
IDL Version 6.2
July 2005 Edition
Copyright © RSI
All Rights Reserved

Using IDL

0705IDL62USG

using.book Page 1 Tuesday, June 14, 2005 11:12 AM

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty
RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, RSI grants you a limited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice page in their
entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

using.book Page 2 Tuesday, June 14, 2005 11:12 AM

using.book Page 3 Tuesday, June 14, 2005 11:12 AM
Contents
Chapter 1
Introducing IDL .. 9
Overview of IDL ... 10
Supported File Formats ... 12
Launching IDL .. 15
Launching the iTools ... 17
Environment Variables Used by IDL .. 20
Command Line Options for IDL Startup .. 23
Startup Files ... 30
Message of the Day Files .. 31
Using Your Mouse with IDL ... 32
Using Keyboard Accelerators ... 33
Getting Help with IDL .. 35
Typographical Conventions .. 45
Quitting IDL .. 46
Using IDL 3

4

using.book Page 4 Tuesday, June 14, 2005 11:12 AM
Reporting Problems ... 47

Chapter 2
The IDL Development Environment .. 51
Components of the IDLDE .. 52
File Menu ... 59
Edit Menu ... 63
Search Menu .. 65
Run Menu ... 67
Project Menu .. 73
Macros Menu ... 74
Window Menu ... 76
Help Menu ... 79
Printing in IDL ... 80
IDL Printer Setup in UNIX or Mac OS X ... 81

Chapter 3
Setting IDL Preferences ... 93
About IDL Preferences .. 94
Customizing IDL ... 95
General Preferences .. 97
Layout Preferences .. 100
Graphics Preferences .. 104
Editor Preferences ... 107
Startup Preferences ... 110
Font Preferences ... 112
Path Preferences .. 115

Chapter 4
Creating Development Environment Macros 119
What Are Macros? ... 120
Creating UNIX Macros .. 121
Creating Windows Macros .. 124
Command Stream Substitutions ... 126
Building IDL Example Macros .. 127
Contents Using IDL

5

using.book Page 5 Tuesday, June 14, 2005 11:12 AM
Chapter 5
Customizing IDL on Motif Systems ... 131
Using X Resources to Customize IDL .. 132
X Resources at the Command Line ... 136
Modifying the Control Panel ... 138
Action Routines ... 141

Chapter 6
Importing and Writing Data into Variables .. 149
Overview of Data Access in IDL .. 150
Accessing Files Using Dialogs .. 151
Reading ASCII Data .. 153
Reading Binary Data ... 154
Accessing Files Programmatically .. 156
Accessing Image Data Programmatically ... 158
Accessing Non-Image Data Programmatically ... 162
Using IDL Macros ... 164
File Access Routines ... 171

Chapter 7
Getting Information About Files and Data .. 173
Investigating Files and Data .. 174
Returning Image File Information ... 175
Returning Type and Size Information ... 179
Getting Information About SAVE Files .. 181
Returning Object Type and Validity ... 186
Returning Information About a File .. 188

Chapter 8
Graphic Display Essentials .. 189
IDL Visual Display Systems ... 190
IDL Coordinate Systems ... 193
Coordinates of 3-D Graphics ... 195
Coordinate Conversions .. 198
Interpolation Methods ... 201
Polygon Shading Method .. 203
Color Systems .. 204
Using IDL Contents

6

using.book Page 6 Tuesday, June 14, 2005 11:12 AM
Display Device Color Schemes ... 207
Colors and IDL Graphic Systems .. 209
Indexed and RGB Image Organization .. 213
Loading a Default Color Table .. 218
Using Fonts in Graphic Displays ... 221
Printing Graphics ... 222

Chapter 9
Map Projections .. 223
Overview of Mapping .. 224
Graphics Techniques for Mapping ... 225
Map Projection Types .. 227
Azimuthal Projections .. 228
Cylindrical Projections ... 237
Pseudocylindrical Projections .. 242
High-Resolution Continent Outlines .. 246
References .. 248

Chapter 10
Signal Processing .. 249
Overview of Signal Processing .. 250
Digital Signals .. 251
Signal Analysis Transforms ... 253
The Fourier Transform ... 254
Interpreting FFT Results .. 255
Displaying FFT Results ... 256
Using Windows .. 260
Aliasing .. 263
FFT Algorithm Details ... 264
The Hilbert Transform ... 265
The Wavelet Transform ... 267
Convolution .. 268
Correlation and Covariance ... 269
Digital Filtering .. 270
Finite Impulse Response (FIR) Filters ... 271
FIR Filter Implementation ... 273
Infinite Impulse Response Filters .. 275
Contents Using IDL

7

using.book Page 7 Tuesday, June 14, 2005 11:12 AM
References ... 278

Chapter 11
Mathematics .. 279
Overview of Mathematics in IDL ... 280
IDL’s Numerical Recipes Functions ... 281
Correlation Analysis .. 282
Curve and Surface Fitting .. 286
Eigenvalues and Eigenvectors ... 288
Gridding and Interpolation .. 294
Hypothesis Testing .. 295
Integration ... 297
Linear Systems .. 302
Nonlinear Equations .. 309
Optimization .. 311
Sparse Arrays .. 313
Time-Series Analysis .. 316
Multivariate Analysis .. 319
References ... 325

Index ... 329
Using IDL Contents

8

using.book Page 8 Tuesday, June 14, 2005 11:12 AM
Contents Using IDL

using.book Page 9 Tuesday, June 14, 2005 11:12 AM
Chapter 1

Introducing IDL
This chapter includes information about IDL, the IDL documentation set, and how to contact RSI
Technical Support. The following topics are covered in this chapter:
Overview of IDL . 10
Supported File Formats 12
Launching IDL . 15
Launching the iTools 17
Environment Variables Used by IDL 20
Command Line Options for IDL Startup . . . 23
Startup Files . 30

Message of the Day Files 31
Using Your Mouse with IDL 32
Using Keyboard Accelerators 33
Getting Help with IDL 35
Typographical Conventions 45
Quitting IDL . 46
Reporting Problems 47
Using IDL 9

10 Chapter 1: Introducing IDL

using.book Page 10 Tuesday, June 14, 2005 11:12 AM
Overview of IDL

IDL (the Interactive Data Language) is a complete computing environment for the
interactive analysis and visualization of data. IDL integrates a powerful, array-
oriented language with numerous mathematical analysis and graphical display
techniques. Programming in IDL is a time-saving alternative to programming in
FORTRAN or C. Using IDL, tasks which require days or weeks of programming with
traditional languages can be accomplished in hours. You can explore data
interactively using IDL commands and then create complete applications by writing
IDL programs.

Analysis advantages include:

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.
Compilation and execution of IDL commands provides instant feedback and
hands-on interaction.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• IDL’s flexible input/output facilities allow you to read any type of custom data
format. See “Supported File Formats” on page 12 for details.

Visualization advantages include:

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow immediate observation of your computation’s
results.

• Support for OpenGL-based hardware accelerated graphics.

Application development advantages include:

• IDL is a complete, structured language that can be used interactively and to
create sophisticated functions, procedures, and applications.

• IDL’s Intelligent Tools (iTools) can be customized with your own operations
or data manipulations.

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display engine.
Overview of IDL Using IDL

Chapter 1: Introducing IDL 11

using.book Page 11 Tuesday, June 14, 2005 11:12 AM
• IDL programs run across all supported platforms (UNIX, Macintosh and
Microsoft Windows) with little or no modification. This application portability
allows you to easily support a variety of computers.
Using IDL Overview of IDL

12 Chapter 1: Introducing IDL

using.book Page 12 Tuesday, June 14, 2005 11:12 AM
Supported File Formats

IDL supports accessing the following types of file formats.

Image File Formats

For specific routine and object information used in IDL to access these type of files,
see the “Image Data Formats” category under “Input/Output” in the IDL Quick
Reference manual.

Format Description

BMP Windows Bitmap format

DICOM Digital Imaging and Communications in Medicine

GIF Graphics Interchange Format

Interfile Interfile version 3.3 format

JPEG Joint Photographic Experts Group format

JPEG 2000 JPEG 2000 format

MPEG Moving Picture Experts Group format

MrSID Multi-resolution Seamless Image Database format

NRIF NCAR Raster Interchange Format

PICT Macintosh version 2 PICT files (bitmap only)

PNG Portable Network Graphics format

PPM PPM/PGM format

SRF Sun Raster File format

TIFF 8-bit or 24-bit Tagged Image File format

X11 Bitmap X11 Bitmap format used for reading bitmaps for
IDL widget button labels

XWD X Windows Dump format

Table 1-1: IDL-Supported Graphics Standards
Supported File Formats Using IDL

Chapter 1: Introducing IDL 13

using.book Page 13 Tuesday, June 14, 2005 11:12 AM
Scientific Data Formats

IDL supports the HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific data formats. Collections
of built-in routines provide an interface between IDL and these formats. For specific
routine and object information used in IDL to access these type of files, see the
“Scientific Data Formats” category under “Input/Output” in the IDL Quick Reference
manual.

Other Data Formats

For specific routine and object information used in IDL to access these data types, see
the “Other Data Formats” category under “Input/Output” in the IDL Quick Reference
manual.

Format Description

CDF Common Data Format version 2.7r1

HDF Hierarchical Data Format version 4.1r5

HDF5 Hierarchical Data Format version 5-1.6.3

HDF-EOS Hierarchical Data Format-Earth Observing System
version 2.8

NCDF Network Common Data Format version 3.5

Table 1-2: IDL-Supported Scientific Data Formats

Format Description

ASCII American Standard Code for Information
Interchange

Binary Digital data encoded as a sequence of bits

DXF Drawing eXchange Format

ESRI Shapefile Stores non-topological geometry and attribute
information

SYLK Symbolic Link Format

Table 1-3: Other IDL-Supported File Formats
Using IDL Supported File Formats

14 Chapter 1: Introducing IDL

using.book Page 14 Tuesday, June 14, 2005 11:12 AM
VRML Virtual Reality Modeling Language

WAV Microsoft Waveform Format

WAVE Wavefront Advanced Data Visualizer Format

XDR eXternal Data Representation

XML eXtensible Markup Language

Format Description

Table 1-3: Other IDL-Supported File Formats (Continued)
Supported File Formats Using IDL

Chapter 1: Introducing IDL 15

using.book Page 15 Tuesday, June 14, 2005 11:12 AM
Launching IDL

To launch the IDL program, do one of the following:

On Windows platforms — Launching IDL means starting the IDL Development
Environment application (no command-line mode is available under Windows). The
IDL Development Environment is described in detail in Chapter 2, “The IDL
Development Environment”. To start IDL, double-click on the IDL icon or select IDL
from the Start menu.

On UNIX platforms — IDL offers two interfaces:

• In command-line mode, IDL uses a text-only interface and sends output to your
terminal screen or shell window. (Graphics are displayed in IDL graphics
windows.) To start IDL in command-line mode, enter idl at the shell prompt.

• In graphical mode, IDL displays the IDL Development Environment, an X-
windows application that allows you to select options from menus, work with a
built-in editor, and more. The IDL Development Environment is described in
detail in Chapter 2, “The IDL Development Environment”. To start IDL in
graphical mode, enter idlde at the shell prompt.

On the Macintosh MacOS X platform — IDL is launched in the same way as on
UNIX platforms, except that you must explicitly open an X11 Terminal window.

• In command-line mode, IDL uses a text-only interface and sends output to your
terminal screen or shell window. (Graphics are displayed in IDL graphics
windows.) To start IDL in command-line mode, enter idl at the X11 Terminal
window shell prompt.

• In graphical mode, IDL displays the IDL Development Environment, an X-
windows application that allows you to select options from menus, work with a
built-in editor, and more. The IDL Development Environment is described in
detail in Chapter 2, “The IDL Development Environment”. To start IDL in
graphical mode, double-click on the IDL icon or enter idlde at the X11
Terminal window shell prompt.

Startup Options

You can specify options to the command that starts IDL. On UNIX platforms, simply
append the option flag after the idl or idlde command at the shell prompt. On
Windows platforms, modify the Target field of the properties dialog for the IDL icon
to include the option flag. See “Command Line Options for IDL Startup” on page 23
for a listing of the available startup options.
Using IDL Launching IDL

16 Chapter 1: Introducing IDL

using.book Page 16 Tuesday, June 14, 2005 11:12 AM
Troubleshooting

When IDL is ready to accept a command, it displays the IDL> prompt. If IDL does
not start, take the following action depending upon the operating system you are
running:

• Windows: Be sure that the path listed in the Properties dialog for the IDL icon
accurately reflects the location of the IDL executable file idlde.exe.

• UNIX: Be sure that your PATH environment variable includes the directory
that contains IDL.
Launching IDL Using IDL

Chapter 1: Introducing IDL 17

using.book Page 17 Tuesday, June 14, 2005 11:12 AM
Launching the iTools

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Based on the IDL Object Graphics system, the iTools are designed to help you get the
most out of your data with minimal effort. They allow you to continue to benefit from
the control of a programming language, while enjoying the convenience of a point-
and-click environment. Each tool is designed around a specific visualization type:

• Two and three dimensional plots (line, scatter, polar, and histogram style)

• Surface representations

• Contour maps

• Image displays

• Volume visualizations

• Maps

Figure 1-1: Black Hole Density Data in the iVolume Tool
Using IDL Launching the iTools

18 Chapter 1: Introducing IDL

using.book Page 18 Tuesday, June 14, 2005 11:12 AM
For detailed information on the new iTools and how to use them, see the iTool User’s
Guide.

The iTools are built upon an object-oriented framework, or set of object classes, that
serve as the building blocks for their interface and functionality. IDL programmers
can easily use this framework to create custom data analysis and visualization
environments. Such custom Intelligent Tools may be called from within a larger IDL
application, or they may serve as the foundation for a complete application in
themselves. For more information on creating your own custom iTools, see the iTool
Developer’s Guide.

Starting an iTool

To get started using the new IDL iTools, from the IDLDE command line, simply type
the name of the tool you wish to call. The tools available are:

• iContour

• iImage

• iPlot

• iSurface

• iVolume

• iMap

You can also launch an iTool using these other methods:

• From Windows:

Start → Programs → RSI IDL 6.1 → iTools → iTool Name

• From the IDLDE:

File → New → Visualization → iTool Name

Loading Data into an iTool

There are multiple options for loading your data into your chosen iTool for
visualization:

• Command Line Argument — At the IDL Command Line enter:

mydata = RANDOMU(SEED, 45)
iPlot, mydata

This option allows you to have control over parameters and keyword options
for setting up the way you wish your plot (or other visualization) to appear.
Launching the iTools Using IDL

Chapter 1: Introducing IDL 19

using.book Page 19 Tuesday, June 14, 2005 11:12 AM
• File → Open — The quickest way to create a default visualization of your
data.

• File → Import → IDL variable — This will invoke the IDL Import wizard.

• File → Import → From a File -— This also invokes the IDL Import wizard.

• Insert → Visualization — This method gives you parameter control similar to
using the command line.

Note
For more detailed information on loading data into the iTools, see Chapter 2,
“Importing and Exporting Data” in the iTool User’s Guide manual.

The iTools Data Manager

All data used by any iTool is first loaded into the iTools Data Manager, which keeps
track of which data items are associated with an iTool visualization. The Data
Manager provides a convenient and structured environment in which to import and
view files and variables.

The process of loading data into the Data Manager is entirely automatic if you
specify data when launching an iTool at the IDL command line or if you open a data
file using the Open command from the iTool’s File menu. In these cases, the iTool
will import the data in the specified file or variable and create a visualization of the
default type for the selected data and the iTool you are using.

If you want more control over the process of creating a visualization, you can load
data into the Data Manager manually, either from a data file or from one or more
variables that exist in your current IDL session. Once a data item is placed in the Data
Manager, it is available to all iTools until it is removed.
Using IDL Launching the iTools

20 Chapter 1: Introducing IDL

using.book Page 20 Tuesday, June 14, 2005 11:12 AM
Environment Variables Used by IDL

When IDL starts, it checks for the presence of a number of environment variables. If
one of these environment variables exists, its value is used in one of two ways:

• As the value for a preference

• To configure IDL’s environment in such a way that it can load and run

Preferences

Preferences are internal values that control various aspects of the environment IDL
presents to its users. While user preference values are most often retrieved from
preference files, the value of any preference can be defined by setting an environment
variable of the same name to the appropriate value. For example, to set the value of
the IDL_PATH preference, which supplies the initial value of the !PATH system
variable, you would define an environment variable named IDL_PATH.

If an environment variable corresponding to a preference exists, its value will be used
as the value of that preference unless the value is explicitly overridden with a value
set at the command line when invoking IDL. See Appendix E, “IDL Preferences” in
the IDL Reference Guide manual for a detailed description of IDL’s preferences
system and the precedence given to different sources for preference values.

Non-Preference Environment Variables

IDL checks the following environment variables at startup, but does not use the
values as the values of IDL preferences.

CLASSPATH

The IDL-Java bridge uses the value of the CLASSPATH environment variable to
locate user-defined Java classes.

DISPLAY

On UNIX platforms, IDL uses the DISPLAY environment variable to choose which
X display is used to display graphics.

HOME

IDL uses the value of the HOME environment variable when storing user-specific
information in the local file system.
Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 21

using.book Page 21 Tuesday, June 14, 2005 11:12 AM
Note
Under Microsoft Windows, the HOME environment variable might not be set in all
cases. If it is not set, IDL first attempts to substitute the USERPROFILE
environment variable (which usually looks something like C:\Documents and
Settings\username where username is the login name of the current user). If
USERPROFILE is not set, IDL uses the value of the first of the following it finds:
the TEMP environment variable, the TMP environment variable, or the Windows
system directory.

IDLJAVAB_CONFIG

The IDL-Java bridge uses the value of the IDLJAVAB_CONFIG environment
variable to locate the IDL-Java bridge configuration file. See “Initializing the IDL-
Java Bridge” in Chapter 8 of the External Development Guide manual for additional
details.

IDLJAVAB_LIB_LOCATION

The IDL-Java bridge uses the value of the IDLJAVAB_LIB_LOCATION
environment variable to determine which JVM shared library within a given Java
version to use. See “Initializing the IDL-Java Bridge” in Chapter 8 of the External
Development Guide manual for additional details.

LM_LICENSE_FILE

IDL’s FLEXlm-based license manager uses the value of the LM_LICENSE_FILE
environment variable to determine where to search for valid license files. Consult the
license manager documentation for details.

PATH

When IDL asks for an operating system resource such as a shell, the executable file
for that resource must be located in the operating system’s path. While IDL itself
does not use the value of the PATH environment variable explicitly, its value does
affect IDL’s behavior when attempting to launch other applications.

TERM

On UNIX platforms, IDL uses the environment variable TERM to determine the type
of terminal in use when IDL is in command-line mode.
Using IDL Environment Variables Used by IDL

22 Chapter 1: Introducing IDL

using.book Page 22 Tuesday, June 14, 2005 11:12 AM
Setting Environment Variables

The process used to set environment variables varies depending on the operating
system you are using.

UNIX and MacOS X Systems

On UNIX systems, environment variables are generally specified in a file read by
your shell program at startup. Syntax for setting environment variables varies
depending on the shell you are using, as does the file you use to specify the variables.
If you are unsure how to set environment variables on your system, consult the
system documentation or a system administrator.

For example, to set the environment variable IDL_PATH to the value
/usr/local/idl when using a C shell (csh), you would add the following line to
your .cshrc file:

setenv LM_LICENSE_FILE /usr/local/idl/license/license.dat

Similarly, to set the same variable when using a Bourne shell (sh), you would add the
following lines to your .profile file:

LM_LICENSE_FILE="/usr/local/idl/license/license.dat" \
; export LM_LICENSE_FILE

Microsoft Windows Systems

On Microsoft Windows systems, environment variables are set in the Environment
Variables dialog, which is accessible from the System Control panel. Some Windows
versions allow you to set environment variables either only for the user you logged in
as (“user variables”) or for all users (“system variables”). Setting IDL environment
variables as user variables means that other users who log on to the computer will not
have access to your environment variable values.
Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 23

using.book Page 23 Tuesday, June 14, 2005 11:12 AM
Command Line Options for IDL Startup

You can alter some IDL behaviors by supplying command-line switches along with
the command used to invoke IDL. The following table shows the IDL command-line
switches and the IDL interfaces to which they apply:

Switch
UNIX
idl

idlde

Windows
idlde.exe

Windows
idlrt.exe

-32 •

-arg • • •

-args • • •

-autow •

-demo • • •

-e • • •

-em • •

-novm • • •

-nw •

-pref • • •

-queue • • •

-quiet • • •

-rt • •

-student • • •

-ulicense • • •

-vm • •

-w •

Table 1-4: Command Line Switches
Using IDL Command Line Options for IDL Startup

24 Chapter 1: Introducing IDL

using.book Page 24 Tuesday, June 14, 2005 11:12 AM
Preference Switches

In addition to the switches listed above, you can specify the value of IDL preferences
when invoking IDL. See “Specifying Preferences at the Command Line” on page 29
for details.

X Defaults

In addition to the switches listed above, there are numerous command-line switches
that control the appearance of the IDL Development Environment on UNIX systems.
Those options are not listed here, and future versions of the UNIX Development
Environment might not continue to support them. See “X Resources at the Command
Line” in Chapter 5 for details.

Batch Mode

IDL can also be started in non-interactive “batch” mode by specifying the name of a
batch file at startup time. See Chapter 3, “Executing Batch Jobs in IDL” in the
Building IDL Applications manual for details.

Command-Line Switches

The following command line switches can be used when invoking IDL. Unless
otherwise noted, switches can be combined and can be specified in any order.

-32

Syntax: -32

Starts IDL in 32-bit mode. If this switch is not set, IDL starts in 64-bit mode by
default for those platforms that support 64-bit. If you have not installed the 64-bit
version, the 32-bit version will automatically be started. If you have not installed the
32-bit version, this flag will not work.

This switch is only available on UNIX platforms.

-arg

Syntax: -arg value

Specifies a single command line option to be saved for later access via the
COMMAND_LINE_ARGS function. The value string is saved. Multiple -arg
switches are allowed; the values are saved in the order specified. The -arg option
can be used to pass program-specific information from the command line to IDL
programs.
Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 25

using.book Page 25 Tuesday, June 14, 2005 11:12 AM
-args

Syntax: -args value1 value2 ... valueN

Specifies one or more command line options to be saved for later access via the
COMMAND_LINE_ARGS function. When IDL sees the -args option, it takes any
command-line arguments that follow it and saves them all. There can only be one
-args option on an IDL command line, and it is always the final option. The -args
switch can be used with the -arg switch; if both switches are specified, occurrences
of -arg must come first, and the values specified by -args are saved following any
values specified by -arg.

-autow

Syntax: -autow

Starts IDL with the graphical user interface if possible. If for any reason IDL cannot
display the graphical user interface, it starts in command-line mode.

This switch is only available on UNIX platforms.

-demo

Syntax: -demo

Forces IDL to run in seven-minute demo mode.

-e

Syntax: -e IDL_statement

Specifies a single IDL statement to be executed. Once the statement has executed,
IDL waits for any widget applications to exit, and then IDL itself exits. Only the last
-e switch on the command line is honored.

Note
If the IDL statement includes spaces, it must be enclosed in quote marks. Under
UNIX the statement can be enclosed in either single or double quotes, but under
Microsoft Windows the statement must be enclosed in double quotes.

Under UNIX, the -e switch always uses the command line interface (that is, the
idlde command followed by the -e switch behaves like the idl command followed
by the -e switch).

Under Microsoft Windows, the idlde command displays the full development
environment, but the user is not prompted for IDL commands to execute. This mode
Using IDL Command Line Options for IDL Startup

26 Chapter 1: Introducing IDL

using.book Page 26 Tuesday, June 14, 2005 11:12 AM
is primarily useful because the output log window is visible, and will show any
output generated by the IDL statement. The idlrt command also supports the -e
option, and in this mode requires a standard IDL license. Since idlrt does not
display the output generated by IDL statements, it is primarily of use for widget
based applications that provide a graphical user interface to their functionality.

Note
Because the -e switch causes IDL to exit as soon as the statement is complete, if
the IDL statement being executed produces graphics, you may wish to delay the
exit until the user has a chance to view the graphics. In such a case, you must
explicitly cause IDL to wait before exiting. For example, the following will produce
a plot of one cycle of a sinusoid:

idlde -e "PLOT, SIN(FINDGEN(628)/100) & t=DIALOG_MESSAGE('Done')"

The plot will remain on the screen until the user dismisses the dialog, at which point
IDL will exit.

-em

Syntax: -em=file

Starts IDL with an embedded license. The file argument should be an IDL .sav file
that contains an embedded (“unlimited right to distribute”) IDL license. See Chapter
24, “Distributing Runtime Mode Applications” in the Building IDL Applications
manual for details on creating applications with an embedded IDL license.

This switch is accepted on UNIX platforms and by the idlrt.exe application on
Microsoft Windows platforms.

-novm

Syntax: -novm

Forces IDL to run in seven-minute demo mode rather than Virtual Machine mode if
no license is available. This switch can only be used in conjunction with the -rt
switch or the idlrt.exe executable.

If IDL attempts to load and run an IDL application in runtime mode, but finds no
license available, it will load the application in Virtual Machine mode by default.
Setting the -novm switch prevents the application from running in Virtual Machine
mode, and instead causes it to run in demo mode.
Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 27

using.book Page 27 Tuesday, June 14, 2005 11:12 AM
-nw

Syntax: -nw

Starts IDL in command-line mode no matter what. Note that specifying idlde -nw
at the shell prompt will start IDL in command-line mode.

This switch is only available on UNIX platforms.

-pref

Syntax: -pref=file

Loads the specified preference file. The file argument should be a text file containing
IDL preference/value pairs. See Appendix E, “IDL Preferences” in the IDL Reference
Guide manual for a detailed description of IDL’s preferences system, the format of
preference files, and the precedence given to different sources for preference values.

This feature is of particular interest to those writing stand-alone applications in IDL,
possibly using the runtime or Virtual Machine modes of operation. The use of a
command-line preference file allows authors of such applications to control the
values of preferences important to their applications in a way that is user-adjustable
and not hardwired into the code of their application.

-queue

Syntax: -queue

Causes IDL to wait for a license to become available before beginning an IDL task
such as batch processing. This switch is useful for users of counted floating licenses
who need their IDL process to run in licensed mode rather than in seven-minute
demo mode.

-quiet

Syntax: -quiet

Suppresses printing of the IDL announcement and the motd.txt file. See “Message
of the Day Files” on page 31 for details on message-of-the-day files.

-rt

Syntax: -rt=file

Starts IDL with a runtime license. If the file argument is specified, it should be an
IDL .sav file. If the file argument is not specified, IDL attempts to run a file named
Using IDL Command Line Options for IDL Startup

28 Chapter 1: Introducing IDL

using.book Page 28 Tuesday, June 14, 2005 11:12 AM
runtime.sav. See Chapter 24, “Distributing Runtime Mode Applications” in the
Building IDL Applications manual for details on creating runtime applications.

This switch is accepted on UNIX platforms and by the idlrt.exe application on
Microsoft Windows platforms. It is, however, redundant when using the idlrt.exe
application.

-student

Syntax: -student

Forces IDL to start in student mode. This switch is useful for testing IDL applications
that should run in student mode.

-ulicense

Syntax: -ulicense

Check out a unique license even if IDL is already running on the same display. If IDL
has checked out a unique license using this flag, the user is allowed to change the
DISPLAY environment variable after IDL has started.

-vm

Syntax: -vm=file

Starts the IDL Virtual Machine. If the file argument is specified, it should be an IDL
.sav file. If the file argument is not specified, IDL displays a file selection dialog.
See Chapter 25, “Distributing Virtual Machine Applications” in the Building IDL
Applications manual for details on creating applications that run in the IDL Virtual
Machine.

This switch is accepted on UNIX platforms and by the idlrt.exe application on
Microsoft Windows platforms.

-w

Syntax: -w

Starts IDL with the graphical user interface. This is the same as entering idlde at the
command prompt.

This switch is only available on UNIX platforms.
Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 29

using.book Page 29 Tuesday, June 14, 2005 11:12 AM
Specifying Preferences at the Command Line

In addition to the command line switches described above, the value of any IDL
preference can be specified at the command line using the following syntax:

idlcommand -PREFERENCE value

where idlcommand is the command used to launch IDL (one of idl, idlde, or
idlrt), PREFERNCE is the name of an IDL preference (note the leading hyphen),
and value is the value for the preference. For example, to set the value of the
IDL_MORE preference to one when launching IDL in command-line mode on a
UNIX machine, you would use the following command line:

idl -IDL_MORE 1

Any number of preference values can be specified the command line. See Appendix
E, “IDL Preferences” in the IDL Reference Guide manual for a detailed description of
IDL’s preferences system and the precedence given to different sources for
preference values.

Using Switches Under Windows

Under Microsoft Windows, applications can be launched either from the prompt in a
Command Window or by double-clicking on the application icon. If you launch IDL
from a command prompt, simply specify the switch on after the name of the IDL
executable you are using. For example, to start IDL in Virtual Machine mode using
the -vm switch, you would use the following command line:

C:\RSI-Directory\bin\bin.x86\idlrt.exe -vm=file.sav

where RSI-Directory is the directory where you have installed IDL and
file.sav is the name of the SAVE file you wish to restore and run.

If you launch IDL by double-clicking on the application icon, set switches by
modifying the target specified in the application’s shortcut properties to include the
switch.
Using IDL Command Line Options for IDL Startup

30 Chapter 1: Introducing IDL

using.book Page 30 Tuesday, June 14, 2005 11:12 AM
Startup Files

A startup file is a batch file that is executed automatically each time the IDL is
started. The name of the startup file is specified by the IDL_STARTUP preference.
(See Appendix E, “IDL Preferences” in the IDL Reference Guide manual for
information on IDL’s preferences system.)

Common uses for startup files include the following:

• Restoring variable data contained in a .sav file or reading in commonly used
data

• Setting common keywords to the DEVICE procedure

• Specifying shared or private color maps for PseudoColor devices

Startup files are executed one statement at a time. It is not possible to define program
modules (procedures, functions, or main-level programs) in the startup file. For more
information on creating batch files, see Chapter 3, “Executing Batch Jobs in IDL” in
the Building IDL Applications manual.
Startup Files Using IDL

Chapter 1: Introducing IDL 31

using.book Page 31 Tuesday, June 14, 2005 11:12 AM
Message of the Day Files

When IDL starts, it displays the contents of the motd.txt file, located in the
help/motd subdirectory of the IDL distribution, in the Output Log. You can use this
Message of the Day file to provide information to IDL users every time IDL starts.

In addition, IDL will display the contents a file with the name platform.txt
located in the help/motd subdirectory of the IDL distribution, where platform is a
string corresponding to the current operating system platform. For example, on
Microsoft Windows systems, IDL displays a file named win32.txt.

You can determine the correct name for this file on a given platform by using the
following IDL command:

PRINT, !VERSION.OS

and appending the “.txt” extension to the operating system name.

If you do not want to see either the motd.txt file or the platform-specific file each
time IDL starts, remove them from the help/motd subdirectory of the IDL
distribution.

Note
The motd.txt and platform-specific files are simply an ASCII text files—not IDL
programs or batch files. To execute a series of IDL commands, select a startup file
as described in “Startup Files” on page 30.
Using IDL Message of the Day Files

32 Chapter 1: Introducing IDL

using.book Page 32 Tuesday, June 14, 2005 11:12 AM
Using Your Mouse with IDL

IDL supports the use of mice with up to three buttons. Because some systems use
mice with one or two buttons, IDL provides mechanisms for simulating a three-
button mouse.

Using a Two-Button Mouse

Many mice used with Microsoft Windows systems have only two buttons. To
simulate a middle-button press, hold down the CONTROL key and press the left mouse
button.

Using a Macintosh (One-Button) Mouse

Many mice used with Macintosh systems have only one button. The X Window
System software provided with MacOS X provides multi-button mouse emulation,
allowing you to configure the system to generate middle- and right-button press
events. See your MacOS X system documentation for details.
Using Your Mouse with IDL Using IDL

Chapter 1: Introducing IDL 33

using.book Page 33 Tuesday, June 14, 2005 11:12 AM
Using Keyboard Accelerators

IDL supports the use of keyboard accelerators or shortcuts in three different contexts:
in the IDL Development Environment (menu actions), in the IDLDE Editor window,
and in IDL widget applications. For information on development environment
keyboard shortcuts, see one of the following:

• Chapter 2, “The IDL Development Environment” provides descriptions of
each available menu item including keyboard shortcuts

• “Editor Window Keyboard Shortcuts” in Chapter 2 of the Building IDL
Applications manual describes keyboard shortcuts specifically designed for
use in the Editor window

Keyboard shortcuts can also be defined for individual buttons and menu items in an
IDL widget application. Defining shortcut key combinations is the responsibility of
the IDL programmer who creates the widget application; if you are using a widget
application and are unsure about whether keyboard shortcuts have been defined,
contact the author of the widget application. For information on adding keyboard
accelerators to your own widget applications, see “Enhancing Widget Application
Usability” in Chapter 30 of the Building IDL Applications manual.

Enabling Alt Key Accelerators on Macintosh

If you are using IDL on a Macintosh and wish to use keyboard accelerators that use
the Alt key, you will need to perform the following steps to make the Apple
(Command) key to function as the Alt key:

1. Create a .Xmodmap file in your home folder and add the following three lines
to it:

clear mod1
clear mod2
add mod1 = Meta_L

When Apple’s X11 program starts, this file will automatically be read, and the
Apple key will be mapped to the left meta key , which for IDL’s purposes is
the Alt key. (Windows Alt key accelerators are mapped to the Macintosh
Apple key, not the Option (alt) key.)

2. Run Apple’s X11 program and change its preferences. Under Input in the X11
Preferences dialog, make sure that the following two items are unchecked:

• Follow system keyboard layout

• Enable key equivalents under X11
Using IDL Using Keyboard Accelerators

34 Chapter 1: Introducing IDL

using.book Page 34 Tuesday, June 14, 2005 11:12 AM
Note
You must relaunch Apple’s X11 program for these changes to take effect.

Once you have performed these steps, keyboard shortcuts will operate in the normal
Macintosh fashion — namely, pressing the Apple key in conjunction with X, C, and
V will perform cut, copy and paste. The IDLDE’s other shortcuts and any widget
accelerators defined to use the Alt key will also work.
Using Keyboard Accelerators Using IDL

Chapter 1: Introducing IDL 35

using.book Page 35 Tuesday, June 14, 2005 11:12 AM
Getting Help with IDL

IDL’s online help system provides access to information on all aspects of IDL. The
complete IDL documentation set is available online in HTML format. To use the IDL
online help system, do one of the following:

• Enter the ? command (optionally followed by a routine or object name) at the
IDL command prompt

• Call the ONLINE_HELP procedure at the IDL command prompt or within an
IDL program

• If you are running the IDL Development Environment (IDLDE), select the
Help option from the menu bar

• Select IDL Help from the Microsoft Windows Start menu

• Double-click on the IDLHelp Macintosh icon

In addition to the online help format, IDL documentation is available in a set of
Adobe Acrobat PDF files located on the IDL CD-ROM. See “Using the PDF
Documentation Set” on page 43 for details.

Using the IDL Online Help Viewer

IDL’s online help system uses a cross-platform help viewer — IDL Assistant —
based on the help viewer used by the Qt development toolkit from Trolltech. This
section describes how to use the IDL Assistant application. For information on
creating help content that uses the IDL Assistant for your own IDL applications, see
Chapter 23, “Providing Online Help For Your Application” in the Building IDL
Applications manual.

The Main Window

The IDL Assistant main window contains the text of the current topic. Within the
main window you can:

• Follow hypertext links to other topics, or to sections within the current topic

• Navigate to the next or preceding topic using arrows at the top of the topic
screen

• Display multiple topics simultaneously using the tabbed interface

• Create new tabs and close existing tabs using icons to the right and left of the
tabs
Using IDL Getting Help with IDL

36 Chapter 1: Introducing IDL

using.book Page 36 Tuesday, June 14, 2005 11:12 AM
• Perform common tasks including display of the next/previous topic, tab
management, text sizing, copying text to the clipboard, and finding text within
the topic using the context menu

The Sidebar

The IDL Assistant sidebar provides four tabs that allow you to navigate through the
IDL documentation set. All of the tabs provide a context menu that allows you to
open the selected topic the current tab, a new tab, or a new window.

The Contents Tab

The Contents tab displays a hierarchical listing of the contents of the various books
in the IDL documentation set.

The Index Tab

The Index tab provides a keyword index of the contents of the IDL documentation
set. Enter a text string in the Look For: field to see keywords that match the string.

The Search Tab

The Search tab allows you to search the text of the IDL documentation set for words
or phrases. Text matching your search string is highlighted when a topic is displayed
in the main window.

Tip
Words or phrases entered in the Search tab are not case sensitive.

To search for words, enter one or more strings in the Searching for: field, separated
by spaces and click Search. IDL Assistant displays a list of topics that contain all of
the words you entered.

To search for a phrase, enclose the phrase in single or double quote marks.

Warning
The IDL documentation set is quite large. The results of a full-text search query
may take several moments to appear in the Search tab.

The list of topics containing the search words or phrase is displayed as a list ranked
roughly according to the number of occurrences of the words or phrases, with the
topics containing the largest number of occurrences listed given higher rankings.

Each entry in the list of topics is followed by an abbreviation of the title of the
manual in which the topic appears. See “Book Name Abbreviations” on page 38 for
the list of abbreviations.
Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 37

using.book Page 37 Tuesday, June 14, 2005 11:12 AM
Allowed Characters

The following characters are allowed in the Search tab:

• Letters (upper- and lower-case)

• Numbers (0-9)

• Quote marks (single ('), double ("), backwards (`))

• Exclamation marks (!), colons (:), and periods (.)

• Spaces

• Hyphens (-)

• Underscores (_)

• Asterisk (*) as a wildcard matching one or more unspecified characters

Note
The * character cannot be used within quotes or at the beginning of a string.

All other characters are disallowed; you cannot enter them in the Searching for:
field.

Warning
Searches that contain single-character strings (such as “a” or “8”) are not allowed
and will return no results. This is true even when the single character is combined
with a punctuation character such as a hyphen. For example, searching for the string
“8-bit” will return no results.

Examples

convol List all topics that contain the word “convol”

convol* List all topics that contain a word beginning with “convol”

base widget List all topics that contain the word “base” and the word
“widget”

"base widget" List all topics that contain the phrase “base widget”
Using IDL Getting Help with IDL

38 Chapter 1: Introducing IDL

using.book Page 38 Tuesday, June 14, 2005 11:12 AM
Book Name Abbreviations

The following abbreviations of book titles are used in the list of topics returned by the
search:

The Bookmarks Tab

The Bookmarks tab allows you to save links to specific topics in the IDL
documentation set for easy reference.

bld Building IDL Applications

dm DataMiner Guide

edg External Development Guide

gs Getting Started with IDL

img Image Processing Guide

inst Installing and Licensing IDL

ionj ION Java User’s Guide

ions ION Script User’s Guide

itd iTool Developer’s Guide

itu iTool User’s Guide

med Medical Imaging in IDL

obj Object Programming

obs Obsolete Features

ref IDL Reference Guide

sdf Scientific Data Formats

use Using IDL

wav Wavelet Toolkit User’s Guide

wn What’s New in IDL
Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 39

using.book Page 39 Tuesday, June 14, 2005 11:12 AM
The Menu Bar

The IDL Assistant menu bar runs across the top of the IDL Assistant window, and
provides access to the features listed below. Keyboard shortcuts to invoke various
menu items are listed in the menus themselves.

Menu Item Function

File New Window Open a new IDL Assistant window.

Add Tab Open a new tab displaying the same topic as the
currently selected tab.

Close Tab Close the currently selected tab.

Print Print the contents of the currently selected tab. See
“Printing” on page 42 for details.

Close Close the current IDL Assistant window.

Exit Close all IDL Assistant windows.

Edit Copy Copy text selected in the main window to the
system clipboard.

Find in Text... Search for a text string in the currently displayed
topic.

Find Next Find the next instance of the text string in the
currently displayed topic.

Find Previous Find the previous instance of the text string in the
currently displayed topic.

Settings... Display the Settings dialog. See “Settings” on
page 42 for details.

Table 1-5: IDL Assistant Menus
Using IDL Getting Help with IDL

40 Chapter 1: Introducing IDL

using.book Page 40 Tuesday, June 14, 2005 11:12 AM
View Zoom in Increase the text size in the main window. See
“Text Zoom” on page 41 for important notes.

Zoom out Decrease the text size in the main window. See
“Text Zoom” on page 41 for important notes.

Views... Control display of the Sidebar and Standard
toolbar.

Note - The Line Up feature realigns the toolbar if
it has been moved.

Go Previous Display the current tab’s previous topic.

Next Display the current tab’s next topic.

Home Display the IDL online help Home page.

Next Tab Select the tab to the right of the current tab, if any.

Previous Tab Select the tab to the left of the current tab, if any.

Bookmark Add
Bookmark

Create a bookmark for the currently selected topic.

Bookmark list Existing bookmarks are displayed at the bottom of
this menu.

Help IDL Assistant
Manual

Display this help topic.

About
IDL Assistant

Display information about IDL Assistant.

What’s This? Display context-sensitive pop-up help about some
portions of the IDL Assistant interface.

Menu Item Function

Table 1-5: IDL Assistant Menus
Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 41

using.book Page 41 Tuesday, June 14, 2005 11:12 AM
The Tool Bar

The IDL Assistant tool bar provides quick access to a subset of the features available
via the menubar.

Text Zoom

Select Zoom in or Zoom out from the View menu to change the size of the text in the
IDL Assistant main window.

The smoothness of the text zoom operation depends on the ability of the operating
system to provide fonts of the appropriate size for the zoomed text. On platforms that
provide robust font-management mechanisms, the Zoom operations will work
smoothly. On platforms that provide more limited font support, a single Zoom
operation may, depending on the current text size and font support, change the text
size for only some text elements in the main window, or none at all. In these cases,
repeated applications of the Zoom operations may change the text size.

Icon Name Function

Previous Display the current tab’s previous topic.

Next Display the current tab’s next topic.

Home Display the IDL online help Home page.

Copy Copy text selected in the main window to the system
clipboard.

Find in Text Search for a text string in the currently displayed
topic.

Print Print the contents of the currently selected tab. See
“Printing” on page 42 for details.

Zoom in Increase the text size in the main window. See “Text
Zoom” on page 41 for important notes.

Zoom out Decrease the text size in the main window. See “Text
Zoom” on page 41 for important notes.

What’s this? Display context-sensitive pop-up help about some
portions of the IDL Assistant interface.

Table 1-6: IDL Assistant Toolbar
Using IDL Getting Help with IDL

42 Chapter 1: Introducing IDL

using.book Page 42 Tuesday, June 14, 2005 11:12 AM
If you find that the text zooming feature does not work adequately with the default
fonts, try changing the fonts used by IDL Assistant (see “Settings” on page 42 for
details.) On platforms that use a set of fixed-size fonts, choosing a font with a larger
number of available sizes will allow smoother text zooming.

Printing

Select Print from the File menu or toolbar to display a platform-native Print dialog
that allows you to select a printer on which to print.

Note
Currently, the only text range option available is All. Printing all will print the
entire contents of the topic currently displayed in the main window.

Tip
The quality of the printed output from IDL Assistant depends on the platform and
printer in use. For high-quality printed output, consider printing from the PDF
version of the document you are viewing. See “Using the PDF Documentation Set”
on page 43 for details.

Settings

Select Settings from the Edit menu to display a tabbed dialog that allows you to
control several IDL Assistant settings.

General Tab

The General tab allows you to select fonts for text display in the main window. By
default, the Font is set to Helvetica, and the Fixed Font is set to Courier.

Tip
Depending on the configuration of your system, you may be able to select alternate
fonts that provide better appearance or smoother zooming behavior than the
defaults. This is especially true on UNIX systems that have a limited set of fonts
available. Trying different font settings may improve both the legibility of the text
and the ability to zoom in the IDL Assistant viewer.

The General tab also allows you to select a color for hyperlinks and specify whether
the links should be underlined. Depending on your platform, changing these values
may not produce the effect you expect.
Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 43

using.book Page 43 Tuesday, June 14, 2005 11:12 AM
Web Tab

The Web tab allows you to define the web browser that should be invoked when you
click on a hyperlink that refers to a web site rather than to a file in the IDL
documentation set.

The Web tab also allows you to specify an HTML file that should be displayed when
you select Home from the Go menu or click the Home toolbar icon. By default, the
home page is defined as

<IDL_DIR>/help/online_help/home.html

where <IDL_DIR> is the full path to your IDL installation.

PDF Tab

The PDF tab allows you to define a Portable Document Format (Adobe Acrobat) file
browser that should be invoked when you click on a hyperlink that refers to a PDF
file.

Using the PDF Documentation Set

The complete IDL documentation set is available in a set of Adobe Portable
Document Format (PDF) files. The PDF documentation set is hyperlinked, provides
navigational bookmarks in the bookmarks pane, and provides a compiled full-text
search index.

Adobe Systems Inc. created the Portable Document Format in the early 1990s, basing
it on their PostScript language. PDF is intended to allow documents to be displayed
in exactly the same manner on a wide variety of computing platforms.

The IDL PDF files are electronic representations of the individual books in the
documentation set, and can be either viewed on screen or printed (in full or in part) on
a local printer. When viewed on-screen, the PDF books provide hyperlinked cross-
references, tables of contents, and indices, allowing for speedy navigation through
the set. In addition, some versions of the Adobe Acrobat software provide a fast full-
text search capability, using a pre-compiled full-text index of the entire document set.

Viewing PDF Files

Viewing PDF files requires a separate application, not included in the IDL
installation. Various PDF viewing applications are in wide use, and one or more may
already be installed on your system.

The PDF version of the IDL documentation set is designed to be viewed using Adobe
Acrobat or Adobe Reader. Other third-party PDF viewers (notably GhostScript and
Apple’s Preview) are available, but these viewers may not support all of the features
Using IDL Getting Help with IDL

44 Chapter 1: Introducing IDL

using.book Page 44 Tuesday, June 14, 2005 11:12 AM
available when viewing the IDL PDF files in Adobe Acrobat. Inter-document
hyperlinks may or may not work correctly when using other viewers, and the
compiled full-text search index (the Acrobat “Search” feature) will almost surely not
work correctly in other viewers.

The Adobe Reader software is available at no charge directly from Adobe:

www.adobe.com/reader

Locating the PDF Documentation Set

The PDF version of the documentation set is not installed with IDL. The PDF files
are located in the info/docs subdirectory of the IDL installation CD-ROM.
Getting Help with IDL Using IDL

Chapter 1: Introducing IDL 45

using.book Page 45 Tuesday, June 14, 2005 11:12 AM
Typographical Conventions

The following typographical conventions are used throughout the IDL documentation
set:

• UPPER CASE type
IDL functions and procedures, and their keywords are displayed in UPPER
CASE type. For example, the calling sequence for an IDL procedure looks like
this:

CONTOUR, Z [, X, Y]

• Mixed Case type
IDL object class and method names are displayed in Mixed Case type. For
example, the calling sequence to create an object and call a method looks like
this:

object = OBJ_NEW('IDLgrPlot')
object -> GetProperty, ALL=properties

• Italic type
Arguments to IDL procedures and functions — data or variables you must
provide — are displayed in italic type. In the above example, Z, X, and Y are all
arguments.

• Square brackets ([])
Square brackets used in calling sequences indicate that the enclosed arguments
are optional. Do not type the brackets. In the above CONTOUR example, X
and Y are optional arguments. Square brackets are also used to specify array
elements.

• Courier type
In examples or program listings, things that you must enter at the command
line or in a file are displayed in courier type. Results or data that IDL
displays on your computer screen are also shown in courier type. An example
might direct you to enter the following at the IDL command prompt:

array = INDGEN(5)
PRINT, array

In this case, the results are shown like this:

 0 1 2 3 4
Using IDL Typographical Conventions

46 Chapter 1: Introducing IDL

using.book Page 46 Tuesday, June 14, 2005 11:12 AM
Quitting IDL

To quit IDL, do one of the following:

• Enter the EXIT command at the IDL command prompt.

• If you are running the IDL Development Environment (IDLDE), select the
Exit option from the File menu.

• Under Microsoft Windows, press Alt+F4.

• Under UNIX or MacOS X, if you use IDL’s command-line mode, press
Ctrl+D as the first character in command-line mode causes IDL to exit back to
the operating system. The EXIT procedure has the same function. If Ctrl+D is
not the first character, it simply ends the input line as if a return had been
entered.

Note
When using IDL’s command-line mode under UNIX or MacOS X, you can
normally press Ctrl+Z to suspend IDL and return you to the shell process without
exiting IDL. After completing any shell commands, type fg to return IDL to the
foreground. Although the UNIX suspend character can be changed by the user
outside of IDL, this is rarely done. For the purposes of this manual, we assume the
default convention.
Quitting IDL Using IDL

Chapter 1: Introducing IDL 47

using.book Page 47 Tuesday, June 14, 2005 11:12 AM
Reporting Problems

We strive to make IDL as reliable and bug free as possible. However, no program
with the size and complexity of IDL is perfect, and problems do surface. When you
encounter a problem with IDL, the manner in which you report it has a large bearing
on how well and quickly we can fix it.

The relnotes.txt file accompanying each release includes information about new
features in that release, bug fixes, and known problems which may be of help.

This section is intended to help you report problems in a way which helps us to
address the problem rapidly.

Background Information

Sometimes, a problem only occurs when running on a certain machine, operating
system, or graphics device. For these reasons, we need to know the following facts
when you report a problem:

• Your IDL installation number.

• The version of IDL you are running.

• The type of machine on which it is running.

• The operating system version it is running under.

• The type and version of your windowing system if you are on UNIX.

• The graphics device, if the problem involves graphics and you know what
graphics device is on your system.

The installation number is assigned by us when you purchase IDL and is included in
the license information that we sent you. The IDL version, site number, and type of
machine are printed when IDL is started.

For example, the following startup announcement appears indicating you are running
IDL version 6.2 under Sun Solaris using installation number xxxxx-x, under a
floating license located on a particular license manager.

IDL Version 6.2, Solaris (sunos sparc m64).
(c) 2004, Research Systems, Inc.
Installation number: xxxxx-x.
Licensed for use by: RSI IDL floating licenses
Using IDL Reporting Problems

48 Chapter 1: Introducing IDL

using.book Page 48 Tuesday, June 14, 2005 11:12 AM
Under UNIX, the version of the operating system can usually be found in the file
/etc/motd. It is also printed when the machine boots. In any event, your system
administrator should know this information.

Under Windows, select About from the Help menu in the Windows Explorer.

Double Check

Before reporting a problem double check with the manual or a local expert if one is
available. Sometimes, it is a simple matter of misinterpreting what is supposed to
happen.

If you cannot determine what should happen in a given situation by consulting the
reference manual, the manual needs to be improved on that topic. Please let us know
if you feel that the manual was vague or unclear on a subject.

Another question to ask is whether the problem lies within IDL, or with the system
running IDL. Is your system properly configured with enough virtual memory and
sufficient operating system quotas? Does the system seem stable and is everything
else working normally?

Describing The Problem

When describing the problem, it is important to use precise language. Terms like
crashes, blows up, and fails are vague and open to interpretation. Does it really crash
IDL and leave you looking at an operating system prompt? This is how RSI technical
support personnel interpret a problem report of a crash. If the behavior being reported
refers to an unexpected error message being issued before returning another prompt,
then describing it as a crash becomes misleading. What is really meant by a term like
"fails?"

It is also important to separate concrete facts from conjecture about underlying
causes. For example, a statement such as "IDL dumps core when allocating dynamic
memory" is not nearly as useful as this statement, "IDL dumps core when I execute
the following statements... "

Reproducibility

Intermittent problems are by far the hardest kind to fix. In general, if we can't make it
happen on our machine, we can't fix it. It is far more likely that we can help you if
you can tell us a sequence of IDL statements that cause the problem to happen.
Naturally, there are degrees of reproducibility. Situations where a certain sequence of
statements causes the problem 1 time in 3 tries are fairly likely to be fixable.
Situations where the problem happens once every few months and no one is sure
what triggered it are nearly impossible to identify and correct.
Reporting Problems Using IDL

Chapter 1: Introducing IDL 49

using.book Page 49 Tuesday, June 14, 2005 11:12 AM
Simplify the Problem

In accordance with RSI Technical Support policy, when reporting a problem, it is
important to give us the shortest possible series of IDL statements that cause it. Here
are some suggestions for simplifying your problem:

Copy the procedure and function files that are involved to a scratch second copy.
Never modify your only copy!

Eliminate everything not involved in demonstrating the problem. Don't do this all at
once. Instead, do it in a series of slow careful steps. Between each step, stop and run
IDL on the result to ensure that the problem still appears.

If a simplification causes the problem to disappear, then slowly restore the statements
involved until you can identify the source of the problem. The end result of such
simplification should be a small number of IDL statements that demonstrate the
problem.

If the problem does not involve file Input/Output, strive to eliminate all file I/O
statements. Use IDL routines to generate a dummy data set, rather than including
your own data if at all possible. If your problem report does not involve your data, it
will be much easier for us to reproduce.

On the other hand, if the problem involves file Input/Output, and the problem only
happens with a certain data file or type of data, we will need to look at your data or a
sample of your data.

If it is necessary to send us your data, use one of the following methods:

• If the data set is small, please send it as an attachment in your email to us:
support@RSInc.com.

• If the data set is large, please place it on our ftp site at:
ftp.RSInc.com/incoming.

Be sure to include the commands that reproduce your problem in your message to
use. If you have placed your data on the ftp site, include the name of the data set and
when it was uploaded.

Problems with Dynamic Loading

Under some operating systems, the CALL_EXTERNAL and LINKIMAGE system
routines allow you to dynamically load routines written in other languages into IDL.
This is a very powerful technique for extending IDL, but it is considerably more
difficult than simply writing IDL statements. At this level, the programmer is outside
the user level shell of IDL and is not protected from programming errors. These
errors could give incorrect results or crash IDL. In such situations, the burden of
Using IDL Reporting Problems

mailto:support@RSInc.com
ftp://ftp.rsinc.com/incoming

50 Chapter 1: Introducing IDL

using.book Page 50 Tuesday, June 14, 2005 11:12 AM
proving that a problem is within IDL and not the dynamically loaded code is entirely
the programmer's.

Although it is certainly true that a problem in this situation can be within IDL, it is
very important that you exhaust all other possibilities before reporting the problem. If
you decide that you need to report the problem, the comments above on simplifying
things are even more important than usual. If you send us a small example that
exhibits the problem, we may be able to respond with a correction or advice.

Contact Us

To report a problem, contact us at the following addresses:

Electronic Mail
support@RSInc.com

Telephone
(303) 786-9900
(303) 786-9909 (Fax)
(303) 413-3920 (IDL technical support direct line)

Mail
Research Systems, Inc.
4990 Pearl East Circle
Boulder, CO 80301

Web Site
http://www.RSInc.com
Reporting Problems Using IDL

mailto:support@RSInc.com
http://www.rsinc.com

using.book Page 51 Tuesday, June 14, 2005 11:12 AM
Chapter 2

The IDL Development
Environment
This chapter describes the IDL Development Environment.
Components of the IDLDE 52
File Menu . 59
Edit Menu . 63
Search Menu . 65
Run Menu . 67
Project Menu . 73

Macros Menu . 74
Window Menu . 76
Help Menu . 79
Printing in IDL . 80
IDL Printer Setup in UNIX or Mac OS X . 81
Using IDL 51

52 Chapter 2: The IDL Development Environment

using.book Page 52 Tuesday, June 14, 2005 11:12 AM
Components of the IDLDE

The IDL Development Environment (IDLDE) is a convenient multiple-document
graphical user interface that includes built-in editing and debugging tools. This
section describes briefly the components of the IDLDE. The Windows version is
shown on the left and the UNIX version is shown on the right within the following
figure.

Note
Individual components are similar across platforms.

Figure 2-1: The IDL Development Environment
for Windows (left) and UNIX (right).

Menu Bar Control Panel
Buttons

Project Window Toolbars

Multiple
Document Panel

Output
Log

Variable
Watch Window

Command
Input Line

Status Bar
Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 53

using.book Page 53 Tuesday, June 14, 2005 11:12 AM
Menu Bar

The menu bar, located at the top of the main IDLDE window, allows you to control
various IDLDE features. When you select an option from a menu item in the IDLDE,
the Status Bar displays a brief description.

You can display menu commands for each menu using the following methods:

• Clicking the menu on the Menu bar.

• Pressing the Alt key plus the underlined letter in the menu’s title. For example,
to display the File menu, press Alt+F.

You can select or execute a menu command using the following methods:

• Clicking the item in the menu.

• Pressing the Alt key plus the underlined letter in the menu’s title, and then
pressing the letter underlined in the menu item. For example, to select the
menu item File → Open, press Alt+F+O.

• Using the cursor and the arrow keys to highlight a menu item, and then
pressing the Enter key.

Note
Many items (on each platform) have keyboard shortcuts displayed to the right of the
corresponding menu option.

The menu bar consists of the following menu items:

Menu Item Description of Functions

File Menu The File Menu gives you options such as opening, closing and
creating new Editor windows and Projects and other options
such as printing, printer setup, preferences and exiting IDL.

Edit Menu The Edit Menu provides edit-related options such as undo,
redo, cut, copy, paste, delete, select all, clear all and clear log.

Search Menu The Search Menu allows you to find text in currently active
Editor windows as well as other options such as find again,
find selection, enter selection, replace, replace & find, go to
line and go to definition.

Table 2-1: The IDLDE Menus
Using IDL Components of the IDLDE

54 Chapter 2: The IDL Development Environment

using.book Page 54 Tuesday, June 14, 2005 11:12 AM
Toolbars

There are three toolbars in the IDLDE: Standard, Run & Debug, and Macros. In
addition, when you open an IDL GUIBuilder window (Windows only), its associated
toolbar is displayed. When you position the mouse pointer over a toolbar button, the
Status Bar displays a brief description. If you click on a toolbar button which
represents an IDL command, the IDL command issued is displayed in the Output
Log. Display or hide toolbars by making selections among the Windows →
Toolbars items.

Run Menu Run Menu items are enabled when an IDL program is loaded
into an IDL Editor window. The run menu allows you
program related functionality such as compiling, resolving
dependencies, resetting, and editing programs among other
things. For more information on running programs in IDL, see
Chapter 2, “Creating and Running Programs in IDL” in the
Building IDL Applications manual.

Project Menu The Project Menu provides project-related functionality such
as adding/removing files, grouping and moving files, building,
running and exporting projects and so on. For more
information on working with IDL projects, see Chapter 22,
“Creating IDL Projects” in the Building IDL Applications
manual.

Macros Menu The Macro Menu provides functionality for creating new
macros and using existing macros in IDL. Fore more about
working with macros in IDL, see Chapter 4, “Creating
Development Environment Macros”.

Window Menu The Window Menu gives functionality related to Multiple
Document Panel windows.

Help Menu The Help Menu allows you to call IDL Online Help. You can
call the entire Online Help system in the IDL Online Help
Viewer or find help by topic. For more information on the IDL
Help System, see “Getting Help with IDL” on page 35.

Menu Item Description of Functions

Table 2-1: The IDLDE Menus (Continued)
Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 55

using.book Page 55 Tuesday, June 14, 2005 11:12 AM
Project Window

The Project Window displays information about the current Project you have open in
the IDLDE. IDL Projects allow you to easily develop applications in IDL. Through a
Project, you can compile, run, and create distributions of your IDL application. The
IDL Project Window allows you to access and manage all of the files required for
your application. This makes it easier to create a distribution for other developers,
colleagues, or users.

For further information on the IDL Projects, refer to Chapter 22, “Creating IDL
Projects” in the Building IDL Applications manual.

Multiple Document Panel

The section of the main IDL window where IDL Editor windows and GUIBuilder
windows are displayed is known as the multiple document panel. Any number of files
may be open at a single time. You can access different files from the Windows menu
by clicking on the appropriate file.

Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files)
from within IDL. Any number of Editor windows can exist simultaneously. No Editor
windows are open when IDL is first started. Editor windows can be created by
selecting File → New or File → Open. See “Maximizing the Editor’s Capabilities”
in Chapter 2 of the Building IDL Applications manual for more information on the
IDL Editor.

To see the Multiple Document Panel at work, open the file examples.pro by typing
.COMPILE examples.pro at the IDL command line. (See “Command Line” on
page 57 for details.)
Using IDL Components of the IDLDE

56 Chapter 2: The IDL Development Environment

using.book Page 56 Tuesday, June 14, 2005 11:12 AM
The following figure shows the IDL program file opened in the Windows IDLDE.

GUIBuilder Windows

Under Microsoft Windows, IDL GUIBuilder windows allow you to interactively
create user interfaces. Then, you can generate the IDL code that defines the interface
and the code to contain the event-handling routines. You can modify the code,
compile, and run the application in the IDLDE. To open a GUIBuilder window, you
can select File → New → GUI or you can select File → Open. See Chapter 29,
“Using the IDL GUIBuilder” in the Building IDL Applications manual. for more
information on the GUIBuilder.

Graphics Windows

IDL Graphics windows are not displayed in the Multiple Document Panel, but do
appear when you use IDL to plot or display data. You can copy the contents of a
Graphics window—iTool, Object or Direct—directly to the operating system
clipboard in a bitmap format using CTRL+C.

When an IDL Graphics window is minimized (iconized), the icon displays the name
of the IDL window. This icon appears on the desktop, not in the Multiple Document
Panel, as with an iconized Editor window.

Warning
If the backing store is not set when a window is iconized, it will not be refreshed
upon return. For more information about setting the backing store for graphics
windows, see “Graphics Preferences” on page 104.

Figure 2-2: Editor Window showing example.pro
Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 57

using.book Page 57 Tuesday, June 14, 2005 11:12 AM
Command Line

The Command Line is an IDL prompt where you can enter IDL commands. The text
output by IDL commands is displayed in the Output Log window. IDL is an
interpreted language and commands entered at the Command Line are executed
immediately. To see the IDL Command Line in action, enter the following in the
Command Line at the IDL prompt and press Enter:

print, 'Hello World!'

If you click the right mouse button while positioned over the Command Input Line, a
popup menu appears displaying the command history, with a default buffer of 20
entries and a maximum of 100 entries. Select an entry to reissue the command. See
“Recalling Commands” in Chapter 2 of the Building IDL Applications manual for
additional information about the command recall buffer.

Output Log

Output from IDL is displayed in the Output Log window, which appears by default
when the IDLDE is first started. Notice the result of our print command in the Output
Log in the following figure.

If you click the right mouse button while positioned over the Output Log, a context
menu appears allowing you to move to a specified error or clear the contents of the
Output Log. An additional Windows-only context menu option allows you to copy
selected contents.

Figure 2-3: IDLDE Command Line

Figure 2-4: The IDL Output Log
Using IDL Components of the IDLDE

58 Chapter 2: The IDL Development Environment

using.book Page 58 Tuesday, June 14, 2005 11:12 AM
Variable Watch Window

The Variable Watch window appears by default when you start the IDLDE. It keeps
track of variables as they appear and change during program execution (tabs exist for
viewing variables by type; Locals, Params, Common and System). For more
information about the Variable Watch window, see “The Variable Watch Window”
in Chapter 8 of the Building IDL Applications manual.

Status Bar

When you position the mouse pointer over a Control Panel or Toolbar button, or
select an option from a menu in IDLDE, the Status Bar displays a brief description.

Docking/Undocking

In IDL for Windows, four sections of the IDLDE can be moved within and
unanchored from the main IDLDE window: the Toolbars, Output Log, Variable
Watch Window, and Command Line. Click on the border and drag the left mouse
button. You will notice the outline of the chosen section moving with your mouse.
When a location is chosen, release the mouse button to dock the window. If you
move this outline so that it overlaps an edge of the window space being used by the
IDLDE, the section will be docked to the nearest available side of the main IDLDE
window. The Toolbars, Output Log, Variable Watch window, and Command Line
will remain between the Menu Bar and the Status Bar when docked. They can be
docked in any order to an edge. If the outline doesn’t overlap an edge, the section will
float on the desktop. If you hold down the [Ctrl] key, the sections will float instead of
docking to the nearest available side of the IDLDE.

Control Panel Buttons

In IDL for UNIX, the Control Panel buttons issue IDL commands for the currently-
selected Editor window when pressed. The IDL command issued is displayed in the
Output Log. By default, there are three different toolbars and the buttons displayed as
well as the commands they issue are completely configurable (see Chapter 3, “Setting
IDL Preferences” for more on these toolbars). When you position the mouse pointer
over a Control Panel Button, the Status Bar displays a brief description.
Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 59

using.book Page 59 Tuesday, June 14, 2005 11:12 AM
File Menu

The following options are available in the File menu.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

New Select from the following sub-menu items:

• Editor [Ctrl+N]: Opens a new IDL Editor window.

• GUI (Microsoft Windows Only): opens a new IDL
GUIBuilder file. See Chapter 29, “Using the
IDL GUIBuilder” in the Building IDL Applications manual
for details.

• Project...: opens the New Project dialog.

• Visualization: Launches an iTool. See “Introducing the
iTools” in Chapter 1 of the iTool User’s Guide manual.

New windows are Untitledn or UntitledPrcn (where n is
the numerical index of the new file) until saved with another
name.

Table 2-2: IDLDE File Menu Items
Using IDL File Menu

60 Chapter 2: The IDL Development Environment

using.book Page 60 Tuesday, June 14, 2005 11:12 AM
Open...

Ctrl+O
Select this option to open single or multiple text files for editing.
(On Microsoft Windows platforms, you can also select an IDL
GUIBuilder *.prc portable resource file.) In the Open dialog,
you can select a continuous range of files by holding down the
Shift key after selecting the first file, or select multiple, separate
files by selecting each file while holding down the Control key.
A new IDL Editor window is created to contain each text file.

Note - On Motif platforms, if the Multiple Windows option is
selected, a new IDL Editor window is created outside the main
window to contain each text file. See “Layout Preferences” on
page 100 for details.

Note - You can also open text files from the Command Line.
Enter the following at the IDL prompt:
.EDIT file1 [file2 ... filen]

where file is the name of the text file you want to open. If the file
is not in a directory included in the !PATH system variable, you
must enter the full path for file. See “.EDIT” in the IDL
Reference Guide manual for more information.

Close Select this option to close the currently-selected IDL Editor
window. If you have made changes in an IDL Editor window,
you are asked if you want to save the changes before closing the
window.

Open Project... Select this option to open a new IDL Project. The Open dialog
appears. Select the project you want to open and click Open.

Save Project Select this option to save the current IDL Project. If the Project
has not yet been saved, you are prompted for a filename with the
Save As dialog.

Save Project
As...

Select this option to save the current IDL Project to a specified
filename. The Save As dialog appears.

Close Project Select this option to close the current IDL Project. If you have
made changes in to the project, you are asked if you want to save
the changes before closing the window.

Menu Item Description

Table 2-2: IDLDE File Menu Items (Continued)
File Menu Using IDL

Chapter 2: The IDL Development Environment 61

using.book Page 61 Tuesday, June 14, 2005 11:12 AM
Save

Ctrl+S
Select this option to save the contents of an IDL Editor window.
If the file has not yet been saved, you are prompted for a
filename with the Save As dialog.

Note - Changes made to a previously-compiled routine are not
available to IDL until that routine is re-compiled. Executing the
routine without first saving and re-compiling simply re-runs the
previously-compiled version, without incorporating recent
changes.
Select the Compile option in the Run menu to return to the
main program level and re-compile the routine. Select Compile
from Memory in the Run menu to save and compile recent
changes to a temporary file.

Save As...

Ctrl+W (Motif)
Select this option to save the contents of an IDL Editor window
to a specified filename. The Save As dialog appears. On
Windows, when the File → Save As... option is selected, the
default file name is the name of the last procedure or function in
the file. On UNIX, the default file name is *.pro. For
portability between platforms, the filename is lowercase letters.

Revert to
Saved

Select this option to reload the last saved version of the
document.

Warning - Unsaved changes are lost without warning.

Generate .pro Microsoft Windows Only

On a Microsoft Windows system, select this option to generate
source code files from GUIBuilder interface definitions. When
you generate code for the first time, all options open the Save As
dialog so that you can select a location and specify a filename.
The following are generated:

• The widget definition code to a *.pro file.

• The event-handler callback code to a *_eventcb.pro file.

For information about the IDL GUIBuilder generated code, see
“Generating Files” in Chapter 29 of the Building IDL
Applications manual.

Menu Item Description

Table 2-2: IDLDE File Menu Items (Continued)
Using IDL File Menu

62 Chapter 2: The IDL Development Environment

using.book Page 62 Tuesday, June 14, 2005 11:12 AM
Print...

Ctrl+P
On Microsoft Windows systems, select this option to
immediately print the contents of the currently-selected window
to the default printer.

On Motif systems, the Print dialog appears. Select Numbered
Lines to include line numbers in the printout. Select Wrapped
Lines to cause lines longer than the width of the printed page to
wrap to a new line. Select Two Pages to print two pages per
sheet of paper (each logical page is printed at half normal size).
Select Header to include file information at the top of each
page.

Print Setup... Select this option to change the printer and printing options. The
Print (Windows) or Printer Setup (Motif) dialog appears. For
further information on setting up a printer, see “Printing in IDL”
on page 80.

Recent Files Select this option to open recently opened or created files. This
menu item lists the last ten opened or created files. (On
Microsoft Windows systems, it includes both text and
GUIBuilder files.) To open a file on this list, select it.

On Motif systems, to change the maximum number of files
displayed from ten to another number, modify the
idlde.numRecentFiles resource in your .idlde resource
file. See Chapter 5, “Customizing IDL on Motif Systems”, for
details.

Recent
Projects

Select this option to open recently opened project files.

Preferences... Select this option to display the tabbed Preferences dialog,
which allows you to customize your interaction with the
IDLDE. The options available via the Preferences dialog are
described in detail in Chapter 3, “Setting IDL Preferences”.

Exit

Ctrl+Q
Select this option to exit IDL.

Menu Item Description

Table 2-2: IDLDE File Menu Items (Continued)
File Menu Using IDL

Chapter 2: The IDL Development Environment 63

using.book Page 63 Tuesday, June 14, 2005 11:12 AM
Edit Menu

The following options are available in the Edit menu.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

Undo

Ctrl+Z (Windows)
Alt+Z (Motif)

Select this option to undo previous editing actions. Multiple
undo operations are supported; the first reverses the most
recent operation, the next reverses the second most recent
operation, etc. If the most recent action is irreversible, this
option will not be accessible.

Redo

Ctrl+Y (Windows)
Alt+Y (Motif)

Select this option to redo previously undone editing actions.
Successive redo operations are supported; the first redo
reverses the most recent undo, etc.

Cut

Ctrl+X (Windows)
Alt+X (Motif)

Select this option to remove currently-selected text from an
IDL Editor window or the Command Line to the Windows
clipboard.

Copy

Ctrl+C (Windows)
Alt+C (Motif)

Select this option to copy the currently-selected text in an
IDL Editor window, Output Log window, or Command
Line to the clipboard. Copy also allows you to copy
graphics from an IDL graphics window or draw widget to
the clipboard.

Paste

Ctrl+V (Windows)
Alt+V (Motif)

Select this option to paste the contents of the Windows
clipboard at the current insertion point. The insertion point
can only be placed in an IDL Editor window.

Comment Add the comment character (;) to a line or selected block of
text in the Editor window.

Uncomment Remove the comment character (;) from a line or selected
block of text in the Editor window.

Table 2-3: IDLDE Edit Menu Items
Using IDL Edit Menu

64 Chapter 2: The IDL Development Environment

using.book Page 64 Tuesday, June 14, 2005 11:12 AM
Delete

Del

Select this option to delete the currently-selected text. The
deleted text is not placed on the clipboard.

Select All Use this option to highlight the entire contents of an IDL
Editor window.

Clear All

Ctrl+Del (Windows)

Use this option to clear the entire contents of the current
IDL Editor window.

Clear Log

Ctrl+Y (Motif)

Use this option to clear the entire contents of the Output
Log.

Properties Microsoft Windows Only

Select this option to open the GUIBuilder Properties dialog,
which you can use to set the attribute and event properties
for a widget. For information on the Properties dialog, see
“Using the Properties Dialog” in Chapter 29 of the Building
IDL Applications manual.

Menu Microsoft Windows Only

Select this option to open the GUIBuilder Menu Editor,
which you can use to define menus for top-level base
widgets and button widgets. For information on the Menu
Editor, see “Using the Menu Editor” in Chapter 29 of the
Building IDL Applications manual.

Menu Item Description

Table 2-3: IDLDE Edit Menu Items (Continued)
Edit Menu Using IDL

Chapter 2: The IDL Development Environment 65

using.book Page 65 Tuesday, June 14, 2005 11:12 AM
Search Menu

The following options are available in the Search menu.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

Find...

Ctrl+F (Windows)
Alt+F (Motif)

Select this option to find text in an IDL Editor window or
windows. The Search or Find/Replace dialog appears.

Enter the text to find in the field marked Search for or
Find; click Find next to highlight the search text in the
currently active file.

Platform Differences
• On Windows platforms, you can also choose an entry

from the pulldown list of recent search terms rather than
entering a new term in the Search for field.

• On Windows platforms, you can specify replacement
text by checking the Replace with checkbox and
entering a replacement term. Click Replace to replace
the selected text.

Check the Case sensitive checkbox to match the case of the
text you enter. Check Whole words only to match only
entire words (the default is to match sub-strings). To replace
all instances of the search text, check the Replace all
checkbox and click Replace. Select Forward from cursor
or Backward from cursor to specify the direction in which
you would like to begin the search, or Entire file to search
from the beginning of the file.

By default, the search will take place in the currently-
selected window. Choose a different file or All Windows
from the pulldown list marked Search in file to search other
windows.

Table 2-4: IDLDE Search Menu Items
Using IDL Search Menu

66 Chapter 2: The IDL Development Environment

using.book Page 66 Tuesday, June 14, 2005 11:12 AM
Find Again

F3 (Windows)
Alt+G (Motif)

Select this option to repeat the previous Find operation.

Find Selection

Ctrl+E (Windows)
Alt+I (Motif)

Select this option to find the next occurrence of the selected
text in an IDL Editor window.

Enter Selection

Alt+T (Motif)
Motif Only

Select this option to enter selected text in the Find field of
the Find/Replace dialog.

Replace...

Ctrl+H (Windows)
Alt+R (Motif)

Select this option to find text in an IDL Editor window and
replace it with new text. The Replace dialog box appears.
The Replace dialog has the same controls as the Search
dialog, described above in the Find item. By default, the
Replace with checkbox is checked.

Replace & Find

Alt+P

Motif Only

Select this option to repeat the most recent search-and-
replace operation.

Replace Again

Shift+F3
Select this option to repeat the previous Replace operation.

Go To Line...

Ctrl+G
Select this option to jump directly to the specified line
number in an IDL Editor window. The Go To Line dialog
appears.

Go To Definition

Ctrl+D (Windows)
Ctrl+T (Motif)

Use this option to go to and mark with a current line
indicator (blue arrow) the procedure or function call of the
item next to which the cursor is positioned. The item must
be either user-defined or a procedure or function written in
IDL, and must have been compiled during the current
IDLDE session.

Menu Item Description

Table 2-4: IDLDE Search Menu Items (Continued)
Search Menu Using IDL

Chapter 2: The IDL Development Environment 67

using.book Page 67 Tuesday, June 14, 2005 11:12 AM
Run Menu

Run menu items are enabled when an IDL program is loaded into an IDL Editor
window and compiled. If you click the right mouse button while positioned over an
editor window, a popup menu appears allowing you to quickly access several of the
most convenient commands. The popup menu changes to display common debugging
commands if IDL is running a program. See Chapter 8, “Debugging and
Error-Handling” in the Building IDL Applications manual for more information.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

Compile filename.pro

Ctrl+F5

Select this option to compile a .pro file. The currently-
selected file is only recognized as an IDL procedure or
function if suffixed with .pro. Selecting this option is
the same as entering .COMPILE at the Command Line,
with the appropriate Editor window selected in the
Multiple Document Panel.

You can also compile files from the Command Line.
Enter the following at the IDL prompt:

.COMPILE file1 [file2 ... filen]

where file is the name of the file you want to open. IDL
opens your files in editor windows and compiles the
procedures and functions contained therein. If the path is
not specified in the Path Preferences from the File
menu, you must enter the full path for file.

See “.COMPILE” in the IDL Reference Guide manual
for a more detailed explanation.

Table 2-5: IDLDE Run Menu Items
Using IDL Run Menu

68 Chapter 2: The IDL Development Environment

using.book Page 68 Tuesday, June 14, 2005 11:12 AM
Compile filename.pro
from Memory

Ctrl+F6

Select this option to save and compile changes to the
current editor window without affecting the last-saved
version of the file. The temporary file created allows you
to experiment without committing changes to the
permanent file. Selecting this option is the same as
entering .COMPILE -f at the Command Line. See
“.COMPILE” in the IDL Reference Guide manual for a
more detailed explanation.

Compile All Select this option to compile all currently open *.pro
files.

Run filename

F5

Select this option to execute the file called filename
contained in the currently-active editor window.
Selecting this option is the same as entering the
procedure name at the Command Line or using the .GO
executive command at the Command Line.

If the file is interrupted while running, selecting this
option resumes execution; it is the same as entering
.CONTINUE at the Command Line. For more
information, see .CONTINUE and .GO in the IDL
Reference Guide.

Warning - In order for the Run option to reflect the
correct procedure name in the Run menu, the .pro
filename must be the same as the main procedure name.
For example, the file named squish.pro must include:

pro squish

Resolve
Dependencies

Alt+F5 (Motif)

Select this option to iteratively compile all un-compiled
IDL routines that are referenced in any open and
compiled files. Selecting this option is the same as
entering RESOLVE_ALL, /QUIET at the Command
Line. The QUIET keyword suppresses informational
messages. See “RESOLVE_ALL” in the IDL Reference
Guide manual for a more detailed explanation.

Menu Item Description

Table 2-5: IDLDE Run Menu Items (Continued)
Run Menu Using IDL

Chapter 2: The IDL Development Environment 69

using.book Page 69 Tuesday, June 14, 2005 11:12 AM
Profile Select this option to access the Profile dialog. The IDL
Code Profiler allows you to analyze the performance of
your applications. You can identify which modules are
used most frequently, and which modules take up the
greatest amount of time.For more information about the
IDL Code Profiler, see “The IDL Code Profiler” in
Chapter 10 of the Building IDL Applications manual.

Test GUI

Ctrl+T
Microsoft Windows Only

Select this option to test the GUI interface in a
GUIBuilder window. This option allows you to see how
the interface you have designed will look when it is
running.

To exit test mode:

Press the Esc key.

or

Click the X in the upper-right corner of the
application window of the running test application.

Note - This option is not available if a blocking widget is
currently active.

Break

Ctrl+Break (Windows)
Ctrl+C (Motif)

Select this option to interrupt program execution. IDL
inserts a marker to the left of the line at which program
execution was interrupted.

Stop

Ctrl+R

Select this option to stop program execution and return to
the main program level. Selecting this item is the same as
entering the following at the Command Line:

RETALL
WIDGET_CONTROL,/RESET
CLOSE, /ALL
HEAP_GC, /VERBOSE

See RETALL, WIDGET_CONTROL, CLOSE, or
HEAP_GC in the IDL Reference Guide for details.

Menu Item Description

Table 2-5: IDLDE Run Menu Items (Continued)
Using IDL Run Menu

70 Chapter 2: The IDL Development Environment

using.book Page 70 Tuesday, June 14, 2005 11:12 AM
Reset Select this option to completely reset the IDL
environment. This option executes .RESET_SESSION.
See “.RESET_SESSION” in the IDL Reference Guide
manual for details.

Step Into

F8

Select this option to execute a single statement in the
current program. The current-line indicator advances one
statement. If the statement being stepped into calls
another IDL procedure or function, statements from that
procedure or function are executed in order by successive
Step commands. Selecting this item is the same as
entering .STEP at the IDL Command Line. See “.STEP”
in the IDL Reference Guide manual for a more detailed
explanation.

Step Over

F10

Select this option to execute a single statement in the
current program. The current-line indicator advances one
statement. If the statement which is stepped over calls
another IDL procedure or function, statements from that
procedure or function are executed to the end without
interactive capability. Selecting this item is the same as
entering .STEPOVER at the IDL Command Line. See
“.STEPOVER” in the IDL Reference Guide manual for
details.

Step Out

Ctrl+F8

Select this option to continue processing until the current
program returns. Selecting this item is the same as
entering .OUT at the IDL Command Line. See “.OUT” in
the IDL Reference Guide manual for a more detailed
explanation.

Menu Item Description

Table 2-5: IDLDE Run Menu Items (Continued)
Run Menu Using IDL

Chapter 2: The IDL Development Environment 71

using.book Page 71 Tuesday, June 14, 2005 11:12 AM
Trace... Select this option to access the Trace Execution dialog.
You can modify the interval between successive .STEP
or .STEPOVER commands, depending on whether Step
into routines or Step over routines is checked. The
current-line indicator points to program lines as they are
executed. Selecting this item at full speed is the same as
entering .TRACE at the IDL command prompt. See
“.TRACE” in the IDL Reference Guide manual for a
more detailed explanation.

Run to Cursor

F7
Select this option to execute statements in the current
program up to the line where the cursor is positioned.
Selecting this item is the same as setting a one-time
breakpoint at a specific line. See “BREAKPOINT” in the
IDL Reference Guide manual for details.

Run to Return

Ctrl+F7
Select this option to execute statements in the current
procedure or function up to the line where the return is
positioned. Selecting this item is the same as setting a
one-time breakpoint at a specific line. See “.RETURN”
in the IDL Reference Guide manual for details.

Set Breakpoint

Clear Breakpoint

F9

Select this option to set or clear a breakpoint on the
current line. See Chapter 8, “Debugging and
Error-Handling” in the Building IDL Applications
manual for details.

Disable Breakpoint

Ctrl+F12 (Motif)
Select this option to access disable a breakpoint in the
current line. See Chapter 8, “Debugging and
Error-Handling” in the Building IDL Applications
manual for details.

Edit Breakpoint... Select this option to access the Edit Breakpoint dialog.
See Chapter 8, “Debugging and Error-Handling” in the
Building IDL Applications manual for details.

Up Stack

Ctrl+Up Arrow

Select this option to move up the call stack by one.

Menu Item Description

Table 2-5: IDLDE Run Menu Items (Continued)
Using IDL Run Menu

72 Chapter 2: The IDL Development Environment

using.book Page 72 Tuesday, June 14, 2005 11:12 AM
Down Stack

Ctrl+Down Arrow

Select this option to move down the call stack by one.

List Call Stack Select this option to display the current nesting of
procedures and functions. Selecting this item is the same
as entering HELP, /TRACEBACK at the IDL Command
Line. See “HELP” in the IDL Reference Guide manual
for details.

Menu Item Description

Table 2-5: IDLDE Run Menu Items (Continued)
Run Menu Using IDL

Chapter 2: The IDL Development Environment 73

using.book Page 73 Tuesday, June 14, 2005 11:12 AM
Project Menu

For more information on the following Project menu items, see Chapter 22,
“Creating IDL Projects” in the Building IDL Applications manual.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

Add/Remove
Files...

Select this option to add or remove files from the current
project.

Remove Selected

Ctrl+H
Motif Only

Select this option to remove the currently selected file from
your IDL Project.

Move To Motif Only

Select this option to move the currently selected file to the
indicated project directory.

Groups... Selecting this option displays the Project Groups dialog
from which you can create a new group or rename, remove,
move up or down, or set to filter specific file types for the
default groups within an IDL Project.

Options... Select this option to change the options for a project. The
Project Options dialog is displayed.

Compile Select this option to compile files in a project. You can
choose either All Files to compile all the source files in a
project or Modified Files to compile only the files that have
been modified since the last compile.

Build Select this option to build your project.

Run Select this option to run the project application.

Export Select this option to export your project.

Table 2-6: IDLDE Project Menu Items
Using IDL Project Menu

74 Chapter 2: The IDL Development Environment

using.book Page 74 Tuesday, June 14, 2005 11:12 AM
Macros Menu

The following options are available in the Macros menu.

Menu Item Description

Edit... Select this item to access the Edit Macros dialog.
Macros which have already been defined are listed in
the Macros: field. To edit a macro, click on the
macro to access its characteristics and click OK
when your adjustments are complete.

To add a macro, click Add..., which will access the
Add Macro dialog. Enter the name of the new macro
in the given field and click OK. Enter the IDL
command to be executed by the new macro in the
IDL Command: field. Enter the menu item name,
the full path to the toolbar bitmap file, the tooltip
text, and the status bar text in the appropriate fields.
Select the accelerator by specifying the key in the
Key: field and then optionally clicking on any
combination of Ctrl, Alt and Shift.

Note - Bitmap files for toolbar buttons must be 16
pixels by 16 pixels, and must contain 256 colors or
fewer.

To remove a macro, click Remove. To change the
position of a macro in the Macro menu and on the
Macro Toolbar, click on the macro to highlight it
and click on either Move Up or Move Down.

Import... Microsoft Windows Only

Use this menu selection to display the Import
Macros dialog box. Use this dialog to select the
previous IDL installation from which you want
macros to be imported.

Table 2-7: IDLDE Macros Menu Items
Macros Menu Using IDL

Chapter 2: The IDL Development Environment 75

using.book Page 75 Tuesday, June 14, 2005 11:12 AM
Print Var (Windows)

Print Variable (Motif)

Select this option to print the selected variable.
Selecting this item is the same as entering PRINT, x
at the IDL Command Line, where x is the selected
variable.

Help On Var (Windows)

Help On Variable (Motif)

Select this option to list attributes of the selected
variable. Selecting this item is the same as entering
HELP, x, /STRUCTURE at the IDL Command Line,
where x is the selected variable.

Import Image Select this option to import an image file into IDL.
For more information, see “Using Macros to Import
Image Files” on page 165.

Import ASCII Select this option to import an ASCII file into IDL.
For more information, see “Using Macros to Import
ASCII Files” on page 167.

Import Binary Select this option to import a binary file into IDL.
For more information, see “Using Macros to Import
Binary Files” on page 169.

Import HDF Select this option to import an HDF file into IDL. For
more information, see “Using Macros to Import HDF
Files” on page 170.

Demo Select this option to access IDL’s Demo application.

Menu Item Description

Table 2-7: IDLDE Macros Menu Items (Continued)
Using IDL Macros Menu

76 Chapter 2: The IDL Development Environment

using.book Page 76 Tuesday, June 14, 2005 11:12 AM
Window Menu

The following options are available in the Window menu.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

Read Only Motif Only

Select this option to enable or disable editing of the
currently selected window. A filled square next to the item
indicates Read-Only status.

Next

F6 (Windows)
F11 (Motif)

Select this option to shift IDL’s focus to the next numbered
editor window.

Previous

Shift+F6 (Windows)
Alt+F11 (Motif)

Select this option to shift IDL’s focus to the previous
numbered editor window.

Cascade Select this option to cascade all the IDL Editor windows
within the main window.

Tile Horizontally Microsoft Windows Only

Select this option to tile all the IDL Editor windows on top
of one another within the main window.

Tile Vertically Microsoft Windows Only

Select this option to tile all the IDL Editor windows side-
by-side within the main window.

Tile Motif Only

Select this option to arrange all open windows in a non-
overlapping fashion.

Table 2-8: IDLDE Window Menu Items
Window Menu Using IDL

Chapter 2: The IDL Development Environment 77

using.book Page 77 Tuesday, June 14, 2005 11:12 AM
Arrange Icons Select this option to arrange all minimized Editor or
Graphics windows.

Close All Select this option to close all IDL Editor windows. If the
text within an IDL Editor window has changed, you are
asked if you want to save the file before closing.

Configure Motif Only

Select this option to access a pulldown menu which alters
the appearance of the IDLDE. Select each toggle option to
hide or show each component. For more information about
each component, see “Components of the IDLDE” on
page 52.

• Hide Control (Show Control)

• Hide View (Show View)

• Hide Log (Show Log)

• Hide Variable Watch (Show Variable Watch)

• Hide Command (Show Command)

• Hide Status (Show Status)

• Hide Project (Show Project)

Command Input

Ctrl+I

Microsoft Windows Only

If this menu item has a check mark by it, the IDL
Command Line is visible in the main IDL window. If this
item does not have a check mark next to it, the IDL
command line is not visible. Use this menu item to toggle
between the two states.

Output Log

Ctrl+L
Microsoft Windows Only

If this menu item has a check mark by it, the Output Log
is visible in the main IDL window. If this item does not
have a check mark next to it, the Multiple Document
Panel is maximized in the main IDL window. Use this
menu item to toggle between the two states.

Menu Item Description

Table 2-8: IDLDE Window Menu Items (Continued)
Using IDL Window Menu

78 Chapter 2: The IDL Development Environment

using.book Page 78 Tuesday, June 14, 2005 11:12 AM
Variable Watch

Ctrl+A
Microsoft Windows Only

If this menu item has a check mark by it, the Variable
Watch Window is visible in the main IDL window. If this
item does not have a check mark net to it, the Variable
Watch Window is not visible. Use this menu item to
toggle between the two states.

Project Microsoft Windows Only

If this menu item has a check mark by it, the Project
Window is visible in the main IDL window. If this item
does not have a check mark net to it, the Project Window
is not visible. Use this menu item to toggle between the two
states.

Toolbars Select this option to access a pulldown menu with the three
Windows toolbars: Standard, Run & Debug, and
Macros. If a toolbar has a check mark by it, it is visible
below the menu bar items.

Status Bar Microsoft Windows Only

If this menu item has a check mark by it, the Status bar is
visible at the very bottom of the Main IDL window.

Numbered
Windows

The numbered menu items at the bottom of the Window
menu display open files. Select any of these menu items to
make that window the current window.

Menu Item Description

Table 2-8: IDLDE Window Menu Items (Continued)
Window Menu Using IDL

Chapter 2: The IDL Development Environment 79

using.book Page 79 Tuesday, June 14, 2005 11:12 AM
Help Menu

The following options are available in the Help menu.

Note
See “Using Keyboard Accelerators” on page 33 for information about using IDL’s
keyboard shortcuts on a Macintosh.

Menu Item Description

Contents

Ctrl+F1
Select this menu item to display the IDL Online Help
Viewer.

Find Topic...

F1
Select this menu item to display the Search dialog for IDL
Online Help.

About IDL... Select this option to display information on the IDL version in
use.

Table 2-9: IDLDE Help Menu Items
Using IDL Help Menu

80 Chapter 2: The IDL Development Environment

using.book Page 80 Tuesday, June 14, 2005 11:12 AM
Printing in IDL

IDL allows you two ways to print:

• Printing graphics from the IDL language

• Printing IDL source code from the File menu of the IDLDE.

While these sources are fundamentally different, the methods used to specify and
configure a print device according to your operating system are the same. This topic
is covered in the following sections. See “Printing Graphics” on page 222 for
information on how to print from an IDL program.

Printer setup in Windows is relatively straightforward, and is described in the
following section. UNIX printer setup is slightly more involved and is covered in
“IDL Printer Setup in UNIX or Mac OS X” on page 81.

IDL Printer Setup in Windows

Setting up a printer in IDL for Windows uses the common Windows Printer Setup
dialog. For more information on setting up a Printer on Windows, see your Windows
operating system documentation or support.

Figure 2-5: Common Printer Setup Dialog in Windows
Printing in IDL Using IDL

Chapter 2: The IDL Development Environment 81

using.book Page 81 Tuesday, June 14, 2005 11:12 AM
IDL Printer Setup in UNIX or Mac OS X

IDL for UNIX uses the Xprinter print technology from Bristol Technology to create
and output information to a wide variety of printers. This section describes the
Xprinter setup dialogs.

The Xprinter Setup Dialog

The Xprinter Setup dialog allows you to select model-specific printer options such as
paper trays, paper size, page orientation, and the UNIX print spooler command.
Printer options are saved in the $HOME/.XprinterDefaults file. Once configured,
the desired information is saved to the file system and used in future IDL sessions.

Printer Setup Dialog Buttons

The action area of the Printer Setup dialog contains six buttons:

Figure 2-6: The Printer Setup Dialog

Button Description

OK Writes current configuration information to your default
printer information file $HOME/.XprinterDefaults. This
button also dismisses the dialog.

Table 2-10: Printer Setup Dialog Buttons
Using IDL IDL Printer Setup in UNIX or Mac OS X

82 Chapter 2: The IDL Development Environment

using.book Page 82 Tuesday, June 14, 2005 11:12 AM
Configuring Printer Setup Options

Specify the following options on the initial Printer Setup dialog:

Save Writes current configuration information to your default
printer information file $HOME/.XprinterDefaults.

Reset Reloads default configuration from
$HOME/.XprinterDefaults.

Cancel Closes dialog and cancels all configuration changes.

Options Displays the options dialog box that lets you select an alternate
printer setup. This button is disabled if output is configured to
be sent to a file instead of a printer.

Install Displays the installation dialog box that allows you to add or
remove printer devices and printer ports from the
$HOME/.XprinterDefaults file.

Option Description

Output Format: Specify whether to send output to a file or a printer. If you
choose Printer Specific, you can send output to any printer
type/port combination configured in your
$HOME/.XprinterDefaults file. If the port is FILE:,
Xprinter creates an output file for the specified printer type. If
you choose Generic (File Only), print output is sent to an
Encapsulated PostScript or generic PCL file.

Printer: This field appears only if you select Output Format: Printer
Specific. It specifies the name of the default printer type/port
to which to send print output. Click the Options button to
specify a different printer type/port combination.

Table 2-11: Specifying Printer Setup Options

Button Description

Table 2-10: Printer Setup Dialog Buttons (Continued)
IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 83

using.book Page 83 Tuesday, June 14, 2005 11:12 AM
To set additional options, such as selecting a different printer or changing the page
size, click the Options button. The Options dialog appears.

The Options dialog is only available when sending output to a printer.

File Name: This field appears only if you choose Output Format: Generic
(File Only). Type the name of the print file you wish to create.
To pipe print output to a command, enter a ! character as the
first character and then specify the command to which to send
output. For example, to send output to the lp command, enter
the following:

!lp

EPSF

PCL4

PCL5

This field only appears if you select Output Format: File.
Click this button to display a list of output file types and select
the desired type. Available types are EPSF (Encapsulated
PostScript), PCL4, and PCL5.

Orientation Specify portrait or landscape.

Scale To increase the size of the output, specify a value greater than
1.00. To reduce the size, specify a value less than 1.00. For
example, a value of 2.00 would double the size of the output; a
value of 0.50 would reduce it by half.

Copies Specify the number of copies to print.

Figure 2-7: The Options Dialog

Option Description

Table 2-11: Specifying Printer Setup Options (Continued)
Using IDL IDL Printer Setup in UNIX or Mac OS X

84 Chapter 2: The IDL Development Environment

using.book Page 84 Tuesday, June 14, 2005 11:12 AM
Use this dialog to set the Printer Setup options:

Adding a New Printer to the List of Printer Choices

To add a new printer to your list of available printers:

• Define a port, which is an alias for the print command.

• Associate the port with the printer’s PPD file.

Defining a New Port

To define a new port using the Printer Setup dialog:

1. Display the Ports dialog. From the Printer Setup dialog, select Install, Add
Printer, and Define New Port.

Option Description

Printer Name Use this field to select the current printer. Click the down
arrow to display a list of configured printers.

Resolution Specify printer resolution with this field. Values vary
depending on printer.

Page Size Specify paper size with this field. Values vary depending on
printer.

Paper tray Specify paper tray with this field. Values vary depending on
printer.

Duplex Specify duplex options (if the selected printer supports duplex
printing). Valid values include None (no duplex printing),
Duplex Tumble (flips over the short edge), and Duplex No
Tumble (flips over the long edge). If the selected printer does
not support duplexing, this field is disabled.

Table 2-12: The Printer Setup Options
IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 85

using.book Page 85 Tuesday, June 14, 2005 11:12 AM
2. Type the port definition in the Edit Port edit box. Port definitions have the
following format:

port=print_command

The print_command is the command for sending output to the printer port. If
you were to have two printers named ORION and SIRIUS for example, the
definitions would appear as follows:

ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"

Both printers here are connected to the system bandit, so the print command is
a remote shell command executed on bandit. ORION is a PostScript printer, so
the command lp -d ps is executed on bandit to print to ORION. SIRIUS
though is a PCL5 printer, so the print command executed on bandit to print to
SIRIUS is lp -d ps -T pcl5.

3. Click Add/Replace and the new port is now included in the list of current port
definitions.

4. Repeat the above step for each printer to which you wish to send output.

Figure 2-8: Defining a New Port
Using IDL IDL Printer Setup in UNIX or Mac OS X

86 Chapter 2: The IDL Development Environment

using.book Page 86 Tuesday, June 14, 2005 11:12 AM
Note
To create a printer port for each available queue on hp700 systems, click the
Spooler button on the Ports dialog. This command creates a default printer port for
each available printer queue returned by the lpstat -a command.

Modifying an Existing Port

In order to modify an existing port using the Printer Setup dialog:

1. Display the Ports dialog. From the Printer Setup dialog, click Install, Add
Printer, and Define New Port.

2. Select the port you wish to modify and edit the port information in the Edit
Port edit box.

3. Click Add/Replace. The modified port is now included in the list of current
port definitions.

Matching a Printer Device to a Port

In order to match a printer device to a port using the Printer Setup dialog:

1. Display the Add Printer dialog. From the Printer Setup dialog, click Install
and Add Printer.

2. In the Printer Devices field, select the description that matches the printer you
are to install. If no description matches this printer, contact your printer vendor
for a printer description (PPD) file.

3. Select the desired port in the Current Port Definitions list box and click Add
Selected. The new printer is now included in the list of currently installed
printers.
IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 87

using.book Page 87 Tuesday, June 14, 2005 11:12 AM
Removing an Installed Printer

In order to remove a printer device/port combination using the Printer Setup dialog:

1. Display the Printer Installation dialog. From the Printer Setup dialog, click
Install.

2. In the Currently Installed Printers list box, select the printer you wish to
remove and click on Remove Selected.

Manually Modifying Default Printer Setup Values

Xprinter retrieves default printer setup information from the file
.XprinterDefaults in your home directory. If this file does not exist, Xprinter
reads the information from the file $XPHOME/xprinter/XprinterDefaults or
$XPPATH/XprinterDefaults.

Note
For IDL, $XPATH is set to $IDL_DIR/resource/xprinter.

The Xprinter Printer Setup dialog writes modifications to the default information in
$HOME/.XprinterDefaults. However, it never modifies the default information
in the file $XPHOME/XprinterDefaults or $XPPATH/XprinterDefaults. If
the file $HOME/.XprinterDefaults does not already exist, the Xprinter Printer
Setup dialog creates it.

Although the most common way to modify the default Printer Setup is using the
Printer Setup dialog, which updates $HOME/.XprinterDefaults automatically,
you may also edit this file with any text editor and make changes directly.

Figure 2-9: Adding a Printer
Using IDL IDL Printer Setup in UNIX or Mac OS X

88 Chapter 2: The IDL Development Environment

using.book Page 88 Tuesday, June 14, 2005 11:12 AM
You may also set up the $HOME/.XprinterDefaults file to do the following:

• Define printer ports.

• Match printer types to defined ports.

• Specify the default printer.

• Specify printer-specific options.

Defining a Port

A printer port is an alias for the print command. It is defined in the [ports] section of
$HOME/.Xpdfaults and appears as part of the Printer Name in the Printer Setup
dialog. For instance, the following is the first Printer Name in the Printer Setup dialog
before you make any changes to $HOME/.XprinterDefaults:

AppleLaserWriter v23.0 PostScript on FILE:

For this Printer Name, FILE: is the port name. To send output to a printer instead of a
file, you first must define a port for each printer to which you wish to direct output.
Port entries in the [ports] section have this format:

port=print_command

The print_command is the command for sending output to the printer port. For
instance, if you have two printers (ORION and SIRIUS), your [ports] section may
appear as follows:

[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"

In the above, both printers are connected to the system bandit, so the print command
is a remote shell command executed on bandit. ORION is a PostScript printer, so the
command lp -d ps is executed on bandit to print to ORION. SIRIUS, though, is a
PCL5 printer, and thus the print command executed on bandit to print to SIRIUS is
lp -d ps -T pcl5.

If a printer is connected to your local system, you will need to add an entry for that
printer as well. For the local printer, your entry should be like the following:

[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl15"
LOCAL=lp -d ps

Your printer port can be any name you choose except FILE:, which is the only
reserved port name. It causes Xprinter to create a print file formatted specifically for
the specified printer type.
IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 89

using.book Page 89 Tuesday, June 14, 2005 11:12 AM
An entry must be created in the [ports] section for every printer to which you wish to
be able to print.

Matching a Printer Type to a Defined Port

After you have defined a port for each printer, you must tell Xprinter what type of
printer is associated with each port. List device types in the [devices] section of the
.XprinterDefaults file. Each entry in the [devices] section has the following
format:

alias=PPD_file driver,port

Note
There must be a space between the PPD_file and driver and a comma between the
driver and the port. The following table describes each part of this entry.

Field Description

alias The alias is a descriptive name used to identify the printer. It
can be anything you choose. The alias is the name which
appears in the Printer Setup dialog (such as HP LaserJet
III SI PostScript).

PPD_file The PPD_file is the name of the printer description (PPD) file
used by the printer, without a .PPD extension. Search in the
directory $XPHOME/xprinter/ppds/ to find the PPD file
for your printer.

driver The driver is the type of driver your printer uses. Value values
are PostScript, PCL4, and PCL5.

port The port is the printer port as listed in the [ports] section of the
.XprinterDefaults file (ORION, SIRIUS, and LOCAL in
the example [ports] section).

Table 2-13: Associating a Printer with a Port
Using IDL IDL Printer Setup in UNIX or Mac OS X

90 Chapter 2: The IDL Development Environment

using.book Page 90 Tuesday, June 14, 2005 11:12 AM
Here’s an example configuring three printers:

First, be sure to choose an alias for each printer. In order to make it simpler to
identify the printer from the Printer Setup dialog you wish to use, you may use the
following aliases:

HP LaserJet PS
HP LasterJet PCL
QMS PS

It is important to note that if you utilize the Printer Setup dialog to associate ports and
PPD files, you cannot specify a printer alias. You must instead choose an alias from
the predefined listing that appears in the Printer Devices list box in the Add Printer
dialog. The corresponding PPD file is already associated with the printer aliases in
this list box.

Now, identify the PPD file associated with each of these printers.

Thus the [devices] section of the .XprinterDefaults file would be as follows:

[devices]
HP LaserJet PS=HP3SI523 PostScript,ORION
HP LaserJet PCL=HP4M PCL,SIRIUS
QMS PS=Q2200523 PostScript,LOCAL

After these entries have been added to your .XprinterDefaults file, the following
printer choices are available from the Printer Setup dialog:

HP LaserJet PS on ORION
HP LaserJet PCL on SIRIUS
QMS PS on LOCAL

Specifying a Default Printer

After you have configured all available printers, you may select one of them as the
default printer. To make a specific printer the default printer on the Printer Setup
dialog, add an entry (in the following format) to the [windows] section of the
.XprinterDefaults file:

Port Printer Type Output Type

ORION HP LaserJet IIISi PostScript v52.3 PostScript

SIRIUS HP LaserJet 4M PCL Cartridge PCL

LOCAL QMS-PS 2200 v52.3 PostScript

Table 2-14: Example Configuration
IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 2: The IDL Development Environment 91

using.book Page 91 Tuesday, June 14, 2005 11:12 AM
[windows]
device=PPD_file,driver,port

Simply provide the same information that you used in the [devices] section. Only the
format of the entry is different; there is a comma between the PPD_file and the driver
instead of a space.

For example, suppose you wish the default printer to be the printer at port ORION.
The [windows] section would appear as follows:

[windows]
device=HP3SI523,PostScript,ORION
[ports]
ORION=rsh bandit "lp -d ps"
SIRIUS=rsh bandit "lp -d ps -T pcl5"
LOCAL=lp -d ps
[devices]
HP LaserJet PS=HP3SI523 PostScript,ORION
HP LaserJet PCL=HP4M PCL,SIRIUS
QMS PS=Q2200523 PostScript,LOCAL

In your default .XprinterDefaults file, the [windows] entry appears:

[windows]
device=NULL,PostScript,FILE:

Since no PPD file is listed (NULL), the default on the Printer Setup dialog is to print
generic PostScript to a file. You may specify the filename and change the type of
output to PCL on the Printer Setup dialog.

Specifying Printer-Specific Options

You may include a section that lists the default printer-specific options for each
printer defined in the devices section. The options available vary between differing
printers, but typical options include number of copies, page size, paper tray, and
orientation. An example follows of a printer-specific section for a default printer in
the example .XprinterDefaults file:

[HP3SI523,PostScript]
Scale=0.80
Copies=1
PaperTray=Lower
PageSize=Letter
Orientation=Portrait
DPI=300
Using IDL IDL Printer Setup in UNIX or Mac OS X

92 Chapter 2: The IDL Development Environment

using.book Page 92 Tuesday, June 14, 2005 11:12 AM
IDL Printer Setup in UNIX or Mac OS X Using IDL

using.book Page 93 Tuesday, June 14, 2005 11:12 AM
Chapter 3

Setting IDL
Preferences
The IDL Development Environment can be customized by setting preferences. This chapter
describes the sections of the Preferences dialog:
About IDL Preferences 94
Customizing IDL . 95
General Preferences 97
Layout Preferences 100
Graphics Preferences 104

Editor Preferences 107
Startup Preferences 110
Font Preferences . 112
Path Preferences . 115
Using IDL 93

94 Chapter 3: Setting IDL Preferences

using.book Page 94 Tuesday, June 14, 2005 11:12 AM
About IDL Preferences

Preferences are internal values that control various aspects of the environment that
IDL presents to its users. Preferences supply initial values for many system variables
and control the layout of the IDL development environment (IDLDE) and a variety of
other aspects of IDL’s behavior. Preferences can be specified from a variety of
sources. They persist between IDL sessions, meaning that once you get them set in a
way that satisfies your needs, you can forget them, and IDL will behave in the way
you have specified every time you run it.

You can specify values for many of the IDL preferences through the IDLDE’s
Preferences dialog. For more information, see “Customizing IDL” on page 95.

Some preferences are not visible in the Preferences dialog. To customize them, use
the IDL PREF_* routines, environment variables, or user preference files to specify
preference/value pairs. You can also use these mechanisms to modify preference
values visible in the Preferences dialog. For more information, see Appendix E, “IDL
Preferences” in the IDL Reference Guide manual.

Unavailable Preferences

The value of a preference can come from a variety of sources. There is a hierarchy to
these sources, and IDL will use the value from the source with the highest priority.

Preferences specified at the command line when launching IDL have the highest
priority, followed by preferences specified in environment variables. If a preference
takes its value from either of these sources, you will not be able to change the
preference’s value during the course of the IDL session, and the value will be
desensitized in the Preferences dialog.

See “Understanding Preference Sources” in Appendix E of the IDL Reference Guide
manual for additional information about the hierarchy of preference sources.
About IDL Preferences Using IDL

Chapter 3: Setting IDL Preferences 95

using.book Page 95 Tuesday, June 14, 2005 11:12 AM
Customizing IDL

Various settings for the IDL Development Environment can be customized using the
Preferences dialog. To open the Preferences dialog, select Preferences from the IDL
Development Environment File menu.

Note
On UNIX platforms, including Macintosh OS X, some settings can also be
customized by editing IDL’s resource files. For further information about editing
resource files on UNIX and Macintosh OS X, see Chapter 5, “Customizing IDL on
Motif Systems”.

The Preferences dialog contains tabbed sections that allow you to customize your
interaction with the IDLDE. The tabs and their uses are described below.

Note
The terminology used on the Preferences dialogs differs between Microsoft
Windows and Motif systems. In this documentation, if the wording is significantly
different between the two platforms, the wording used in the Windows dialogs is
listed first, followed by the wording used in the Motif dialogs.

Tab Description

General
Preferences

This tab allows you to specify how the IDLDE session begins
and ends, to control the number of lines in the recall buffer and
the Output Log, and to designate how the files should be
opened and read.

Layout
Preferences

This tab allows you to specify the location and size of the main
IDLDE window on the screen. You can also designate which
components of the IDLDE will be visible.

Graphics
Preferences

This tab allows you to set the layout of windows that contain
IDL graphics, and to specify the backing store, the size of the
TrueType font cache, and the object graphic rendering
preference.

Editor
Preferences

This tab allows you to customize the IDL’s built-in editor and
also offers several compiling options.

Table 3-1: Preference Dialog Tabs
Using IDL Customizing IDL

96 Chapter 3: Setting IDL Preferences

using.book Page 96 Tuesday, June 14, 2005 11:12 AM
Platform Differences

Microsoft Windows and UNIX platforms (including Macintosh OS X) implement the
Preferences dialog using different dialog application buttons. The following table
lists the buttons, the platforms on which they are found in the Preferences dialog,
and the action performed when the button is used.

Startup
Preferences

This tab allows you to specify the locations of the working
directory and a startup file.

Font Preferences This tab allows you to specify different fonts, styles, and sizes
for the Editor, Command Line and Output Log.

Path Preferences This tab allows you to specify the IDL Files Search Path and
path cache settings.

Platform Button Result

Windows,
UNIX

OK Changes are saved and applied to the current session,
and the Preferences dialog is dismissed.

Cancel Any changes that were not applied are ignored, and
the Preferences dialog is dismissed.

Apply Changes are applied to the current session, but not
saved. (On UNIX, changes to items marked on the
dialog with an asterisk take effect in the next session.
To make the changes for the current session, use
OK.) The Preferences dialog remains visible.

Help Displays IDL online help.

Windows
only

Reset Restores the preferences on the dialog to the
preference values from the start of the current IDL
session.

Table 3-2: Preferences Dialog Button Descriptions

Tab Description

Table 3-1: Preference Dialog Tabs (Continued)
Customizing IDL Using IDL

Chapter 3: Setting IDL Preferences 97

using.book Page 97 Tuesday, June 14, 2005 11:12 AM
General Preferences

The General tab of the Preferences dialog has three sections: Program, Log and
Command Window, and Files.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Program Section

You can specify how IDL handles starting up and exiting. Click on the following
check boxes to apply or disable the options:

• Show Splash Screen — Select this option to show the IDL splash screen on
startup. This selection takes effect the next time an IDL session is started.

This control sets the value of the IDL_WDE_SPLASHSCREEN preference
(Windows) and the IDL_MDE_SPLASHSCREEN preference (UNIX). For
more information, see Appendix E, “IDL Preferences” in the IDL Reference
Guide manual.

• Confirm Exit — Select this option to display a warning dialog when you exit
IDL.

Figure 3-1: General Preferences Dialog
Using IDL General Preferences

98 Chapter 3: Setting IDL Preferences

using.book Page 98 Tuesday, June 14, 2005 11:12 AM
This control sets the value of the IDL_WDE_EXIT_CONFIRM preference
(Windows) and the IDL_MDE_EXIT_CONFIRM preference (UNIX). For
more information, see Appendix E, “IDL Preferences” in the IDL Reference
Guide manual.

Log and Command Window Section

Note
On Microsoft Windows systems, these preferences are divided between the Log
Window and Command Recall Buffer sections of the dialog.

The number of lines saved in the recall buffer for the Command Line has an impact
on the performance of IDL. The amount of memory required for greater numbers of
saved lines in the buffer affects the speed at which IDL runs. Click in the field next to
each description and enter your adjusted value to change the settings.

• Number of lines to display in the log / Lines to Save — This field controls
the maximum number of lines retained by the Output Log window. The
default is 1000 lines.

This control sets the value of the IDL_WDE_LOG_LINES preference
(Windows) and the IDL_MDE_LOG_LINES preference (UNIX). For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.

• Number of log lines to delete at limit / Delete on Limit — This field controls
the number of lines that will be deleted from the Output Log window when the
maximum number of lines is reached. The earliest lines in the log are deleted.
The default is 100 for Microsoft Windows systems and 250 for UNIX systems.

This control sets the value of the IDL_WDE_LOG_TRIM preference
(Windows) and the IDL_MDE_LOG_TRIM preference (UNIX). For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.

• Number of lines saved in the recall buffer — This field controls the
maximum number of lines saved in the recall buffer. (See “Recalling
Commands” in Chapter 2 of the Building IDL Applications manual for
information on using the recall buffer.) The default is 20 lines.

This control sets the value of the IDL_RBUF_SIZE preference. For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.
General Preferences Using IDL

Chapter 3: Setting IDL Preferences 99

using.book Page 99 Tuesday, June 14, 2005 11:12 AM
• Save Recall Buffer Between Sessions — Select this option to have the recall
buffer persist between IDL sessions.

This control sets the value of the IDL_RBUF_PERSIST preference. For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.

Files Section

You can change the way in which IDL handles opening files. Select or clear the
following check boxes to apply or disable the options:

• Change Directory on Open — Select this option to cause IDL to change the
current working directory when you open a file. The new current working
directory will be the directory that contains the opened file.

This control sets the value of the IDL_WDE_EDIT_CWD preference
(Windows) and the IDL_MDE_EDIT_CWD preference (UNIX). For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.

• Open Files Read Only — Select this option to open files so that they can be
viewed, but not changed.

This control sets the value of the IDL_WDE_EDIT_READONLY preference
(Windows) and the IDL_MDE_EDIT_READONLY preference (UNIX). For
more information, see Appendix E, “IDL Preferences” in the IDL Reference
Guide manual.
Using IDL General Preferences

100 Chapter 3: Setting IDL Preferences

using.book Page 100 Tuesday, June 14, 2005 11:12 AM
Layout Preferences

This tab allows you to control the appearance and placement of the IDLDE.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Main Window Section

Use the fields in this section to specify the default size and placement of the IDL
Development Environment’s main window. (See “Components of the IDLDE” in
Chapter 2 for descriptions of the components of the IDLDE.)

• Select the Default Layout radio button to use the IDLDE’s default layout,
which depends on the size and resolution of your computer screen. If you
select this radio button, all of the IDLDE’s windows and toolbars will be
displayed in their standard locations.

• Select the Specify Layout radio button to manually specify the layout of the
IDLDE:

• Enter the number of pixels from the left-hand edge of the screen the
IDLDE window should be displayed in the Left field

Figure 3-2: Layout Preferences Dialog
Layout Preferences Using IDL

Chapter 3: Setting IDL Preferences 101

using.book Page 101 Tuesday, June 14, 2005 11:12 AM
• Enter the number of pixels from the top edge of the screen the IDLDE
window should be displayed in the Top field

• Enter the width of the IDLDE window in pixels in the Width field

• Enter the height of the IDLDE window in pixels in the Height field

Note that if you select the Default Layout radio button after specifying values
in these fields, your values will be replaced with “-1” to indicate that the
default values will be used the next time IDL starts.

• Select the windows and toolbars to be displayed from the Show Window
section (Windows) or Windows and Control Panel sections (Motif)

Click Apply to apply your changes to the current IDLDE window without
saving the values. (This allows you to use the Layout tab to control the
appearance of the IDLDE for the current session without making your changes
permanent.) Click OK to apply your changes and save the values; they will be
used the next time IDL starts.

• Select the Remember Layout radio button and click OK to save the current
layout of the IDLDE windows for use the next time IDL starts. This options is
useful if you have configured the windows manually and wish to save your
changes.

Undocking IDLDE windows

Some of the elements of the IDLDE can be “undocked” from the interface and appear
as separate, free-floating windows. On Microsoft Windows systems, use the mouse to
select an element and drag it away from the main IDLDE window to undock the
element. On UNIX systems, you can use the checkboxes in the Windows section to
undock elements. For more information, see “Docking/Undocking” in Chapter 2.

The following elements can be undocked:

• Command Line

• Toolbars

• Output Log

• Variable Watch Window

• Project Window
Using IDL Layout Preferences

102 Chapter 3: Setting IDL Preferences

using.book Page 102 Tuesday, June 14, 2005 11:12 AM
Show Window Section (Windows Only)

By default, all the listed options are checked, signifying that they are all visible in the
IDLDE main window. Click on the check boxes to show or hide the following
windows:

• Command line

• Output Log window

• Status Bar

• Variable Watch window

• Standard Toolbar

• Run & Debug Toolbar

• Macros Toolbar

• Project window

Click Apply to apply your changes to the current IDL session. (This is the same as
selecting the corresponding options in the Window menu.)

Windows Section (Motif Only)

Use the options in this section to control the appearance of the window elements of
the IDLDE.

• Editor Layout — Click Multiple to display open Editor and Project windows
separately from the main IDLDE window. Note that if the Multiple Windows
option is enabled, the choice to hide or view the Editor windows is not
available.

• Hide — Select the check box for elements of the IDLDE you wish to hide
from view. By default, none of the sections are hidden.

• Control hides the toolbars;

• View hides the Project window and the Editor window;

• Log hides the Output Log window;

• Watch hides the Variable Watch window;

• Command hides the Input Command Line;

• Status hides the fly over status line at the base of the Main IDL window;

• Project hides the Project window and extends the Editor window to the
full width of the IDLDE.
Layout Preferences Using IDL

Chapter 3: Setting IDL Preferences 103

using.book Page 103 Tuesday, June 14, 2005 11:12 AM
• Separate — Select the check box for the constituent window you want to
separate from the IDLDE Main Window. When the Separate action is applied,
the element is “undocked” from the interface and appears as separate, free-
floating window.

Click Apply to apply your changes to the current IDL session. (This is the same as
selecting the corresponding options in the Window menu.)

Control Panel Section (Motif Only)

You can specify how you would like to display the various toolbars on the Control
Panel.

• Hide Tools — Select the check box for any of the available toolbars
(Standard, Run & Debug, and User) to hide that toolbar.

• Number of Rows — Enter the number of rows to use in displaying any visible
toolbars. You can select from 1 to 3 rows.

• Vertical — Select this check box to cause the toolbars to be stacked vertically
one on top of the other rather than horizontally next to each other.
Using IDL Layout Preferences

104 Chapter 3: Setting IDL Preferences

using.book Page 104 Tuesday, June 14, 2005 11:12 AM
Graphics Preferences

This tab allows you to control the layout and default size of IDL graphics windows.
You can also control IDL’s default use of backing store and the size of the TrueType
font cache. Note that the values set here are defaults; the values can be overridden
when a graphics window is created.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Window Layout / Windows Size Section

Specify the default width and height of IDL graphics windows in the Width and
Height fields. These controls set the values of the IDL_GR_WIN_HEIGHT and
IDL_GR_WIN_WIDTH preferences (Windows) and the IDL_GR_X_HEIGHT and
IDL_GR_X_WIDTH preferences (UNIX). For more information, see Appendix E,
“IDL Preferences” in the IDL Reference Guide manual.

Alternatively, you can specify that graphics windows have a default width and height
of half the screen width and height by checking the 1/4 Screen Size checkbox. This
control sets the value of the IDL_GR_WIN_QSCREEN preference (Windows) and

Figure 3-3: Graphics Preferences Dialog
Graphics Preferences Using IDL

Chapter 3: Setting IDL Preferences 105

using.book Page 105 Tuesday, June 14, 2005 11:12 AM
the IDL_GR_X_QSCREEN preference (UNIX). For more information, see
Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Platform Differences

On Windows systems, you can specify that graphics windows should be created side-
by-side, with no overlap by selecting the Tile radio button, or that they should be
created overlapping by selecting the Cascade radio button. This control sets the value
of the IDL_GR_WIN_LAYOUT preference. For more information, see Appendix E,
“IDL Preferences” in the IDL Reference Guide manual.

Select the Always On Top checkbox to ensure that graphics windows float above all
other IDL windows. This control sets the value of the IDL_GR_WIN_ONTOP
preference. For more information, see Appendix E, “IDL Preferences” in the IDL
Reference Guide manual.

Backing Store Section

When backing store is enabled, a copy of each Graphics window is kept in memory;
the copy is used to refresh the window when it has been covered and uncovered.
IDL’s performance may increase when no backing store is used, since the amount of
memory required to save copies can affect the speed at which IDL will run. Settings
in this section correspond to settings of the RETAIN keyword to the DEVICE
procedure; see “Backing Store” in Appendix A of the IDL Reference Guide manual
for more information.

• None (RETAIN = 0): Select this option to refrain from keeping a copy of the
window. In some situations, disabling backing store may lead to an increase in
IDL’s performance.

• System (RETAIN = 1): Select this option to request backing store from the
windowing system. This is the default.

• Bitmap / Pixmap (RETAIN = 2): Select this option to specify that IDL should
maintain the backing store using its own memory.

Note
Backing Store preference changes do not take effect until the next IDL session.

This control sets the value of the IDL_GR_WIN_RETAIN preference (Windows) and
the IDL_GR_X_RETAIN preference (UNIX). For more information, see Appendix
E, “IDL Preferences” in the IDL Reference Guide manual.
Using IDL Graphics Preferences

106 Chapter 3: Setting IDL Preferences

using.book Page 106 Tuesday, June 14, 2005 11:12 AM
True Type Fonts Section

Note
On UNIX systems, this preference is included in the Graphics Attributes section of
the dialog, described below.

IDL saves TrueType fonts as a set of glyphs; each glyph represents the triangulation
data for drawing one character. The Size of TrueType Font Cache (in glyphs) field
allows you to set the number of glyphs to keep in cache memory; keeping glyphs in
memory speeds drawing of fonts in IDL graphics windows. The default number of
glyphs in cache memory is 256, roughly two TrueType font sets.

Enter the number of TrueType characters for which to save triangulation information.
Saving the triangulation information for TrueType characters means that IDL will not
have to calculate the polygons to draw the next time a character of the same font and
size is rendered. Larger values will use more memory but can increase drawing speed
if multiple fonts are used. The default is 256.

This control sets the value of the IDL_GR_TTCACHESIZE preference. For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Default Object Graphics Renderer / Graphics Attributes Section

IDL supports two methods of rendering object graphics: via a hardware graphics
accelerator or via a software rendering package. Select Hardware rendering if your
system has OpenGL graphics accelerator hardware. Select Software rendering
otherwise. This control sets the value of the IDL_GR_WIN_RENDERER preference
(Windows) and the IDL_GR_X_RENDERER preference (UNIX). For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

See “Hardware vs. Software Rendering” in Chapter 12 of the Object Programming
manual for information about the differences between the two rendering systems.
Graphics Preferences Using IDL

Chapter 3: Setting IDL Preferences 107

using.book Page 107 Tuesday, June 14, 2005 11:12 AM
Editor Preferences

This tab allows you to specify settings for the built-in IDL Editor and control the way
IDL compiles files loaded in editor windows. On Microsoft Windows systems, this
tab also allows you to specify syntax-highlighting and other editor features.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Backup on Save

Select the Backup on Save / Make backup copy of source file check box to cause
IDL to create a backup of the original file when saving a file in an IDL editor
window.

This control sets the value of the IDL_WDE_EDIT_BACKUP preference (Windows)
and the IDL_MDE_EDIT_BACKUP preference (UNIX). For more information, see
Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Figure 3-4: Editor Preferences Dialog
Using IDL Editor Preferences

108 Chapter 3: Setting IDL Preferences

using.book Page 108 Tuesday, June 14, 2005 11:12 AM
Syntax Highlighting (Windows Only)

On Microsoft Windows systems, you can choose to use syntax highlighting in IDL
editor windows. If syntax highlighting is turned on, IDL statements are displayed in
different colors. Select the Enable colored syntax checkbox to enable syntax
highlighting. This control sets the value of the IDL_WDE_EDIT_CHROMACODE
preference. For more information, see Appendix E, “IDL Preferences” in the IDL
Reference Guide manual.

Open on Debug (Windows Only)

If you want IDL to open the source file for a program that generates an error in an
IDL editor window, select the Enable Open on debug checkbox. This control sets
the value of the IDL_WDE_EDIT_OPEN_ON_DEBUG preference. For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Compiling Section

Select the Ask to save changes before compiling radio button if you would like to
save changes when you compile a program in an IDL editor window. This is the
default.

Select the Automatically save changes before compiling radio button if you do not
want to be prompted each time you compile, but do want to save the changes.

Select the Compile from memory (don’t save before compile) radio button if you
do not want to save files before compiling them.

Note
You can override your default selection by selecting the appropriate menu item
from the Run menu.

This control sets the value of the IDL_WDE_EDIT_COMPILE_OPTION preference
(Windows) and the IDL_MDE_EDIT_COMPILE_OPTION preference (UNIX). For
more information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.

Tabs Section (Windows Only)

You can specify the width of the white space to be used when you press the Tab key
in an IDL editor window. Enter a number in the Number of spaces to indent for
each tab field to specify the width of the indent to be used. This control sets the value
of the IDL_WDE_EDIT_TAB_WIDTH preference. For more information, see
Appendix E, “IDL Preferences” in the IDL Reference Guide manual.
Editor Preferences Using IDL

Chapter 3: Setting IDL Preferences 109

using.book Page 109 Tuesday, June 14, 2005 11:12 AM
If you want the IDL editor to insert a tab character (ASCII 9) when you press the Tab
key, select the Use tabs radio button. If you want IDL to insert the specified number
of space characters (ASCII 32) when you press the Tab key, select the Use spaces
radio button. This control sets the value of the IDL_WDE_EDIT_TAB_ENABLE
preference. For more information, see Appendix E, “IDL Preferences” in the IDL
Reference Guide manual.

If you have selected the Use spaces radio button, you have the option to convert tab
characters to spaces when the file is saved by selecting the Convert tabs to spaces
on save checkbox. This control sets the value of the
IDL_WDE_EDIT_TAB_SP_ON_SAVE preference. For more information, see
Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Colors Section (Windows Only)

Use this section to select the colors that will be used in the IDL editor when syntax
highlighting is enabled. To set colors, select a type of IDL statement from the
scrolling listbox at left, then select the foreground and background colors for that
type of statement.

These controls set the values of the IDL_WDE_EDIT_BCOLOR_* and
IDL_WDE_EDIT_FCOLOR_* preferences. For more information, see
“IDL_WDE_EDIT_[B|F]COLOR_*” in Appendix E of the IDL Reference Guide
manual.
Using IDL Editor Preferences

110 Chapter 3: Setting IDL Preferences

using.book Page 110 Tuesday, June 14, 2005 11:12 AM
Startup Preferences

This tab allows you to specify the locations of the default working directory and any
startup file to be run.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Working Directory

This field allows you to set the initial working directory for future IDL sessions. The
General Preferences tab contains a “Change Directory on Open” option, which also
affects the working directory.

This control sets the value of the IDL_WDE_START_DIR preference (Windows)
and the IDL_MDE_START_DIR preference (UNIX). For more information, see
Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Figure 3-5: Startup Preferences Dialog
Startup Preferences Using IDL

Chapter 3: Setting IDL Preferences 111

using.book Page 111 Tuesday, June 14, 2005 11:12 AM
Startup File

Use this field to specify the name of an IDL batch file to be executed automatically
each time IDL is run. See “Startup Files” on page 30 for additional details.

This control sets the value of the IDL_STARTUP preference. For more information,
see Appendix E, “IDL Preferences” in the IDL Reference Guide manual.
Using IDL Startup Preferences

112 Chapter 3: Setting IDL Preferences

using.book Page 112 Tuesday, June 14, 2005 11:12 AM
Font Preferences

This tab allows you to specify fonts to be used in various sections of the IDLDE
interface.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Microsoft Windows

Under Microsoft Windows, IDL uses a standard Windows font-selection dialog. You
can select different fonts for IDL Editor windows, the Command Line, and the
Output Log. Click on one of these areas in the Window list, then select the font,
style, and size using the appropriate lists. Click Use Default Fonts to change to the
IDL default font selections for all three areas.

These controls set the values of the IDL_WDE_EDIT_FONT,
IDL_WDE_INPUT_FONT, and IDL_WDE_LOG_FONT preferences. For more
information, see Appendix E, “IDL Preferences” in the IDL Reference Guide manual.

Figure 3-6: Font Preferences Dialog
Font Preferences Using IDL

Chapter 3: Setting IDL Preferences 113

using.book Page 113 Tuesday, June 14, 2005 11:12 AM
UNIX

This tab allows you to control which fonts are to be used for the main IDL window.
Click on any of the following buttons to specify the relevant font:

• Default — dialog boxes

• Menubar — menu items

• Control — the Control Panel

• Edit — editor windows

• Log — the Output Log

• Command — the Command Line

Selecting a Font

Clicking any of the buttons on the Fonts tab of the Preferences dialog brings up the
Select Font dialog. This dialog allows you to select fonts from the X Windows
Server font database, based on the attributes Foundry, Family, Weight, Slant,
SetWidth, and Size. Using this dialog is similar to using the xfontsel X Window
Using IDL Font Preferences

114 Chapter 3: Setting IDL Preferences

using.book Page 114 Tuesday, June 14, 2005 11:12 AM
utility. See your X Window system font documentation for additional details. Once
you have selected a font, click OK to accept your selection or Cancel to abandon it.

Note
The UNIX IDLDE stores font preference information in the ~/.idlde X Resource
file. See Chapter 5, “Customizing IDL on Motif Systems” for details.

Figure 3-7: Motif Select Font Dialog.
Font Preferences Using IDL

Chapter 3: Setting IDL Preferences 115

using.book Page 115 Tuesday, June 14, 2005 11:12 AM
Path Preferences

This tab allows you to control where IDL looks for procedures and functions. The
path elements specified in the Search Path / IDL Files Search Path are used to set
the IDL_PATH preference and the !PATH system variable.

Note
Some preference settings may be desensitized. See “Unavailable Preferences” on
page 94 for details.

Search Path / IDL Files Search Path

The IDLDE Path Preferences dialog uses the same mechanism to expand the
elements of the Search Path field as is used by the EXPAND_PATH function. By
default, this field is populated with the current value of the IDL_PATH preference.
For more information, see Appendix E, “IDL Preferences” in the IDL Reference
Guide manual.

Note
If you have not changed the value of the IDL_PATH preference, it contains a single
entry (<IDL_DEFAULT>) indicating that the default IDL path will be used. See “The

Figure 3-8: Path Preferences Dialog
Using IDL Path Preferences

116 Chapter 3: Setting IDL Preferences

using.book Page 116 Tuesday, June 14, 2005 11:12 AM
Path Definition String” under “EXPAND_PATH” in the IDL Reference Guide
manual for complete details on how this token is expanded.

If the box to the left of a path element is checked, all directories below the listed
directory that contain at least one .pro or .sav file will be included in !PATH. (This
mechanism is analogous to the use of a “+” symbol in an EXPAND_PATH path
definition string.)

Note
If the <IDL_DEFAULT> entry is present, the box to its left is both checked and
greyed out (Windows) or completely blacked out (Motif), indicating that the token
will always be expanded.

You can modify the value of the !PATH system variable in the following ways using
this dialog:

• Change the order of the path elements — using the up- and down-arrows,
you can reorder the path elements. When searching the directories in the
!PATH system variable for files, IDL will use the first matching file it finds. If
you have multiple files with the same name in different directories within
!PATH, you may need to adjust the order in which the directories are scanned.

• Insert... — To add a path to the Search Path list, click Insert... to display the
Select Directory dialog. The new path is inserted before the first selected path.
If none of the paths are selected, the new path is appended to the end of the list.

• Insert Standard Libraries — Click Insert Standard Libraries to insert the
<IDL_DEFAULT> path element into the list.

• Remove — Click on Remove to delete the selected path.

• Expand — Click on Expand to include the individual subdirectories of the
selected path element in the Search Path list. When you click Expand, the
checkmark is removed from the original path element, since the subdirectories
are now explicitly included in the path search list.

See “Automatic Compilation” in Chapter 2 of the Building IDL Applications manual
for more information on how !PATH is used by IDL when compiling and running
programs.

Enable Path Cache

Select Enable Path Cache to enable IDL’s path caching mechanism. Path caching is
enabled by default, and in almost all cases should be left enabled. See
Path Preferences Using IDL

Chapter 3: Setting IDL Preferences 117

using.book Page 117 Tuesday, June 14, 2005 11:12 AM
“PATH_CACHE” in the IDL Reference Guide manual for more information about
IDL’s path cache.

This control sets the value of the IDL_PATH_CACHE_DISABLE preference. For
more information, see Appendix E, “IDL Preferences” in the IDL Reference Guide
manual.
Using IDL Path Preferences

118 Chapter 3: Setting IDL Preferences

using.book Page 118 Tuesday, June 14, 2005 11:12 AM
Path Preferences Using IDL

using.book Page 119 Tuesday, June 14, 2005 11:12 AM
Chapter 4

Creating Development
Environment Macros
This chapter discusses the following topics:
What Are Macros? 120
Creating UNIX Macros 121
Creating Windows Macros 124

Command Stream Substitutions 126
Building IDL Example Macros 127
Using IDL 119

120 Chapter 4: Creating Development Environment Macros

using.book Page 120 Tuesday, June 14, 2005 11:12 AM
What Are Macros?

A macro allows you to execute commonly-used IDL tasks with the press of a mouse
button or through a single keystroke (“hot key”) combination. In IDL you can create
your very own macros using the following items:

• routines

• procedures

• statements

• command stream substitutions

For example, you may customize and extend the functionality of the IDL
Development Environment (such as writing a procedural macro to change IDL’s
working directory, which we will see later in this section).

Predefined IDL Macros

IDL offers several existing macro options on its Macro Toolbar. These macros allow
you quick access to commonly used IDL functionality such as printing a variable,
importing various file types, and running the IDL Demos.

See “Using IDL Macros” on page 164 for more information.

Figure 4-1: The IDLDE’s Macro Toolbar

Print Variable
Import Image File

Import Binary File

Help on Variable
Import ASCII File

Import HDF File

Run Demo
What Are Macros? Using IDL

Chapter 4: Creating Development Environment Macros 121

using.book Page 121 Tuesday, June 14, 2005 11:12 AM
Creating UNIX Macros

You can modify the contents of the Macros menu and macros toolbar, either using
the Edit Macros dialog (displayed by selecting Edit... from the Macros menu) or by
manually editing the user resource (.idlde) file.

Using the Edit Macros Dialog

The Edit Macros dialog allows you to add, remove, or modify macros that appear
either in the Macros menu or the Macros toolbar.

To add a new macro, do the following:

1. Enter a name for your macro in the Name field. The Name appears only in the
Edit Macros dialog.

2. Enter a label for your macro in the Label field. The label will be used in the
Macros menu (if selected).

3. Enter the name of the bitmap (.xbm or .xpm) file associated with the macro in
the Bitmap field. The bitmap will be used on the Macros toolbar (if selected).
See “Bitmaps for Control Panel Buttons” on page 122 for details.

Figure 4-2: The Edit Macros Dialog.
Using IDL Creating UNIX Macros

122 Chapter 4: Creating Development Environment Macros

using.book Page 122 Tuesday, June 14, 2005 11:12 AM
4. Enter text to be displayed on the IDLDE status bar in the Status bar text field.

5. Enter text to be displayed as a tooltip when the mouse cursor is positioned over
the toolbar button in the Tip text field.

6. Enter the IDL command to be executed in the IDL Command field. See
“Command Stream Substitutions” on page 126 for information on the types of
dynamic information that can be included in the command.

In addition to IDL-language commands, you can attach IDL Motif Action
Routines to a macro. See “Action Routines” on page 141 for details.

7. Select the Menu checkbox if you want the macro to appear on the Macros
menu.

8. Select the Toolbar checkbox if you want the macro to appear on the Macros
toolbar.

9. Click Add to add the new macro, then click OK.

To Remove an existing macro, select it from the list and click Remove. To rearrange
macros in the list, use the up- and down-arrow buttons.

Bitmaps for Control Panel Buttons

It is recommended that bitmaps for control panel buttons:

1. Be in either XBM (X11 bitmap file) or XPM (X11 system pixmap file) format,
with the file extension .xbm or .xpm.

2. Supply the full path name to the bitmap file. Alternatively, if the bitmap is
located in one of the following directories, you can supply only the base file
name:

• $IDL_DIR/resource/X11/lib/app_defaults

• $IDL_DIR/resource/X11/lib/app_defaults/bitmaps

• $HOME

• $HOME/bitmaps

Note
The above directories show the default search path for a bitmap file if nothing other
than the root file name is specified in the .idlde file.
Creating UNIX Macros Using IDL

Chapter 4: Creating Development Environment Macros 123

using.book Page 123 Tuesday, June 14, 2005 11:12 AM
Manually Editing the Resource File

Although there is little advantage in doing so, you can also modify the Macros menu
or toolbar by manually editing either your own local IDL resource file or the system-
wide resource file. For details, see “Modifying the Control Panel” on page 138.
Using IDL Creating UNIX Macros

124 Chapter 4: Creating Development Environment Macros

using.book Page 124 Tuesday, June 14, 2005 11:12 AM
Creating Windows Macros

You can modify the contents of the Macros menu and macros toolbar using the Edit
Macros dialog (displayed by selecting Edit... from the Macros menu). The Edit
Macros dialog allows you to add, remove, or modify macros that appear either in the
Macros menu or the Macros toolbar.

To add a new macro, do the following:

1. Click Add and enter a name for your new macro. The name you specify
appears only in the Edit Macros dialog.

2. Enter the IDL command to be executed in the IDL Command field. See
“Command Stream Substitutions” on page 126 for information on the types of
dynamic information that can be included in the command.

3. If you want your macro to be included in the Macros menu, enter a label for
your macro in the Menu Item Name field.

4. If you want your macro to be included in the Macros toolbar, enter the full path
name of the bitmap button file in the Toolbar bitmap file field. Bitmaps used
as macro buttons in IDL must be 16 by 16 pixel .bmp files. IDL’s default

Figure 4-3: The Edit Macros Dialog.
Creating Windows Macros Using IDL

Chapter 4: Creating Development Environment Macros 125

using.book Page 125 Tuesday, June 14, 2005 11:12 AM
bitmaps are stored in the resources/bitmaps subdirectory of the IDL
distribution.

5. Enter text to be displayed as a tooltip when the mouse cursor is positioned over
the toolbar button in the Tooltip text field. This value is ignored if no bitmap
file is specified.

6. Enter text to be displayed on the IDLDE status bar in the Status bar text field.

7. Optionally, in the Accelerator field, enter a keystroke shortcut combination
for your new macro. Note that you can create a macro that is available only by
pressing the keystroke combination if you supply neither a label for the
Macros menu nor a bitmap for the Macros toolbar.

To Remove an existing macro, select it from the list and click Remove. To rearrange
macros in the list, use the up- and down-arrow buttons.

Click OK to accept your changes or Cancel to abandon them.
Using IDL Creating Windows Macros

126 Chapter 4: Creating Development Environment Macros

using.book Page 126 Tuesday, June 14, 2005 11:12 AM
Command Stream Substitutions

You can use command stream (%) substitutions as shortcuts to incorporate certain
types of information into the IDL command for your macro.

Note
When creating a new macro, you may store the macro in the folder (directory)
which IDL has already provided for the existing IDLDE macros. This folder exists
in the lib\macros directory of your installation directory. If you wish to create a
unique folder for the storage of only macros which you have created you may do so.

Command
Stream

Substitution
Result

%F The filename associated with the currently active editor
window.

%P The full path filename associated with the currently active
editor window.

%N The base name of the filename without its path or suffix.

%B The base name of the filename without its path, but with its
suffix.

%S The currently selected text.

%L The line number with the current insertion point.

%% Inserts the “%” character.

Table 4-1: Listing of Useful Command Stream Substitutions
Command Stream Substitutions Using IDL

Chapter 4: Creating Development Environment Macros 127

using.book Page 127 Tuesday, June 14, 2005 11:12 AM
Building IDL Example Macros

Below are two examples that illustrate how a macro is created in IDL. The first
example below is a UNIX-only example; the second example will work on either
Microsoft Windows or UNIX.

Creating a Macro to Call a Text Editor in IDL for UNIX

On UNIX platforms, you can create a macro to open a file that is currently open in the
IDL Editor in another editor, such as emacs or vi. Use the following procedure to
create the macro:

1. Select Macros → Edit menu to bring up the Edit Macros dialog box. You can
use this dialog to create, edit, or remove macros.

2. Complete the fields in the Edit Macros dialog:

• Name: The name that you wish to appear in the Macros list in the Edit
Macros dialog. For example, enter Edit in emacs.

• Label: The name that you wish to appear on the Macros menu. For
example, enter emacs.

• Bitmap: The bitmap to use as the toolbar button label. Use the file paths
and file name extensions discussed in “Bitmaps for Control Panel Buttons”
in Chapter 4.

• Status bar text: The text that appears in the status bar when the mouse is
help over the menu item or toolbar button.

• Tip text: The text for the tool tip that appears when the mouse is held over
the toolbar button.

• IDL command: The IDL command to execute when the macro is selected.
To create a macro for editing in Emacs, enter the following:

SPAWN, 'emacs +%L %P &'

• Select the Menu and/or Toolbar checkbox to specify whether the macro
will appear in the Macros menu and/or the toolbar.

3. Create the new macro by pressing the Add button. If you entered emacs in the
Label field, a new “emacs” macro is added to the Macros list.

4. To add a macro for editing in vi, repeat the above steps, but enter the following
in the “IDL command” field:

SPAWN, 'xterm -e vi +%L %P &'
Using IDL Building IDL Example Macros

128 Chapter 4: Creating Development Environment Macros

using.book Page 128 Tuesday, June 14, 2005 11:12 AM
Note
The IDLDE always checks to determine whether the current file has been externally
modified before using it. If a file was modified with an external editor, IDLDE
notifies you, and asks you to reload the file before using it. You can also use the
Revert to Saved option from the File menu to reload the file.

Creating a Macro to Change the Working Directory

The following macro will select and change your current working directory. The
steps below describe the fields of the Macros dialog on a Microsoft Windows system,
but the macro will work equally well on a UNIX system.

First we will create a .pro file in IDL which will display a platform-specific
directory-selection dialog.

1. From the IDLDE, open a new IDL Editor window by selecting File → New →
Editor.

2. Type (or copy) the following lines of code into the new Editor window to form
a program:

PRO cd_test
dir = DIALOG_PICKFILE(/DIRECTORY)

IF (dir) THEN BEGIN
PRINT, 'Changing to: ', dir
CD, dir

ENDIF
END

3. Save the file as cd_test.pro in a directory included in IDL’s path. (The file
must be in IDL’s path so that IDL will find it automatically when the
command cd_test is executed by the macro we will create.)

4. Select Macros → Edit menu to bring up the Edit Macros dialog box.

5. Click Add to create a new macro. Enter “Change Directories” as the macro
name.
Building IDL Example Macros Using IDL

Chapter 4: Creating Development Environment Macros 129

using.book Page 129 Tuesday, June 14, 2005 11:12 AM
6. Complete the following fields in the Edit Macros dialog:

• Enter “cd_test” in the IDL command field.

• Enter “Change Directories” in the Menu item name field.

• Leave the Toolbar bitmap file field blank. This macro will appear only in
the Macros menu.

• Leave the Tooltip text field blank. This value is used only when a toolbar
button is present.

• Leave the Status bar text field blank. This value is used only when a
toolbar button is present.

To use the new macro, select “Change Directories” from the Macros menu.
Using IDL Building IDL Example Macros

130 Chapter 4: Creating Development Environment Macros

using.book Page 130 Tuesday, June 14, 2005 11:12 AM
Building IDL Example Macros Using IDL

using.book Page 131 Tuesday, June 14, 2005 11:12 AM
Chapter 5

Customizing IDL on
Motif Systems
This chapter describes techniques for customizing versions of IDL running under the X Window
System (Motif) graphical user interface.
Using X Resources to Customize IDL . . . 132
X Resources at the Command Line 136

Modifying the Control Panel 138
Action Routines . 141
Using IDL 131

132 Chapter 5: Customizing IDL on Motif Systems

using.book Page 132 Tuesday, June 14, 2005 11:12 AM
Using X Resources to Customize IDL

IDL on UNIX platforms respects the values of a number of X Window System
(Motif) resources.

X Resources and IDL Preferences

Beginning with IDL 6.2, many values used to customize the appearance and behavior
of IDL on UNIX platforms are stored in IDL preferences rather than in X resources.
See Appendix E, “IDL Preferences” in the IDL Reference Guide manual for a
detailed description of IDL’s preferences system.

To provide backwards compatibility with older versions, current versions of IDL are
still able to check the values of X resources set in the user’s .idlde or .Xdefaults
files and transfer them, if found, to the corresponding IDL preference setting. The
mechanism used is described in detail in “Support for Obsolete Preference
Mechanisms” in Appendix E of the IDL Reference Guide manual.

Not all X resources have corresponding preference values. Generally speaking, the
X resource values that have not been implemented as preferences either control
aspects of the appearance of the IDL Development Environment or define user
macros. These values may become IDL preferences in a future version of IDL.

X Resources in Brief

The component widgets of an X Window System application each have two names, a
class name that identifies its type (e.g., XmText for the Motif text widget) and an
instance name (e.g., command, the name of the IDLDE command input text widget).
The class name can be used to set resources for an entire class of widgets (e.g., to
make all text widgets have a black background) while the instance name is used for
control of individual widgets (e.g., set the IDLDE command input window font
without affecting other widgets).

Applications consist of a tree of widgets, each having a class name and an instance
name. To specify a resource for a given widget, list the names of the widgets lying
between the top widget and the target widget from left to right, separated by periods.
In a moderately complicated widget hierarchy, only some of the widgets are of
interest; there are intervening widgets that serve uninteresting purposes (such as a
base that holds other widgets). A star (*) character can be used as a wildcard to skip
such widgets. Another fact to keep in mind is that a given resource specification is
interpreted as broadly as possible to apply to any widget matching that description.
Using X Resources to Customize IDL Using IDL

Chapter 5: Customizing IDL on Motif Systems 133

using.book Page 133 Tuesday, June 14, 2005 11:12 AM
This allows a very small set of resource specifications to affect a large number of
widgets.

Resource Files

There are two resource files used to customize the IDL Development Environment.
An installation-wide resource file called Idl is located in

$IDL_DIR/resource/X11/lib/app-defaults

and a user resource file called .idlde is located in your home directory.

Modifying the global Idl resource file effects an installation-wide customization.
Changes to the Idl file are not migrated when a new version of IDL is installed.

The user resource file, .idlde, customizes individual versions of IDLDE and is
divided into two sections. The first section contains user-defined customization
resources. You can place comments starting with “!” or “!!” in the first section of
.idlde. When newer versions of .idlde are written, system comments are prefixed
with “!!!”. The second section of .idlde is used to store IDLDE preferences; it is
modified when IDLDE preferences are modified via the Preferences tab of the Motif
IDLDE, and should not be modified manually.

Note
IDLDE preferences saved in the .idlde file should not be confused with the IDL
preference system included in IDL versions 6.2 and later. In some cases, values of
the IDLDE preferences from the .idlde file are migrated to the newer preferences
system; see “Support for Obsolete Preference Mechanisms” in Appendix E of the
IDL Reference Guide manual for details.

If you use IDL in command-line mode rather than via the IDL Development
Environment, you can include resources in the .Xdefaults file located in your
home directory.

Format of IDL Resources

IDL resource strings begin with the characters “Idl”. Most of these resources have
been superseded by preferences in the IDL preference system.

Resource strings that apply only to the IDL Development Environment begin with
the characters “Idlde” or “idlde”. For example, the resource

idlde*hideCommand

controls whether the IDLDE Command Line is visible when IDL starts up.
Using IDL Using X Resources to Customize IDL

134 Chapter 5: Customizing IDL on Motif Systems

using.book Page 134 Tuesday, June 14, 2005 11:12 AM
Resources that include the string “idlde” must be included either in the system-wide
Idl resource file, or in a .idlde file in your home directory. Resources that apply to
IDL whether it is running in command-line mode or via the IDLDE can be included
in either the system-wide Idl resource file or in a .Xdefaults file in your home
directory.

To specify a value for an X resource, append a colon character and the value after the
resource string. Whitespace is ignored. For example:

idlde*hideCommand:False

is the same as

idlde*hideCommand: False

X Resources Used by IDL

IDL uses a large number of resources to control the behavior and appearance of the
IDL Development Environment and any graphical application written in IDL. To
learn more about the specific resources used, or to modify individual values, inspect
the installation-wide resource file Idl, located in

$IDL_DIR/resource/X11/lib/app-defaults

Note
In order to maintain backward compatibility with previous versions of IDL, the Idl
resource file contains values for some resources that correspond to IDL preferences.
X resources that have been superseded by preferences are ignored by IDL. See
“Support for Obsolete Preference Mechanisms” in Appendix E of the IDL
Reference Guide manual for details.

Tip
RSI suggests that you use preferences rather than X resources when possible. If you
must make changes to X resources, make the changes in a user-specific .idlde file
or .Xdefaults file.

Reserving Colors

If you use a PseudoColor display device, when IDL starts, it attempts to secure
entries in the shared system color map for use when drawing graphics. If the entry
Idl.colors exists in one of the X resource files inspected by IDL at startup, IDL
will first migrate the specified value to the value of the IDL_GR_X_COLORS
preference, and then attempt to allocate the number of colors specified from the
shared colormap. If for some reason it cannot allocate the requested number of colors
Using X Resources to Customize IDL Using IDL

Chapter 5: Customizing IDL on Motif Systems 135

using.book Page 135 Tuesday, June 14, 2005 11:12 AM
from the shared colormap, IDL will create a private colormap. Using a private
colormap ensures that IDL has the number of colormap entries necessary, but can
lead to colormap flashing when the cursor or window focus moves between IDL and
other applications.

One way to avoid creating a private colormap for IDL is to set the
IDL_GR_X_COLORS preference equal to a negative number. This causes IDL to try
to use the shared colormap, allocating all but the specified number of colors. For
example, setting the preference value to -10 instructs IDL to allocate all but 10 of the
currently available colors for its use. Thus, if there are a total of 220 colors not yet
reserved by other applications (such as the windowing system), IDL will allocate 210
colors from the shared colormap.

The IDLDE application itself uses between 10-15 colors. On startup, the IDLDE will
attempt to use colors in the shared colormap, but will reserve colors for itself if
appropriate matching colors in the shared colormap are not found. As a result,
running IDL with the IDLDE may use more colors than running IDL with the tty
(plain command line) interface.

Note
If you use a TrueColor display device, IDL does not rely on the system’s shared
color map when drawing graphics. There is no need to either reserve colors from the
shared color map or create a private color map.
Using IDL Using X Resources to Customize IDL

136 Chapter 5: Customizing IDL on Motif Systems

using.book Page 136 Tuesday, June 14, 2005 11:12 AM
X Resources at the Command Line

The appearance of the UNIX IDLDE can also be customized from the command line
using the command line flags described below. Command line flags are given
precedence over global resource files (Idl) and user resource files (.idlde). For
more information about resources, see “Using X Resources to Customize IDL” on
page 132.

X Resource Command Line Switches

The following command line switches can be used to control the values of X
resources when invoking IDL on UNIX platforms. Unless otherwise noted, switches
can be combined, and can be specified in any order.

-nocommand

Hides the Output Log window and Command Line at startup. The related resource is
Idl*idlde*hideCommand: True.

-command

Displays Log window and Command Input window at startup. The related resource is
Idl*idlde*hideCommand: False.

-nocontrol

Hides the Control panel buttons at startup. The related resource is
Idl*idlde*hideControl: True.

-control

Displays the Control Panel buttons at startup. The related resource is
Idl*idlde*hideControl: False.

-nolog

Hides the Output Log at startup. The related resource is
Idl*idlde*hideLog: True.

-log

Displays the Output Log at startup. The related resource is
Idl*idlde*hideLog: False.
X Resources at the Command Line Using IDL

Chapter 5: Customizing IDL on Motif Systems 137

using.book Page 137 Tuesday, June 14, 2005 11:12 AM
-nostatus

Hides the Status Bar at startup. The related resource is
Idl*idlde*hideStatus: True.

-status

Displays the Status Bar at startup. The related resource is
Idl*idlde*hideStatus: False.

-single

Displays files in a single window, which is a child of the main IDLDE window. The
related resource is Idl*idlde*multiWindowEdit: False.

-multi

Displays files in multiple windows, each one in a separate main level window. The
related resource is Idl*idlde*multiWindowEdit: True.

-view

Displays the Multiple Document Panel in single window mode at startup. The related
resource is Idl*idlde*hideView: False.

-noview

Hides the Multiple Document Panel at startup. The related resource is
Idl*idlde*hideView: True.

-title "Title"

Use Title as the title of the main IDLDE window. The related resource is
idlde.title.
Using IDL X Resources at the Command Line

138 Chapter 5: Customizing IDL on Motif Systems

using.book Page 138 Tuesday, June 14, 2005 11:12 AM
Modifying the Control Panel

The Control Panel, with the resource name control, is located below the IDL
Development Environment Menu bar. The Control Panel bar is a RowColumn
widget containing buttons which serve as shortcuts for common commands.

You can modify the existing Control Panel settings by editing the idlde*control
values in the system-wide Idl resource file or overriding those settings in your local
.idlde file. In addition, you can add buttons to the Macros toolbar or menu by
adding resources to your .idlde file.

Note
If you wish to add, modify, or remove the buttons on the Macros toolbar or menu,
you can do so via the IDLDE interface using the Edit Macros dialog. See “Creating
UNIX Macros” on page 121 for details. Whether you modify your macros using the
dialog or by editing a resource file manually, the results are the same. There is little
advantage to adding macros to the .idlde file manually.

Adding Macros Toolbar Buttons

The idlButtonsUser resource defines the resource name for each button on the
Macros toolbar in the Control Panel. The resource name details button attributes,
such as its label or pixmap, its associated IDL command, and its status bar message.

To add a button to the Macros toolbar, make the following modifications to the
.idlde file:

• Add a new name to the idlde*control*idlButtonsUser list. The buttons
are created in the order specified.

• Add idlde*control*<new button>*labelString or labelPixmap
resources (or both). These resources define the button text or image. If you
choose to use a pixmap label, be sure the file you specify abides by the
restrictions described in “Bitmaps for Control Panel Buttons” on page 122.

• Add an idlde*control*<new button>*idlCommand resource. This is
the text of the IDL command to execute. You can also include command
stream substitutions; see “Command Stream Substitutions” on page 126 for
details.

Alternatively, you can add an idlAction resource. See “Action Routines” on
page 141 for details.
Modifying the Control Panel Using IDL

Chapter 5: Customizing IDL on Motif Systems 139

using.book Page 139 Tuesday, June 14, 2005 11:12 AM
• Add an idlde*control*<new button>*hint resource. This is the text
that appears in the Status Bar when the cursor is positioned over the new
button.

• Add an idlde*control*<new button>*tip resource. This is the text that
appears as a “tooltip” when the cursor is positioned over the new button.

If you want your changes to be available to all users on the system, you can also
modify the system-wide Idl resource file, located in the following directory:

$IDL_DIR/resource/X11/lib/app-defaults

Adding Macros Menu Entries

To add entries into the Macros menu, follow the same steps outlined above,
modifying the idlde*menubar*macrosMenu*macrosListUser resource and
substituting idlde*menubar*macrosMenu*<new menu item> for
idlde*control*<new button> in the above steps.

Examples

To add a button called Reset All to the Control Panel with a color pixmap stored in
the file resetall.xpm located in your home directory, add the following resources
to the .idlde file in your $HOME directory:

idlde*control*idlButtonsUser: <exiting buttons> resetall
idlde*control*resetall*labelPixmap: resetall.xpm
idlde*control*resetall*labelString: Reset All
idlde*control*resetall*idlCommand:\
RETALL & WIDGET_CONTROL,/RESET
idlde*control*resetall*statusString:\
Stop execution of the current code and return to\
the main programming level

Note that in this example the new button is added at the end of the list of existing
buttons. You can locate the new button anywhere in the list.

To specify a pixmap located in particular directory, specify the full file path of the
pixmap file, for example:

idlde*control*resetall*labelPixmap:\
/home/user/bitmaps/resetall.xpm

To create two rows of the Control Panel from the default of one row, set the
numColumns resource to 2:

idlde*control*numColumns: 2
Using IDL Modifying the Control Panel

140 Chapter 5: Customizing IDL on Motif Systems

using.book Page 140 Tuesday, June 14, 2005 11:12 AM
To use label (text) buttons in the Control Panel set labelType to XmSTRING. To use
icon (graphics) buttons set labelType to XmPIXMAP.

idlde*control*labelType: XmSTRING
or
idlde*control*labelType: XmPIXMAP
Modifying the Control Panel Using IDL

Chapter 5: Customizing IDL on Motif Systems 141

using.book Page 141 Tuesday, June 14, 2005 11:12 AM
Action Routines

Most Motif widgets supply action routines which can be bound to events (such as
keypress events). Action routines provided by IDL can be used to define commands
for Control Panel buttons or menu items by using the idlAction resource.

The following action routines can be used in the same manner as the IDL commands
specified in an idlCommand resource. The syntax to add an action routine to a
control panel button is:

Idl*idlde*control*buttonName*idlAction: Action

or

Idl*idlde*control*buttonName*idlAction: Action(Arguments)

where buttonName is the name of the button and Action is the name of the action
routine. Arguments to the action routine, if require, are enclosed in parentheses.

IdlBreakpoint

Use IdlBreakpoint to control the placement of breakpoints. If no parameter is
specified, the breakpoint is set on the current line. At least one of the arguments from
the following table must be set:

For example, to use this action routine to clear a breakpoint, the Action specified
would be:

IdlBreakpoint(CLEAR)

Argument Action

SET Set a breakpoint on the current line.

CLEAR Clear the breakpoint on the current line.

TOGGLE Toggle (SET or CLEAR) the state of the
breakpoint on the current line.

COMPLEX Display breakpoint dialog to set a complex
breakpoint.

LIST List all currently set breakpoints

Table 5-1: Breakpoint Arguments
Using IDL Action Routines

142 Chapter 5: Customizing IDL on Motif Systems

using.book Page 142 Tuesday, June 14, 2005 11:12 AM
IdlClearLog

Use IdlClearLog to erase the contents of the Output Log.

IdlClearView

Use IdlClearView to clear the contents of the currently-active file in the Multiple
Document Panel.

IdlCommandHide

Use IdlCommandHide to hide or expose the Command Area, which includes the
Command Line and the Output Log. One of the following arguments must be set:
Show, Hide, or Toggle.

IdlCompile

Use IdlCompile to compile the file in the currently-active editor window. One of
the arguments from the following table must be set:

IdlControlHide

Use IdlControlHide to hide or expose the Control Panel. One of the following
arguments must be set: Show, Hide, or Toggle.

Argument Action

FILE Compiles the currently-active
file.

TEMPORARY Compiles the currently-active
file into a temporary file

RESOLVE Resolves all referenced and
uncompiled IDL routines

Table 5-2: Compiling Arguments
Action Routines Using IDL

Chapter 5: Customizing IDL on Motif Systems 143

using.book Page 143 Tuesday, June 14, 2005 11:12 AM
IdlEdit

Use IdlEdit to manipulate the contents of the currently-selected editor window.
One of the arguments from the following table must be set:

IdlEditMacros

Use IdlEditMacros to display the Edit Macros dialog.

IdlExit

Use IdlExit to cause IDLDE to act as though the EXIT command has been entered.
Note that this is usually tied to a menu accelerator (Ctrl-Q in this case), so this
routine is rarely called directly.

Argument Action

UNDO Undo previous editing action.

REDO Redo previously undone
action.

CUT Remove currently-selected
text to UNIX clipboard.

COPY Copy currently-selected text
to UNIX clipboard.

PASTE Paste contents of UNIX
clipboard at current insertion
point.

SELECTALL Select all of the text in the
currently-selected editor
window.

GOTODEF Display the definition of the
currently-selected procedure
or function.

GOTOLINE Move directly to the specified
line number.

Table 5-3: Editor Window Editing Arguments
Using IDL Action Routines

144 Chapter 5: Customizing IDL on Motif Systems

using.book Page 144 Tuesday, June 14, 2005 11:12 AM
IdlFile

Use IdlFile to manipulate the currently-selected editor window. One of the
arguments in the following table must be set:

IdlFileReadOnly

Use IdlFileReadOnly to specify the read/write status of the currently-active editor
window. One of the arguments from the following table must be set:

IdlFunctionKey

Use IdlFunctionKey to allow entry of an IDL command into the input command
stream. It is typically used to tie IDL commands to function keys. For example:

<Key>F5:IdlFunctionKey("print, 'F5 pressed'")\n

Argument Action

NEW Creates a new editor window.

OPEN Opens an existing file.

SAVE Saves the contents of the
currently-selected editor
window.

PRINT Prints the contents of the
currently-selected editor
window.

Table 5-4: Editor Window Arguments

Argument Action

READONLY Disable editing of the
currently-selected editor
window.

READWRITE Enables editing of the
currently-selected window.

Table 5-5: Read/Write Arguments
Action Routines Using IDL

Chapter 5: Customizing IDL on Motif Systems 145

using.book Page 145 Tuesday, June 14, 2005 11:12 AM
IdlInterrupt

Use IdlInterrupt to cause IDLDE to receive an interrupt. Note that this is usually
tied to Ctrl-C as a menu accelerator.

IdlListStack

Use IdlListStack to display the current nesting of procedures and functions
(calling stack).

IdlLogHide

Use IdlLogHide to hide or expose the Output Log. One of the following arguments
must be set: Show, Hide, or Toggle.

IdlRecallCommand

Use IdlRecallCommand to recalls previously entered commands into the command
widget. Either the BACK or the FORWARD argument must be specified to indicate
the direction of the recall. For example:

<Key>osfUp:IdlRecallCommand(BACK)\n

IdlReset

Use IdlReset to reset the IDL environment.

IdlRun

Use IdlRun to execute the currently-active file.

IdlSearch

Use IdlSearch to call the Find dialog for a search of the current Multiple
Document Panel. One of the optional arguments from the following table may be
used:

Argument Action

FIND Displays a search dialog (default).

FINDAGAIN Finds the next occurrence of the
specified string.

Table 5-6: Find Dialog Arguments
Using IDL Action Routines

146 Chapter 5: Customizing IDL on Motif Systems

using.book Page 146 Tuesday, June 14, 2005 11:12 AM
IdlStatusHide

Use IdlStatusHide to hide or expose the Status Bar. One of the following
arguments must be set: Show, Hide, or Toggle.

IdlStep

Use IdlStep to control statement execution for debugging. At least one of the
arguments from the following table must be set.

FINDSELECTION Finds next occurrence of the current
selection.

ENTERSELECTION Enters the current selection as the search
string in the Find dialog.

REPLACE Replaces the search string, with a
specified replacement string.

REPLACEFIND Finds the next occurrence of the search
string, and replaces it with the specified
replacement string.

Argument Action

INTO Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are also executed in single-
statement mode.

OVER Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are run until completion,
whereupon interactive control returns.

OUT Continues execution until current routine
returns.

Table 5-7: Debugging Arguments

Argument Action

Table 5-6: Find Dialog Arguments
Action Routines Using IDL

Chapter 5: Customizing IDL on Motif Systems 147

using.book Page 147 Tuesday, June 14, 2005 11:12 AM
IdlTrace

Use IdlTrace to display a dialog box to control program tracing.

IdlViewHide

Use IdlViewHide to hide or expose the Multiple Document Panel. One of the
following arguments must be set: Show, Hide, or Toggle.

IdlWindows

Use IdlWindows to manipulate the state of the Editor windows. One of the
arguments from the following table must be set:

SKIP Skips one statement and executes following
statement.

CONTINUE Continues execution of an interrupted program.

TOCURSOR Executes file until encountering the cursor.

TORETURN Executes file until encountering the return.

Argument Action

CASCADE Arrange open windows in a
staggered, overlapping
fashion.

TILE Arrange all windows in a non-
overlapping fashion.

MULTI Open windows outside the
IDLDE interface.

SINGLE Display the most recent
window on the Multiple
Document Panel.

Table 5-8: Editor Window Display Arguments

Argument Action

Table 5-7: Debugging Arguments
Using IDL Action Routines

148 Chapter 5: Customizing IDL on Motif Systems

using.book Page 148 Tuesday, June 14, 2005 11:12 AM
Action Routines Using IDL

using.book Page 149 Tuesday, June 14, 2005 11:12 AM
Chapter 6

Importing and Writing
Data into Variables
This chapter provides an introduction to accessing, reading and writing data using the dialogs, and
routines found in IDL.
Overview of Data Access in IDL 150
Accessing Files Using Dialogs 151
Reading ASCII Data 153
Reading Binary Data 154
Accessing Files Programmatically 156

Accessing Image Data Programmatically 158
Accessing Non-Image Data Programmatically
162
Using IDL Macros 164
File Access Routines 171
Using IDL 149

150 Chapter 6: Importing and Writing Data into Variables

using.book Page 150 Tuesday, June 14, 2005 11:12 AM
Overview of Data Access in IDL

There are several ways to open files and access the data that they contain in IDL.You
can open a file using interface elements, or using routines. In order of increasing
complexity and flexibility, your options are:

• Accessing data in iTools — use File → Open from an iTool, and browse to
select a file. This option automatically displays data (that is a supported type)
in the iTool. See Chapter 2, “Importing and Exporting Data” in the iTool
User’s Guide manual for details.

• Accessing files using dialogs — launch an IDL dialog and browse to select or
save a file. After accessing the file, use an IDL routine to access the data
within the file. You can then preform additional data processing task or create
a display. See “Accessing Files Using Dialogs” on page 151 for details.

• Accessing files programmatically — you can access data without requiring
user interaction by using IDL statements in a program or at the command line.
This give you the greatest control over the state of data at all times, but
requires slightly more programming than the previous option. See “Accessing
Files Programmatically” on page 156 for details.

There are advantages and disadvantages for each option. When you open a file using
File → Open in the iTools, there is no opportunity to do pre-processing on the data.
However, the display is created for you, and there are numerous interactive
operations available.

You can combine the flexibility of accessing data using routines with the power of an
iTool display by launching the iTool from the command line as described in
“Parameter Data and the Command Line” in Chapter 2 of the iTool User’s Guide
manual. See “Accessing Image Data Programmatically” on page 158 and “Accessing
Non-Image Data Programmatically” on page 162 for examples.

When you access data from the command line or in an IDL program, you have the
greatest control over data modification. The iTools incorporate the functionality of
many of the common data processing and manipulation routines. However, if you
need greater control over data modification, want to create a custom display or object
class, or need to use functionality that is not exposed through and iTool, you can
import, export, and/or create your data programmatically.

Regardless of the method selected, it is important to note that only the options
involving iTools will automatically display data for you. In other instances, you will
need to configure a display yourself.
Overview of Data Access in IDL Using IDL

Chapter 6: Importing and Writing Data into Variables 151

using.book Page 151 Tuesday, June 14, 2005 11:12 AM
Accessing Files Using Dialogs

DIALOG_PICKFILE and DIALOG_READ_IMAGE are the two primary file access
dialogs in IDL. Use DIALOG_PICKFILE to select any type of file. You can select
multiple files, define the directory or define file filters using keywords. Use
DIALOG_READ_IMAGE to access supported image formats (listed in “Image File
Formats” in Chapter 1 of the Using IDL manual). This dialog offers preview
capabilities and basic image information. The corollary DIALOG_WRITE_IMAGE
allows you to write data to a select image file type.

See the following topics for more information:

• “Accessing Any File Type Using a Dialog” below

• “Importing an Image File Using a Dialog” on page 152

• “Saving an Image File Using a Dialog” on page 152

You can use other dialogs to access ASCII, binary and HDF data as described in:

• “Reading ASCII Data” on page 153

• “Reading Binary Data” on page 154

Also, several pre-defined IDL macros are provided to help you import data into the
IDLDE. Each returns a structure, which you access programmatically in order to
retrieve data. See “Using IDL Macros” on page 164 for details.

Note
Also see “CW_FILESEL” in the IDL Reference Guide manual for an example that
configures a compound widget to open image files.

Accessing Any File Type Using a Dialog

The DIALOG_PICKFILE function lets you interactively pick a file using the
platform’s own native graphical file selection dialog. This function returns a string or
an array of strings that contain the full path name of the selected file or files. The user
can also enter the name of the file. The following statement opens the selection dialog
and shows any .pro files in the current working directory. If you select a file and
click Open, the file variable contains the full file path.

file = DIALOG_PICKFILE(/READ, FILTER = '*.pro')

Other keywords allow you to specify the initial directory, the dialog title, the filter
list, and whether multiple file selection is permitted. See “DIALOG_PICKFILE” in
the IDL Reference Guide manual for details.
Using IDL Accessing Files Using Dialogs

152 Chapter 6: Importing and Writing Data into Variables

using.book Page 152 Tuesday, June 14, 2005 11:12 AM
After you select a file using DIALOG_PICKFILE, you can then use one of the file
I/O routines to access the data within the file. See “Accessing Image Data
Programmatically” on page 158 or “Accessing Non-Image Data Programmatically”
on page 162 for more information.

Importing an Image File Using a Dialog

The DIALOG_READ_IMAGE function opens a graphical user interface which lets
you read image files. This interface simplifies the use of IDL image file I/O. You can
preview images with a quick and simple browsing mechanism which also reports
important information about the image file. You can also control the preview mode.

The following statement opens the dialog so that you can select among .gif, tiff,
.dcm, .png and .jpg files.

result = DIALOG_READ_IMAGE(FILE=selectedFile, IMAGE=image)

See “Using the Select Image File Dialog Interface” under
“DIALOG_READ_IMAGE” in the IDL Reference Guide manual for additional
information if desired. When you select a file and click Open, the file path is stored
in selectedFile variable and the image data is stored in the image variable. Enter
the following line to display image data in an iImage display.

IF result EQ 1 THEN iImage, image

Saving an Image File Using a Dialog

The DIALOG_WRITE_IMAGE function displays a graphical user interface that lets
you write and save image files. This interface simplifies the use of IDL image file
I/O. The following statements create and write a simple image to a .tif file name
myimage.tif:

myimage = DIST(100)
result = DIALOG_WRITE_IMAGE(myimage, FILENAME='myimage.tif')

When you select Save, it creates a .tif file in your current working directory or the
directory of your choice. See “DIALOG_WRITE_IMAGE” in the IDL Reference
Guide manual for a complete list of keywords and a description of the dialog
interface.
Accessing Files Using Dialogs Using IDL

Chapter 6: Importing and Writing Data into Variables 153

using.book Page 153 Tuesday, June 14, 2005 11:12 AM
Reading ASCII Data

IDL recognizes two types of ASCII data files: free format files, and explicit format
files. A free format file uses commas or tabs and spaces to distinguish each element
in the file. An explicit format file distinguishes elements according to the commands
specified in a format statement. Most ASCII files are free format files.

Note
If you prefer not to use an interactive dialog (described below), you can also use the
READ/READF, or READS procedures to access ASCII data. The READ procedure
reads free format data from standard input, READF reads free format data from a
file, and READS reads free format data from a string variable.

Launching the ASCII Template Dialog

The ASCII_TEMPLATE function launches a dialog that you can use to configure the
structure of data in an ASCII file. Access this feature in one of the following ways:

• From an iTool — select File → Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select a text file

• From the IDLDE — select Macros → Import ASCII and select a text file

• From the IDL command line — use the following syntax to call
ASCII_TEMPLATE and select a text file:

sTemplate = ASCII_TEMPLATE()

Note
If you specify a Filename argument to ASCII_TEMPLATE, the dialog
allowing you to browse to select a file will not appear. See
“ASCII_TEMPLATE” in the IDL Reference Guide manual if you want
specify a file and other parameters programmatically.

See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” in the IDL
Reference Guide manual for instructions on how to use the dialog to define the
structure of your ASCII data.
Using IDL Reading ASCII Data

154 Chapter 6: Importing and Writing Data into Variables

using.book Page 154 Tuesday, June 14, 2005 11:12 AM
Reading Binary Data

Data is sometimes stored in files as arrays of bytes instead of a known format like
JPEG or TIFF. These files are referred to as binary files. Binary data or binary data
files are more compact than ASCII data files and are frequently used for large data
files. Binary data files are stored as one long stream of bytes in a file. You will need
to define the structure of the fields in the file in order to correctly read in the binary
data.

The BINARY_TEMPLATE and READ_BINARY functions are designed to define
and access binary data. The READ_BINARY function, which reads binary data, is
either invoked internally (when you open a binary file from the iTools or use the
Import Binary macro), or is explicitly called from the command line. This function
is intended to read raw binary data that requires no special processing (except
possibly byte-order swapping). This function is not designed to read commercial
spreadsheet or word processing files.

Note
If you prefer not to use an interactive Binary Template dialog (described below) to
define the structure of the data in the binary file, you can use the READU
procedure. To read binary data files, define the variables, open the file for reading,
and read the bytes into those variables. Each variable reads as many bytes out of the
file as required by the specified data type and organizational structure.

If you need to open a single binary file, it may be easier to use READ_BINARY to
directly define data characteristics using keywords instead of creating a template
using the Binary Template dialog (described below). See “READ_BINARY” in the
IDL Reference Guide manual for an example.

Launching the Binary Template Dialog

The BINARY_TEMPLATE function launches a dialog that you can use to define the
structure of data in an binary file. Access this feature in one of the following ways:

• From an iTool — select File → Open (or click the Import File button in the
Data Manager or Insert Visualization dialog) and select a binary file

• From the IDLDE — select Macros → Import Binary and select a binary file

• From the IDL command line — use the following syntax to call
BINARY_TEMPLATE and select a text file:

sTemplate = BINARY_TEMPLATE()
Reading Binary Data Using IDL

Chapter 6: Importing and Writing Data into Variables 155

using.book Page 155 Tuesday, June 14, 2005 11:12 AM
Note
If you specify a Filename argument to BINARY_TEMPLATE, the dialog
allowing you to browse to select a file will not appear. See
“BINARY_TEMPLATE” in the IDL Reference Guide manual if you want
specify a file and other parameters programmatically.

See “Using the BINARY_TEMPLATE Interface” under “BINARY_TEMPLATE”
in the IDL Reference Guide manual for instructions on how to use the dialog to define
the structure of your binary file.
Using IDL Reading Binary Data

156 Chapter 6: Importing and Writing Data into Variables

using.book Page 156 Tuesday, June 14, 2005 11:12 AM
Accessing Files Programmatically

Regardless of the data type, there are several routines that are commonly used to
access files and data. To read data into an IDL variable, you must identify the file
containing the data, and then extract the data from the file. This section discusses file
access. Following sections (discuss data access.

File Access

One of the most common file access routines is FILEPATH. Use this to select a
named file in a specified directory. For example, to select a file in the
examples/data directory of the existing working directory, use the statement:

file = FILEPATH('mr_brain.dcm', SUBDIRECTORY=['examples', 'data'])

To access a file outside the existing working directory, use the ROOT_DIR keyword.
The following statement opens a file named testImg.tif in the C:\tempImages
directory.

file = FILEPATH('testImg.tif', ROOT_DIR='C:', $
SUBDIRECTORY='tempImages')

Cross-platform File Access

If your application requires a cross-platform path, one that is not specific to UNIX or
Windows, consider using the DIALOG_PICKFILE routine with the GET_PATH
keyword. This lets you choose a file and store the operating system native path to the
file in a variable. In the following example, you choose an image file and the full
directory path to the selected image is stored in path:

sFile = DIALOG_PICKFILE(/MUST_EXIST, $
 TITLE = 'Select an Image File', $
 FILTER = ['*.bmp', '*.jpg', '*.png', '*.ppm', '*.tif'], $

GET_PATH=path)

When you need to access a file in the directory stored in path, you can use the
PATH_SEP function to return the correct path separation character for the operating
system. Suppose you have a file called myTestFile.jpg that you want to delete
before a program ends. FILE_DELETE requires a string File argument that is in the
native syntax for the current operating system. To delete this file, you can use the
directory information stored in path, plus the PATH_SEP function, plus the name of
the file to delete as follows (the + operator concatenates strings):

FILE_DELETE, path+PATH_SEP()+'myTestFile.jpg', /ALLOW_NONEXISTENT
Accessing Files Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 157

using.book Page 157 Tuesday, June 14, 2005 11:12 AM
IDL also provides an extensive number of other file manipulation routines. See
“General File Access” under the functional category “Input/Output” in the IDL Quick
Reference manual for a list.

FILEPATH is often used in conjunction with routines that access the data from a file,
as shown in the following section.
Using IDL Accessing Files Programmatically

158 Chapter 6: Importing and Writing Data into Variables

using.book Page 158 Tuesday, June 14, 2005 11:12 AM
Accessing Image Data Programmatically

You can access image data using routines designed for general image file access,
designed specifically for an image file format, or using unformatted data access
routines. Which option you choose depends on the file type and the level of control
you want over reading and writing the file. See the following topics for details:

• “Importing Formatted Image Data Programmatically” below

• “Importing Unformatted Image Files” on page 159

• “Exporting Formatted Image Files Programmatically” on page 160

• “Exporting Unformatted Image Files” on page 161

Note
These sections describe how to load data into a variable and includes examples of
passing variable data to an iTool programmatically. See “Importing Data from the
IDL Session” in Chapter 2 of the iTool User’s Guide manual if you want
information on how you can access variable data from the iTools Data Manager.

Importing Formatted Image Data Programmatically

The majority of IDL image data access routine require a file specification, indicating
the file from which to access the data. The FILEPATH routine is often used within a
data access routine as shown in the following example.

Note
To validate that an image file can be accessed using READ_* routines, you can
query the image first. See “Returning Image File Information” on page 175 for
details.

The following example opens a JPEG file from the examples/data directory,
performs feature extraction, and displays both images using IIMAGE.

; Open a file and access the data.
file = FILEPATH('n_vasinfecta.jpg', $
 SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image, /GRAYSCALE

; Mask out pixel values greater than 120
; and create a distance map.
binaryImg = image LT 120
distanceImg = MORPH_DISTANCE(binaryImg, NEIGHBOR_SAMPLING = 1)
Accessing Image Data Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 159

using.book Page 159 Tuesday, June 14, 2005 11:12 AM
; Launch iImage, creating a 2 column, 1 row layout.
; Display the original and distanceImg in the two views.
IIMAGE, image, VIEW_GRID=[2,1]
IIMAGE, distanceImg, /VIEW_NEXT, /OVERPLOT

In the previous example, you could use the READ_IMAGE function instead of the
READ_JPEG function by replacing the following statement:

READ_JPEG, file, image, /GRAYSCALE

with

image = READ_IMAGE(file)

In this instance, you do not have control over the color table associated with the
image. It is often more useful to use a specific READ_* routine or object designed
for the image file format to precisely control characteristics of the imported image.

For a list of available image access, import and export routines and objects, see
“Image Data Formats” under the functional category “Input/Output” in the IDL
Quick Reference manual.

Note
IDL can also import images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY
function using the DATA_DIMS and DATA_TYPE keywords as follows:

• You must specify the size of the image within the file using the DATA_DIMS
keyword. This is required because the READ_BINARY function assumes the
data values are arranged in a single vector (a one-dimensional array). The
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

• You can set the DATA_TYPE keyword to the image’s data type using the
associated IDL type code (see “IDL Type Codes and Names” under the SIZE
function in the IDL Reference Guide for a complete list of type code). Most
images in binary files are of the byte data type, which is the default setting for
the DATA_TYPE keyword.

No standard exists by which image parameters are provided in an unformatted binary
file. Often, these parameters are not provided at all. In this case, you should already
Using IDL Accessing Image Data Programmatically

160 Chapter 6: Importing and Writing Data into Variables

using.book Page 160 Tuesday, June 14, 2005 11:12 AM
be familiar with the size and type parameters of any images you need to access within
binary files.

For example, the worldelv.dat file is a binary file that contains an image. You can
only import this image by supplying the information that the data values of the image
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using
the READ_BINARY function to access this image, you must first determine the path
to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

Define the size parameters of the image with a vector:

imageSize = [360, 360]

An image type parameter is not required because we know that the data values of
image are byte, which is the default type for the READ_BINARY function.

The READ_BINARY function can now be used to import the image contained in the
worldelv.dat file:

image = READ_BINARY(file, DATA_DIMS = imageSize)
IIMAGE, image

Exporting Formatted Image Files Programmatically

Images can be exported to common image file formats using the WRITE_IMAGE
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file’s
name, the image file type, and the image itself. You can also provide the red, green,
and blue color components to an associated color table if these components exist.

For example, you can import the image from the worldelv.dat binary file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [360, 360]
image = READ_BINARY(file, DATA_DIMS = imageSize)

You can export this image to an image file (a JPEG file) with the WRITE_IMAGE
procedure:

WRITE_IMAGE, 'worldelv.dat', 'JPEG', image

IDL also provides format-specific WRITE_* routines that are similar to the
WRITE_IMAGE procedure, but provide more flexibility when exporting a specific
image file type. See “Image Data Formats” under the functional category
“Input/Output” in the IDL Quick Reference manual for a list of available image
access, import and export routines and objects.
Accessing Image Data Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 161

using.book Page 161 Tuesday, June 14, 2005 11:12 AM
Note
IDL can also export images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Exporting Unformatted Image Files

Images can be exported to an unformatted binary file with the WRITEU procedure.
Before using the WRITEU procedure, you must open a file to which the data will be
written using the OPENW procedure. Any file you open must be specifically closed
using either the FREE_LUN or CLOSE procedure when you are done exporting the
image.

For example, you can import the image from the rose.jpg image file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_IMAGE(file)

You can export this image to a binary file by first opening a new file:

OPENW, unit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:

WRITEU, unit, image

You must remember to close the file once the data has been written to it:

FREE_LUN, unit

Note
For complete details about reading, writing and formatting unformatted data, see
Chapter 18, “Files and Input/Output” in the Building IDL Applications manual.
Using IDL Accessing Image Data Programmatically

162 Chapter 6: Importing and Writing Data into Variables

using.book Page 162 Tuesday, June 14, 2005 11:12 AM
Accessing Non-Image Data Programmatically

There are a number of options available for reading non-image data into IDL.
Depending upon the file type, consider using one of the following:

• Formatted data — use a data-type-specific routine (such as READ_ASCII or
READ_BINARY). See “Reading Binary Data in a Volume” below for more
information.

• Unformatted data — use a general data access routines (such as OPEN or
WRITE). For complete details about reading, writing and formatting
unformatted data, see Chapter 18, “Files and Input/Output” in the Building
IDL Applications manual.

• SAVE file data — use the RESTORE procedure to access variable data in a
SAVE file. See “Reading Contour Data from a SAVE File” on page 163 for an
example.

Note
These sections describe how to load data into a variable and includes examples of
passing variable data to an iTool programmatically. See “Importing Data from the
IDL Session” in Chapter 2 of the iTool User’s Guide manual if you want
information on how you can access variable data from the iTools Data Manager.

Reading Binary Data in a Volume

The following example uses READ_BINARY to access binary data (head.dat)
consisting of a stack of 57 images slices of the human head. After reading the data,
create a display using IVOLUME. Enter the following at the IDL command prompt:

file = FILEPATH('head.dat', $
SUBDIRECTORY = ['examples', 'data'])

dataSize = [80,100,57]
volume= READ_BINARY(file, DATA_DIMS = dataSize)
iVolume, volume, /AUTO_RENDER

Note
You can also create a template for binary file access. See “Reading Binary Data” on
page 154 for options.
Accessing Non-Image Data Programmatically Using IDL

Chapter 6: Importing and Writing Data into Variables 163

using.book Page 163 Tuesday, June 14, 2005 11:12 AM
Reading Contour Data from a SAVE File

You can also access information from a SAVE file. This example restores a SAVE
file containing variable data (marbells.dat), configures the data, and displays it
using ICONTOUR.

PRO maroonBellsContour_doc

; Restore Maroon Bells data into the IDL variable "elev".
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples','data'])

; Create x and y vectors giving the position of each
; column and row.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FINDGEN(92)

; Set missing data points to a large value. Reduce to a
; 72 x 92 matrix.
elev (WHERE (elev EQ 0)) = 1E6
new = REBIN(elev, 360/5, 460/5)

iContour, new, X, Y, C_VALUE = 2750 + FINDGEN(6) * 250.,$
 XSTYLE = 1, YSTYLE = 1, YMARGIN = 5, MAX_VALUE = 5000, $
 C_LINESTYLE = [1, 0], $
 C_THICK = [1, 1, 1, 1, 1, 3], $
 XTITLE = 'UTM Coordinates (KM)'

End

Note
See Chapter 4, “Creating SAVE Files of Programs and Data” in the Building IDL
Applications manual for complete details on creating and restoring SAVE files.
Using IDL Accessing Non-Image Data Programmatically

164 Chapter 6: Importing and Writing Data into Variables

using.book Page 164 Tuesday, June 14, 2005 11:12 AM
Using IDL Macros

When you are working in the IDLDE, you can use a pre-defined macro to help you
import image, ASCII, binary or HDF data. These macros call internal functions and
return structures containing data. From the IDL command line, you can access and
display data elements contained in the structures. These macros are available through
the Macros menu and also through IDL toolbar buttons.

See the follow sections for more information:

• “Using Macros to Import Image Files” on page 165

• “Using Macros to Import ASCII Files” on page 167

• “Using Macros to Import Binary Files” on page 169

• “Using Macros to Import HDF Files” on page 170

Figure 6-1: Macro Toolbar Buttons

Import ASCII File Import Binary File

Import HDF
File

Import Image
File
Using IDL Macros Using IDL

Chapter 6: Importing and Writing Data into Variables 165

using.book Page 165 Tuesday, June 14, 2005 11:12 AM
Using Macros to Import Image Files

To import an image file into IDL using a macro, complete the following steps:

1. Select the Import Image toolbar button. The Select Image File dialog is
displayed.

2. Select a file to import. For example, select the
rsi-directory/examples/data/muscle.jpg file where
rsi-directory is the installation directory for IDL. See “Using the Select
Image File Dialog Interface” under “DIALOG_READ_IMAGE” in the IDL
Reference Guide manual for additional information if desired.

3. Click Open.

The muscle.jpg image data has been opened into a structure variable named
MUSCLE_IMAGE. The Import Image macro opens and stores image data in a
structure variable named filename_IMAGE where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

The MUSCLE_IMAGE structure contains the following fields:

• IMAGE — The actual image array.

• R — The red color table vectors.

• G — The green color table vectors.

• B — The blue color table vectors.

• QUERY — Contains information about the image.

• CHANNELS — The number of channels in the image.

• HAS_PALETTE — Specifies if the palette is present. 1 if the palette is
present, else 0. If your image is n-by-m the palette is usually present and
the R, G, and B color table vectors mentioned above will contain values. If
your image is 3-by-n-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.
Using IDL Using Macros to Import Image Files

166 Chapter 6: Importing and Writing Data into Variables

using.book Page 166 Tuesday, June 14, 2005 11:12 AM
• IMAGE_INDEX — The index of the image of the file. The default is 0,
the first image in the file. If there are multiple images in the file that you
read, this will be the number (or index) of the image.

• NUM_IMAGES — The number of images in the original file.

• PIXEL_TYPE — The IDL Type Code of the image pixel format. Valid
types are described in “IDL Type Codes and Names” under “SIZE” in the
IDL Reference Guide manual.

• TYPE — The image format type.

The structure can be viewed in the Variable Watch Window.

You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

IIMAGE, MUSCLE_IMAGE.IMAGE

If you want to know the file type, enter the following:

PRINT, MUSCLE_IMAGE.QUERY.TYPE

IDL prints:

JPEG

Figure 6-2: Variable Watch Window Showing MUSCLE_IMAGE Structure
Using Macros to Import Image Files Using IDL

Chapter 6: Importing and Writing Data into Variables 167

using.book Page 167 Tuesday, June 14, 2005 11:12 AM
Using Macros to Import ASCII Files

To import an ASCII file into IDL using a macro, complete the following steps:

1. Select the Import ASCII toolbar button. The Select an ASCII file to read
dialog appears.

2. Select a file to import.

3. See “Using the ASCII Template Dialog” under “ASCII_TEMPLATE” in the
IDL Reference Guide manual for instructions on how to use the dialog to
define the structure of your ASCII data.

ASCII files opened with the Import ASCII macro are stored in structure variables
which are named filename_ASCII where filename is the name of the file you opened
without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

For example, if you opened ascii.txt, the data is now in the structure variable
named ASCII_ASCII. Each field (named in the ASCII Template dialog) is an
element of the structure.

The structure can be viewed in the Variable Watch Window.

Figure 6-3: Variable Watch Window Showing ASCII_ASCII Structure
Using IDL Using Macros to Import ASCII Files

168 Chapter 6: Importing and Writing Data into Variables

using.book Page 168 Tuesday, June 14, 2005 11:12 AM
You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name

For example, if you want to view the Longitude field data, enter the following:

Print, ASCII_ASCII.LONGITUDE

If you want to plot the Temperature data, enter the following:

IPLOT, ASCII_ASCII.TEMPERATURE

The following figure results.

Figure 6-4: Plot of ASCII_ASCII.TEMPERATURE
Using Macros to Import ASCII Files Using IDL

Chapter 6: Importing and Writing Data into Variables 169

using.book Page 169 Tuesday, June 14, 2005 11:12 AM
Using Macros to Import Binary Files

To import a binary file into IDL using a macro, complete the following steps:

1. Select the Import Binary toolbar button. The Select a binary file to read
dialog appears.

2. Select a file to import. For example, select the surface.dat from the
examples/data directory in your IDL installation directory. Click Open.

3. See Using the BINARY_TEMPLATE Interface under
“BINARY_TEMPLATE” in the IDL Reference Guide manual for instructions
on how to use the dialog to define the structure of your binary data.

Binary files opened with the Import Binary File macro are stored in structure
variables which are named filename_BINARY where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (surface.dat) is now in the structure variable named
SURFACE_BINARY. The variable is a structure, and contains elements that are the
field names defined in the Binary Template dialog. In this case the single field is
named marbells. The structure can be viewed in the Variable Watch Window.

Access data from the structure variable using the following syntax:

variable_name.element_name

For example, display the surface by entering:

ISURFACE, SURFACE_BINARY.marbells

Figure 6-5: Variable Watch Window Showing MARBELLS_BINARY Structure
Using IDL Using Macros to Import Binary Files

170 Chapter 6: Importing and Writing Data into Variables

using.book Page 170 Tuesday, June 14, 2005 11:12 AM
Using Macros to Import HDF Files

To import a Hierarchical Data Format (HDF), HDF-EOS, or NETCDF file into IDL,
complete the following steps:

1. Select the Import HDF File toolbar button. The Select a valid HDF,
NETCDF or HDF-EOS file dialog is displayed.

2. Select a file to import. Click Open.

3. See “Using the HDF Browser Interface” under “HDF_BROWSER” for
instructions on how to use the dialog.

After selecting to import data and clicking OK, HDF, NETCDF, or HDF-EOS files
read with the Import HDF macro are stored in structure variables which are named
filename_DF where filename is the name of the file you opened without the
extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filename is not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any illegal characters within filename are removed.

The variable is a structure with each data or metadata name being an element of the
structure. You can specify which part of the structure variable you want to access by
using the following syntax:

variable_name.data_name

For example, if you imported two data elements out of a file named hydrogen.hdf
and you named the elements IMAGE1 and IMAGE2, you could access each individual
data element using the following:

HYDROGEN_DF.IMAGE1
HYDROGEN_DF.IMAGE2

If you wanted to view IMAGE1, you would enter:

IIMAGE, HYDTROGEN_DF.IMAGE1

For more information on IDL support of HDF and other scientific data formats, see
the Scientific Data Formats manual.

For information on importing HDF5 files using the HDF5 Browser dialog, see
“H5_BROWSER” in the IDL Reference Guide manual
Using Macros to Import HDF Files Using IDL

Chapter 6: Importing and Writing Data into Variables 171

using.book Page 171 Tuesday, June 14, 2005 11:12 AM
File Access Routines

See the following categories under “Input/Output” in the IDL Quick Reference
manual for a list of available file and data access routines:

• “Image Data Formats” — includes read and write routines for supported image
formats (such as JPEG, TIFF, DICOM, etc.), and routines that launch dialogs
for image file access.

• “Scientific Data Formats” — includes CDF, EOS, NCDF, HDF, and HDF5
routines.

• “Other Data Formats” — includes routines that access ASCII, BINARY,
XML, and other non-image data formats.

• “General Input/Output” — includes READ, WRITE and other routines
commonly used when accessing unformatted data. Also see Chapter 18, “Files
and Input/Output” for information on using these routines and formatting your
data.
Using IDL File Access Routines

172 Chapter 6: Importing and Writing Data into Variables

using.book Page 172 Tuesday, June 14, 2005 11:12 AM
File Access Routines Using IDL

using.book Page 173 Tuesday, June 14, 2005 11:12 AM
Chapter 7

Getting Information
About Files and Data
The following topics are covered in this chapter:
Investigating Files and Data 174
Returning Image File Information 175
Returning Type and Size Information 179

Getting Information About SAVE Files . . 181
Returning Object Type and Validity 186
Returning Information About a File 188
Using IDL 173

174 Chapter 7: Getting Information About Files and Data

using.book Page 174 Tuesday, June 14, 2005 11:12 AM
Investigating Files and Data

There are a number of routines and functions in IDL that allow you to quickly access
information about your data. While it is always a good idea to know your data before
processing, the routines in this chapter can help you uncover details of arrays,
expressions, SAVE files, objects, or specific images.

Accessing Information in iTools

When you are working in the iTools, there are a number of ways to get information
about variable data, an object’s properties, an image’s statistical information, and the
data hierarchy. For more information about these options, see the following topics:

• “About the Data Manager” in Chapter 2 of the iTool User’s Guide manual
provides information on data associated with a visualization

• “The Visualization Browser” in Chapter 6 of the iTool User’s Guide manual
provides information on the properties of a visualization

• “Additional Operations” in Chapter 7 of the iTool User’s Guide manual
describes the Histogram and Statistics windows available in iTools
Investigating Files and Data Using IDL

Chapter 7: Getting Information About Files and Data 175

using.book Page 175 Tuesday, June 14, 2005 11:12 AM
Returning Image File Information

When accessing formatted image data (not contained in a binary file), there are a
number of ways to get information about the data characteristics. The most flexible is
the QUERY_IMAGE routine, which returns a structure that includes the number of
image channels, pixel data type and palette information. If you need specific
information from a formatted image file, you can use the QUERY* routine
specifically designed for images of that format.

Note
You can also use the SIZE function to quickly return the size of an image array. See
“Using SIZE to Return Image Dimensions” on page 180 for details.

Using the QUERY_IMAGE Info Structure

Common image file formats contain standardized header information that can be
queried. IDL provides the QUERY_IMAGE function to return valuable information
about images stored in supported image file formats.

For example, using the QUERY_IMAGE function, you can return information about
the mineral.png file in the examples/data directory. First, access the file. Then
use the QUERY_IMAGE function to return information about the file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

queryStatus = QUERY_IMAGE(file, info)

To determine the success of the QUERY_IMAGE function, print the value of the
query variable:

PRINT, 'Status = ', queryStatus

IDL prints

queryStatus = 1

If queryStatus is zero, the file cannot be accessed with IDL. If queryStatus is one, the
file can be accessed. Because the query was successful, the info variable is now an
IDL structure containing image parameters. The tags associated with this structure
variable are standard across image files. You can view the tags of this structure by
setting the STRUCTURE keyword to the HELP command with the info variable as
its argument:

HELP, info, /STRUCTURE
Using IDL Returning Image File Information

176 Chapter 7: Getting Information About Files and Data

using.book Page 176 Tuesday, June 14, 2005 11:12 AM
IDL displays the following text in the Output Log:

** Structure <1407e70>, 7 tags, length=36, refs=1:
 CHANNELS LONG 1
 DIMENSIONS LONG Array[2]
 HAS_PALETTE INT 1
 IMAGE_INDEX LONG 0
 NUM_IMAGES LONG 1
 PIXEL_TYPE INT 1
 TYPE STRING 'PNG'

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:

• 1 – two-dimensional array

• 3 – three-dimensional array

Print the number of dimensions using:

PRINT, 'Number of Channels: ', info.channels

For the mineral.png file, IDL prints:

Number of Channels: 1

DIMENSIONS Contains image array information including the width and
height. Print the image dimensions using:

PRINT, 'Size: ', info.dimensions

For the mineral.png file, IDL prints:

Size: 288 216

HAS_PALETTE Describes the presence or absence of a color palette:

• 1 (True) – the image has an associated palette

• 0 (False) – the image does not have an associated palette

Print whether a palette is present or not using:

PRINT, 'Is Palette Available?: ', info.has_palette

For the mineral.png file, IDL prints:

Is Palette Available?: 1

Table 7-1: Image Structure Tag Information
Returning Image File Information Using IDL

Chapter 7: Getting Information About Files and Data 177

using.book Page 177 Tuesday, June 14, 2005 11:12 AM
IMAGE_INDEX Gives the zero-based index number of the current image. Print
the index of the image using:

PRINT, 'Image Index: ', info.image_index

For the mineral.png file, IDL prints:

Image Index: 0

NUM_IMAGES Provides the number of images in the file. Print the number of
images in the file using:

PRINT, 'Number of Images: ', info.num_images

For the mineral.png file, IDL prints:

Number of Images: 1

PIXEL_TYPE Provides the IDL type code for the image pixel data type:

• 0 – Undefined

• 1 – Byte

• 2 – Integer

• 3 – Longword integer

• 4 – Floating point

• 5 – Double-precision floating

• 6 – Complex floating

• 9 – Double-precision complex

• 12 – Unsigned Integer

• 13 – Unsigned Longword Integer

• 14 – 64-bit Integer

• 15 – Unsigned 64-bit Integer

See “IDL Type Codes and Names” under the SIZE function in
the IDL Reference Guide for a complete list of type codes.

Print the data type of the pixels in the image using:

PRINT, 'Data Type: ', info.pixel_type

For the mineral.png file, IDL displays the following text in
the Output Log:

Data Type: 1

Tag Description

Table 7-1: Image Structure Tag Information (Continued)
Using IDL Returning Image File Information

178 Chapter 7: Getting Information About Files and Data

using.book Page 178 Tuesday, June 14, 2005 11:12 AM
From the contents of the info variable, it can be determined that the single image
within the mineral.png file is an indexed image because it has only one channel (is
a two-dimensional array) and it has a color palette. The image also has byte pixel
data.

Note
When working with RBG images (with a CHANNELS value of 3) it is important to
determine the interleaving (the arrangement of the red, green, and blue channels of
data) in order to properly display these image. See “RGB Image Interleaving” in
Chapter 8 of the Using IDL manual for an example that shows you how to
determine the arrangement of these channels.

Using Specific QUERY_* Routines

All of the QUERY_* routines return a status, which determines if the file can be read
using the corresponding READ_ routine. All of these routines also return the Info
structure, (described in the previous section), which reports image dimensions,
number of samples per pixel, pixel type, palette info, and the number of images in the
file. However, some of the QUERY_* routines (such as QUERY_MRSID and
QUERY_TIFF) return more detailed information particular to that specific image
format. See “Query Routines” in the IDL Quick Reference manual for a complete list
of the available QUERY_* routines.

TYPE Identifies the image file format. Print the format of the file
containing the image using:

PRINT, 'File Type: ' + info.type

For the mineral.png file, IDL prints:

File Type: PNG

Tag Description

Table 7-1: Image Structure Tag Information (Continued)
Returning Image File Information Using IDL

Chapter 7: Getting Information About Files and Data 179

using.book Page 179 Tuesday, June 14, 2005 11:12 AM
Returning Type and Size Information

The SIZE function returns size and type information for a given expression. The
returned vector is always of longword type.

• The first element is equal to the number of dimensions of the parameter and is
zero if the parameter is a scalar.

• The next elements contain the size of each dimension.

• After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively.

See “IDL Type Codes and Names” under the SIZE function in the IDL Reference
Guide for a complete list of type codes. See the following examples for more
information on the SIZE function:

• “Determining if a Variable is a Scalar or an Array” below

• “Using SIZE to Return Image Dimensions” on page 180

In addition to the examples listed above, also see the following SIZE function
examples in the IDL Reference Guide:

• “Example: Returning Array Dimension Information”

• “Example: Returning the IDL Type Code of an Expression”

Determining if a Variable is a Scalar or an Array

The SIZE function can be used to determine whether a variable holds a scalar value
or an array. Setting the DIMENSIONS keyword causes the SIZE function to return a
0 if the variable is a scalar, or the dimensions if the variable is an array:

A = 1
B = [1]
C = [1,2,3]
D = [[1,2],[3,4]]

PRINT, SIZE(A, /DIMENSIONS)
PRINT, SIZE(B, /DIMENSIONS)
PRINT, SIZE(C, /DIMENSIONS)
PRINT, SIZE(D, /DIMENSIONS)

IDL Prints:

0
1
3

Using IDL Returning Type and Size Information

180 Chapter 7: Getting Information About Files and Data

using.book Page 180 Tuesday, June 14, 2005 11:12 AM
2 2

Using SIZE to Return Image Dimensions

The following example reads an image array and uses the SIZE function
DIMENSIONS keyword to access the number of rows and columns in the image file.
In this simple example, the information is used to create a display window of the
correct size.

PRO ex_displayImage

; Select and read the image file.
earth = READ_PNG (FILEPATH ('avhrr.png', $

SUBDIRECTORY = ['examples', 'data']), R, G, B)

; Load the color table and designate white to occupy the
; final position in the red, green and blue bands.
TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Get the size of the original image array.
earthSize = SIZE(earth, /DIMENSIONS)

; Prepare a window and display the new image.
WINDOW, 0, XSIZE = earthSize[0], YSIZE = earthSize[1]
TV, earth

END
Returning Type and Size Information Using IDL

Chapter 7: Getting Information About Files and Data 181

using.book Page 181 Tuesday, June 14, 2005 11:12 AM
Getting Information About SAVE Files

The IDL_Savefile object provides an object-oriented interface that allows you to
query a SAVE file for information and restore one or more individual items from the
file. Using IDL_Savefile, you can retrieve information about the user, machine, and
system that created the SAVE file, as well as the number and size of the various items
contained in the file (variables, common blocks, routines, etc). Individual items can
be selectively restored from the SAVE file.

Use IDL_Savefile in preference to the RESTORE procedure when you need to obtain
detailed information on the items contained within a SAVE file without first restoring
it, or when you wish to restore only selected items. Use RESTORE when you want to
restore everything from the SAVE file using a simple interface.

Note
The IDL_Savefile object does not provide methods that allow you to modify an
existing SAVE file. The only way to modify an existing SAVE file is to restore its
contents into a fresh IDL session, modify the contained routines or variables as
necessary, and use the SAVE procedure to create a new version of the file.

To use the IDL_Savefile object to restore items from an existing SAVE file, do the
following:

• Create a Savefile Object

• Query the Savefile Object

• Restore Items from the Savefile Object

• Destroy the Savefile Object

The following sections describe each of these steps. For complete information on the
IDL_Savefile object and its methods, see “IDL_Savefile” in Chapter 9 of the IDL
Reference Guide manual.

Create a Savefile Object

When an IDL_Savefile object is instantiated, it opens the actual SAVE file for
reading and creates an in-memory representation of its contents — without actually
restoring the file. The savefile object persists until it is explicitly destroyed (or until
the IDL session ends); the SAVE file itself is held open for reading as long as the
savefile object exists.
Using IDL Getting Information About SAVE Files

182 Chapter 7: Getting Information About Files and Data

using.book Page 182 Tuesday, June 14, 2005 11:12 AM
To create a savefile object from the draw_arrow.sav file created in “Example: A
SAVE File of a Simple Routine” in Chapter 4 of the Building IDL Applications
manual, use the following command:

myRoutines = OBJ_NEW('IDL_Savefile', 'draw_arrow.sav')

Similarly, to create a savefile object from the saved image data, use the following
command:

myImage = OBJ_NEW('IDL_Savefile', 'imagefile.sav')

Query the Savefile Object

Once you have created a savefile object, three methods allow you to retrieve
information about its contents:

• The Contents method provides information about the SAVE file including the
number and type of items contained therein.

• The Names method allows you to retrieve the names of routines and variables
stored in the file.

• The Size method allows you to retrieve size and type information about the
variables stored in the file.

Contents Method

The Contents method returns a structure variable that describes the SAVE file and its
contents. The individual fields in the returned structure are described in detail in
“IDL_Savefile::Contents” in Chapter 9 of the IDL Reference Guide manual.

In addition to providing information about the system that created the SAVE file, the
Contents method allows you to determine the number of each type of saved item
(variable, procedure, function, etc.) in the file. This information can be used to
programmatically restore items from the SAVE file.

Assuming you have created the myRoutines savefile object, the data returned by the
Contents method looks like this:

savefileInfo = myRoutines->Contents()
HELP, savefileInfo, /STRUCTURE

IDL Prints:

** Structure IDL_SAVEFILE_CONTENTS, 17 tags, length=176, data leng
th=172:

FILENAME STRING '/rsi/test/draw_arrow.sav'
DESCRIPTION STRING ''
FILETYPE STRING 'Portable (XDR)'
Getting Information About SAVE Files Using IDL

Chapter 7: Getting Information About Files and Data 183

using.book Page 183 Tuesday, June 14, 2005 11:12 AM
USER STRING 'dquixote'
HOST STRING 'DULCINEA'
DATE STRING 'Thu May 08 12:04:46 2003'
ARCH STRING 'x86'
OS STRING 'Win32'
RELEASE STRING '6.2'
N_COMMON LONG64 0
N_VAR LONG64 0
N_SYSVAR LONG64 0
N_PROCEDURE LONG64 2
N_FUNCTION LONG64 0
N_OBJECT_HEAPVAR LONG64 0
N_POINTER_HEAPVAR LONG64 0
N_STRUCTDEF LONG64 0

From this you can determine the name of the SAVE file from which the information
was extracted, the names of the user and computer who created the file, the creation
date, and information about the IDL system that created the file. You can also see that
the SAVE file contains definitions for two procedures and nothing else.

Names Method

The Names method returns a string array containing the names of the variables,
procedures, functions, or other items contained in the SAVE file. By default, the
method returns the names of variables; keywords allow you to specify that names of
other items should be retrieved. The available keyword options are described in
“IDL_Savefile::Names” in Chapter 9 of the IDL Reference Guide manual.

The names of items retrieved using the Names method can be supplied to the Size
method to retrieve size and type information about the specific items, or to the
Restore method to restore individual items.

For example, calling the Names method with the PROCEDURE keyword on the
myRoutines savefile object yields the names of the two procedures saved in the file:

PRINT, myRoutines->Names(/PROCEDURE)

IDL Prints:

ARROW DRAW_ARROW

Similarly, to retrieve the name of the variable saved in imagefile.sav, which is
referred to by the myImage savefile object:

PRINT, myImage->Names()

IDL Prints:

IMAGE
Using IDL Getting Information About SAVE Files

184 Chapter 7: Getting Information About Files and Data

using.book Page 184 Tuesday, June 14, 2005 11:12 AM
Size Method

The Size method returns the same information about a variable stored in a SAVE file
as the SIZE function does about a regular IDL variable. It accepts the same keywords
as the SIZE function, and returns the same information using the same formats. The
Size method differs only in that the argument is a string or integer identifier string
(returned by the Names method) that specifies an item within a SAVE file, rather
than an in-memory expression. See “IDL_Savefile::Size” in Chapter 9 of the IDL
Reference Guide manual for additional details.

For example, to determine the dimensions of the image stored in the
imagefile.sav file, do the following:

imagesize = myImage->Size('image', /DIMENSIONS)
PRINT, 'Image X size:', imagesize[0]
PRINT, 'Image Y size:', imagesize[1]

IDL Prints:

Image X size: 256
Image Y size: 256

Restore Items from the Savefile Object

The Restore method allows you to selectively restore one or more items from the
SAVE file associated with a savefile object. Items to be restored are specified using
the item name strings returned by the Names method. In addition to functions,
procedures, and variables, you can also restore COMMON block definitions,
structure definitions, and heap variables. See “IDL_Savefile::Restore” in Chapter 9 of
the IDL Reference Guide manual for additional details.

For example, to restore the DRAW_ARROW procedure without restoring the
ARROW procedure, do the following:

myRoutines->Restore, 'draw_arrow'

Note on Restoring Objects and Pointers

Object references and pointers rely on special IDL variables called heap variables.
When you restore a regular IDL variable that contains an object reference or a
pointer, the associated heap variable is restored automatically; there is no need to
restore the heap variables separately. It is, however, possible to restore the heap
variables independently of any regular IDL variables; see “Restoring Heap Variables
Directly” in Chapter 9 of the IDL Reference Guide manual for complete details.
Getting Information About SAVE Files Using IDL

Chapter 7: Getting Information About Files and Data 185

using.book Page 185 Tuesday, June 14, 2005 11:12 AM
Destroy the Savefile Object

To destroy a savefile object, use the OBJ_DESTROY procedure:

OBJ_DESTROY, myRoutines
OBJ_DESTROY, myImage

Destroying the savefile object will close the SAVE file with which the object is
associated.
Using IDL Getting Information About SAVE Files

186 Chapter 7: Getting Information About Files and Data

using.book Page 186 Tuesday, June 14, 2005 11:12 AM
Returning Object Type and Validity

Three IDL routines allow you to obtain information about an existing object:
OBJ_CLASS, OBJ_ISA, and OBJ_VALID.

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified object’s direct superclasses. For example, if we create
the following class structures:

struct = {class1, data1:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERITS class1 }

We can now create an object and use OBJ_CLASS to determine its class and
superclass membership.

; Create an object.
A = OBJ_NEW('class2')

; Print A’s class membership.
PRINT, OBJ_CLASS(A)

IDL prints:

CLASS2

Or you can print as superclasses:

; Print A’s superclasses.
PRINT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1

See “OBJ_CLASS” in the IDL Reference Guide manual for further details.

OBJ_ISA

Use the OBJ_ISA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_ISA(A, 'class2') THEN $
PRINT, 'A is an instance of class2.'

IDL prints:

A is an instance of class2.

See “OBJ_ISA” in the IDL Reference Guide manual for further details.
Returning Object Type and Validity Using IDL

Chapter 7: Getting Information About Files and Data 187

using.book Page 187 Tuesday, June 14, 2005 11:12 AM
OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference as its argument, OBJ_VALID returns TRUE (1) if the reference refers to a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ_VALID returns an array of TRUE and FALSE values
corresponding to the input array. For example:

; Create a class structure.
struct = {cname, data:0.0}

; Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A refers to a valid object.

If we destroy the object:

; Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A does not refer to a valid object.

See “OBJ_VALID” in the IDL Reference Guide manual for further details.
Using IDL Returning Object Type and Validity

188 Chapter 7: Getting Information About Files and Data

using.book Page 188 Tuesday, June 14, 2005 11:12 AM
Returning Information About a File

You can use the FILE_INFO function to retrieve information about a file that is not
currently open. To get information about an open file (for which there is an IDL
Logical Unit Number), use the HELP procedure or the FSTAT function. See
“Returning Information About a File Unit” in Chapter 18 of the Building IDL
Applications manual.

The FILE_INFO function returns a structure expression of type FILE_INFO
containing information about the file. For example, get information on dist.pro:

HELP,/STRUCTURE, FILE_INFO(FILEPATH('dist.pro',
SUBDIRECTORY='lib'))

The above command will produce output similar to:

** Structure FILE_INFO, 21 tags, length=72:
 NAME STRING '/usr/local/rsi/idl/lib/dist.pro'
 EXISTS BYTE 1
 READ BYTE 1
 WRITE BYTE 0
 EXECUTE BYTE 0
 REGULAR BYTE 1
 DIRECTORY BYTE 0
 BLOCK_SPECIAL BYTE 0
 CHARACTER_SPECIAL
 BYTE 0
 NAMED_PIPE BYTE 0
 SETGID BYTE 0
 SETUID BYTE 0
 SOCKET BYTE 0
 STICKY_BIT BYTE 0
 SYMLINK BYTE 0
 DANGLING_SYMLINK
 BYTE 0
 MODE LONG 420
 ATIME LONG64 970241431
 CTIME LONG64 970241595
 MTIME LONG64 969980845
 SIZE LONG64 1717

The fields of the FILE_INFO structure provide various information about the file,
such as the size of the file, and the dates of last access, creation, and last modification.
For more information on the fields of the FILE_INFO structure, see “FILE_INFO” in
the IDL Reference Guide manual. See “FILE_LINES” in the IDL Reference Guide
manual for information on how to retrieve the number of lines of text in a file.
Returning Information About a File Using IDL

using.book Page 189 Tuesday, June 14, 2005 11:12 AM
Chapter 8

Graphic Display
Essentials
The following topics are covered in this chapter:
IDL Visual Display Systems 190
IDL Coordinate Systems 193
Coordinates of 3-D Graphics 195
Coordinate Conversions 198
Interpolation Methods 201
Polygon Shading Method 203
Color Systems . 204

Display Device Color Schemes 207
Colors and IDL Graphic Systems 209
Indexed and RGB Image Organization . . 213
Loading a Default Color Table 218
Using Fonts in Graphic Displays 221
Printing Graphics 222
Using IDL 189

190 Chapter 8: Graphic Display Essentials

using.book Page 190 Tuesday, June 14, 2005 11:12 AM
IDL Visual Display Systems

When creating visualizations in IDL, you can choose to create a visualization in an
IDL Intelligent Tool (iTool), in an Object Graphics display, or in a Direct Graphics
display:

• iTools — introduced in IDL 6.0, the IDL Intelligent Tools (iTools) provide the
power and flexibility of Object Graphics with a pre-built visualization system
that offers a great deal of interactivity. This set of interactive utilities combine
data analysis and visualization with the task of producing presentation quality
graphics. See “iTools Visualizations” below for more information.

• Object Graphics — introduced in IDL 5.0, Object Graphics use an object-
oriented programmers’ interface to create graphic objects, which must then be
drawn, explicitly, to a destination of the programmer’s choosing. See “IDL
Object Graphics” on page 191 for more information.

• Direct Graphics — the oldest visualization system of the three, Direct
Graphics rely on the concept of a current graphics device to quickly create
simple static visualizations using IDL commands like PLOT or SURFACE.
See “IDL Direct Graphics” on page 192 for information.

This chapter introduces the IDL display systems and provides information on
common topics shared by the systems. Topics include a discussion on coordinates,
coordinate conversion, interpolation, color systems and color schemes, and fonts.

iTools Visualizations

The new IDL Intelligent Tools (iTools) are a set of interactive utilities that combine
data analysis and visualization with the task of producing presentation quality
graphics. Based on the IDL Object Graphics system, the iTools are designed to help
you get the most out of your data with minimal effort. They allow you to continue to
benefit from the control of a programming language, while enjoying the convenience
of a point-and-click environment.

The main enhancements the new iTools provide are more mouse interactivity,
WYSIWYG (What-You-See-Is-What-You-Get) printing, built-in analysis, undo-redo
capabilities, layout control, and better-looking plots. These robust, pre-built tools
reduce the amount of programming IDL users must do to create interactive
visualizations. At the same time, the iTools integrate in a seamless manner with the
IDL Command Line, user interface controls, and custom algorithms. In this way, the
iTools maintain and enhance the control and flexibility IDL users rely on for data
IDL Visual Display Systems Using IDL

Chapter 8: Graphic Display Essentials 191

using.book Page 191 Tuesday, June 14, 2005 11:12 AM
exploration, algorithm design, and rapid application development. The following
manuals provide more information:

• iTool User’s Guide — describes how to create visualization using iTools

• iTool Developer’s Guide — describes how to create and customize an iTool

IDL Object Graphics

The salient features of Object Graphics are:

• Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

• Object graphics are object-oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to a window on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

• Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including calculation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As a result, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogous
image in Direct Graphics.

• Object Graphics use a programmer’s interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programs that are compiled and run. While
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

• Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.
Using IDL IDL Visual Display Systems

192 Chapter 8: Graphic Display Essentials

using.book Page 192 Tuesday, June 14, 2005 11:12 AM
For more information on creating Object Graphic visualizations see:

• Object Programming — this manual introduces using IDL objects and also
describes how to create custom objects in IDL.

• “Object Class and Method Reference” in the IDL Reference Guide manual —
this section in the IDL Reference Guide provides complete reference material
describing IDL’s object classes

• iTool User’s Guide and iTool Developer’s Guide — these manuals provide
complete details about using and creating object-based iTool displays

IDL Direct Graphics

IDL Direct Graphics is the original graphics rendering system introduced in IDL.
Graphic displays creating using Direct Graphics are static — once created, no
changes can be made without recreating the visualization being displayed. If you
have used routines such as PLOT or SURFACE, you are already familiar with this
graphics system. The salient features of Direct Graphics are:

• Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

• IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly
on the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

• When you add a new item to an existing direct-mode graphic (using a routine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

See “Direct Graphics” in the IDL Quick Reference manual for a list of available
routines.
IDL Visual Display Systems Using IDL

Chapter 8: Graphic Display Essentials 193

using.book Page 193 Tuesday, June 14, 2005 11:12 AM
IDL Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bounded
by the plot axes, with a range identical to the range of the plotted data. The system
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic.
The mechanisms of converting from one coordinate system to another are described
below.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner
to (Vx –1, Vy –1) at the upper-right corner. Vx and Vy are the number of columns and
rows addressed by the device. These numbers are stored in the system variable !D as
!D.X_SIZE and !D.Y_SIZE. In a widget base, device coordinates are measures from
the upper-left corner

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the
three axes.

Almost all of the IDL graphics procedures accept parameters in any of these
coordinate systems. Most procedures use the data coordinate system by default.
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be used
by including one of the keyword parameters /DATA, /DEVICE, or /NORMAL in the
call.

Understanding Windows and Related Device
Coordinates

Images are displayed within a window (Direct Graphics) or within an instance of a
window object (Object Graphics). In Direct Graphics, the WINDOW procedure is
used to initialize the coordinates system for the image display. In Object Graphics,
Using IDL IDL Coordinate Systems

194 Chapter 8: Graphic Display Essentials

using.book Page 194 Tuesday, June 14, 2005 11:12 AM
the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the
coordinate system for the image display.

A coordinate system determines how and where the image appears within the
window. You can specify coordinates to IDL using one of the following coordinate
systems:

• Data Coordinates — This system usually spans the window with a range
identical to the range of the data. The system can have two or three dimensions
and can be linear, logarithmic, or semi-logarithmic.

• Device Coordinates — This coordinate system is the physical coordinate
system of the selected device. Device coordinates are integers, ranging from
(0, 0) at the bottom-left corner to (Vx –1, Vy –1) at the upper-right corner of the
display. Vx and Vy are the number of columns and rows of the device (a display
window for example).

Note
For images, the data coordinates are the same as the device coordinates. The
device coordinates of an image are directly related to the pixel locations
within an image. Unless otherwise specified, IDL draws each image pixel per
each device pixel.

• Normal Coordinates — The normalized coordinate system ranges from zero to
one over columns and rows of the device.
IDL Coordinate Systems Using IDL

Chapter 8: Graphic Display Essentials 195

using.book Page 195 Tuesday, June 14, 2005 11:12 AM
Coordinates of 3-D Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These
vectors are translated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (Foley, J.D., and A. Van Dam (1982),
Fundamentals of Interactive Computer Graphics, Addison-Wesley Publishing Co.).
The reader is urged to consult this book for a detailed description of homogeneous
coordinates and transformation matrices since this section presents only an overview.
Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector
of three coordinates and a scale factor w ¼¼≠ 0. For example:

P(wx, wy, wz, w) ≡ P(x/w, y/w, z/w, 1) ≡ (x, y, z)

One advantage of this approach is that translation, which normally must be expressed
as an addition, can be represented as a matrix multiplication. Another advantage is
that homogeneous coordinate representations simplify perspective transformations.
The notion of rows and columns used by IDL is opposite that of Foley and Van Dam
(1982). In IDL, the column subscript is first, while in Foley and Van Dam (1982) the
row subscript is first. This changes all row vectors to column vectors and transposes
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin, a positive rotation is counterclockwise. As usual, the x-axis runs across the
display, the y-axis is vertical, and the positive z-axis extends out from the display to
the viewer. For example, a 90-degree positive rotation about the z-axis transforms the
x-axis to the y-axis.

Transformation Matrices

Transformation matrices, which post-multiply a point vector to produce a new point
vector, must be (4, 4). A series of transformation matrices can be concatenated into a
single matrix by multiplication. If A1, A2, and A3 are transformation matrices to be
Using IDL Coordinates of 3-D Graphics

196 Chapter 8: Graphic Display Essentials

using.book Page 196 Tuesday, June 14, 2005 11:12 AM
applied in order, and the matrix A is the product of the three matrices, the following
applies.

((P • A1) • A2) • A3 ≡ P • ((A1 • A2) • A3) = P • A

In Object Graphics, IDL the model object that contains the displayed object stores the
transformation matrix. In Direct Graphics, IDL stores the concatenated
transformation matrix in the system variable field !P.T.

Note
When displaying objects in a three-dimensional view, you can precisely configure
the object position using transformation matrices. See “Translating, Rotating and
Scaling Objects” in Chapter 3 of the Object Programming manual for details.

Note
For most Direct Graphic applications, it is not necessary to create, manipulate, or to
even understand transformation matrices. See the T3D procedure, which
implements most of the common transformations.

Each of the operations of translation, scaling, rotation, and shearing can be
represented by a transformation matrix.

Translation

The transformation matrix to translate a point by (Dx, Dy, Dz) is shown below.

Scaling

Scaling by factors of Sx, Sy, and Sz about the x-, y-, and z-axes respectively, is
represented by the matrix below.
Coordinates of 3-D Graphics Using IDL

Chapter 8: Graphic Display Essentials 197

using.book Page 197 Tuesday, June 14, 2005 11:12 AM
Rotation

Rotation about the x-, y-, and z-axes is represented respectively by the following three
matrices:
Using IDL Coordinates of 3-D Graphics

198 Chapter 8: Graphic Display Essentials

using.book Page 198 Tuesday, June 14, 2005 11:12 AM
Coordinate Conversions

Depending upon the data and type of visualization, you may want to convert between
normalized, data or device coordinates (described in “IDL Coordinate Systems” on
page 193). This section details two-dimensional and three-dimensional coordinate
system characteristics provides resources for various coordinate conversions. See the
following for details:

• “Two-Dimensional Coordinate Conversion” on page 198

• “Three-Dimensional Coordinate Conversion” on page 199

• “Using Coordinate Conversions” on page 199

Two-Dimensional Coordinate Conversion

This section describes the formulae for conversions to and from each coordinate
system. In the following discussion, Dx is a data coordinate, Nx is a normalized
coordinate, and Rx is a raw device coordinate. Let Vx and Vy represent the size of the
visible area of the currently selected display or drawing surface.

The field S is a two-element array of scaling factors used to convert X coordinates
from data units to normalized units. S contains the parameters of the linear equation,
converting data coordinates to normalized coordinates. S[0] is the intercept, and S[1]
is the slope. Also, let Dx be the data coordinate, Nx the normalized coordinate, Rx the
device coordinate, Vx the device X size (in device coordinates).

With the above variables defined, the linear two-dimensional coordinate conversions
for the x coordinate can be written as follows:

Coordinate
Conversion

Linear Logarithmic

Data to normal

Data to device

Normal to device

Normal to data

Device to data

Device to normal

Table 8-1: Equations for X-axis Coordinate Conversion

Nx S0 S1Dx+= Nx S0 S1 Dxlog+=

Rx Vx S S1Dx+()= Rx Vx S0 S1 Dxlog+()=

Rx NxVx= Rx NxVx=

Dx Nx S0–() S1⁄= Dx 10 Nx S0–() S1⁄=

Dx Rx Vx⁄ S0–() S1⁄= Dx 10 Rx Vx⁄ S0–() S1⁄=

Nx Rx Vx⁄= Nx Rx Vx⁄=
Coordinate Conversions Using IDL

Chapter 8: Graphic Display Essentials 199

using.book Page 199 Tuesday, June 14, 2005 11:12 AM
The y- and z-axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and that logarithmic z-axes are not
permitted.

This coordinate conversion functionality is built into object graphics through the
XCOORD_CONVERT and YCOORD_CONVERT properties or each type of
visualization object. If you are working with a Direct Graphics display, you can use
the CONVERT_COORD function.

Three-Dimensional Coordinate Conversion

To convert from a three-dimensional coordinate to a two-dimensional coordinate,
IDL follows these steps:

• Data coordinates are converted to three-dimensional normalized coordinates.
To convert the x coordinate from data to normalized coordinates, use the
formula Nx = X0 + X1Dx. The same process is used to convert the y and z
coordinates using !Y.S and !Z.S.

• The three-dimensional normalized coordinate, P = (Nx, Ny, Nz), whose
homogeneous representation is (Nx, Ny, Nz, 1), is multiplied by the
concatenated transformation matrix !P.T:

P′ = P • !P.T

• The vector P′ is scaled by dividing by w, and the normalized two-dimensional
coordinates are extracted:

N′x = P′x/P′w and N′y = P′y/P′w
• The normalized xy coordinate is converted to device coordinates as described

in “Two-Dimensional Coordinate Conversion” on page 198.

Using Coordinate Conversions

How coordinate conversions are defined depend upon the display type as follows:

• iTools — in an iTool display, the interactive nature of the tool makes
coordinate conversions transparent. There is no need to programmatically
configure the transformation matrices of the objects. See Chapter 4,
“Manipulating the Display” in the iTool User’s Guide manual for information
on zooming, scaling and translation.

• Object Graphics — converting an object’s data coordinates into normalized
coordinates for display is a common task. See “Positioning Visualizations in a
View” in Chapter 3 of the Object Programming manual for details on the
Using IDL Coordinate Conversions

200 Chapter 8: Graphic Display Essentials

using.book Page 200 Tuesday, June 14, 2005 11:12 AM
elements involved in defining an object’s position. Chapter 3, “Positioning
Objects in a View” in the Object Programming manual also includes
information on how to use coordinate conversions (see “Converting Data to
Normal Coordinates”) and information on programmatically defining the
object’s placement in a view (see “Translating, Rotating and Scaling Objects”).

• Direct Graphics — the IDL Direct Graphics system automatically positions
and sizes static visualizations so there is no need to set up a transformation
matrix. However, you can convert between the supported coordinate systems.
See “CONVERT_COORD” in the IDL Reference Guide manual for
information on this conversion in Direct Graphics.
Coordinate Conversions Using IDL

Chapter 8: Graphic Display Essentials 201

using.book Page 201 Tuesday, June 14, 2005 11:12 AM
Interpolation Methods

When a visualization undergoes a geometric transformation, the location of each
transformed pixel may not map directly to a center of a pixel location in the output
visualization as shown in the following figure.

When the transformed pixel center does not directly coincide with a pixel in the
output visualization, the pixel value must be determined using some form of
interpolation. The appearance and quality of the output image is determined by the
amount of error created by the chosen interpolation method. Note the differences in
the line edges between the following two interpolated images.

Figure 8-1: Original Pixel Center Locations (Left) and Rotated Pixel Center
Locations (Right)

Figure 8-2: Simple Examples of Image Interpolation

Original Image Nearest Neighbor Bilinear Interpolation
Using IDL Interpolation Methods

202 Chapter 8: Graphic Display Essentials

using.book Page 202 Tuesday, June 14, 2005 11:12 AM
There are a variety of possible interpolation methods available when using geometric
transforms in IDL. Interpolation methods include:

Nearest-neighbor interpolation — Assigns the value of the nearest pixel to
the pixel in the output visualization. This is the fastest interpolation method but
the resulting image may contain jagged edges.

Linear interpolation — Surveys the 2 closest pixels, drawing a line between
them and designating a value along that line as the output pixel value.

Bilinear interpolation — Surveys the 4 closest pixels, creates a weighted
average based on the nearness and brightness of the surveyed pixels and
assigns that value to the pixel in the output image.

Use cubic convolution if a higher degree of accuracy is needed. However, with
still images, the difference between images interpolated with bilinear and
cubic convolution methods is usually undetectable.

Trilinear interpolation — Surveys the 8 nearest pixels occurring along the
x, y, and z dimensions, creates a weighted average based on the nearness and
brightness of the surveyed pixels and assigns that value to the pixel in the
output image.

Cubic Convolution interpolation — Approximates a sinc interpolation by
using cubic polynomial waveforms instead of linear waveforms when
resampling a pixel. With a one-dimension source, this method surveys 4
neighboring pixels. With a two-dimension source, the method surveys 16
pixels. Interpolation of three-dimension sources is not supported. This
interpolation method results in the least amount of error, thus preserving the
highest amount of fine detail in the output image. However, cubic interpolation
requires more processing time.

Note
The IDL Reference Guide details the interpolation options available for each
geometric transformation function.
Interpolation Methods Using IDL

Chapter 8: Graphic Display Essentials 203

using.book Page 203 Tuesday, June 14, 2005 11:12 AM
Polygon Shading Method

The shading applied to each polygon, defined by its four surrounding elevations, can
be either constant over the entire cell or interpolated. Constant shading takes less time
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolation is
used: the shade values are computed at each elevation point, coinciding with each
polygon vertex. The shading is then interpolated along each edge, finally, between
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Foley and Van Dam, Chapter 19 (Foley,
J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer Graphics,
Addison-Wesley Publishing Co.):

I = Ia + dIp(L • N)

where

In Direct Graphics, the SET_SHADING method modifies the light source shading
parameters. In Object Graphics similar OpenGL functionality is available through the
SHADING property of objects such as IDLgrPolygon, IDLgrPolyline, IDLSurface
and IDLgrContour.

Ia Term due to ambient light. All visible objects have at least this
intensity, which is approximately 20 percent of the maximum
intensity.

Ip(L • N) Term due to diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vector N and the vector pointing to the light source, L.
Ip is approximately 0.9.

d Term for depth cueing, causing surfaces further away from the
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.
Using IDL Polygon Shading Method

204 Chapter 8: Graphic Display Essentials

using.book Page 204 Tuesday, June 14, 2005 11:12 AM
Color Systems

Color can play a critical role in the display and perception of digital imagery. This
section provides a basic overview of color systems, display devices, image types, and
the interaction of these elements within IDL. The remainder of the chapter builds
upon these fundamental concepts by describing how to load and modify color tables,
convert between image types, utilize color tables to highlight features, and apply
color annotations to images.

Color Schemes

Color can be encoded using a number of different schemes. Many of these schemes
utilize a color triple to represent a location within a three-dimensional color space.
Examples of these systems include RGB (red, green, and blue), HSV (hue, saturation,
and value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and
yellow). Algorithms exist to convert colors from one system to another.

Computer display devices typically rely on the RGB color system. In IDL, the RGB
color space is represented as a three-dimensional Cartesian coordinate system, with
the axes corresponding to the red, green, and blue contributions, respectively. Each
axis ranges in value from 0 (no contribution) to 255 (full contribution). By design,
this range from 0 to 255 maps nicely to the full range of a byte data type.

An individual color is encoded as a coordinate within this RGB space. Thus, a color
consists of three elements: a red value, a green value, and a blue value.

The following figure shows that each displayable color corresponds to a location
within a three-dimensional color cube. The origin, (0, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) is white, representing an
additive mixture of the full intensity of each of the three colors. Points along the main
diagonal - where intensities of each of the three primary colors are equal - are shades
Color Systems Using IDL

Chapter 8: Graphic Display Essentials 205

using.book Page 205 Tuesday, June 14, 2005 11:12 AM
of gray. The color yellow is represented by the coordinate (255, 255, 0), or a mixture
of 100% red, plus 100% green, and no blue.

Typically, digital display devices represent each component of an RGB color
coordinate as an n-bit integer in the range of 0 to 2n –1. Each displayable color is an
RGB coordinate triple of n-bit numbers yielding a palette containing 23n total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the
total palette contains 224 or 16,777,216 colors.

A display with an m-bit pixel can represent 2m colors simultaneously, given enough
pixels. In the case of 8-bit colors, 24-bit pixels are required to represent all colors.
The more common case is a display with 8 bits per pixel which allows the display of
28 = 256 colors selected from the much larger palette.

If there are not enough bits in a pixel to represent all colors, m < 23n, a color
translation table is used to associate the value of a pixel with a color triple. This table
is an array of color triples with an element for each possible pixel value. Given 8-bit
pixels, a color table containing 28 = 256 elements is required. The color table element
with an index of i specifies the color for pixels with a value of i.

To summarize, given a display with an n-bit color representation and an m-bit pixel,
the color translation table, C, is a 2m long array of RGB triples:

Ci = {ri, gi, bi}, 0 ≤ i < 2m

0 ≤ ri, gi, bi < 2n

Objects containing a value, or color index, of i are displayed with a color of Ci.

Figure 8-3: RGB Color Cube (Note: grays are on the main diagonal.)
Using IDL Color Systems

206 Chapter 8: Graphic Display Essentials

using.book Page 206 Tuesday, June 14, 2005 11:12 AM
See “Color Table Manipulation” in the IDL Quick Reference manual for a list of
color-related routines including those that covert RGB color triples to other color
schemes.

Converting to Other Color Systems

IDL defaults to the RGB color system, but if you are more accustomed to other color
systems, IDL is not restricted to working with only the RGB color system. You can
also use either the HSV (hue, saturation, and value) system or the HLS (hue,
lightness, and saturation) system. The HSV or HLS system can be specified by
setting the appropriate keyword (for example /HSV or /HLS) when using IDL color
routines.

IDL also contains routines to create color tables based on these color systems. The
HSV routine creates a color table based on the Hue, Saturation, and Value (HSV)
color system. The HLS routine creates a color table based on the Hue, Lightness,
Saturation (HLS) color system. You can also convert values of a color from any of
these systems to another with the COLOR_CONVERT routine. See
COLOR_CONVERT in the IDL Reference Guide for more information.
Color Systems Using IDL

Chapter 8: Graphic Display Essentials 207

using.book Page 207 Tuesday, June 14, 2005 11:12 AM
Display Device Color Schemes

Most modern computer monitors use one of two basic schemes for displaying color at
each pixel:

• Indexed - A color is specified using an index into a hardware color lookup
table (or palette). Each entry of the color lookup table corresponds to an
individual color, and consists of a red value, a green value, and a blue value.
The size of the lookup table depends upon the hardware.

• RGB - A color is specified using an RGB triple: [red, green, blue]. The
number of bits used to represent each of the red, green, and blue components
depends upon the hardware.

The description of how color is to be interpreted on a given display device is referred
to as a visual. Each visual typically has a name that indicates how color is to be
represented. Two very common visual names are PseudoColor (which uses an
indexed color scheme) and TrueColor (which uses an RGB color scheme).

A visual also has a depth associated with it that describes how many bits are used to
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals)
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2n
total colors. Thus, an 8-bit PseudoColor visual can display 28 or 256 colors. A 24-bit
TrueColor visual can display 224 or 16,777,216 colors.

PseudoColor visuals rely heavily upon the display device’s hardware color table for
image display. If the color table is modified, all images being displayed using that
color table will automatically update to reflect the change.

TrueColor visuals do not typically use a color table. The red, green, and blue
components are provided directly.

Note
You can display TrueColor images on pseudo-color displays by using the
COLOR_QUAN function. This function creates a pseudo-color palette for
displaying the TrueColor image and then maps the TrueColor image to the new
palette. See COLOR_QUAN in the IDL Reference Guide for more information.

Setting a Visual on Unix Platforms

On Unix platforms, an application (such as IDL) may choose from among the set of
X visuals that are supported for the current display. Each visual is either grayscale or
color. Its corresponding color table may be either fixed (read-only), or it may be
changeable from within IDL (read-write). The color interpretation scheme is either
Using IDL Display Device Color Schemes

208 Chapter 8: Graphic Display Essentials

using.book Page 208 Tuesday, June 14, 2005 11:12 AM
indexed or RGB. The following table shows the supported visuals for a given display,
which may include any combination:

The most common of these is PseudoColor and TrueColor. Refer to the section
“Colors and IDL Graphic Systems” on page 209 to learn more about how IDL selects
a visual for image display.

To get the list of supported X visual classes on a given system, type the following
command at the Unix command line:

xdpyinfo

Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected via the system Control Panel. To open
the Control Panel, select the Settings → Control Panel item from the Start menu.
Click on the Display and then select the Settings tab. Alter the Color quality setting
to modify the visual before starting an IDL session. The following table shows three
visuals are supported (for the particular display configuration used in this example):

Visual Description

StaticGray grayscale, read-only, indexed

GrayScale grayscale, read-write, indexed

StaticColor color, read-only, indexed

PseudoColor color, read-write, indexed

TrueColor color, read-only, RGB

DirectColor color, read-write, RGB

Table 8-2: Visuals Supported in IDL on Unix Platforms

Visual Equivalence to Unix Visuals

256 Colors 8-bit PseudoColor

High Color (16 bit) 16-bit TrueColor

True Color (32 bit) 32-bit TrueColor

Table 8-3: Visuals Supported in IDL on Windows Platforms
Display Device Color Schemes Using IDL

Chapter 8: Graphic Display Essentials 209

using.book Page 209 Tuesday, June 14, 2005 11:12 AM
Colors and IDL Graphic Systems

IDL supports two graphics systems: Object Graphics and Direct Graphics. This
section provides detailed descriptions of how color is represented and interpreted in
the Direct Graphics system.

Using Color in Object Graphics

For complete details regarding color and Object Graphics, see “Color in Object
Graphics” in Chapter 2 of the Object Programming manual.

Using Color in Direct Graphics

More information on the following topics is available in “X Windows Visuals” in
Appendix A of the IDL Reference Guide manual.

Visuals on UNIX Platforms

When IDL creates its first Direct Graphics window, it must select a visual to be
associated with that window. By default, IDL selects an X Visual Class by requesting
(in order) from the following table until a supported visual is found, but a specific
visual can be explicitly requested at the beginning of an IDL session by setting the
appropriate keyword to the DEVICE procedure:

To request an 8-bit PseudoColor visual, the syntax would be:

DEVICE, PSEUDO_COLOR=8

Order Visual Depth Related Keyword

First TrueColor 24-bit (then 16-bit, then
15-bit)

TRUE_COLOR

Second PseudoColor 8-bit, then 4-bit PSEUDO_COLOR

Third DirectColor 24-bit DIRECT_COLOR

Fourth StaticColor 8-bit, then 4-bit STATIC_COLOR

Fifth GrayScale any depth GRAY_SCALE

Sixth StaticGray any depth STATIC_GRAY

Table 8-4: Order of Visuals and their Related DEVICE Keywords
Using IDL Colors and IDL Graphic Systems

210 Chapter 8: Graphic Display Essentials

using.book Page 210 Tuesday, June 14, 2005 11:12 AM
Another approach to setting the visual information is to include the idl.gr_visual
and idl.gr_depth resources in your .Xdefaults file.

A visual is selected once per IDL session (when the first graphic window is created).
Once selected, the same visual will be used for all Direct Graphics windows in that
IDL session.

Private versus Shared Colormaps

On UNIX platforms, when a window manager is started, it creates a default colormap
that can be shared among applications using the display. This is called the shared
colormap.

A given application may request to use its own colormap that is not shared with other
applications. This is called a private colormap.

IDL attempts, whenever possible, to get color table entries in the shared colormap. If
enough colors are not available in the shared colormap, a private colormap is used. If
an X Visual class and depth are specified and they do not match the default visual of
the screen (see xdpyinfo), a private colormap is used.

If a private colormap is used, then colormap flashing may occur when an IDL
window is made current (in which case, the colors of other applications on the
desktop may no longer appear as you would expect), or when an application using the
shared colormap is made current (in which case, the colors within the IDL graphics
window may no longer appear as you would expect). This flashing behavior is to be
expected. By design, the IDL graphics window has been assigned a dedicated color
table so that the full range of requested colors can be utilized for image display.

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system
setting. For more information, “Setting a Visual on Windows Platforms” on
page 208.

IDL Color Table

IDL maintains a single current color table for Direct Graphics. Refer to the sections
“Loading a Default Color Table” on page 218 and “Modifying and Converting Color
Tables” on page 219. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such as lines,
text annotations, etc.) are represented in one of two ways:
Colors and IDL Graphic Systems Using IDL

Chapter 8: Graphic Display Essentials 211

using.book Page 211 Tuesday, June 14, 2005 11:12 AM
• Indexed - each color is an index into the current IDL color table

• RGB - each color is a long integer that contains the red value in the first eight
bits, the green value in the next eight bits, and the blue value in the next eight
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (256^2)*blue

The RGB form is only supported on TrueColor display devices.

The DECOMPOSED keyword to the DEVICE procedure is used to notify IDL
whether color is to be interpreted as an index or as a composite RGB value. IDL then
maps any requested color to an encoding that is appropriate for the current display
device.

The foreground color (used for drawing) can be set by assigning a color value to the
!P.COLOR system variable field (or by setting the COLOR keyword on the
individual graphic routine).

If a color value is to be interpreted as an index, then inform IDL by setting the
DECOMPOSED keyword of the DEVICE routine to 0:

DEVICE, DECOMPOSED = 0

The foreground color can then be specified by setting !P.COLOR to an index into the
IDL color table. For example, if the foreground color is to be set to the RGB value
stored at entry 25 in the IDL color table, then use the following IDL command:

!P.COLOR = 25

If a color value is to be interpreted as a composite RGB value, then inform IDL by
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVICE, DECOMPOSED = 1

The foreground color can then be specified by setting !P.COLOR to a composite
RGB value. For example, if the foreground color is to be set to the color yellow,
[255,255,0], then use the following IDL command:

!P.COLOR = 255 + (256*255)

Image Colors

Color for image data is handled in a fashion similar to other graphic primitives,
except that some special cases apply based upon the organization of the image data
and the visual of the current display device.

If the image is organized as a:

• two-dimensional array -
Using IDL Colors and IDL Graphic Systems

212 Chapter 8: Graphic Display Essentials

using.book Page 212 Tuesday, June 14, 2005 11:12 AM
• If the display device is PseudoColor, then each pixel is interpreted as an
index into the IDL color table

• If the display device is TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 0, then each pixel value is interpreted as
an index into the IDL color table (thereby emulating a PseudoColor
display device).

• If the display device is TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 1, then each pixel value is interpreted as
the value to be copied to each of the red, green, and blue components of
the RGB color.

• RGB array - (Supported only for TrueColor display devices)

• Each pixel is interpreted as an RGB color composed of the three elements
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine
to convert it to an indexed form. Refer to the section “Converting Between Image
Types” on page 217.

The TV command can be used to display the image in IDL. For RGB images, the
TRUE keyword can be used to indicate which form of interleaving is used.
Colors and IDL Graphic Systems Using IDL

Chapter 8: Graphic Display Essentials 213

using.book Page 213 Tuesday, June 14, 2005 11:12 AM
Indexed and RGB Image Organization

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an
image is displayed depends upon its type. Binary images have only two values, zero
and one. Grayscale images represent intensities and use a normal grayscale color
table. Indexed images use an associated color table. RGB images contain their own
color information in layers known as bands or channels. Any of these images can be
displayed with iImage, Object Graphics, or Direct Graphics.

An image consists of a two-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of this form
are known as sampled or raster images, because they consist of a discrete grid of
samples. Such images come from many different sources and are a common form of
representing scientific and medical data.

Numerous standards have been developed over the years to describe how an image
can be stored within a file. However, once the image is loaded into memory, it
typically takes one of two forms: indexed or RGB. An indexed image is a two-
dimensional array, and is usually stored as byte data. A two-dimensional array of a
different data type can be made into an indexed image by scaling it to the range from
0 to 255 using the BYTSCL function. See the BYTSCL description in the IDL
Reference Guide for more information.

Image Orientation

The screen coordinate system for image displays puts the origin, (0, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize–1, ysize–1),
where xsize and ysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of
512 x 512, although other sizes may be used.

The system variable !ORDER controls the order in which the image is written to the
screen. Images are normally output with the first row at the bottom, i.e., in bottom-to-
top order, unless !ORDER is 1, in which case images are written on the screen from
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It
works in the same manner as !ORDER except that its effect only lasts for the duration
of the single call—the default reverts to that specified by !ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.
Using IDL Indexed and RGB Image Organization

214 Chapter 8: Graphic Display Essentials

using.book Page 214 Tuesday, June 14, 2005 11:12 AM
Indexed Images

An indexed image does not explicitly contain any color information. Its pixel values
represent indices into a color Look-Up Table (LUT). Colors are applied by using
these indices to look up the corresponding RGB triplet in the LUT. In some cases, the
pixel values of an indexed image reflect the relative intensity of each pixel. In other
cases, each pixel value is simply an index, in which case the image is usually
intended to be associated with a specific LUT. In this case, the LUT is typically
stored with the image when it is saved to a file. For information on the LUTs
provided with IDL, see “Loading a Default Color Table” on page 218.

RGB Image Interleaving

An RGB (red, green, blue) image is a three-dimensional byte array that explicitly
stores a color value for each pixel. RGB image arrays are made up of width, height,
and three channels of color information. Scanned photographs are commonly stored
as RGB images. The color information is stored in three sections of a third dimension
of the image. These sections are known as color channels, color bands, or color
layers. One channel represents the amount of red in the image (the red channel), one
channel represents the amount of green in the image (the green channel), and one
channel represents the amount of blue in the image (the blue channel).

Color interleaving is a term used to describe which of the dimensions of an RGB
image contain the three color channel values. Three types of color interleaving are
supported by IDL. In Object Graphics, an RGB image is contained within an image
object where the INTERLEAVE property dictates the arrangement of the channels
within the image file.

• Pixel interleaving (3, w, h) — the color information is contained in the first
dimension, INTERLEAVE is set to 0.

• Line interleaving (w, 3, h) — the color information is contained in the second
dimension, INTERLEAVE is set to 1.

• Planar interleaving (w, h, 3) — the color information is contained in the third
dimension, INTERLEAVE is set to 2. This is also known as, image
interleaving.

Note
In Direct Graphics, set the TRUE keyword of TV or TVSCL to match the
interleaving of the image.
Indexed and RGB Image Organization Using IDL

Chapter 8: Graphic Display Essentials 215

using.book Page 215 Tuesday, June 14, 2005 11:12 AM
Determining RGB Image Interleaving

You can determine if an image file contains an RGB image by querying the file. The
CHANNELS tag of the resulting query structure will equal 3 if the file’s image is
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

The following example queries and imports a pixel-interleaved RGB image from the
rose.jpg image file. This RGB image is a close-up photograph of a red rose. It is
pixel interleaved. Complete the following steps for a detailed description of the
process.

Example Code
See displayrgbimage_object.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, length=36, refs=1:
 CHANNELS LONG 3
 DIMENSIONS LONG Array[2]
 HAS_PALETTE INT 0
 IMAGE_INDEX LONG 0
 NUM_IMAGES LONG 1
 PIXEL_TYPE INT 1
 TYPE STRING 'JPEG'

The CHANNELS tag has a value of 3. Thus, the image is an RGB image.

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions
Using IDL Indexed and RGB Image Organization

RSI_PROCODE/examples/doc/image/displayrgbimage_object.pro

216 Chapter 8: Graphic Display Essentials

using.book Page 216 Tuesday, June 14, 2005 11:12 AM
The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

6. Determine the size of each dimension within the image:

imageDims = SIZE(image, /DIMENSIONS)

7. Determine the type of interleaving by comparing the dimension sizes to the
image size parameter from the file query:

interleaving = WHERE((imageDims NE imageSize[0]) AND $
(imageDims NE imageSize[1]))

8. Output the results of the interleaving computation:

PRINT, 'Type of Interleaving = ', interleaving

The following text appears in the Output Log:

Type of Interleaving = 0

The image is pixel interleaved. If the resulting value was 1, the image would
have been line interleaved. If the resulting value was 2, the image would have
been planar interleaved.

9. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'An RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

10. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, $
INTERLEAVE = interleaving[0])

11. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
Indexed and RGB Image Organization Using IDL

Chapter 8: Graphic Display Essentials 217

using.book Page 217 Tuesday, June 14, 2005 11:12 AM
The following figure shows the resulting RGB image display.

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to
grayscale, or RGB to indexed. For example, an image may be imported into IDL as
an indexed image (from a PNG file for example) but it may need to be exported as an
RGB image (to a JPEG file for example). The opposite may also need to be done. See
“Foreground Color” on page 210 for more information on grayscale, indexed, and
RGB images.

See the following routines s in the IDL Reference Guide for examples:

• RGB to grayscale — REFORM extracts the individual channels of data from
an RGB image so that it can be displayed as a grayscale image

• RGB to indexed — COLOR_QUAN decomposes the millions of possible
colors in an RGB image into the 256 used by an indexed image

• Indexed to RGB — TVLCT extracts the indexed image color table
information, which is then assigned to an RGB image

Figure 8-4: RGB Image in Object Graphics
Using IDL Indexed and RGB Image Organization

218 Chapter 8: Graphic Display Essentials

using.book Page 218 Tuesday, June 14, 2005 11:12 AM
Loading a Default Color Table

Although you can define your own color tables, IDL provides 41 pre-defined color
lookup tables (LUTs). Each color table contained within this routine is specified
through an index value ranging from 0 to 40, shown in the following table.

Tip
If you are running IDL on a TrueColor display, set DEVICE, DECOMPOSED = 0
before your first color table related routine is used within an IDL session or
program. See “Foreground Color” on page 210 for more information.

Number Name Number Name

0 Black & White Linear 21 Hue Sat Value 1

1 Blue/White Linear 22 Hue Sat Value 2

2 Green-Red-Blue-White 23 Purple-Red +
Stripes

3 Red Temperature 24 Beach

4 Blue-Green-Red-Yellow 25 Mac Style

5 Standard Gamma-II 26 Eos A

6 Prism 27 Eos B

7 Red-Purple 28 Hardcandy

8 Green/White Linear 29 Nature

9 Green/White Exponential 30 Ocean

10 Green-Pink 31 Peppermint

11 Blue-Red 32 Plasma

12 16 Level 33 Blue-Red 2

13 Rainbow 34 Rainbow 2

14 Steps 35 Blue Waves

Table 8-5: Pre-defined Color Tables
Loading a Default Color Table Using IDL

Chapter 8: Graphic Display Essentials 219

using.book Page 219 Tuesday, June 14, 2005 11:12 AM
You can load a default color table in an iImage display, an Object Graphics Display
or a Direct Graphics display as follows:

• iImage — select the Edit Palette button on the image panel. See “Using the
Image Panel” in Chapter 10 of the iTool User’s Guide manual for details.

• Object Graphics — use the LoactCT method of an IDLgrPalette object to
define the color table (see “IDLgrPalette::LoadCT” in the IDL Reference
Guide manual for details). Associate the palette object with another object
using the Palette property (for example, see the PALETTE property of the
IDLgrImage object). Also see “Color in Object Graphics” in Chapter 2 of the
Object Programming manual for information on using color with indexed and
RGB color models in Object Graphics.

• Direct Graphics — use the LOADCT routine or another color table related
routine to set the color table. Also see “Using Color in Direct Graphics” on
page 209.

Note
See “Color Table Manipulation” in the IDL Quick Reference manual for a list of
related routines.

Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table,
XLOADCT and XPALETTE (. The MODIFYCT routine lets you create or modify

15 Stern Special 36 Volcano

16 Haze 37 Waves

17 Blue-Pastel-Red 38 Rainbow18

18 Pastels 39 Rainbow + white

19 Hue Sat Lightness 1 40 Rainbow + black

20 Hue Sat Lightness 2

Number Name Number Name

Table 8-5: Pre-defined Color Tables (Continued)
Using IDL Loading a Default Color Table

220 Chapter 8: Graphic Display Essentials

using.book Page 220 Tuesday, June 14, 2005 11:12 AM
and store a new color table. See the following topics in the IDL Reference Guide for
examples:

• XLOADCT — allows you to preview and select among pre-defined color
tables

• XPALETTE — allows you to preview and adjust pre-defined color tables

• MODIFYCT — shows how to add modified color tables to IDL’s list of pre-
defined color tables.

These examples are based on the default RGB (red, green, and blue) color system.
IDL also contains routines that allow you to use other color systems including hue,
saturation, and value (HSV) and hue, lightness, and saturation (HLS). These routines
and color systems are explained in “Converting to Other Color Systems” on
page 206.

Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features.
Color tables are usually designed to vary within certain ranges to show dramatic
changes within an image. Some color tables are designed to highlight features with
drastic color change in adjacent ranges (for example setting 0 through 20 to black and
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images already contain their
own color information. If you want to derive a color table for an RGB image, you
should convert it to an indexed image with the COLOR_QUAN routine. You
should also set COLOR_QUAN’s CUBE keyword to 6 to insure the resulting
indexed image is an intensity representation of the original RGB image. See
COLOR_QUAN in the IDL Reference Guide for more information

See the following topics in the IDL Reference Guide for examples:

• IDLgrPalette provides an example that creates, defines and applies a palette
object to an image

• TVLCT creates, defines and applies a color table in a Direct Graphics display

• H_EQ_CT applies histogram equalization to a color table to reveal previously
indistinguishable feature
Loading a Default Color Table Using IDL

Chapter 8: Graphic Display Essentials 221

using.book Page 221 Tuesday, June 14, 2005 11:12 AM
Using Fonts in Graphic Displays

IDL uses three font systems for writing characters on the graphics device, whether
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in Appendix
H, “Fonts” in the IDL Reference Guide manual.

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. This means that if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platform-
dependent code.

In a widget application, specify a font using the FONT keyword. If you choose a
device font, you may need to write platform-dependent code. See “Fonts Used in
Widget Applications” in Chapter 9 of the Building IDL Applications manual for
details.

To set the font in an Object Graphics display, create an IDLgrFont object and assign
this object to a text object using the IDLgrText object FONT property. See “Font
Objects” in Chapter 9 of the Object Programming manual for more information.

Note
Within the IDLDE, you can specify what font is used in various areas (e.g., the
Editor window or the Output Log window). See “Font Preferences” in Chapter 3 of
the Using IDL manual for details.
Using IDL Using Fonts in Graphic Displays

222 Chapter 8: Graphic Display Essentials

using.book Page 222 Tuesday, June 14, 2005 11:12 AM
Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to
allow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows
platforms, IDL uses the operating system’s built-in printing facilities; on UNIX
platforms, IDL uses the Xprinter print manager from Bristol Technology.

Use the DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make
PRINTER your current device. Issue IDL commands as normal to create the graphics
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. You can also
create multiple pages before closing the document as well as being able to use tile
graphics with the !P.MULTI system command.

See “Printing Graphics Output Files” in Appendix A of the IDL Reference Guide
manual for details and examples.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as a destination
for your Draw operations. You can also print multiple documents with the
IDLgrPrinter object. See “Printer Objects” in Chapter 12 of the Object Programming
manualfor information about printer objects and examples of their use. Also see
“Bitmap and Vector Graphic Output” in Chapter 12 of the Object Programming
manual for information of when to output to bitmap or vector graphics based on
picture content.
Printing Graphics Using IDL

using.book Page 223 Tuesday, June 14, 2005 11:12 AM
Chapter 9

Map Projections
The following topics are covered in this chapter:
Overview of Mapping 224
Graphics Techniques for Mapping 225
Map Projection Types 227
Azimuthal Projections 228

Cylindrical Projections 237
Pseudocylindrical Projections 242
High-Resolution Continent Outlines 246
References . 248
Using IDL 223

224 Chapter 9: Map Projections

using.book Page 224 Tuesday, June 14, 2005 11:12 AM
Overview of Mapping

This section introduces graphic map display considerations as well as information
about common map projections. This section does not describe how to create a map
display. See the following topic for these resources.

Creating a Map Display

IDL provides interactive and static map display functionality. You can use the iMap
iTool to interactively configure a map display. If you prefer a static display, you can
use map routines. See the following for details:

• Interactive iMap display — see Chapter 15, “Working with Maps” in the iTool
User’s Guide manual

• Map-related routines — see “Mapping” in the IDL Quick Reference manual

Examples of Creating Map Displays

See the following resources in the IDL Reference Guide for examples:

• IMAP — provides examples of displaying images and contours over a map
projection.

• MAP_PROJ_FORWARD — creates a latitude and longitude grid with labels
for a Goodes Homolosine map projection in an Object Graphics display.
Typically MAP_PROJ_INIT is used with MAP_PROJ_FORWARD and
MAP_PROJ_INVERSE.

• MAP_SET — establishes the coordinate conversion mechanism for mapping
points on a globe’s surface to points on a plane, according to the selected
projections type. You can then use MAP_GRID and MAP_CONTINENTS to
add grid lines and continents to the map display. See MAP_IMAGE for an
example of warping an image to a projection.
Overview of Mapping Using IDL

Chapter 9: Map Projections 225

using.book Page 225 Tuesday, June 14, 2005 11:12 AM
Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on a sphere to a
two-dimensional surface for two reasons. First, two points on a sphere are connected
by two different lines. Second, areas may wrap around the edges of cylindrical and
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The IMAP and MAP_SET procedures
automatically sets up the proper mapping technique to best fit the projection selected
by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not
met, the exterior, instead of the interior, of the polygons may be filled. Also, vectors
connecting the points spanning the singular line for cylindrical projections will be
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of a great circle line, is located opposite the center of the
projection; points on this line appear on both edges of the map. The singular line is
the intersection of the surface of the sphere with a plane passing through the center of
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping plane in one or more
clipping stages. For example, to draw a hemisphere centered on a given point, the
clipping plane passes through the center of the sphere and has a normal vector that
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude is transformed to a
point on the mapping plane.
Using IDL Graphics Techniques for Mapping

226 Chapter 9: Map Projections

using.book Page 226 Tuesday, June 14, 2005 11:12 AM
Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional
rectangular clipping stage ensures that the graphics are properly bounded and closed
in the rectangular display area.
Graphics Techniques for Mapping Using IDL

Chapter 9: Map Projections 227

using.book Page 227 Tuesday, June 14, 2005 11:12 AM
Map Projection Types

In the following sections, the available IDL projections are discussed in detail. The
projections are grouped within three categories:

• “Azimuthal Projections” on page 228

• “Cylindrical Projections” on page 237

• “Pseudocylindrical Projections” on page 242

Note
The General Cartographic Transformation Package (GCTP) map projections are not
described here. Documentation for the GCTP package is available from the US
Geologic Survey at http://mapping.usgs.gov.

Note
In this text, the plane of the projection is referred to as the UV plane with horizontal
axis u and vertical axis v.
Using IDL Map Projection Types

228 Chapter 9: Map Projections

using.book Page 228 Tuesday, June 14, 2005 11:12 AM
Azimuthal Projections

With azimuthal projections, the UV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude are
the points at the center of the map projection, respectively. Rotation is the angle
between North and the v-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and great
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections:

• “Orthographic Projection” on page 229

• “Stereographic Projection” on page 229

• “Gnomonic Projection” on page 230

• “Azimuthal Equidistant Projection” on page 231

• “Aitoff Projection” on page 232

• “Lambert’s Equal Area Projection” on page 233

• “Hammer-Aitoff Projection” on page 234

• “Satellite Projection” on page 235
Azimuthal Projections Using IDL

Chapter 9: Map Projections 229

using.book Page 229 Tuesday, June 14, 2005 11:12 AM
Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago.
This projection looks like a globe because it is a perspective projection from infinite
distance. As such, it maps one hemisphere of the globe into the UV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses are
compressed.

The following figure shows an orthographic projection centered over Eastern Spain
at a scale of 70 million to 1.

Stereographic Projection

The stereographic projection is a true perspective projection with the globe being
projected onto the UV plane from the point P on the globe diametrically opposite to
the point of tangency. The whole globe except P is mapped onto the UV plane. There
is great distortion for regions close to P, since P maps to infinity.

The stereographic projection is the only known perspective projection that is also
conformal. It is frequently used for polar maps. For example, a stereographic view of
the north pole has the south pole as its point of perspective.

Figure 9-1: Orthographic Projection
Using IDL Azimuthal Projections

230 Chapter 9: Map Projections

using.book Page 230 Tuesday, June 14, 2005 11:12 AM
The following figure shows an equatorial stereographic projection with the
hemisphere centered on the equator at longitude –105 degrees.

Gnomonic Projection

The gnomonic projection (also called Central or Gnomic) projects all great circles to
straight lines. The gnomonic projection is the perspective, azimuthal projection with
point of perspective at the center of the globe. Hence, with the gnomonic projection,
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, there is great
distortion of shape, area, and scale. The default clipping region for the gnomonic
projection is a circle with a radius of 60 degrees at the center of projection.

The projection in the following figure is centered around the point at latitude 40
degrees and longitude –105 degrees. The region on the globe that is mapped lies

Figure 9-2: An Azimuthal Projection
Azimuthal Projections Using IDL

Chapter 9: Map Projections 231

using.book Page 231 Tuesday, June 14, 2005 11:12 AM
between 20 degrees and 70 degrees of latitude and –130 degrees and –70 degrees of
longitude.

Azimuthal Equidistant Projection

The azimuthal equidistant projection is also not a true perspective projection, because
it preserves correctly the distances between the tangent point and all other points on
the globe. Any line drawn through the tangent point reports distance correctly.
Therefore, this projection type is useful for determining flight distances. The point P
opposite the tangent point is mapped to a circle on the UV plane, and hence, the
whole globe is mapped to the plane. There is infinite distortion close to the outer rim
of the map, which is the circular image of P.

Figure 9-3: A Gnomonic Projection
Using IDL Azimuthal Projections

232 Chapter 9: Map Projections

using.book Page 232 Tuesday, June 14, 2005 11:12 AM
The following Azimuthal projection is centered at the South Pole and shows the
entire globe.

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines parallel to the equator are
stretched horizontally and meridian values are doubled, thereby displaying the world
as an ellipse with axes in a 2:1 ratio. Both the equator and the central meridian are
represented at true scale; however, distances measured between the point of tangency
and any other point on the map are no longer true to scale.

Figure 9-4: An Azimuthal Equidistant Projection
Azimuthal Projections Using IDL

Chapter 9: Map Projections 233

using.book Page 233 Tuesday, June 14, 2005 11:12 AM
An Aitoff projection centered on the international dateline is shown in the following
figure.

Lambert’s Equal Area Projection

Lambert’s equal area projection adjusts projected distances in order to preserve area.
Hence, it is not a true perspective projection. Like the stereographic projection, it
maps to infinity the point P diametrically opposite the point of tangency. Note also
that to preserve area, distances between points become more contracted as the points
become closer to P. Lambert’s equal area projection has less overall scale variation
than the other azimuthal projections.

Figure 9-5: An Aitoff Projection
Using IDL Azimuthal Projections

234 Chapter 9: Map Projections

using.book Page 234 Tuesday, June 14, 2005 11:12 AM
The following figure shows the Northern Hemisphere rotated counterclockwise 105
degrees, and filled continents.

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it is included in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivation,
the hemisphere is represented inside an ellipse with the rest of the world in the lunes
of the ellipse.

Because the Hammer-Aitoff projection produces an equal area map of the entire
globe, it is useful for visual representations of geographically related statistical data
and distributions. Astronomers use this projection to show the entire celestial sphere
on one map in a way that accurately depicts the relative distribution of the stars in
different regions of the sky.

Figure 9-6: A Lambert’s Equal Area Projection
Azimuthal Projections Using IDL

Chapter 9: Map Projections 235

using.book Page 235 Tuesday, June 14, 2005 11:12 AM
A Hammer-Aitoff projection centered on the international dateline is shown in the
following figure:

Satellite Projection

The satellite projection, also called the General Perspective projection, simulates a
view of the globe as seen from a camera in space. If the camera faces the center of the
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are special cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite point).
If the projection plane is perpendicular to the line connecting the point of projection
and the center of the globe, a Vertical Perspective projection results. Otherwise, the
projection plane is horizontally turned Γ degrees clockwise from the north, then tilted
ω degrees downward from horizontal.

Figure 9-7: The Hammer-Aitoff Projection
Using IDL Azimuthal Projections

236 Chapter 9: Map Projections

using.book Page 236 Tuesday, June 14, 2005 11:12 AM
The map in the accompanying figure shows the eastern seaboard of the United States
from an altitude of about 160km, above Newburgh, NY.

Figure 9-8: Satellite Projection
Azimuthal Projections Using IDL

Chapter 9: Map Projections 237

using.book Page 237 Tuesday, June 14, 2005 11:12 AM
Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping
the UV plane around the globe with the u-axis coinciding with a great circle. The
parameters P0lat, P0lon, and Rot determine the great circle that passes through the
point C=(P0lat, P0lon). In the discussions below, this great circle is sometimes
referred to as EQ. Rot is the angle between North at the map’s center and the v-axis
(which is perpendicular to the great circle). The cylinder is cut along the line parallel
to the v-axis and passing through the point diametrically opposite to C. It is then
rolled out to form a plane.

The cylindrical projections in IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’s equal-area
conic.

Mercator Projection

Mercator’s projection is partially developed by projecting the globe onto the cylinder
from the center of the globe. This is a partial explanation of the projection because
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. Therefore, uses include navigation maps and
equatorial maps. To properly use the projection, the user should be aware that the two
points on the globe 90 degrees from the central great circle (e.g., the North and South
Poles in the case that the selected great circle is the equator) are mapped to infinite
distances. Limits are typically specified because of the great distortions around the
poles when the equator is selected.
Using IDL Cylindrical Projections

238 Chapter 9: Map Projections

using.book Page 238 Tuesday, June 14, 2005 11:12 AM
A simple mercator projection with latitude ranges from –80 degrees to 80 degrees is
shown in the following figure.

Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it follows
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is always in contact with a meridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these
four lines are straight. All other meridians and parallels are complex curves which are
concave toward the central meridian. Shape is true only within small areas and the
areas increase in size as they move away from the central meridian. Most other IDL
projections are scaled in the range of +/– 1 to +/– 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this

Figure 9-9: Simple Mercator Projection
Cylindrical Projections Using IDL

Chapter 9: Map Projections 239

using.book Page 239 Tuesday, June 14, 2005 11:12 AM
projection and its use of the meridian makes it useful for north-south regions. The
Clarke 1866 ellipsoid is used for the default.

The following Transverse Mercator map shows North and South America, with a
central meridian of –90 degrees West and centered on the Equator.

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct.
If EQ is the equator, this projection simply lays out horizontal and vertical distances
on the cylinder to coincide numerically with their measurements in latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

Figure 9-10: Transverse Mercator Projection

–180 ≤ u ≤ 180

and

–90 ≤ v ≤ 90
Using IDL Cylindrical Projections

240 Chapter 9: Map Projections

using.book Page 240 Tuesday, June 14, 2005 11:12 AM
If EQ is the equator, meridians and parallels will be equally spaced parallel lines.

The following figure shows a simple cylindrical equidistant projection and an oblique
cylindrical equidistant projection rotated by 45°.

Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It is not equal-area,
conformal or equidistant along the meridians. Meridians are equidistant from each
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians and
parallels intersect each other at right angles, with the poles shown as straight lines.
The Equator is the only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallels is constructed by
projecting the globe onto a cone passing through two parallels. Additional scaling
achieves conformity. The pole under the cone’s apex is transformed to a point, and
the other pole is mapped to infinity. The scale is correct along the two standard
parallels. Parallels can be specified and are projected onto circles and meridians onto
equally spaced straight lines. The following figure shows the map shown in the

Figure 9-11: Cylindrical Projections
Cylindrical Projections Using IDL

Chapter 9: Map Projections 241

using.book Page 241 Tuesday, June 14, 2005 11:12 AM
accompanying figure, which features North America with standard parallels at 20
degrees and 60 degrees.

Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conics in that meridians are equally
spaced radii, parallels are concentric arcs of circles and scale is constant along any
parallel. To maintain equal area, the scale factor along meridians is the reciprocal of
the scale factor along parallels, with the scale along the parallels between the two
standard parallels too small, and the scale beyond the standard parallels too large.
Standard parallels are correct in scale along the parallel, as well as in every direction.

The Albers projection is particularly useful for predominantly east-west regions. Any
keywords for the Lambert conformal conic also apply to the Albers conic.

Figure 9-12: Lambert’s Conformal Conic with Standard Parallels at 20° and 60°
Using IDL Cylindrical Projections

242 Chapter 9: Map Projections

using.book Page 242 Tuesday, June 14, 2005 11:12 AM
Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest form,
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for major continents, and simplicity.
It was designed to make the world look right. Since its introduction, it has been
adopted by the National Geographic Society for many of their world maps.

Each individual parallel is equally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses. The central meridian should always be 0 degrees longitude to retain the
correct balance of shapes, sizes, and relative positions.

The following figure shows a Robinson projection.

Figure 9-13: Robinson Projection
Pseudocylindrical Projections Using IDL

Chapter 9: Map Projections 243

using.book Page 243 Tuesday, June 14, 2005 11:12 AM
Sinusoidal Projection

With the sinusoidal projection, the central meridian is a straight line and all other
meridians are equally spaced sinusoidal curves. The scaling is true along the central
meridian as well as along all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas
below from Snyder (1987) give the relationship between the latitude φ and longitude
λ of a point on the globe and its image on the UV plane.

The following shows the sinusoidal map of the whole globe centered at longitude 0
degrees and latitude 0 degrees.

Mollweide Projection

With the Mollweide projection, the central meridian is a straight line, the meridians
90 degrees from the central meridian are circular arcs and all other meridians are
elliptical arcs. The Mollweide projection maps the entire globe onto an ellipse in the
UV plane. The circular arcs encompass a hemisphere and the rest of the globe is
contained in the lunes on either side.

u = λcosφ

v = φ

Figure 9-14: Sinusoidal Projection
Using IDL Pseudocylindrical Projections

244 Chapter 9: Map Projections

using.book Page 244 Tuesday, June 14, 2005 11:12 AM
The following figure shows a Mollweide projection in oblique form.

Since the center of the projection is not on the equator, parallels of latitude are not
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homolosine projection, developed by J. Paul Goode, in 1923,
is designed for World maps to show the continents with minimal scale and shape
distortion. This is accomplished by interrupting the projection and choosing several
central meridians to coincide with large land masses. This projection is a fusion of the
Sinusoidal projection between the latitudes of 44.7 degrees North and South, and the
Mollweide projection between these parallels and the poles.

Figure 9-15: Mollweide Projection
Pseudocylindrical Projections Using IDL

Chapter 9: Map Projections 245

using.book Page 245 Tuesday, June 14, 2005 11:12 AM
The following figure shows an example of Goode’s Homolosine projection.

Figure 9-16: Goode’s Homolosine Projection
Using IDL Pseudocylindrical Projections

246 Chapter 9: Map Projections

using.book Page 246 Tuesday, June 14, 2005 11:12 AM
High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is a low-resolution
continental outline database that is automatically installed when you install IDL. The
high-resolution database was adapted from the 1993 CIA World Map database by
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are
found in an optional data set that may not have been installed when your copy of IDL
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when calling
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by calling
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTS in the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer apart.
Note, however, that in the case of the coast and river databases, actual distances
between the data points may be much smaller because of convolutions in the
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental
map database used in previous versions of IDL (the file supmap.dat in the
resource/maps subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databases is intended for high-precision work.

The following table compares the low-resolution and high-resolution map databases:

Feature Low-Resolution High-Resolution

Coastlines, islands, and
lakes (including
continental outlines)

Data in file supmap.dat. Entire CIA World Map

Table 9-1: Comparison of Low- and High-resolution Map Databases
High-Resolution Continent Outlines Using IDL

Chapter 9: Map Projections 247

using.book Page 247 Tuesday, June 14, 2005 11:12 AM
Continental polygons Data extracted from
supmap.dat.

Every 20th point of CIA
World Map.

Rivers Every 250th point of the CIA
World Map.

Entire CIA World Map.

National boundaries Every 100th point of CIA
World Map.

Entire CIA World Map.

Feature Low-Resolution High-Resolution

Table 9-1: Comparison of Low- and High-resolution Map Databases
Using IDL High-Resolution Continent Outlines

248 Chapter 9: Map Projections

using.book Page 248 Tuesday, June 14, 2005 11:12 AM
References

Greenwood, David (1964), Mapping, University of Chicago Press, Chicago.

Pearson, Frederick II (1990), Map Projections: Theory and Applications, CRC Press,
Inc., Boca Raton.

Snyder, John P. (1987), Map Projections—A Working Manual, U.S. Geological
Survey Professional Paper 1395, U.S.Government Printing Office, Washington, D.C.
References Using IDL

using.book Page 249 Tuesday, June 14, 2005 11:12 AM
Chapter 10

Signal Processing
The following topics are covered in this chapter:
Overview of Signal Processing 250
Digital Signals . 251
Signal Analysis Transforms 253
The Fourier Transform 254
Interpreting FFT Results 255
Displaying FFT Results 256
Using Windows . 260
Aliasing . 263
FFT Algorithm Details 264
The Hilbert Transform 265

The Wavelet Transform 267
Convolution . 268
Correlation and Covariance 269
Digital Filtering . 270
Finite Impulse Response (FIR) Filters . . . 271
FIR Filter Implementation 273
Infinite Impulse Response Filters 275
Routines for Signal Processing 250
References . 278
Using IDL 249

250 Chapter 10: Signal Processing

using.book Page 250 Tuesday, June 14, 2005 11:12 AM
Overview of Signal Processing

A signal, by definition, contains information. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in a digital signal by looking at it in its raw form—that is, as a
sequence of real values at discrete points in time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedures
and functions mentioned here work in two or more dimensions. For simplicity, only
one dimensional signals are used in the examples.

Routines for Signal Processing

For a list of IDL signal processing routines, see the functional category of “Signal
Processing” in the IDL Quick Reference manual. There you will find a brief
introduction to the routines. More detailed information is available in the IDL
Reference Guide.

Running the Example Code

The examples in this chapter are written to take advantage of iTools. The example
code is part of the IDL distribution. All of the files mentioned are located in the
examples/doc/signal subdirectory of the IDL distribution. By default, this
directory is part of IDL’s path; if you have not changed your path, you will be able to
run the examples as described here. See “!PATH” in Appendix D of the IDL
Reference Guide manual for information on IDL’s path.
Overview of Signal Processing Using IDL

Chapter 10: Signal Processing 251

using.book Page 251 Tuesday, June 14, 2005 11:12 AM
Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an
array-oriented language like IDL. The term digital actually describes two different
properties:

1. The signal is defined only at discrete points in time as a result of sampling, or
because the instrument which measured the signal is inherently discrete-time
in nature. Usually, the time interval between measurements is constant.

2. The signal can take on only discrete values.

In this discussion, we assume that the signal is sampled at a time interval. The
concepts and techniques presented here apply equally well to any type of signal—the
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an
interval delt. This simulated signal will be used in examples throughout this
chapter. The simulated signal contains 1024 time samples, with a sampling interval
of 0.02 seconds. The signal contains a DC component and components at 2.8, 6.5,
and 11.0 cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024 ; number of samples
delt = 0.02 ; sampling interval

; Simulated signal.
u = -0.3 $

+ 1.0 * SIN(2 * !PI * 2.8 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * !PI * 11.0 * delt * FINDGEN(N))

Example Code
Alternately, type @sigprc01 at the IDL prompt to run the sigprc01batch file that
creates the signal. See “Running the Example Code” on page 250 if IDL does not
find the batch file.
Using IDL Digital Signals

RSI_PROCODE/examples/doc/signal/sigprc01

252 Chapter 10: Signal Processing

using.book Page 252 Tuesday, June 14, 2005 11:12 AM
Because the signal is digital, the conventional way to display it is with a histogram (or
step) plot. To create a histogram plot, set the PSYM keyword to the PLOT routine equal
to 10. A section of the example signal u(k) is plotted in the figure below.

Note
When the number of sampled data points is large, the steps in the histogram plot are
too small to see. In such cases you should not plot in histogram mode.

Example Code
Type @sigprc02 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc02, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-1: Histogram Plot of Sample Signal u(k)
Digital Signals Using IDL

RSI_PROCODE/examples/doc/signal/sigprc02

Chapter 10: Signal Processing 253

using.book Page 253 Tuesday, June 14, 2005 11:12 AM
Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components.The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.
Using IDL Signal Analysis Transforms

254 Chapter 10: Signal Processing

using.book Page 254 Tuesday, June 14, 2005 11:12 AM
The Fourier Transform

The Discrete Fourier Transform (DFT) is the most widely used method for
determining the frequency spectra of digital signals. This is due to the development
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function,
u(k), is defined as:

The inverse transform is defined as:

IDL implements the Fast Fourier Transform in the FFT function. You can find details
on using IDL’s FFT function in the following sections and in “FFT” in the IDL
Reference Guide manual.

v m() 1
N
---- u k()exp j2πmk N⁄–[]

k 0=

N 1–

∑=

u k() v m()exp j2πmk N⁄[]

m 0=

N 1–

∑=
The Fourier Transform Using IDL

Chapter 10: Signal Processing 255

using.book Page 255 Tuesday, June 14, 2005 11:12 AM
Interpreting FFT Results

Just as the sampled time data represents the value of a signal at discrete points in
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the
signal at discrete frequencies. These discrete frequencies are a function of the
frequency index (m), the number of samples collected (N), and the sampling interval
(δ):

The frequencies for which the FFT of a sampled signal are defined are sometimes
called frequency bins, which refers to the histogram-like nature of a discrete
spectrum. The width of each frequency bin is 1/(N * δ).

Due to the complex exponential in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency index m. That is:

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for a one-dimensional
time sequence is stored in a vector with indices running from 0 to N–1, which is also
a valid range for the frequency index m. However, the frequencies associated with
frequency indices greater than N/2 are above the Nyquist frequency and are not
physically meaningful for sampled signals. Many textbooks choose to define the
range of the frequency index m to be from – (N/2 – 1) to N/2 so that it is (nearly)
centered around zero. From the cyclic relation above with p = –1:

v(– (N/2 – 1)) = v(N/2 + 1 – N) = v(N/2 + 1)

v(– (N/2 – 2)) = v(N/2 + 2 – N) = v(N/2 + 2)

...

v(–2) = v(N – 2 – N) = v(N – 2)

v(–1) = v(N – 1 – N) = v(N – 1)

This index shift is easily accomplished in IDL with the SHIFT function. See “Real
and Imaginary Components” on page 256 for an example.

f m() m
Nδ
-------=

v m pN+() v m()=
Using IDL Interpreting FFT Results

256 Chapter 10: Signal Processing

using.book Page 256 Tuesday, June 14, 2005 11:12 AM
Displaying FFT Results

Depending on the application, there are many ways to display spectral data, the result
of the (forward) FFT function.

Real and Imaginary Components

The most direct way is to plot the real and imaginary parts of the spectrum as a
function of frequency index or as a function of the corresponding frequencies. The
following figure displays the real and imaginary parts of the spectrum v(m) of the
sampled signal u(k) for frequencies from –(N/2 – 1)/(N * δ) to (N/2)/(N * δ) cycles
per second.

Figure 10-2: Real and Imaginary Parts of the Sample Signal
Displaying FFT Results Using IDL

Chapter 10: Signal Processing 257

using.book Page 257 Tuesday, June 14, 2005 11:12 AM
Example Code
Type @sigprc03 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc03, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

IDL’s FFT function always returns a single- or double-precision complex array with
the same dimensions as the input argument. In the case of a forward FFT performed
on a one-dimensional vector of N real values, the result is an N-element vector of
complex quantities, which takes 2N real values to represent. It would seem that there
is twice as much information in the spectral data as there is in the time sequence data.
This is not the case. For a real valued time sequence, half of the information in the
frequency sequence is redundant. Specifically:

; 1 redundant value:
IMAGINARY(v(0)) = 0.0
; 1 redundant value:
IMAGINARY(v(N/2)) = 0.0

and

; for m=1 to N/2-1, N-2 redundant values:
v(N-m) = CONJ(v(m))

so that exactly N of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous figure.
Notice that the real part of the spectrum is an even function (symmetric about zero),
and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). This is always the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the
spectrum of a real time sequence. That is, only the spectral values with frequency
indices from 0 to N/2, which correspond to frequencies from 0 to 1/(2 * δ), the
Nyquist frequency. This vector of positive frequencies is generated in IDL with the
following command:

; f = [0.0, 1.0/(N*delt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N/2+1)/(N*delt)

Magnitude and Phase

It is also common to display the magnitude and phase of the spectrum, which have
physical significance, as opposed to the real and imaginary parts of the spectrum,
which do not have physical significance. Since there is a one-to-one correspondence
between a complex number and its magnitude and phase, no information is lost in the
transformation from a complex spectrum to its magnitude and phase. In IDL, the
Using IDL Displaying FFT Results

RSI_PROCODE/examples/doc/signal/sigprc03

258 Chapter 10: Signal Processing

using.book Page 258 Tuesday, June 14, 2005 11:12 AM
magnitude is easily determined with the absolute value (ABS) function, and the phase
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in
degrees, against frequency on a logarithmic scale. The magnitude and phase of our
sample signal are plotted in the same data space, shown in the figure below.

Example Code
Type @sigprc04 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc04, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Using a logarithmic scale for the frequency axis has the advantage of spreading out
the lower frequencies, while higher frequencies are crowded together. Note that the
spectrum at zero frequency (DC) is lost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0
cycles/second as peaks in the magnitude plot, and as discontinuities in the phase plot.
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected
from the pure sine wave component at that frequency in the time data sequence. The
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as
smearing or leakage. This effect is a direct result of the definition of the DFT and is
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of

Figure 10-3: Magnitude (Solid LIne) and Phase (Dashed Line)
of the Sample Signal
Displaying FFT Results Using IDL

RSI_PROCODE/examples/doc/signal/sigprc04

Chapter 10: Signal Processing 259

using.book Page 259 Tuesday, June 14, 2005 11:12 AM
the time sequence, or by choosing a sample size which includes an integral number of
cycles of the frequency component of interest. There are an integral number of cycles
of the 6.25 cycles/second component in the time sequence used for this example,
which is why the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second is an
anomaly known as phase wrapping. It is a result of resolving the phase from the real
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principal values between –180 and +180 degrees.

Power Spectrum

Finally, for many applications, the phase information is not useful. For these, it is
often customary to plot the power spectrum, which is the square of the magnitude of
the complex spectrum. The resulting plot is shown in the figure below.

Example Code
Type @sigprc05 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc05, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-4: Power Spectrum of the Sample Signal
Using IDL Displaying FFT Results

RSI_PROCODE/examples/doc/signal/sigprc05

260 Chapter 10: Signal Processing

using.book Page 260 Tuesday, June 14, 2005 11:12 AM
Using Windows

The smearing or leakage effect mentioned previously is a direct consequence of the
definition of the Discrete Fourier Transform and of the fact that a finite time sample
of a signal often does not include an integral number of some of the frequency
components in the signal. The effect of this truncation can be reduced by increasing
the length of the time sequence or by employing a windowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signal
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hanning window and then applies the FFT function:

v_n = FFT(HANNING(N)*U)

The power spectrum of the Hanning windowed signal shows the mitigation of the
truncation effect (see the figure below).

Figure 10-5: Time Series Multiplied by Hanning Window (Left)
and Power Spectrum (Right) with Hanning Window (Solid) and without (Dashed)

w k() 1
2
--- 1

2πk
N

----------⎝ ⎠
⎛ ⎞cos–⎝ ⎠

⎛ ⎞=
Using Windows Using IDL

Chapter 10: Signal Processing 261

using.book Page 261 Tuesday, June 14, 2005 11:12 AM
Example Code
Type @sigprc06 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc06, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Hamming Window

The Hamming window is defined as:

The resulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hamming window and then applies the FFT function:

v_m = FFT(HANNING(N, ALPHA=0.56)*U)

The power spectrum of the Hamming windowed signal shows the mitigation of the
truncation effect (see the figure below).

Figure 10-6: Power Spectrum with Hamming Window (Solid)
and without (Dashed)

w k() 0.54 0.46
2πk
N

----------⎝ ⎠
⎛ ⎞cos–=
Using IDL Using Windows

RSI_PROCODE/examples/doc/signal/sigprc06

262 Chapter 10: Signal Processing

using.book Page 262 Tuesday, June 14, 2005 11:12 AM
Example Code
Type @sigprc07 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc07, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.
Using Windows Using IDL

RSI_PROCODE/examples/doc/signal/sigprc07

Chapter 10: Signal Processing 263

using.book Page 263 Tuesday, June 14, 2005 11:12 AM
Aliasing

Aliasing is a well known phenomenon in sampled data analysis. It occurs when the
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sampling frequency. Aliasing is a consequence
of the fact that after sampling, every periodic signal at a frequency greater than the
Nyquist frequency looks exactly like some other periodic signal at a frequency less
than the Nyquist frequency. For example, suppose we add a 30 cycle per second
periodic component to our sampled data sequence u(t). The power spectrum of the
augmented signal appears below.

Because the frequency of the new component is above the Nyquist frequency of 25
cycles per second (25 = 1/(2*delt)), the power spectrum shows the contribution of the
new component as an alias at 20 cycles per second. To prevent aliasing, frequency
components of a signal above the Nyquist frequency must be removed before
sampling.

Example Code
Type @sigprc08 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc08, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-7: Power Spectrum of the Sample Signal
After Adding a 30 Cycles per Second Component
Using IDL Aliasing

RSI_PROCODE/examples/doc/signal/sigprc08

264 Chapter 10: Signal Processing

using.book Page 264 Tuesday, June 14, 2005 11:12 AM
FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey
algorithm. The algorithm takes advantage of the fact that the discrete Fourier
transform (DFT) of a discrete time series with an even number of points is equal to
the sum of two DFTs, each half the length of the original. For data lengths that are a
power of 2, this algorithm is used recursively, each iteration subdividing the data into
smaller sets to be transformed. In the IDL FFT, this method is also extended to
powers of 3 and 5. If the number of points in the original time series does not contain
powers of 2, 3, or 5, the original data are still subdivided into data sets with lengths
equal to the prime factors of N. The resulting subdivisions with lengths equal to
prime numbers other than 2, 3, or 5 must be transformed using a slow DFT. The slow
DFT is mathematically equivalent to the FFT, but requires N2 operations instead of
Nlog2(N).

This implementation means that the FFT function is fastest when the number of
points is rich in powers of 2, 3, or 5. The slowest case is when the number of samples
is a large prime number. In this case, a significant improvement in efficiency can be
gained by padding the data set with zeros to increase the number of data points to a
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact
that the real array can be packed into a complex array of half the length, and
unpacked at the end, thus cutting the running time in half.
FFT Algorithm Details Using IDL

Chapter 10: Signal Processing 265

using.book Page 265 Tuesday, June 14, 2005 11:12 AM
The Hilbert Transform

The Hilbert transform is a time-domain to time-domain transformation which shifts
the phase of a signal by 90 degrees. Positive frequency components are shifted by
+90 degrees, and negative frequency components are shifted by – 90 degrees.
Applying a Hilbert transform to a signal twice in succession shifts the phases of all of
the components by 180 degrees, and so produces the negative of the original signal.
IDL’s HILBERT function accepts both real and complex valued signals as inputs; the
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as
the quadrature function of r(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

where j is the square root of –1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the
time axis is the original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

r̂ t() r t() jH r t()()–=
Using IDL The Hilbert Transform

266 Chapter 10: Signal Processing

using.book Page 266 Tuesday, June 14, 2005 11:12 AM
The following example plots the complex analytic signal of a periodic time signal
with a slowly varying amplitude.

Example Code
Type @sigprc09 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc09, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-8: Analytic Signal for r(t)
The Hilbert Transform Using IDL

RSI_PROCODE/examples/doc/signal/sigprc09

Chapter 10: Signal Processing 267

using.book Page 267 Tuesday, June 14, 2005 11:12 AM
The Wavelet Transform

Like the discrete Fourier transform, the discrete wavelet transform (DWT) is a linear
operation that defines a forward and inverse relationship between the time-domain
and the frequency-domain, also called the wavelet domain. This relationship is
expressed through the use of basis functions. In the case of the DFT, trigonometric
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets.
Also like the DFT, the DWT is orthogonal, making many operations computationally
efficient. For example, the inverse wavelet transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavelet transforms can
usefully be severely truncated—that is, they can be effectively turned into sparse
expressions. This property is a result of the simultaneous compact representation of
the wavelet basis functions in the time and frequency domains. See “WTN” in the
IDL Reference Guide manual for an example using the wavelet transform. Also see
“Wavelet Toolkit” in the IDL Quick Reference manual for a brief description of the
available wavelet routines.
Using IDL The Wavelet Transform

268 Chapter 10: Signal Processing

using.book Page 268 Tuesday, June 14, 2005 11:12 AM
Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL has two functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signals is the
Inverse Fourier transform of the product of the Fourier transforms of the two signals.
BLK_CON is faster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See the
example in the “Finite Impulse Response (FIR) Filters” on page 271.
Convolution Using IDL

Chapter 10: Signal Processing 269

using.book Page 269 Tuesday, June 14, 2005 11:12 AM
Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of
the signals removed beforehand) are closely related to convolution. They are useful in
analyzing signals with random components. Autocorrelation and autocovariance of
signals are computed with the A_CORRELATE function, and crosscorrelation and
crosscovariance are computed with the C_CORRELATE function. See “Time-Series
Analysis” on page 316 for details.
Using IDL Correlation and Covariance

270 Chapter 10: Signal Processing

using.book Page 270 Tuesday, June 14, 2005 11:12 AM
Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency
components (noise) from a sampled signal. Two broad classes of filters are Finite
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (IIR) or AutoRegressive Moving Average (ARMA) filters. Both of these
classes of filters are described in the following sections:

• “Finite Impulse Response (FIR) Filters” on page 271

• “Infinite Impulse Response Filters” on page 275
Digital Filtering Using IDL

Chapter 10: Signal Processing 271

using.book Page 271 Tuesday, June 14, 2005 11:12 AM
Finite Impulse Response (FIR) Filters

Digital filters that have an impulse response which reaches zero in a finite number of
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR
filter can be implemented non-recursively by convolving its impulse response (which
is often used to define an FIR filter) with the time data sequence it is filtering. FIR
filters are somewhat simpler than Infinite Impulse Response (IIR) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL’s DIGITAL_FILTER function computes the impulse response of an FIR filter
based on Kaiser’s window, which in turn is based on the modified Bessel function.
The Kaiser filter is “nearly optimum in the sense of having the largest energy in the
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filters and
Signal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters. The figure below plots a bandstop filter which
suppresses frequencies between 7 cycles per second and 15 cycles per second for data
sampled every 0.02 seconds.

Example Code
Type @sigprc10 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc10, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-9: Bandstop FIR Filter
Using IDL Finite Impulse Response (FIR) Filters

RSI_PROCODE/examples/doc/signal/sigprc10

272 Chapter 10: Signal Processing

using.book Page 272 Tuesday, June 14, 2005 11:12 AM
Other FIR filters can be designed based on the Hanning and Hamming windows (see
“Using Windows” on page 260), or any other user-defined window function. The
design procedure is simple:

1. Compute the impulse response of an ideal filter using the inverse FFT.

2. Apply a window to the impulse response. The modified impulse response
defines the FIR filter.

The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequency
domain using the Hanning window.

Example Code
Type @sigprc11 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc11, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-10: Bandstop Filter Using Hanning Window
Finite Impulse Response (FIR) Filters Using IDL

RSI_PROCODE/examples/doc/signal/sigprc11

Chapter 10: Signal Processing 273

using.book Page 273 Tuesday, June 14, 2005 11:12 AM
FIR Filter Implementation

The simplest FIR (Finite Impulse Response) filter to apply to a signal is the
rectangular or boxcar filter, which is implemented with IDL’s SMOOTH function, or
the closely related MEDIAN function.

Applying other FIR filters to signals is straightforward since the filter is non-
recursive. The filtered signal is simply the convolution of the impulse response of the
filter with the original signal. The impulse response of the filter is computed with the
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve a filter
with a signal. Using u(k) from the previous example and the bandstop filter created
above creates the plot shown in the figure below.

Example Code
Type @sigprc12 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc12, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Figure 10-11: Digital Signal Before and After Filtering
Using IDL FIR Filter Implementation

RSI_PROCODE/examples/doc/signal/sigprc12

274 Chapter 10: Signal Processing

using.book Page 274 Tuesday, June 14, 2005 11:12 AM
The frequency response of the filtered signal shows that the frequency component at
11.0 cycles / second has been filtered out, while the frequency components at 2.8 and
6.25 cycles / second, as well as the DC component, have been passed by the filter.
FIR Filter Implementation Using IDL

Chapter 10: Signal Processing 275

using.book Page 275 Tuesday, June 14, 2005 11:12 AM
Infinite Impulse Response Filters

Digital filters which must be implemented recursively are called Infinite Impulse
Response (IIR) filters because, theoretically, the response of these filters to an
impulse never settles to zero. In practice, the impulse response of many IIR filters
approaches zero asymptotically, and may actually reach zero in a finite number of
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For example,
the Laplace transform representation (or continuous transfer function) of a second
order notch filter with the notch at f0 cycles per second is:

where s is the Laplace transform variable. Then the continuous transfer function is
converted to the equivalent discrete transfer function using one of several techniques.
One of these is the bilinear (Tustin) transform, where

(2/δ)*(z-1)/(z+1)

is substituted for the Laplace transform variable s. In this expression, z is the unit
delay operator.

For the notch filter above, the bilinear transformation yields the following discrete
transfer function:

where c = (1 – π*f0*δ) / (1 + π*f0*δ).

Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

delt = 0.02
; Notch frequency in cycles per second:
f0 = 6.5
c = (1.0-!PI*F0*delt) / (1.0+!PI*F0*delt)

y s()
u s()

f0

2π
------ s

2
+⎝ ⎠

⎛ ⎞

1 2s
f0

2π
------⎝ ⎠
⎛ ⎞ s

2
+ +⎝ ⎠

⎛ ⎞
--=

y z()
u z()

1 c
2

+
2

-------------- 2cz– 1 c
2

+
2

--------------z
2

+⎝ ⎠
⎛ ⎞

c
2

2cz– z
2

+()
---=
Using IDL Infinite Impulse Response Filters

276 Chapter 10: Signal Processing

using.book Page 276 Tuesday, June 14, 2005 11:12 AM
b = [(1+c^2)/2, -2*c, (1+c^2)/2]
a = [c^2, -2*c, 1]

Example Code
Alternately, type @sigprc13 at the IDL prompt to run the sigprc13 batch file
and create the plot variables. See “Running the Example Code” on page 250 if IDL
does not find the batch file.

IIR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at every
time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

is implemented with the difference equation

An IIR filter is stable if the absolute values of the roots of the denominator of the
discrete transfer function a(z) are all less than one. The impulse response of a stable
IIR filter approaches zero as the time index k approaches infinity. The frequency
response function of a stable IIR filter is the Discrete Fourier Transform of the filter’s
impulse response.

y z()
b0 b1z … bnbz

nb
+ + +

a0 a1z … anaz
nb

+ + +

⎝ ⎠
⎜ ⎟
⎛ ⎞

u z()=

y k()
b0u k nb–() b1u k nb– 1+() … bnbu k() a0y k na–()– a1y k na– 1+() …– ana 1– y k 1–()––+ + +()

ana
--=
Infinite Impulse Response Filters Using IDL

RSI_PROCODE/examples/doc/signal/sigprc13

Chapter 10: Signal Processing 277

using.book Page 277 Tuesday, June 14, 2005 11:12 AM
The figure below plots the impulse and frequency response functions of the notch
filter defined above using recursive difference equations.

Example Code
Type @sigprc14 at the IDL prompt to run the batch file that creates this display.
The source code is located in sigprc14, in the examples/doc/signal
directory. See “Running the Example Code” on page 250 if IDL does not find the
batch file.

Note
Because the impulse response approaches zero, IDL may warn of floating-point
underflow errors. This is an expected consequence of the digital implementation of
an Infinite Impulse Response filter.

The same code could be used to filter any input sequence u(k).

Figure 10-12: Impulse and Frequency Response of a Notch Filter
Using IDL Infinite Impulse Response Filters

RSI_PROCODE/examples/doc/signal/sigprc14

278 Chapter 10: Signal Processing

using.book Page 278 Tuesday, June 14, 2005 11:12 AM
References

Bracewell, Ronald N., The Fourier Transform and Its Applications, New York:
McGraw-Hill, 1978. ISBN 0-07-007013-X

Chen, Chi-Tsong, One-Dimensional Digital Signal Processing, New York: Marcel
Dekker, Inc., 1979. ISBN 0-8247-6877-9

Jackson, Leland B., Digital Filters and Signal Processing, Boston: Kluwer Academic
Publishers, 1986. ISBN 0-89838-174-6

Mayeda, Wataru, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993. ISBN 0-13-211301-5

Morgera, Salvatore D. and Krishna, Hari, Digital Signal Processing: Applications to
Communications and Algebraic Coding Theories, Boston: Academic Press, 1989.
ISBN 0-12-506995-2

Oppenheim, Alan V. and Schafer, Ronald W., Discrete-time signal processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN 0-13-216292-X

Peled, Abraham and Liu, Bede, Digital Signal Processing, New York: John Wiley &
Sons, Inc., 1976. ISBN 0-471-01941-0

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Proakis, John G. and Manolakis, Dimitris G., Digital Signal Processing: Principles,
Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
ISBN 0-02-396815-X

Rabiner, Lawrence R. and Gold, Bernard, Theory and application of digital signal
processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. ISBN 0-139-14101-4

Strang, Gilbert and Nguyen, Truong, Wavelets and Filter Banks, Wellesley, MA:
Wellesley-Cambridge Press, 1996. ISBN 0-961-40887-1
References Using IDL

using.book Page 279 Tuesday, June 14, 2005 11:12 AM
Chapter 11

Mathematics
The following topics are covered in this chapter:
Overview of Mathematics in IDL 280
IDL’s Numerical Recipes Functions 281
Correlation Analysis 282
Curve and Surface Fitting 286
Eigenvalues and Eigenvectors 288
Gridding and Interpolation 294
Hypothesis Testing 295
Integration . 297

Linear Systems . 302
Nonlinear Equations 309
Optimization . 311
Sparse Arrays . 313
Time-Series Analysis 316
Multivariate Analysis 319
References . 325
Using IDL 279

280 Chapter 11: Mathematics

using.book Page 280 Tuesday, June 14, 2005 11:12 AM
Overview of Mathematics in IDL

This chapter documentsIDL’s mathematics and statistics procedures and functions.
These include Numerical Recipes™ algorithms published in Numerical Recipes in C:
The Art of Scientific Computing (Second Edition). For a list of IDL mathematical
routines, see the functional category of “Mathematics” in the IDL Quick Reference
manual. There you will find a brief introduction to the routines. Detailed information
is available in the IDL Reference Guide. This chapter also includes introductory
discussions of the following topics and an overview of the way IDL handles the
particular problems involved:

• “Correlation Analysis” on page 282

• “Curve and Surface Fitting” on page 286

• “Eigenvalues and Eigenvectors” on page 288

• “Gridding and Interpolation” on page 294

• “Hypothesis Testing” on page 295

• “Integration” on page 297

• “Linear Systems” on page 302

• “Nonlinear Equations” on page 309

• “Optimization” on page 311

• “Sparse Arrays” on page 313

• “Time-Series Analysis” on page 316

• “Multivariate Analysis” on page 319

References are provided at the end of each section for a more detailed description and
understanding of the topic.

Research Systems, Inc. is extremely interested in the accuracy of its algorithms. Bug
reports, documentation errors and suggestions for future mathematics and statistics
enhancements can be sent to RSI via:

Internet: support@RSInc.com

Fax: (303) 786-9909

Note
Floating-point numbers are inherently inaccurate. See “Accuracy and Floating Point
Operations” on page 272 for details on roundoff and truncation errors.
Overview of Mathematics in IDL Using IDL

mailto:support@RSInc.com

Chapter 11: Mathematics 281

using.book Page 281 Tuesday, June 14, 2005 11:12 AM
IDL’s Numerical Recipes Functions

IDL includes a number of routines based on algorithms published in Numerical
Recipes in C: The Art of Scientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in the IDL Reference Guide and in the IDL
Online Help.

In IDL versions up to and including IDL version 3.6, mathematics functions based on
Numerical Recipes algorithms required that input be in column-major format. This is
no longer the case. Routines based on Numerical Recipes algorithms have been
reworked and renamed, so that all IDL functions now expect input arrays to be in
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations need be
made to existing code as a result of this change in IDL. We recommend that all new
IDL programs take advantage of the new names and input convention.
Using IDL IDL’s Numerical Recipes Functions

282 Chapter 11: Mathematics

using.book Page 282 Tuesday, June 14, 2005 11:12 AM
Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the
degree of fit to a linear model using the correlation coefficient. The correlation
coefficient, r, is a scalar quantity in the interval [-1.0, 1.0], and is defined as the ratio
of the covariance of the sample populations to the product of their standard
deviations.

or

The correlation coefficient is a direct measure of how well two sample populations
vary jointly. A value of r = +1 or r = –1 indicates a perfect fit to a positive or negative
linear model, respectively. A value of r close to +1 or –1 indicates a high degree of
correlation and a good fit to a linear model. A value of r close to 0 indicates a poor fit
to a linear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X = [-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y = [-9.8, -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
;Compute the correlation coefficient of X and Y.
PRINT, CORRELATE(X, Y)

r covariance of X and Y
standard deviation of X() standard deviation of Y()

---=

r

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

yi
yk

N

k 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

i 0=

N 1–

∑

1
N 1–
------------- xi

xk

N

k 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

i 0=

N 1–

∑ 1
N 1–
------------- yi

yk

N

k 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

i 0=

N 1–

∑

--=
Correlation Analysis Using IDL

Chapter 11: Mathematics 283

using.book Page 283 Tuesday, June 14, 2005 11:12 AM
IDL prints:

1.00000

The following sample populations represent a high negative linear correlation.

X = [1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y = [-4.7, 9.8, -3.7, 2.8, 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

-0.979907

The following sample populations represent a poor linear correlation.

X = [-1.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y = [1.5, -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
;Compute the correlation coefficient of X and Y:
PRINT, CORRELATE(X, Y)

IDL prints:

0.0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it is important to remember
the following two caveats:

1. Although a high degree of correlation (a value close to +1 or –1) indicates a
good mathematical fit to a linear model, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmospheric
phenomena and the consumption of alcohol in Russia, but the two events are
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to a linear
model, it does not mean that there is no correlation between the two sample
populations. It is possible that the relationship between X and Y is accurately
described by a nonlinear model. See “Curve and Surface Fitting” on page 286
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models

The fundamental principles of correlation that apply to the linear model of two
sample populations may be extended to the multiple-linear model. The degree of
relationship between three or more sample populations may be quantified using the
Using IDL Correlation Analysis

284 Chapter 11: Mathematics

using.book Page 284 Tuesday, June 14, 2005 11:12 AM
multiple correlation coefficient. The degree of relationship between two sample
populations when the effects of all other sample populations are removed may be
quantified using the partial correlation coefficient. Both of these coefficients are
scalar quantities in the interval [0.0, 1.0]. A value of +1 indicates a perfect linear
relationship between populations. A value close to +1 indicates a high degree of
linear relationship between populations; whereas a value close to 0 indicates a poor
linear relationship between populations. (Although a value of 0 indicates no linear
relationship between populations, remember that there may be a nonlinear
relationship.)

Partial Correlation Example

Define the independent (X) and dependent (Y) data.

X = [[0.477121, 2.0, 13.0], $
[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0.000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99.481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

Compute the multiple correlation of Y on the first column of X. The result should be
0.798816.

PRINT, M_CORRELATE(X[0,*], Y)

IDL prints:

0.798816
Correlation Analysis Using IDL

Chapter 11: Mathematics 285

using.book Page 285 Tuesday, June 14, 2005 11:12 AM
Compute the multiple correlation of Y on the first two columns of X. The result
should be 0.875872.

PRINT, M_CORRELATE(X[0:1,*], Y)

IDL prints:

0.875872

Compute the multiple correlation of Y on all columns of X. The result should be
0.877197.

PRINT, M_CORRELATE(X, Y)

IDL prints:

0.877197
;Define the five sample populations.
X0 = [30, 26, 28, 33, 35, 29]
X1 = [0.29, 0.33, 0.34, 0.30, 0.30, 0.35]
X2 = [65, 60, 65, 70, 70, 60]
X3 = [2700, 2850, 2800, 3100, 2750, 3050]
Y = [37, 33, 32, 37, 36, 33]

Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3
removed.

PRINT, P_CORRELATE(X1, Y, REFORM([X0,X2,X3], 3, N_ELEMENTS(X1)))

IDL prints:

0.996017

Routines for Computing Correlations

See “Correlation Analysis” (in the functional category “Mathematics” in the IDL
Quick Reference manual) for a brief description of IDL routines for computing
correlations. Detailed information is available in the IDL Reference Guide.
Using IDL Correlation Analysis

286 Chapter 11: Mathematics

using.book Page 286 Tuesday, June 14, 2005 11:12 AM
Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given a tabulated set of data values {xi, yi} and the general form of a mathematical
model (a function f(x) with unspecified parameters), determine the parameters of the
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {xi, yi, zi} and a function f(x, y) of two spatial dimensions.

For example, we can use the CURVEFIT routine to determine the parameters A and B
of a user-supplied function f(x), such that the sums of the squares of the residuals
between the tabulated data {xi, yi} and function are minimized. We will use the
following function and data:

f (x) = a (1 –e-bx)

xi = [0.25, 0.75, 1.25, 1.75, 2.25]

yi = [0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its
partial derivatives with respect to the parameters a0 and a1:

PRO funct, X, A, F, PDER
F = A[0] * (1.0 - EXP(-A[1] * X))
; If the function is called with four parameters,
; calculate the partial derivatives:
IF N_PARAMS() GE 4 THEN BEGIN

; PDER’s column dimension is equal to the number of
; elements in xi and its row dimension is equal to
; the number of parameters in the function F:
pder = FLTARR(N_ELEMENTS(X), 2)
; Compute the partial derivatives with respect to
; a0 and place in the first row of PDER:
pder[*, 0] = 1.0 - EXP(-A[1] * X)
; Compute the partial derivatives with respect to
; a1 and place in the second row of PDER:
pder[*, 1] = A[0] * x * EXP(-A[1] * X)

ENDIF
END

Note
The function will not calculate the partial derivatives unless it is called with four
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the
extra computation in cases when the partial derivatives are not needed.

Next, we can use the following IDL commands to find the function’s parameters:
Curve and Surface Fitting Using IDL

Chapter 11: Mathematics 287

using.book Page 287 Tuesday, June 14, 2005 11:12 AM
;Define the vectors of tabulated:
X = [0.25, 0.75, 1.25, 1.75, 2.25]
;data values:
Y = [0.28, 0.57, 0.68, 0.74, 0.79]
;Define a vector of weights:
W = 1.0 / Y
;Provide an initial guess of the function’s parameters:
A = [1.0, 1.0]
;Compute the parameters a0 and a1:
yfit = CURVEFIT(X, Y, W, A, SIGMA_A, FUNCTION_NAME = 'funct')
;Print the parameters, which are returned in A:
PRINT, A

IDL prints:

0.787386 1.71602

Thus the nonlinear function that best fits the data is:

f (x) = 0.787386 (1 -–e-1.71602x)

Routines for Curve and Surface Fitting

See “Curve and Surface Fitting” (in the functional category “Mathematics” in the
IDL Quick Reference manual) for a brief description of IDL routines for curve and
surface fitting. Detailed information is available in the IDL Reference Guide.
Using IDL Curve and Surface Fitting

288 Chapter 11: Mathematics

using.book Page 288 Tuesday, June 14, 2005 11:12 AM
Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = λx,
where A is an n-by-n array, x is an n-element vector, and λ is a scalar. A scalar λ and
nonzero vector x that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors
of the array A is then referred to as the eigenspace of A. Ideally, the eigenspace will
consist of n linearly-independent eigenvectors, although this is not always the case.

IDL computes the eigenvalues and eigenvectors of a real symmetric n-by-n array
using Householder transformations and the QL algorithm with implicit shifts. The
eigenvalues of a real, n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenvalues and eigenvectors can also be defined in terms of the determinant
function. The eigenvalues of an n-by-n array A are the roots of the polynomial
defined by det(A – λI), where I is the identity matrix (an array with 1s on the main
diagonal and 0s elsewhere) with the same dimensions as A. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenvalues and
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Note that it is
possible to check the accuracy of the computed eigenvalues and eigenvectors by
algebraically manipulating the definition given above to read Ax – λx = 0; in this case
0 denotes an n-element vector, all elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

To compute eigenvalues and eigenvectors of a real, symmetric, n-by-n array, begin
with a symmetric array A.

Note
The eigenvalues and eigenvectors of a real, symmetric n-by-n array are real
numbers.

A = [[3.0, 1.0, -4.0], $
[1.0, 3.0, -4.0], $
[-4.0, -4.0, 8.0]]
Eigenvalues and Eigenvectors Using IDL

Chapter 11: Mathematics 289

using.book Page 289 Tuesday, June 14, 2005 11:12 AM
; Compute the tridiagonal form of A:
TRIRED, A, D, E
; Compute the eigenvalues (returned in vector D) and
; the eigenvectors (returned in the rows of the array A):
TRIQL, D, E, A
; Print eigenvalues:
PRINT, D

IDL prints:

2.00000 4.76837e-07 12.0000

The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A:
PRINT, A

IDL prints:

0.707107 -0.707107 0.00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0.816497

The exact eigenvectors are:

Nonsymmetric Array with n Distinct Real and
Complex Eigenvalues

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array,
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-
independent eigenvectors.

A = [[1.0, 0.0, 2.0], $
[0.0, 1.0, -1.0], $
[-1.0, 1.0, 1.0]]

; Reduce to upper Hessenberg format:
hes = ELMHES(A)
; Compute the eigenvalues:
evals = HQR(hes)
; Print the eigenvalues:
PRINT, evals

IDL prints:

1 2⁄ 1– 2⁄ 0

1– 3⁄ 1– 3⁄ 1– 3⁄

1– 6⁄ 1– 6⁄ 2 6⁄
Using IDL Eigenvalues and Eigenvectors

290 Chapter 11: Mathematics

using.book Page 290 Tuesday, June 14, 2005 11:12 AM
(1.00000, -1.73205)(1.00000, 1.73205)
(1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in
complex conjugate pairs.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and the residual for each
; eigenvalue/eigenvector pair, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors, which are returned as
; row vectors in evecs:
PRINT, evecs[*,0]

IDL prints:

(0.68168704, 0.18789033)(-0.34084352, -0.093945164)
(0.16271780, -0.59035830)
PRINT, evecs[*,1]

IDL prints:

(0.18789033, 0.68168704)(-0.093945164, -0.34084352)
(-0.59035830, 0.16271780)
PRINT, evecs[*,2]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
(-2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax – λx = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the result of
this computation.

PRINT, residual

IDL prints:

(-1.2021898e-07, 1.1893681e-07)(6.0109490e-08, -5.9468404e-08)
(1.0300230e-07, 1.0411269e-07)
(1.1893681e-07, -1.2021898e-07)(-5.9468404e-08, 6.0109490e-08)
(1.0411269e-07, 1.0300230e-07)
(0.0000000, 0.0000000)(0.0000000, 0.0000000)

The results are all zero to within machine precision.
Eigenvalues and Eigenvectors Using IDL

Chapter 11: Mathematics 291

using.book Page 291 Tuesday, June 14, 2005 11:12 AM
Repeated Eigenvalues

To compute the eigenvalues and eigenvectors of a real, nonsymmetric n-by-n array,
begin with an array A. In this example, there are fewer than n distinct eigenvalues, but
n independent eigenvectors are available.

A = [[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]]

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

(9.00000, 0.00000) (2.00000, 0.00000)
(2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual:
residual = 1
; Compute the eigenvectors and residual, using
; double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
; Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:

(0.90453403, 0.0000000)(0.30151134, 0.0000000)
(0.30151134, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
PRINT, evecs[*,2]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
Using IDL Eigenvalues and Eigenvectors

292 Chapter 11: Mathematics

using.book Page 292 Tuesday, June 14, 2005 11:12 AM
We can compute an independent eigenvector for the repeated eigenvalue (2.0) by
perturbing it slightly, allowing the algorithm EIGENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

newresidual = 1
evecs[*,2] = EIGENVEC(A, evals[2]+1.0e-6, /DOUBLE, $

RESIDUAL = newresidual)
PRINT, evecs[*,2]

IDL prints:

(-0.33333333, 0.0000000)(0.66666667, 0.0000000)
(0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element
in the residuals —for both the original eigenvectors and the perturbed eigenvector—
is zero to within machine precision.

The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer
than n linearly-independent eigenvectors. Begin with an array A:

A = [[2.0, -1.0], $
[1.0, 0.0]]

; Reduce A to upper Hessenberg form and compute the eigenvalues.
; Note that both operations can be combined into a single command.
evals = HQR(ELMHES(A))
; Print the eigenvalues:
PRINT, evals

IDL prints:

(1.00000, 0.00000)(1.00000, 0.00000)

Note
The two eigenvalues are real, but not distinct.

; Compute the eigenvectors, using double-precision arithmetic:
evecs = EIGENVEC(A, evals, /DOUBLE)
; Print the eigenvectors:
PRINT, evecs[*,0]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
PRINT, evecs[*,1]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
Eigenvalues and Eigenvectors Using IDL

Chapter 11: Mathematics 293

using.book Page 293 Tuesday, June 14, 2005 11:12 AM
We attempt to compute an independent eigenvector using the method described in the
previous example:

evecs[*,1] = EIGENVEC(A, evals[1]+1.0e-6, /DOUBLE)
PRINT, evecs[1,*]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and
Eigenvectors

See “Eigenvalues and Eigenvectors” (in the functional category “Mathematics” in the
IDL Quick Reference manual) for a brief description of IDL routines for computing
eigenvalues and eigenvectors. Detailed information is available in the IDL Reference
Guide.
Using IDL Eigenvalues and Eigenvectors

294 Chapter 11: Mathematics

using.book Page 294 Tuesday, June 14, 2005 11:12 AM
Gridding and Interpolation

Given a set of tabulated data in n-dimensions with each dimension being described as
follows:

1. {xi, yi = f (xi)},

2. {xi, yi, zi = f (xi, yi)}, or

3. {xi, yi, zi, wi = f (xi, yi, zi)}

it is possible to calculate intermediate values of the function f using interpolation.
IDL includes a variety of routines to solve this type of problem.

The determination of intermediate values is based upon an interpolating function that
establishes a relationship between the tabulated data points. Different algorithms
employ different types of interpolating functions suitable for different types of data
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function
be an exact fit at each of the tabulated data points. Interpolation does not use any type
of error analysis and its accuracy depends upon the behavior of the interpolating
function between successive data points. Polynomial, spline, and nearest-neighbor
are among the interpolation methods used in IDL. Kriging is another interpolation
method, one which does not require an exact fit at each tabulated data point. Kriging
applies a weighting to each of the tabulated data points based on spatial variance and
trends among the points. Weights are computed by combining calculations of spatial
continuity and anistropy within either an exponential or spherical semivariogram
model.

Gridding, a topic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of
problem by constructing a Delaunay triangulation. This method is highly accurate
and has great utility since many of IDL’s graphics routines require uniformly-gridded
data. Extrapolation, the estimation of values outside the range of tabulated data, is
also possible using this method.

Routines for Gridding and Interpolation

See “Gridding and Interpolation” (in the functional category “Mathematics” in the
IDL Quick Reference manual) for a brief description of IDL routines for gridding and
interpolation. Detailed information is available in the IDL Reference Guide.
Gridding and Interpolation Using IDL

Chapter 11: Mathematics 295

using.book Page 295 Tuesday, June 14, 2005 11:12 AM
Hypothesis Testing

Hypothesis testing tests one or more sample populations for a statistical characteristic
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:

• The formulation of a hypothesis.

• The selection and collection of sample population data.

• The application of an appropriate test.

• The interpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of a new drug in
the treatment of a certain ailment. Researchers test the assumption that the drug is
effective by administering it to a sample population and collecting data on the
patients’ health. Once the data are collected, an appropriate statistical test is selected
and the results analyzed. If the interpretation of the test results suggests a statistically
significant improvement in the patients’ condition, the researchers conclude that the
drug will be effective in general.

It is important to remember that a valid or successful test does not prove the proposed
hypothesis. Only by disproving competing or opposing hypotheses can a given
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the
norm (in this case, improvement of the patients’ condition). A hypothesis designed to
test the improvement or ill-effect of the trial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Tests of hypothesis are usually classified into parametric and nonparametric methods.
Parametric methods make assumptions about the underlying distribution from which
sample populations are selected. Nonparametric methods make no assumptions about
a sample population’s distribution and are often based upon magnitude-based
ranking, rather than actual measurement data. In many cases it is possible to replace a
Using IDL Hypothesis Testing

296 Chapter 11: Mathematics

using.book Page 296 Tuesday, June 14, 2005 11:12 AM
parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]

Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $
271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’s TM_TEST function,
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST(X, Y)

IDL prints:

5.52839 2.52455e-06

The small value of the significance (2.52455e-06) indicates that X and Y have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL’s RS_TEST function, to test the
hypothesis that X and Y have the same mean of distribution.

PRINT, RS_TEST(X, Y)

IDL prints:

-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of
the proposed hypothesis and the conclusion that X and Y have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functions is based
upon a well-known and widely-accepted statistical test. Each of these functions
returns a two-element vector containing the statistic on which the test is based and its
significance. Examples are provided and demonstrate how the result is interpreted.

Routines for Hypothesis Testing

See “Hypothesis Testing” (in the functional category “Mathematics” in the IDL
Quick Reference manual) for a brief description of IDL routines for hypothesis
testing. More detailed information is available in the IDL Reference Guide.
Hypothesis Testing Using IDL

Chapter 11: Mathematics 297

using.book Page 297 Tuesday, June 14, 2005 11:12 AM
Integration

Numerical methods of approximating integrals are important in many areas of pure
and applied science. For a function of a single variable, f (x), it is often the case that
the antiderivative F = ∫ f (x) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate functions,
f (x, y) and f (x, y, z). Numerically approximating the integral operator provides the
only method of solution when the antiderivative is not explicitly available. IDL offers
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

• Integration of a univariate function over an open or closed interval is possible
using one of several routines based on well known methods developed by
Romberg and Simpson.

• The problem of integrating over a tabulated set of data { xi, yi = f (xi) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This method is
more accurate and efficient than using interpolation or curve-fitting to find an
approximate function and then integrating.

• Integration of a bivariate function over a regular or irregular region in the x-y
plane is possible using an iterated Gaussian Quadrature routine.

• Integration of a trivariate function over a regular or irregular region in x-y-z
space is possible using an iterated Gaussian Quadrature routine.

I f x() xd
x a=

x b=

∫=

I f x y,() yd xd
y p x()=

y q x()=

∫
x a=

x b=

∫=

I f x y z, ,() zd yd xd
z u x y,()=

z v x y,()=

∫
y p x()=

y q x()=

∫
x a=

x b=

∫=
Using IDL Integration

298 Chapter 11: Mathematics

using.book Page 298 Tuesday, June 14, 2005 11:12 AM
Note
IDL’s iterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this
standard must be changed as described in the following example.

A Bivariate Function

Suppose that we wish to evaluate

The order of integration is initially described as a dx-dy region in the x-y plane. Using
the diagram below, you can easily change the integration order to dy-dx.

The integral is now of the form

The new expression can be evaluated using the INT_2D function.

To use INT_2D, we must specify the function to be integrated and expressions for the
upper and lower limits of integration. First, we write an IDL function for the
integrand, the function f (x, y):

FUNCTION fxy, X, Y
RETURN, Y * COS(X^5)

END

Figure 11-1: The Bivariate Function

y x
5()cos⋅ xd yd

x y=

x 2=

∫
y 0=

y 4=

∫

Y

X

x y=

x 2=

2 4,()

dy
dx

y x
5()cos⋅ yd xd

y 0=

y x2=

∫
x 0=

x 2=

∫

Integration Using IDL

Chapter 11: Mathematics 299

using.book Page 299 Tuesday, June 14, 2005 11:12 AM
Next, we write a function for the limits of integration of the inner integral. Note that
the limits of the outer integral are specified numerically, in vector form, while the
limits of the inner integral must be specified as an IDL function even if they are
constants. In this case, the function is:

FUNCTION pq_limits, X
RETURN, [0.0, X^2]

END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define a variable AB_LIMITS containing the vector of
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in this
case). The second argument is the name of the variable containing the vector of limits
for the outer integral (AB_LIMITS, in this case). The third argument is the name of
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, in this case). The fourth argument (48) refers to the number of
transformation points used in the computation. As a general rule, the number of
transformation points used with iterated Gaussian Quadrature should increase as the
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab_limits = [0.0, 2.0]
PRINT, INT_2D('fxy', ab_limits, 'pq_limits', 48)

IDL prints:

0.055142668

This is the exact solution to 9 decimal accuracy.

A Trivariate Function

Suppose that we wish to evaluate

This integral can be evaluated using the INT_3D function. As with INT_2D, we must
specify the function to be integrated and expressions for the upper and lower limits of
integration. Note that in this case IDL functions must be provided for the upper and
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrand f (x, y, z):

z x
2

y
2

z
2

+ +()
3 2⁄

zd yd xd
z 0=

z 4 x2– y2–=

∫
y 4 x2––=

y 4 x2–=

∫
x 2–=

x 2=

∫

Using IDL Integration

300 Chapter 11: Mathematics

using.book Page 300 Tuesday, June 14, 2005 11:12 AM
FUNCTION fxyz, X, Y, Z
RETURN, Z * (X^2 + Y^2 + Z^2)^1.5

END

The limits of integration of the first inside integral:

FUNCTION pq_limits, X
RETURN, [-SQRT(4.0 - X^2), SQRT(4.0 -X^2)]

END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X^2 - Y^2)]

END

We can use the following IDL commands to determine the value of the above integral
using 6, 10, 20 and 48 transformation points.

For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 6)

IDL prints:

57.417720

For 10 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 10)

IDL prints:

57.444248

20 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 20)

IDL prints:

57.446201

48 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
'pq_limits', 'uv_limits', 48)

IDL prints:

57.446265

The exact solution to 6-decimal accuracy is 57.446267.
Integration Using IDL

Chapter 11: Mathematics 301

using.book Page 301 Tuesday, June 14, 2005 11:12 AM
Routines for Differentiation and Integration

See “Differentiation and Integration” (in the functional category “Mathematics” in
the IDL Quick Reference manual) for a brief description of IDL routines for
differentiation and integration. Detailed information is available in the IDL Reference
Guide.
Using IDL Integration

302 Chapter 11: Mathematics

using.book Page 302 Tuesday, June 14, 2005 11:12 AM
Linear Systems

IDL offers a variety of methods for the solution of simultaneous linear equations. In
order to use these routines successfully, the user should consider both existence and
uniqueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A is invertible. Using a simple algebraic
manipulation, it is possible to formulate the solution vector x in terms of the inverse
of the coefficient array A and the right-side vector b: x = A-1b. Although this
relationship provides a concise mathematical representation of the solution, it is
never used in practice. Array inversion is computationally expensive (requiring a
large number of floating-point operations) and prone to severe round-off errors.

An alternate way of describing the existence of a solution is to say that the system
Ax = b is solvable if and only if the vector b may be expressed as a linear
combination of the columns of A. This definition is important when considering the
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists, it
does not help in determining the solution. Some systems can be solved accurately
using numerical methods whereas others cannot. In order to better understand the
accuracy of a numerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of a linear system is a measure of
a solution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of an n-by-n linear system Ax = b is computed explicitly as |A||A-1| (where | |
denotes a Euclidean norm). A linear system whose condition number is small is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number is large is considered ill-conditioned and prone to
computational errors. To some extent, the solution of an ill-conditioned system may
be improved using an extended-precision data type (such as double-precision float).
Other situations require an approximate solution to the system using its Singular
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when a linear system is over- or underdetermined.

Overdetermined Systems

In the case of the overdetermined system (when there are more linear equations than
unknowns), the vector b cannot be expressed as a linear combination of the columns
Linear Systems Using IDL

Chapter 11: Mathematics 303

using.book Page 303 Tuesday, June 14, 2005 11:12 AM
of array A. (In other words, b lies outside of the subspace spanned by the columns of
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution of
the overdetermined system (b is projected onto the subspace spanned by the columns
of A and then the system is solved). This type of solution has the property of
minimizing the residual error E = b – Ax in a least-squares sense.

Suppose that we wish to solve the following linear system:

The vector b does not lie in the two-dimensional subspace spanned by the columns of
A (there is no linear combination of the columns of A that yield b), and therefore an
exact solution is not possible.

It is possible, however, to find a solution to this system that minimizes the residual
error by orthogonally projecting the vector b onto the two-dimensional subspace
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A
may be expressed with the array-vector product A(ATA)-1ATb, where A(ATA)-1AT is
known as the projection matrix, P.

Figure 11-2: Overdetermined System Diagram

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

6.0

=

Pb

column 1

column 2

b

Using IDL Linear Systems

304 Chapter 11: Mathematics

using.book Page 304 Tuesday, June 14, 2005 11:12 AM
In this example, the array-vector product Pb yields:

and we wish to solve the linear system

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumulated round-off errors. For this reason it is best to
use singular value decomposition to effect the orthogonal projection of the vector b
onto the subspace spanned by the columns of the array A.

The following IDL commands use singular value decomposition to solve the system
in a numerically stable manner. Begin with the array A:

A = [[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

; Define the right-hand side vector B:
B = [4.0, 5.0, 6.0]
; Compute the singular value decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for a derivation of this formula.)

X = V ## WP ## TRANSPOSE(U) ## B
; Print the solution:
PRINT, X

4.0

5.0

0.0

1.0 2.0

1.0 3.0

0.0 0.0

x0

x1

4.0

5.0

0.0

 where
x0

x1

= 2.0

1.0
=

Linear Systems Using IDL

Chapter 11: Mathematics 305

using.book Page 305 Tuesday, June 14, 2005 11:12 AM
IDL Prints:

2.00000
1.00000

Underdetermined Systems

In the case of the underdetermined system (when there are fewer linear equations
than unknowns), a unique solution is not possible. Using IDL’s SVDC procedure it is
possible to determine the minimal norm solution. Given a vector norm, this type of
solution has the property of having the minimal length of all possible solutions with
respect to that norm.

Suppose that we wish to solve the following linear system.

Using elementary row operations it is possible to reduce the system to

It is now possible to express the solution x in terms of x1 and x3:

The values of x1 and x3 are completely arbitrary. Setting x1 = 0 and x3 = 0 results in
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and results
in the minimal norm condition. The minimal norm solution for this system is:

1.0 3.0 3.0 2.0

2.0 6.0 9.0 5.0

1.0– 3.0– 3.0 0.0

x0

x1

x2

x3

1.0

5.0

5.0

=

1.0 3.0 3.0 2.0

0.0 0.0 3.0 1.0

0.0 0.0 0.0 0.0

x0

x1

x2

x3

1.0

3.0

0.0

=

x

2– 3x1– x3–

x1

1 x3 3⁄–

x3

=

Using IDL Linear Systems

306 Chapter 11: Mathematics

using.book Page 306 Tuesday, June 14, 2005 11:12 AM
Note that this vector also satisfies the solution x as it is expressed in terms of x1
and x3.

The following IDL commands use singular value decomposition to find the minimal
norm solution. Begin with the array A:

A = [[1.0, 3.0, 3.0, 2.0], $
[2.0, 6.0, 9.0, 5.0], $
[-1.0, -3.0, 3.0, 0.0]]

; Define the right-hand side vector B:
B = [1.0, 5.0, 5.0]
; Compute the decomposition of A:
SVDC, A, W, U, V

Create a diagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 × 10-5 are reciprocated.

N = N_ELEMENTS(W)
WP = FLTARR(N, N)
FOR K = 0, N-1 DO $

IF ABS(W(K)) GE 1.0e-5 THEN WP(K, K) = 1.0/W(K)

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for a derivation of this formula.) The solution is
expressed in terms of x1 and x3 with minimal norm.

X = V ## WP ## TRANSPOSE(U) ## B
;Print the solution:
PRINT, X

IDL Prints:

-0.211009
-0.633027
0.963303

x

2.0–

0.0
1.0

0.0

=

x

0.211009–

0.633027–

0.963303

0.110092

=

Linear Systems Using IDL

Chapter 11: Mathematics 307

using.book Page 307 Tuesday, June 14, 2005 11:12 AM
0.110092

Complex Linear Systems

We can use IDL’s LU_COMPLEX function to compute the solution to a linear system
with real and complex coefficients. Suppose we wish to solve the following linear system:

;First we define the real part of the complex coefficient array:
re = [[-1, 1, 2, 3], $

[-2, -1, 0, 3], $
[3, 0, 0, 0], $
[2, 1, 2, 2]]

;Next, we define the imaginary part of the coefficient array:
im = [[0, -3, 0, 3], $

[0, 3, 1, 1], $

[0, 4, -1, -3], $
[0, 1, 1, 1]]

; Combine the real and imaginary parts to form
; a single complex coefficient array:
A = COMPLEX(re, im)
; Define the right-hand side vector B:
B = [COMPLEX(15,-2), COMPLEX(-2,-1), COMPLEX(-20,11), $

COMPLEX(-10,10)
; Compute the solution using double-precision complex arithmetic:
Z = LU_COMPLEX(A, B, /DOUBLE)
PRINT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", f5.2, "i")'

IDL prints:

-4.00, 1.00i
 2.00, 2.00i
 0.00, 3.00i
-0.00,-1.00i

We can check the accuracy of the computed solution by computing the residual,
Az–b:

PRINT, A##Z-B

1– 0i+ 1 3i– 2 0i+ 3 3i+

2– 0i+ 1– 3i+ 0– 1i+ 3 1i+

3 0i+ 0 4i+ 0 1i– 0– 3i–

2 0i+ 1 1i+ 2 1i+ 2 1i+

z0

z1

z2

z3

15 2i–

2– 1i–

20– 11i+

10– 10i+

=

Using IDL Linear Systems

308 Chapter 11: Mathematics

using.book Page 308 Tuesday, June 14, 2005 11:12 AM
IDL prints:

(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)

Routines for Solving Simultaneous Linear Equations

See “Linear Systems” (in the functional category “Mathematics” in the IDL Quick
Reference manual) for a brief description of IDL routines for solving simultaneous
linear equations. Detailed information is available in the IDL Reference Guide.
Linear Systems Using IDL

Chapter 11: Mathematics 309

using.book Page 309 Tuesday, June 14, 2005 11:12 AM
Nonlinear Equations

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may
be stated as follows:

given F: Rn → Rn, find x* (an element of Rn) such that F(x*) = 0

For example:

x* = [0, 3] or x* = [3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton’s method. This method begins with an initial guess
and constructs a solution by iteratively approximating the n-dimensional nonlinear
system of equations with an n-by-n linear system of equations.

The first step formulates an n-by-n linear system of equations (Js = – F) where the
coefficient array J is the Jacobian (the array of first partial derivatives of F), s is a
solution vector, and – F is the negative of the nonlinear system of equations. Both J
and – F are evaluated at the current value of the n-element vector x.

J(xk) sk = – F(xk)

The second step uses the solution sk of the linear system as a directional update to the
current approximate solution xk of the nonlinear system of equations. The next
approximate solution xk+1 is a linear combination of the current approximate solution
xk and the directional update sk.

xk+1 = xk + sk

The success of Newton’s method relies primarily on providing an initial guess close
to a solution of the nonlinear system of equations. In practice this proves to be quite
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the
initial guess be close to a solution. These algorithms implement a line search which
checks, and if necessary modifies, the course of the algorithm at each step ensuring

F x()
x0 x1 3–+

x0
2

x1
2

9–+
=

Using IDL Nonlinear Equations

310 Chapter 11: Mathematics

using.book Page 310 Tuesday, June 14, 2005 11:12 AM
progress toward a solution of the nonlinear system of equations. IDL’s NEWTON
and BROYDEN functions are among a class of algorithms known as quasi-Newton
methods.

The solution of an n-dimensional system of nonlinear equations, F(x) = 0, is often
considered a root of that system. As a one-dimensional counterpart to NEWTON and
BROYDEN, IDL provides the FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations

See “Nonlinear Equations” (in the functional category “Mathematics” in the IDL
Quick Reference manual) for a brief description of IDL routines for solving systems
of nonlinear equations. Detailed information is available in the IDL Reference Guide.
Nonlinear Equations Using IDL

Chapter 11: Mathematics 311

using.book Page 311 Tuesday, June 14, 2005 11:12 AM
Optimization

The problem of finding an unconstrained minimizer of an n-dimensional function, f,
may be stated as follows:

given f: Rn → R, find x* (an element of Rn) such that f(x*) is a minimum of f.

For example:

f (x) = (x0 – 3)4 + (x1 - 2)2

x* = [3, 2]

In minimizing an n-dimensional function f, it is a necessary condition that the
gradient at the minimizer x*, ∇f(x*), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

This relation might suggest that finding a minimizer is equivalent to solving a system
of linear equations based on the gradient. In most cases, however, this is not true. It is
just as likely that a solution, x*, of ∇f(x)=0 be a maximizer or a local minimizer of f.
Thus the gradient alone does not provide sufficient information in determining the
role of x*.

IDL provides two algorithms that do sufficiently determine the global minimizer of
an n-dimensional function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradient of
the function to be minimized. IDL’s POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routine is evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

f x()∂
x0∂

f x()∂
x1∂

…
f x()∂
xn 1–∂

0
0

…
0

=

Using IDL Optimization

312 Chapter 11: Mathematics

using.book Page 312 Tuesday, June 14, 2005 11:12 AM
Routines for Optimization

See “Optimization” (in the functional category “Mathematics” in the IDL Quick
Reference manual) for a brief description of IDL routines for optimization. Detailed
information is available in the IDL Reference Guide.
Optimization Using IDL

Chapter 11: Mathematics 313

using.book Page 313 Tuesday, June 14, 2005 11:12 AM
Sparse Arrays

The occurrence of zero elements in a large array is both a computational and storage
inconvenience. An array in which a large percentage of elements are zeros is referred
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with
sparse arrays, IDL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which stores
the array in structure form, as a vector of data and a vector of indices. The length of
each vector is equal to 1 plus the number of diagonal elements of the array plus the
number of off-diagonal elements with an absolute magnitude greater than or equal to
a specified threshold value. Diagonal elements of the array are always retained even
if their absolute magnitude is less than the specified threshold. Sparse array routines
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

Note
For more information on IDL’s sparse array storage method, see section 2.7,
“Sparse Linear Systems,” in Numerical Recipes in C: The Art of Scientific
Computing (Second Edition), published by Cambridge University Press.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at least partially
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in which
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in a given row is greater than the sum of the
absolute values of the non-diagonal elements in that row.)

N = 500L
A = RANDOMN(SEED, N, N)*10
; Set elements with absolute magnitude greater than or
; equal to eight to zero:
I = WHERE(ABS(A) GE 8)
A[I] = 0.0
; Set each diagonal element to the absolute sum of
Using IDL Sparse Arrays

314 Chapter 11: Mathematics

using.book Page 314 Tuesday, June 14, 2005 11:12 AM
; its row elements plus 1.0:
diag = TOTAL(ABS(A), 1)
A(INDGEN(N) * (N+1)) = diag + 1.0
; Create a right-hand side vector, b, in which 40% of
; the elements are ones and 60% are twos.
B = [REPLICATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include everything
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

; Begin with an initial guess:
X = REPLICATE(1.0, N_ELEMENTS(B))
; Start the timer:
start = SYSTIME(1) & $
; Solve the system:
result1 = LINBCG(SPRSIN(A), B, X) & $
; Stop the timer.
stop = SYSTIME(1)
; Print the time taken, in seconds:
PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start

IDL prints:

Time for Iterative Biconjugate Gradient 1.1259040

Remember that your result will depend on your hardware configuration.

Next, we compute the solution using LU decomposition.

; Start the timer:
start = SYSTIME(1) & $
; Compute the LU decomposition of A:
LUDC, A, index & $
; Compute the solution:
result2 = LUSOL(A, index, B) & $
; Stop the timer:
stop = SYSTIME(1)
; Print the time taken, in seconds:
PRINT, 'Time for LU Decomposition:', stop-start

IDL prints:

Time for LU decomposition 14.871168

Finally, we can compare the absolute error between result1 and result2. The
following commands will print the indices of any elements of the two results that
differ by more than 1.0 × 10-5, or a –1 if the two results are identical to within five
decimal places.
Sparse Arrays Using IDL

Chapter 11: Mathematics 315

using.book Page 315 Tuesday, June 14, 2005 11:12 AM
error = ABS(result1-result2)
PRINT, WHERE(error GT 1.0e-5)

IDL prints:

-1

See the documentation for the WTN function for an example using IDL’s sparse
array functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alpha workstation running
OSF/1; they are shown as examples only. Your times will depend on your specific
computing platform.

Routines for Handling Sparse Arrays

See “Sparse Arrays” (in the functional category “Mathematics” in the IDL Quick
Reference manual) for a brief description of IDL routines for handling sparse arrays.
More detailed information is available in the IDL Reference Guide.
Using IDL Sparse Arrays

316 Chapter 11: Mathematics

using.book Page 316 Tuesday, June 14, 2005 11:12 AM
Time-Series Analysis

A time-series is a sequential collection of data observations indexed over time. In
most cases, the observed data is continuous and is recorded at a discrete and finite set
of equally-spaced points. An n-element time-series is denoted as x = (x0, x1, x2, ... ,
xn–1), where the time-indexed distance between any two successive observations is
referred to as the sampling interval.

A widely held theory assumes that a time-series is comprised of four components:

• A trend or long term movement.

• A cyclical fluctuation about the trend.

• A pronounced seasonal effect.

• A residual, irregular, or random effect.

Collectively, these components make the analysis of a time-series a far more
challenging task than just fitting a linear or nonlinear regression model. Adjacent
observations are unlikely to be independent of one another. Clusters of observations
are frequently correlated with increasing strength as the time intervals between them
become shorter. Often the analysis is a multi-step process involving graphical and
numerical methods.

The first step in the analysis of a time-series is the transformation to stationary series.
A stationary series exhibits statistical properties that are unchanged as the period of
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrelation
function is a commonly used tool in determining the stationarity of a time-series. The
autocorrelation of a time-series measures the dependence between observations as a
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of a time-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, $
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]
Time-Series Analysis Using IDL

Chapter 11: Mathematics 317

using.book Page 317 Tuesday, June 14, 2005 11:12 AM
The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.

; Set the plotting window to hold two plots and plot the data:
IPLOT, X, VIEW_GRID=[1,2]

Compute the sample autocorrelation function for time lagged values 0 – 20 and plot.

lag = INDGEN(21)
result = A_CORRELATE(X, lag)
IPLOT, lag, result, /VIEW_NEXT
; Add a reference line at zero:
IPLOT, [0,20], [0,0], /OVERPLOT

The following figure shows the resulting graphs.

The top graph plots time-series data. The bottom graph plots the autocorrelation of
that data versus the lag. Because the time-series has a significant autocorrelation up
to a lag of seven, it must be considered non-stationary.

Nonstationary components of a time-series may be eliminated in a variety of ways.
Two frequently used methods are known as moving averages and forward
differencing. The method of moving averages dampens fluctuations in a time-series

Figure 11-3: Time-series data (Top) and Autocorrelation of that Data
Versus the Lag (Bottom)
Using IDL Time-Series Analysis

318 Chapter 11: Mathematics

using.book Page 318 Tuesday, June 14, 2005 11:12 AM
by taking successive averages of groups of observations. Each successive
overlapping sequence of k observations in the series is replaced by the mean of that
sequence. The method of forward differencing replaces each time-series observation
with the difference of the current observation and its adjacent observation one step
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once a time-series has been transformed to stationarity, it may be modeled using an
autoregressive process. An autoregressive process expresses the current observation,
xt, as a combination of past time-series values and residual white noise. The simplest
case is known as a first order autoregressive model and is expressed as

xt = φxt–1 + ωt

The coefficient φ is estimated using the time-series data. The general autoregressive
model of order p is expressed as

xt = φ1xt–1 +φ2xt–2 + ... + φpxt–p + ωt

Modeling a stationary time-series as a p-th order autoregressive process allows the
extrapolation of data for future values of time. This process is know as forecasting.

Routines for Time-Series Analysis

See “Time-Series Analysis” (in the functional category “Mathematics” in the IDL
Quick Reference manual) for a brief description of IDL routines for time-series
analysis. Detailed information is available in the IDL Reference Guide.
Time-Series Analysis Using IDL

Chapter 11: Mathematics 319

using.book Page 319 Tuesday, June 14, 2005 11:12 AM
Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis and Principal Components
Analysis.

Cluster Analysis

Cluster Analysis attempts to construct a sensible and informative classification of an
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of an
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes a
distance criterion based upon the variables of the data. Given an m-column, n-row
array, IDL’s CLUST_WTS and CLUSTER functions compute n cluster centers and n
clusters, respectively. Conceivably, some clusters will contain multiple samples
while other clusters will contain none. The choice of clusters is arbitrary; in general,
however, the user will want to specify a number less than the default (the number of
rows in the input array). The cluster number (the number that identifies the cluster
group) assigned to a particular sample or group of samples is not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In
this situation, greater or lesser importance may be given to each variable using the
VARIABLE_WTS keyword to the CLUST_WTS function. The default behavior is to
assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUST_WTS and CLUSTER functions provide this functionality by first
transposing the m-column, n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114], $
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[42, 108, 37, 51, 41], $
Using IDL Multivariate Analysis

320 Chapter 11: Mathematics

using.book Page 320 Tuesday, June 14, 2005 11:12 AM
[67, 41, 36, 51, 114], $
[94, 191, 160, 173, 124], $
[99, 79, 63, 87, 249], $
[67, 41, 36, 51, 114]]

; Compute the cluster weights with four cluster centers:
weights = CLUST_WTS(array, N_CLUSTERS = 4)
; Compute the cluster assignments, for each sample,
; into one of four clusters:
result = CLUSTER(array, weights, N_CLUSTERS = 4)
; Display the cluster assignment and corresponding sample (row):
FOR k = 0, 8 DO $

PRINT, result[k], array[*, k]

IDL prints:

1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical data and are assigned to cluster #1. Samples 1, 2, 5,
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain
identical data and are assigned to cluster #0. Sample 4 is unique and is assigned to
cluster #2.

If this example is run several times, each time computing new cluster weights, it is
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Principal components analysis is a mathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formulated
using specific linear combinations of the original variables. The derived variables are
uncorrelated and are computed in decreasing order of importance; the first variable
accounts for as much as possible of the variation in the original data, the second
variable accounts for the second largest portion of the variation in the original data,
and so on. Principal components analysis attempts to construct a small set of derived
variables which summarize the original data, thereby reducing the dimensionality of
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covariance
Multivariate Analysis Using IDL

Chapter 11: Mathematics 321

using.book Page 321 Tuesday, June 14, 2005 11:12 AM
matrix. If the variables of the multivariate data are measured in widely differing units
(large variations in magnitude), it is usually best to use the sample correlation matrix
in computing the principal components; this is the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to
computing principal components. Standardizing the variables essentially makes them
all equally important by creating new variables that each have a mean of zero and a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal
components. There are three variables, each consisting of five samples.

We compute the principal components (the coefficients of the derived variables) to 2
decimal accuracy and store them by row in the following array.

The derived variables {z1, z2, z3} are then computed as follows:

Var 1 Var 2 Var 3

Sample 1 2.0 1.0 3.0

Sample 2 4.0 2.0 3.0

Sample 3 4.0 1.0 0.0

Sample 4 2.0 3.0 3.0

Sample 5 5.0 1.0 9.0

Table 11-1: Data for Principal Component Analysis

0.87 0.70– 0.69

0.01 0.64– 0.66–

0.49 0.32 0.30–
Using IDL Multivariate Analysis

322 Chapter 11: Mathematics

using.book Page 322 Tuesday, June 14, 2005 11:12 AM
In this example, analysis shows that the derived variable z1 accounts for 57.3% of the
total variance of the original data, the derived variable z2 accounts for 28.2% of the
total variance of the original data, and the derived variable z3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based upon
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing of
twenty samples.

; Define an array with 4 variables and 20 samples:
data = [[19.5, 43.1, 29.1, 11.9], $

[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

z1 0.87()

2.0

4.0

4.0

2.0

5.0

0.70–()

1.0

2.0

1.0

3.0

1.0

0.69()

3.0

3.0

0.0

3.0

9.0

+ +=

z2 0.01()

2.0

4.0

4.0

2.0

5.0

0.64–()

1.0

2.0

1.0

3.0

1.0

0.66–()

3.0

3.0

0.0

3.0

9.0

+ +=

z3 0.49()

2.0

4.0

4.0

2.0

5.0

0.32()

1.0

2.0

1.0

3.0

1.0

0.30–()

3.0

3.0

0.0

3.0

9.0

+ +=
Multivariate Analysis Using IDL

Chapter 11: Mathematics 323

using.book Page 323 Tuesday, June 14, 2005 11:12 AM
[25.6, 53.9, 23.7, 21.7], $
[31.4, 58.5, 27.6, 27.1], $
[27.9, 52.1, 30.6, 25.4], $
[22.1, 49.9, 23.2, 21.3], $
[25.5, 53.5, 24.8, 19.3], $
[31.1, 56.6, 30.0, 25.4], $
[30.4, 56.7, 28.3, 27.2], $
[18.7, 46.5, 23.0, 11.7], $
[19.7, 44.2, 28.6, 17.8], $
[14.6, 42.7, 21.3, 12.8], $
[29.5, 54.4, 30.1, 23.9], $
[27.7, 55.3, 25.7, 22.6], $
[30.2, 58.6, 24.6, 25.4], $
[22.7, 48.2, 27.1, 14.8], $
[25.2, 51.0, 27.5, 21.1]]

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be
initialized as nonzero values prior to calling PCOMP.

coef = 1 & eval = 1 & var = 1
; Compute the derived variables based upon
; the principal components.
result = PCOMP(data, COEFFICIENTS = coef, $

EIGENVALUES = eval, VARIANCES = var)
; Display the array of derived variables:
PRINT, result, FORMAT = '(4(f5.1, 2x))'

IDL prints:

81.4 15.5 -5.5 0.5
102.7 11.1 -4.1 0.6
109.9 20.3 -6.2 0.5
110.5 13.8 -6.3 0.6
81.8 17.1 -4.9 0.6
104.8 6.2 -5.4 0.6
121.3 8.1 -5.2 0.6
111.3 12.6 -4.0 0.6
97.0 6.4 -4.4 0.6
102.5 7.8 -6.1 0.6
118.5 11.2 -5.3 0.6
118.9 9.1 -4.7 0.6
81.5 8.8 -6.3 0.6
88.0 13.4 -3.9 0.6
74.3 7.5 -4.8 0.6
113.4 12.0 -5.1 0.6
109.7 7.7 -5.6 0.6
117.5 5.5 -5.7 0.6
91.4 12.0 -6.1 0.6
102.5 10.6 -4.9 0.6
Using IDL Multivariate Analysis

324 Chapter 11: Mathematics

using.book Page 324 Tuesday, June 14, 2005 11:12 AM
Display the percentage of total variance for each derived variable:

PRINT, var

IDL prints:

0.712422
0.250319
0.0370950
0.000164269

Display the percentage of variance for the first two derived variables; the first two
columns of the resulting array above.

PRINT, TOTAL(var[0:1])

IDL prints:

0.962741

This indicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and thus
could be used to summarize the original data.

Routines for Multivariate Analysis

See “Multivariate Analysis” (in the functional category “Mathematics” in the IDL
Quick Reference manual) for a brief description of IDL routines for multivariate
analysis. Detailed information is available in the IDL Reference Guide.
Multivariate Analysis Using IDL

Chapter 11: Mathematics 325

using.book Page 325 Tuesday, June 14, 2005 11:12 AM
References

Correlation Analysis

Harnet, Donald L. Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Curve and Surface Fitting

Bevington, Philip R. Data Reduction and Error Analysis for the Physical Sciences.
New York: McGraw-Hill, 1969.

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Eigenvalues and Eigenvectors

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Gridding and Interpolation

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Hypothesis Testing

Harnett, Donald H. Introduction to Statistical Methods. Reading, Massachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6
Using IDL References

326 Chapter 11: Mathematics

using.book Page 326 Tuesday, June 14, 2005 11:12 AM
Kraft, Charles H. and Constance Van Eeden. A Nonparametric Introduction to
Statistics. New York: Macmillan, 1968.

Sprent, Peter. Applied Nonparametric Statistical Methods. London: Chapman and
Hall, 1989. ISBN 0-412-30600-X

Integration

Chapra, Steven C. and Raymond P. Canale. Numerical Methods for Engineers. New
York: McGraw-Hill, 1988. ISBN 0-070-79984-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Linear Systems

Golub, Gene H. and Van Loan, Charles F. Matrix Computations. Baltimore: Johns
Hopkins University Press, 1989. ISBN 0-8018-3772-3

Kreyszig, Erwin. Advanced Engineering Mathematics. New York: Wiley & Sons,
Inc., 1993. ISBN 0-471-55380-8

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

Nonlinear Equations

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Optimization

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5
References Using IDL

Chapter 11: Mathematics 327

using.book Page 327 Tuesday, June 14, 2005 11:12 AM
Sparse Arrays

Press, William H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Time-Series Analysis

Chatfield, C. The Analysis of Time Series. London: Chapman and Hall, 1975. ISBN
0-412-31820-2

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Multivariate Analysis

Jackson, Barbara Bund. Multivariate Data Analysis. Homewood, Illinois: R.D. Irwin,
1983. ISBN 0-256-02848-6

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Kachigan, Sam Kash. Multivariate Statistical Analysis. New York: Radius Press,
1991. ISBN 0-942154-91-6
Using IDL References

328 Chapter 11: Mathematics

using.book Page 328 Tuesday, June 14, 2005 11:12 AM
References Using IDL

using.book Page 329 Tuesday, June 14, 2005 11:12 AM
Index

Symbols
!ORDER system variable, 213

A
accuracy

numerical algorithms, 280
action routines, 141
Aitoff map projection, 232
Albers equal-area conic projection, 241
aliasing, 263
analytic signal, 265
ARMA filter, 275
arrays

data type, determining type
SIZE function, 179

rotating, 197

sparse, 313
stored in structure form, 313

ASCII files
IDLDE import macro, 167
reading, 153

autoregressive moving average filters, 275
azimuthal equidistant map projection, 231
azimuthal map projections, 228

B
backing store

bitmap buffered, 105
graphics, 105
system buffered, 105

bandpass
filters, 271
Using IDL 329

330

using.book Page 330 Tuesday, June 14, 2005 11:12 AM
bandstop filters, 271
batch files

startup preference, 111
bilinear

interpolation, 202
transform, 275

binary files
IDLDE import macro, 169
reading, 154

bitmap buffered backing store, 105
boxcar filter, 273
Bristol Technology

printer manager, 81
printing graphics, 222

C
central map projection, 230
CIA World Map database, 246
clipboard support

graphics windows, 56
cluster analysis

routines, 324
CMY color system, 204
color

channels, 214
Direct Graphics, 211
images

Direct Graphics, 211
systems

CMY, 204
converting, 206
HLS, 204
HSV, 204
RGB, 204

tables. See color tables
visuals

Unix, 207
Windows, 208

color tables
highlighting image features, 220

indexed image (LUT), 214
modifying, 219

colormaps, 210
flashing, 134
sharing (Motif), 134

colors
reserving for IDL, 134

Command Line
IDLDE, 57

command line options
Motif platform, 136

command line switches, 23
compiling

from memory preference, 108
preferences, 107, 108

conformal conic map projection, 240
Control Panel Buttons

modifying in Motif, 138
Motif platform, 58

converting
color systems, 206
color tables, 219
image types, 217

Cooley-Tukey algorithm, 264
coordinate systems

device, 194
normalized, 194
window, 193

coordinates
converting

three-dimensional coordinates, 199
converting two-dimensional coordinates, 198
data, 193
device, 193
homogeneous, 195
normal, 193

correlation
analysis, 282
coefficient, 282, 283
routines, 285

cubic convolution interpolation, 202
Index Using IDL

331

using.book Page 331 Tuesday, June 14, 2005 11:12 AM
curve fitting
discussion, 286
routines, 287

customizing IDL, preferences, 95
cyclical fluctuation, 316
cylindrical equidistant map projection, 239
cylindrical map projections, 237

D
data coordinates, 193
data formats

supported, 12
data type

type code, 179
data types

determining array size, 179
IDL indices, 177
type codes, 177

Delaunay triangulation, 294
deleting

lines in Output Log, 98
derived variables, 320
device

coordinates, 193
independent graphics, 191

DFT, 254
differentiation routines, 301
digital filters, 270
digital signal processing, 251
DIGITAL_FILTER function, 271
Direct Graphics, 192

color
indexed, 211
RGB, 211

printing, 222
visuals

Unix, 209
Windows, 210

window coordinates, 194
direct graphics

clipboard support, 56
discrete Fourier transform, 254
discrete wavelet transform, 267
DISPLAY environment variable, 20
displayrgbimage_object.pro, 215
DWT, 267

E
editing

resource files, 133
Editor window

compiling and saving, 107
multiple, 102
preferences, 107

Editor windows
defined, 55

editors, external (Motif), 127
eigenvalues

complex, 289
real, 288
repeated, 291, 292
routines for computing, 293

eigenvectors
complex, 289
real, 288
repeated, 292
routines for computing, 293

environment variables
CLASSPATH, 20
DISPLAY, 20, 20
HOME, 20
IDLJAVAB_CONFIG, 21
IDLJAVAB_LIB_LOCATION, 21
LM_LICENSE_FILE, 21
PATH, 16, 21
TERM, 21

equal-area map projection, 241
examples

batch files
sigprc01, 251
Using IDL Index

332

using.book Page 332 Tuesday, June 14, 2005 11:12 AM
sigprc02, 252
sigprc03, 257
sigprc04, 258
sigprc05, 259
sigprc06, 261
sigprc07, 262
sigprc08, 263
sigprc09, 266
sigprc10, 271
sigprc11, 272
sigprc12, 273
sigprc13, 276
sigprc14, 277

image
displayrgbimage_object.pro, 215

exiting IDL
confirm exit, 97
options, 46

exporting
formatted image files, 160
unformatted image files, 161

expressions
determining data type

SIZE function, 179
external

editors (Motif), 127

F
Fast Fourier transform

Cooley-Tukey algorithm, 264
defined, 254
discrete, 254
implementation, 264
using windowing algorithms, 260

file
See also files.
access, 149
search path, 115
supported formats, 12

file access

See also reading.
about, 150
routines, 171

file formats
about supported, 12
general data, 13
image, 12
scientific data, 13

file information
returning, 174

file selection
using dialogs, 151

file types, supported, 12
FILE_INFO function

using, 188
files

See also file.
accessing, 149
exporting

See also writing.
formatted, 160
unformatted, 161

importing
See also reading.
formatted, 158
unformatted, 159

querying, 174
returning

file information, 174
specifying search path, 115

filtering
autoregressive moving average, 275
bandpass, 271
bandstop, 271
boxcar, 273
digital, 270
FIR, 271
highpass, 271
lowpass, 271
rectangular, 273

filters
Index Using IDL

333

using.book Page 333 Tuesday, June 14, 2005 11:12 AM
IIR filter, 275
Kaiser’s window, 271
moving average, 271
notch, 275

finding
text, IDLDE search features, 65

finite impulse response filters, 271
FIR filter, 271
flashing colormaps, 134
fonts

preferences, 112
specifying

Motif platform, 113
Windows platform, 112

frequency plot leakage, 258
frequency plot smearing, 258
frequency response function, 276

G
Gaussian

iterated quadrature, 297
Gauss-Krueger map projection, 238
general perspective map projection, 235
geometric transformations

interpolation methods, 201
glyph. See TrueType fonts
gnomic map projection, 230
gnomonic map projection, 230
Gouraud shading, 203
graphics

clipboard support, 56
coordinate systems, 195
device independent graphics, 191
devices

direct graphics, 192
image file formats

supported, 12
modes, 190
object-oriented, 191
windows

backing store, 105
layout preferences, 104
OS clipboard support, 56
sizing, 104

gridding
data extrapolation, 294
Delaunay triangulation, 294
routines, 294
uniformly-spaced planar data, 294

H
Hammer-Aitoff map projection, 234
Hamming window

defined, 261
Hanning window

defined, 260
hardware rendering, setting preference, 106
HDF files

IDLDE import macros, 170
HDF-EOS

IDLDE import macro, 170
help

PDF files
overview, 43

hiding
toolbars, 103

highlighting
image features, 220

highpass filters, 271
high-resolution continent outlines, 246
Hilbert transform, 265
histogram

plot, 252
HLS color system

color schemes, 204
HOME environment variable, 20
homogeneous coordinates, 195
HSV color system

color schemes, 204
hypothesis testing
Using IDL Index

334

using.book Page 334 Tuesday, June 14, 2005 11:12 AM
routines, 296
statistics, 295

I
IDL

direct graphics, 192
iTools, 190
object graphics, 191

IDL GUIBuilder
access, 56
generating

files, menu option, 61
IDLDE

about, 52
preferences, 93

IIR filter
digital filtering, 275
using, 275

image files, 165
image interleaving, 214
image objects

displaying
RGB, 215

interleaving, 214
pixel interleaving, 214

images
dialog for reading, 151
dialog for saving, 152
exporting files, 160, 161
file selection

using a dialog, 151
highlighting features, 220
import macro, 165
importing files, 159
info structure, 175
orientation, 213
QUERY_IMAGE, 178
querying, 175
raster, 213
RGB interleaving, 215

import macro, IDLDE
ASCII files, 167
binary files, 169
image files, 165
scientific data formats, 170

importing
data, 149, 149
unformatted image files, 159

indexed images
color tables, 214

infinite impulse response filters, 275
integration

bivariate functions, 298
discussion, 297
numerical, 297
routines, 301
trivariate functions, 299

interleaving
determining, 215
image, 214
image objects, 214
line, 214
pixel, 214
planar, 214

interpolation
bilinear, 202
cubic convolution, 202
image quality, 201
linear, 202
methods, 202
nearest-neighbor, 202
routines, 294
tabulated data points, 294
trilinear, 202

iTools
introduction, 17

K
Kaiser filter, 271
keyboard
Index Using IDL

335

using.book Page 335 Tuesday, June 14, 2005 11:12 AM
shortcuts, 33
using accelerators, Macintosh, 33

L
Lambert’s conformal conic map projection,

240
Lambert’s equal area map projection, 233
launching IDL, 15
layout, graphics window preferences, 104
leakage, 258
light source

shading, 203
line interleaving, 214
linear

algebra, 282
correlation, 282
systems

condition number, 302
overdetermined, 302
solving simultaneous equations, 302
underdetermined, 305

linear equations, simultaneous, 308
linear interpolation, 202
linear systems, routines, 308
lines

Output Log, 98
saved in recall buffer, 98

LM_LICENSE_FILE variable, 21
Look-Up Table (LUT), 214
lowpass filters, 271

M
Macintosh

one-button mouse, 32
macros

IDLDE
creating in UNIX, 121
creating in Windows, 124

pre-defined, 164
working with, 119

magnitude
signal spectra, 257

map projections
Aitoff, 232
Albers equal-area conic, 241
azimuthal, 228
azimuthal equidistant, 231
central gnomic, 230
cylindrical, 237
cylindrical equidistant, 239
general perspective, 235
gnomonic, 230
Hammer-Aitoff, 234
high-resolution outlines, 246
Lambert’s conformal conic, 240
Lambert’s equal area, 233
Mercator, 237
Miller cylindrical, 240
Mollweide, 243
orthographic, 229
overview, 224
pseudocylindrical, 242
Robinson, 242
satellite, 235
sinusoidal, 243
stereographic, 229
Transverse Mercator, 238

mathematics
routines, 280

memory
object graphics system, 191
optimizing Windows performance, 98

Menu Editor
opening, 64

menus
IDLDE keyboard shortcuts, 33

Mercator map projection, 237
Microsoft Windows

mouse differences, 32
Using IDL Index

336

using.book Page 336 Tuesday, June 14, 2005 11:12 AM
Miller cylindrical map projection, 240
minimization, 311

See also optimization
modifying color tables, 219
Mollweide map projection, 243
Motif widgets, 141
mouse

emulating three-button, 32
moving average filter, 271
multiple correlation coefficient, 284
Multiple Document Panel, 55
multivariate analysis

routines, 324

N
nearest-neighbor interpolation, 202
NETCDF files

IDLDE import macro, 170
Newton’s method, 309
nonlinear equations

discussion, 309
routines, 310

nonparametric hypothesis tests, 295
normal

coordinates, 193
notch filter, 275
numerical integration, 297
Numerical Recipes in C, 281
Nyquist frequency, 263

O
OBJ_CLASS function

using, 186
OBJ_ISA function

using, 186
OBJ_VALID function

using, 187
object graphics

about, 191
choosing a renderer, 106
clipboard support, 56
printing, 222

objects
information about, 186
object graphics

clipboard support, 56
object-oriented

graphics, 191
Oetli, Thomas, 246
one-tailed hypothesis tests, 295
optimization

discussion, 311
routines, 312

origin
image data, 213

orthographic map projection, 229
Output Log

overview, 57
preferences, 98

P
parametric hypothesis tests, 295
partial correlation coefficient, 284
path

IDLDE, 115
PATH environment variable, 16
PDF, 43
performance

improvement, 105
optimizing memory, 98

phase
signal spectra, 257

pixels
data

information (QUERY_IMAGE), 177
interleaving, 214
two-dimensional image arrays, 213

planar interleaving, 214
Index Using IDL

337

using.book Page 337 Tuesday, June 14, 2005 11:12 AM
plotting
frequency smearing, 258
step plots, 252

Portable Document Format, 43
power spectrum, 259
preferences

change directories, 99
changing, 93
read-only files, 99
startup, 97

principal components analysis, 320
print manager, 81, 222
printing

direct graphics
overview, 222

from IDLDE, 62
graphics, 222
in UNIX, 81
in Windows, 80

private colormaps, 210
project

interface, 55
projections

Aitoff, 232
Albers equal-area conic, 241
azimuthal, 228
azimuthal equidistant, 231
central gnomic, 230
cylindrical, 237
cylindrical equidistant, 239
general perspective, 235
gnomonic, 230
Hammer-Aitoff, 234
high-resolution continent outlines, 246
Lambert’s conformal conic, 240
Lambert’s equal area, 233
Mercator, 237
Miller cylindrical, 240
Mollweide, 243
orthographic, 229
projection matrix, 303

pseudocylindrical, 242
Robinson, 242
satellite, 235
sinusoidal, 243
stereographic, 229
Transverse Mercator, 238

Properties dialog
opening, 64

PseudoColor visuals, 207
pseudocylindrical map projections, 242

Q
quadrature function, 265
querying

images, 175
structure tags, 175

R
raster images, 213
reading

ASCII data, 153, 167
binary data, 154, 169
HDF files, 170
HDF-EOS files, 170
image files, 151, 165
netCDF files, 170
scientific format data, 170

recall buffer
persistence, 99
preferences, 98

recent
files list, 62
projects, 62

rectangular filter, 273
rendering

hardware versus software, 106
replacing text, 66
resampling images
Using IDL Index

338

using.book Page 338 Tuesday, June 14, 2005 11:12 AM
see also interpolation
reserving colors, 134
resolution of map databases, 246
resource files, 133
resources for an X Window, 132
RGB color system, 204
RGB images

displaying
Object Graphics

images
Object Graphic RGB image,

215
right-handed coordinate system, 195
Robinson map projection, 242
rotating

arrays, 197
images, 197

routines
cluster analysis, 324
correlation, 285
curve and surface fitting, 287
differentiation/integration, 301
eigenvalues/eigenvectors, 293
gridding/interpolation, 294
hypothesis testing, 296
linear systems, 308
mathematical, 280
multivariate analysis, 324
nonlinear equations, 310
optimization, 312
signal processing, 250
sparse arrays, 315
time-series analysis, 318

row-indexed sparse storage method, 313

S
sampled

data analysis, 263
images, 213

sampling

aliasing data, 263
satellite map projection, 235
saving

files, 61
image files, 152

scaling
matrices, 196

scientific data format
IDLDE import macro, 170

search path
specifying with preferences, 115

seasonal effect, 316
shading

Gouraud interpolation, 203
light source, 203

shared colormaps, 210
shared colormaps (Motif), 134
reading

See also file access.
signal

analysis transforms, 253
processing, 251

signal processing
routines, 250

sigprc01 batch file, 251
sigprc02 batch file, 252
sigprc03 batch file, 257
sigprc04 batch file, 258
sigprc05 batch file, 259
sigprc06 batch file, 261
sigprc07 batch file, 262
sigprc08 batch file, 263
sigprc09 batch file, 266
sigprc10 batch file, 271
sigprc11 batch file, 272
sigprc12 batch file, 273
sigprc13 batch file, 276
sigprc14 batch file, 277
simultaneous linear equations, 302
singular value decomposition, 302
sinusoidal map projection, 243
Index Using IDL

339

using.book Page 339 Tuesday, June 14, 2005 11:12 AM
sizing graphics windows, 104
smearing frequency plots, 258
SMOOTH function, 273
software rendering

setting preference for, 106
sparse arrays, 313

routines, 315
splash screen preference, 97
standard

data file formats, 13
image file formats, 12
scientific data formats, 13

standardized variables, 321
starting

IDL, 15
startup

working directory, 110
startup file

batch file execution, 111
overview, 30

startup preferences
options, 110
specifying, 97

stationary series, 316
statistics

hypothesis testing, 295
routines, 280

Status Bar, IDLDE, 58
step plot, 252
stereographic map projection, 229
structure tags

image query, 175
structures

arrays stored in structure form, 313
supported file formats, 12
surface fitting

discussion, 286
routines, 287

switches, command line, 23
system buffered backing store, 105
system variables

!ORDER, 213

T
TERM environment variable, 21
text

replacing, 66
searching in IDLDE, 65

three-dimensional
coordinate conversion, 199
graphics, 195
transformation

matrices, 195
time-series analysis, 316

routines, 318
toolbars

IDLDE, 54, 55, 55, 57
Motif platform, 58, 138
show/hide preference, 103
specifying layout, 103

transformation matrices, 195
transforms

Fourier, 254
Hilbert, 265
Tustin bilinear, 275
wavelet, 267

translation, 196
Transverse Mercator map projection, 238
trend analysis, 316
triangulation

drawing fonts, 106
TrueType fonts, 106

trilinear interpolation, 202
TrueColor visuals, 207, 211
TrueType fonts

graphic preferences, 106
Tustin transform, 275
two-tailed hypothesis tests, 295
typographical conventions, 45
Using IDL Index

340

using.book Page 340 Tuesday, June 14, 2005 11:12 AM
U
unconstrained minimizer, 311
UTM (Transverse Mercator) map projection,

238

V
Variable Watch Window

IDLDE, 58
variables

data type, determining
SIZE function, 179

derived, 320
standardized, 320

W
wavelet transform, 267
windowing

Hamming windowed signal, 261

windowing algorithm
HANNING function, 260

windows
arranging layout, 104
clipboard support for graphics, 56
separating the IDLDE, 103
show/hide preference

Microsoft Windows platform, 102
Motif platform, 102

working directory, changing on startup, 110
writing

image files, 152

X
X resources

using, 132
Xprinter

defined, 81
printing graphics, 222
Index Using IDL

	Online Manuals
	IDL Documentation
	What's New in IDL 6.2
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Using IDL
	Contents
	Introducing IDL
	Overview of IDL
	Supported File Formats
	Launching IDL
	Startup Options
	Troubleshooting

	Launching the iTools
	Starting an iTool
	Loading Data into an iTool
	The iTools Data Manager

	Environment Variables Used by IDL
	Preferences
	Non-Preference Environment Variables
	Setting Environment Variables

	Command Line Options for IDL Startup
	Command-Line Switches
	Specifying Preferences at the Command Line
	Using Switches Under Windows

	Startup Files
	Message of the Day Files
	Using Your Mouse with IDL
	Using a Two-Button Mouse
	Using a Macintosh (One-Button) Mouse

	Using Keyboard Accelerators
	Enabling Alt Key Accelerators on Macintosh

	Getting Help with IDL
	Using the IDL Online Help Viewer
	Using the PDF Documentation Set

	Typographical Conventions
	Quitting IDL
	Reporting Problems

	The IDL Development Environment
	Components of the IDLDE
	Menu Bar
	Toolbars
	Project Window
	Multiple Document Panel
	Command Line
	Output Log
	Variable Watch Window
	Status Bar
	Docking/Undocking
	Control Panel Buttons

	File Menu
	Edit Menu
	Search Menu
	Run Menu
	Project Menu
	Macros Menu
	Window Menu
	Help Menu
	Printing in IDL
	IDL Printer Setup in Windows

	IDL Printer Setup in UNIX or Mac OS X
	The Xprinter Setup Dialog
	Configuring Printer Setup Options
	Adding a New Printer to the List of Printer Choices

	Setting IDL Preferences
	About IDL Preferences
	Unavailable Preferences

	Customizing IDL
	Platform Differences

	General Preferences
	Layout Preferences
	Graphics Preferences
	Editor Preferences
	Startup Preferences
	Font Preferences
	Microsoft Windows
	UNIX

	Path Preferences

	Creating Development Environment Macros
	What Are Macros?
	Predefined IDL Macros

	Creating UNIX Macros
	Using the Edit Macros Dialog
	Manually Editing the Resource File

	Creating Windows Macros
	Command Stream Substitutions
	Building IDL Example Macros
	Creating a Macro to Call a Text Editor in IDL for UNIX
	Creating a Macro to Change the Working Directory

	Customizing IDL on Motif Systems
	Using X Resources to Customize IDL
	X Resources and IDL Preferences
	X Resources in Brief
	Resource Files
	Format of IDL Resources
	X Resources Used by IDL
	Reserving Colors

	X Resources at the Command Line
	X Resource Command Line Switches

	Modifying the Control Panel
	Adding Macros Toolbar Buttons
	Adding Macros Menu Entries
	Examples

	Action Routines

	Importing and Writing Data into Variables
	Overview of Data Access in IDL
	Accessing Files Using Dialogs
	Accessing Any File Type Using a Dialog
	Importing an Image File Using a Dialog
	Saving an Image File Using a Dialog

	Reading ASCII Data
	Launching the ASCII Template Dialog

	Reading Binary Data
	Launching the Binary Template Dialog

	Accessing Files Programmatically
	File Access

	Accessing Image Data Programmatically
	Importing Formatted Image Data Programmatically
	Importing Unformatted Image Files
	Exporting Formatted Image Files Programmatically
	Exporting Unformatted Image Files

	Accessing Non-Image Data Programmatically
	Reading Binary Data in a Volume
	Reading Contour Data from a SAVE File

	Using IDL Macros
	Using Macros to Import Image Files
	Using Macros to Import ASCII Files
	Using Macros to Import Binary Files
	Using Macros to Import HDF Files

	File Access Routines

	Getting Information About Files and Data
	Investigating Files and Data
	Accessing Information in iTools

	Returning Image File Information
	Using the QUERY_IMAGE Info Structure
	Using Specific QUERY_* Routines

	Returning Type and Size Information
	Determining if a Variable is a Scalar or an Array
	Using SIZE to Return Image Dimensions

	Getting Information About SAVE Files
	Create a Savefile Object
	Query the Savefile Object
	Restore Items from the Savefile Object
	Destroy the Savefile Object

	Returning Object Type and Validity
	Returning Information About a File

	Graphic Display Essentials
	IDL Visual Display Systems
	iTools Visualizations
	IDL Object Graphics
	IDL Direct Graphics

	IDL Coordinate Systems
	DATA Coordinates
	DEVICE Coordinates
	NORMAL Coordinates
	Understanding Windows and Related Device Coordinates

	Coordinates of 3-D Graphics
	Homogeneous Coordinates
	Right-Handed Coordinate System
	Transformation Matrices
	Translation
	Scaling
	Rotation

	Coordinate Conversions
	Two-Dimensional Coordinate Conversion
	Three-Dimensional Coordinate Conversion
	Using Coordinate Conversions

	Interpolation Methods
	Polygon Shading Method
	Color Systems
	Color Schemes
	Converting to Other Color Systems

	Display Device Color Schemes
	Colors and IDL Graphic Systems
	Using Color in Object Graphics
	Using Color in Direct Graphics

	Indexed and RGB Image Organization
	Image Orientation
	Indexed Images
	RGB Image Interleaving
	Converting Between Image Types

	Loading a Default Color Table
	Modifying and Converting Color Tables
	Highlighting Features with a Color Table

	Using Fonts in Graphic Displays
	Printing Graphics
	Printing IDL Direct Graphics
	Printing IDL Object Graphics

	Map Projections
	Overview of Mapping
	Creating a Map Display

	Graphics Techniques for Mapping
	Splitting
	3D Clipping
	Projection
	Rectangular Clipping

	Map Projection Types
	Azimuthal Projections
	Orthographic Projection
	Stereographic Projection
	Gnomonic Projection
	Azimuthal Equidistant Projection
	Aitoff Projection
	Lambert’s Equal Area Projection
	Hammer-Aitoff Projection
	Satellite Projection

	Cylindrical Projections
	Mercator Projection
	Transverse Mercator Projection
	Cylindrical Equidistant Projection
	Miller Cylindrical Projection
	Conic Projection
	Albers Equal-Area Conic Projection

	Pseudocylindrical Projections
	Robinson Cylindrical
	Sinusoidal Projection
	Mollweide Projection
	Goode’s Homolosine Projection

	High-Resolution Continent Outlines
	Resolution of Map Databases

	References

	Signal Processing
	Overview of Signal Processing
	Routines for Signal Processing
	Running the Example Code

	Digital Signals
	Signal Analysis Transforms
	The Fourier Transform
	Interpreting FFT Results
	Displaying FFT Results
	Using Windows
	Hanning Window
	Hamming Window

	Aliasing
	FFT Algorithm Details
	The Hilbert Transform
	The Wavelet Transform
	Convolution
	Correlation and Covariance
	Digital Filtering
	Finite Impulse Response (FIR) Filters
	FIR Filter Implementation
	Infinite Impulse Response Filters
	References

	Mathematics
	Overview of Mathematics in IDL
	IDL’s Numerical Recipes Functions
	Correlation Analysis
	Correlation Example
	Notes on Interpreting the Correlation Coefficient
	Multiple Linear Models
	Routines for Computing Correlations

	Curve and Surface Fitting
	Routines for Curve and Surface Fitting

	Eigenvalues and Eigenvectors
	Symmetric Array with n Distinct Real Eigenvalues
	Nonsymmetric Array with n Distinct Real and Complex Eigenvalues
	Repeated Eigenvalues
	The So-called Defective Case
	Routines for Computing Eigenvalues and Eigenvectors

	Gridding and Interpolation
	Routines for Gridding and Interpolation

	Hypothesis Testing
	One- and Two-sided Tests
	Parametric and Nonparametric Tests
	Routines for Hypothesis Testing

	Integration
	A Bivariate Function
	A Trivariate Function
	Routines for Differentiation and Integration

	Linear Systems
	Overdetermined Systems
	Underdetermined Systems
	Complex Linear Systems
	Routines for Solving Simultaneous Linear Equations

	Nonlinear Equations
	Routines for Solving Nonlinear Equations

	Optimization
	Routines for Optimization

	Sparse Arrays
	Diagonally-Dominant Array
	Routines for Handling Sparse Arrays

	Time-Series Analysis
	Routines for Time-Series Analysis

	Multivariate Analysis
	Cluster Analysis
	Principal Components Analysis
	Routines for Multivariate Analysis

	References
	Correlation Analysis
	Curve and Surface Fitting
	Eigenvalues and Eigenvectors
	Gridding and Interpolation
	Hypothesis Testing
	Integration
	Linear Systems
	Nonlinear Equations
	Optimization
	Sparse Arrays
	Time-Series Analysis
	Multivariate Analysis

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

