and row p05|t|ons
326.850 + .030 * FI NDGEN(72)

4318.500 + .030 * FI NDGEN(92).

X
Y

Enter the following at the IDL command line to execute the batch file:
@nt our01

IDL reads statements from the specified file until the end of thefile is reached.
Variables ELEV, X, and Y appear in the variable watch window. Batch files can also
be nested by placing a call to one batch file within another. For example, the sur f 01
batch file callsthe cnt our 01 batch file and uses the variable data to create a surface
display. To see the results, enter the following at the command line:

@urfol

Building IDL Applications Batch File Execution

54 Chapter 3: Executing Batch Jobs in IDL

Naming and Locating Batch Files

If filename does not include a file extension, IDL searches the current working
directory and the directories specified by the |PATH system variable for afile with
filename as its base, with the file extension . pr o. If filename. pr o isnot found in a
given directory, IDL searches for filename with no extension in that directory. If
filename is found (with or without the . pr o extension), thefile is executed and the
search ends. If filename includes afull path specification, IDL does not search the

directoriesin |PATH.

Batch File Execution Building IDL Applications

Chapter 3: Executing Batch Jobs in IDL 55

Interpretation of Batch Statements

Each line of abatch fileisinterpreted exactly asif it was entered from the keyboard.
In batch mode, IDL compiles and executes each statement before reading the next
statement. Thisdiffersfrom theinterpretation of main-level programs compiled using
.RNEW or .RUN, in which al statementsin a program are compiled as a single unit
and then executed.

GOTO statements are illegal in the batch mode because each batch file statement is
compiled and executed sequentialy.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending with
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

; This will not work in batch node.
FOR I =1, 10 DO BEG N

A= X1]
ENDFOR

In batch mode, IDL compiles and executes each line separately, causing syntax errors
in the above exampl e because no matching ENDFOR is found on the line containing
the BEGIN statement when the line is compiled. The above example could be made
to work by writing the block of statements as a single line using the $ (continuation)
and & (multiple commands on a single line) characters.

Building IDL Applications Interpretation of Batch Statements

56

Chapter 3: Executing Batch Jobs in IDL

A Batch Example

You can create a batch filein the IDL Editor or other text editor program. An
example of an IDL executive command line that initiates batch execution:

@yfile

This command causes thefilemyf i | e to be used for statement and command input.
If thisfileis not in the current directory, the directories specified by !PATH are also
searched.

An example of the contents of a batch file follows:

Run program A:
. RUN proga
Run program B:
. RUN progb
Print results:
PRI NT, AVALUE, BVALUE
; Close unit 3:
CLCSE, 3

The batch file should not contain complete program units. Complete program units
should be compiled and run by using the .RUN and .RNEW commands in the batch
files, asillustrated above.

Example Code
Several working batch files are included in the distribution. For an example, type
@i gpr c09 at the IDL prompt to run the batch file. The source code for this
exampleislocated in si gpr c09, inthe exanpl es/ doc/ si gnal directory.

A Batch Example Building IDL Applications

RSI_PROCODE/examples/doc/signal/sigprc09

Chapter 4

Creating SAVE Files of
Programs and Data

The following topics are covered in this chapter:

Overview of SAVEFiles 58 Saving Variablesfroman IDL Session ... 71
About Program and DataSAVE Files 60 Executing SAVEFiles 73
Creating SAVE Filesof Program Files 62 ChangestoIDL 5.4 SAVEFiles......... 76

Building IDL Applications 57

58 Chapter 4: Creating SAVE Files of Programs and Data

Overview of SAVE Files

You can create binary files containing data variables, system variables, functions,

procedures, or objects using the SAVE procedure. These SAVE files can be shared

with other users who will be able to execute the program, but who will not have

accessto the IDL code that created it. Variables that are used from session to session

can be saved as and recovered from a SAVE file.

Tip
A startup file can be set up to execute the RESTORE command every time IDL is
started. See “ Startup Files” on page 31 for information on specifying astartup files.

Note
Files containing IDL routines and system variables can only be restored by versions
of IDL that share the sameinternal code representation. Since the internal code
representation changes regularly, you should always archive the IDL language
source files (. pr o files) for routines you are placing in IDL SAVE files so you can
recompile the code when anew version of IDL isreleased.

What Can be Stored in a SAVE File

A SAVE file can contain system variables, data variables, or named program files.
See the following topics for details:

« Named routines — store one or more routinesin asingle SAVE file and
distribute it other IDL users. See “About Program and Data SAVE Files’ on
page 60.

e Variable data— store system or session variable datain a SAVE file. See
“Saving Variables from an IDL Session” on page 71.

Warning
Variables and routines cannot be stored in the same SAVE file.

Save Files and Application Development
For distributable applications, IDL does not compile . pr o files. Therefore, any

procedures or functions used by an application must be resolved and contained in a
SAVE file. For IDL applications, these routines can be part of the main SAVE file

Overview of SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 59

that is restored when your application is started. The following are examples of cases
in which you might use SAVE to create . sav files:

« To create SAVE filesfor any procedures or functions that are not contained in
the main SAVE filethat is restored when a native IDL application is started

* Tocreate SAVE filesfor any procedures or functions used by a Callable IDL
or ActiveX application

e Tocreate SAVE filesfor any variables used by your application, such as
custom ASCII templates

If your application is composed of a number of procedures and other types of files, it
would likely be easier to create a SAVE file using the IDL Projects interface. See
Chapter 22, “Creating IDL Projects’ for details. See Chapter 24, “ Distributing
Runtime Mode Applications” for more information on creating applicationsin IDL,
including how to license your application and package it for distribution.

Accessing and Running SAVE Files

Depending upon the name and contents of the SAVE file, there are a number of ways
to restore the file. SAVE files containing routines can be executed in a fully licensed
version of IDL, through the IDL Virtual Machine (if created in IDL version 6.0 or
later), or using the IDL_ Savefile object. SAVE files containing variable data can be
restored using the RESTORE procedure or the IDL_Savefile object. You may also be
able to automatically compile and restore the file by typing the name of thefile at the
command line. See “Executing SAVE Files” on page 73 for details.

Building IDL Applications Overview of SAVE Files

60 Chapter 4: Creating SAVE Files of Programs and Data

About Program and Data SAVE Files

The SAVE procedure can be used to quickly save IDL routines and datavariablesin a
binary format that can be shared with other IDL users, or with others who have
installed the IDL Virtual Machine. If you are developing an application for
distribution to users who do not have aversion of IDL installed, you should also see
Chapter 24, “ Distributing Runtime Mode Applications’.

Warning
Variables and routines cannot be stored in the same SAVE file.

Note
While IDL routines or data can be saved in afile with any extension, it is common
to use the extension . sav for SAVE files. Using the . sav extension has two
benefits: it makesit clear to another IDL user that the file contains IDL routines or
data, and it allows IDL automatically locate and compile the routinesin the file as
described in “Automatic Compilation” on page 31.

If your program or utility consists of multiple routines, each procedure or function
used by your program must be resolved and contained in a SAVE file. You have the
following options:

* Includeall routinesin amain SAVE filethat isrestored first. This makes all
routines available without having to restore any additional SAVE files. You
can do this manually, by compiling all of the routines yourself (possibly with
the assistance of the RESOLVE_ALL or ITRESOLVE routines). You can aso
add all of your . pr o filesto an IDL Project and build the project, which
createsasingle. sav file. See Chapter 22, “ Creating IDL Projects’ for
additional information.

* Create aseparate SAVE file for each routine used by your application.
Assuming each SAVE file usesthe . sav extension and has the same name as
the procedure or function it contains, this allows you to simply place the files
inadirectory included in 'PATH; IDL will compile all of thefiles
automatically when needed.

If your program also contains variable data, you must create a separate SAVE fileto
contain the data. Variable data must be explicitly restored before any routine attempts
to use the variables contained in the file. See “Executing SAVE Files’ on page 73 for
more information.

About Program and Data SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 61

Note
A SAVE file containing data will always be restorable. However, SAVE files

created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portable between different versions of IDL. If you created
your SAVE filewith aversion of IDL earlier than 5.5, you will need to recompile
your origina . pr o files and re-create the SAVE file using the current version of
IDL.

Building IDL Applications About Program and Data SAVE Files

62 Chapter 4: Creating SAVE Files of Programs and Data

Creating SAVE Files of Program Files

The following examples create SAVE files that are stand-alone IDL applications that
can be run on any Windows, UNIX or Mac OS X computer containing the IDL
Virtual Machine or alicensed copy of IDL. See the following examples:

« Example: A SAVE File of a Simple Routine below creates two SAVE files.
One SAVE file contains variable data, the other SAVE file contains a
procedure uses RESTORE to access the variable datain the first SAVE file.

« “Example: A Save File of a Simple Widget Application” on page 65 displays
an image in asimple widget application.

« “Example: Creating a SAVE File of an Object Definition” on page 66 shows
the special stepsthat must be taken when creating a SAVE file of an object that
has dependencies upon other objects.

e “Example: A SAVE File of a Custom iPlot Display” on page 68 restores
variable dataand plotsitin aniPlot display.

Note
If you want your customersto run your application on acomputer without IDL, you
will need to include aruntime version of IDL with aruntime or embedded licensein
your application distribution. See Chapter 24, “ Distributing Runtime Mode
Applications’ for details.

Example: A SAVE File of a Simple Routine

The following example creates two SAVE files. One SAVE file contains variable
data, loaded from an image file. This SAVE fileisthen restored by the program in the
main SAVE file, which uses asimple call to the ARROW procedure to point out an
area of interest within the image.

Save Image Variable Data
1. Start afresh session of IDL. This avoids saving unwanted session
information.

2. Read image data into a variable. Open an image file containing an MRI
proton density scan of a human thorax, and read the datainto a variable named
i mage:

READ JPEG, (FI LEPATH(' pdt horax124.jpg', SUBDI RECTORY= $
['exanples', 'data'])), inage

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 63

3. Create a SAVE file containing the image data. Use the SAVE procedure to
save the image variable in a SAVE file by entering the following:

SAVE, image, FILENAME='inmgefile.sav'
This stores the SAVE filein your current working directory.

Note
When using the SAVE procedure, some users identify binary files containing
variable datausing a. dat extension instead of a. sav extension. While any
extension can be used to identify files created with SAVE, it is recommended that
you use the. sav extension to easily identify files that can be restored.

Save a Procedure that Restores Variable Data

1. Createtheprogram file. Create the following IDL program that first restores
the image variable contained within thei magefi | e. sav file. Thisvariableis
used in the following program statements defining the size of the window and
in the TV routine which displays the image. The ARROW routine then draws
an arrow within the window. Enter the following linesin atext editor.

PRO draw_arrow

Restore i mage data.
RESTORE, 'inmgefile.sav'

Cet the dinensions of the image file.
s = S| ZE(i mage, /DI MENSI ONS)

Prepare display device and di splay image.
DEVI CE, DECOWPCSED = 0
W NDOW 0, XSIZE=s[0], YSIZE=s[1], TITLE="Point of Interest”
TV, inmage

Draw t he arrow.
ARROW 40, 20, 165, 115

: The IDL Virtual Manchine exits | DL when the end of a

; programis reached if there are not internal events. The
: WAIT statenent here allows the user to viewthe .sav file
; results for 10 seconds when executed through the | DL

: Virtual WMachi ne.

WAIT, 10

END

2. Savethefile. Namethe saved filedr aw_ar r ow. pro.

Building IDL Applications Creating SAVE Files of Program Files

64

Chapter 4: Creating SAVE Files of Programs and Data

Reset the I DL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

. FULL_RESET_SESSI ON
Compile the program. Enter the following at the IDL prompt:
. COWPI LE draw_arrow

Resolve dependencies. Use RESOLVE _ALL (or ITRESOLVE if theroutine
has any dependencies on iTools components) to iteratively compile any
uncompiled user-written or library procedures or functions that are called in
any aready-compiled procedure or function:

RESCLVE_ALL

Note
RESOLVE_ALL does not resolve procedures or functionsthat are called via

quoted strings such as CALL_PROCEDURE, CALL_FUNCTION, or
EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these
routines.

Createthe SAVE file. Create afilecaled dr aw_ar r ow. sav that containsthe
user-defined draw_arrow procedure. When the SAVE procedure is called with
the ROUTINES keyword and no arguments, it create a SAVE file containing
al currently compiled routines. Because the procedures within the

dr aw_ar r ow procedure are the only routinesthat are currently compiled inthe
IDL session, create the SAVE file asfollows:

SAVE, /ROUTI NES, FILENAME='draw arrow. sav'

Note
When the name of the SAVE file usesthe. sav extension and has the same

base name as the main level program, it can be automatically compiled by
IDL. This meansthat it can be called from another routine or restored from
the IDL command line using only the name of the saved routine. See
“Automatic Compilation” on page 31 for details.

Test the SAVE file. Select Start — Programs — RSI IDL 6.3 — IDL
Virtual Machine. Click on the splash screen and open dr aw_ar r ow. sav.
You could also test the SAVE file from IDL, enter the following at the
command prompt.

RESTORE, 'draw_arrow. sav'
draw_arrow

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 65
See “Executing SAVE Files’ on page 73 for all the available waysto run aSAVE file.
Example: A Save File of a Simple Widget Application

The following example creates a native IDL application that displays animagein a
simple widget interface. When any application runsin the IDL Virtual Machine,
there must some element (such as widget or interface events, or aWAIT statement)
that keeps the application from immediately exiting with the END statement is
reached. This example includes a Done button for this reason. The examplein
“Example: A SAVE File of a Simple Routine” on page 62 includes aWAIT
statement.

1. Createa.profile. Enter thefollowinginthe DL Editor, and saveit as
ny App. pro:

PRO done_event, ev
; Wien the 'Done' button is pressed, exit
; the application.

W DGET_CONTRCL, ev. TOP, /DESTROY

END

PRO nyApp

Read an image file.
READ JPEG, (FILEPATH(' endocell.jpg', SUBDI RECTORY = $
["exanples', 'data'])), inmage

Fi nd the di nensions of the inage.
info S| ZE(i mage, / DI MENSI ONS)
xdi m = i nfo[0]
ydim = info[1]

Create a base wi dget containing a draw w dget
and a ' Done' button.
wBase = W DGET_BASE(/ COLUWN)
wDr aw = W DGET_DRAW wBase, XSI ZE=xdi m YSI ZE=ydi m)
wButton = W DGET_BUTTON(wBase, VALUE=' Done',
EVENT_PROC=' done_event ')

Real i ze the wi dgets.
W DGET_CONTROL, wBase, /REALIZE

Retrieve the widget ID of the draw wi dget.
W DGET_CONTROL, wDraw, GET_VALUE=i ndex

Building IDL Applications Creating SAVE Files of Program Files

66 Chapter 4: Creating SAVE Files of Programs and Data

; Set the current drawable area to the draw wi dget.
WSET, i ndex

Di spl ay sone data.
TV, inage

; Call XMANAGER to manage the event | oop.
XMANAGER, ' nyApp', wBase, /NO BLOCK

END

2. Reset thelDL session. Enter thefollowing at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

. FULL_RESET_SESSI ON
Compilethe application. Select Run — Compileto compile the. pr o file.

Resolve dependencies. Type RESOLVE_ALL at the command line to resolve
al procedures and functions that are called in the application:

RESOLVE_ALL
Note

If your program relies on iTools components, use ITRESOLVE instead of
RESOLVE_ALL.

5. Createthe SAVE file. Enter the following to save the compiled application as
aSAVE file

SAVE, /ROUTINES, FILENAME = ' nyApp. sav'
See “Executing SAVE Files’ for ways to run the SAVE file.

Example: Creating a SAVE File of an Object
Definition

When you create a SAVE file that contains an object defined ina. pr o file, you must
savethe. pro fileasa SAVE filg, just like any other procedure you wish to
distribute. However, it isimportant to note that if the object has any inherited
properties from superclasses or other abjects, and the object definitions existin. pr o
files, you must also compile and include these object definition filesin your SAVE
file. Objectsusing a. pr o extension typically exist in the IDL distribution’s! i b
subdirectory and its subdirectories.

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 67

Note
Do not confuse the process of saving an instance of an object with saving its
definition. A reference to an instantiated object is stored in an IDL variable, and
must be saved in a SAVE file as avariable. An object definition, on the other hand,
isan IDL routine, and must be saved in a SAVE file asaroutine. It isimportant to
remember that restoring an instance of an object does not restore the object’s
definition. If the object isdefined in . pr o code, you must save the object definition
routine and the object instance variable in separate SAVE files, and restore both
instance and definition in the target IDL session.

The IDL distribution includes and example of a composite object composed of an
image, a surface, and a contour, which are combined into a single object called the
IDLexShow3 object. To see this object being used in an application, run the
show3_t rack. pro fileintheexanpl es/ doc/ obj ect s directory. This procedure
has dependencies on two objects (t r ackbal | . pro and

| DLexShow3__defi ne. pro). You must use RESOLVE_ALL and explicitly
include these two objects in the CLASS keyword string array in order to create a
valid SAVE file.

If you fail to resolve all object dependencies, you will receive an error stating that
there was an attempt to call and undefined procedure or function when you run the
SAVE file. If the error references an object, add the object name to the CLASS
keyword string array to resolve the problem. Undefined procedure or function errors
are more likely to appear when you restore a SAVE file using the IDL Virtual
Machine, which does not search 'PATH to resolve routines. Using RESTORE at the
command line does search |PATH. Therefore, a SAVE file that can be successfully
executed using RESTORE may not succeed when called from the IDL Virtual
Machine. If you are distributing SAVE filesto users running the IDL Virtual
Machine, make sure to test the SAVE filein the Virtua Machine.

Complete the following steps to create a save file of an object:

1. Reset your session. Either start anew IDL session or enter the following at the
IDL prompt to ensure that no unwanted session information is saved along
with the program:

. FULL_RESET_SESSI ON

2. Open the main procedure. Open and compile show3_t r ack. pr o file by
entering the following at the IDL command prompt:

. Compi | e Show3_Tr ack. pro

Building IDL Applications Creating SAVE Files of Program Files

68 Chapter 4: Creating SAVE Files of Programs and Data

3. Resolve object dependencies. Use the CLASS keyword to resolve
dependencies to other object . pr o files by passing it astring or string array
containing the name(s) of the objects:

RESOLVE_ALL, CLASS=['Trackball', 'IDLexShow3']
4. Createthe SAVE file. Enter the following at the IDL command prompt:
SAVE, /ROUTINES, FILENAME=' show3_track. sav'

5. Test the SAVE file. Select Start — Programs — RSI IDL 6.3 — IDL
Virtual Machine. Click on the splash screen and open show3_t r ack. sav.
You could also test the SAVE file from IDL. Enter the following at the
command prompt.

RESTORE, 'show3_track. sav'
show3_track

See “Executing SAVE Files’ on page 73 for al the available waysto run aSAVE file.
Example: A SAVE File of a Custom iPlot Display

The following example configures a custom iPlot display and storesthe program in a
SAVE file. Restoring the SAVE file opens iPlot with the specified data.

Note
When working with iTools, you can create an iTool State (.isv) file that contains
data and application state information.You can share this file with other IDL users
who have the same version or a newer version of IDL. SeetheiTool User’s Guide
for details. Thisis not the same as packaging i Tools functionality into a SAVE file,
which is described in this example. When iTools functionality is packaged into a
SAVE file, it can be accessed by IDL users or through the IDL Virtual Machine.

1. Accessand save data. Save variable data from abatch file into a SAVE file:

@l ot 01
SAVE, FI LENAME=' pl ot dat a01. sav'

2. Createthe program file. This program restores data, and creates a plot
display in an iPlot display. Enter the following linesin atext editor:

PRO ex_savei pl ot

Define vari abl es.
RESTORE, ' pl otdat a0Ol. sav’

; Use the LINFIT function to fit the data to a line:
coeff = LINFI T(YEAR, SOCKEYE)

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 69

YFIT is the fitted |ine:
YFIT = coeff[0] + coeff[1]*YEAR

Plot the original data points with PSYM
i PLOT, YEAR, SOCKEYE, /YNQZERO, SYM | NDEX
SYM COLOR=[255, 0, 0], LINESTYLE=6, $
TITLE = 'Quadratic Fit', XTITLE = 'Year', $
YTI TLE = ' Sockeye Popul ati on'

4, for dianonds:
4, $

Overpl ot the smooth curve using a plain |line:
i PLOT, YEAR, YFIT, /OVERPLOT

END

3. Reset you session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

. FULL_RESET_SESSI ON

4. Compilethe program. Use the .Compile executive command as follows:
Compile the main program file:

. Conpi | e ex_savei pl ot

5. Resolve dependencies. Use ITRESOLVE to resolve dependencies upon i Tool
components:

| TRESOLVE

6. Createthe SAVE file. Use the /ROUTINES keyword to include al currently
compiled routines:

SAVE, /ROUTINES, FILENAME='ex_savei pl ot.sav'

7. Test the SAVE file. Select Start — Programs — RSI IDL 6.3 — IDL
Virtual Machine. Click on the splash screen and open ex_savei pl ot . sav.
You could aso run the SAVE file from IDL. Enter the following at the
command prompt.

RESTORE, 'ex_saveiplot. sav'
ex_savei pl ot

See “Executing SAVE Files’ on page 73 for al the available waysto run aSAVE file.

Building IDL Applications Creating SAVE Files of Program Files

70 Chapter 4: Creating SAVE Files of Programs and Data

Other Examples of SAVE File Creation

See the following topics for additional SAVE file examples:

e “ASCII_TEMPLATE” in the IDL Reference Guide manual contains Example:
Create a SAVE File of a Custom ASCII Template

¢ “XROI"” inthe IDL Reference Guide manual contains the following SAVE file
examples:

* ‘“Example: Save ROl Data’
* “Example: Save the XROI Utility with ROI Data”

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 71

Saving Variables from an IDL Session

In addition to distributing IDL code in binary format, you can also create SAVE files
that contain variable data. The state of variablesin an IDL session can be saved
quickly and easily, and can be restored to the same point. This feature allows you to
stop work, and later resume at a convenient time. Variables that you may wish to
create a SAVE file of include frequently used datafiles or system variable definitions.

Saving Data Variables in a SAVE File

Data can be conveniently stored in SAVE files, relieving you of the need to remember
the dimensions of arrays and other details. It is very convenient to store images this
way. For instance, if the three variables Red, Green, and Blue hold the color table
vectors, and the variable Image holds the image variable, the IDL statement,

SAVE, FILENAME = 'image.sav', Red, G een, Blue, |nage

will save everything required to display the image properly in afile named
i mage. sav. At alater date, the simple command,

RESTORE, 'inmge. sav'

will recover the four variables from the file. See “ Save Image Variable Data’ on
page 62 for an additional example.

Saving Heap Variables in a SAVE File

The SAVE procedure works for heap variablesjust asit works for all other supported
types. By default, when IDL saves a pointer or object reference in a SAVE file, it
recursively saves the heap variables that are referenced by that pointer or object
reference.

In some cases, you may want to save the pointer or object reference, but not the heap
variable that are referenced by that pointer or object reference. You can specify that
the heap variable associated with a pointer or object reference not be saved using the
HEAP_NOSAVE procedure or the HEAP_SAVE function. See the documentation
for HEAP_SAVE for additional details.

Saving System Variables in a SAVE File
System variables can also be saved and later applied to another session of IDL. For

instance, you may choose to customize !PATH, the system variable defining the
directories IDL will search for libraries, batch/include files, and executive commands

Building IDL Applications Saving Variables from an IDL Session

72

Chapter 4: Creating SAVE Files of Programs and Data

or !P, the system variable that controls the definition of graphic elements associated
with plot procedures. You can save these definitionsin a SAVE file and later
automatically restore or selectively restore the variables to apply the settings to other
IDL sessions.

To save and restore the state of all current and system variables within an IDL
session, you could use the following statement:

SAVE, /ALL, FILENAME = 'nyl DLsession. sav'

The ALL keyword saves all system variables and local variables from the current
IDL session. See Chapter 13, “Working with Datain IDL” for information on these
elements of an IDL session.

Note
Routines and variables cannot be saved in the samefile. Setting the ALL keyword

does not save routines.

To restore the session information, enter:

RESTORE, 'nyl DLsessi on. sav'

Note

If thefileisnot located in your current working directory, you will need to define
the path to thefile.

Long iterative jobs can save their partial resultsin a SAVE format to guard against
losing data if some unexpected event such as a machine crash should occur.

Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portable between different versions of IDL. If you created
your SAVE filewith aversion of IDL earlier than 5.5, you will need to recompile
your origina . pr o files and re-create the SAVE file using the current version of
IDL.

Saving Variables from an IDL Session Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 73

Executing SAVE Files

IDL SAVE files (created using the SAVE procedure) can contain one or more
routines that have been packaged into asingle binary file. SAVE files can also
contain system or data variables.

Note
While IDL routines or data can be saved in afile with any extension, it is common
to use the extension . sav for SAVE files. Using the . sav extension has two
benefits: it makes it clear to another IDL user that the file contains IDL routines or
data, and it allows IDL to locate routines with the same base name asthefilein
SAVE fileslocated in IDL’s path.

This section describes various ways to restore files created with the SAVE procedure.
In order of increasing complexity and flexibility, your options are:

e “Using the DL Virtual Machineto Run SAVE Files’, described below
e “Executing SAVE Filesby Name” on page 74

e “Using RESTORE to Access SAVE Files’ on page 74

* “Using the IDL_Savefile Object to Access SAVE Files’ on page 75

Using the IDL Virtual Machine to Run SAVE Files

Userswithout an IDL license can use the IDL Virtual Machine to access programs
contained in SAVE files created in IDL version 6.0 or later. See “ Starting a Virtual
Machine Application” in Chapter 25 of the Building IDL Applications manual for

instructions.

Note
There are afew limitations to SAVE file contents discussed in “Limitations of

Virtual Machine Applications’ in Chapter 25 of the Building IDL Applications
manual.

Building IDL Applications Executing SAVE Files

74 Chapter 4: Creating SAVE Files of Programs and Data

Executing SAVE Files by Name

You can execute a program stored in a SAVE file from the IDL command line by
typing in the name of the routine if the file meets the following conditions:

¢ The SAVE file has the same base name as the routine you wish to run
e The SAVE file hasthe extension . sav
e The SAVE fileis stored in adirectory included in the 'PATH system variable

Call the procedure with the same name as the . sav file to restore the program and
execute it immediately using IDL’s automatic compilation mechanism. IDL will
search the current directory then the path specified by |PATH for a. sav filewith the
name of the called routine and, if it findsthe . sav file, it restores, compiles and
executes it automatically.

For example, to restore and execute the dr aw_ar r ow routine contained in the file
draw_ar r ow. sav (created in “Example: A SAVE File of a Simple Routine” on
page 62), enter the following at the command line:

draw_arrow

IDL will search for afile named either dr aw_ar r ow. pr o or dr aw_ar r ow. sav,
beginning in the current working directory and then searching in each directory
specified by 'PATH. When it finds a file whose name matches (in this case,
draw_ar r ow. sav), it will compile the routinesin the file up to and including the
routine whose name matches the filename. IDL then executes the routine with the
matching name. See “Automatic Compilation” on page 31 for additional details.

Using RESTORE to Access SAVE Files

Use the RESTORE procedure to explicitly restore the entire contents of a SAVE file
that contains variable data or program files. Because calling a procedure with the
same name as a SAVE file allows IDL to automatically find and restore the SAVE
file, it isn't always necessary to explicitly restorea. sav file using RESTORE. Cases
in which you must use RESTORE include the following:

¢ When you are restoring a SAVE file containing variable data.

¢ When your SAVE file contains multiple routines, and you need to first call a
routine that uses a different name than the . sav file. For example, if you have
aSAVE filenamed r out i nes. sav that contains the ARROW and
BAR_PLOT procedures, you would need to restorer out i nes. sav before
calling ARROW or BAR_PLOT.

Executing SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 75

Using RESTORE is more powerful and flexible than relying on IDL'srules for
automatic compilation, for the following reasons:

* Therestored SAVE file can contain IDL variable data

* |f therestored SAVE file contains IDL routines, all routines contained in the
file will be restored, and none will be executed

e Therestored SAVE file can have any filename and extension
* Therestored SAVE file can be located in any directory

For example, in “Example: A SAVE File of a Simple Routine” on page 62, we
created two SAVE files: i magefi |l e. sav anddraw_arr ow. sav. The

i magefil e. sav file containsimage variable data. To restore the image data, enter
the following at the IDL command line:

RESTORE, 'inmagefile.sav'
IDL creates the variable image in the current scope using the saved variable data.

If the file you are attempting to restore is not located in your current working
directory, you will need to specify a path to the file. RESTORE does not search for
SAVE filesin any other directory. For example, if dr aw_ar r ow. sav islocated in
myappdi r, restoreit using the following statement:

RESTORE, ' nyappdir/draw_arrow. sav'
Using the IDL_Savefile Object to Access SAVE Files

You can usethe IDL_Savefile object classto gain information about the contents of a
SAVE file, and to selectively restore items from the save file. Once aroutine has been
restored viacallsthe IDL_Savefile object, you can execute it smply by typing its
name at the IDL command prompt. For example, if an IDL program named
myr out i ne isstored in myr out i ne. sav, whichislocated in adirectory that is not
in IPATH, entering the following at the IDL command line will restore the routine
and execute it:

obj = OBJ_NEW'IDL_Savefile', 'path/nyroutine.sav')

obj - >RESTORE, ' nyrouti ne'

nmyrouti ne

where path isthe full path to the nyr out i ne. sav file. See " Getting Information
About SAVE Files’ in Chapter 7 of the Using IDL manual for additional details.

Building IDL Applications Executing SAVE Files

76

Chapter 4: Creating SAVE Files of Programs and Data

Changes to IDL 5.4 SAVE Files

With IDL 5.4, RSI released a version of IDL that was 64-bit capable. The original
IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-bit memory
access, the IDL SAVE/RESTORE file format was modified to alow the use of 64-bit
offsets within the file, while retaining the ability to read old files that use the 32-bit
offsets.

The SAVE command aways begins reading any SAVE file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.

* InIDL versions capable of writing large files
('VERSION.FILE_OFFSET_BITSEQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

e SAVE aways starts reading any SAVE file using 32-bit offsets. If it seesthe
64-bit offset command, it switches to 64-bit offsets for any commands
following that one.

This configuration is fully backward compatible, in that any IDL program can read
any SAVE fileit has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
files written by newer IDL versionsto sites where they are restored by older versions
of IDL. Itisnot generally reasonable to expect this sort of forward compatibility, and
it does not fit the usual definition of backwards compatibility. RSl has always strived
to maintain this compatibility. However, in IDL 5.4 this was not the case. The
following steps were taken in IDL 5.5 to minimize the problems caused by the IDL
5.4 save format:

e 64-hit offsets encoding has been improved. SAVE fileswritten by IDL 5.5 and
later should be readable by any previous version of IDL, if the file data does
not exceed 2.1 GB in length.

e IDL 5.5 and later versions will retain the ability to read the 64-bit offset files
produced by IDL 5.4.x, thus ensuring backwards compatibility.

« SAVE fileswritten by IDL 5.5 or later versionsthat contain file data exceeding
2.1GB in length are not readabl e by older versions of IDL, but will be readable
by IDL 5.5 and later versions of IDL that have 'VERSION.MEMORY_BITS
equal to 64.

Changes to IDL 5.4 SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 77

e The CONVERT_SR54 procedure, a part of the IDL 5.5 user library, can be
used to convert SAVE files written within IDL 5.4 into the newer IDL 5.5
format. This alows existing datafiles to become readable by previous IDL
versions. The CONVERT_SR54 procedureislocated in the
RSI _DI R/ |'i b/ obsol et e.

Building IDL Applications Changes to IDL 5.4 SAVE Files

78 Chapter 4: Creating SAVE Files of Programs and Data

Changes to IDL 5.4 SAVE Files Building IDL Applications

Chapter 5

Creating Procedures
and Functions

The following topics are covered in this chapter:

Overview of Procedures and Functions 80
DefiningaProcedure 81
DefiningaFunction 84
Automatic Compilation and Execution 85
Parameters 87
Using Keyword Parameters 91
Determining if aKeywordisSet 92

Supplying Values for Missing Keywords .. 93

Building IDL Applications

Supplying Values for Missing Arguments . 94

Keyword Inheritance 95
Entering Procedure Definitions 102
How IDL Resolves Routines 103
Parameter Passing Mechanism 104
Cdling Mechanism 106

Calling Functions/Procedures Indirectly . 108

79

80 Chapter 5: Creating Procedures and Functions

Overview of Procedures and Functions

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the command prompt or from
other programs. When a procedure or function is finished, it executesa RETURN
statement that returns control to its caller. Functions always return an explicit result.

A procedureis called by a procedure call statement, while afunction iscalled by a
function reference. For example, if mypr oABCis aprocedure and nyf uncXYZ isa
function, the calling syntax is:

Call procedure with two paraneters.
mypr oABC, A 12

Call function with one paraneter. The result is stored
in variable A
A = nyfuncXyzZ(C/ D)

Note
See Chapter 6, “Library Authoring” for information on naming procedures to avoid
conflictswith IDL routine names. It isimportant to implement and consistently use
anaming scheme from the earliest stages of code devel opment.

Procedures and functions are collectively referred to as routines. An IDL program
file may contain one or many routines, which can be amix of procedures and
functions.

Overview of Procedures and Functions Building IDL Applications

Chapter 5: Creating Procedures and Functions 81

Defining a Procedure

A sequence of one or more IDL statements can be given aname, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

The general format for the definition of a procedureis asfollows:

PRO Nane, Paraneterl, ..., Parametern
St at enents defining procedure
Statenent 1
St at enent 2

End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that isin adirectory in the IDL search path (!PATH)
and has the same name as the prefix of the. sav or . pr o file, causes the procedure
to be read from the disk, compiled, and executed without interrupting program
execution.

Calling a Procedure

The syntax of the procedure call statement is as follows:
Procedure_Name, Paraneter,, Parameter,, ..., Paraneter,

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure's name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:
e System procedures provided with IDL.

e User-written procedures written in IDL and compiled with the .RUN
command.

e User-written procedures that are compiled automatically becausethey residein
directoriesin the search path. These procedures are compiled the first time
they are used. See “Automatic Compilation and Execution” on page 85.

Building IDL Applications Defining a Procedure

82 Chapter 5: Creating Procedures and Functions

* Procedureswrittenin IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

¢ Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Procedure Examples

Some procedures can be called without any parameters. For example:
| PLOT

Thisisaprocedure call to launch the iPlot iTool. There are no explicit inputs or
outputs. You can also call iPlot with parameters including data and color
specifications:

dat a = RANDOMJ(Seed, 45)
| PLOT, data, COLORS[255, 0, 0]

This opens the iPlot tool and passes it random plot data. The dat a parameter isan
argument and the COLOR parameter is a keyword. These elements are described in
more detail in “Parameters’ on page 87.

You can aso create a named program consisting of a procedure. For example,
suppose you have afile called hel | o_wor | d. pr o containing the following code:

PRO hell o_worl d
PRINT, 'Hello World'
END

ThisIDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension . pr o or the extension . sav.
When IDL searches for a user-defined procedure or function, it searches for files
consisting of the name of the procedure or function, followed by the . pro or . sav
extension. Procedures and functions can also accept arguments and keywords. Both
arguments and keywords allow the program that calls the routine to pass datain the
form of IDL variables or expressions to the routine.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hell o_worl d, nane, | NCLUDE_NAME = i ncl ude
| F (KEYWORD_SET(i ncl ude) && (N_ELEMENTS(name) NE 0)) THEN BEG N
PRINT, "Hello World From'+ nane
ENDI F ELSE PRINT, 'Hello Wrld'
END

Defining a Procedure Building IDL Applications

Chapter 5: Creating Procedures and Functions 83

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the nane variable if avalue was
supplied for the name argument. Enter the following procedure call at the command
line:

hell o_worl d, name, /| NCLUDE NAME
IDL prints,
Hello World
Now define a string name and repeat the procedure call:

name = "Horton"
hel o_worl d, name, /| NCLUDE_NAME

IDL prints:
Hell o World From Horton

This example usesthe KEYWORD_SET and N_ELEMENTS functionsin order to
handle the possibility of missing information in a procedure or function call. See
“Determining if aKeyword is Set” on page 92 for more information.

Building IDL Applications Defining a Procedure

84 Chapter 5: Creating Procedures and Functions

Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of its caler. It hasits own local variables and
execution environment. Referencing a function causes the program unit to be
executed. All functions return a function value which is given as a parameter in the
RETURN statement used to exit the function. Function names can be up to 128
characterslong.

The general format of afunction definition is as follows:

FUNCTI ON Name, Paraneterq, ..., Paraneter,
St at enent 4
St at enent ,

RETURN, Expression
END

Function Example

To define afunction called AVERAGE, which returns the average value of an array,
use the following statements:

FUNCTI ON AVERAGE, arr
RETURN, TOTAL(arr)/N ELEMENTS(arr)
END

Once the function AVERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRI NT, AVERAGE(X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. To return the result in a variable, use afunction call as follows;

VAVg = AVERAGE(X"2)

Parameters passed to functions are identified by their position or by a keyword. See
“Using Keyword Parameters’ on page 91. If afunction has no parameters, you must
specify empty parentheses in the function call.

Defining a Function Building IDL Applications

Chapter 5: Creating Procedures and Functions 85

Automatic Compilation and Execution

IDL automatically compiles and executes a user-written function or procedure when
itisfirst referenced if:

1. Thesource code of the function isin the current working directory or in a
directory in the IDL search path defined by the system variable |PATH.

2. The name of the file containing the function is the same as the function name
suffixed by .pr o or .sav. The suffix should be in lowercase | etters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be |lowercase letters.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation, or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For more information on how to access routines, see “ Running Named Programs” on
page 29.

About Calling and Compiling Functions

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable !PATH, must be compiled before the first reference to the
function is encountered. Thisis necessary because the IDL compiler is unable to
distinguish between a reference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
Statement:

A = XYZ(5)

itisimpossible to tell by context aloneif XY Z isan array or afunction.

Building IDL Applications Automatic Compilation and Execution

86 Chapter 5: Creating Procedures and Functions

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 319 for additional
details.

When IDL encounters references that may be either afunction call or a subscripted
variable, it searchesthe current directory, then the directories specified by 'PATH, for
files with names that match the unknown function or variable name. If one or more
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, IDL

displays an error message.
There are several ways to avoid this problem:

e Compilethe lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

» Placethe function in afile with the same name as the function, and place that
file in one of the directories specified by PATH.

¢ Usethe FORWARD_FUNCTION definition statement to inform IDL that a
given name refersto afunction rather than avariable. See
“FORWARD_FUNCTION” in the IDL Reference Guide manual.

* Manually compile al functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.

Automatic Compilation and Execution Building IDL Applications

Chapter 5: Creating Procedures and Functions 87

Parameters

The variables and expressions passed to the function or procedure from its caler are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the following,

; Call procedure with two paraneters.
mypr oABC, A 12

; Call function with one paraneter. The result is stored
;o in variable A
A = nyfuncXyZ(C/ D)

the actual parametersin the procedure call are the variable A and the constant 12,
while the actual parameter in the function call isthe value of the expression (C/ D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
anumber of placesin other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters (Arguments)

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of apositional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=") that identifies which
parameter is being passed.

When calling aroutine with akeyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEY WORD, which is equivalent to setting the keyword
parameter to 1 (e.g.,, KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

Building IDL Applications Parameters

88 Chapter 5: Creating Procedures and Functions

For example, a procedure is defined with a keyword parameter named TEST.
PRO XYZ, A, B, TEST =T

The caler can supply avalue for the formal (keyword) parameter T with the
following calls.

; Supply only the value of T. A and B are undefined inside the
procedure.
XYZ, TEST = A

; The value of Ais copied to fornal paraneter T (note the
; abbreviation for TEST), Qto A and Rto B.
XYz, TE=A Q R

; Variable Qis copied to formal paraneter A. B and T are undefi ned
i nsi de the procedure.

XYZ, Q
result = FUNCTI ON(Argl, Arg2, KEYWORD = val ue)
Note
When supplying keyword parameters for a function, keywords are specified inside
the parentheses.

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, viaa RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or afunction can be called with fewer arguments than were defined in
the procedure or function. For example, if aprocedure is defined with 10 parameters,
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into

Parameters Building IDL Applications

Chapter 5: Creating Procedures and Functions 89

parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list can be found
by using the system function N_PARAMS. Usethe N_ELEMENTS function to
determineif avariableis defined.

Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. Thisfunction is useful in user-written procedures to determine if a created
value remains within the scope of the calling routine. ARG_PRESENT helpsthe
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i
If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

| F ARG _PRESENT(i) THEN BEG N

Function Parameters Example

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTI ON GRAD, i nmage
; Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

: Evaluate and return the result.
RETURN, ABS(inmage - SH FT(inmage, 1, 0)) + $
ABS(i mage- SHI FT(i mage, 0, 1))

: End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within amodule (i.e., they are not parameters and
are not contained in common blocks).

Building IDL Applications Parameters

90

Parameters

Chapter 5: Creating Procedures and Functions

Theresult of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

Store gradient of Bin A
A = GRAD(B)

; Display gradient of | MAGE

; Access image data and pass to GRAD function.

; Display the gradient.

fil e=FI LEPATH(' endocel | . j pg', SUBDI RECTORY=['exanpl es','data'])
READ JPEG, file, inage, /GRAYSCALE

resul t =GRAD(i mage)

|| MAGE, result

Building IDL Applications

Chapter 5: Creating Procedures and Functions

91

Using Keyword Parameters

A short example of afunction that exchanges two columns of a4 x 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix

defined below.

; Function to swap col ums

FUNCTI ON SWAP, T, XYEXCH =

1

| F KEYWORD_SET(XY) THEN

; Check to see if xz is
ELSE | F KEYWORD_SET(X2)

; Check to see if yz is
ELSE | F KEYWORD_SET(YZ)

; If nothing is set,
ELSE RETURN, T
R=T

; Ssubscript ranges.

RIS[1], 0] = T[S[0], *]
RIS[0], O] = T[S[1], *]
; Return result.
RETURN, R

END

of T. XYEXCH swaps colums 0 and 1,

XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.

Swap colums 0 and 1 if keyword XYEXCH is set.

Xy, XZEXCH = xz, YZEXCH = yz
S=[0,1] $
set .

THEN S=[0,2] $

set.
THEN S=[1,2] $

return.

Copy matrix for result.

Exchange two columms using matrix insertion operators and

Typical callsto SWAP are asfollows:

Q = SWAP(! P. T, /XYEXCH)
Q = SWAP(Q / XYEX)
Q = SWAP(| NVERT(Z),
Q = SWAP(Z, XYE = |

YZ = 1)
EQ 0, XZE = |

EQ1, YZE =1 EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable| .

Building IDL Applications

Using Keyword Parameters

92 Chapter 5: Creating Procedures and Functions

Determining if a Keyword is Set

The previous function example (in “ Using Keyword Parameters’ on page 91) usesthe
system function KEYWORD_SET to determineif a keyword parameter has been
passed and if it isnonzero. Thisis similar to using the condition:

IF N_ELEMENTS(P) NE O THEN IF P THEN ...

to test if keywords that have atrue/false value are both present and true. The
N_ELEMENTS function returns the number of elements contained in any expression
or variable. Scalars aways have one element. The N_ELEMENTS function returns
zero if its parameter is an undefined variable. The result is always alongword scalar.
Thefollowing example determinesif avariableisdefined usngN_ELEMENTS. It sets
the variable abc to zero if it is undefined; otherwise, the variable is not changed.

| F N_ELEMENTS(abc) EQ O THEN abc = 0

The KEYWORD_SET function returnsa 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedure is
written which performs and returns the result of a computation. If the keyword PLOT
is present and nonzero, the procedure also plotsits result as follows:

Procedure definition.
PRO XYZ, result, PLOT = plot

; Conpute result.
Plot result if keyword paraneter is set.
| F KEYWORD_SET(PLOT) THEN PLOT, result

END
A call to this procedure that produces a plot is shown in the following statement.
XYz, R, /PLOT

Determining if a Keyword is Set Building IDL Applications

Chapter 5: Creating Procedures and Functions 93

Supplying Values for Missing Keywords

N_ELEMENTS s frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. (See “ Supplying
Valuesfor Missing Arguments” on page 94.) An example of using N_ELEMENTSto
check for a keyword parameter is as follows:

Di splay an image with a given zoom factor.
If factor is omtted, use 4.
PRO zOOM image, FACTOR = factor

; Supply default for mssing keyword paraneter.
I F N_ELEMENTS(factor) EQ O THEN factor = 4

Note
If you use this method, the variablef act or isdefined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable f act or would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of f act or,
you could use an approach similar to the following:

I F N ELEMENTS(factor) EQ O THEN zoonfactor = 4 $
ELSE zoonfactor = factor

You would then set the zoom factor internally using the zoonf act or variable,
leaving f act or itself unchanged.

Building IDL Applications Supplying Values for Missing Keywords

94 Chapter 5: Creating Procedures and Functions

Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function call. A frequent useisto call
N_PARAMSto determineif al arguments are present and if not, to supply default
values for missing parameters. For example:

; Print values of XX and YY. If XX is omtted, print
val ues of YY versus el enment nunber.
PRO XPRI NT, XX, YY

; Check nunber of argunents.
CASE N_PARAMS() OF

Si ngl e-argunent case.
1: BEG N

; First argument is y val ues.
Y = XX

Create vector of subscript indices.
X = | NDGEN(N_ELEMENTS(Y))

END

; Two-argunment case.
2: BEGN

Copy paraneters to | ocal arguments.
=YY & X = XX

END

; Print error nessage.
ELSE: MESSAGE, 'Wong nunber of argunents'

ENDCASE

Remai nder of procedure.

END

Supplying Values for Missing Arguments Building IDL Applications

Chapter 5: Creating Procedures and Functions 95

Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is simple, and
requires significantly less maintenance. Keyword inheritanceis of particular value
when writing:

« Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routinein asmall way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappersto be very simple, and benefit from
not having to specify all the details of the underlying routine's interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

« Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makesit simple to
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of itsinternal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. Theroutine must declare that it accepts inherited keywords. Thisis done by
specifying either the EXTRA or _REF EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_LREF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword Inheritance Mechanisms’ on page 96.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance Mechanism” on page 98. Only one of these
two keywords can be specified for a given routine.

Building IDL Applications Keyword Inheritance

96 Chapter 5: Creating Procedures and Functions

2. Theroutine passes the inherited keywords to a called routine, by including
either the EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an
inherited keyword is not accepted by the called routine. _EXTRA causes such
keywords to be quietly ignored, while _STRICT_EXTRA causes IDL to issue
an error and stop execution. _EXTRA isthe usua choice, while
_STRICT_EXTRA isused primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

¢ The mechanism used by aroutine for inherited keywords is solely determined
by which keyword (EXTRA or _REF_EXTRA) isused in the formal
parameter list for that routine. Hence, REF _EXTRA isonly usedin the
formal parameter list of aroutine, and never in acall to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. There is no need to
change any of the calls to the routine, just the formal parameter list of the
routine itself.

e Attemptingto use boththe EXTRA and _REF_EXTRA keywordstogether in
the formal parameter list of afunction or procedure will cause an error to be
issued. You can only use one or the other.

e Only the caller of aroutine can dictate whether keywords that are not
understood by the called routine should beignored (EXTRA) or should
generate an error (_STRICT_EXTRA). For thisreason, _STRICT_EXTRA is
only used in acall to aroutine, and not in the formal parameter list for the
routine.

e Attempting to use boththe EXTRA and _STRICT_EXTRA keywords
together in acall to afunction or procedure will cause an error to be issued.
You can only use one or the other.

Keyword Inheritance Mechanisms

Asdescribed above, there are two possible mechanisms used by IDL to passinherited
keywords. The one used by aroutine is determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to a routine by value by
adding the keyword parameter EXTRA to the formal argument list of that routine.
Passing parameters by value means that you are giving the called routine a copy of

Keyword Inheritance Building IDL Applications

Chapter 5: Creating Procedures and Functions 97

the value of the passed parameter, and not the original. As such, any changes made to
the value of such akeyword is not passed back to the caller.

When aroutine is defined with the formal keyword parameter EXTRA, and
keywords that are not recognized by that routine are passed to itinacall, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag is a copy of the value that was passed to that keyword. If no unrecognized
keywords are passed in acall, the value of the EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can all be of usein
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _EXTRA structure:

PRO SOVEPROC, _EXTRA = ex
if (N_ELEMENTS(ex) NE 0) $
THEN ex = CREATE STRUCT(’' COLOR , 12, ex) $
ELSE ex = { COLOR : 12 }
SOVE_UNDERLYI NG PROC, _EXTRA=ex
END

Theuseof N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.

_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that a routine accepts inherited keywords by reference, by adding the
keyword REF EXTRA to the formal argument list of the routine. When aroutineis
defined with _REF_EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, as with any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine asthe
value of the REF EXTRA keyword. The presence of anameinthe REF EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in afunction or procedure call (using either _EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in a call, the value of

Building IDL Applications Keyword Inheritance

98

Chapter 5: Creating Procedures and Functions

the EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especialy useful when
writing object methods.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names viathe _EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:
PRO SOMEPROC, _REF_EXTRA = ex
ONE, _EXTRA=[' MOOSE' , ' SQU RREL']
TWO, _EXTRA=' SQUI RREL'
END
If we call the SOMEPROC routine with three keywords:
SOMEPROC, MOOSE=npose, SQUI RREL=3, SPY=PTR_NEW noose)

e it will passthe keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

e it will passthe keyword SQUIRREL and its value to procedure TWO,

e it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.

Choosing a Keyword Inheritance Mechanism

The two avail able keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine;

< |If your routine needs to see the values of the inherited keywords, and you do
not need to pass maodified values back to the caller, use _EXTRA (pass by
value).

» If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use REF_EXTRA (pass by
reference).

e |If your routine is an object method, REF EXTRA ismost likely the correct
choice for your application.

Keyword Inheritance Building IDL Applications

Chapter 5: Creating Procedures and Functions 99

« If either mechanism will serve your needs, asis often the case, then RS
recommends REF EXTRA, which has aminor efficiency advantage over
_EXTRA, dueto the fact that it does not have to construct an anonymous
structure and copy the original valuesinto it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism is to create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such awrapper, using both available inheritance mechanisms.

By Value

In most wrapper routines, there is no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST isawrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, EXTRA = e
END

This wrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such a keyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, _EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be placed into an anonymous structure assigned to the variable
e. If there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, TH CK=5

variable e, within TEST, contains an anonymous structure with the value:
{ LINESTYLE: 4, THCK 5}

Building IDL Applications Keyword Inheritance

100

Chapter 5: Creating Procedures and Functions

These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into aroutine via_ EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}
specifies acolor index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
sufficesto changethe EXTRA keywordto REF _EXTRA in the forma parameter
list:

PRO TEST, a, b, _REF EXTRA = e, COLOR = color

PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, astring
array containing the inherited keyword names is assigned to the variable e. If there
are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THI CK=5

variable e, within TEST, contains an anonymous structure with the value:
[“LINESTYLE', ‘TH CK]

These inherited keywords are then passed from TEST to the PLOT routine using the
EXTRA keyword. Note that keywords passed into aroutine via EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}

specifies acolor index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by EXTRA) asthe value of the extrakeyword to a routine that
uses the by reference keyword inheritance mechanism (_ REF_EXTRA). Thereisno
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be caling it. However, any
keyword values that are changed within PLOT will fail to be returned to the caller
due to the use of the by-value mechanism.

Keyword Inheritance Building IDL Applications

Chapter 5: Creating Procedures and Functions 101

Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of avariable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and REF _EXTRA, consider the following simple example procedures.

PRO HELP_BYVAL, _EXTRA = ex
HELP, EXTRA = ex
END

PRO HELP_BYREF, _REF _EXTRA = ex
HELP, _EXTRA = ex
END

Both HELP _BYVAL and HELP_BY REF are simple wrappers to the HELP
procedure. The HEL P procedure accepts a keyword named OUTPUT that passes
back avalue to the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP_BYVAL, QUTPUT = out & HELP, out

IDL prints:
% At HELP_BYVAL 2 /dev/tty
% $MAI N$
EX UNDEFI NED = <Undef i ned>

Conpi | ed Procedures:
$MAI NS HELP_BYVAL

Conpi | ed Functi ons:

ouT UNDEFI NED = <Undef i ned>

This occurs because the HEL P call within HELP_BY VAL is passed avariable that
cannot be used to return avalue, due to the use of by value keyword inheritance. It
therefore reverts to the default of writing to the user’s screen, and no valueis returned
to the caller for the OUTPUT keyword.

Now run HELP_BY REF:
HELP_BYREF, OUTPUT = out & HELP, out
IDL prints:
our STRING = Array[8]
HELP_BY REF returns the value of the HELP OUTPUT keyword as desired.

Building IDL Applications Keyword Inheritance

102 Chapter 5: Creating Procedures and Functions

Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commandsis as follows:

_RUN [File; , Filey, ...]
_COMVPILE [File; , File, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE” in the IDL Reference Guide
manual.

To enter program text directly from the keyboard, simply enter .RUN at the

IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
adirectly entered program. Aslong as IDL requires more text to complete a program
unit, it prompts with the “-" character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as awhole. See “ Creating
$MAINS Programs’ on page 24 for more information.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty lineis not a
procedure or function definition statement, the program unit is assumed to be amain
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it isreplaced by the new program unit.

Entering Procedure Definitions Building IDL Applications

Chapter 5: Creating Procedures and Functions 103

How IDL Resolves Routines

When IDL encounters a call to afunction or procedure, it must find the routine to
call. To do this, it goes through the following steps. If agiven step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1

If the routine is known to be a built-in intrinsic routine (commonly referred to
asasystemroutine), then IDL calls that system routine.

If auser routine written in the IDL language with the desired name has already
been compiled, IDL callsthat routine.

If afile with the name of the desired routine (and ending with the filename
suffix . pr o) existsin the current working directory, IDL assumes that thisfile
contains the desired routine. It arrangesto call a user routine, but does not
compilethefile. Thefilewill be compiled when IDL actually needsit. In other
words, it is compiled at run time when IDL actually attemptsto call the
routine, not when the code for the call is compiled.

IDL searches the directories given by the !PATH system variable for afile with
the name of the desired routine ending with the filename suffix . pro. If sucha
fileexists, IDL assumesthat thisfile containsthe desired routine. It arrangesto
call auser routine, but does not compile the file, as described in the previous
step.

If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 15, “Arrays’ for adiscussion of this ambiguity). In either case,
theresult is not a callable routine.

Building IDL Applications How IDL Resolves Routines

104

Chapter 5: Creating Procedures and Functions

Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It isimportant to recognize the distinction between these two
methods.

* Expressions, constants, system variables, and subscripted variable references
are passed by value.

e Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:
PRO ADD, A, B
A=A+B
RETURN
END

This procedure adds its second parameter to the first, returning the result in the first.
Thecall

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A
No error message isissued. Similarly, if ARR is an array, the call
ADD, ARR[5], 4

will not achievethe desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARR] 5]

ADD, TEMP, 4

ARR[5] = TEWP

Parameter Passing Mechanism Building IDL Applications

Chapter 5: Creating Procedures and Functions 105

Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “ Parameter
Passing with Structures’ on page 355 for additional details.

Building IDL Applications Parameter Passing Mechanism

106

Chapter 5: Creating Procedures and Functions

Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1

All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

The function or procedure is executed until aRETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
auser-written function is passed back to the caller by specifying it asthe value
of aRETURN statement. RETURN statements in procedures cannot specify a
return value.

All local variablesin the procedure, those variables that are neither parameters
nor common variables, are deleted.

The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

Control resumesin the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., aprogram caling itself) is supported for both procedures and
functions.

Example

Hereis an example of an IDL procedure that reads and plots the next vector from a
file. Thisexampleillustrates using common variables to store values between calls, as
local parameters are destroyed on exit. It assumes that the file containing the datais
open on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

Calling Mechanism

; Read and plot the next record fromfile 1. If RECNOis specified,
; set the current record to its value and plot it.
PRO NXT, recno

; Save previous record nunber.

Building IDL Applications

Chapter 5: Creating Procedures and Functions 107

COVMON NXT_COM | astrec

; Set record nunber if parameter is present.
IF N_PARAMS(0) GE 1 THEN | astrec = recno

; Define LASTREC if this is first call.
IF N_ELEMENTS(| astrec) LE O THEN lastrec = 0O

; Define file structure.
AA = ASSOC(1, FLTARR(512))

; Read and pl ot record.
PLOT, AA[l astrec]

; Increment record for next tine.
lastrec = lastrec + 1

END

Once the user has opened thefile, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.

Building IDL Applications Calling Mechanism

108 Chapter 5: Creating Procedures and Functions

Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose names are contained in strings. The
CALL_METHOD routine can be used to indirectly call an object method whose
name is contained in a string. Although not as flexible as the EXECUTE function
(see “EXECUTE" in the IDL Reference Guide manual), the CALL_* routines are
much faster, and should be used in preference to EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SVDFIT, calls a function whose
name is passed to SVDFIT via a keyword parameter as a string. If the keyword
parameter is omitted, the function POLY iscalled.

Function decl aration.
FUNCTI ON SVDFI T, ..., FUNCT = funct

Use default name, POLY, for function if not specified.
I'F N_ELEMENTS(FUNCT) EQ O THEN FUNCT = ' POLY'

; Make a string of the form"a = funct(x,m", and execute it.
Z = EXECUTE(' A = '"+FUNCT+ (X, M ")

The above exampleis easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL_FUNCTI ON(FUNCT, X, M

Calling Functions/Procedures Indirectly Building IDL Applications

Chapter 6

Library Authoring

The following topics are covered in this chapter:

Overview of Library Authoring 110 Advicefor Library Authors
Recognizing Potential Naming Conflicts . 111 Converting Existing Libraries

Building IDL Applications

109

110 Chapter 6: Library Authoring

Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they

devel op domain-specific programs and applications that implement knowledge far
beyond RSI’s level of expertise. User library code is often freely available,
supported, and documented. However, as the number of library authors and routines
continues to grow, it becomes increasingly important for authors to adhere to a
routine naming convention within their libraries that avoids conflicts with core IDL
functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because thisis often agradual process, the importance of naming is
not obvious until thereis a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveal s
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by usersin the IDL community. (See“How IDL Resolves
Routines’ on page 103 for step-by-step routine resolution details.)

Thefact that IDL system routines always take precedence over user routines provides
the following benefits:

e ThelDL environment remains reliable and consistent — a call to FFT always
returns the IDL version of the FFT function.

e Iteliminates agreat deal of path searching, which translates into faster
execution speed.

In contrast, if user routinestook precedence over system routines, agiven installation
could radically alter the meaning of common and basic IDL constructs ssimply by
creating user routines with the names of IDL system routines. Thiswould result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It isimportant
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

e “Recognizing Potential Naming Conflicts’ on page 111
e “Advicefor Library Authors’ on page 114
e “Converting Existing Libraries’” on page 115

Overview of Library Authoring Building IDL Applications

Chapter 6: Library Authoring 111

Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searchesfor routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes aroutine that is not part of the base release
of IDL, and placesitin alocal library. At some later date, anew version of IDL is
installed that contains a new IDL library routine with the same name as the user's
routine. Depending on the order of the directories in the user’s path, one of these two
routines is executed. If the user’sroutine is used, IDL library code that calls the
routine will get the wrong version and fail in strange and mysterious ways. If the DL
routine is used, the IDL library will be satisfied, but the user'slibrary will get the
wrong version, also with bad results.

System Level Conflicts

The system level caseis similar, but harder to work around. In this case, the user
creates alocal routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaninglessin this case because the search path is not
even consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seems
like atrivial issue, but names are very important. It is crucial to adopt and
consistently adhere to a routine naming strategy to avoid conflict. The core idea of
this convention (described in detail in “Advice for Library Authors’ on page 114) is
to prefix al library routine names with a unique identifier, one indicative of your
organization or project. Research Systems reserves routine names that are generic,
and those with an “IDL” or “RSI” prefix on behalf of the entire IDL community.
Prefixing your user library routines significantly reduces the risk of namespace
collisonswith IDL routines.

Building IDL Applications Recognizing Potential Naming Conflicts

112 Chapter 6: Library Authoring

Asalibrary author, your decision to follow aroutine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
alowing IDL system routines to always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note
For instructions on how to prefix an existing user library, see “ Converting Existing
Libraries’ on page 115.

Cross-Platform Naming of IDL .pro Files

When naming IDL . pr o files used in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “:”
character is not alowed in afilename under Microsoft Windows.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
Under Unix, file names are case sensitive—f i | e. pr o isdifferent fromFi | e. pro.

When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest course isto use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

| DL> conmmand
| DL> COMVAND
| DL> ConmanD

Automatic Compilation and Case Sensitivity

On UNIX platforms, where filename case matters, IDL |looks for alower-case
filename when you enter the name of a user-written routine at the IDL command
prompt. Thus, if you save your program file asmypr ogr am pr o and enter the
following at the IDL command prompt:

| DL> MyPr ogr am

IDL will compilethe file mypr ogr am pr o and attempt to execute a procedure
named mypr ogr am

If you save your program file as MyPr ogr am pr o and enter the following at the IDL
command prompt:

| DL> MyPr ogr am

Recognizing Potential Naming Conflicts Building IDL Applications

Chapter 6: Library Authoring 113

IDL will not compile the file MyPr ogr am pr o and will issue an error that looks like:

% Attenpt to call undefined procedure/function: ' MYPROGRAM .
% Execution halted at: $MAI N$

You can compile and run a program with a mixed- or upper-case file name on a
UNIX platform by using IDL’'s .COMPILE or .RUN executive commands:

| DL> . COVPI LE MyPr ogr am
| DL> MyPr ogr am

or, if MyPr ogr am pr o contains amain-level program:
| DL> . RUN MyPr ogram

In general we recommend that you use lower-case file names on platforms where
case matters.

Building IDL Applications Recognizing Potential Naming Conflicts

114 Chapter 6: Library Authoring

Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Life is more difficult for an
author of alibrary of IDL routines. In addition to the challenges facing any
programmer, library authors face additional challenges:

e The structure and organization of the library needs to encourage reuse and
generdlity.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

e Errors must be gracefully handled whenever possible. See Chapter 8,
“Debugging and Error-Handling” for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their users to be aware of the details.

* Documentation must be provided, or the library will not find users.

e Libraries must be able to co-exist with other code over which they have no
control. Authors must not ater the global environment in ways that cause
conflicts, and they must also take care to prefix the names of all routines,
common blocks, systems variables, and any other global resources they use.
This prevents alibrary from conflicting with other libraries on the same
system, and protects the library from changesto IDL that may occur in newer
releases.

Prefixing Routine Names

The use of aproper prefix minimizesthe risk of anamespace collision asdescribed in
“Recognizing Potential Naming Conflicts’ on page 111. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” or “RS|” are reserved by RSI.
New names of these forms can and will appear without warning in new versions of
IDL, and should be avoided when naming new library routines.

Advice for Library Authors Building IDL Applications

Chapter 6: Library Authoring 115

Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advicefor Library Authors’ on page 114. Such libraries are bound to experience an
occasional conflict with new versions of IDL. The best solution to avoid conflictsis
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library islikely to already have users. Assuming that non-prefixed
nameswere used in such libraries, it is not possible to smply change the names. Such
conversions require time to carry out, and once that has happened, it takes time for
users to adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1

Generate alist of al files containing routines to be renamed.
Using thislist, build an IDL batch file that uses .COMPILE on each file.

Start afresh IDL session, execute the batch file, and use HELP, /ROUTINES
to get acomplete list of all compiled routines. Only IDL user library routines
(those . pr o files shipped with the IDL distribution) should not contain a
prefix.

Asyou rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that callsthe new version. Such wrappers are easy to
writein IDL, using the_ REF_EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 95 for details.

Use the COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See COMPILE_OPT in
the IDL Reference Guide for more information on COMPILE_OPT. These
compatibility wrappers serve the following purposes:

e You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to changeto calling the
new name. This enhances the stability of the library and gives you timeto
do acareful job.

¢ Onceyou are finished, you can provide them to your customers as a
bridge, so that their old code continues to work.

« Asyou change the names of routines, use grep (or asimilar file searching
tool) to locate uses of that name, and convert them to the new form aswell.

Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the

Building IDL Applications Converting Existing Libraries

116

Chapter 6: Library Authoring

COMPILE_OPT OBSOLETE directive, you can set the 'WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveals no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappersin a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’'s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routinesto your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. There is no backward
compatibility issuein this case, and they are not needed.

Although the one time hit of prefixing an existing library can consume some time and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raisesthe profile
of thelibrary to the end user, raising their level of understanding and appreciation for
the work it does.

Converting Existing Libraries Building IDL Applications

Chapter 7

Program Control

The following topics are covered in this chapter:

Overview of Program Control 118
Compound Statements 120
IF.THEN..ELSE 123
CASE ... 125
SWITCH ... 127
CASEVersusSWITCH 128

Building IDL Applications

FOR.DO ... 131
REPEAT..UNTIL 136
WHILE..DO 137
Jump Statements. 139
Definition of Trueand False........... 142

117

118 Chapter 7: Program Control

Overview of Program Control

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include the
following.

Compound Statements
Use BEGIN and END to create a block of statements, which is simply a group of

statements that are the subject of a conditional or repetitive statement.
* BEGIN...END

Conditional Statements

Most useful applications have the ability to perform different actions in response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

« |FR.THEN...ELSE
« CASE
e SWITCH

Loop Statements

L oop statements perform the same set of statements multiple times. Rather than
repeat a set of statements again and again, aloop can be used to perform the same set
of statements repeatedly.

* FOR..DO
* REPEAT..UNTIL
« WHILE..DO

Overview of Program Control Building IDL Applications

Chapter 7: Program Control 119

Note
IDL’s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same calculation on
each element of an array, you could write aloop to iterate over each array element:

array | NDGEN(10)

FORi = 0,9 DO BEG N
array[i] = array[i] * 2

ENDFOR

Thisis much less efficient than using IDL’s built-in array capabilities:

array | NDGEN(10)
array = array * 2

See “Use Vector and Array Operations’ on page 206 for details.

Jump Statements

Jump statements can modify the behavior of conditional and iterative statements.

* BREAK
« CONTINUE
« GOTO

Building IDL Applications Overview of Program Control

120 Chapter 7: Program Control

Compound Statements

Many of the language constructs that we will discuss in this chapter evaluate an
expression, then perform an action based on whether the expression is true or false,
such as with the |F statement:

| F expression THEN st at enent
For example, we would say “If X equals 1, then set Y equal to 2" asfollows:
IF (XEQ1) THENY =2

But what if we want to do more than one thing if X equals 1? For example, “If X
equalsl, setY equal to 2 and print the value of Y.” If we wroteit asfollows, then the
PRINT statement would always be executed, not just when X equals 1:

IF(XEQ1) THENY = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container iscalled a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create ablock of statements, whichissimply
agroup of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEG N
Y =2
PRI NT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statementsis composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:
IF (X EQ 1) THEN BEG N
Y =2
PRI NT, Y
ENDI F

Compound Statements Building IDL Applications

Chapter 7: Program Control

121

Thisisto ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN isused. The
following table lists the correct END identifiers to use with each type of statement.

END
Statement Identifier Example
ELSE BEGIN ENDELSE I'F (0) THEN A=1 ELSE BEG N
A=2
ENDEL SE
FOR variable=init, limit DO ENDFOR FOR i=1,5 DO BEG N
BEGIN PRI NT, array[i]
ENDFOR
IF expression THEN BEGIN ENDIF I'F (0) THEN BEG N
A=1
ENDI F
REPEAT BEGIN ENDREP REPEAT BEG N
A=A*2
ENDREP UNTIL A GT B
WHILE expression DO BEGIN | ENDWHILE | WH LE ~ EOF(1) DO BEG N
READF, 1, A B, C
ENDWHI LE
LABEL: BEGIN END LABEL1: BEG N
PRI NT, A
END
case_expression: BEGIN END CASE nare OF
‘Moe': BEG N
PRI NT, ' Stooge'
END
ENDCASE
switch_expression: BEGIN END SW TCH name OF
‘Moe': BEG N
PRI NT, ' St ooge’
END
ENDSW TCH

Table 7-1: Types of END Identifiers

Note

CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Building IDL Applications

Compound Statements

122 Chapter 7: Program Control

The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spacesto the right of
the previous level to make the program structure easier to read. (See “.RUN” in the

IDL Reference Guide manual for details on producing program listings with the IDL
compiler.)

Compound Statements Building IDL Applications

Chapter 7: Program Control 123

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the |F statement is as follows:

| F expression THEN statenment [ELSE statenent]
or

| F expression THEN BEG N
statenents

ENDI F [ELSE BEG N
statenments

ENDELSE]

The expression after the“IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN" is executed. (See “Definition of True and False” on page 142 for details on
how the “truth” of an expression is determined.)

For example:

A=2
IF AEQ2 THEN PRINT, '"Ais two'

Here, IDL prints“A is two”.

If the expression evaluates to afalse value, the statement following the “EL SE”
clause is executed:

A=3
IF AEQ2 THEN PRINT, "Ais two' ELSE PRINT, "Ais not two'

Here, IDL prints“A i s not two”.

Control passes immediately to the next statement if the condition is false and the
EL SE clause is not present.

Note
Another way to write an IF...THEN...EL SE statement is with a conditional
expression using the ?: operator. For more information, see “Working with
Conditional Expressions’ on page 250.

Tip
Programs with vector and array expressions run faster than programs with scalars,
loops, and | F statements. See “ Use Vector and Array Operations’ on page 206 for a
discussion on increasing efficiency of these expressions.

Building IDL Applications IF...THEN...ELSE

124 Chapter 7: Program Control

Using Statement Blocks with the IF Statement

The THEN and EL SE clauses can be in the form of ablock (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 120). To ensure
proper nesting of blocks, you can use ENDIF and ENDEL SE to terminate the block,
instead of using the generic END. Below isan example of the use of blockswithin an
| F statement.

IF (I NE 0.0) THEN BEG N
ENDI ﬁ.ELSE BEG N
ENDEL SE

Nesting IF Statements

| F statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

I F PN THEN SN ELSE SX

If condition P1 istrue, only statement S1 is executed; if condition P2 istrue, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
issimilar to the CASE statement except that the conditions are not necessarily
related.

IF...THEN...ELSE Building IDL Applications

Chapter 7: Program Control 125

CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expression: statenent

expression: statenent
[ELSE: statenent]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If amatch is
found, the statement is executed and control resumes directly below the CASE
Statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usualy
written as the last clause in the CASE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an EL SE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example — Case Statement Use

An example of the CASE statement follows:

CASE name OF
"Larry': PRINT, 'Stooge 1'
' Mbe' : PRI NT, ' Stooge 2'

"Curly': PRINT, 'Stooge 3'
ELSE: PRI NT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. Oneis equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X GT 0) AND (X LE50): Y =12 * X + 5

Building IDL Applications CASE

126 Chapter 7: Program Control

(X GT 50) AND (X LE 100): Y = 13 * X + 4
(X LE 200): BEG N

Y 14 * X - 5
Z X+Y
END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause isthefirst one
whose value is equal to the value of the case selector expression.

Tip
Each clause istested in order, so it is most efficient to order the most frequently
selected clausesfirst.

CASE Building IDL Applications

Chapter 7: Program Control 127

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SW TCH Expressi on OF
Expressi on: Statenent

Expr essi on: Statenent
[ELSE: Statenent]
ENDSW TCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If amatch
is found, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statements in the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The EL SE clause of the SWITCH statement is optional . If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usualy
written as the last clause in the switch statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an EL SE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

Building IDL Applications SWITCH

128 Chapter 7: Program Control

CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:
« Execution exits the CASE statement at the end of the matching statement. By

contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

CASE SWITCH
x=2 x=2
CASE x OF SWTCH x OF
1: PRINT, 'one' 1: PRINT, 'one'
2: PRINT, 'two' 2: PRINT, 'two'
3: PRINT, 'three' 3: PRINT, 'three'
4: PRI NT, 'four' 4: PRI NT, 'four'
ENDCASE ENDSW TCH
IDL Prints: IDL Prints:
t wo t wo
three
f our

Table 7-2: CASE versus SWITCH

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 139.) For example, we
can add a BREAK statement to the SWITCH example in the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWTCH x OF
1: PRINT, 'one'
2: BEG N
PRI NT, 'two'
BREAK
END
3: PRINT, 'three'
4: PRINT, 'four'
ENDSW TCH

CASE Versus SWITCH Building IDL Applications

Chapter 7: Program Control 129

IDL Prints:;
t wo

* |If there are no matches within a CASE statement and there is no EL SE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE nane OF
"Larry': PRINT, 'Stooge 1'
' Mbe' : PRI NT, ' Stooge 2'

"Curly': PRINT, 'Stooge 3'
ELSE: PRI NT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SWTCH nane OF
"Larry': BEG N
PRI NT, ' Stooge 1'
BREAK
END
' Moe' : BEGA N
PRI NT, ' Stooge 2'
BREAK
END
"Curly': BEG N
PRI NT, ' Stooge 3'
BREAK
END
ELSE: PRI NT, 'Not a Stooge'
ENDSW TCH

Clearly, this code can be more succinctly expressed using a CASE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF_XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmasto start on. It starts on the specified day,
and prints the presentsfor all previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. Thefirst day of Christmas requires special
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1.

Building IDL Applications CASE Versus SWITCH

130 Chapter 7: Program Control

PRO DAYS OF XMAS, day

I F (N_ELEMENTS(day) EQ 0) THEN DAY = 12

IF ((day LT 1) OR (day GI 12)) THEN day = 12

day_nane = ['First', 'Second', 'Third, 'Fourth', 'Fifth', $
"Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth',$
"Eleventh', 'Twelfth']

PRINT, 'On The ', day_nane[day - 1], $
Day O Christmas My True Love Gave To Me:'

SW TCH day of

12: PRI NT, ' Twel ve Drunmmers Drummi ng'
11: PRINT, ' El even Pi pers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, ' Ni ne Ladi es Danci ng'
8: PRINT, ' Ei ght Maids A-M I king'
7: PRINT, ' Seven Swans A- Swi mm ng'
6: PRINT, ' Si x Geese A-Laying'
5: PRINT, ' Five Gold Rings'
4: PRINT, ' Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEG N
PRI NT, ' Two Turtl edoves'
PRI NT, ' And a Partridge in a Pear Tree!'
BREAK
END
1: PRINT, ' A Partridge in a Pear Tree!'
ENDSW TCH

END

If we passthe value 3to the DAYS OF XMAS procedure, we get the following
output. Achieving this behavior with CASE would be difficult.

On The Third Day O Christmas My True Love Gave To Me:
Three French Hens
Two Turtl edoves
And a Partridge in a Pear Tree!

CASE Versus SWITCH Building IDL Applications

Chapter 7: Program Control 131

FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until aconditionis
met. It is analogous to the DO statement in FORTRAN.

In DL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed. See the following
topicsfor details:

¢ “FOR Statement with an Increment of One” on page 131
¢ “FOR Statement with Variable Increment” on page 134
e “Sequence of the FOR Statement” on page 135

Avoid Invariant Expressions

When using FOR loops, you can increase program efficiency by avoiding invariant
expressions. Expressions whose values do not change inside a loop should be moved
outside the loop. For example, in the loop:

FORI =0, N- 1DOarr[l, 2¢J-1] = ...,

the expression (2* J-1) isinvariant and should be evaluated only once before the loop
is entered:

tenp = 2*J-1
FOR1 =0, N1 DO arr[l, temp] =

See Chapter 15, “Arrays’ for details on working with arrays.
FOR Statement with an Increment of One

The FOR statement with an implicit increment of one iswritten as follows:
FOR Vari abl e = Expressi on, Expression DO Statenment

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variableis
incremented by 1 until the index variable is larger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Building IDL Applications FOR...DO

132 Chapter 7: Program Control

Warning
The data type of the index variable is determined by the type of the initial value
expression. Keep this fact in mind to avoid the following:

FOR | = 0, 50000 DO ...

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields —15,536 because of truncation. The loop is not
executed. The index variable' sinitial value is larger than the limit variable. The
loop should be written as follows:

FOR I = OL, 50000 DO ...

Note also that changing the data type of an index variable within aloop is not
alowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial datatype (and sois
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:
FOR i = 0B, 240, 16 DO PRI NT, i

The problem occurs because the variablei isinitialized to abyte type with OB. After
the index reaches the limit value 240B, i isincremented by 16, causing the value to
go to 256B, whichisinterpreted by IDL as OB, because of the truncation effect. As
aresult, the FOR loop “wraps around” and the index can never be exceeded.

Example — FOR Statement with Increment of One

A simple FOR statement:
FORI =1, 4 DOPRINT, I, 12
This statement produces the following outpult:

1 1
2 4

FOR...DO Building IDL Applications

Chapter 7: Program Control 133

3 9
4 16

Theindex variable | isfirst set to an integer variable with avalue of one. The call to
the PRINT procedure is executed, then the index isincremented by one. Thisis
repeated until the value of | is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of a block structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM functionis
provided by IDL.)

FORK =0, N- 1 DO BEG N
C = AK
HI ST(C) = HIST(C)+1
ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to a floating-point variable and steps through the values
(15,25, ..., 10.5):

FOR X = 1.5, 10.5 DOS = S + SQRT(X)

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of the index variable is determined by the type of the first
expression after the “=" character.

Warning
Dueto the inexact nature of 1EEE floating-point numbers, using floating-point
indexing can cause “infinite loops’ and other problems. This problemisalso
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the |IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORVAT='(f20.10)"

IDL prints the following approximations to the numbers we requested:
0. 1000000015
0. 0099999998
1. 6000000238
1. 7000000477

See “Accuracy and Floating Point Operations’ on page 276 for more information
about floating-point numbers.

Building IDL Applications FOR...DO

134 Chapter 7: Program Control

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:
FOR Vari abl e = Expression;, Expression,, Increment DO Statenent
This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Example — FOR Statement with Variable Increment

The following examples demonstrate the second type of FOR statement.

:Decrenent, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO...

;lncrement by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO...

;Divide range frombottomto top by 4.
FOR mid = bottom top, (top - bottom/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FORX =0, 1, .1 DO....

Thevariable X isfirst defined as an integer variable because the initial value
expression is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer typeis 0. The correct form of the statement is:

FORX=0., 1, .1 DO....

which defines X as a floating-point variable.

FOR...DO Building IDL Applications

Chapter 7: Program Control 135

Sequence of the FOR Statement

The FOR statement performs the following steps:

1

The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variable is set to the
type of this expression.

The value of the second expression is evaluated, converted to the type of the
index variable, and saved in atemporary location. Thisvalueis called the limit
value.

The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, avalue of 1 is assumed.

If the index variable is greater than the limit value (in the case of apositive
step value) the FOR statement is finished and control resumes at the next
statement. Similarly, in the case of a negative step value, if the index variable
islessthan the limit value, control resumes after the FOR statement.

The statement or block following the DO is executed.
The step value is added to the index variable.
Steps 4, 5, and 6 are repeated until the test of Step 4 fails.

Building IDL Applications FOR...DO

136 Chapter 7: Program Control

REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition istrue. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once. (See " Definition of
True and False” on page 142 for details on how the “truth” of an expressionis
determined.)

The syntax of the REPEAT statement is as follows:
REPEAT st atenent UNTIL expression
or

REPEAT BEG N
statenents
ENDREP UNTI L expression

Examples — REPEAT...UNTIL

The following example finds the smallest power of 2 that is greater than B:

A=1
B =10
REPEAT A = A* 2 UNTIL AGI B

The subject statement can aso be in the form of a block:

A=1

B =10

REPEAT BEG N
A=A%*2

ENDREP UNTIL A GT B

The next exampl e sorts the elements of ARR using the inefficient bubble sort
method. (A more efficient way to sort elementsisto use IDL's SORT function.)

;Sort array.
REPEAT BEG N
;Set flag to true.
NOSWAP = 1
FORI =0, N- 2 DOIF arr[l] GI arr[l + 1] THEN BEG N
; Swapped el ements, clear flag.
NOSWAP = 0
T=arr[l] &arr[I] =arr[l +1] &arr[l + 1] =T
ENDI F

; Keep going until nothing is noved.
ENDREP UNTI L NOSWAP

REPEAT...UNTIL Building IDL Applications

Chapter 7: Program Control 137

WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remains true. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.
(See “Definition of True and False” on page 142 for details on how the “truth” of an
expression is determined.)

The syntax of the WHILE...DO statement is as follows:
WH LE expressi on DO st at ement
or

WHI LE expressi on DO BEG N
statenents
ENDWHI LE

When the WHILE statement is executed, the conditional expression istested, and if it
istrue, the statement following the DO is executed. Control then returnsto the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition isinitially
false.

Examples — WHILE...DO

The following example reads data until the end-of-file is encountered:
WHI LE ~ EOF(1) DO READF, 1, A B, C
The subject statement can also bein the form of a block:

WHI LE ~ EOF(1) DO BEG N
READF, 1, A B, C
ENDVHI LE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:
array = [2, 3, 5, 6, 10]

i O ;Initialize index
n N_ELEMENTS(ar r ay)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:

Building IDL Applications WHILE...DO

138

WHILE...DO

Chapter 7: Program Control

VWHI LE (array[i] LT 5) AND (i LT n) DOi =i + 1

PRINT, 'The first element >= 5 is elenment ', i

IDL Prints:

The first element >= 5 is el ement 2
Tip
Another way to accomplish the same thing is with the WHERE command, which is
used to find the subscripts of the points where ARR([] is greater than or equal to X.
P = WHERE(arr CGE X)
; Save first subscript:
| = P(0)

Building IDL Applications

Chapter 7: Program Control 139

Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit aloop, start the next iteration of aloop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well asthe ON_ERROR and
ON_IOERROR procedures. The label field is simply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 alphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:

LOOP_BACK: A = 12

I $QUI T: RETURN ; Conments are all owned.

BREAK

The BREAK statement provides a convenient way to immediately exit from aloop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This example illustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use aloop to find where in the array the
value 5 islocated. If the value is found, we BREAK out of the loop because thereis
no need to check the rest of the array:

Note
This example could be written more efficiently using the WHERE function. This
exampleisintended only to illustrate how BREAK might be used.

; Create a randonly-ordered array of integers
; fromO to 9999:

array = SORT(RANDOMJ seed, 10000))
n = N_ELEMENTS(array)

Find where in array the value 5 in | ocated:

Building IDL Applications Jump Statements

140 Chapter 7: Program Control

FORi = 0,n-1 DO BEG N

IF (array[i] EQ5) THEN BREAK
ENDFOR
PRI NT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we're looking for (or resort to
using a GOTO statement):

FORi =0, n-1 DO BEG N

IF (array[i] EQ 5) THEN found=i
ENDFOR

PRI NT, found
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from aloop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the . CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not alowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR 1=1,10 DO BEG N
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration
PRI NT, |
ENDFOR

Jump Statements Building IDL Applications

Chapter 7: Program Control 141

GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of aloop resultsin an error.

The syntax of the GOTO statement is as follows:

GOTO, Label
Warning
You must be careful in programming with GOTO statements. It is not difficult to

get into aloop that will never terminate, especidly if there is not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMPL is executed after the GOTO
statement, skipping any intermediate statements:

GOTo, JuwPl

PRINT, 'Skip this' ; This statenment is skipped
PRINT, 'Skip this' ; This statement is al so skipped
JUWP1: PRINT, 'Do this’

The label can also occur before the GOTO statement that refersto the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of |F statements, asin the following statement:

IF ANE G THEN GOTO, M STAKE

Building IDL Applications Jump Statements

142 Chapter 7: Program Control

Definition of True and False

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates predicate
expressions in the following contexts:

e |F...THEN. .. ELSE statements
e ? : inline conditional expressions
e VHI LE. .. DOstatements

e REPEAT. .. UNTI L statements

The definition of true and false for the different data typesis as follows:

Data Type True False
Byte, integer, and Odd integers Zero or even integers
long
Floating point and Non-zero values Zero
complex
String Any string with non- | Null string (" ")

zero length

Heap variables Non-null values Null values
(pointers and object
references)

Table 7-3: Default Definitions of True and False

If the LOGICAL_PREDICATE compile option is set:

Data Type True False
Numerical values Non-zero values Zero
String or heap Non-null values Null values
variables

Table 7-4: True and False Definitions with LOGICAL_PREDICATE

See “COMPILE_OPT” in the IDL Reference Guide manual for additional details on
the LOGICAL_PREDICATE compilation option.

Definition of True and False Building IDL Applications

Chapter 7: Program Control 143

In the following example, the logical statement for the condition is a conjunction of
two conditions:

I F (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than —40 and less than or equal to —20) aretrue,
the statement following the THEN is executed.

Building IDL Applications Definition of True and False

144 Chapter 7: Program Control

Definition of True and False Building IDL Applications

Chapter 8

Debugging and
Error-Handling

The following topics are covered in this chapter:

Debugging and Error-Handling Overview 146
What Happens When Execution Stops . .. 147

Working with Breakpoints 149
Stepping ThroughaProgram........... 153
Monitoring VariableValues 155
Correcting Errors During Execution 160

Building IDL Applications

Obtaining Traceback Information 161
Controlling and Recovering from Errors . 162

Creating Custom Error Messages.. 164
Notifying the User of Errors........... 166
MahErrors i 167

145

146 Chapter 8: Debugging and Error-Handling

Debugging and Error-Handling Overview

There are several toolsyou can useto help you find errorsin your IDL code. The Run
menu item in the IDL Development Environment provides several ways to access
IDL’s built-in debugging and executive commands. The Variable Watch Window
helps you keep track of the variables used in your program.

This chapter explains the debugging commands and contains short examples using
the IDLDE interface to debug afile. This section also discusses error-handling
routines and methods used to check and handle errorsthat occur in IDL programs.
The routines covered here are rarely used interactively.

Note
The !ERROR_STATE system variable is updated when errors occur. At the
beginning of an IDL session, |ERROR_STATE contains default information. To see
thisinformation, you can either view 'ERROR_STATE from the System field of the
Variable Watch Window (see * The Variable Watch Window” on page 156) or you
can enter PRINT, 'ERROR_STATE at the Command Line. After an error has
occurred, all of the fields of 'ERROR_STATE display their updated status. Refer to
“IERROR_STATE” in the IDL Reference Guide manual for details.

Debugging and Error-Handling Overview Building IDL Applications

Chapter 8: Debugging and Error-Handling 147

What Happens When Execution Stops

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred. When execution isinterrupted, a current-line indicator is placed
next to the line that will be executed when processing resumes. The routine being
compiled need not already be shown in an editor window. If aroutine compiled with
the. RUN, . RNEWor . COVPI LE executive commands contains an error, IDLDE will
display the file automatically.

When execution stops, you can take the following steps:

* Correct the problem and continuing program execution (see “ Correcting Errors
During Execution” on page 160)

e Anticipate and handle errors to avoid execution halt (“ Controlling and
Recovering from Errors’ on page 162)

To understand what is happening during program execution, consider setting
breakpoint and stepping through the code. See “Working with Breakpoints’ on
page 149.

Example: Correcting Undefined Variable

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed. Start the IDLDE. Call the BROKEN
procedure by entering:

BROKEN

at the IDL command line. An error is reported in the Output Log window and an
editor window containing the file BROKEN.PRO appears and contains the following
code:

; $1d: broken.pro,v 1.1 1996/10/01 22:01: 54 doug Exp $

PRO BROKEN
PRI NT, i
PRI NT, i*2
PRI NT, i*3
PRI NT, i*4

END

A “Variableis undefined” error has occurred. Since execution stopped at line 4, that
lineis highlighted with an arrow.

Building IDL Applications What Happens When Execution Stops

148 Chapter 8: Debugging and Error-Handling

There are several ways of fixing this error. We could edit the program file to
explicitly define the variable i, or we could change the program so that it accepts a
parameter at the command line. We can aso define the variable i on the fly and
continue execution of the program without making any changes to the program file.
We'll do thisfirst, then go back and edit the program to accept a command-line
parameter. To define the variablei and assign it the value 10, enter at the command
line:

i =10

And select run to continue execution.

What Happens When Execution Stops Building IDL Applications

Chapter 8: Debugging and Error-Handling 149

Working with Breakpoints

When afile displayed in an IDL editor window has been compiled (by selecting
Compile or Memory Compile from the Run menu, or by entering . COVPI LE,

. COWPI LE -f,or. RUNat the DL command prompt), a number of debugging
commands become available for selection. You can suspend execution of a program
temporarily by setting breakpoints in the code. To use the test file, br oken. pr o to
test breakpoints, enter the following lines at the command line:

.EDI' T broken
Edit the first program lineto read as follows and then save and compile the program:
PRO BROKEN, i

Thisalowsyou to passavaluefori tothe program. Set a breakpoint at the fifth line
of br oken. pr o by placing the cursor in the line that reads:

PRI NT, i*2

and selecting Set Breakpoint from the Run menu. A breakpoint dot appears next to
the line. Now enter the following to execute the program:

BROKEN, 10
The Output Log window displays the following:

10
% Br eakpoi nt at: BROKEN 5

and a current line indicator arrow marks line 5. Select Run to resume execution. To
list the breakpoints, enter HELP, / BREAKPQO NT at the command line.

Setting a breakpoint allows you to inspect (or change) variable definitions as the
program executes. Since our example does not set any variables, setting a breakpoint
inbr oken. pr o isnot very informative. Breakpoints can be extremely helpful,
though, when debugging complex programs, or programs that call other routines. For
more information on working with breakpoints, see the following section.

Using Breakpoints
You can select to edit, enable/disable, and change breakpoint properties using
Breakpoint Toolbar buttons. Additionally, through the Edit Breakpoints dialog,

breakpoints can be set for execution dependent upon a condition or enabled after the
breakpoint has been encountered a specific number of times.

Building IDL Applications Working with Breakpoints

150 Chapter 8: Debugging and Error-Handling

The Breakpoint Toolbar Buttons
There are three buttons in the main menu bar. These are:

EI The Toggle Breakpoint button creates or deletes a breakpoint. Create a

breakpoint at the line where your cursor is positioned by clicking the Toggle
Breakpoint button. If a breakpoint already exists in the line where your cursor
is positioned, clicking this button removes the breakpoint.

@ The Enable/Disable Breakpoint button enables or disables a breakpoint. If a

breakpoint is enabled, afilled circle appears next to the linein the IDL Editor
window. If disabled, the circle is not filled. Disabled breakpoints are ignored
when you run thefile.

gThe Edit Breakpoints button displaysthe Edit Breakpoints dialog. In previous

releases, this printed alisting of the current breakpoints. From this dialog, you
can list your current breakpoints, create new breakpoints, enable or disable
breakpoints, change breakpoint options, or delete breakpoints.

The Windows Edit Breakpoints Dialog

The Edit Breakpoints dialog allows you to add, remove, and remove all breakpoints
in afile aswell asthe ability to move to the line in the source file that contains the
breakpoint. The following figure shows the Edit Breakpoints dialog:

Edit Breakpoints E

E/D| Madule [Line | File [after [Ong Condition |
O

Add | Remove | HemoveAIIl Goto |

Figure 8-1: Edit Breakpoints Dialog

To create a breakpoint using the Edit Breakpoints dialog, complete the following
steps:
1. Open thefileyou in which you want to set a breakpoint.

Working with Breakpoints Building IDL Applications

Chapter 8: Debugging and Error-Handling 151

2. Display the Edit Breakpointsdialog by clicking the %] button in the IDLDE
toolbar or by selecting Run — Edit Breakpoints...

3. Placethe cursor in the line in which you want to create the breakpoint in the
Editor window.

4. Select Add in the Edit Breakpoints dialog box. You will see anew entry
display in the dialog. The following table describes each property of a
breakpoint:

Iltem Description

E/D Specifies whether a breakpoint is enabled or
disabled. If acheck mark is displayed, the
breakpoint is enabled and execution will stop
when the all criteriafor the breakpoint is met.

Module Specifies the procedure or function where the
breakpoint is set.

Note - Thisitem will not be displayed until the
file has been compiled with the new breakpoint.

Line Specifies the line number where the breakpoint
OCCUrs.

File Specifies the filename where the breakpoint
occurs.

After Specifies how many times the execution must
pass the breakpoint before stopping execution.
For example, if thisitem is set to O, execution will
stop the first time this breakpoint is encountered.
If itisset to 9, execution will not stop until the
breakpoint has been encountered for the ninth
time.

Table 8-1: Edit Breakpoints Dialog Fields

Building IDL Applications Working with Breakpoints

152 Chapter 8: Debugging and Error-Handling

Iltem Description

Once The breakpoint is removed after it is encountered
for the first time.

Condition Specifies a condition to be met for the execution
to stop. The condition is a string containing an
IDL expression. When a breakpoint is
encountered, the expression is evaluated. If the
expression istrue (if it returns a non-zero value),
program execution is interrupted. The expression
is evaluated in the context of the program
containing the breakpaint.

Table 8-1: Edit Breakpoints Dialog Fields

5. At this point, you can modify any of the items (except Module and Line) by
double-clicking in the entry.

When you run your program, execution halts at the breakpoints you have specified.

Working with Breakpoints Building IDL Applications

Chapter 8: Debugging and Error-Handling 153

Stepping Through a Program

Once execution halts at a breakpoint, you can step through the program manually, or
continue execution automatically. When stepping through amain program, if the next
line calls another IDL procedure or function, you have three options with which to
handle execution of the nested program:

* Step Into executes statementsin order by successive Step commands

* Step Over executes statements to the end of the called function, without
interactive capability

e Step Out to continue processing until the main program returns.

Manually Stepping Through Code

Select Step Into from the Run menu (or use the F8 shortcut) to execute line
containing the breakpoint and stop on the following line. For example, if you enter
br oken at the command line, execution stops on line 4. Provide avaluefori by
entering i =10 at the command line and then select Step Into. This executesline 4
with the new value of i and steps to the next program line.

The Output Log reports:
10

The current-line pointer advances to the next line in the window containing the file
br oken. pr o. You could continue stepping through the program by choosing Step
Into repeatedly (or by entering . STEP at the IDL command prompt).

Continuing Program Execution

You can also continue execution of the program without stepping through the code
line by line. Select Run from the Run menu, noting that the Output Log shows that
IDL calls broken. Define the variable i in the Command Line. Select Run again. The
Output Log now shows that IDL calls . CONTINUE. IDL prints the resulting output
to the Output Log window:

10

20

30
40

Building IDL Applications Stepping Through a Program

154 Chapter 8: Debugging and Error-Handling

Automatically Stepping Through Code

The Trace Execution dialog offers an opportunity to automatically step through the
program. Select Trace... from the Run menu. The Trace Execution dialog appears.

Trace Execution E3 |
1 1 1 :‘. 1 1 1 | El:l I
: | ;
St
Step eveny 1.0 zecond 20
¥ Step jnto routines
]

™ Step over routines =

Figure 8-2: Trace Execution Dialog (Windows)

Step Interval (sec)

A Full Speed _|lse Step Ower

Run i o | Dismissl __ﬂElE_J

Figure 8-3: Trace Execution Dialog (Unix)

Click Go or Run to automatically issue the . STEP command until the END statement
is encountered, or click Stop to halt trace execution. Moving the dlider in the Trace
Execution dialog controls the length of the pauses between step commands. You can
also select whether to step into routines, executing successive .STEP commands at
each line (Windows only), or to step over routines, issuing successive .STEPOVER
commands. For more information, see “.STEP” and “.STEPOVER” inthe IDL
Reference Guide manual. Click OK or Dismissto dismiss the dialog.

Stepping Through a Program Building IDL Applications

Chapter 8: Debugging and Error-Handling 155

Monitoring Variable Values

When execution halts, there are several ways to see the values of program variables.
These include:

¢ Check variable values from the command line — see * Showing Variable
Values During Execution” below

¢ Usethe Variable Watch window — see “ The Variable Watch Window” on
page 156

* Recover “missing” variables — see “Disappearing Variables’ on page 159
Showing Variable Values During Execution

When execution stops you can query the values of current variablesin the program
scope using the PRINT and HEL P routines. For instance, suppose you have created
the following program:

FUNCTI ON hel | o_who, who

RETURN, 'Hello ' + who
END

PRO hel | o_nmi n
name ="'
READ, nanme, PROVPT='Enter Nane: '
str = HELLO WHQ(nane)
PRI NT, str
END

Place abreakpoint on the PRI NT, str line and then compile and run the program.
Enter aname at the IDL command line when prompted. When execution halts, return
the value of the nane variable by entering,

PRI NT, name
The Output Log shows the name you have entered.
Return information about the st r variable by entering:
HELP, str

The Output Log shows the variable name, data type and value. Thisinformation is
also available in the Variable Watch window, described in the following section.

Building IDL Applications Monitoring Variable Values

156 Chapter 8: Debugging and Error-Handling

Tip
You can also place PRINT and HEL P statements in your program to see variable
values without pausing program execution. As these statements are encountered,
values are printed to the Output Log.

Note
When working in the IDLDE, you can also use the macros, Print Variable or Help
on Variable, to return information on a selected variable. See “Macros Menu” in
Chapter 2 of the Using IDL manual for details.

The Variable Watch Window

The Variable Watch window displays current variable values after IDL has
completed execution. If the calling context changes during execution — as when
stepping into a procedure or function — the variable tableis replaced with atable
appropriate to the new context. While IDL is at the main program level, the Variable
Watch window remains active and displays any variables created.

I <]
MName Type Yalue Y

BA FLOAT Arraylz2, 3]

«|[0,1] FLOAT |5.000000

Al

LocalslParamslCDmmDnsngsteml

Figure 8-4: Variable Watch Window

Customizing Variable Watch Window Layout

To hide the Variable Watch window, select Window — Hide Variable Watch.
Select Show Variable Watch to make it reappear. Changing the Window menu will
only affect the current IDL session.

To apply your changes to future sessions, select File — Preferences and click the
Layout tab. In the section labeled Show Windows, select or clear check boxes
associated with the windows you want to appear. Click Apply to save your changes
for future IDL sessions and OK to exit.

Monitoring Variable Values Building IDL Applications

Chapter 8: Debugging and Error-Handling 157

Note
Selection or clearing of Window menu items reflects changes in the L ayout
preferences and vice versa.

The Variable Watch Interface Description

The Variable Watch window is refreshed after the IDLDE has completed execution.
Each Variable Watch window contains the following folders:

Locals — Thistab contains descriptions of local variables. Local variables are
created from IDL’'s main program level. For example, entering a=1 at the
Command Linelists the integer a in the Locals tab.

Params — Thistab contains descriptions of parameters. The variables and
expressions passed to afunction or procedure are parameters. For more
information, see “Parameters’ on page 87.

Commons — Thistab contains descriptions of variables contained in common
blocks. The name of each common block is shown in parentheses next to the
variable contained within it. For more information, see“COMMON" in the
IDL Reference Guide manual.

System — Thistab contains descriptions of system variables. System variablesare a
special class of predefined variables available to all program units. For more
information about system variables, see Appendix D, “ System Variables’ in
the IDL Reference Guide manual.

Each tab contains atable listing the attributes of the variables included in the
category. You can size the columns by clicking on the line to the right of the title of
the column you wish to expand or shrink. Drag the mouse either |eft or right until you
are satisfied with the width of the column. For example, to change the width of the
Name column, click and drag on the line separating the Name field from the Type
field.

The following fields describe variable attributes:

Name — Thisfield showsthe name of the variable. Thisfield is read-only, except for
array subscript descriptions (see example in Example: Using the Variable
Watch Window below).

For compound variables such as arrays, structures, pointers, and objects, click
the“+” symbol to the left of the name to show the variables included in the
compound variable. Click the “-" symboal to collapse the description.

Type — Thisfield shows the type of the variable. Thisfield is read-only.

Building IDL Applications Monitoring Variable Values

158 Chapter 8: Debugging and Error-Handling

Value — Thisfield shows the value of the variable. To edit avaluein UNIX,
highlight the cell by clicking onit, press the function key F2 to enter editing
mode, and enter the new value. To edit avalue in Windows, double click on
the cell to highlight it and enter the new value.

The Name, Type, and Value fields are displayed as when using the HEL P procedure.
For more information about variables, see “ Variables’ on page 282.

The Variable Watch Window and Objects

Object references are expanded only if they reference non-null objects. Object data
are expanded only if the object method has finished running. Object data are read-
only and cannot be changed with the Variable Watch window.

Example: Using the Variable Watch Window

Arrays are expanded to show one array element. Click on the “+” symbol next the
name of the array to display the initial array subscript. You can change thisfield to
display the characteristics of any other array element.

Note
To enter editing mode in Motif, press F2 after clicking on the cell to be edited. In
Windows, double-click on the cell.

To edit the subscript, highlight the cell by clicking on it, and modify the name using
the arrow keys to maneuver. For example, enter the following:

; Create an array with 2 colums and 3 rows.
A=MAKE_ARRAY(2, 3)

; Show the values of array Ain the Qutput Log. They will all be
;zero.
PRI NT, A

; Assign the value of 5to the value in the array subscripted as 2.
; This is the same as entering A(O, 1) =5.

A(2) =5
; Show the new val ues of array A
PRI NT, A
IDL prints:
0. 00000 0. 00000
5. 00000 0. 00000
0. 00000 0. 00000

Monitoring Variable Values Building IDL Applications

Chapter 8: Debugging and Error-Handling 159

It is easy to manipulate variables within the Variable Watch window. Click on the “ +"
expansion symbol next to the array A. The subscript [0,0] will be revealed beneath
the description of A. Enter editing mode and change [0,0] to [0,1].

Press Enter to effect the change. Notice that the value of the subscript is displayed as
5, asyou entered from the command line. Press the Tab key to highlight the value of
the subscript [0,1]. You can change it to another number. Enter [1,0] in the subscript
name field. You can also change the value from 0.00000 to ancther number.

For more information about arrays, see Chapter 15, “Arrays’.
Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety isthat after the
error occurs, IDL’s context is inside the called procedure, not in the main level. All
variablesin procedures and functions, with the exception of parameters and common
variables, are local in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL isbest suited for use when an error is detected in aprocedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HEL P command can be used to see the current call stack (i.e., which program
unit IDL isin and which program unit called it). For more information, see “HELP”
in the IDL Reference Guide manual.

Building IDL Applications Monitoring Variable Values

160 Chapter 8: Debugging and Error-Handling

Correcting Errors During Execution

Sometimesiit is possible to recover from an error by manually entering statements to
correct the problem. Possihilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

As an example, if an error occurs because an undefined variable is referenced, you
can simply define the variable at the command prompt and then continue execution
with .CONINUE. Of course, thisis atemporary solution. You should till edit the
program file to fix the problem permanently.

See " Example: Correcting Undefined Variable” on page 147 for a simple example.

Correcting Errors During Execution Building IDL Applications

Chapter 8: Debugging and Error-Handling 161

Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The SCOPE_TRACEBACK function returns a string array describing the
contents of the procedure stack. The first element of the resulting array contains
information for the IDL main program ($MAIN$). Each subsequent element contains
information for the next routine in the call stack. The final element contains the
information for the currently running routine. Each element of this array contains the
module name, source filename, and line number of the routine it describes.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

A = SCOPE_TRACEBACK()

Print next to last elenent: caller of the current routine
PRINT, 'Called from ', A N _ELEVENTS(A)- 2]

This results in amessage of the following form:
Called from DI ST </usr/local/rsi/idl/lib/dist.pro (27)>

SCOPE_TRACEBACK can also provide more detailed information for the call stack.
See “SCOPE_TRACEBACK?" in the IDL Reference Guide manual for more
information about the function’s capabilities.

Building IDL Applications Obtaining Traceback Information

162 Chapter 8: Debugging and Error-Handling

Controlling and Recovering from Errors

IDL divides possible execution errors into three categories: input/output, math, and
al others. There are three main error-handling routines; CATCH, ON_ERROR, and
ON_IOERROR. CATCH is ageneralized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
alows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.

You can also write code in such a manner asto anticipate and handle potential errors,
especialy when you are writing your own routines. See the following topicsin
Chapter 5, “ Creating Procedures and Functions’ for details:

« “Determining Variable Scope” on page 89

* “Determining if aKeyword is Set” on page 92

e “Supplying Values for Missing Keywords’ on page 93
e “Supplying Values for Missing Arguments’ on page 94

Interaction of CATCH, ON_ERROR, and

ON_IOERROR
Error handlers established by callsto CATCH supersede callsto ON_ERROR.
However, callsto ON_IOERROR made in the procedure that causes an 1/O error

supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.

Controlling and Recovering from Errors Building IDL Applications

Chapter 8: Debugging and Error-Handling 163

Thefollowing figureis aflow chart of how errorsare handled in IDL.

Error or Exception is Generated

Isitan /O error?

No s ON_IOERROR

routine in use?

Yes
Handle error with
ldie}lhr?’eg g; terr1reo(r:2§\rng|l_<|er CATCH-defined error
routine? handler and continue
- program execution.
|)
Handle error as
indicated by
Handle error as ON_IOERROR setting.

indicated by setting of
ON_ERROR routine or
use default error handling.

Figure 8-5: Error Handling in IDL

Building IDL Applications Controlling and Recovering from Errors

164 Chapter 8: Debugging and Error-Handling

Creating Custom Error Messages

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that setsthe
IERROR_STATE system variable. '/ERROR_STATE.MSG is set to the string used
as an argument to MESSAGE.

The MESSAGE procedureis used by user procedures and functions to issue errors. It
has the form:

MESSAGE, Text
where Text is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message isissued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

Asaside effect of issuing the error, appropriate fields of the system variable
IERROR_STATE are set; the text of the error message is placed in
IERROR_STATE.MSG, or in lERROR_STATE.SYS_MSG for the operating
system’s component of the error message. See “'ERROR_STATE” inthe IDL
Reference Guide manual for more information.

As an example, assume the statement:
MESSAGE, ' Unexpected val ue encountered.’

is executed in a procedure named CALC. IDL would print:
% CALC: Unexpected val ue encountered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. See
“MESSAGE”" in the IDL Reference Guide manual for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_|IOERROR to read from afile until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

; Open the data file.
OPENR, UNIT, 'DATA. DAT', /GET_LUN

; Arrange for junmp to | abel EOD when an input/output error occurs.
ON_| CERROR, ECD

Read every line of the file.

Creating Custom Error Messages Building IDL Applications

Chapter 8: Debugging and Error-Handling 165

VWH LE 1 DO READF, UNIT, LINE

; An error has occurred. Cancel the input/output error trap.
ECD: ON_I CERROR, NULL

; Cose the file.
FREE LUN, UNIT

Rei ssue the error. ! ERROR_STATE. MSG contains the appropriate
; text. The | OERROR keyword causes it to be issued as an

i nput/output error. Use of NONAME prevents MESSAGE fromtacking
; the nane of the current routine to the beginning of the nessage
; string since ! ERROR_STATE. MSG al ready contains it.
MESSAGE, ! ERROR_STATE. MSG / NONAME, /| CERROR

Message Blocks

IDL messages include text and formatting information which, when combined with
text supplied in the call to MESSAGE, provide information to the program’s user
about the error that occurred. For example, entering

MESSAGE, ' Howdy, fol ks’
at the IDL command line produces the following outpult:

% $MAI N$: Howdy, folks
% Execution halted at: $MAI N$

indicating that the message was issued from within the IDL $MAI N$ program.

A message block is a collection of messages that are loaded into IDL asasingle unit.
At startup, IDL contains asingle internal message block named IDL_MBLK_CORE,
which contains the standard messages required by the IDL system. By defaullt,
MESSAGE throwsthe IDL_M_USER_ERR message from the IDL_MBLK_CORE
message block, producing output similar to that shown above.

Dynamically loadable modules (DLMs) usually define additional message blocks for
their own needs when they are loaded. In addition, if you wish to provide something
other than the default error message for your own IDL programs, you can define your
own message blocks and error messages. See “DEFINE_MSGBLK” and
“DEFINE_MSGBLK_FROM_FILE” in the IDL Reference Guide manual for
additional details. Specify the BLOCK and NAME keywords to the MESSAGE
procedure to issue a message from a message block you have defined.

Building IDL Applications Creating Custom Error Messages

166 Chapter 8: Debugging and Error-Handling

Notifying the User of Errors

The DIALOG_MESSAGE function creates amodal (blocking) dialog box that can
be used to display information for the user. The dialog must be dismissed, by clicking
on one of its option buttons, before execution can continue.

See“"DIALOG_MESSAGE” inthe IDL Reference Guide manual for details or the
MEMORY routine “Examples’ section in the IDL Reference Guide for an example of
using DIALOG_MESSAGE.

Notifying the User of Errors Building IDL Applications

Chapter 8: Debugging and Error-Handling 167

Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems that
implement the | EEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values’ on page 168.) Integer overflow and underflow is not
detected. Integer divide by zero is detected on al platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero that
it cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy and Floating Point
Operations’ on page 276

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This status,
which isimplemented as alongword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable 'EXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

IEXCEPT has three possible values:
IEXCEPT=0

Do not report exceptions.
IEXCEPT=1

The default. Report exceptions when the IDL interpreter returnsto an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

% Program caused arithmetic error: Floating divide by O

Building IDL Applications Math Errors

168

Chapter 8: Debugging and Error-Handling

IEXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by O
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Math Errors

Machines which implement the IEEE standard for binary floating-point arithmetic
have two specia values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when aresult islarger than the largest representation. NaN is the
result of an undefined computation such as zero divided by zero, taking the square-
root of a negative number, or the logarithm of a non-positive number. In many cases,
when IDL encounters the value NaN in a data set, it treats it as “missing data.” The
specia values NaN and Infinity are also accessible in the read-only system variable
IVALUES. These specia operands propagate throughout the evaluation process—the
result of any term involving these operands is one of these two special values.

Note
For the minimum (<) and maximum (>) operators with NaN operands, the result is
undefined and may not necessarily be the special value NaN. “ Mathematical
Operators’ on page 225 for details.

For example:

Mul tiply NaN by 3
PRI NT, 3 * I'VALUES. F_NAN

IDL prints:
NaN

It isimportant to remember that the value NaN isliterally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A=1[1.0, 2.0, 'VALUES F_NAN, 3.0]
PRI NT, A

IDL prints:
1. 00000 2.00000 NaN 3. 0000

Building IDL Applications

Chapter 8: Debugging and Error-Handling 169

If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL might generate an error (depending on the
hardware and operating system):

Print the indices of Athat are not equal to 1
PRINT, WHERE(A NE 1.0)

IDL prints:
1 2 3
% Program caused arithnmetic error: Floating illegal operand

(Depending on your hardware and operating system, you may not see the floating-
point error.)

To avoid this problem, use the FINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRI NT, WHERE(FIN TE(A))
IDL printsthe indices of the finite elements of A:
0 1 3

To then print the indices of the elements of A that are both finite and not equal to 1.0,
you could use the command:

good = WHERE(FI NI TE(A))
PRI NT, good[WHERE(A[good] NE 1.0)]

IDL prints:
1 3

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use a command like:

Print the indices of the elenments of A that are not valid
; floating-point nunbers.
PRI NT, WHERE(~FI NI TE(A))

IDL prints:
2
Note that the special value Infinity can be compared to afloating point number. Thus,
if:
B=1[10, 2.0, !VALUES. F_INFINITY]
PRINT, B
IDL prints:
1. 00000 2.00000 | nf

Building IDL Applications Math Errors

170

Chapter 8: Debugging and Error-Handling

and
PRI NT, WHERE(B GT 1.0)

IDL prints:
1 2

You can also compare numbers directly with the special value Infinity:
PRI NT, WHERE(B EQ ! VALUES. F_I NFI NI TY)

IDL prints:

2
Note
On Windows, using relational operators such as EQ and NE with the valuesinfinity
or NaN (Not a Number) causes an “illegal operand” error. The FINITE function’'s
INFINITY and NAN keywords can be used to perform comparisons involving
infinity and NaN values. For more information, see “FINITE” on page 790.

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the | EEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
Statement:

; Per f orm exponenti ati on.
A = EXP(EXPRESSI ON)

;Print error message.
IF ~ FINITE(A) THEN PRI NT, 'Overflow occurred'

If A isan array, use the statement:
| F TOTAL(FINI TE(A)) NE N_ELEMENTS(A) THEN

Integer Conversions

Math Errors

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow isimportant, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflow—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.

Building IDL Applications

Chapter 8: Debugging and Error-Handling 171

When run on a Sun workstation, the program:

A=20n31+2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithmetic error: Floating illegal operand

Thisresult isincorrect.

Warning
No error message will appear if you attempt to convert a floating number whose
absolute value is between 21° and 231 - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231.1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow is usually not detected. Your programs
must guard explicitly against it.

Building IDL Applications Math Errors

172 Chapter 8: Debugging and Error-Handling

Math Errors Building IDL Applications

Chapter 9

Building Cross-
Platform Applications

The following topics are covered in this chapter:

Overview of Cross-Platform Issues 174
Which Operating System isRunning? ... 175
File and Path Specifications 176
Filesand1/O 178
Math Exceptions 180
Responding to Screen Size and Colors ... 181

Building IDL Applications

Printingco i 182
SAVEand RESTORE 183
Widgetsin Cross-Platform Programs 184
Using External Code 187
IDL DataMinerIssues 188

173

174 Chapter 9: Building Cross-Platform Applications

Overview of Cross-Platform Issues

IDL is designed as a platform-independent environment for data analysis and
programming. Because of this, the vast mgjority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, there are differences between the computers
that make up a multi-platform environment. Operating systems supply resourcesin
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows and UNIX machines, there are some cases
where the discrepancies cannot be overcome. This chapter discusses aspects of IDL
that you may wish to consider when developing an application that will run on
multiple types of computer.

Note
This chapter is not an exhaustive list of differences between versions of IDL for

different platforms. Rather, it covers issues you may encounter when writing cross-
platform applicationsin IDL.

Overview of Cross-Platform Issues Building IDL Applications

Chapter 9: Building Cross-Platform Applications 175

Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable 'VERSION. For example, you could use an IDL CASE statement that 1ooks
something like the following to execute code that pertains to a particular operating

system family:
CASE ! VERSI ON. OS_FAM LY OF
"uni x' : Code for Unix
"W ndows' . Code for Wndows
ENDCASE

Writing conditional IDL code based on platform information should be alast resort,
used only if you cannot accomplish the same task in a platform-independent manner.

Operating System Access

While IDL provides ways to interact with each operating system under which it runs,
it is not generally useful to use operating-system native functionsin a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described above) and branch your code
accordingly.

Building IDL Applications Which Operating System is Running?

176 Chapter 9: Building Cross-Platform Applications

File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used
by different operating systems;, see “!PATH” in the IDL Reference Guide manual for
further details on path specification.

Operating Directory Path Element
System Separator Separator
UNIX / (forward slash) : (colon)
Windows \ (backward dash) ; (semicolon)

Table 9-1: Directory and Path Element Separator Characters

Asaresult of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific file
and path specification issues by using the FILEPATH and DIALOG_PICKFILE
functions.

Choosing Files at Runtime

To allow users of your application to choose afile at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such asreading afile
name from atext field in awidget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to afile you know to beinstalled on the host, use the
FILEPATH function. By default, FILEPATH alows you to select filesthat are included
inthe IDL distribution tree. Chances are, however, that afile you supply as part of your
own application isnot included in the IDL tree. You can till use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

File and Path Specifications Building IDL Applications

Chapter 9: Building Cross-Platform Applications 177

roct
rei MYAPP other

idl

Figure 9-1: A Possible Directory Hierarchy for an IDL Application

For example, suppose your application isinstalled in a subdirectory named M YAPP
of the root directory of the filesystem that contains the IDL distribution. You could
use the FILEPATH function and set the ROOT_DIR keyword to the root directory of
the filesystem, and use the SUBDIRECTORY keyword to select the M YAPP
directory. If you are looking for a file named myapp.dat, the FILEPATH command
lookslike this:

file = FI LEPATH(' nyapp.dat', ROOT DI R=root, SUBDI R=' MYAPP')

The problem that remains is how to specify the value of r oot properly on each
platform. Thisis one case where it is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE ! VERSI ON. OS_FAM LY OF

"uni x' crootdir ="'/
"Wndows' : rootdir = STRMD(!DR 0, 2)
ENDCASE

file = FI LEPATH(' myapp.dat', ROOT=rootdir, SUBDI R='" MYAPF')

Note that the root directory under Unix iswell defined, whereas the root directory on
amachine running Microsoft Windows must be determined by parsing the IDL
system variable !DIR. Under Windows, the root is assumed to be the drive letter of
the hard drive and the following colon — usually “C:”.

Building IDL Applications File and Path Specifications

178

Chapter 9: Building Cross-Platform Applications

Files and I/O

IDL’sfile input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening atext file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII datato afile on ahard disk, IDL’s /O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
dataformat files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writesfilesin
the proper way.

Before attempting to write a cross-platform IDL application that uses more than basic
file 11O, you should read and understand the sections in Chapter 18, “Files and
Input/Output” that apply to the platforms your application will support. The
following are afew topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Files and 1/O

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which
numbers are stored beginning with the least significant byte. The following table lists
the processor types and operating systems IDL supports and their byte ordering
schemes:

Processor Type Operating System Byte Ordering

AMD Linux little-endian
Windows little-endian

Hewlett Packard PA-RISC HP-UX big-endian

IBM RS/6000 AlX big-endian

Intel x86 Linux little-endian
Windows little-endian

Motorola PowerPC Macintosh OS X and later | big-endian

Table 9-2: Byte Ordering Schemes Used by Platforms that Support IDL

Building IDL Applications

Chapter 9: Building Cross-Platform Applications 179

Processor Type Operating System Byte Ordering
SGI R4000 and up [rix big-endian
Sun SPARC Solaris big-endian

Table 9-2: Byte Ordering Schemes Used by Platforms that Support IDL

The DL routinesBY TEORDER and SWAP_ENDIAN allow you to convert numbers
from big endian format to little endian format and vice versa. It is often easier,
however, to use the XDR (for eXternal Data Representation) format to store data that
you know will be used by multiple platforms. XDR files write binary datain a
standard “ canonical” representation; as aresult, the files are dightly larger than pure
binary datafiles. XDR files can be read and written on any platform that supports
IDL. XDR isdiscussed in detail in “Portable Unformatted | nput/Output” on

page 466.

Building IDL Applications Files and 1/O

180 Chapter 9: Building Cross-Platform Applications

Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL usesthe | EEE floating-point standard on all supported systems. Asa
result, IDL always substitutes the special floating-point values NaN and Infinity
when it detects a math error. (See “Special Floating-Point Values’ on page 168 for
details on NaN and Infinity.)

For information on debugging math errors, see “Math Errors’ on page 167.

Math Exceptions Building IDL Applications

Chapter 9: Building Cross-Platform Applications 181

Responding to Screen Size and Colors

The usability of your application may depend on responding to settings on the user’'s
system.

Finding Screen Size

Usethe GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size alows your
application to handle different screen sizes gracefully.

Number of Colors Available

Usethe N_COLORSand TABLE_SIZE fields of the ! D system variableto determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of al the available colorsfor its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application is running
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays aswell. If your application uses IDL’s color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVI CE, DECOVPQSED=0
to use indexed-color mode on a machine with a TrueColor display.

Building IDL Applications Responding to Screen Size and Colors

182 Chapter 9: Building Cross-Platform Applications

Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presented via
IDL’s print dialogs. If your IDL application uses IDL’s printing dial ogs, make sure
that your interface calls the dialog your user will expect for the platform in question.

Printing Building IDL Applications

Chapter 9: Building Cross-Platform Applications 183

SAVE and RESTORE

If you distribute your application via IDL SAVE files, remember that files containing
IDL routines are not necessarily compatible between IDL releases. Always save your
original code and re-save when a new version of IDL isreleased. SAVE files
containing data are always compatible between releases of IDL.

Note
If you are restoring afile created with VAX IDL version 1, you must restore on a

machine running VMS.

Building IDL Applications SAVE and RESTORE

184 Chapter 9: Building Cross-Platform Applications

Widgets in Cross-Platform Programs

IDL’s user interface toolkit is designed to provide a“native” look and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as aresult, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependenciesin the IDL widget toolkit.
Consult the descriptions of theindividual DIALOG and WIDGET routinesin the IDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE inan IDL application, Windows users will see the
Windows-native file selection dialog and Motif users will see the Matif file selection
dialog. Consult the descriptions of the individual DIALOG routinesin the IDL
Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET _BASE routine) play an especialy
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See “Iconizing, Layering, and Destroying Groups of Top-Level Bases’
under “WIDGET_BASE” in the IDL Reference Guide manual for details about the
platform-dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
Asaresult of the platform-specific appearance of each widget, attempting to position
individual widgets manually within abase will seldom give satisfactory results on al
platforms.

Widgets in Cross-Platform Programs Building IDL Applications

Chapter 9: Building Cross-Platform Applications 185

Instead, insert widgets inside base widgets that have the ROW or COLUMN
keywords set, and let IDL determine the correct geometry for the current platform
automatically. You can gain afiner degree of control over the layout by placing
groups of widgets within sub-base widgets (that is, base widgets that are the children
of other base widgets). This alows you to control the column or row layout of small
groups of widgets within the larger base widget.

In particular, refrain from using the X/Y SIZE and X/Y OFFSET keywordsin cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts Used in Widget Applications

You can specify the font used in awidget viathe FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?’ on
page 175. You can avoid the need for platform-dependent code by using the TrueType
fonts supplied with IDL; there may be a performance penalty when the fonts are
initially rendered. See Appendix H, “Fonts’ in the IDL Reference Guide manual for
details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to awidget on a Motif system. Resources specified viathe
RESOURCE_NAME keyword will be quietly ignored on Windows systems. See
“RESOURCE_NAME" under “WIDGET_BASE” in the IDL Reference Guide
manual for details. In general, you should not expect to be able to duplicate the level
of control available via X Window System resources on other platforms.

WIDGET_STUB

On Moatif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism is only available under Unix, and is thus not
suitable for use in cross-platform applications that will run under Microsoft
Windows. WIDGET_STUB is described in the External Development Guide.

Building IDL Applications Widgets in Cross-Platform Programs

186 Chapter 9: Building Cross-Platform Applications

Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
all windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.

Widgets in Cross-Platform Programs Building IDL Applications

Chapter 9: Building Cross-Platform Applications 187

Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program viaCALL_EXTERNAL or LINKIMAGE or viathe callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the

External Development Guide for details on writing and using external code along
with IDL.

Building IDL Applications Using External Code

188 Chapter 9: Building Cross-Platform Applications

IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL's Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
allow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.

IDL DataMiner Issues Building IDL Applications

Chapter 10

Multithreading in IDL

This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.

ThelDL ThreadPool 190 Routines that Usethe Thread Pool 199
Controlling the IDL Thread Pool 193

Building IDL Applications 189

190 Chapter 10: Multithreading in IDL

The IDL Thread Pool

On computer systems that have more than one central processing unit, multi-
threading can be used to increase the speed of numeric calculations by using multiple
system processors to simultaneously carry out different parts of the computation. In a
multithreaded environment, each thread handles a portion of the overall task; if
several threads can run in parallel, the computation can often be completed more
quickly than if the different portions of the task ran in series.

IDL’sthread pool —a pool of computation threads that are used as helpersto
accelerate numerical computations — allows for multithreading when multiple CPUs
are present. IDL automatically evaluates all computations performed by routines that
may benefit from multithreading to determine whether or not to use the thread pool in
the current computation. This decision is based on attributes such as the number of
data elements involved, the availability of multiple CPUs, and the availability of a
multithreaded implementation of the algorithm in use. You can ater the parameters
used by IDL to make this decision, either on aglobal basisfor the duration of asingle
IDL session, or for an individual computation.

Note
Multithreading does not offer the possibility of increased execution speed for al
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 199.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL encounters a computation
that can use the thread pool and which would benefit from parallel execution, it
divides the task into sub-parts for each thread, enables the thread pool to do the
computation, waits until the thread pool compl etes, and then continues. Other than
the improved performance, the end result is virtually indistinguishable when
compared to the same computation performed in the standard single-threaded
manner.

The IDL Thread Pool Building IDL Applications

Chapter 10: Multithreading in IDL 191

Possible Drawbacks to the Use of the
IDL Thread Pool

There areinstances when allowing IDL to use its default thread pool settings can lead
to undesired results. In some instances, a multithreaded implementation using the
thread pool may actually take longer to complete a given job than a single-threaded
implementation. If a computation uses the thread pool in an inappropriate situation,
there may be other undesirable effects. The following are some situationsin which
the default thread pool settings may provide less than optimal results.

Computation of a Relatively Small Number of Data Elements

Use of the IDL thread pool requires a small fixed overhead when compared to a non-
threaded version of the same computation. Normally, computational speed increases
when multiple CPUs work in parallel, and the speed-up is much larger than the loss
due to thread pool overhead. However, if the computation does not include alarge
enough number of data elements (each element being a data value of a particular data
type), the loss due to thread pool overhead can exceed the benefit and the overall
computation speed can be slower.

To prevent the use of the thread pool for computations that involve too few data
elements, IDL supports a minimum threshold value for thread pool computations.
The minimum threshold value is contained in the TPOOL_MIN_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Large Computation that Requires Virtual Memory Use

If acomputation istoo largeto fit into physical memory, the threads in the thread
pool may cause page faults that will activate the virtual memory system. If more than
one thread encounters this situation simultaneously, the threads will compete with
each other for access to memory and performance will fall below that of asingle-
threaded approach to the computation.

To prevent the use of the thread pool for computations that involve too many data
elements, IDL supports a maximum threshold value for thread pool computations.
The maximum threshold value is contained in the TPOOL _MAX_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Multiple Users Competing for CPU Resources

On alarge multi-user system, an IDL application that uses the thread pool may
consume all available CPUs, thus affecting other users of the system by reducing
overall performance.

Building IDL Applications The IDL Thread Pool

192 Chapter 10: Multithreading in IDL

To prevent the use of al system processors by routines that use the thread pool, IDL
allows you to specify explicitly the number of CPUs that should be used in
calculations that involve the thread pool. The number of processors to be used for
thread pool operationsis contained in the TPOOL_NTHREADS field of the |CPU
system variable. See the following sections for details on modifying this value.

Note
To change the default number of threads used by IDL, set the
IDL_CPU_TPOOL_NTHREADS preference. For more information, see *!CPU
Settings Preferences’ in Appendix E of the IDL Reference Guide manual.

Sensitivity to Numerical Precision

Algorithms that are sensitive to the order of operations may produce different results
when performed by the thread pool. Such results are due to the use of finite precision
floating point types, and are equally correct within the precision of the data type.

The IDL Thread Pool Building IDL Applications

Chapter 10: Multithreading in IDL 193

Controlling the IDL Thread Pool

IDL allows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

¢ Viewing the Current Thread Pool Settings

e Using the Default Thread Pool Settings

» Changing Globa Thread Pool Settings

» Changing Thread Pool Settings for a Specific Computation
» Disabling the Thread Pool

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 199.

Viewing the Current Thread Pool Settings

The current values of the parameters that control IDL’s use of the thread pool for
computations are always available in the read-only | CPU system variable. !|CPU is
initialized by IDL at startup with default values for the number of CPUs (threads) to
use, as well as the minimum and maximum number of data e ements. To view the
settings, use the following command:

HELP, /STRUCTURE, !CPU

The values of the fieldsin the |CPU system variable are explained in “!CPU” in the
IDL Reference Guide manual.

Using the Default Thread Pool Settings

If you have more than one processor on your system, if the routine you are using is
able to use the thread pool, and if the number of data elementsin your computation
fallsinto the allowed range (neither too few nor too many), then IDL will employ the
thread pool in that calculation.

If the above requirements are met, IDL will automatically use the thread pool for the
computation. You do not need to do anything special to enable IDL’s multithreading
capabilities.

Building IDL Applications Controlling the IDL Thread Pool

194 Chapter 10: Multithreading in IDL

Changing Global Thread Pool Settings

Unless they are overridden by thread pool keywords supplied at the time of
execution, the values contained in the | CPU system variable control IDL’s use of the
thread pool. !CPU isa“read-only” system variable, which means that you cannot
assign valuesto its structure fields directly, either at the command line or within a
program. However, you can set the default number of threads prior to starting IDL by
using the IDL_CPU_TPOOL_NTHREADS preference. See “!CPU Settings
Preferences’ in Appendix E of the IDL Reference Guide manual for details. You can
a so change the values of the ! CPU system variable for the duration of the current
IDL session by using the CPU procedure.

The CPU procedure accepts the following keywords:
TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword changes the value returned by |CPU.TPOOL_MAX_ELTS.
TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit fromiit.

This keyword changes the value returned by 'CPU.TPOOL_MIN_ELTS.
TPOOL_NTHREADS

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
ICPU.HW_NCPU threads, so that each thread will have the potential to runin
parallel with the others. Set this keyword equal to O (zero) to ensure that
ICPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

This keyword changes the value returned by 'CPU.TPOOL.NTHREADS.

Controlling the IDL Thread Pool Building IDL Applications

Chapter 10: Multithreading in IDL 195

Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “Possible Drawbacksto the Use of the IDL Thread Pool” on
page 191 for a discussion of the circumstances under which using fewer than the
maximum number of CPUs makes sense.

For more information on the CPU procedure, see “ CPU” in the IDL Reference Guide
manual.

Examples

The following examplesillustrate use of the CPU procedure to modify IDL’s global
thread pool settings.

Note
The following examples are designed for systems with more than one processor.
The examples will generate correct results on single-processor systems, but may
run more slowly than the same operations performed without the thread pool.

Example 1

As afirst example, imagine that we want to ensure that the thread pool is not used
unless there are at least 50,000 data €l ements. We set the minimum to 50,000 since
we know, for our system, that at |east 50,000 floating point data elements are required
before the use of the thread pool will exceed the overhead required to useit.

In addition, we want to ensure that the thread pool is not used if acalculation involves
more than 1,000,000 data elements. We set the maximum to 1,000,000 since we
know that 1,000,000 floating point data elements will exceed the maximum amount
of memory available for the computation, requiring the use of virtual memory.

The following IDL statements use the CPU procedure to modify the minimum and
maximum number of elements used in thread pool computations, create an array of
floating-point values, and perform a computation on the array:

Modi fy the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_M N_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FI NDGEN(361, 181)

Per f or m conput ati on
sineSquared = 1. - (COS(!DTOR*theta))”2

Building IDL Applications Controlling the IDL Thread Pool

196 Chapter 10: Multithreading in IDL

In this example, the thread pool will be used since we are performing a computation
on an array of 361 x 181 = 65,341 data elements, which falls between the minimum
and maximum thresholds. Note that we altered the global thread pool parametersin
such away that the computation was allowed. The values set by the CPU procedure
will remain in effect, either until they are changed again by another call to CPU or
until the end of the IDL session. An alternative approach that does not change the
global defaultsin shown in “Changing Thread Pool Settings for a Specific
Computation” on page 197.

Example 2
In this example, we will:
1. Savethe current thread pool settings from the ! CPU system variable.

2. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a floating point computation.

Perform several floating point computations.

Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

5. Perform several double precision computations.
6. Restore the thread pool settings to their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool.

Retrieve the current thread pool settings
t hreadpool = !CPU

Modi fy the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_M N_ELTS = 50000, $
TPOOL_NTHREADS = 2

Create 65,341 elenents of floating point data
theta = FI NDGEN(361, 181)

Perform conputations, using 2 threads
sineSquared = 1. - (COS(!DTOR*theta))”2
next conputation
next conputation
etc.

Modi fy thread pool settings for new data type
CPU, TPOOL_MAX ELTS = 50000, TPOOL_M N_ELTS = 10000

Controlling the IDL Thread Pool Building IDL Applications

Chapter 10: Multithreading in IDL 197

; Create 65,341 el enents of double precision data
theta = DI NDGEN(361, 181)

Per f or m conput ati on
sineSquared = 1. - (COS(!DTOR*theta))”2
next conputation
next conputation
etc.

; Return thread pool settings to their initial values

CPU, TPOOL_MAX_ELTS = threadpool . TPOOL_MAX_ELTS, $
TPOOL_M N_ELTS = threadpool . TPOOL_M N_ELTS, $
TPOCL_NTHREADS = t hr eadpool . HW NCPU

Again, in this example we atered the global thread pool parameters. In cases where
you plan to perform multiple computations that take advantage of the same thread
pool configuration, changing the global thread pool parametersis convenient. In
cases where only a single computation uses the specified thread pool configuration, it
iseasier to use the thread pool keywordsto the routine that performs the computation,
as described in the following section.

Changing Thread Pool Settings for a Specific
Computation

All routines that have been implemented to use the thread pool accept keywords that
alow you to override the thread pool settings stored in !CPU for a single invocation
of the routine. This allows you to modify the settings for a particular computation
without affecting the global default settings of your session. For alist of the routines
that have been implemented to use multithreading when possible, see “Routines that
Use the Thread Pool” on page 199. In the IDL Reference Guide, documentation for
routines that use the thread pool includes a section titled “ Thread Pool Keywords.”

The thread pool keywords are:
TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on the maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword overrides the default value, given by |CPU.TPOOL_MAX_ELTS.

Building IDL Applications Controlling the IDL Thread Pool

198 Chapter 10: Multithreading in IDL

TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword overrides the default value, given by |CPU.TPOOL_MIN_ELTS.
TPOOL_NOTHREAD

Set this keyword to explicitly prevent IDL from using the thread pool for the current
computation. If this keyword is set, IDL will use the non-threaded implementation of
the routine even if the current settings of the ! CPU system variable would allow use
of the threaded implementation.

Example

We can usethe TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to the
COS function to modify the example used in the previous section so that our changes
to the thread pool settings do not alter the global defaullt.

; Create 65,341 elenents of floating point data
theta = FI NDGEN(361, 181)

Perform conputati on and override session settings for maxi mum
;and m ni mum nunber of elenents
sineSquared = 1. - (COS(!DTOR*theta, TPOOL_MAX ELTS = 1000000, $
TPOOL_M N_ELTS = 50000)) "2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:
* Usethe CPU procedure to alter the global thread pool parameters.

e Usethe TPOOL_NOTHREAD keyword to aroutine to disable the thread pool
for a specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threads to use to one:

CPU, TPOCOL_NTHREADS = 1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(!DTOR*t heta, /TPOOL_NOTHREAD)) "2

Controlling the IDL Thread Pool Building IDL Applications

Chapter 10: Multithreading in IDL 199

Routines that Use the Thread Pool

Multithreading does not offer the possibility of increased execution speed for all IDL
routines. The operators and routines currently using the thread pool in IDL are listed
below, grouped by functional category.

Binary and Unary Operators:

- — +

++ NOT AND
/ * EQ
NE GE LE
GT LT >
< OR XOR
A MOD #
##

Note

If an operator uses the thread pool, any compound assignment operator based on
that operator (+=, * =, etc.) aso uses the thread pool.

Mathematical Routines:

« ABS ¢ ERRORF e MATRIX_MULTIPLY
* ACOS EXP * PRODUCT

* ALOG o EXPINT * ROUND

+ ALOGI0 * FINITE e SIN

e ASIN e FLOOR e SINH

« ATAN + GAMMA e SQRT

e CEIL ¢ GAUSSINT « TAN

Building IDL Applications Routines that Use the Thread Pool

200 Chapter 10: Multithreading in IDL

* CONJ * IMAGINARY TANH
* COS e ISHFT * VOIGT
* COSH * LNGAMMA

Image Processing Routines:

. BYTSCL « INTERPOLATE
- CONVOL - POLY_2D
.« FFT . TVSCL

Array Creation Routines:

* BINDGEN * LINDGEN

* BYTARR * L64INDGEN

* CINDGEN « MAKE_ARRAY
 DCINDGEN * REPLICATE

* DCOMPLEXARR * UINDGEN

* DINDGEN * ULINDGEN

* FINDGEN * UL64INDGEN
* INDGEN

Non-string Data Type Conversion Routines:

* BYTE * LONG

* COMPLEX * LONG64
» DCOMPLEX e UINT

» DOUBLE « ULONG

Routines that Use the Thread Pool Building IDL Applications

Chapter 10: Multithreading in IDL 201

* FIX *+ ULONGG64
* FLOAT

Array Manipulation Routines:

* MAX * TOTAL
* MIN « WHERE
* REPLICATE_INPLACE

Programming and IDL Control Routines:

* BYTEORDER * LOGICAL_OR
* LOGICAL_AND * LOGICAL_TRUE

Building IDL Applications Routines that Use the Thread Pool

202 Chapter 10: Multithreading in IDL

Routines that Use the Thread Pool Building IDL Applications

Chapter 11

Writing Efficient IDL

Programs

The following topics are covered in this chapter:

Overview of Program Efficiency 204
Use Vector and Array Operations 206
Use System Functions and Procedures . .. 209

Building IDL Applications

Virtua Memory

The IDL Code Profiler

203

204 Chapter 11: Writing Efficient IDL Programs

Overview of Program Efficiency

This chapter presentsideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improvethe efficiency of IDL programs. In IDL, complicated computations
can be specified at ahigh level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programs in IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

* Usearray operations rather than loops wherever possible. Try to avoid loops
with high repetition counts. See “Use Vector and Array Operations’ on
page 206.

e UselDL system functions and procedures wherever possible. See“Use System
Functions and Procedures’ on page 209.

* Access array datain machine address order. See “Access Large Arrays by
Memory Order” on page 211.

Attention also must be given to algorithm complexity and efficiency, asthisis
usually the greatest determinant of resources used.

IDL Implementation

IDL programs are compiled into alow-level abstract machine code whichis
interpretively executed. The dynamic nature of variablesin IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of the timerequired for array operationsis similar to that of vector
computers and array processors. Thereisan initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per element is shorter
in longer arrays because the cost of thisinitial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array

Overview of Program Efficiency Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 205

operations. When data are treated as scalars, IDL efficiency degrades by afactor of
30 or more.

Additional Programming Efficiency Resources
Also refer to the following topics, located in other sections of this manual, for
additional waysto improve the efficiency of your IDL program:

e “Efficiency and Expression Evaluation Order” on page 255 — describes how
to organize operations to increase execution speed

» “Defining and Using Constants” on page 269 — describes the importance of
using constants of the correct type

* “Avoid Invariant Expressions’ on page 131 — describes the inefficiency of
invariant expression within loop statements

Building IDL Applications Overview of Program Efficiency

206 Chapter 11: Writing Efficient IDL Programs

Use Vector and Array Operations

Programs with vector and array expressions run faster than programs with scalars,
loops, and I F statements. Whenever possible, vector and array data should be
processed with IDL array operations rather than scalar operations in aloop.

Example—Inverting an Image

Consider the problem of inverting a512 x 512 image. This problem arises because
some image display devices consider the origin to be the lower-left corner of the
screen, while others recognize it as the upper-left corner.

Note
The following example is for demonstration only. The IDL system variable

IORDER should be used to control the origin of image devices. The ORDER
keyword to the TV procedure serves the same purpose.

A programmer without experiencein using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR 1 =0, 511 DO FOR J = 0, 255 DO BEG N

; Tenporarily save pixel inmage.
tenp = image[l, J]

; Exchange pi xel in sane colum from corresponding row at bottom
image[l, J] = image[l, 511 - J]

imge[l, 511-J] = tenp

ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process
arrays asasingle entity:

FOR J = 0, 255 DO BEG N

; Tenporarily save current row.
temp = image[*, J]

; Exchange row with correspondi ng row at bottom
image[*, J] = image[*, 511-J]

image[*, 511-J] = tenp

ENDFOR

Use Vector and Array Operations Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 207

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
i mge2 = BYTARR(512, 512)

; Copy the rows fromthe bottom up.
FORJ = 0, 511 DOimage2[*, J] = image[*, 511-J]

Even more efficient isthe single line:

i mage2 = image[*, 511 - I NDGEN(512)]
that reverses the array using subscript ranges and array-val ued subscripts.
Finally, using the built-in ROTATE function is quickest of al:

i mmge = ROTATE(i nmage, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.

See Chapter 15, “Arrays’ for complete details on working with arraysin IDL.
Example—Summing Elements

Consider the problem of adding all positive elements of array B to array A.
Using aloop will be slow:
FORI =0, (N1) DOIF B[I] GT 0 THEN A[1] = A[I] + B[I]
Masking out negative elements using array operations will be faster:
A=A+ (BGTO0) *B
Adding only the positive elements of B is faster till:
A=A+ (B>0)

When an |F statement appears in the middle of aloop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and WHERE

In this example, each element of C is set to the square-root of A if A[l] is positive;
otherwise, C[1] is set to minus the square-root of the absolute value of A[l].

Using aloop statement is slow:

FOR 1=0,(N-1) DOIF A[lI] LE O THEN $
C1]=-SQRT(-A[1]) ELSE C[1]=SQRT(A[1])

Building IDL Applications Use Vector and Array Operations

208 Chapter 11: Writing Efficient IDL Programs

Using an array expression is much faster:
C=((AGro0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) hasthevalue 1if A[l] is positive and has the value O if
All]lisnot. (A GT 0)* 2- lisequal to+1if A[l] ispositive or -1 if A[l] is negative,
accomplishing the desired result without resorting to loops or |F statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

; Get subscripts of negative el ements.

negs = WHERE(A LT 0)

; Take root of absol ute val ue.

C = SQRT(ABS(A))

; Negate elenents in C corresponding to negative elenents in A
I negs] = - negs]

Use Vector and Array Operations Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 209

Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation isto find the sum of the elementsin an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each el ement.
sum=0. & FOR| =J, KDO sum= sum+ array[l]

;Efficient, sinple way.
sum = TOTAL(array[J: K])

Similar savings result when finding the minimum and maximum elementsin an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.

Building IDL Applications Use System Functions and Procedures

210 Chapter 11: Writing Efficient IDL Programs

Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systemsto avoid penalty. Virtua memory allows the computer to
execute programs that require more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this processis transparent to the user, it greatly affects the efficiency of the
program.

Note
In relatively modern computers, plentiful physical memory (hundreds of megabytes
for asingle-use machine) is not uncommon. Remember, however, that IDL is
generally not the only consumer of memory on a system. Other applications, the
operating system itself, and other users on multi-user systems may consume large
amounts of physical and virtual memory. If your IDL program appears to be
inefficient or slow, inspect the system memory situation to determine whether
virtual memory is being used, and if so, whether there is enough of it.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only asmall portion of that data actually residesin
physical memory at any given moment; the remainder is stored on disk. The portion
of dataand program code in real physical memory is commonly called the working
Set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then alows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A pagefaultis
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory access time,
page faults become an important consideration.

When using IDL with large arrays, it isimportant to have access to sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parameters that
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See * Virtual Memory System Parameters’ on

page 213. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.

Virtual Memory Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 211

Access Large Arrays by Memory Order

When an array islarger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to access it in memory
address order.

Consider the process of transposing alarge array. Assume the array isa512 x 512
byte image with a 100 kilobyte working set. The array requires 512 x 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. Thefirst row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses ailmost equal to the size of the entireimage. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written amost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 x 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:
FOR X = 0, 511 DOFOR Y = 0, 511 DO ARR[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FORY =0, 511 DO FOR X = 0, 511 DOARR[X, Y] = ...
This approach cuts computing time by a factor of at least 50.

Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especialy if you have a small system), you may encounter the error
message

% Unabl e to all ocate nenory.

Building IDL Applications Virtual Memory

212 Chapter 11: Writing Efficient IDL Programs

This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asksthe
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

The first time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.

If you need to exit IDL, you first should use the SAVE procedure to save your
variablesin an IDL savefile. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP/MEMORY command tells you how much virtual memory you have
allocated. For example, a512 x 512 complex floating array requires 8 x 5122 bytes or
about 2 megabytes of memory because each complex element requires 8 bytes.
Deleting avariable containing a512 x 512 complex array will increase the amount of
memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A=(B+0Q * (E+F

IDL first evaluatesthe expression B + C and creates atemporary array if either B or C
are arrays. In the same manner, another temporary array is created if either E or F are
arrays. Finally, the result is computed, the previous contents of A are deleted, and the
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays’ worth of data
isrequired in addition to normal variable storage.

Itisagood ideato delete the allocation of a variable that contains an image and that
appears on the | eft side of an assignment statement, as shown in the following
program.

;Loop to process an inage.
FOR1 = ... DO BEGN

; Processing steps.

Virtual Memory Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 213

:Delete old allocation for A
A=0

; Comput e i mage expression and store.

A = | mage_Expression
; End of | oop.
ENDFCR

The purpose of the statement A=0 isto free the old memory alocation for the
variable A before computing the image expression in the next statement. Because the
old value of A isgoing to bereplaced in the next statement, it makes senseto free A’s
alocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arraysis
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as atemporary variable and makes the argument undefined. In this way, you avoid
making anew copy of temporary results. For example, assume that A isalarge array.
To add 1 to each element in A, you could enter:

A = A+l

However, this statement creates a new array for the result of the addition and assigns
theresult to A beforefreeing the old allocation of A. Hence, the total storage required
for the operation istwice the size of A. The statement:

A = TEMPORARY(A) + 1
requires no additional space.

Virtual Memory System Parameters

Thefirst step is to determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 x 512 images, each
complex image requires 2 megabytes. Suppose that during atypical session you need
to have twenty images stored in variables and regquire enough memory for ten images
to hold temporary results, resulting in atotal of thirty images or 60 megabytes.
Rounding up to 80 megabytes gives a reasonable value for the amount of physical
and virtual memory that should be available to IDL.

Building IDL Applications Virtual Memory

214

Chapter 11: Writing Efficient IDL Programs

UNIX Virtual Memory

For UNIX, The size of the swapping area(s) determines how much virtual memory
your processis alowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is atime-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatting the
disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to aregular file. Thisis a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Windows Virtual Memory

For Microsoft Windows, creation and management of virtual memory files (called
“paging files") are handled more or less automatically. You can, however, adjust the
initial and maximum size of the paging file for a given disk. Consult your system
documentation for details and instructions on how to perform these operations.

Virtual Memory Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 215

The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within afile.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDLDE or by entering PROFILER at the Command Line. For more information about
the PROFILER procedure, see “PROFILER” in the IDL Reference Guide manual.

Note
Calling the Profiler from the Command Line does not start the Profiler dial og.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

— Uzer Module — Syztem Module:

[wIDIST
[wIFILEPATH
[wIPATH_SEP
[CIPROF_TEST

[Al User Modules

Profie 4l | Clear Al |

Figure 11-1: Profile Dialog

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for
profiling. To select amodule, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

Building IDL Applications The IDL Code Profiler

216 Chapter 11: Writing Efficient IDL Programs

All User Modules

Select this checkbox to select al the user modules for profiling.
System Modules

Thisfield includes al IDL system procedures and functions.
All System Modules
Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All" to enable profiling for all the avail able modules—System and
User. Click “Clear All” to disable profiling for al the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. The
“Profile Report” dialog is dismissed, asit no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismissthe Profile dialog. Click “Help” to display Help
on thisdiaog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

The fields in the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted al phabeticaly.

Note
Whether you enter a program at the command line or run a program contained in a
file, the PROFILER procedure reports the status of all the modules compiled and
executed either since profiling wasfirst set or since the PROFILER was reset.

Modules

The name of the library, user, or system procedure or function.

The IDL Code Profiler Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 217

Typ

The type of module. System procedures or functions are associated withan“S’. User
or library functions or procedures are associated with a“U”.

Count
The number of times the procedure or function has been called.
Only(sec)

Thetimerequired, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg
Average of the Only(sec) field above.
+Children(sec)

Thetime required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg
Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDLDE. Click “Save’ to save the report as atext file. The
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display Help
on thisdiaog.

Using the IDL Code Profiler

Open anew editor file by selecting “New” from the File menu.
Enter the following lines in the editor:

PRO prof _test
OPENR, 1, FILEPATH(' nyny.dat’, SUBDIR=['exanples’, 'data'])
a=ASSOC(1, BYTARR(768, 512))
b=a[0]
CLCSE, 1
TV, b
END

Building IDL Applications The IDL Code Profiler

218 Chapter 11: Writing Efficient IDL Programs

Save thefile as prof_test.pro by selecting “Save” from the File menu. The Save As
dialog appears.

To usethe IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compile al
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Avg
AS50C 5 1 0.000116 0.000116 0.000116 0.000116
EvYTARR 5 1 0.001603 0.001603 0.001603 0.001603
CLOSE 5 1 0.000093 0.000093 0.000093 0.000093
KETWORD_SET S g 0.000018 0.000003 0.000018 0.000003
M_ELEMENTS 5 3 0.000011 0.000004 0.000011 0.000004
OM_ERROR 5 1 0.000028 0.000028 0.000028 0.000028
OPEMR 5 1 0.000293 0.000293 0.000293 0.000293
STRLEN 5 1 0.000006 0.000006 0.000006 0.000006
STRMID 5 1 0.000011 0.000011 0.000011 0.000011
™ 5 1 0.087759 0.087759 0.087759 0.087759
WwHERE 5 1 0.000017 0.000017 0.000017 0.000017
Print | Save... | ok I

Figure 11-2: Profile Report Dialog

For moreinformation about the capabilities of either dialog, see“ The Profile Dialog”
on page 215 and “ The Profile Report Dialog” on page 216.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for al system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report
and run prof_test again.

Enter the following lines at the Command Line:

;Create a dataset using the library function DI ST. Note that DI ST
;is imredi ately conpil ed.

The IDL Code Profiler Building IDL Applications

Chapter 11: Writing Efficient IDL Programs 219

A= DI ST(500)

; Display the image.

TV, A
Return to the Profile dialog. You will note that the DIST function has been appended
to the User Modulefield, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog’s results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Av:l
FINDGEM 5 1 0.000034 0.000034 0.000034 0.0000
FLTARR 5 1 0.000040 0.000040 0.000040 0.0000
KETWORD_SET S g 0.000040 0.000007 0.000040 0.0000
M_ELEMENTS 5 4 0.000015 0.000004 0.000015 0.0000
OM_ERROR 5 2 0.000042 0.000021 0.000042 0.0000
OPEMR 5 1 0.000168 0.000168 0.000168 0.0001
SQRT S 281 0.004357 0.000018 0.004397 0.0000
STRLEN 5 1 0.000009 0.000009 0.000009 0.0000
STRMID 5 1 0.000054 0.000054 0.000054 0.0000
™ 5 2 0.235904 0117952 0.235904 01179
WwHERE 5 1 0.000038 0.000038 0.000038 0.0000 7+ |
« | 2
Print | Save... | 55 |

Figure 11-3: Refreshing the Profile Report

If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Line, you will notice that only the
count for TV increases in the profiler report. You must re-enter the statement calling
DIST at the Command Line; the already-compiled library function is executed again,
making it available for profiling.

Building IDL Applications The IDL Code Profiler

220 Chapter 11: Writing Efficient IDL Programs

The IDL Code Profiler Building IDL Applications

Part II: Components
of the IDL Language

Chapter 12

Expressions and

Operators

The following topics are covered in this chapter:

Overview of Expressions and Operators . . 224

Mathematical Operators 225
Minimum and Maximum Operators 232
Matrix Operatorsc.cocvon.. 234
Logical Operators 236

Building IDL Applications

BitwiseOperators
Relational Operators. 243
Assignment and Compound Assignment . 246

Other Operators 249
Operator Precedence 252
223

224 Chapter 12: Expressions and Operators

Overview of Expressions and Operators

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the values of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has alarge number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (& &, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operatorsin themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PI) evaluates the variable A multiplied by the value of =, then
appliesthe trigonometric sine function. This result can be used as an operand to form
amore complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI) evaluates 3",

Overview of Expressions and Operators Building IDL Applications

Chapter 12: Expressions and Operators 225

Mathematical Operators

IDL mathematical operators are described in the following table.

Note
Also see“Assignment and Compound Assignment” on page 246 for information on
=and op= and " Other Operators’ on page 249 for information onthe[], (), and ?:

operators.
Operator Description Example
+ Addition Store the sum of 3and 6 in B:
B=3+6
String Concatenation | Store the string value of "John Doe" in B:
B ="'John' +"' ' + ' Doe
++ Increment Adds one to the operand.:
A=3
A++
PRINT, A
IDL Prints:
4
Note - The increment operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 227.
- Subtraction Store the value of 5 subtracted from 9in C:
C=9-5
Negation Changethe sign of C:
c=-C

Table 12-1: Mathematical Operators

Building IDL Applications Mathematical Operators

226

Chapter 12: Expressions and Operators

Operator

Description

Example

Decrement

Subtracts one from the operand:
A=3

A- -

PRINT, A

IDL Prints:;

2

Note - The decrement operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 227.

Multiplication

Store the product of 2 and 5in variable C:
C=2*5

Pointer dereference

If pt r isavalid pointer (created viathe
PTR_NEW function), then * pt r isthe value
held by the heap variable that pt r pointsto.
For more information on IDL pointers, see
Chapter 17, “Pointers’ in the Building IDL
Applications manual.

Division

Store result of 10.0 divided by 3.2 in variable
D:
D= 10.0/3.2

Mathematical Operators

Table 12-1: Mathematical Operators (Continued)

Building IDL Applications

Chapter 12: Expressions and Operators

227

Operator

Description

Example

N

Exponentiation

Store result of 2 raised to the 3rd power in
variable B:

B = 23
Note - How exponentiation is evaluated
depends upon whether the operands are rea
or complex. See “Using Exponentiation” on
page 230 for details.

MOD

Modulo

| MOD Jisequal to the remainder when |l is
divided by J. The magnitude of theresult is
lessthan that of J, and its sign agreeswith that
of I. Print the value of 9 modulo 5:

PRINT, 9 MOD 5

IDL Prints:
4

Compute angle modulo 2p.
A =(ANGLE + B) MID (2 * IPI)

Table 12-1: Mathematical Operators (Continued)

Using Increment/Decrement

The increment (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

Building IDL Applications

Mathematical Operators

228

Chapter 12: Expressions and Operators

Note
The increment and decrement operators can only be applied to variable expressions
to which a value can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating thisruleisto say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standal one statements
or within alarger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Increment/Decrement Statements

Increment and decrement operators can be used, along with a variable, as standalone
statements:

e A++Or ++A
e A-oOr--A

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable isincremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of thevariable A is 27, while B is 28:

27
B++

B
A

In contrast, after executing the following statements, both A and B have avalue of
26:

27
--B

Mathematical Operators Building IDL Applications

Chapter 12: Expressions and Operators 229

Efficiency of Prefix vs. Postfix Operations

When used as part of an expression, the prefix form of the increment and decrement
operators has an efficiency advantage over the postfix form. The reason for thisis
that the postfix form requires IDL to make a copy of the data, while the prefix form
does not. The operations carried out by IDL to execute a prefix increment or
decrement operation are:

1. Fetchthetarget variable.
2. Increment or decrement the target variable in place (no copies are made).
3. Usethe variable when evaluating the surrounding expression.

Thisisvery efficient. In contrast, the postfix form requires IDL to make acopy of the
variablein order to use its old value in the surrounding expression following the
increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are:

1. Fetch thetarget variable.

2. Make atemporary copy of the variable.

3. Increment or decrement the original variable.

4. Usethetemporary copy when eval uating the surrounding expression.

If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better
choice. The larger the data involved, the more important this becomes. It is not a
concern for small variables.

Order Of Side Effects

The way that the increment and decrement operators change the value of avariablein
addition to using its value in a surrounding expression is called a side effect. In most
cases, the side effects are desired, and cause no problems. Side effects can cause
problems, however, if the increment or decrement operator is applied to avariable
that appears more than once within a single statement or expression. Consider the
following statement (taken from The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie):

Ali] =i++

Which value of i isused to index A?Isit the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement

Building IDL Applications Mathematical Operators

230

Chapter 12: Expressions and Operators

are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

23
B++ + B

B

A
the value of A could be either 47 or 46, depending on which part of the expressionis
evaluated first.

Note that this situation falls outside the rules of operator precedence — it isthe order
in which the variables themselves are eval utated that affects the result. Let’s examine
the situation closely:

e Herethe“old” value of B (23) is always used for the first occurrence of B in
the statement.

+ |f the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

« If the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. As aresult, you should avoid writing code that
depends on a particular ordering of the side effects.

Using Exponentiation

The caret () isthe exponentiation operator. A*B is equal to A raised to the B power.
For real numbers, A*B is evaluated as follows:
« If Alisareal number and B is of integer type, repeated multiplication is
applied.
« If both A and B arereal (non-integer), the formula AB = eB™ is evaluated.
« AVisdefined as 1.

For complex numbers, A*B is evalutated as follows. The complex number A can be
represented as A = a + ib, where aisthereal part, and ib isthe imaginary part. In
polar form, we can represent the complex number as A = ré® =r cosd +ir sino,
wherer cos istherea part, andir sinb isthe imaginary part:

« If Aiscomplex and B isreal, the formulaAB = (ré®)B = rB (cosB0 + isinB) is
evaluated.

Mathematical Operators Building IDL Applications

Chapter 12: Expressions and Operators 231

« If Aisrea and B is complex, the formula AB = €™ s evaluated.

« If both A and B are complex, the formula AB = ¢®™ is evaluated, and the
natural logarithm is computed to be In(A) = In(re'e) =In(r) +i6.

Building IDL Applications Mathematical Operators

232

Chapter 12: Expressions and Operators

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below.

Note
Negated values must be enclosed in parenthesesin order for IDL to interpret them
correctly.
Operator Description Example
< Minimum operator. Set A equal to 3:
Thevalueof “A<B” iIS | o =5 < 3
egual to thesmaller of A
or B. Set A equal to -6. Use parenthesesto avoid
Note - Seealso “Using | @syntax error.
Minimum or Maximum | A =5 < (-6)
with Complex o
Numbers’ and “Using Set all pointsin array ARR that are larger
Minimum or Maximum | than 100 to 100:
with NaN Values’ ARR = ARR < 100
bel ow.
Set X to the smallest of the three operands:
X = X0 < X1 < X2
> Maximum operator. Use '>' to avoid taking the log of zero or

“A >B” isequal to the
larger of A or B.

Note - Seeaso “Using
Minimum or Maximum
with Complex
Numbers’ and “Using
Minimum or Maximum
with NaN Values”
below.

negative numbers:
C = ALOG D > 1E - 6)

Plot positive points only. Negative points
are plotted as zero:
PLOT, ARR > 0

Table 12-2: Minimum and Maximum Operators

Minimum and Maximum Operators

Building IDL Applications

Chapter 12: Expressions and Operators 233

Using Minimum or Maximum with Complex Numbers

For complex numbers, the absolute value is used to determine which value is smaller
or larger. If both values have the same magnitude then the first value is returned.

Minimum Operator Examples

; Set A equal to 1+2i, since ABS(1+2i) is |less than ABS(2-4i):
A = COWPLEX(1,2) < COVPLEX(2, - 4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i):

A = COWPLEX(1,-2) < COWPLEX(-2,1)

Maximum Operator Examples

; Set A equal to 2-4i, since ABS(2-4i) is greater than ABS(1+2i)
A = COWLEX(1, 2) > COWLEX(2, -4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COWLEX(1, -2) > COWLEX(-2,1)

Using Minimum or Maximum with NaN Values

Typicaly in IDL, the result of any operation involving the special value NaN is
simply NaN. For efficiency, IDL does not check the values of A and B for NaN
values before performing the minimum or maximum operation. If A or B contains a
NaN value, the result is undefined and can be either NaN or the other non-NaN value,
depending on the specific hardware and operating system. If you suspect that one of
your operands contains NaN values, you might want to use the FINITE function to
ensure that you return NaN values in the result. For example, if A and B are scalars:

A
B

I VALUES. F_NAN
5

; Result is undefined and can either be 5 or NaN:
PRINT, A>B

Result nust be NaN if either operand is NaN
PRINT, (FINNTE(A) & FINITE(B)) ? (A > B) : !'VALUES F_NAN

This second method al so avoids any floating-point math errors. If A and B are arrays,
the following method can be used:

C = REPLI CATE(!VALUES. F_NAN, N_ELEMENTS(A))
good = WHERE(FINI TE(A) and FIN TE(B), ngood)
IF (ngood GI 0) THEN ([good] = A[good] > B[good]

Building IDL Applications Minimum and Maximum Operators

234

Matrix Operators

Chapter 12: Expressions and Operators

IDL hastwo operators used to multiply arrays and matrices. For an example
illustrating the difference between the two, see“Multiplying Arrays’ in Chapter 15 of
the Building IDL Applications manual.

Operator

Description

Example

#

Computes array elements
by multiplying the
columns of the first array
by the rows of the second
array. The second array
must have the same
number of columns asthe
first array hasrows. The
resulting array has the
same number of columns
asthefirst array and the
same number of rows as
the second array.

Multiply a 3-column by 2-row array:

arrayl = [[1, 2, 1], $
[2, -1, 2]]

Create a 2-column by 3-row array:

array2 = [[1, 3], [0, 1],$%
[1, 1]]
PRI NT, arrayl#array?2

IDL prints:

7 -1 7
2 -1 2
3 1 3

Computes array elements
by multiplying the rows
of thefirst array by the
columns of the second
array. The second array
must have the same
number of rows as the
first array has columns,
The resulting array has
the same number of rows
asthefirst array and the
same number of columns
asthe second array.

Create a 3-column by 2-row array:
arrayl = [[1, 2, 1], [2, -1, 2]]

Create a 2-column by 3-row array:

array2 = [[1, 3], [0, 1], [1,
PRI NT, arrayl##array2

111

IDL prints:
2 6
4 7

Matrix Operators

Table 12-3: Matrix Operators

Building IDL Applications

Chapter 12: Expressions and Operators 235

Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to use the MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.

Building IDL Applications Matrix Operators

236

Chapter 12: Expressions and Operators

Logical Operators

There are three logical operatorsin IDL: &&, ||, and ~. When dealing with logical
operators, non-zero numerical values, non-null strings, and non-null heap variables
(pointers and object references) are considered true, everything elseisfase.

Note

Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1's complement),
and for ! to be used for logical negation. Thisisnot thecasein IDL: ! isused to
reference system variables, the NOT operator performs bitwise negation, and ~
performs logical negation.

Operator

Description

Example

&&

Logical AND

Returns 1 whenever both of its
operands are true; otherwise,
returns 0. Non-zero numerical
values, non-null strings, and
non-null heap variables (pointers
and object references) are
considered true, everything else
isfalse.

Operands must be scalars or
single-element arrays. The & &
operator short-circuits; the
second operand will not be
evaluated if thefirst isfalse. See
“Short-circuiting” on page 237
for details.

PRINT, 5 && 7
IDL Prints: 1

PRINT, 5 && 2
IDL Prints: 1

PRINT, 4 & O
IDL Prints: 0

PRINT, "" && "sun"
IDL Prints: 0

Logical Operators

Table 12-4: Logical Operators

Building IDL Applications

Chapter 12: Expressions and Operators 237

Operator Description Example

I Logical OR IF ((5 GT 3) || (4GT5) $

.) THEN PRI NT, ' True'
Returns 1 whenever either of its

operands are true; otherwise, IDL Prints:
returns 0. Uses the same test for

“truth” asthe & & operator. True

Operands must be scalars or
single-element arrays. The ||
operator short-circuits; the
second operand will not be
evaluated if thefirst istrue. See
“Short-circuiting” on page 237
for details.

~ Logical negation PRINT, ~ [1, 2, 0]

Returns 1 wh_en itsoperand is IDL Prints:
false; otherwise, returns 0.

Uses the same test for “truth” as
the & & operator.

0 0 1

Table 12-4: Logical Operators (Continued)
Short-circuiting

The&&and | | logical operators are short-circuiting operators. This means that IDL
does not evaluate the second operand unlessit is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, sinceit allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Opl && Op2

IDL does not evaluate Op2 if Op1l isfase, because it aready knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Opl || Op2

IDL does not evaluate Op2 if Op1 istrue, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

Building IDL Applications Logical Operators

238 Chapter 12: Expressions and Operators

Additional Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
asfollows:

;True if Ais between 25 and 50. If Ais an array, then the result
;is an array of zeros and ones.
(A LE 50) && (A GE 25)

;True if Ais less than 25 or greater than 50. This is the inverse

;of the first.
(A GI 50) || (A LT 25)

Logical Operators Building IDL Applications

Chapter 12: Expressions and Operators 239

Bitwise Operators

There are four bitwise operatorsin IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands

independently.
Operator Description Example
AND Bitwise AND The statement
For integer, longword, andbyte | 5 AND 6 = 4
operands, a bitwise AND isrepresented in binary asfollows:
operation is performed. If the 0101 AND 0110 = 0100

operands are scalars, it returns a
scalar value. If either operandis | PRINT, (5 GI' 2) AND (4 GT 2)

an array, it returns an array IDL Prints: 1

containing one value for each PRINT, (5 GT 2) AND (4 GT 5)
element of the shortest array IDL Prints: 0

operand. PRINT, 5 AND 7

For operations on other types, IDL Prints: 5
the result is equal to the second PRINT, 5 AND 2
operandif thefirst operandisnot | IDL Prints: 0

equal to zero or the null string; PRINT, 4 AND 2
otherwise, theresult is zero or IDL Prints: 0
the null string.

Note - The bitwise AND
operator is not valid for heap
variable operands

Table 12-5: Logical Operators

Building IDL Applications Bitwise Operators

240 Chapter 12: Expressions and Operators
Operator Description Example
NOT Bitwise NOT The statement
Returnsthe bitwiseinverseof its | NOT 4 = -5

scalar or array operand (returns
scalar if operand isascalar, or
returns an array containing one
value for each element of the
operand array).

For integer, longword, and byte
operands, NOT returns the
complement of each bit of the
operand. For floating-point
operands, the result is 1.0 if the
operand is zero; otherwise, the
result is zero.

Warning - Use caution when
using the return value from the
bitwise NOT operator as an
operand for the logical operators
&& and| | . See“Using the NOT
Operator” on page 242 for
additional discussion.

Note - Not valid for string or
complex operands.

isrepresented in binary asfollows:
NOT 0100 = 1011

PRI NT, NOT 1
IDL Prints:

-2

Note - Modern computers use the
“2s complement” representation
for negative signed integers. This
means that to arrive at the decimal
representation of anegative binary
number (a string of binary digits
with a one as the most significant
bit), you must take the
complement of each bit, add one,
convert to decimal, and prepend a
negative sign. For example, NOT
0 equals-1, NOT 1 equals-2, etc.

IE (NOT (5 GT 6)) THEN $
PRINT, ' True'

IDL Prints;
True

Bitwise Operators

Table 12-5: Logical Operators (Continued)

Building IDL Applications

Chapter 12: Expressions and Operators

241

Operator Description Example
OR Bitwise OR For integer operands, OR
Performsthe logical “inclusive | Performsabitwiseinclusive “or”
or” operation on two scalar or operation and returns the result.
array operands (returning a The statement:
scalar value for scalar operands, | 3 OR5 =7
or returning an array containing | isrepresentedinbinary asfollows:
onevaluefor each element of the | 0011 OR 0101 = 0111
shortest array operand.
, IF ((5 GT 3) OR$
For integer or byte operands, a (4 GT 5)) THEN $
bitwiseinclusive OR is PRI NT, ' True'
performed. For floating- point IDL Prints:
operands, returns the first Tr ue
operand if it is non- zero, or the
2nd operand otherwise.
XOR Bitwise exclusive XOR For integer operands, XOR setsa

XORisonly valid for byte,
integer, and longword operands.

Performsthe logical “exclusive
or” operation on two scalar or
array operands (returning a
scalar value for scalar operands,
or returning an array containing
one valuefor each element of the
shortest array operand.

A bitintheresultissetto 1if the
corresponding bitsin the
operands are different; if they
areequal, it is set to zero.

bitintheresult to 1 if the
corresponding bitsin the operands
are different or to O if they are
equal. The statement:

3 XR5 =6

isrepresented in binary as follows:

0011 XOR 0101 = 0110

IF ((5 GT 3) XOR (4 GT 5))
THEN $

PRINT, 'Different' $
ELSE PRI NT, ' Sane'
IDL Prints:;
Different

Building IDL Applications

Table 12-5: Logical Operators (Continued)

Bitwise Operators

242 Chapter 12: Expressions and Operators

Using the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
aways use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

I F ((NOT ECF(lun)) && device_ready) THEN stat ement

which wants to execute statement if the file specified by the variable | un has data
remaining, and the variable devi ce_r eady is non-zero. When EOF returns the
value 1, the expression NOT EOF(| un) yields -2, dueto the bitwise nature of the
NOT operator. The && operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

IF ((~ EOF(lun)) && device_ready) THEN st at enent
Additional Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

Di spl ays the “negative” of an image contained in the array | Ma
TV, NOT | MG

; Adds the hexadeci nal constant FF (255 in decimal) to the array
; ARR This masks the |l ower 8-bits and zeros the upper bits.
ARR AND ' FF' X

Bitwise Operators Building IDL Applications

Chapter 12: Expressions and Operators 243

Relational Operators

The IDL relational operators apply arelation to two operands and return alogical
value of true or false. The resulting logical value can be used as the predicatein IF,
WHILE or REPEAT statements. You can also combine Boolean operators with other
logical values to make more complex expressions.

Note
It isimportant to see “ Definition of True and False” in Chapter 7 of the Building
IDL Applications manual for details on when avalueis considered true or false.

Therulesfor evaluating relational expressions with operands of mixed modes are the
same as for arithmetic expressions. Each operand is promoted to the data type of the
operand with the greatest precedence or potential precision. (See “Data Type and
Structure of Expressions’ on page 262 for details.) For example, in the relational
expression “2 EQ 2.0”, theinteger 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression istrue. The relational operators
return avalue of 1 for true and O for false. The type of the result is aways byte.

Note
When using EQ and NE with complex humbers, both the real and imaginary parts
must meet the condition of the relational operator. For example, the following
returns O (false):

PRI NT, COMPLEX(1,2) EQ COWPLEX(1, -2)

When using GE, GT, LE, and LT with complex numbers, the absolute value (or
modulus) of the complex number is used for the comparison.

For more information on using relational operators, also see “ Using Relational
Operators with Arrays’ and “Relational Operators with Infinity and NaN Values’ on

page 245.
Operator Description Example
EQ Equal to Returnstrueif its operands are equal;

otherwise, it returnsfalse. The
following returns True:

IF (2 EQ 2.0) THEN PRI NT, ' True'

Table 12-6: Relational Operators

Building IDL Applications Relational Operators

244

Chapter 12: Expressions and Operators

Operator

Description

Example

NE

Not equal to

Returns true whenever the operands are
different. The following returns 1
(true):

PRINT, "sun" NE "fun"

GE

Greater than or equal to

Returnstrueif the operand on theleftis
greater than or equal to the one on the
right. Relational operator are useful for
creating array masks:

A = ARRAY * (ARRAY GE 100)

See “Using Relational Operators with
Arrays’ on page 245.

GT

Greater than

Returnstrueif the operand on theleft is
greater than the operand on the right.
Determineif A is greater than B:

IF (A GT B) THEN PRI NT, 'True'

Note - Strings are compared using the
ASCII collating sequence: " " isless
than"0" islessthan "9" isless than "A"
islessthan "Z" islessthan "a" whichis
lessthan "z".

LE

Lessthan or equal to

Returnstrueif the operand on theleft is
less than or equal to the operand on the
right. Determineif A islessthan or
equal to B:

IF (A LE B) THEN PRI NT, ' True'

LT

Less than

Returnstrueif the operand on theleft is
less than the operand on the right.
Determineif A islessthan B:

IF (A LT B) THEN PRI NT, 'True'

Relational Operators

Table 12-6: Relational Operators (Continued)

Building IDL Applications

Chapter 12: Expressions and Operators 245

Note
You can use the NE and EQ operators to determine if two object references point to

the same heap variable. See “ Object Equality and Inequality” in Chapter 1 of the
Object Programming manual for examples.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression:

A = ARR * (ARR LE 100)

Alisan array equal to ARR except that all points greater than 100 have been reduced to
zero. The expression (ARR LE 100) isan array that contains a 1 where the
corresponding element of ARRis less than or equal to 100, and zero otherwise. For
example, to print the number of positive elementsin the array ARR:

PRI NT, TOTAL(ARR GT 0)

The following command sets B equal to ARRAY whenever the corresponding
element of ARRAY isgreater than or equal to 100. If the element islessthan 100, the
corresponding element of B is set to zero.

B = ARRAY * (ARRAY GE 100)
Relational Operators with Infinity and NaN Values

On the Windows platform, using relational operators with the values infinity or NaN
(Not aNumber) causes an “illegal operand” error. The FINITE function’s INFINITY
and NAN keywords can be used to perform comparisons involving infinity and NaN
values. For moreinformation, see“FINITE” in the IDL Reference Guide manual and
“Special Floating-Point Values’ on page 168.

Building IDL Applications Relational Operators

246

Chapter 12: Expressions and Operators

Assignment and Compound Assignment

The assignment statement stores a value in a variable. Compound assignment
combines assignment with another operator.

Operator

Description

Examples

Assignment

The value of the expression
on the right hand side of the
equal signisstored in the
variable, subscript element, or
range on the left side. The old
value of thevariable, if any, is
discarded, and the value of
the expression is stored in the
variable. The expression on
the right side can be of any
type or structure.

For more information on
assignment involving arrays
and ranges, see Chapter 15,
“Arrays’.

For information on
assignment involving objects,
see “Object Assignment” in
Chapter 1 of the Object
Programming manual.

Simple assignment examples:
A=5
Assigns 5 to variable A:

B="Hell o Worl d'

Assign "Hello World" to variable B:
name = ' Mary'

The variable narme becomes a scalar
string variable.

arr = FLTARR(100)

Make ar r a 100-element, floating-
point array.

arr = arr[50: *]

Discard pointsOto49 of arr. Itis
now a50-element array.

Table 12-7: Assignment and Compound Assignment

Assignment and Compound Assignment

Building IDL Applications

Chapter 12: Expressions and Operators 247

Operator Description Examples
op= Compound Assignment Applies the specified operation to
where op is one of the the target variable “in place,”

following operators: ##, #, *, without making a copy of the

+ -,1,<,> " AND, EQ, GE variable. For example,

GT, LE, LT, MOD, NE, OR, A+=5

XOR adds 5 to the value of the variable A.

Provides succinct syntax for | A OP= expression
expressionsinwhichthesame | 1S €quivalent to:
variable would otherwise be A = TEMPORARY(A) op
present on both sides of the (expression)

equal sign. . The following statements both add
See “Compound Assignment | 100 to current value of A:
Operators’ on page 247 for

i A=A + 100
details.

A += 100

Table 12-7: Assignment and Compound Assignment (Continued)
Compound Assignment Operators

In addition to the standard assignment statement, IDL supports the following
compound assignment operators:

Hi= #= k= += -=

/= <= >= AND= EQ=
GE= GT= LE= LT= MOD=
NE= OR= XOR= A=

See op=in previous table for examples.

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op isan IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression isany IDL
expression, produces the same result as the statement:

A = A op (expression)

Building IDL Applications Assignment and Compound Assignment

248 Chapter 12: Expressions and Operators

The difference is that the statement using the compound operator makes more
efficient use of memory, because it performs the operation on the target variable A in
place. In contrast, the statement using the simple operators makes a copy of the
variable A, performs the operation on the copy, and then assigns the resulting value
back to A, temporarily using extra memory.

Note that the statement:
A op= expression
isidentical to the IDL statement:
A = TEMPORARY(A) op (expression)
which uses the TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the

TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

The first statement assigns the value 23 to a variable named AAND. The second
statement performsthe AND operation between A and 23, storing the result back into
thevariable A.

Compound operators that do not involve IDL keywords (+=, for example) do not
reguire whitespace in order to be properly parsed by IDL, although such whitespace
is recommended for code readability. That is, the statements

A+= 23
A += 23

areidentical, but the latter is more readable.

Assignment and Compound Assignment Building IDL Applications

Chapter 12: Expressions and Operators

Other Operators

249

The following operators (onthe[], (), ? and -> operators) are used when working
with arrays, controlling the order of operations, creating conditional expressions, or
invoking an object method.

Operator

Description

Examples

[]

Array concatenation

The expression[A, B] isan
array formed by
concatenating A and B,
which can be scalars or
arrays, aong the first
dimension.

To concatenate second and
third levels, nest the brackets;
[[1,2],[3,4]] isa2-element by
2-element array with the first
row containing 1 and 2 and
the second row containing 3
and 4. Operands must have
compatible dimensions; all
dimensions must be equal
except the dimension that is
to be concatenated, e.g.,
[2INTARR(2,2)] are
incompatible.

See Chapter 15, “Arrays’ for
more information.

Define C as three-point vector:
c=1[0 1, 3]

Add 5 to theend of C:

PRINT, [C, 5]

IDL Prints: 01 35

Insert -1 at the beginning of C:
PRINT, [-1, C

IDL Prints;-1 0 1 3

Plot ARR2 appended to ARR1.
PLOT, [ARRL, ARR2]

Define a 3x3 matrix.

KER = [[1,2, 1],
[1,2 1]]

[2,4,2], $

Note - Array concatenation isa
relatively inefficient operation, and
should only be performed once for a
given set of dataif possible.

Enclose array subscripts

Note - See “Array Subscript
Syntax: [] vs. ()" on

page 319 for additional
details.

A=1[2 1, 5]
Print the 3rd element in A:

PRI NT, A[2]

IDL Prints: 5

Building IDL Applications

Table 12-8: Other Operators

Other Operators

250

Chapter 12: Expressions and Operators

Operator

Description

Examples

0

Group expressions to control
order of evaluation or
enclose function parameter
lists

Note - See “ Operator
Precedence” on page 252 for
details on order of evaluation

PRINT, 3 +4* 2" 2]2
IDL Prints: 11

PRINT, (3 + (4 * 2) ~ 2/ 2)
IDL Prints: 35

Enclose function argument lists:
SI N(ANG * PI/180.)

Conditional expression

Provides away to write
simple constructions of the
IF... THEN...EL SE statement
in expression form.

See “Working with
Conditional Expressions’
below.

For
value = exprl ? expr2 : expr3

exprlisevaluated first. If exprlis
true, then value = expr2. If exprlis
false, value = expr3.

A=6 & B=4

Set Z to the greater of A and B:

Z=(AGIB) ?A: B
PRINT, Z

IDL Prints: 6

Method invocation

Calls an object method. See
“Acting on Objects Using
Methods’ in Chapter 1 of the
Object Programming manual
for more information.

oW ndow >Dr aw
where oW ndowis an IDLgrWindow
object and Dr awisthe object method.

Table 12-8: Other Operators (Continued)
Working with Conditional Expressions

The conditional expression—written with the ternary operator ?—has the lowest
precedence of all the operators. It provides away to write simple constructions of the
IF...THEN...EL SE statement in expression form. In the following example, Z
receives the larger of the values contained by A and B:

IF (AGIrB) THEN Z = AELSE Z = B

Other Operators

Building IDL Applications

Chapter 12: Expressions and Operators 251

This statement can be written more concisely using a conditional expression:
Z=(AGI'B) ?A: B

The general form of aconditional expressionis:
exprl ? expr2 : expr3

The expression exprl is evaluated first. If exprl istrue, then the expression expr2 is
evaluated and set as the value of the conditional expression. If exprlisfase, expr3is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3 is evaluated, based on the result of exprl. (See “Definition of True and False”
on page 142 for details on how the “truth” of an expression is determined.)

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around expr1l. However, parentheses are often used in this situation, as
they enhance the readability of the expression.

Building IDL Applications Other Operators

252

Operator Precedence

Chapter 12: Expressions and Operators

The following table lists IDL's operator precedence. Operators with the highest
precedence are evaluated first. Operators with equal precedence are evaluated from
left to right.

Note

See “Efficiency and Expression Evaluation Order” on page 255 for information on
creating efficient statements.

Operator Precedence

Priority Operator
First (highest) () (parentheses, to group expressions)
[] (brackets, to concatenate arrays)
Second . (structure field dereference)
[1 (brackets, to subscript an array)
() (parentheses, used in afunction call)
Third * (pointer dereference)
A (exponentiation)
++ (increment)
-- (decrement)
Fourth * (multiplication)

and ## (matrix multiplication)

/ (division)

MOD (modulus)

Table 12-9: Operator Precedence

Building IDL Applications

Chapter 12: Expressions and Operators

Priority

Operator

Fifth

+ (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (bitwise negation)

~ (logical negation)

Sixth

EQ (equality)

NE (not equal)

LE (lessthan or equal)

LT (lessthan)

CE (greater than or equal)

GT (greater than)

Seventh

AND (bitwise AND)

OR (bitwise OR)

XOR (bitwise exclusive OR)

Eighth

&& (logical AND)

| | (logica OR)

Ninth

?. (conditional expression)

Table 12-9: Operator Precedence (Continued)

Note

253

Thereisaso adatatype hierarchy that affectsthe result of mathematical operations.

See “Data Type and Structure of Expressions’ on page 262 for details.

The effect of agiven operator is based on both position and the rules of operator

precedence. This concept is shown by the following examples.

A=4+5%*2

Building IDL Applications

Operator Precedence

254

Chapter 12: Expressions and Operators

A isequa to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A= (4+5)*2

In this case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parentheses is evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A=61/2*3
In this case, A equals 9, since the division operator is to the left of the multiplication
operator. The subexpression6 / 2 isevaluated before the multiplication is done,
even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A=61 (2* 3)
In this case, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Expression Value

A+1 The sum of A and 1.

A<2+1 The smaller of A or two, plus one.

A<2*3 The smaller of A and six, since* has
higher precedence than <.

2* SQRT(A) Twice the sguare root of A.

A + Thursday' The concatenation of the strings A
and “Thursday.” An error resultsif A
isnot astring

Table 12-10: Examples of Expressions

Operator Precedence Building IDL Applications

Chapter 12: Expressions and Operators 255

Efficiency and Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

Scale AfromO to 16.
B=A* 16. / MX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations required is
twice the number of elementsin A. A much faster way of computing the same result
isused in the following statement:

Scale AfromO to 16 using only one array operation.
B =A* (16./MAX(A))

or
; Qperators of equal priority are evaluated fromleft to right.

Only one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
Statements:

A = RANDOM(seed, 512, 512)
t1 = SYSTIME(1) & B = A*16./MAX(A) & t2 = SYSTI ME(1)

PRINT, 'Tine for inefficient calculation: ', t2-t1l
t3 = SYSTIME(1l) & B = 16./ MAX(A)*A & t4 = SYSTI ME(1)
PRINT, 'Tine for efficient calculation: ', t4-t3

Building IDL Applications Operator Precedence

256 Chapter 12: Expressions and Operators

Operator Precedence Building IDL Applications

Chapter 13

Working with Data

In IDL

The following topics are covered in this chapter:

DataTypes ..o 258
Data Type and Structure of Expressions .. 262
Date/TimeData 265
Defining and Using Constants 269

Building IDL Applications

Accuracy and Floating Point Operations . 276

Type Conversion Functions 279
Variables 282
SystemVariables 284

257

258

Chapter 13: Working with Data in IDL

Data Types

The IDL language is dynamically typed. This means that an operation on avariable
can change that variable' s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision. For example, if an integer variable is added to afloating-point variable, the
result will be afloating-point variable. See “ Data Type and Structure of Expressions’
on page 262

Note
See " Returning Type and Size Information” in Chapter 7 of the Using IDL manual
for information on how to determine the data type of an array.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to avariable is determined either by the syntax used when
creating the variable, or as aresult of some operation that changes the type of the
variable. IDL’sbasic datatypes are discussed in more detail beginning with “ Defining
and Using Constants’ on page 269

Table 13-1 lists IDL’s basic data types, provides examples of how to explicitly create
avariable of each type, and list the routines used to create variables and arrays of
each type.

Data Type Description Creation Routines
Byte An 8-bit unsigned integer a = 5B BYTE
ranging in value from O to _ BYTARR
255. Pixelsin images are a = BYTE(5)
commonly represented as
byte data.
Integer A 16-bit signed integer b =20 FIX
ranging from —32,768 to _ INTARR
+32,767. b =08
b = FI X(0)

Data Types

Table 13-1: Data Types

Building IDL Applications

Chapter 13: Working with Data in IDL

259

Data Type Description Creation Routines
Unsigned A 16-bit unsigned integer = 0U UINT
Integer ranging from O to 65535

e ging - UINT(0) UINTARR
Long A 32-hit signed integer = OL LONG

ranging in value from _ LONARR
approximately minus two = LONK0)
billion to plus two billion.

Unsigned Long | A 32-bit unsigned integer = OuUL ULONG
ranging in value from O to ~ ULONARR
approximately four billion. = ULONK0)

64-bit Long A 64-bit signed integer = OLL LONG64
ranging in value from — _ LON64ARR
9,223,372,036,854,775,808 | | = LONR4(0)
to
+9,223,372,036,854,775,80
7.

64-bit Unsigned | A 64-bit unsigned integer = OULL ULONG64

Long ranging in value from O to _ ULONG4ARR
18,446,744,073,709,551,61 | 9 = ULON®R4(0)

5.

Floating-point | A 32-hit, single-precision, =0.0 FLOAT
floating-point number in _ FLTARR
the range of +10%, with = FLOAT(0)
approximately six or seven
decimal places of
significance.

Double- A 64-hit, double-precision, = 0.0D DOUBLE

precision floating-point number in _ DBLARR
the range of £10%% with = DOUBLE(0)
approximately 14 decimal
places of significance.

Table 13-1: Data Types (Continued)
Building IDL Applications Data Types

260

Chapter 13: Working with Data in IDL

Data Type Description Creation Routines

Complex

A real-imaginary pair of j =3 COMPLEX
single-precision, floating- | COVPLEX(1.0, 0.0) COMPLEXARR
point numbers. Complex
numbers are useful for
signal processing and
frequency domain filtering.

j = COVPLEX(1,0)

Double- A real-imaginary pair of k=8 DCOMPLEX
precision double-precision, floating- | PCOWPLEX(1.0. 0.0) | h~~\vipl EXARR
complex point numbers.
String A sequence of characters, I ="Hello STRING

from O to 2147483647 (2.1 =g STRARR

GB) charactersin length, STRING([72B, 101B, $
whichisinterpreted astext. | 10ag 108B 111B])

Table 13-1: Data Types (Continued)

Note
In previous versions of IDL prior to version 4, the combination of a double-
precision number and a complex number in an expression resulted in asingle-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
resultsinaDCOMPLEX number.

Precision of Floating-Point Numbers

Data Types

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver dightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, this is something you
should consider.

For more information on floating-point mathematics, see Chapter 12, “Mathematics’
in the Using IDL manual. For information on your machine’s precision, see
“MACHAR” in the IDL Reference Guide manual.

Building IDL Applications

Chapter 13: Working with Data in IDL 261

Complex Data Types
e Structures: Aggregations of data of various types. Structures are discussed in
Chapter 16, “ Structures’.

« Pointers: A reference to adynamically-allocated heap variable. Pointers are
discussed in Chapter 17, “Pointers’.

* Object References: A reference to a special heap variable that contains an IDL
object structure. Object references are discussed in Chapter 13, “ Creating
Custom Objectsin IDL” in the Object Programming manual.

Building IDL Applications Data Types

262 Chapter 13: Working with Data in IDL

Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The structure of an
expression determines whether the expression can represent asingle value or multiple
values. IDL expressions can be either scalars (with exactly one value) or arrays (with
one or more values). The data type and structure of an expression depend on the data
type and structure of its operands.

Tip
You can determine the data type of an expression by returning the type code of the
expression. See “Returning Type and Size Information” in Chapter 7 of the Using
IDL manual for more information.

Hierarchy of IDL Data Types

Unlike many other languages, the data type and structure of most expressionsin IDL
cannot be determined until the expression is evaluated. Because of this, care must be
taken when writing programs. For example, avariable can be a scalar byte variable at
one point in aprogram while at a later point the same variable can hold a complex
array. See “Expression Type” on page 263 for information on how the hierarchy of
datatypes affect the outcome of mathematical operations. See “ Expression Structure”
on page 264 for information on how the results of scalar and array operations are
evaluated. The twelve atomic data types in decreasing order of precedence are as
follows:

Double-precision complex floating-point
Complex floating-point

Double-precision floating-point

Floating-point

Signed and unsigned 64-bit integer

Signed and unsigned longword (32-bit) integer
Signed and unsigned (16-bit) integer

Byte

String

Data Type and Structure of Expressions Building IDL Applications

Chapter 13: Working with Data in IDL 263

Expression Type

IDL attempts to evaluate expressions containing operands of different datatypesin
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variable is first
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to acomplex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of datatypes. See “Hierarchy of IDL Data
Types’ on page 262 for the order of precedence.

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assume the variable A isan integer variable with avalue
of 5. The following expressions yield the indicated results:

; Integer division is performed. The remainder is discarded.
Al 2 =2

; The value of Ais first converted to floating.
Al 2. =25

; Integer division is done first because of operator precedence.
; Result is floating point.

Al 2 +1 =3

; Divisionis donein floating, then the 1 is converted to floating
; and added.
Al 2. +1=3.5

; Signed and unsigned i nt eger operands have the sane precedence, so
; the left-npst operand determines the type of the result as signed
; integer.

A+ 5U =10

; As above, the left-nost operand determ nes the result type

bet ween types with the sane precedence
5U + A = 10U

Building IDL Applications Data Type and Structure of Expressions

264

Chapter 13: Working with Data in IDL

Note

When other data types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333 + 33 gives the result 156 because 123.333 isfirst converted to integer type.
In the same manner, 'ABC' + 123 also causes a Conversion error.

Expression Structure

IDL expressions can contain operands that are either scalars or arrays, just asthey can
contain operands with different types. Conversion of variables between the scalar and
array formsisindependent of datatype conversion. An expression will yield an array
result if any of its operandsis an array, as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Table 13-2: Structure of Expressions

See " Operations on Array Expressions’ on page 313 for more information on
working with arrays as operands in an expression.

Data Type and Structure of Expressions

Building IDL Applications

Chapter 13: Working with Data in IDL 265

Date/Time Data

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows afew examples of calendar dates and their
corresponding Julian dates.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0
January 2, 4713 B.C.E., a 12pm 1
January 1, 2000 at 12pm 2451545

Table 13-3: Example Julian Dates

Julian dates can also include fractional portions of aday, thereby incorporating hours,
minutes, and seconds. If the day fraction isincluded in a Julian date, it is represented
as a double-precision floating point value. The day fraction is computed as follows:

hour + minute+ seconds

dayFraction =
ayFraction = = d " 1440.d | 86400.d

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply anumber, IDL’s numerical routines can be applied to Julian
datesjust asfor any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Building IDL Applications Date/Time Data

266 Chapter 13: Working with Data in IDL

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision istypically limited by the data type of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

« Timevaluesthat require a high precision, and that span arange of afew days
or less, should be stored as double-precision valuesin units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “ seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

« Datevaluesthat do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of thisformat is 1 day.

« Datevalueswhereit is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian datesislimited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12: 15pm
julian = JULDAY(1, 1, 2000, 12, 15, 0)

; Get machine characteristics:
machi ne = MACHAR(/ DOUBLE)

Mul tiply by floating-point precision
preci sion = julian*machi ne. eps

; Convert to seconds:
PRI NT, precisi on*86400d0

Date/Time Data Building IDL Applications

Chapter 13: Working with Data in IDL 267

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent val ue corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
size for a given date/time unit. Unlike the other array generation routinesin IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time
isoriginally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for afull year:

date time = TIMEGEN(12, UNIT = 'Mnths', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000. The results of the above call
to TIMEGEN can be output using either of the following methods:

1. Using the CALDAT procedure to convert the Julian dates to calendar dates:

CALDAT, date_tinme, nonth, day, year

FORi =0, (N_ELEMENTS(date_ tine) - 1) DO PRINT, $
month[i], day[i], year[i], $
FORMAT = ' (i2.2, "I", i2.2, "I", i4)

2. Using the calendar format codes:
PRINT, date_time, format ='(C(CMJ 2.2, "/", CDI2.2, “/", CYI))'
The resulting calendar dates are printed out as follows:

03/ 01/ 2000
04/ 01/ 2000
05/ 01/ 2000
06/ 01/ 2000
07/ 01/ 2000
08/ 01/ 2000
09/ 01/ 2000
10/ 01/ 2000
11/ 01/ 2000
12/ 01/ 2000
01/ 01/ 2001
02/ 01/ 2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see the “TIMEGEN” in the IDL Reference Guide
manual.

Building IDL Applications Date/Time Data

268 Chapter 13: Working with Data in IDL
Date/Time Data Examples

You can display date/time data on IDLgrAXxis objects (through the TICKFORMAT
property) plots, contours, and surfaces by setting tick mark attributes. See
“Displaying Date/Time Data on Axis Objects’ in Chapter 5 of the Object
Programming manual and the routines LABEL_DATE and “CONTOUR” inthe IDL
Reference Guide manual routine for examples.

Date/Time Data Building IDL Applications

Chapter 13: Working with Data in IDL 269

Defining and Using Constants

The syntax of a constant determinesits type. Efficiency is adversely affected when
the type of a constant must be converted during expression evaluation. Consider the
following expression:

A+ 5

If the variable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

Thetype of a constant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A isahbyte array, the result of the expression A + 5B isa
byte array, while A + 5 yields a 16-hit integer array.

This section discusses details of IDL data types including the following:
e “Integer Constants’ below
e “Floating-Point and Double-Precision Constants’ on page 272
e “Complex Constants’ on page 274
e “String Constants’ on page 274

Building IDL Applications Defining and Using Constants

270

Integer Constants

Chapter 13: Working with Data in IDL

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B
Integer nornS 12,12S5,425,425S
Unsigned Integer | nU or nUS 12U,12US
Long nL 12L, 94L
Unsigned Long nuL 12UL, 94UL
64-bit Long nLL 12LL,94LL
Unsigned 64-bit nULL 12ULL, 94ULL
Long

Hexadecimal Byte 'n'XB '2E'XB
Integer 'n'X 'OF'X
Unsigned Integer | 'n'XU "OF XU
Long "n'XL 'FF'XL
Unsigned Long 'n'’XUL "FF XUL
64-bit Integer 'n'XLL "FF XLL
Unsigned 64-bit n'XULL 'FFXULL
I nteger

Defining and Using Constants

Table 13-4: Integer Constants

Building IDL Applications

Chapter 13: Working with Data in IDL 271
Radix Type Form Examples
Octd Byte "nB "12B
Integer "n "12
'n'o ‘3770
Unsigned Integer | "nU "12U
'n'OuU '‘377'0U
Long "nL "12L
'n'OL 77T7TTOL
Unsigned Long "nUL "12UL
'n'OUL 777T777'OUL
64-bit Long "nLL "12LL
'n'OLL 777r77TT'OLL
Unsigned 64-bit "nULL "12ULL
Long n'OULL 777T77r'OULL

Table 13-4: Integer Constants (Continued)

Digitsin hexadecimal constantsinclude the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.

Type Absolute Value Range
Byte 0-255
Integer 0-32767
Unsigned Integer 0-65535
Long 0-2%1-1
Unsigned Long 0-2%.1

Table 13-5: Absolute Value Range Of Integer Constants

Building IDL Applications

Defining and Using Constants

272 Chapter 13: Working with Data in IDL

Type Absolute Value Range
64-bit Long 0-263_1
Unsigned 64-hit Long 0-264-1

Table 13-5: Absolute Value Range Of Integer Constants (Continued)

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it istoo large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Unacceptable Reason Acceptable
256B Too large, limit is 255 255B
'123L Missing apostrophe '123L
'03G'x Invalid character "129
'27'L No radix '27'0L
650X L No apostrophes '650'XL
"129 9isaninvalid octal digit "124

Table 13-6: Examples of Integer Constants
Floating-Point and Double-Precision Constants
Floating-point and double-precision constants can be expressed in either

conventional or scientific notation. Any numeric constant that includes a decimal
point is afloating-point or double-precision constant.

Defining and Using Constants Building IDL Applications

Chapter 13: Working with Data in IDL

273

The syntax of floating-point and double-precision constantsis shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for

example, E- 2.
Form Example

n. 102.

.n 102

n.n 10.2

nE 10E

nEsx 10E5

n.Esx 10.E-3

.NEsx JAE+12
n.nEsx 2.3E12

Table 13-7: Syntax of Floating-Point Constants

Double-precision constants are entered in the same manner, replacing the E with aD.
For example, 1. 0DO, 1D, and 1. D each represent a double-precision numeral 1.

Note

The nE and nD forms are shorthand for nEO and nDO, and are usually used to
indicate the type of the number, either single or double precision. When using these
formsin expressions, be sure to leave a space after the E or Dif the next term has a

+or - sign.

For example, the expression 1D+45 is evaluated as 1x10® in double precision,
while 1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write this expressionis 1D + x (note the spaces).

Building IDL Applications

Defining and Using Constants

274 Chapter 13: Working with Data in IDL

Complex Constants

Complex constants contain areal and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follows:

COVPLEX(REAL_PART, | MAGI NARY_PART)
or
COVPLEX(REAL_PART)

For example, COMPLEX(1,2) is acomplex constant with areal part of one, and an
imaginary part of two. COMPLEX(1) isacomplex constant with areal part of one
and a zero imaginary component. To extract the real part of a complex expression,
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
quotes (). The value of the constant is simply the characters appearing between the
leading delimiter (' or " ") and the next occurrence of the same delimiter. A double
apostrophe (* ') or quote (" ") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g.,' Don' ' t' returns Don' t . This syntax often can be
avoided by using a different delimiter; e.g.,"Don' t " instead of ' Don' ' t' . The
following table illustrates valid string constants.

Expression Resulting String

'Hi there' Hi there

"Hi there" Hi there

" Null String

"I'm happy" I’'m happy

‘I"'m happy' I”m happy

‘counter counter

129 129

Table 13-8: Examples of Valid String Constants

Defining and Using Constants Building IDL Applications

Chapter 13: Working with Data in IDL 275

The following tableillustrates invalid string constants. In the last entry of the table,
"129" isinterpreted as an illegal octal constant. This is because a quote character
followed by adigit from 0 to 7 represents an octal numeric constant, not a string, and
the character 9isan illegal octa digit.

String Value Unacceptable Reason
Hi there 'Hi there" Mismatched delimiters
Null String ' Missing delimiter
I’m happy 'I'm happy"' Apostrophein string
counter "counter” Double apostrophe is null string
129 "129" Illegal octal constant

Table 13-9: Examples of Invalid String Constants

While an IDL string variable can hold up to 64 Kbytes of information, the buffer than
handles input at the IDL command prompt is limited to 255 characters. If for some
reason you need to create a string variable longer than 255 characters at the IDL
command prompt, split the variable into multiple sub-variables and combine them
with the “+” operator:

var = varl+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

Note
See Chapter 14, “ Strings” for details on working with strings.

Building IDL Applications Defining and Using Constants

276 Chapter 13: Working with Data in IDL

Accuracy and Floating Point Operations

In a computer, real numbers are represented with finite precision. While in most
casesit is safe to assume that the result of an arithmetical operation done on your
computer is correct, it isimportant to remember that this finite-precision
representation leads to unavoidable errors, especialy when floating-point numbers,
which are digital approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider the
following:

« Floating-point numbers must be made to fit in a space (astring of binary digits
in acomputer’s memory register) that can only hold an integer and a scaling
factor.

* Floating-point numbers are represented by strings of alimited number of bits,
but represent numbers much larger or smaller than that number of digits can be
made to express.

In other words, floating-point val ues are finite-precision approximations of infinitely
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. Thisisthe smallest number that, when added to 1.0, produces a floating-
point result that is different from 1.0.

A useful way of thinking about machine accuracy isto consider it to be the fractional
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit of the
floating-point mantissa—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissais rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduces an
error at least equal to the machine accuracy into the result. This error is known as
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involving n arithmetic operations might have a total roundoff error
between SQRT(n) times the machine accuracy and n times the machine accuracy.

Accuracy and Floating Point Operations Building IDL Applications

Chapter 13: Working with Data in IDL 277

Note that the machine accuracy is not the same as the smallest floating-point number
your computer can represent. To find these and other machine-dependent quantities
for your own computer, see MACHAR in the IDL Reference Guide.

Truncation Error

Another type of error isalso present in some numerical algorithms. Truncation error
isthe error introduced by the process of numerically approximating a continuous
function by evaluating it at a finite number of discrete points. Often, accuracy can be
increased (again at some cost of computation time) by increasing the number of
discrete points evaluated.

For example, consider the process of calculating

2 3 n
= 1+x+ o+ X, X
21 3! n!
Obviously, the answer becomes more accurate as n approaches infinity. When
performing the actual computation, however, a cutoff value must be specified for n.
Increasing n reduces truncation error at the expense of computational effort.

Severa IDL routines allow you to specify cutoff valuesin such cases (see, for
example, INT_2D of the IDL Reference Guide). When writing your own routinesin
IDL, it isimportant to consider this trade-off between accuracy and computational
time.

Routines for Mathematical Error Assessment

Below isabrief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in the IDL Reference
Guide.

CHECK_MATH | Returns and clears accumulated math error status.

FINITE Returns Trueif its argument is finite.

MACHAR Determines and returns machine-specific parameters affecting
floating-point arithmetic.

Table 13-10: Mathematical Error Assessment Routines in IDL

See “Math Errors’ on page 167 for more information.

Building IDL Applications Accuracy and Floating Point Operations

278 Chapter 13: Working with Data in IDL

Accuracy and Floating Point Operation References

Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch. Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Accuracy and Floating Point Operations Building IDL Applications

Chapter 13: Working with Data in IDL 279

Type Conversion Functions

IDL allows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output datain a mode compatible with
other programs, etc. For alist of type conversion functions, see “ Type Conversion” in
the IDL Quick Reference manual. Conversion functions operate on data of any
structure: scalars, vectors, or arrays, and variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:
Define A. Note that the value of A is outside the range
; of integers, and is automatically created as a | ongword
i nteger by IDL.
A = 33000
;Bis silently truncated.
B = FIX(A)
PRI NT, B

IDL prints:
- 32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See “Math Errors’ on page 167, for more
information.

Converting Strings

When converting from astring argument, it is possible that the string does not contain
avalid number and no conversion is possible. The default action in such casesisto
print a warning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jJumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. Theresult of the BY TE function applied to astring or string array isabyte array
containing the ASCII codes of the characters of the string. Converting a byte array

Building IDL Applications Type Conversion Functions

280 Chapter 13: Working with Data in IDL

with the STRING function yields astring array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TY PE keyword to the FIX function allowstype conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TY PE keyword:

PRO EXAMPLE_FI XTYPE
Define a variable as a doubl e:
A = 3D

Store the type of Ain a variable:
typeA = SI ZE(A, /TYPE)
PRINT, "Ais type code', typeA

Pronpt the user for a nuneric val ue:
READ, UserVal, PROVWPT='Enter any Numeric Val ue:
Convert the user value to the type stored in typeA
ConvUserVal = FI X(UserVal, TYPE=typeA)

PRI NT, ConvUser Val
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results
FLOAT(1) 1.0
FIX(1.3+1.7) 3
FIX(L.3) + FIX(1.7) 2
FIX(1.3, TYPE=5) 1.3000000

Table 13-11: Uses of Type Conversion Functions

Type Conversion Functions Building IDL Applications

Chapter 13: Working with Data in IDL 281

Operation Results
BYTE(L.2) 1
BYTE(-1) 255b (Bytes are modulo 256)
BYTE(01ABC) [48b, 49b, 65b, 66b, 67b]
STRING([65B, 66B, 67B]) 'ABC’
FLOAT(COMPLEX(L, 2)) 1.0
COMPLEX([L, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Table 13-11: Uses of Type Conversion Functions (Continued)

Building IDL Applications Type Conversion Functions

282

Chapter 13: Working with Data in IDL

Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL datatypes. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and atype.

Structure

A variable can contain asingle value (a scalar) or a number of values of the same
type (an array) or data entities of potentially differing type and size (a structure).
Strings are considered as single values, and a string array contains a number of
variable-length strings.

In addition, a variable can associate an array structure with afile; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” in the
IDL Reference Guide manual.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When a variable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initialy, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.

Building IDL Applications

Chapter 13: Working with Data in IDL 283

Variable Names

IDL variables are named by identifiers. Each identifier must begin with aletter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after thefirst 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptabl e variable names.

Unacceptable Reason Acceptable
EOF Conflicts with function name | A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE
AB@ Illegal character ABCS$DEF
abcd Embedded space My_variable

Table 13-12: Unacceptable and Acceptable IDL Variable Names

Tip
Usethe IDL_VALIDNAME routine to determine whether agiven string is
acceptable as an IDL variable name.

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or areserved word (see “Reserved Words” in the IDL Reference Guide manual).
Giving avariable such aname resultsin asyntax error or in “hiding” the variable.

Building IDL Applications Variables

284 Chapter 13: Working with Data in IDL

System Variables

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (). System
variables are used to set the options for plotting, to set variousinternal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSY SV
procedure.

System variables are discussed in Appendix D, “ System Variables’ in the IDL
Reference Guide manual.

System Variables Building IDL Applications

Chapter 14

Strings

The following topics are covered in this chapter:

Overviewof Strings 286
String Operations 287
Non-string and Non-scalar Arguments . .. 288
String Concatenation 289
Using STRINGto Format Data 290
Byte Argumentsand Strings 292
CaseFolding 294

Building IDL Applications

Whitespace 295
Finding the Lengthof aString 297
SUDSLINGS . .o oo 298
Splitting and Joining Strings 301
Comparing Strings 302
Non-Printing Characters. 306
Learning About Regular Expressions ... 307

285

286 Chapter 14: Strings

Overview of Strings

An DL string is asequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and thereis no
need to declare the maximum length of astring prior to using it. Aswith any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

Note
This chapter covers operations on strings. For information about using the* and “
charactersto create valid strings, see “ String Constants’ on page 274.

A Note About the Examples

In some of the examples in this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', 'Wlnut']

Executing the statement,
PRINT, '>" + trees + '<'
resultsin the following outpult:

>Beech< >Birch< >Mahogany< >Maple< >0ak< >Pine< >Wlnut<

Overview of Strings Building IDL Applications

Chapter 14: Strings

287

String Operations

IDL supports several basic string operations, as described below:

Operation

Description

Concatenation

The Addition operator, “+”, can be used to concatenate strings
together. See “ String Concatenation” on page 289.

Formatting Data

The STRING function is used to format datainto astring. The
READS procedure can be used to read values from a string
into IDL variables. See “Using STRING to Format Data’ on
page 290.

Case Folding The STRLOWCA SE function returns a copy of its string
argument converted to lowercase. Similarly, the STRUPCASE
function converts its argument to uppercase. See “ Case
Folding” on page 294.

White Space The STRCOMPRESS and STRTRIM functions can be used to

Removal eliminate unwanted white space (blanks or tabs) from their
string arguments. See “Whitespace” on page 295.

Length The STRLEN function returns the length of its string
argument. See “Finding the Length of a String” on page 297.

Substrings The STRPOS, STRPUT, and STRMID routines locate, insert,
and extract substrings from their string arguments. See
“Substrings’ on page 298.

Splitting and The STRSPLIT function is used to break strings apart, and the

Joining Strings STRJOIN function can be used to and glue strings together.
See “ Splitting and Joining Strings” on page 301

Comparing The STRCMP, STRMATCH, and STREGEX functions

Strings perform string comparisons. See “ Comparing Strings’ on

page 302.

Building IDL Applications

Table 14-1: String Operations

String Operations

288 Chapter 14: Strings

Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument — the string on which they act. If the argument is not of type string, IDL
convertsit to type string using the same default formatting rules that are used by the
PRINT/PRINTF or STRING routines. The function then operates on the converted
result. Thus, the IDL statement,

PRI NT, STRLEN(23)
returns the result
8

because the argument “23” isfirst converted to the string ' 23' that happensto
be a string of length 8.

If the argument is an array instead of a scalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', 'Walnut']

Cet an uppercase version of TREES.
A = STRUPCASE(tr ees)

Show that the result is also an array.
HELP, A

Di splay the original.
PRI NT, trees

Di splay the result.
PRI NT, A

produce the following output:

A STRI NG = Array(7)
Beech Birch Mahogany Mapl e Cak Pine WAl nut
BEECH BI RCH MAHOGANY MAPLE QAK PI NE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptionsin the IDL Reference Guide.

Non-string and Non-scalar Arguments Building IDL Applications

Chapter 14: Strings 289

String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A ="'This is' + ' a concatenation exanple.'
PRI NT, A

resultsin the following output:
This is a concatenation exanpl e.
Strings can also be broken across code lines:

Print, "This is a multi-line " $
+ "string concatenation exanple."

resultsin the following output:
This is a nmultiline string concatenation exanpl e.

Thefollowing IDL statements build ascalar string containing a comma-separated list
of the names found in the TREES string array:

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', "Wl nut']

; Use REPLI CATE to nmake an array with the correct nunber of commas
; and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

; Show the resulting list.
PRI NT, nanes

Running the above statements results in the following output:
Beech, Birch, Mahogany, Maple, Qak, Pine, Wal nut

Building IDL Applications String Concatenation

290 Chapter 14: Strings

Using STRING to Format Data

The STRING function has the following form:
S = STRING(Expressiony, ..., Expression,,)

It convertsits parameters to characters, returning the result as astring expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. As with PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
freeformat and explicitly formatted input/output (“ Free Format 1/O” on page 397) for
details of data formatting. For more information on the STRING function, see
“STRING” in the IDL Reference Guide manual.

Asasimple example, the following IDL statements:

; Produce a string array.
A = STRI NG FORVAT=' ("The values are:", /, (1))', | NDGEN(5))

; Show its structure.
HELP, A

Print the result.
FOR 1 = 0, (N_ELEMENTS(A)-1) DO PRI NT, All]

produce the following output:

A STRING = Array(6)
The val ues are:

A WNPFO

Note
When you use vector, TrueType, and some device fonts, text strings can include
embedded formatting commands that facilitate subscripting, superscripting, and
equation formatting. See “ Embedded Formatting Commands’ in Appendix H of the
IDL Reference Guide manual.

Using STRING to Format Data Building IDL Applications

Chapter 14: Strings 291

Reading Data from Strings

The READS procedure performs formatted input from astring variable and writesthe
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

Thisroutine is useful when you need to examine the format of a datafile before
reading the information it contains. Each line of thefile can beread into astring using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS’ in the IDL Reference Guide manual for more details.

Building IDL Applications Using STRING to Format Data

292 Chapter 14: Strings

Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simply an
array of bytesthat is treated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the origina argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])
produces the output below:
Hell o

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Itsfirst element is 72B which isthe ASCI|
code for “H,” the second is 101B which isan ASCII “e” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte datain
the usual way.

Asdiscussed in Chapter 18, “Filesand Input/Output”, it is easier to read fixed-length
string data from binary filesinto byte variables instead of string variables. Therefore,
it is convenient to read the datainto a byte array and use this special behavior of
STRING to convert the datainto string form.

Another use for this feature is to build strings that contain nonprintable charactersin
away such that the character is not entered directly. This resultsin programs that are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
areimplemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRI NT, STRING([65B, 66B, 0B, 67B])
produces the following output:
AB

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.

Byte Arguments and Strings Building IDL Applications

Chapter 14: Strings 293

Note
The BY TE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in a byte array containing
the same byte values as its string argument. For additional information about the
BY TE function, see “Type Conversion Functions’ on page 279.

Building IDL Applications Byte Arguments and Strings

294 Chapter 14: Strings

Case Folding

The STRLOWCASE and STRUPCA SE functions are used to convert arguments to
lowercase or uppercase. Where String is the string to be converted, they have the
form:

S=STRLOWCASE(String)
S = STRUPCASE(Siring)

The following IDL statements generate a table of the contents of TREES showing
each namein its actual case, lowercase and uppercase:

; Create array of trees.

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', 'Wlnut']

FOR 1=0, 6 DO PRINT, trees[l], STRLOACASE(trees[!]),$

STRUPCASE(trees[1]), FORMAT ="'(A, T15, A T30, A’

The resulting output from running this statement is as follows:

Beech beech BEECH

Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the responsg, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions:

; Create a string variable to hold the response.
answer ="'

; Ask the question.

READ, ' Answer yes or no: ', answer

| F (STRUPCASE(answer) EQ 'YES') THEN $
; Conpare the response to the expected answer.
PRI NT,' YES' ELSE PRI NT, 'NO

Case Folding Building IDL Applications

Chapter 14: Strings 295

Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)
where Sring is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely
eliminated. For example,

; Create a string with undesirable white space. Such a string m ght
; be the result of reading user input with a READ statenent.
A=" Thi s is a poorly spaced sentence.

Print the result of shrinking all white space to a single blank.
PRI NT, '>', STRCOWRESS(A), '<'

Print the result of renoving all white space.
PRI NT '>', STRCOWRESS(A, /REMOVE ALL), '<

resultsin the output:

> This is a poorly spaced sentence. <
>Thi si sapoor | yspacedsent ence. <

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S= STRTRIM(Srring], Flag])

where Sring is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is O or is not present, trailing white spaceis
removed. If itis 1, leading white space is removed. Both trailing and leading white
space are removed if Flag isequal to 2. For example:

; Create a string with unwanted | eading and trailing bl anks.

Building IDL Applications Whitespace

296 Chapter 14: Strings

A ="' This string has leading and trailing white space

; Renove trailing white space.
PRINT, '>', STRTRIMA), '<

; Remove | eadi ng white space.
PRINT, '>', STRTRRMA 1), '<

;. Renpve bot h.
PRINT, '>', STRTRIMA 2), '<

Executing these statements produces the output below.

> This string has | eading and trailing white space<
>This string has leading and trailing white space <
>This string has |leading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to

remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

; Create a string with undesirable white space.
A = 'Yet anot her poorly spaced sent ence.

El i m nate unwant ed white space.
PRI NT, '>'" STRCOMPRESS(STRTRIMA, 2)), '<

Executing these statements gives the result below:

>Yet anot her poorly spaced sentence. <

Whitespace Building IDL Applications

Chapter 14: Strings 297

Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:
L = STRLEN(String)

where String isthe string for which the length is required. For example, the following
Statement

PRI NT, STRLEN(' This sentence has 31 characters')
resultsin the output
31

whilethefollowing IDL statement prints the lengths of all the names contained in the
array TREES.

; Create array of trees.
trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', 'Walnut']
PRI NT, STRLEN(trees)
The resulting output is as follows:

5 5 8 5 3 4 6

Building IDL Applications Finding the Length of a String

298

Chapter 14: Strings

Substrings

IDL providesthe STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

Substrings

The STRPOS function is used to search for the first occurrence of a substring. It has
theform

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Ani mal s

; The search string, "dog", appears three tines.
animal s = 'dog cat duck rabbit dog cat dog’

Start searching in character position 0.
I =0

Nunmber of occurrences found.
cnt =0

Search for an occurrence.
VWH LE (I NE -1) DO BEG N
| = STRPOS(ani mals, 'dog',)

IF (I NE -1) THEN BEGQ N
Updat e counter.
cnt = cnt + 1

;1 ncrenent | so as not to count the sanme instance of 'dog'

o twice.

I =1 +1
ENDI F
ENDVHI LE

Print the result.
PRI NT, 'Found ', cnt, " occurrences of 'dog'"
END

Building IDL Applications

Chapter 14: Strings 299

Running the above program produces the result bel ow.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
thelast occurrence of asubstring within astring. In the following example, we search
for the last occurrence of the letter “1” (or “i”) in a sentence:

sentence = 'IDL is fun.'

sent ence = STRUPCASE(sent ence)

| asti = STRPOS(sentence, '1', /REVERSE SEARCH)
PRI NT, | asti

Thisresultsin:
4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where O is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedureis used to insert the contents of one string into another. It has
theform,

STRPUT, Destination, Source], Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position isthe first character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwriteis started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “ CAT” in the
string “dog cat duck rabbit dog cat dog”:

animal s = 'dog cat duck rabbit dog cat dog'
; The string to search, "dog", appears three times.

; Whi | e any occurrence of "dog" exists, replace it.
VWH LE (((I = STRPCS(animals, 'dog'))) NE -1) DO $
STRPUT, aninmals, 'CAT', |

; Show the resulting string.
PRI NT, ani mals

Building IDL Applications Substrings

300

Chapter 14: Strings

Running the above statements produces the result below.
CAT cat duck rabbit CAT cat CAT

Extracting Substrings

Substrings

The STRMID function isused for extracting substrings from alarger string. It hasthe
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,

First Character isthe starting position within Expression of the substring (the first
position is position 0), and Length is the length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

String containing all the nmonth names.
nont hs = ' JANFEBVARAPRIVAYJ UNJ UL AUGSEPOCTNOVDEC

Extract each nane in turn. The equation (1-1)*3 cal cul ates the
position within MONTH for each abbreviation

FORI =1, 12 DO PRINT, I, ' .8

STRM D(nmonths, (I - 1) * 3, 3)

The result of executing these statementsis as follows:

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
10 oCT
11 NOV
12 DEC

O©COoO~NOOULA,WNPEP

Building IDL Applications

Chapter 14: Strings 301
Splitting and Joining Strings

The STRSPLIT function is used to break apart a string, and the STRJOIN functionis
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:
Result = STRSPLIT(Sring [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or aregular expression, asimplemented by the
STREGEX function.

The STRJOIN function uses the following syntax:
Result = STRJOIN(Sring [, Delimiter])

where Sring isthe string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

strl = "Hello Cruel World'

words = STRSPLI T(strl1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]
PRI NT, STRJO N(newwords, ' ")

This code results in the following output:
Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsetsindicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space asin the above example, we could use adifferent delimiter as
follows:

strl = "Hello Cruel World'

words = STRSPLI T(strl1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]

PRI NT, STRJO N(newwords, ' Kind ')

This code results in the following output:
Hell o Kind World

Building IDL Applications Splitting and Joining Strings

302 Chapter 14: Strings
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N
Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only thefirst N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(Stringl, String2 [, N])

where Sringl and Sring2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOQ” requires the following steps:

A
B

' Mbose'
1100

C=STRM D(A, 0, 3)

I F (STRLONCASE(C) EQ STRLOACASE(B)) THEN PRINT, "It's a match!”

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:
A=' Mbose'
B="' m0O
| F (STRCMP(A, B, 3, /FOLD CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.

Comparing Strings Building IDL Applications

Chapter 14: Strings 303

String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:
Result = STRMATCH(String, SearchString)
where Sring is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

i Description
Character
* Matches any string, including the null string.
? Matches any single character.
[..] Matches any one of the enclosed characters. A pair of

characters separated by "-" matches any character lexically
between the pair, inclusive. If thefirst character following the
opening [isa!, any character not enclosed is matched. To
prevent one of these characters from acting as awildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" isthe same as"a").

Table 14-2: Wildcard Characters used by STRMATCH

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter wordsin astring array that begin with “f” or “F" and end
with “t” or “T":

str = ['"foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRMATCH(str, 'f??t', /FOLD CASE) EQ 1)]

Thisresultsin:
foot Feet FAST fort
Example 2: Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

Building IDL Applications Comparing Strings

304 Chapter 14: Strings

PRI NT, str[WHERE(STRVMATCH(str, 'f*t', /FOLD CASE) EQ 1)]
Thisresultsin:
foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “0” and “€” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRI NT, str[WHERE(STRVATCH(str, 'f[eo][eo]t', /FOLD CASE) EQ 1)]
Thisresultsin:

f oot Feet

Example 4: Find all words beginning with “f” and ending with “t” whose second
character is not the letter “0”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD CASE) EQ 1)]

Thisresultsin:
Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “0” in between. Thiswould
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRINT, STREGEX(str, '~f[”0]*t$', /EXTRACT, /FOLD_CASE)

This statement resultsin:
Feet FAST ferret
Note the following about this example:

e Unlikethe* wildcard character used by STRMATCH, the * meta character
used by STREGEX appliesto theitem directly on itsleft, whichinthiscaseis
[*0], meaning “any character except the letter ‘0’ ”. Therefore, [*0]* means
“zero or more charactersthat are not ‘0’ ”, whereas the following statement
would find only words whose second character isnot “0”:

PRI NT, str[WHERE(STRVMATCH(str, 'f[lo]*t', /FOLD CASE) EQ 1)]

Comparing Strings Building IDL Applications

Chapter 14: Strings 305

» Theanchors (" and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which isasubstring of “fate’.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which iswhy the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see “STREGEX” in the IDL Reference Guide
manual, and for an introduction to regular expressions, see “Learning About Regular
Expressions’ on page 307.

Building IDL Applications Comparing Strings

306 Chapter 14: Strings

Non-Printing Characters

ASCII characters with value less than 32 or greater than 126 do not have printable
representations. Such characters can be included in string constants by specifying
their ASCII value as a byte argument to the STRING function.

For example, to represent the TAB character, use the expression
STRI NG 9B)

This syntax can be used when comparing strings or performing regular expression
matching. For example, to find the position of the first TAB character in a string:

pos = STREGEX(input_string, STRINH 9b))
where input_string is a variable containing the string to be searched.

The following table lists the some ASCII characters you might commonly want to
represent as IDL strings.

ASCII Character Byte Value
Bell 7B
Backspace 8B
Horizontal Tab 9B
Linefeed 10B
Vertical Tab 11B
Formfeed 12B
Carriage Return 13B
Escape 27B

Table 14-3: Selected ASCII Characters
and Their Byte Values

For acomplete list, consult a standard ASCI| table.

Note
ASCII characters may have different effects (or no effect) on platforms that do not
support ASCII terminal commands.

Non-Printing Characters Building IDL Applications

Chapter 14: Strings 307

Learning About Regular Expressions

Regular expressions are avery powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940’s, their mathematical
foundation was established during the 1950's and 1960’s. Their use has along history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, aswell as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

Thetopic of regular expressionsis avery large one, complicated by the arbitrary
differencesin the implementations found in various tools. Anything beyond an
extremely ssimplistic sketch is well beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as “Mastering Regular
Expressions’, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). Thefollowing isan abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
to right. The matching is considered to be “ greedy”, because at any given point, it
will always match the longest possible substring. For example, if aregular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “ meta characters’, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. *').

Building IDL Applications Learning About Regular Expressions

308

Chapter 14: Strings

The meta characters are described in the following table:

Character

Description

The period matches any character.

[]

The open bracket character indicates a “ bracket expression”,
which is discussed below. The close bracket character terminates
such an expression.

The backslash suppresses the special meaning of the character it
precedes, and turns it into an ordinary character. To insert a
backslash into your regular expression pattern, use a double
backslash ('\\).

0

The open parenthesis indicates a “ subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters below are used to specify repetition. The
repetition is applied to the character or expression directly to the
left of the repetition operator.

Zero or more of the character or expression to theleft. Hence, 'a*"
means “zero or more instances of 'a’ ”.

One or more of the character or expression to the left. Hence, 'at'
means " one or more instances of 'a”.

Zexo or one of the character or expression to the left. Hence, ‘a?
will match 'a or the empty string ".

{}

Aninterval qualifier alows you to specify exactly how many
instances of the character or expression to the left to match. If it
encloses a single unsigned integer length, it means to match
exactly that number of instances. Hence, 'a 3} ' will match 'aaa. If
it encloses 2 such integers separated by acomma, it specifiesa
range of possible repetitions. For example, '&f 2,4}" will match
'ad, 'aad, or 'asad. Note that '{ 0,1} "' is equivalent to '?.

Table 14-4: Meta Characters

Learning About Regular Expressions Building IDL Applications

Chapter 14: Strings 309

Character Description

| Alternation. This operator is used to indicate that one of several
possible choices can match. For example, '(alblc)z' will match any
of 'az', 'bz', or 'cz'.

~$ Anchors. A "\ matches the beginning of a string, and '$' matches
the end. Aswe have seen above, regular expressions usually
match any possible substring. Anchors can be used to change this
and require a match to occur at the beginning or end of the string.
For example, "*abc' will only match strings that start with the
string ‘abc’. “*abc$ will only match a string containing only 'abc'.

Table 14-4: Meta Characters (Continued)

Subexpressions

Subexpressions are those parts of aregular expression enclosed in parentheses. There
are two reasons to use subexpressions:

* Toapply arepetition operator to more than one character. For example,
"(fun){ 3} matches 'funfunfun’, while ‘fun{ 3}' matches ‘funnn'.

e Toadlow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of charactersthat can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial ", if any).

There are several different forms of bracket expressions, including:

* Matching List — A matching list expression specifies alist that matches any
one of the charactersin the list. For example, '[abc]' matches any of the
characters'd, 'b', or 'c'.

¢ Non-Matching List — A non-matching list expression beginswith a*', and
specifies alist that matches any character not in the list. For example, ‘[*abc]’
matches any characters except 'a, 'b', or 'c’. The "M only has this special
meaning when it occurs first in the list immediately after the opening '[".

Building IDL Applications Learning About Regular Expressions

310 Chapter 14: Strings

* RangeExpression — A range expression consists of 2 characters separated
by ahyphen, and matches any characters lexically within the range indicated.
For example, '[A-Za-z]' will match any aphabetic character, upper or lower
case. Another way to get this effect isto specify [a-z]' and use the
FOLD_CASE keyword to STREGEX.

Special Characters in Regular Expressions

Special (non-printing) characters are often represented in regular expressions using
backslash escape codes, such as\ t to represent a TAB character or \ n to represent a
newline character. IDL does not support these backslash codesin regular expressions.
See “Non-Printing Characters’ on page 306 for information on how to represent
these special charactersin regular expressions.

Learning About Regular Expressions Building IDL Applications

Chapter 15

Arrays

The following topics are covered in this chapter:

Overviewof Arrays 312
Understanding Array Subscripts 316
Assignment Operations and Arrays. 320
Using Scalar Values as Subscripts 322
Using Arraysas Subscripts 324

Conditionally Altering Array Elements. .. 327

Building IDL Applications

SubscriptRanges 329
Avoid Using Range Subscripts 333
Combining Subscripts 334
Manipulating Arrays 336
Columns, Rows, and Array Mgjority 342

311

312 Chapter 15: Arrays

Overview of Arrays

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. An array can be of any IDL datatype; saying that an array isof a
particular type means that all elements of the array are of that datatype. Array
subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

One-dimensional arrays are often called vectors. The following IDL statement
creates a vector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often called matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:
PRI NT, array

IDL prints:

1 2 3
4 5 6

Arrays can have up to eight dimensionsin IDL. The following IDL statement creates
athree-column by four-row by five-layer deep three-dimensional array. In this case,
we usethe IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL isan array-oriented language. This means that any operation on an array is
performed on all elements of the array, without the need for the user to write an
explicit loop. The resulting codeis easier to read and understand, and executes more
efficiently. For example, suppose you have athree-dimensional array and wish to
divide each element by two. A language that does not support array operations would
reguire you to write aloop to perform the division for each element; IDL can
accomplish the division in asingle line of code:

array = array/?2

Overview of Arrays Building IDL Applications

Chapter 15: Arrays 313

Determining the Number of Array Elements

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of elementsin
arrays or vectorsis equal to the product of the dimensions. TheN_ELEMENTS
function returns zero if its parameter is an undefined variable. The result isawaysa
longword scalar. For example, the following expression is equal to the mean of a
numeric vector or array.

array = FINDGEN(3, 4, 5)
PRI NT, TOTAL(array) / N_ELEMENTS(array)

Operations on Array Expressions

Functions exist to create arrays of the datatypes IDL supports. (See “Array Creation”
inthe IDL Quick Reference manual for alist of available routines.) The dimensions of
the desired array are the parameters to these functions. The result of FLTARR(5) isa
floating-point array with one dimension, a vector, with five elements initialized to
zero. FLTARR(50,100) is atwo-dimensional array, a matrix, with 50 columns and
100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array areignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array alwaysyields an array of identical dimensions. When two arrays of
equal size (number of elements) but different dimensionality are operands, the result
is of the same dimensionality as the first operand. For example:

; Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, arow vector is added to a column vector and arow vector is
obtained because the operands are the same size. This causes the result to take the
dimensionality of thefirst operand. Here are some examples of expressionsinvolving
arrays:

; An array in which each elenent is equal to the sane elenent in

; ARR plus one. The result has the sane dimensions as ARR |If ARR

; 1s byte or integer, the result is of integer type; otherw se, the

; result is the sane type as ARR
ARR + 1

; An array obtained by summ ng two arrays.
ARR1 + ARR2

Building IDL Applications Overview of Arrays

314

Chapter 15: Arrays

; An array in which each elenment is set to twice the smaller of
; either the correspondi ng el enent of ARR or 100.
(ARR < 100) * 2

; An array in which each elenment is equal to the exponential of the
; same el ement of ARR divided by 10.
EXP(ARR/ 10.)

; An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./ MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. Thisway of writing the statement requires that each element of ARR be
operated on twice. If (3. / MAX(ARR)) isevauated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.

Array Subscripts

Subscripts are used to select individual elements of an array for retrieval or
modification. The subscript of an array element denotes the address of the element
within the array. In the simple case of a one-dimensional array (that is, an n-element
vector), elements are numbered starting at 0 with the first element, 1 for the second
element, and running to n — 1, the subscript of the last element.

The syntax of a subscript referenceis:
Variable Name [Subscript_ List]

or
(Array_Expression)[Subscript_List]

The SQubscript_List issimply alist of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commasiif there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts. Factors affecting the outcome of the expression
include whether the subscript appears on the right or left side of the assignment
operator, and the dimensionality of the subscript (scalar, array or range). See the
following topics for more information:

e See“Understanding Array Subscripts’ on page 316 for important information
regarding the structure of an array and how subscripts are used to access
elements of the array

Overview of Arrays Building IDL Applications

Chapter 15: Arrays 315

e See“Assignment Operations and Arrays’ on page 320 for details on how to
manipulate arrays using subscripts and the assignment operator

e See“Manipulating Arrays’ on page 336 for information on transposing and
multiplying multi-dimensiona arrays

e “Columns, Rows, and Array Majority” on page 342 describes how a multi-
dimensional array is mapped in computer memory, and the ramifications of
this mapping when working with arraysin IDL

Building IDL Applications Overview of Arrays

316 Chapter 15: Arrays

Understanding Array Subscripts

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elementsto receive new values. The expression ar r [12] denotesthe
value of the 13th element of ar r (because subscripts start at 0), while the statement
arr[12] = 5 storesthe number 5 in the 13th element of ar r without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. IDL’s notational convention isthat for generic arrays and images, the first
subscript denotes the column and the second subscript denotes the row. In standard
mathematical representation (linear algebra, for example), the convention isreversed:
the first subscript denotes the row and the second subscript denotes the column.

If Aisa2-element by 3-element array (using [column, row] notation), the elements
are stored in memory as follows:

Stored in Memory
Aoo Ao Lowest memory address
Ao A1
Ao 2 A2 Highest memory address

Table 15-1: Storage of IDL Array Elements in Memory

The elements are ordered in memory as: Ag o, A10: Ap 1, A1.1: Ag2s A . This
ordering is like Fortran. It is the opposite of the order used by C/C++. For more
information on how IDL arranges multidimensional datain memory, see “Columns,
Rows, and Array Mgjority” on page 342. For adiscussion of how the ordering of such
datarelatesto IDL mathematics routines, see “Manipulating Arrays’ on page 336.

Understanding Array Subscripts Building IDL Applications

Chapter 15: Arrays 317

Note
When comparing IDL’s memory layout to other languages, remember that those
languages usually use a mathematical [row, column] notation for array dimensions,
which isthe reverse of the array notation used for the example above. See
“Columns, Rows, and Array Majority” on page 342 for more on comparing IDL’s
array layout to that of other languages.

Arrays that contain image data are usually displayed in graphics displays with row
zero at the bottom of the screen, matching the display’s coordinate system (although
this order can be reversed by setting the system variable 'ORDER to a nonzero
value). Array data are printed to standard text output (such asthe IDL output log or
console window) with the first row on top.

Arrays with multiple dimensions are addressed by specifying a subscript expression
for each dimension. A two-dimensional array with n columns and mrows, is
addressed with a subscript of the form [i, j], where0<i <nand 0 <j <m. Thefirst
subscript, i, is the column index; the second subscript, j, is the row index. For
example, the following statements select and print the element in the first column of
the second row of ar r ay:

array = [[1, 2, 3], [4, 5, 6]]
PRI NT, array[O, 1]

IDL prints:
4

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points.

Aoo Aoa
Ao1 A11
Aoz A1

Inthe 2 by 3 element array, A, element A[2] isthe sameelement asA[0, 1], and
Al 5] isthesameelementas Al 1, 2].

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is hegative or larger than the size of the dimension
minus 1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expressionis
not integer, alongword integer copy is made and used to evaluate the subscript.

Building IDL Applications Understanding Array Subscripts

318 Chapter 15: Arrays

Note
When floating-point numbers are converted to longword integers, they are
truncated, not rounded. Thus, specifying Al 1. 99] isthe same as specifying A[1] .

Extra Dimensions

When creating arrays, IDL eliminates al size 1, or “degenerate”, trailing dimensions.
Thus, the statements

A = I NTARR(10, 1)
HELP, A

print the following:
A I NT = Array[10]

Thisremoval of superfluous dimensionsis usually convenient, but it can cause
problemswhen attempting to write fully general procedures and functions. Therefore,
IDL alowsyou to specify “extra’ dimensions for an array as long as the extra
dimensions are all zero.

For example, consider a vector defined as follows:
arr = | NDGEN(10)
Thefollowing are all valid references to the sixth element of arr :

X = arr[5]
X = arr[5, 0]
X =arr[5 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

The REFORM function can be used to add degenerate trailing dimensionsto an array
if desired. For example, the following statements create a 10 element integer vector,
and then alter the dimensions to be [10, 1]:

| NTARR(10)
REFORM A, 10, 1, / OVERWRI TE)

A
A

Understanding Array Subscripts Building IDL Applications

Chapter 15: Arrays 319

Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in avisualy identical way to specify argument lists.
Asaresult, the IDL compiler was not able to distinguish between arrays and
functions by looking at the statement syntax. For example, the IDL statement

val ue = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to afunction called fish.

To determineif it is compiling an array subscript or afunction call, IDL checksits
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that function
with the argument specified. If IDL does not find a function with the correct namein
itstable of known functions, it assumes that the unknown element is an array, and
attempts to return the value of the designated element of that array. Thisrule
generally gives the desired result, but it can be fooled into the wrong choice under
certain circumstances, much to the surprise of the unwary programmer.

For thisreason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in thisway is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and later:

val ue = fish[5]
sets value to the sixth element of an array named fish.

Due to the large amount of existing IDL code written in the older syntax, aswell as
theingrained habits of thousands of IDL users, IDL continuesto allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

val ue = fish[5]
is unambiguous,
val ue = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
to version 5.0.

Since the older syntax has been used widely, you should not be surprised to see it
from time to time. However, square brackets are the preferred form, and should be
used for new code.

Building IDL Applications Understanding Array Subscripts

320 Chapter 15: Arrays

Assignment Operations and Arrays

Thefollowing table shows the variations possible in expressions containing array and
scalar subscripts. The result of the assignment operation depends upon the
dimensionality of the subscript.

Note
A subscript structure can also be composed of arange of elements. If expressionis
scalar, it isinserted into the subarray. If Variable[Range] and Array are the same
size, elements of Array specified by Range areinserted in Variable. Itisillegal if
Variable[Range] and Array are different sizes. See “ Subscript Ranges’ on page 329
for complete details. For information on when you should not use subscript ranges,
see “Avoid Using Range Subscripts’ on page 333.

Syntax Structure Description

Vari abl e[Scal ar Subscri pt s] Expression is stored in a single element of
Scal ar Expr essi on \ariable.

arrOne = [1, 2, 3, 4, 5]
arrOne[2] =9
PRI NT, arrOne

1 2 9 4 5

Vari abl e[Scal ar Subscri pt s] Expression array isinserted in Variable
ArrayExpression array beginning at point indicated by

subscript.

arrOne = [1, 2, 3, 4, 5]

arrTwo = [11, 12]

arrOne[1] = ArrTwo

PRI NT, arrOne
1 11 12 4 5

Note - An “out of range subscript” error will
occur if you attempt to insert ar r Two
elements into non-existent elements of

arr One. For examplearr One[4] =

Arr Two falls.

Table 15-2: Introduction to Subscript Expression Structures

Assignment Operations and Arrays Building IDL Applications

Chapter 15: Arrays 321

Syntax Structure Description
Vari abl e[ArraySubscripts] = Expression scalar is stored in designated
Scal ar Expr essi on elements of Variable. Other array elements
are unchanged.
arrOne = [1, 2, 3, 4, 5]
arrOne[[2, 4]] =0

PRI NT, arrOne
1 2 0 4 0

Note - Note the use of the double brackets.
Attempting to assign zerosto the 3rd and 5th
element of the array using

arrOne[2, 4 =0

resultsinan error: “Att enpt to
subscript ARRONE with <INT(4)>is
out of range.” IDL interpretsthisas
attempting to modify a single element in the
3rd column and 5th row, which does not

exist.
Vari abl e[ArraySubscripts] = | Elements of Expression are stored in
ArrayExpression designated elements of Variable.
arrOne = [1, 2, 3, 4, 5]
arrOne[[0, 2]] = [111, 333]

PRI NT, arrOne
111 2 333 4 5

Note - Elements of the subscript array that
are negative, or greater than the highest
subscript of the subscripted array, are
clipped to the target array boundaries. For
example,

arrOne[[-1, 2]] = [111, 333]

hasthe sameresult asarr One[[0, 2]] . See
“Clipping” on page 325 for details.

Table 15-2: Introduction to Subscript Expression Structures (Continued)

Note
Array operations are much more efficient than loops. See “Use Vector and Array
Operations’ on page 206 for details.

Building IDL Applications Assignment Operations and Arrays

322 Chapter 15: Arrays

Using Scalar Values as Subscripts

Scalar quantitiesin IDL can be thought of as the first element of an array with one
dimension. They can be subscripted with a zero reflecting the first and only position.
Therefore,

; Assign the value of 5 to A
A=5
: Print the value of the first elenment of A
PRI NT, A[0]

IDL prints:
5

If we redefine the first element of A:
;. Redefine the first elenent of A
A[0] =6
PRI NT, A

IDL prints:

6

Note

You cannot subscript avariable that has not yet been defined. Thus, if thevariable B
has not been previoudly defined, the statement:

B[O] = 9

will fail with the error “variable is undefined.”

Subscripting Arrays Using Scalar Values

The subscripted variable can have either a scalar or array subscript with the form:
Vari abl e[Subscri pts] = Scal ar _Expressi on

If the subscript expression is a scalar value, a single e ement of the specified array is
set to the value of the scalar expression. The expression can be of any typeand is
converted, if necessary, to the type of the variable. The variable on the left side must
be either an array or afile variable. Some examples of assigning scalar expressions to
subscripted variables are:

: Set elenment 100 of data to val ue.

Using Scalar Values as Subscripts Building IDL Applications

Chapter 15: Arrays 323

data[99] = 1.234999

Store string in an array. aName nust be a string array or an
error will result.
aNanme[i ndex] = 'Joe'

; Set element [X, Y] of the 2-dinmensional array imge to the val ue
cont ai ned in pixel.
i mge[X, Y] = pixel
If the subscript expression is an array, the scalar value is stored in the elements of the
array whose subscripts are elements of the subscript array. For example, the
following statement zeroes the four specified elements of data: data[3], data[5],
data[7] and data[9]:

data[[3, 5 7, 9]] =0

The subscript array is converted to integer type if necessary before use. Elements of
the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error isto use a negative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

When a subscripted variable reference appearsin an expression, the values of the
selected array elements are extracted. For example, the following statements extract
the first two values from ar r ay by subscripting with a second array (i ndi ces) and
store the valuesin the variable new_ar r ay:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
indices = [0, 1]

new array = array[indices]

PRI NT, new_array

IDL prints:
1.0 2.0

See the following sections for more information on array subscripts and clipping.

Building IDL Applications Using Scalar Values as Subscripts

324 Chapter 15: Arrays

Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the subscript array
selects an element in the subscripted array. When subscript arrays are used in
conjunction with subscript ranges (as discussed in “ Combining Subscripts’ on

page 334), more than one element may be selected for each element of the subscript
array.

If no subscript ranges are present, the length and dimensionality of the result is the
same as that of the subscript expression. The type of the result is the same asthat of
the subscripted array. If only one subscript is present, al subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript array, the process can be described as follows:

Vg if 0<S<n

VI[S] = V, if S <0 for0<i<m
Vi_qif Szn

Here, the vector V has n elements, and the subscript array Shas m elements. The
result V[§ hasthe same dimensionality and number of elementsas S If the subscript
expression applied to the variable is an array and an array appears on the right side of
the statement:

Vari abl e[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. Note the use of array subscripts (double
brackets). For example, the statement

B[2, 4, 6]] =[4, 16, 36]
is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36

Using Arrays as Subscripts Building IDL Applications

Chapter 15: Arrays 325

For another example, consider the statements:

A=1[6, 5 1, 8, 4, 3]
B=1[0 2 4, 1]
C=AB

PRINT, C

This produces the following output:
6 1 4 5

Thefirst element of Cis 6 because that is the number in the O position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A isal0x nmatrix, the element A[i, j] has the subscript i+10*].

When there is an array expression on the right, it isinserted into the array appearing
on the left side of the equal sign starting at the point designated by the scalar
subscript. For example, the following createsi nt Arr, a5 column by 2 row integer
array of zeros. Insert array Bintoi nt Ar r beginning at the position designated by the
scalar subscript (note the use of single brackets).

A = | NTARR(5, 2)

B = [222, 333, 444]

Al =B

PRINT, A

0 222 333 444 0

0 0 0 0 0
Note

The subscript array is converted to longword type before use if necessary.
Regardless of structure, this subscript array isinterpreted as a vector.

Clipping

If an element of the subscript array islessthan or equal to zero, the first element of
the subscripted array is selected. If an element of the subscript array is greater than or
equal to the last subscript in the subscripted array, the last element is selected.

Note
Elements of the subscript array that are negative or larger than the highest subscript
are clipped to the target array boundaries. Note that a common error isto use a
negative scalar subscript (e.g., A[-1]). Using this type of subscript causes an error.
Negative array subscripts (e.g., A[[-1]]) do not cause errors.

Building IDL Applications Using Arrays as Subscripts

326 Chapter 15: Arrays

This clipping of out of bounds elements can be disabled within aroutine by using the
STRICTARRSUBS option to the COMPILE_OPT statement. (See the
documentation for “COMPILE_OPT” in the IDL Reference Guide manual for
details.) If STRICTARRSUBS isin force, then array subscripts that refer to out of
bounds elements will instead cause IDL to issue an error and stop execution, just as
an out-of -range scalar subscript does.

Examples Using Arrays as Subscripts

One way to create a square n x n identity matrix is as follows:

A = FLTARR(N, N)

ALINDGEN(N) * (N + 1)] =1.0
Theexpression | NDGEN(N) * (N + 1) resultsin avector containing the subscripts of
the diagona elements[0, N+1, 2N+2, ..., (N-1)*(N+1)].Thefollowing
statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1

Yet another way isto use two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts[[0,0], [1,1], ..., [n-1, n-1]].

Assumethe variable Aisa 10 by 10 array. Here, the subscripts of the diagonal
dements(A[0,0], Al1,1], ..., A[9, 9])aeequato0, 11,22, ...,99. The
elements of the vector | NDGEN(10) * 11 also are equal to 0, 11, 22, ..., 99, so the
expression A[| NDGEN(10) * 11] yieldsa10-element vector containing to the
diagonal elements of A.

Using Arrays as Subscripts Building IDL Applications

Chapter 15: Arrays 327

Conditionally Altering Array Elements

The WHERE function can be used to select array elements that meet certain
conditions. For example, the statement:

dat al WHERE(data LT 0)] = -1

sets all negative elements of datato -1 without changing the positive elements. The
result of the function, WHERE(dat a LT 0), isavector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.

Similarly, the WHERE function can be used to select elements of an array using
expressionssimilar to Al WHERE(A GT 0)], which resultsin avector composed only
of the elements of A that are greater than O.

The following statements create and display a 5x5 identity matrix, which consists of
ones along adiagonal, and zeros everywhere el se:

A = FLTARR(5, 5)

Al INDGEN(5) * 6] =1

PRINT, A
The following statement sets elements of A with values of zero or lessto -1.

Al WHERE(A LE 0)] = -1
PRINT, A

In this example, assume that the vector dat a contains data elements and that a data
drop-out is denoted by a negative value. In addition, assume that there are never two
or more adjacent drop-outs. The following statements replace al drop-outs with the
average of the two adjacent good points:

; Subscript vector of drop-outs.
bad = WHERE(data LT 0)

Repl ace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2

In this example, the following actions are performed:

WeusetheLT (lessthan) operator to create an array, with the same
dimensions as data, that containsa 1 for every element of datathat is less than
zero and azero for every element of datathat is zero or greater. We use this
“drop-out array” as a parameter for the WHERE function, which generates a
vector that contains the one-dimensional subscripts of the elements of the
drop-out array that are nonzero. The resulting vector, stored in the variable
bad, contains the subscripts of the elements of data that are less than zero.

Building IDL Applications Conditionally Altering Array Elements

328 Chapter 15: Arrays

 Theexpressiondat a[bad - 1] isavector that contains the subscripts of the
pointsimmediately preceding the drop-outs; while similarly, the expression
dat a[bad + 1] isavector containing the subscripts of the points
immediately after the drop-outs.

* Theaverage of these two vectorsis stored in dat a[bad] , the points that
originaly contained drop-outs.

Note
Also see * Example—Using Array Operators and WHERE” on page 207 for an
additional example.

Conditionally Altering Array Elements Building IDL Applications

Chapter 15: Arrays 329

Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges.

Note
Processing subscript ranges isinefficient. When possible, use an array or scalar
subscript instead of specifying a subscript range where the beginning and ending
subscripts are separated by the colon character. See “Avoid Using Range
Subscripts’ on page 333 for details.

There are six types of subscript ranges:

Subscript

Eormat Description

[*] All elements of adimension.

Thisform is used with multidimensional arrays to select all
elements along the dimension. For example, if arr isa10-
column by 12-row array, arr[*, 11] isthelastrow of arr,
composed of elements[arr[0, 11], arr[1,11], ...,
arr[9,11]], andisal0-element row vector. Similarly,
arr[0, *] isthefirstcolumnofarr,[arr[O0,0],
arr[0,1],..., arr[0,11]],anditsdimensionsare 1
column by 12 rows.

[ep:eq] Subscript range from eg to e;.

This denotes all elements whose subscripts range from the
expression e through e; (g5 must not be greater than e;). For
example, if the variable vec is a 50-element vector,

vec[5: 9] isafive-element vector composed of vec| 5]
through vec] 9] .

Table 15-3: Subscript Range Forms

Building IDL Applications Subscript Ranges

330

Chapter 15: Arrays

Subscript
Format

Description

[e0*]

A range from given element to the last element of dimension.

This denotes all elements from a given element to the last
element of the dimension. If the variable vec isa50-element
vector, vec[10: *] isad40-element vector made from

vec[10] throughvec|[49].

[evere]

Every esth element in arange of subscripts from eg to e;.

This denotes every e,th element within the range of subscripts
€ through e; (ey must not be greater than e;). e, isreferred to
asthe subscript stride. The stride value must be greater than or
equal to 1. If it is set to the value 1, the resulting subscript
expression isidentical in meaning to [ey:€;], as described
above. For example, if the variable vec is a50-element vector,
vec[5: 13: 2] isafive-element vector composed of vec|[5],
vec[7] ,vec[9], vec[11] ,and vec[13] .

[eg*:€)]

Every esth element from element e to the end of dimension.

This denotes every esth element from a given element to the
last element of the dimension, written as[ey:*:e,] wheree, is
referred to as the subscript stride. The stride value must be
greater than or equal to 1. If it is set to the value 1, the
resulting subscript expression isidentical in meaning to [ey:*],
as described above. If the variable vec is a50-element vector,
vec[10: *: 4] isal0-element vector made from every fourth
element between vec[10] throughvec[49] .

[n]

A simple subscript.

When used with multidimensional arrays, simple subscripts
specify only elements with subscripts equal to the given
subscript in that dimension.

Table 15-3: Subscript Range Forms (Continued)

Multidimensional subarrays can be specified using any combination of the above
forms. For example, if arr isal0x10array,arr[*, 0: 4] ismadefromall columns
of rows0to4 of arr or a10-column, 5-row array.

Subscript Ranges

Building IDL Applications

Chapter 15: Arrays 331

Dimensionality of Subarrays

The dimensions of an extracted subarray are determined by the sizein each
dimension of the subscript range expression. In general, the number of dimensionsis
equal to the number of subscripts and subscript ranges. The size of the n-th dimension
isequal to one if asimple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. If ar r
isa10-column by 12-row array, the expression ar r [*, 11] resultsin arow vector
with asingle dimension. (The result of the expression is a 10-column by 1-row array;
the last dimension is degenerate and is removed.) On the other hand, the expression
arr[0, *] became acolumn vector with dimensions of [1, 12], showing that the
structure of columnsis preserved because the dimension with a size of one does not
appear at the end.

To seethis, enter the following statementsin IDL:

arr = | NDGEN(10, 12)
HELP, arr

HELP, arr[*, 11]
HELP, arr[O0, *]

In the following examples, vec is a 50-element floating-point vector, and ar r isa
10-column by 12-row integer array. Some typical subscript range expressions are as
follows:

vec
arr

FI NDGEN(50)
| NDGEN(10, 12)

El ements 5 through 10 of vec, a six-elenment vector.
vec[5:10]

. A three-el enent vector.
vec[l - 1:1 + 1]

; The sane vector.
[vec[l - 1], vec[l], vec[l + 1]]

El ements fromvec[4] to the end, a 46-el enent (50-4) vector.
vec[4:*]

; Values of the elenents with even subscripts in vec.
vec[0: *: 2]

Building IDL Applications Subscript Ranges

332

Chapter 15: Arrays

; Values of the elenents with odd subscripts in vec:
vec[1l:*:2]

The fourth colum of arr, a 1 colum by 12 row vector.
arr[3, *]

: The first row of arr, a 10-elenent row vector. Note, the | ast
; dinension was renoved because it was degenerate.

[arr[3, O], arr[3, 1], ..., arr[3, 11]]

arr[*, 0]

; The ni ne-poi nt nei ghborhood surrounding arr[X, Y], a 3 by 3 array.
arr[X - 1: X + 1, Y- 1:Y + 1]

; Three columms of arr, a 3 by 12 subarray:
arr[3:5,*]

To insert the contents of an array called A into array B, starting at point B[13, 24], use
the following statement:

B[13, 24] = A

If Aisa5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:
B[100, 200] = B[200: 300, 300: 400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Assuming the variable Bisa 512 x 512-byte array, some examples are as follows:

; Store 1 in every elenent of the i-th row
array[*, 1] =1

; Store 1 in every elenent of the j-th col um.
array[J, *] =1

; Zero all the rows of columms 200 through 220 of array.
array[200: 220, *] =0

; Store the value 100 in all the elenents of array.
array[*] = 100

Subscript Ranges Building IDL Applications

Chapter 15: Arrays 333

Avoid Using Range Subscripts

It is possible to use range subscripts in an assignment statement, however, when
possible, you should avoid using range subscripts in favor of using scalar or array
subscripts. This type of assignment statement takes the following form;

Vari abl e[Subscri pt _Range] = Expression

A subscript range specifies a beginning and ending subscripts, which are separated by
the colon character. An ending subscript equal to the size of the dimension minus one
can bewritten as*. For example, arr [1 : J] denotes those pointsin the vector ar r
with subscripts between | and J inclusive. | must be less than or equal to J and
greater than or equal to zero. J denotesthe pointsinarr fromarr[1] tothelast
point and must be less than the size of thedimension arr [1:*]. See“Subscript
Ranges’ on page 329 for more details on subscript ranges.

When possible, you should avoid using range subscriptsin favor of using scalar or
array subscripts. In the following example, the array elements of X are inserted into
array A. The low way uses subscript ranges, specifying the insertion of X array
elements into the 5th through 7th elements of A. The fast way uses a scalar subscript
specifying the first element (the 5th) to be replaced with the elements of A.

A = | NTARR(10)

X=1011,1]

PRINT, '"A =", A

; Sl ow way:

t = SYSTIME(1l) & FOR i =0L, 100000 DO A[4:6] = X &
PRI NT, ' Sl ow way: ', SYSTIME(1)-t

PRINT, '"A =", A

; Correct way is 4 tinmes faster!!:

t = SYSTIME(1) & FOR i =0L, 100000 DO A[4] = X &

PRI NT, 'Fast way: ', SYSTIME(1)-t
PRINT, "A =", A
IDL prints:
A= 0 0 O O O o0 O0O o o0 o
Sl ow way: 0. 47000003
A= 0 0 0 o0 1 1 1 0 0 O
Fast way: 0.12100005

A= 0 0 0 0 1 1 1 0 0 0

The statement Al 4] = X, where X is athree-element array, causes IDL to start at
index 4 of array A, and replace the next three elementsin A with the elementsin X.
Because of theway itisimplemented in IDL, Al 4] = X ismuch more efficient than
Al 4:6] = X

Building IDL Applications Avoid Using Range Subscripts

334

Chapter 15: Arrays

Combining Subscripts

Subscript arrays can be combined with subscript ranges, simple scalar subscripts, and
other subscript arrays.

When IDL encounters a multidimensional subscript expression that contains one or
more subscript arrays, ranges, or scalars, it builds a subscript array by processing
each element in the subscript expression from left to right. The resulting subscript
array isthen applied to the variable to be subscripted. Aswith other subscript
operations, trailing degenerate dimensions (those with a size of 1) are eliminated.

Subscript Ranges

When combining a subscript array with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elementsin the corresponding subscript array or range.

For example, theexpresson A[[1, 3, 5], 7:9] isanine-element, 3 x 3 array
composed of the following elements:

A1,7 A3,7 A5,7

A1,8 A3,8 A5,8

A1,9 A3,9 A5,9
Each element of the three-element subscript array [1, 3, 5] is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of a two-
dimensional n x marray:

; Zero the first and | ast rows.

Al*, [0, M1]] =0

; Zero the first and |l ast col umms.
A[0, N- 1], *] =0

Combining Subscripts Building IDL Applications

Chapter 15: Arrays 335

Other Subscript Arrays

When combining two subscript arrays, each element of the first subscript array is
combined with the corresponding element of the second subscript array. The two
subscript arrays must have the same number of elements. The resulting subscript
array has the same number of elements as its constituents. For example, the
expresson A [1, 3], [5, 9]] vieldstheelementsA[1, 5] and A 3, 9] .

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expression A[[1, 3, 5], 8] yieldsthethree-
element vector composed of the elements A[1, 8] , A[3, 8] ,and A[5, 8] . The
second dimension of theresult is1 and is eliminated because it is degenerate. The
expression Al 8, [1, 3, 5]] isthel x 3-column vector A[8, 1], A[8, 3], and
Al 8, 5], illustrating that leading dimensions are not eliminated.

Building IDL Applications Combining Subscripts

336 Chapter 15: Arrays

Manipulating Arrays

IDL provides avariety of mechanisms for working with multidimensional data sets.
Understanding these mechanisms requires afamiliarity with linear algebra and the
concept of atwo-dimensiona data set.

Note
There are two terms commonly used to refer to two-dimensional data sets: array
and matrix. People who work with images tend to call two-dimensional data sets
arrays, while mathematicians tend to call two-dimensional data sets matrices. The
terms are interchangeabl e, but the different conventions assumed by people who
use them may lead to confusion.

Consider atwo-dimensional data set, with dimensions m and n. In a compuiter, the
data from this data set is stored in a unidimensional set of memory addresses; what
makes the data “ two-dimensional” is the way the individual elements are indexed by
the software that accesses the datain memory. Thistopic is discussed in detail in
“Columns, Rows, and Array Majority” on page 342; if you are unsure of your
understanding of the process of mapping multidimensional data into unidimensional
computer memory, please read that section carefully.

There are two possible ways to depict atwo-dimensional data set on paper — row by
row or column by column. For example, the standard mathematical representation of
an mx n data set is shown in Figure 15-1, with mrows and n columns:;

AOO AOl AO,n—l

>]

Al,O Al,l Al,n—l

Am—l,O Am—l,l Am—l,n—l

Figure 15-1: An m x n Array Represented in Mathematical Notation

Here, the first dimension (m) represents the row index, and the second dimension (n)
represents the column index. Thus, if the data set is represented using this notation,
theterm Arr ay[3, 2] refersto an element that is four rows down from the top row
and three columnstto the right of the leftmost row. (Note that indices are zero-based.)

Manipulating Arrays Building IDL Applications

Chapter 15: Arrays 337

Figure 15-4 depicts the standard image-processing representation of the same data
set, with m columns and n rows:

AO,O Al,O Am—l,O
AO,l Al,l Am—l,l

AO,n—l Al,n—l Am—l,n—l

Figure 15-2: An m x n Array Represented in Image-processing Notation

Here, the first dimension (m) represents the column index, and the second dimension
(n) represents the row index. Thus, if the data set is represented using this notation,
theterm Arr ay[3, 2] refersto an element that is four columnsto theright of the
leftmost column and three rows down from the top row. Thisis the representation
used by IDL.

It isimportant to understand that these are two views of the same data; all that has
changed is the notational convention applied. Why is this notational convention
important? Because when reading or writing datain atwo-dimensional data set,
performance improvesif elementsthat are contiguous in the computer’s memory are
accessed consecutively. Incrementing the index of the first dimension by one shifts
one “dlot” in computer memory, whereas incrementing the index of the second
dimension by one shifts anumber of “dots’ at least as large as the size of the first
dimension.

Note
The terms column-major and row-major are commonly used to define which

dimension of atwo-dimensional array represents the column index and which
represents the row index. These terms are defined and discussed in detail in
“Columns, Rows, and Array Mgjority” on page 342.

Transposing Arrays
You should be aware that many numerical algorithms — especially those that are

written in arow-major language such as C or C++ — assume data is indexed (row,
column). Since IDL assumes data is indexed (column, row), it is important to keep

Building IDL Applications Manipulating Arrays

338

Chapter 15: Arrays

this distinction in mind. In order to work with data indexed (row, column), you can
use IDL’s TRANSPOSE function to interchange the order of the indices.

Notethat it is possible for an array to be indistinguishable from its transpose. In this
case the number of columns and rows are identical and there is a symmetry between
the rows of the array and the columns of its transpose. Arrays satisfying this
condition are said to be symmetric. When dealing with symmetric arrays the use of
the TRANSPOSE function is unnecessary, since AT = A.

Multiplying Arrays

IDL has two operators used to multiply arrays. To illustrate the difference between
the two operators, consider the following two arrays:

; A 3-colum by 2-row array:
A=1]1[0 1, 2],%
[3, 4, 5]]

; A 2-colum by 3-row array:

B=1[[0 1],%
[2, 3].%
[4 5] 1]

The # Operator

The # operator computes array elements by multiplying the columns of the first array
by the rows of the second array. The resulting array has the same number of columns
asthefirst array and the same number of rows as the second array. The second array
must have the same number of columns asthe first array has rows.

For example, consider the arrays defined above:

01

A = [012}3:) s
345

45

We obtain the elements of A # B asfollows:

Ao,0BootAp1B1o AroBootA11B1ro A2 0BootA21Bio
ApoBo1tAp1B11 ApoBo1tA1L1Br1 AyoBoi1tA1Bia

A oBo2tAp1B12 ApoBo2tA11Bro AyoBo2atAL1B1 o

Manipulating Arrays Building IDL Applications

Chapter 15: Arrays

Or, using the actual values from the arrays:

339

OO +B3)@D) (DO +H(L) (2O +(3)(D)
0)(2)+(3)B) D2+ (HEB) (2(2)+(5)(3)
O)H+)B) (DAH+HEG) 2B+

Therefore, when we issue the following command:

PRI NT, A#B
IDL prints:
3 4 5
9 14 19
15 24 33

Tip
If one or both of the arrays are a so transposed, such as TRANSPOSE(A) # B, itis
more efficient to usethe MATRIX_MULTIPLY function, which does the transpose
simultaneoudly with the multiplication.

Note on the Definition of Matrix Multiplication

While the definition of the IDL # operator may appear to be at odds with the standard
mathematical definition of matrix multiplication — namely, that the operator
multiplies each row of thefirst matrix by each column of the second matrix — thisis
acase of dlightly imprecise terminology. The confusion arises from the mappings of
the words “row” and “column” — which refer to elementsin atwo-dimensional
entity called an array or amatrix — to the one-dimensional vector of values stored in
computer memory. In reality, what the matrix multiplication operator doesis
multiply the elements of the first dimension of the first array/matrix by the elements
of the second dimension of the second array/matrix. IDL’s convention is to consider
thefirst dimension to be the column and the second dimension to be the row, whereas
the standard mathematical convention considersthe first dimension to be the row and
the second dimension to be the column. For a more complete discussion of thistopic,
see “Columns, Rows, and Array Magjority” on page 342.

The ## Operator

Building IDL Applications

The ## operator computes array elements by multiplying the rows of thefirst array by
the columns of the second array. The resulting array has the same number of rows as
thefirst array and the same number of columns as the second array. The second array
must have the same number of rows as the first array has columns.

Manipulating Arrays

340 Chapter 15: Arrays

For example, consider the arrays defined above:
01
A = {o 1 2} R

345/
45

We obtain the e ements of A ## B asfollows:

Ao 0Bo ot A1L0Bo1TA20Bo2 ApoBrotArLoBiLi1tA2 0B
Ap1BootA11Bo1tA,1Boo AgiBiotAgiByiitA, 1By,

Or, using the actual values from the arrays.

{ (0)(0)+(1)(2)+(2)(4) (O)(D)+(D(3)+ (2)(5)}
(3)(0) +(4)(2)+(3)(4) (D) +(H(3) +(5)(5)

Therefore, when we issue the following command:

PRI NT, A##B
IDL prints:

10 13

28 40

Multiplying Vectors

When using the # and ## operators to multiply vectors, note the following:

e For A #B, where A and B are vectors, IDL performs A # TRANSPOSE(B). In
thiscase, C = A # B isamatrix with Cij = Ai Bj. Mathematically, thisis
equivalent to the outer product, usually denoted by A ® B.

» For A ##B, where A and B are vectors, IDL performs TRANSPOSE(A) ## B.
Inthiscase, C = A ## B isamatrix with Cij = Bi Aj.

« To compute the dot product, usually denoted by A - B, use
TRANSPOSE(A) # B.

Manipulating Arrays Building IDL Applications

Chapter 15: Arrays 341

Notes on the # and ## Operators

Note the following with regard to the array multiplication operators:
e The# and ## operators are order specific.
 A#B=B##A
« A#B=BT#ANT
Routines for Multiplying Arrays

The MATRIX_MULTIPLY and MATRIX_POWER routines are also available:

e MATRIX_MULTIPLY calculates the value of the # operator applied to two
(possibly transposed) arrays. See “MATRIX_MULTIPLY” inthe IDL
Reference Guide manual for details.

* MATRIX_POWER computes the product of a matrix with itself. See
“MATRIX_POWER” in the IDL Reference Guide manual for details.

Note
Also see“Array Manipulation” in the IDL Quick Reference manual for alist of

other array manipulation routines.

Building IDL Applications Manipulating Arrays

342 Chapter 15: Arrays

Columns, Rows, and Array Majority

Computer hardware does not directly support the concept of multidimensional arrays.
Computer memory is unidimensional, providing memory addresses that start at zero
and increase serially to the highest available location. Multidimensional arrays are
therefore a software concept: software (IDL in this case) maps the elements of a
multi-dimensional array into a contiguous linear span of memory addresses. There
are two ways that such an array can be represented in one-dimensional linear
memory. These two options, which are explained below, are commonly called row
major and column major. All programming languages that support multidimensional
arrays must choose one of these two possibilities. This choice is a fundamental
property of the language, and it affects how programs written in different languages
share data with each other.

Before describing the meaning of these terms and IDL’s relationship to them, it is
necessary to understand the conventions used when referring to the dimensions of an
array. For mnemonic reasons, people find it useful to associate higher level meanings
with the dimensions of multi-dimensional data. For example, a 2-D variable

contai ning measurements of 0zone concentration on a uniform grid covering the
earth might associate latitude with the first dimension, and longitude with the second
dimension. Such associations help people understand and reason about their data, but
they are not fundamental properties of the language itself. It isimportant to realize
that no matter what meaning you attach to the dimensions of an array, IDL isonly
aware of the number of dimensions and their size, and does not work directly interms
of these higher order concepts. Another way of saying thisisthat arr [d1, d2]
addresses the same element of variable arr no matter what meaning you associate
with the two dimensions.

In the IDL world, there are two such conventions that are widely used:

* Inimage processing, the first dimension of an image array is the column, and
the second dimension isthe row. IDL iswidely used for image processing, and
has deep roots in this area. Hence, the dominant convention in IDL
documentation is to refer to the first dimension of an array as the column and
the second dimension as the row.

e Inthe standard mathematical notation used for linear algebra, the first
dimension of an array (or matrix) isthe row, and the second dimension is the
column. Note that thisis the exact opposite of the image processing
convention.

Columns, Rows, and Array Majority Building IDL Applications

Chapter 15: Arrays 343

In computer science, the way array elements are mapped to memory is always
defined using the mathematical [row, column] notation. Much of the following
discussion utilizes the mx n array shown in Figure 15-3, with m rows and n columns;

AO,O AO,l AO,n—l
Al,O Al,l Al,n—l

Figure 15-3: An m x n array represented in mathematical notation.

Given such a 2-dimensiona matrix, there are two ways that such an array can be
represented in 1-dimensional linear memory — either row by row (row major), or
column by column (column major):

Contiguous First Dimension (Column Major): In thisapproach, all elements
of the first dimension (min this case) are stored contiguously in memory. The
1-D linear address of element Ay; ¢ is therefore given by the formula
(d2*m + d1).Asyou move linearly through the memory of such an array,
thefirst (Ieftmost) dimension changes the fastest, with the second dimension
(n, in this case) incrementing every time you come to the end of the first
dimension:

AO,O' Al,O' ey Am—l,O- AO,l’ Al,l’ - Am—l,l!

Computer languages that map multidimensional arraysin this manner are
called column major, following the mathematical [row, column] notation. IDL
and Fortran are both examples of column-major languages.

Contiguous Second Dimension (Row M ajor): In this approach, al elements
of the second dimension (n, in this case) are stored contiguously in memory.
The 1-D linear address of element Ay, 4, istherefore given by the formula
(di*n + d2).Asyou move linearly through the memory of such an array,
the second dimension changes the fastest, with the first dimension (min this
case) incrementing every time you come to the end of the second dimension:

AO,O’ AO,l’ . AO,n-l’Al,01 Al,l’ . Al,n-11

Computer languages that map multidimensional arraysin this manner are
known as row major. Examples of row-major languages include C and C++.

Building IDL Applications Columns, Rows, and Array Majority

344

Chapter 15: Arrays

The terms row major and column major are widely used to categorize programming
languages. It isimportant to understand that when programming languages are
discussed in this way, the mathematical convention — in which the first dimension
represents the row and the second dimension represents the column — is used. If you
use the image-processing convention — in which the first dimension represents the
column and the second dimension represents the row — you should be careful to
make note of the distinction.

Note
IDL users who are comfortable with the IDL image-processing-oriented array
notation [column, row] frequently follow the reasoning outlined above and
incorrectly conclude that IDL isarow-major language. The often-overlooked cause
of this mistake is that the standard definition of the terms row major and column
major assume the mathematical [row, column] notation. In such cases, it can be
helpful to look beyond the row/column terminology and think in terms of which
dimension is contiguous in memory.

Note that the m x n array discussed above could be represented with equal accuracy
as having m columns and n rows, as shown in Figure 15-4. This corresponds to the
image-processing [column, row] notation. It’s important to note that while the
representation shown is the transpose of the representation in Figure 15-3, the data
stored in the computer memory are identical. Only the two-dimensional
representation, which takes its form from the notational convention used, has
changed.

AO,O Al,O Am—l,O
AOl Al,l Am—l,l

>

_AO,n—l Al,n—l Am—l,n—

L

Figure 15-4: An m x n array represented in image-processing notation.

IDL’s choice of column-major array layout reflects its roots as an image processing
language. The fact that the elements of the first dimension are contiguous means that
the elements of each row of an image array (using [column, row] notation, as shown
in Figure 15-4) are contiguous. Thisisthe order expected by most graphics hardware,
providing an efficiency advantage for languages that naturally store data that way.

Columns, Rows, and Array Majority Building IDL Applications

Chapter 15: Arrays 345

Also, this ordering minimizes virtual memory overhead, since images are accessed
linearly.

It should be clear that the higher-level meanings associated with array dimensions
(row, column, latitude, longitude, etc.) are nothing more than a human notational
device. In general, you can assign any meaning you wish to the dimensions of an
array, and aslong as your use of those dimensionsis consistent, you will get the
correct answer, regardless of the order in which IDL chooses to store the actual array
elements in computer memory. Thus, it is usualy possible to ignore these issues.
There are times however, when understanding memory layout can be important:

Sharing Data With Other Languages — If binary data written by arow major
language is to be input and used by IDL, transposition of the datais usually required
first. Similarly, if IDL iswriting binary datafor use by a program written in arow
major language, transposition of the data before writing (or on input by the other
program) is often required.

Calling Code Written In Other Languages — When passing IDL datato code
written in arow major language viadynamic linking (CALL_EXTERNAL,
LINKIMAGE, DLMs), it is often necessary to transpose the data before passing it to
the called code, and to transpose the results.

Matrix Multiplication — Understanding the difference between the IDL # and ##
operators requires an understanding of array layout. For a discussion of how the
ordering of such datarelatesto IDL mathematics routines, see “Manipulating Arrays’
on page 336.

1-D Subscripting Of Multidimensional Array — IDL allowsyou to index
multidimensional arrays using asingle 1-D subscript. For example, given atwo
dimensional 5x7 array, ARRAY[2, 3] and ARRAY[17] refer to the same array
element. Knowing this requires an understanding of the actual array layout in
memory (d2*m + d1, or 3*5+2, which yields 17).

Efficiency — Accessing memory in the wrong order can impose a severe
performance penalty if your datais larger than the physical memory in your
computer. Accessing elements of an array along the contiguous dimension minimizes
the amount of memory paging required by the virtual memory subsystem of your
computer hardware, and will therefore be the most efficient. Accessing memory
across the non-contiguous dimension can cause each such access to occur on a
different page of system memory. Thisforces the virtual memory subsystem into a
cycleinwhich it must continually force current pages of memory to disk in order to
make room for new pages, each of which is only momentarily accessed. This
inefficient use of virtual memory is commonly known as thrashing.

Building IDL Applications Columns, Rows, and Array Majority

346 Chapter 15: Arrays

Columns, Rows, and Array Majority Building IDL Applications

Chapter 16
Structures

The following topics are covered in this chapter:

Overview of Structures 348
Creating and Defining Structures 349
Structure References 352
Using HELP with Structures 354
Parameter Passing with Structures 355

Building IDL Applications

Arraysof Structures 357
Structure Input/Output 359
Advanced StructureUsage 362
Automatic Structure Definition 364
Relaxed Structure Assignment 366

347

348 Chapter 16: Structures

Overview of Structures

IDL supports structures and arrays of structures. A structureisacollection of scalars,
arrays, or other structures contained in a variable. Structures are useful for
representing datain anatural form, transferring data to and from other programs, and
containing a group of related items of varioustypes. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of named structure is defined by a unique structure name. The first
time a structure name is used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is amember of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structureis created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of atag name and atag definition that contains the type
and structure of the data contained in the field. A field is referred to by its tag name.
Thetag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field's type, structure, and value. Aswith
structure definitions, afield definition is fixed and cannot be changed. The contents
of afield can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.

Overview of Structures Building IDL Applications

Chapter 16: Structures 349

Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name, : Tag_Definition,, ..., Tag_Name, : Tag_Definition,,}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Namel : Tag_Definition, , ..., Tag_Name, : Tag_Definition,}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names may not be IDL Reserved Words, and must be unique within agiven
structure, although the same tag name can be used in more than one structure.
Structure names and tag names follow the rules of IDL identifiers: they must begin
with aletter; following characters can be letters, digits, or the underscore or dollar
sign characters; and case isignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to itstag
definition.

A named structure that has aready been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Sructure_Name}
Theresult of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data.

Building IDL Applications Creating and Defining Structures

350

Chapter 16: Structures

Also, when making a named structure that has already been defined, the tag names
need not be present:

{Sructure_Name, expressiony, ..., expression,,}
All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one as follows:

A = {one, datala:0, datalb:OL }

we can define a second structure two that includes the tags from the one structure
with the following definition statement:

B ={ tw, INHERI TS one, data2:0.0 }
Thisisthe same as defining the structure two with the statement:
B ={ tw, datala:0, datalb:0L, data2:0.0 }

Note that the fields of the one structure are included in the two structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag names in the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If astructure inherits tags from another structure that is not yet defined, IDL
will search for aroutine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 364. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERI TS specifier isused in a class
structure definition, it has the added effect of defining the inheriting object asa
subclass of the inherited class. For adiscussion of object-oriented IDL programming,
see Chapter 13, “Creating Custom Objectsin IDL” in the Object Programming
manual.

Creating and Defining Structures Building IDL Applications

Chapter 16: Structures 351

Example of Creating a Structure

Assumethat a star catalog is to be processed. Each entry for a star contains the
following information: star name, right ascension, declination, and an intensity
measured each month over the last 12 months. A structure for thisinformation is
defined with the following IDL statement:

A = {star, name:'', ra: 0.0, dec:0.0, inten: FLTARR(12)}

This structure definition is the basis for all examplesin this chapter. The statement
above defines a structure type named star, which contains four fields. The tag names
arename, ra, dec, and inten. The first field, with the tag name, contains a scalar string
as given by itstag definition. The following two fields each contain floating-point
scalars. The fourth field, inten, contains a 12-element, floating-point array. Note that
the type of the constants, 0.0, isfloating point. If the constants had been written as 0,
the fields ra and dec would contain short integers.

The same structure is created as an anonymous structure by the statement:

A ={nanme:'', ra:0.0, dec:0.0, inten: FLTARR(12)}
or by using the CREATE_STRUCT function:
A = CREATE_STRUCT(' nanme', '', 'ra', 0.0, 'dec', 0.0, $

"inten', FLTARR(12))

Building IDL Applications Creating and Defining Structures

352 Chapter 16: Structures

Structure References

The basic syntax of areference to afield within a structure is as follows:
Variable Name.Tag Name

Variable Name must be avariable that contains a structure. Tag_Name is the name
of the field and must exist in the structure. If the field referred to by the tag nameis
itself astructure, the Tag_Name can optionally be followed by one or more additional
tag names, as shown by the following example:

var.tagl. tag2
Each tag name, except possibly the last, must refer to afield that contains a structure.

Subscripted Structure References

A subscript specification can be appended to the variable or tag names if the variable
isan array of structures or if the field referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable_Name.Tag_Name[Subscripts]
Variable Name[Subscripts].Tag_Name...
Variable_Name[Subscripts] . Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If avariable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structuresis referenced without a subscript but with
atag name, the designated field in all array elementsis affected. The complete syntax
of references to structures follows. (Optional items are enclosed in braces, {}.)

Sructure_reference:= Variable Name{[Subscripts]}.Tags
Tags.= { Tags.} Tag
Tag:= Tag_Name{ [Subscripts] }

For example, all of the following are valid structure references:

A B
A B[N, M
Al 12].B

Structure References Building IDL Applications

Chapter 16: Structures 353

A 3:5].B[*, N

Al 12].B. O X *]
The semantics of storing into a structure field using subscript rangesis slightly
different than that of simple arrays. Thisis because the structure of arraysin fieldsare
fixed. See“ Storing Into Array Fields’ on page 355 for details.

Examples of Structure References

The name of the star contained in A isreferenced as A.NAME. The entire intensity
array isreferred to as A.INTEN, while the n-th element of A.INTEN isA.INTEN[N].
Thefollowing are vaid IDL statements using the STAR structure:

;Store a structure of type STARinto variable A Define the val ues
of all fields.

A = {star, name:'SIRIUS , ra:30., dec:40., inten:|NDGEN12)}

;Set nane field. Other fields remain unchanged.
A. nanme = ' BETELGEUSE'

; Print name, right ascension, and declination.
PRI NT, A nane, A.ra, A dec

;Set Qto the value of the sixth element of Alinten. Qwll be a
; floating-point scalar.
Q= A inten[5]

:Set ra field to 23.21.
Ara = 23.21

;Zero all 12 elements of intensity field. Because the type and si ze
;of Alinten are fixed by the structure definition, the semantics of
;assignnent statements is different than with normal vari abl es.
Ainten = 0

;Store fourth thru seventh elenments of inten field in variable B.
B = Ainten[3: 6]

; The integer 12 is converted to string and stored in the nanme field
; because the field is defined as a string.
A name = 12

;Copy Ato B. The entire structure is copied and B contains a STAR
;structure.
B=A

Building IDL Applications Structure References

354 Chapter 16: Structures

Using HELP with Structures

Use the HEL B/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A
prints the following information:
** Structure STAR 4 tags, |ength=40:

NAVE STRING 'SIRUS

RA FLOAT 30. 0000
DEC FLOAT 40. 0000
| NTEN I NT Array(12)

Using HEL P with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HEL P with the STRUCTURE keyword
and no parameters prints alist of all defined, named structure types and their tag
names.

Using HELP with Structures Building IDL Applications

Chapter 16: Structures 355

Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the
structure field A.name:

PRI NT, A. nane

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A.nameis an expression and is passed by value. Thisworks as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A. nane

does not read into A.name but interprets its parameter as a prompt string. The proper
code to read into the field is as follows.

; Copy type and attributes to variable.
B = A nane

;Read into a sinple variable.
READ, B

;Store result into field.
A.nane = B

Storing Into Array Fields

As mentioned previoudly, the semantics of storing into structure array fieldsis
dlightly different than storing into simple arrays. The main differenceis that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not arange specification. Other differences occur
because the size and type of afield are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rulesfor
storing into array fields are as follows:

VAR.ARRAY_TAG = Scalar_Expression

All elements of VAR.tag are set to Scalar_Expression. For example:

:Set all 12 elenments of A inten to 100.
A inten = 100

Building IDL Applications Parameter Passing with Structures

356 Chapter 16: Structures

VAR.TAG = Array_Expression

Each element of Array Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an error
results. If it contains fewer elements than VAR.TAG, the unmatched elements remain
unchanged. For example:

:Set Ainten to the 12 nunbers 0, 1, 2,..., 11.
A inten = FI NDGEN(12)

;Set Alinten[0] to 1 and A.inten[1] to 2. The other el enents
; remai n unchanged.
Ainten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression
The value of the scalar expression issimply copied into the designated element of the

destination. If Subscript is an array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth element of Ainten to 100.
A inten[5] = 100
:Set elenents 2, 4, and 6 to 100.
Ainten[[2, 4, 6]] = 100
VAR.TAG[Subscript] = Array_Expression
Unless VAR.tag is an array of structures, the subscript must be an array. Each

element of Array_Expression is copied into the element given by the corresponding
element subscript. For example:

;Set elenents 2, 4, and 6 to the values 5, 7, and 9 respectively.
Alinten[[2, 4, 6]] =[5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression
The value of the scalar expression is stored into each element specified by the
subscript range. For example:

:Sets elenents 8, 9, 10, and 11 to the val ue 5.
Ainten[8:*] =5

VAR.TAG[Subscript_Range] = Array_Expression
Each element of the array expression is stored into the element designated by the

subscript range. The number of elementsin the array expression must agree with the
size of the subscript range. For example:

:Sets elenents 3, 4, 5, and 6 to the nunbers 0, 1, 2, and 3,
;respectively.
A.inten[3:6] = FI NDGEN(4)

Parameter Passing with Structures Building IDL Applications

Chapter 16: Structures 357

Arrays of Structures

An array of structuresis simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structuresisto use the REPLICATE function.
Thefirst parameter to REPLICATE is areference to the structure of each element.
Using the example in “ Examples of Structure References’ on page 353 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLI CATE({star}, 100)
Alternatively, since the variable A contains an instance of the structure STAR, then
cat = REPLI CATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the following
Statement:

cat = REPLI CATE({star, name:'', ra:0.0, dec:0.0, $
i nten: FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

:Set the nane field of all 100 elenents to "EMPTY."
cat.nane = ' EMPTY'

:Set the i-th elenent of cat to the contents of the star structure.
cat[lI] = {star, 'BETELGEUSE , 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into
;cat[99].ra
cat.ra = | NDGEN(100)

;Prints name field of all 100 el enents of cat, separated by commas

Building IDL Applications Arrays of Structures

358

Chapter 16: Structures

;(the last field has a trailing conma).
PRI NT, cat.nane + ','

;Find index of star with nane of SIRI US.
I = WHERE(cat.nane EQ 'SIRIUS')

; Extract intensity field fromeach entry. Qwill be a 12 by 100
; floating-point array.
Q= cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

; Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2:8]

;Sort the array into ascendi ng order by nanmes. Store the result
:back into cat.
cat = cat (SORT(cat.nane))

;Determine the nonthly total intensity of all stars in array.
;monthly is now a 12-el enent array.
nmonthly = cat.inten # REPLI CATE(1, 100)

Arrays of Structures Building IDL Applications

Chapter 16: Structures 359

Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate data type. The
entire structure is enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first examplein this chapter,
resultsin the following output.

{SIRIUS 30.0000 40.0000 01 23456 7 89 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default
formats. The length of string elementsis determined by the format specification (i.e,
to read the next 10 charactersinto a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structuresis a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL datatype, except strings, has afixed length expressed in
bytes. This length (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is also the number of bytes read or written for each element.

All instances of structures contain an even number of bytes. On machines whose
native C compilersforce short integersto begin on an even byte boundary, IDL begins
fieldsthat are not of type byte on an even byte boundary. Thus, a“padding byte” may
appear (when using ASSOC for 1/0) after abyte field to cause the following non-
byte-type field to begin on an even byte. A padding byte is never added before a byte
or byte array field.

Building IDL Applications Structure Input/Output

360

Chapter 16: Structures

For example, the structure:
{exanple, t1:1b, t2:1}

occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t1 to cause the
integer field t2 to begin on an even-byte boundary.

Strings

Strings are exceptions to the above rules because the length of strings within
structuresis not fixed. For example, one instance of the { star} structure can contain a
name field with a five-character name, while another instance of the same structure
can contain a 20-character name. When reading into a structure field that contains a
string, DL reads the number of bytes given by the length of the string. If the string
field contains a 10-character string, 10 characters are read. If the data read contains a
null byte, the length of the string field is truncated, and the null and following
characters are discarded. When writing fields containing strings with the unformatted
procedure WRITEU, IDL writes each character of the string and does not append a
terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
ableto read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem isusing the STRING
function with aformat specification that sets the length of all elementsto some
maximum number. For example, it is easy to set the length of all name fieldsin the
cat array to 20 characters by using the following statement.

cat.nane = STRI NG cat.nane, FORMAT = '(A20)')

This statement will truncate names longer than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in aformat suitable to be read by C or FORTRAN programs.

Structure Input/Output Building IDL Applications

Chapter 16: Structures 361

For example, to read into the cat array from afile in which each name field occupies
26 bytes, use the following statements.

; Make a 100-el enent array of {STAR} structures, storing a

; 26-character string in each nanme field.

cat = REPLI CATE({star, STRING' ', FORMAT = '(A26)'), $
FLTARR(O., 0.12)}, 100)

; Read the structure. As nmentioned above, 26 bytes will be read for
;each nane field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.

READU, 1, cat

Building IDL Applications Structure Input/Output

362 Chapter 16: Structures

Advanced Structure Usage

Facilities exist to process structures in ageneral way using tag numbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, as

follows:
Variable Name.(Tag_Index)...
The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be atag position. In

order for the IDL parser to understand that thisis the case, you must enclose the
Tag_Index in parentheses. Thisis not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Sructure) returns the number of fieldsin a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the/LENGTH keyword.

Names of Structure Tags

The function TAG_NAMES(Structure) returns astring array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the

ISTRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, fromthe keyboard with

; pronpts.
PRO READ_STRUCTURE, S

; Get the names of the tags.
NAMES = TAG _NAMES(S)
; Loop for each field.

FOR 1 =0, N.TAGS(S) - 1 DO BEG N
; Define variable A of sane type and structure as the i-th field.
A=S.(I)

Advanced Structure Usage Building IDL Applications

Chapter 16: Structures 363

;Use HELP to print the attributes of the field. Pronpt user with
;tag nanme of this field, and then read into variable A S. (1) =
;A. Store back into structure fromA.

HELP, S. (1)
READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR

END

Note
In the above procedure, the READ procedure reads into the variable A rather than

S.(1) because S.(1) isan expression, not asimple variable reference. Expressions
are passed by value; variables are passed by reference. The READ procedure
prompts the user with parameters passed by value and reads into parameters passed
by reference.

Building IDL Applications Advanced Structure Usage

364 Chapter 16: Structures

Automatic Structure Definition

Inversions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5 to
allow the automatic definition of named structures.

When IDL encounters areference to an undefined named structure, it will
automatically search the directories specified in 'PATH for a procedure named
Name__ DEFINE, where Name is the actual name of the structure. If this procedureis
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro exists in the directories specified by
IPATH. A call to the HEL P procedure produces the following output:

HELP, { nystruct }, /STRUCTURE
IDL prints:

% Attenpt to call undefined procedure/function:' MYSTRUCT__DEFI NE .
% Structure type not defined: MYSTRUCT.
% Execution halted at: $MAI N

Suppose now that we define a procedure named mystruct__ define.pro asfollows, and
placeit in one of the directories specified by 'PATH:

PRO nystruct __define
tnp = { nystruct, a:1.0, b:'string' }
END

With this structure definition routine available, the call to HEL P produces the
following output:

HELP, { nystruct }, /STRUCTURE
IDL prints:

% Conpi | ed nodul e: MYSTRUCT__ DEFI NE.

** Structure MYSTRUCT, 2 tags, |ength=12:
A FLOAT 0. 00000
B STRI NG

Automatic Structure Definition Building IDL Applications

Chapter 16: Structures 365

Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either viaautomatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain values after creation.

Building IDL Applications Automatic Structure Definition

366 Chapter 16: Structures

Relaxed Structure Assignment

The IDL “=" operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, asfollows:

source = { SRC, A FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A'INDGEN(2), C 20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT Array[2] >, SRC.
% Execution halted at: $MAI N

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.
The STRUCT_ASSIGN procedure performs “ relaxed structure assignment,” whichis
afield-by-field copy of astructure to another structure. Fields are copied according to
the following rules:

1. Any fieldsfound in the destination structure that are not found in the source
structure are “ zeroed” (set to zero, the empty string, or anull pointer or object
reference depending on the type of field).

2. Any fieldsin the source structure that are not found in the destination structure
are quietly ignored.

3. Any fieldsthat are found in both the source and destination structures are
copied one at atime. If necessary, type conversion is done to make their types
agree. If afield in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra’ elementsin
the field in the destination structure are zeroed. If afield in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSI G\, source, dest, /VERBOSE

Relaxed Structure Assignment Building IDL Applications

Chapter 16: Structures 367

IDL prints:

% STRUCT_ASSIGN: SRC tag A is |longer than destination.
The end will be clipped.
% STRUCT_ASSI GN: Destination | acks SRC tag B. Not copi ed.

If we check the variable dest, we see that it has the definition of the dest structure and
the data from the source structure:

HELP, dest, /STRUCTURE

IDL prints:
** Structure DEST, 2 tags, |ength=6:
A I NT Array| 2]
C I NT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where this
type of structure definition isvery useful isin restoring object structuresinto an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves data in structures. Your
application may use the IDL SAVE routine to save the data structuresto disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
alows you to make relaxed assignments in such cases.

To see how thisworks, try the following exercise:

1. Start IDL, create anamed structure, and use the SAVE procedureto saveit to a
file:

mystruct = { STR A:10, B:20L, C'a string' }
SAVE, nystruct, FILE="test.dat'

2. Exitandrestart IDL.

3. Create anew structure definition with the same name you used previously:
newstruct = { STR A 20L, B:10.0, C'a string', D:ptr_new() }

Building IDL Applications Relaxed Structure Assignment

368 Chapter 16: Structures

4. Attempt to restore the variable mystruct from the test.dat file:
RESTORE, 'test.dat'

IDL prints:

% W ong nunber of tags defined for structure: STR
% RESTORE: Structure not restored due to conflict with
existing definition: STR

5. Now use relaxed structure definition when restoring:

RESTORE, 'test.dat', /RELAXED STRUCTURE_ASSI GNVENT
6. Check the contents of mystruct:

HELP, nystruct, /STRUCTURE

IDL prints:
** Structure STR 4 tags, |ength=20:
A LONG 10
B FLOAT 20. 0000
C STRI NG "a string'
D PO NTER <Nul | Poi nt er >

The structurein the variable mystruct now uses the definition from the new version of
the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of afield has changed, the data type of the old data element has
been converted to the new data type. Fieldsin the new structure definition that do not
correspond to fields in the old definition contain “zero” values (zeroes for numeric

fields, empty strings for string fields, null pointer or references for pointer or
reference fields).

Relaxed Structure Assignment Building IDL Applications

Chapter 17
Pointers

The following topics are covered in this chapter:

Overview of Pointers 370
Heap Variables...................... 371
Creating Heap Variables 373
Saving and Restoring Heap Variables 374
Pointer Heap Variables 375
IDL Pointers 376

Building IDL Applications

Operationson Pointers 379
Dangling References 383
Heap VariableLeakage 384
Pointer Validity 386
Freeing Pointers 387
Pointer Examples 388

369

370 Chapter 17: Pointers
Overview of Pointers

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the
variable that actually holds the data must be separate from the lifetime of the tokens
that are used to accessiit.

Beginning with IDL version 5, IDL includes a new pointer datatype to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it isimportant
to understand that they are not the same thing. IDL pointers are ahigh level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of thefiles
mentioned are located in the exanpl es/ doc/ | anguage subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See“!PATH” in
the IDL Reference Guide manual for information on IDL’s path.

Overview of Pointers Building IDL Applications

Chapter 17: Pointers 371

Heap Variables

Heap variables are aspecial class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 13, “ Creating
Custom Objectsin IDL” in the Object Programming manual for more information on
IDL objects.) In IDL documentation of pointers and objects, heap variables
accessible via pointers are called pointer heap variables, and heap variables
accessible via object references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which isthat
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.

« Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

« Aremanipulated primarily via pointers or object references using built in
language operators rather than specia functions and procedures.

e Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Building IDL Applications Heap Variables

372 Chapter 17: Pointers

Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide amore complete and robust way of building
dynamic data structures, RSI recommends that you use pointers rather than handles
when developing new code. See Appendix J, “ Obsolete Features’ in the IDL
Reference Guide manual for adiscussion of RSI’s policy on language features that
have been superseded in this manner.

Heap Variables Building IDL Applications

Chapter 17: Pointers 373

Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 13, “Creating Custom Objectsin
IDL” in the Object Programming manual for a discussion of object creation.)
Copying a pointer or object reference does not create a new heap variable. Thisis
markedly different from the way IDL handles“regular” variables. For example, with
the statement:

A=10

you create anew IDL floating-point variable with avalue of 1.0. The following
Statement:

B=A

creates a second variable with the same type and value as A.

In contrast, if you create anew heap variable with the following command:
C = PTR_NEW 2. 0d)

the variable C contains not the double-precision floating-point value 2.0, but a
pointer to a heap variable that contains that value. Copying the variable C with the
following statement:

D=C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HEL P command would reveal:

% At $SMAIN$

A FLOAT = 1. 00000
B FLOAT