
IDL Version 6.2
July 2005 Edition
Copyright © RSI
All Rights Reserved

Image
Processing
in IDL

0705IDL62IP

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty
RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, RSI grants you a limited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice page in their
entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1
Introduction to Image Processing in IDL .. 9
Overview of Image Processing .. 10

Digital Images and Image Processing ... 10
Understanding Image Definitions in IDL .. 12
Representing Image Data in IDL ... 13
Accessing Images .. 15

Querying Images ... 15
References ... 16

Chapter 2
Transforming Image Geometry .. 17
Overview of Geometric Transformations .. 18
Cropping Images ... 20
Padding Images ... 23
Resizing Images .. 26
Image Processing in IDL 3

4

Shifting Images .. 28
Reversing Images ... 30
Transposing Images ... 32
Rotating Images ... 34

Rotating an Image by 90 Degree Increments .. 34
Using the ROT Function for Arbitrary Rotations ... 36

Planar Slicing of Volumetric Data ... 38
Displaying a Series of Planar Slices .. 38
Extracting a Slice of Volumetric Data .. 40
Interactive Planar Slicing of Volumetric Data .. 41
Displaying Volumetric Data Using SLICER3 .. 42
Manipulating Volumetric Data Using SLICER3 .. 43

Chapter 3
Mapping an Image onto Geometry .. 47
Mapping Images onto Surfaces Overview ... 48
Mapping an Image onto Elevation Data .. 50

Opening Image and Geometry Files .. 50
Initializing the IDL Display Objects ... 52
Displaying the Image and Geometric Surface Objects ... 53

Mapping an Image onto a Sphere .. 57
Mapping an Image onto a Sphere Using Direct Graphics ... 57
Mapping an Image onto a Sphere Using Object Graphics .. 60

Chapter 4
Working with Masks and Image Statistics ... 65
Overview of Masks and Image Statistics ... 66
Masking Images ... 68
Clipping Images ... 72
Locating Pixel Values in an Image .. 76
Calculating Image Statistics ... 80

Chapter 5
Warping Images .. 85
Overview of Warping Images .. 86

Tips for Selecting Control Points .. 87
Creating Transparent Image Overlays ... 88
Contents Image Processing in IDL

5

Displaying Image Transparencies Using Direct Graphics .. 88
Displaying Image Transparencies Using Object Graphics 88

Warping Images Using Direct Graphics ... 89

Chapter 6
Working with Regions of Interest (ROIs) ... 99
Overview of Working with ROIs .. 100

Contrasting an ROI’s Geometric Area and Mask Area .. 101
Defining Regions of Interest ... 103
Displaying ROI Objects in a Direct Graphics Window .. 105
Programmatically Defining ROIs .. 109
Growing a Region ... 113
Creating and Displaying an ROI Mask ... 118
Testing an ROI for Point Containment .. 122
Creating a Surface Mesh of an ROI Group ... 125

Chapter 7
Transforming Between Domains ... 129
Overview of Transforming Between Image Domains .. 130
Transforming Between Domains with FFT ... 132

Transforming to the Frequency Domain ... 132
Displaying Images in the Frequency Domain ... 136
Transforming from the Frequency Domain .. 140
Removing Noise with the FFT .. 143

Transforming Between Domains with Wavelets ... 148
Transforming to the Time-Frequency Domain ... 148
Displaying Images in the Time-Frequency Domain ... 152
Transforming from the Time-Frequency Domain .. 155
Removing Noise with the Wavelet Transform ... 158

Transforming to and from the Hough and Radon Domains .. 161
Transforming to the Hough and Radon Domains (Projecting) 162
Transforming from the Hough and Radon Domains (Backprojecting) 165
Finding Straight Lines with the Hough Transform ... 168
Color Density Contrasting with the Radon Transform ... 174
Image Processing in IDL Contents

6

Chapter 8
Contrasting and Filtering ... 179
Overview of Contrasting and Filtering .. 180
Byte-Scaling ... 183
Working with Histograms .. 186

Equalizing with Histograms .. 187
Adaptive Equalizing with Histograms .. 190

Filtering an Image .. 195
Low Pass Filtering ... 196
High Pass Filtering .. 199
Directional Filtering .. 203
Laplacian Filtering .. 206

Smoothing an Image .. 211
Smoothing with Average Values ... 211
Smoothing with Median Values .. 215

Sharpening an Image .. 220
Detecting Edges ... 224

Enhancing Edges with the Roberts Operator .. 224
Enhancing Edges with the Sobel Operator .. 226

Removing Noise ... 229
Windowing to Remove Noise ... 229
Lee Filtering to Remove Noise ... 233

Chapter 9
Extracting and Analyzing Shapes ... 237
Overview of Extracting and Analyzing Image Shapes .. 238

Applying a Morphological Structuring Element to an Image 238
Determining Structuring Element Shapes and Sizes ... 241
Determining Intensity Values for Threshold and Stretch .. 243

Thresholding an Image .. 244
Stretching an Image ... 245

Eroding and Dilating Image Objects .. 246
Characteristics of Erosion ... 246
Characteristics of Dilation ... 246
Applying Erosion and Dilation .. 246

Smoothing with MORPH_OPEN .. 251
Contents Image Processing in IDL

7

Smoothing with MORPH_CLOSE ... 254
Detecting Peaks of Brightness ... 257
Creating Image Object Boundaries ... 260
Selecting Specific Image Objects .. 264
Detecting Edges of Image Objects .. 269
Creating Distance Maps .. 272
Thinning Image Objects .. 275
Combining Morphological Operations .. 280
Analyzing Image Shapes ... 285

Using LABEL_REGION to Extract Image Object Information 285
Using CONTOUR to Extract Image Object Information 289

Index ... 293
Image Processing in IDL Contents

8

Contents Image Processing in IDL

Chapter 1

Introduction to Image
Processing in IDL
This chapter describes the following topics:
Overview of Image Processing 10
Understanding Image Definitions in IDL . . 12
Representing Image Data in IDL 13

Accessing Images . 15
References . 16
Image Processing in IDL 9

10 Chapter 1: Introduction to Image Processing in IDL
Overview of Image Processing

Today, the medical industry, astronomy, physics, chemistry, forensics, remote
sensing, manufacturing, and defense are just some of the many fields that rely upon
images to store, display, and provide information about the world around us. The
challenge to scientists, engineers and business people is to quickly extract valuable
information from raw image data. This is the primary purpose of image processing –
converting images to information.

This book explains how to process images using IDL (Interactive Data Language).
IDL is a high-level programming language that contains an extensive library of
image processing and analysis routines. With IDL, you can quickly access image data
and begin investigating the best way to extract useful information.

Each chapter introduces image processing topics and includes information regarding
when one method may be preferred over another to enhance specific image features.
Numerous step-by-step examples illustrate IDL’s image processing and analysis
routines, allowing you to quickly understand how to get the desired results when
working with your own image data. This book is not intended to be a complete source
for image processing knowledge, an advanced image processing manual or an image
processing reference guide. This book is designed to teach people how to use IDL to
perform basic image processing, and does not assume that they are already experts in
the field of image processing.

Digital Images and Image Processing

A digital image is composed of a grid of pixels and stored as an array. A single pixel
represents a value of either light intensity or color. Images are processed to obtain
information beyond what is apparent given the image’s initial pixel values. Image
processing tasks can include any combination of the following:

Modifying the Image View — Transforming, translating, rotating and resizing
images are common tasks used to focus the viewer’s attention on a specific area of
the image. Chapter 2, “Transforming Image Geometry” provides information on how
to precisely position images using IDL.

Adding Dimensionality to Image Data — Some images provide more information
when they are placed on a polygon, surface, or geometric shape such as a sphere.
Chapter 3, “Mapping an Image onto Geometry” shows how to display images over
surfaces and geometric shapes.

Working with Masks and Calculating Statistics — Image processing uses some
fundamental mathematical methods to alter image arrays. These include masking,
Overview of Image Processing Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 11
clipping, locating, and statistics. Chapter 4, “Working with Masks and Image
Statistics” introduces these operations and provides examples of masking and
calculating image statistics.

Warping Images — Some data acquisition methods can introduce an unwanted
curvature into an image. Image warping using control points can realign an image
along a regular grid or align two images captured from different perspectives. See
Chapter 5, “Warping Images” for more information.

Specifying Regions of Interest (ROIs) — When processing an image, you may
want to concentrate on a specific region of interest (ROI). ROIs can be determined,
displayed, and analyzed within IDL as described in Chapter 6, “Working with
Regions of Interest (ROIs)”.

Manipulating Images in Various Domains — One of the most useful tools in
image processing is the ability to transform an image from one domain to another.
Additional information can be derived from images displayed in frequency, time-
frequency, Hough, and Radon domains. Moreover, some complex processing tasks
are simpler within these domains. See Chapter 7, “Transforming Between Domains”
for details.

Enhancing Contrast and Filtering — Contrasting and filtering provide the ability
to smooth, sharpen, enhance edges and reduce noise within images. See Chapter 8,
“Contrasting and Filtering” for details on manipulating contrast and applying filters
to highlight and extract specific image features.

Extracting and Analyzing Shapes — Morphological operations provide a means
of determining underlying image structures. Used in combination, these routines
provide the ability to highlight, extract, and analyze features within an image. See
Chapter 9, “Extracting and Analyzing Shapes” for details.

Before processing images, it is important to understand how images are defined, how
image data is represented, and how images are accessed (imported and exported)
within IDL. These topics are described within the following sections of this chapter:

• “Understanding Image Definitions in IDL” on page 12

• “Representing Image Data in IDL” on page 13

• “Accessing Images” on page 15
Image Processing in IDL Overview of Image Processing

12 Chapter 1: Introduction to Image Processing in IDL
Understanding Image Definitions in IDL

An understanding of basic image definitions is necessary before proceeding with
image processing tasks. Some routines are specifically designed for certain types of
images. Binary, grayscale, and indexed images are two-dimensional arrays, while
RGB images are three-dimensional arrays. In which group an image belongs is
determined by its contents and how it relates to its color information.

Within IDL, an image can be categorized as follows:

Note
Grayscale and binary images can actually be treated as indexed images with an
associated grayscale color table.

Color information can also be represented in other forms, which are described in
“Color Systems” in Chapter 8 of the Using IDL manual.

Image Type Descriptions

Binary Images Binary images contain only two values (off or on). The off
value is usually a zero and the on value is usually a one. This
type of image is commonly used as a multiplier to mask
regions within another image.

Grayscale Images Grayscale images represent intensities. Pixels range from least
intense (black) to most intense (white). Pixel values usually
range from 0 to 255 or are scaled to this range when displayed.

Indexed Images Instead of intensities, a pixel value within an indexed image
relates to a color value within a color lookup table. Since
indexed images reference color tables composed of up to 256
colors, the data values of these images are usually scaled to
range between 0 and 255.

RGB Images Within the three-dimensional array of an RGB image, two of
the dimensions specify the location of a pixel within an image.
The other dimension specifies the color of each pixel The
color dimension always has a size of 3 and is composed of the
red, green, and blue color bands (channels) of the image.

Table 1-1: Image Definitions
Understanding Image Definitions in IDL Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 13
Representing Image Data in IDL

Pixel values in an image file can be stored in many different data types. IDL
maintains 15 different data types. The original data type of an image is reflected in
IDL when importing the image, but the type can be converted once the image is
stored in an IDL variable. The following types are commonly used for images:

• Byte — An 8-bit unsigned integer ranging in value from 0 to 255. Pixels in
images are commonly represented as byte data.

• Unsigned Integer — A 16-bit unsigned integer ranging from 0 to 65535.

• Signed Integer — A 16-bit signed integer ranging from -32,768 to +32,767.

• Unsigned Longword Integer — A 32-bit unsigned integer ranging in value
from 0 to approximately four billion.

• Longword Integer — A 32-bit signed integer ranging in value from
approximately minus two billion to plus two billion.

• Floating-point — A 32-bit, single-precision, floating-point number in the
range from -1038 to 1038, with approximately 6 or 7 decimal places of
significance.

• Double-precision — A 64-bit, double-precision, floating-point number in the
range from -10308 to 10308 with approximately 14 decimal places of
significance.

While pixel values are commonly stored in files as whole numbers, they are usually
converted to floating-point or double-precision data types prior to performing
numerical computations. See the examples section of “REFORM” in the IDL
Reference Guide manual and “Calculating Image Statistics” in Chapter 4 for more
information.

IDL provides predefined routines to convert data from one type to another. These
routines are shown in the following table:

Function Description

BYTE Convert to byte

BYTSCL Scale data to range from 0 to 255 and then convert to byte

UINT Convert to 16-bit unsigned integer

Table 1-2: Some IDL Data Type Conversion Functions
Image Processing in IDL Representing Image Data in IDL

14 Chapter 1: Introduction to Image Processing in IDL
FIX Convert to 16-bit integer, or optionally other type

ULONG Convert to 32-bit unsigned integer

LONG Convert to 32-bit integer

FLOAT Convert to floating-point

DOUBLE Convert to double-precision floating-point

Function Description

Table 1-2: Some IDL Data Type Conversion Functions (Continued)
Representing Image Data in IDL Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 15
Accessing Images

How an image is imported into IDL depends upon whether it is stored in an
unformatted binary file or a common image file format. IDL can query and import
image data contained in the image file formats listed in “Supported File Formats” in
Chapter 1 of the Using IDL manual.

Note
IDL can also import and export images stored in scientific data formats, such HDF
and netCDF. For more information on these formats, see the Scientific Data
Formats manual.

See “Importing and Writing Data into Variables” in Chapter 6 of the Using IDL
manual for details on data access in IDL. This chapter and the IDL Reference Guide
provide details on the file access routines used in examples in the following chapters.

Querying Images

Common image file formats contain standardized header information that can be
queried. IDL provides the QUERY_IMAGE function to return valuable information
about images stored in supported image file formats. For information on using
QUERY_IMAGE, see “Returning Image File Information” in Chapter 7 of the Using
IDL manual.
Image Processing in IDL Accessing Images

16 Chapter 1: Introduction to Image Processing in IDL
References

The following image processing sources were used in writing this book:

Baxes, Gregory A. Digital Image Processing: Principles and Applications. John
Wiley & Sons. 1994. ISBN 0-471-00949-0

Lee, Jong-Sen. “Speckle Suppression and Analysis for Synthetic Aperture Radar
Images”, Optical Engineering. vol. 25, no. 5, pp. 636 - 643. May 1986.

Russ, John C. The Image Processing Handbook, Third Edition. CRC Press LLC.
1999. ISBN 0-8493-2532-3

Weeks, Jr., Arthur R. Fundamentals of Electronic Image Processing. The Society of
Photo-Optical Instrumentation Engineers. 1996. ISBN 0-8194-2149-9
References Image Processing in IDL

Chapter 2

Transforming Image
Geometry
This chapter describes the following topics:
Overview of Geometric Transformations . . 18
Cropping Images . 20
Padding Images . 23
Resizing Images . 26
Shifting Images . 28

Reversing Images . 30
Transposing Images 32
Rotating Images . 34
Planar Slicing of Volumetric Data 38
Image Processing in IDL 17

18 Chapter 2: Transforming Image Geometry
Overview of Geometric Transformations

Geometric image transformation functions use mathematical transformations to crop,
pad, scale, rotate, transpose or otherwise alter an image array to produce a modified
view of an image. The transformations described in this chapter are linear
transformations. For a description of non-linear geometric transformations, see
Chapter 5, “Warping Images”.

When an image undergoes a geometric transformation, some or all of the pixels
within the source image are relocated from their original spatial coordinates to a new
position in the output image. When a relocated pixel does not map directly onto the
center of a pixel location, but falls somewhere in between the centers of pixel
locations, the pixel’s value is computed by sampling the values of the neighboring
pixels. This resampling, also known as interpolation, affects the quality of the output
image. See “Interpolation Methods” in Chapter 8 of the Using IDL manual for more
information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description

“Cropping
Images” on
page 20.

SIZE

CURSOR

Focuses attention on important image
features by creating a rectangular region
of interest.

“Padding
Images” on
page 23.

SIZE Creates a border around the perimeter of
an image for presentation or advanced
filtering purposes.

“Resizing
Images” on
page 26.

CONGRID

REBIN

Enlarges or shrinks an image.

Table 2-1: Image Processing Tasks and Related
Image Processing Routines
Overview of Geometric Transformations Image Processing in IDL

Chapter 2: Transforming Image Geometry 19
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

“Shifting
Images” on
page 28.

SHIFT Shifts image pixel values along any
image dimension.

“Reversing
Images” on
page 30.

REVERSE Reverses array elements to flip an image
horizontally or vertically.

“Transposing
Images” on
page 32.

TRANSPOSE Interchanges array dimensions, reflecting
the image about a 45 degree line.

“Rotating
Images” on
page 34.

ROTATE

ROT

Rotates an image to any orientation,
using 90 degree or arbitrary increments.

“Planar Slicing
of Volumetric
Data” on
page 38.

EXTRACT_SLICE

SLICER3

XVOLUME

Displays a single slice or a series of
planar slices in a single window or
interactively extracts planar slices of
volumetric data.

Task Routine(s) Description

Table 2-1: Image Processing Tasks and Related
Image Processing Routines (Continued)
Image Processing in IDL Overview of Geometric Transformations

20 Chapter 2: Transforming Image Geometry
Cropping Images

Cropping an image extracts a rectangular region of interest from the original image.
This focuses the viewer’s attention on a specific portion of the image and discards
areas of the image that contain less useful information. Using image cropping in
conjunction with image magnification allows you to zoom in on a specific portion of
the image. This section describes how to exactly define the portion of the image you
wish to extract to create a cropped image. For information on how to magnify a
cropped image, see “Resizing Images” on page 26.

Image cropping requires a pair of (x, y) coordinates that define the corners of the new,
cropped image. The following example extracts the African continent from an image
of the world. Complete the following steps for a detailed description of the process.

Example Code
See cropworld.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Open the world image file, using the R,G,B arguments to obtain the image’s
color information:

world = READ_PNG (FILEPATH ('avhrr.png', $
SUBDIRECTORY = ['examples', 'data']), R, G, B)

2. Prepare the display device and load the color table with the red, green and blue
values retrieved from the image file in the previous step:

DEVICE, RETAIN = 2, DECOMPOSED = 0
TVLCT, R, G, B

3. Get the size of the image and prepare the window display using the dimensions
returned by the SIZE command:

worldSize = SIZE(world, /DIMENSIONS)
WINDOW, 0, XSIZE = worldSize[0], YSIZE = worldSize[1]

4. Display the image:

TV, world

In this example, we will crop the image to display only the African continent
as shown in the following figure. Two sets of coordinates, (LeftLowX,
LeftLowY) and (RightTopX, RightTopY), will be used to create the new,
cropped image array.
Cropping Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/cropworld.pro

Chapter 2: Transforming Image Geometry 21
In the following step, use the CURSOR function to define the boundaries of
the cropped image. The values returned by the CURSOR function will be
defined as the variables shown in the previous image.

Note
To crop an image without interactively defining the cursor position, you can
use the actual coordinates of the cropped image array in place of the
coordinate variables, (LeftLowX, LeftLowY) and (RightTopX, RightTopY).
See CropWorld.pro in the examples/doc/image subdirectory of the
IDL installation directory for an example.

5. Use the cursor function to define the lower-left corner of the cropped image by
entering the following line:

CURSOR, LeftLowX, LeftLowY, /DEVICE

The cursor changes to a cross hair symbol when it is positioned over the
graphics window. Click in the area to the left and below the African continent.

Figure 2-1: Defining the Boundaries of the Cropped Image Array

(RightTopX, RightTopY)

(LeftLowX, LeftLowY)
Image Processing in IDL Cropping Images

22 Chapter 2: Transforming Image Geometry
Note
The values for LeftLowX and LeftLowY appear in the IDLDE Variable
Watch window. Alternately, use PRINT, LeftLowX, LeftLowY to display
these values.

6. Define the upper-right corner of the cropped image. Enter the following line
and then click above and to the right of the African continent.

CURSOR, RightTopX, RightTopY, /DEVICE

7. Name the cropped image and define its array using the lower-left and upper-
right x and y variables:

africa = world[LeftLowX:RightTopX, LeftLowY:RightTopY]

8. Prepare a window based on the size of the new array:

WINDOW, 2, XSIZE = (RightTopX - LeftLowX + 1), $
YSIZE = (RightTopY - LeftLowY + 1)

9. Display the cropped image:

TV, africa

Your image should appear similar to the following figure.

Figure 2-2: Result of the Cropped Image Example
Cropping Images Image Processing in IDL

Chapter 2: Transforming Image Geometry 23
Padding Images

Image padding introduces new pixels around the edges of an image. The border
provides space for annotations or acts as a boundary when using advanced filtering
techniques.

This exercise adds a 10-pixel border to left, right and bottom of the image and a 30-
pixel border at the top allowing space for annotation. The diagonal lines in the
following image represent the area that will be added to the original image. For an
example of padding an image, complete the following steps.

Example Code
See paddedimage.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

To add a border around the earth image, complete the following steps:

1. Open the world image file:

earth = READ_PNG(FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data']), R, G, B)

Figure 2-3: Diagonal Lines Indicate Padding

30 pixel pad

10 pixel pads
Image Processing in IDL Padding Images

RSI_PROCODE/examples/doc/image/paddedimage.pro

24 Chapter 2: Transforming Image Geometry
2. Prepare the display device:

DEVICE, DECOMPOSED = 0, RETAIN = 2

3. Load the color table with the red, green and blue values retrieved from the
image in step 1 and modify the color table so that the final index value of each
color band is the maximum color value (white):

TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

4. Get the size of the image by entering the following line:

earthSize = SIZE(earth, /DIMENSIONS)

5. Define the amount of padding you want to add to the image. This example
adds 10 pixels to the right and left sides of the image equalling a total of 20
pixels along the x-axis. We also add 30 pixels to the top and 10 pixels to the
bottom of the image for a total of 40 pixels along the y-axis.

Using the REPLICATE syntax, Result = REPLICATE (Value, D1 [, ..., D8]),
create an array of the specified dimensions, and set Value equal to the byte
value of the final color index to make the white border:

paddedEarth = REPLICATE(BYTE(maxColor), earthSize[0] + 20, $
earthSize[1] + 40)

Note
The argument BYTE(maxColor) in the previous line produces a white
background only when white is designated as the final index value for the
red, green and blue bands of the color table you are using. As shown in step
3, this can be accomplished by setting each color component (of the color
table entry indexed by maxColor) to 255.

See “Graphic Display Essentials” in Chapter 8 of the Using IDL manual for
detailed information about modifying color tables.

6. Copy the original image, earth, into the appropriate portion of the padded
array. The following line places the lower-left corner of the original image
array at the coordinates (10, 10) of the padded array:

paddedEarth [10,10] = earth
Padding Images Image Processing in IDL

Chapter 2: Transforming Image Geometry 25
7. Prepare a window to display the image using the size of the original image plus
the amount of padding added along the x and y axes:

WINDOW, 0, XSIZE = earthSize[0] + 20, $
YSIZE = earthSize[1] + 40

8. Display the padded image.

TV, paddedEarth

9. Place a title at the top of the image using the XYOUTS procedure.

x = (earthSize[0]/2) + 10
y = earthSize[1] + 15
XYOUTS, x, y, 'World Map', ALIGNMENT = 0.5, COLOR = 0, $

/DEVICE

The resulting image should appear similar to the following figure.

Figure 2-4: Resulting Padded Image
Image Processing in IDL Padding Images

26 Chapter 2: Transforming Image Geometry
Resizing Images

Image resizing, or scaling, supports further image analysis by either shrinking or
expanding an image. Both the CONGRID and the REBIN functions resize one-, two-
or three-dimensional arrays. The CONGRID function resizes an image array by any
arbitrary amount. The REBIN function requires that the output dimensions of the new
array be an integer multiple of the original image’s dimensions.

When magnifying an image, new values are interpolated from the source image to
produce additional pixels in the output image.When shrinking an image, pixels are
resampled to produce a lower number of pixels in the output image. The default
interpolation method varies according to whether you are magnifying or shrinking
the image.

When magnifying an image:

• CONGRID defaults to nearest-neighbor sampling with 1D or 2D arrays and
automatically uses bilinear interpolation with 3D arrays.

• REBIN defaults to bilinear interpolation.

When shrinking an image:

• CONGRID uses nearest-neighbor interpolation to resample the image.

• REBIN averages neighboring pixel values in the source image that contribute
to a single pixel value in the output image.

The following example uses CONGRID since it offers more flexibility. However, if
you wish to resize an array proportionally, REBIN returns results more quickly. For
an example of magnifying an image using the CONGRID function, complete the
following steps.

Example Code
See magnifyimage.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [248, 248])

2. Load a color table and prepare the display device:

LOADCT, 28
DEVICE, DECOMPOSED = 0, RETAIN = 2
Resizing Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/magnifyimage.pro

Chapter 2: Transforming Image Geometry 27
3. Prepare the window and display the original image:

WINDOW, 0, XSIZE = 248, YSIZE = 248
TV, image

4. Use the CONGRID function to increase the image array size to 600 by 600
pixels and force bilinear interpolation:

magnifiedImg = CONGRID(image, 600, 600, /INTERP)

5. Display the magnified image in a new window:

WINDOW, 1, XSIZE = 600, YSIZE = 600
TV, magnifiedImg

The following figure displays the original image (left) and the magnified view of the
image (right).

Figure 2-5: Original Image and Magnified Image
Image Processing in IDL Resizing Images

28 Chapter 2: Transforming Image Geometry
Shifting Images

The SHIFT function moves elements of a vector or array along any dimension by any
number of elements. All shifts are circular. Elements shifted off one end are wrapped
around, appearing at the opposite end of the vector or array.

Occasionally, image files are saved with array elements offset. The SHIFT function
allows you to easily correct such images assuming you know the amounts of the
vertical and horizontal offsets. In the following example, the x-axis of original image
is offset by a quarter of the image width, and the y-axis is offset by a third of the
height.

Using the SHIFT syntax, Result = SHIFT(Array, S1, ..., Sn), we will enter
negative values for the S (dimension) amounts in order to correct the image offset.

Example Code
See shiftimageoffset.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Select the image file and read it into memory:

file = FILEPATH('shifted_endocell.png', $
SUBDIRECTORY = ['examples','data'])

image = READ_PNG(file, R, G, B)

Figure 2-6: Example of Misaligned Image Array Elements
Shifting Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/shiftimageoffset.pro

Chapter 2: Transforming Image Geometry 29
2. Prepare the display device and load the image’s associated color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
TVLCT, R, G, B

3. Get the size of the image, prepare a window based upon the values returned by
the SIZE function, and display the image to be corrected:

imageSize = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

4. Use SHIFT to correct the original image. Move the elements along the x-axis
to the left, using a quarter of the array width as the x-dimension values. Move
the y-axis elements, using one third of the array height as the number of
elements to be shifted. By entering negative values for the amount the image
dimensions are to be shifted, the array elements move toward the x and y axes.

image = SHIFT(image, -(imageSize[0]/4), -(imageSize[1]/3))

5. Display the corrected image in a second window:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE='Shifted Image'

TV, image

The following figure displays the corrected image.

Figure 2-7: Resulting Shifted Array
Image Processing in IDL Shifting Images

30 Chapter 2: Transforming Image Geometry
Reversing Images

The REVERSE function allows you to reverse any dimension of an array. This
allows you to quickly change the viewing orientation of an image (flipping it
horizontally or vertically).

Note that in the REVERSE syntax,

Result = REVERSE(Array [, Subscript_Index][,/OVERWRITE])

Subscript_Index specifies the dimension number beginning with 1, not 0 as with
some other functions.

The following example demonstrates reversing the x-axis values (dimension 1) and
the y-axis values (dimension 2) of an image of a knee.

Example Code
See reverseimage.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Select the DICOM image of the knee and get the image’s dimensions:

image = READ_DICOM (FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples', 'data']))

imgSize = SIZE (image, /DIMENSIONS)

2. Prepare the display device and load the gray scale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

3. Use the REVERSE function to reverse the x-axis values (flipHorzImg) and
y-axis values (flipVertImg):

flipHorzImg = REVERSE(image, 1)
flipVertImg = REVERSE(image, 2)

4. Create an output window that is 2 times the size of the x-dimension of the
image and 2 times the size of the y-dimension of the image:

WINDOW, 0, XSIZE = 2*imgSize[0], YSIZE = 2*imgSize[1], $
 TITLE = 'Original (Top) & Flipped Images (Bottom)'

5. Display the images, controlling their placement in the graphics window by
using the Position argument to the TV command:

TV, image, 0
TV, flipHorzImg, 2
TV, flipVertImg, 3
Reversing Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/reverseimage.pro

Chapter 2: Transforming Image Geometry 31
Your output should appear similar to the following figure.

Figure 2-8: Original Image (Top); Reversed Dimension 1 (Bottom Left); and
Reversed Dimension 2 (Bottom Right)
Image Processing in IDL Reversing Images

32 Chapter 2: Transforming Image Geometry
Transposing Images

Transposing an image array interchanges array dimensions, reflecting an image about
a diagonal (for example, reflecting a square image about a 45 degree line). By
default, the TRANSPOSE function reverses the order of the dimensions. However,
you can control how the dimensions are altered by specifying the optional vector, P,
in the following statement:

Result = TRANSPOSE(Array[,P])

The values for P start at zero and correspond to the dimensions of the array. The
following example transposes a photomicrograph of smooth muscle cells.

Example Code
See transposeimage.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Open the file and prepare to display it with a color table:

READ_JPEG, FILEPATH('muscle.jpg', $
SUBDIRECTORY=['examples', 'data']), image

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Display the original image:

WINDOW, 0, XSIZE = 652, YSIZE = 444, TITLE = 'Original Image'
TV, image

3. Reduce the image size for display purposes:

smallImg = CONGRID(image, 183, 111)

4. Using the TRANSPOSE function, reverse the array dimensions. This
essentially flips the image across its main diagonal axis, moving the upper left
corner of the image to the lower right corner.

transposeImg1 = TRANSPOSE(smallImg)
WINDOW, 1, XSIZE = 600, YSIZE = 183, TITLE = 'Transposed
Images'
TV, transposeImg1, 0

5. Specifying the reversal of the array dimensions leads to the same result since
this is the default behavior of the TRANSPOSE function.

transposeImg2 = TRANSPOSE(smallImg, [1,0])
TV, transposeImg2, 2
Transposing Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/transposeimage.pro

Chapter 2: Transforming Image Geometry 33
6. However, specifying the original arrangement of the array dimensions results
in no image transposition.

transposeImg3 = TRANSPOSE(smallImg, [0,1])
TV, transposeImg3, 2

The following figure displays the original image (top) and the results of the various
TRANSPOSE statements (bottom).

Figure 2-9: Original (Top) and Transposed Images (Bottom) from Left to Right,
transposeImg1, transposeImg2, and transposeImg3
Image Processing in IDL Transposing Images

34 Chapter 2: Transforming Image Geometry
Rotating Images

To change the orientation of an image in IDL, use either the ROTATE or the ROT
function. The ROTATE function changes the orientation of an image by 90 degree
increments and/or transposes the array. The ROT function rotates an image by any
amount and offers additional resizing options. For more information, see “Using the
ROT Function for Arbitrary Rotations” on page 36.

Rotating an Image by 90 Degree Increments

The following example changes the orientation of an image by rotating it 270°.

Example Code
See rotateimage.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('galaxy.dat', $
SUBDIRECTORY=['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [256, 256])

2. Prepare the display device, load a color table, create a window, and display the
image:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 4
WINDOW, 0, XSIZE = 256, YSIZE = 256
TVSCL, image

3. Using the ROTATE syntax, Result = ROTATE (Array, Direction), rotate the
galaxy image 270° counterclockwise by setting the Direction argument equal
to 3. See “ROTATE Direction Argument Options” on page 35 for more
information.

rotateImg = ROTATE(image, 3)

4. Display the rotated image.

Window, 1, XSIZE = 256, YSIZE = 256,
TVSCL, rotateImg
Rotating Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/rotateimage.pro

Chapter 2: Transforming Image Geometry 35
The following figure displays the original (left) and the rotated image (right).

ROTATE Direction Argument Options

The following table describes the Direction options available with the ROTATE
function syntax, Result = ROTATE (Array, Direction).

Figure 2-10: Using ROTATE to Alter Image Orientation

Direction Transpose? Rotation
Counterclockwise

Sample
Image

0 No None

1 No 90°

2 No 180°

3 No 270°

4 Yes None

5 Yes 90°

6 Yes 180°

7 Yes 270°

Table 2-2: Direction Options Available with ROTATE
Image Processing in IDL Rotating Images

36 Chapter 2: Transforming Image Geometry
Using the ROT Function for Arbitrary Rotations

The ROT function supports clockwise rotation of an image by any specified amount
(not limited to 90 degree increments). Keywords also provide a means of optionally
magnifying the image, selecting the pivot point around which the image rotates, and
using either bilinear or cubic interpolation. If you wish to rotate an image only by 90
degree increments, ROTATE produces faster results.

The following example opens a image of a whirlpool galaxy, rotates it 33° clockwise
and shrinks it to 50% of its original size.

Example Code
See arbitraryrotation.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('m51.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [340, 440])

2. Prepare the display device and load a black and white color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = 340, YSIZE = 440
TVSCL, image

4. Using the ROT function syntax,

Result=ROT(A, Angle, [Mag, X0, Y0] [,/INTERP]
[,CUBIC=value{-1 to 0}] [, MISSING=value] [,/PIVOT])

enter the following line to rotate the image 33°, shrink it to 50% of its original
size, and fill the image display with a neutral gray color where there are no
original pixel values:

arbitraryImg = ROT(image, 33, .5, /INTERP, MISSING = 127)

5. Display the rotated image in a new window by entering the following two
lines:

WINDOW, 1, XSIZE = 340, YSIZE = 440
TVSCL, arbitraryImg
Rotating Images Image Processing in IDL

RSI_PROCODE/examples/doc/image/arbitraryrotation.pro

Chapter 2: Transforming Image Geometry 37
Your output should appear similar to the following figure.

The MISSING keyword maintains the original image’s boundaries, keeping the
interpolation from extending beyond the original image size. Replacing MISSING =
127 with MISSING = 0 in the previous example creates a black background by
using the default pixel color value of 0. Removing the MISSING keyword from the
same statement allows the image interpolation to extend beyond the image’s original
boundaries.

Figure 2-11: The Original Image (Left) and Modified Image (Right)
Image Processing in IDL Rotating Images

38 Chapter 2: Transforming Image Geometry
Planar Slicing of Volumetric Data

Volumetric displays are composed of a series of 2D slices of data which are layered
to produce the volume. IDL provides routines that allow you to display a series of the
2D slices in a single image window, display single orthogonal or non-orthogonal
slices of volumetric data, or interactively extract slices from a 3D volume. For more
information, see the following sections:

• “Displaying a Series of Planar Slices” in the following section

• “Extracting a Slice of Volumetric Data” on page 40

• “Interactive Planar Slicing of Volumetric Data” on page 41

Displaying a Series of Planar Slices

The following example displays 57 Magnetic Resonance Imaging (MRI) slices of a
human head within a single window as well as a single slice which is perpendicular to
the MRI data.

Example Code
See displayslices.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples',
'data'])
image = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. Load a color table to more easily distinguish between data values and prepare
the display device:

LOADCT, 5
DEVICE, DECOMPOSED = 0, RETAIN = 2

3. Create the display window. When displaying all 57 slices of the array in a
single window, the image size (80 by 100) and the number of slices (57)
determine the window size. In this case, 10 columns and 6 rows will contain all
57 slices of the volumetric data.

WINDOW, 0, XSIZE = 800, YSIZE = 600

4. Use the variable i in the following FOR statement to incrementally display
each image in the array. The i also functions to control the positioning which,
by default, uses the upper left corner as the starting point. Use 255b - array
Planar Slicing of Volumetric Data Image Processing in IDL

RSI_PROCODE/examples/doc/image/displayslices.pro

Chapter 2: Transforming Image Geometry 39
to display the images using the inverse of the selected color table and the
ORDER keyword to draw each image from the top down instead of the bottom
up.

FOR i = 0, 56,1 DO TVSCL, 255b - image [*,*,i], /ORDER, i

5. To extract a central slice from the y, z plane, which is perpendicular to the x, y
plane of the MRI scans, specify 40 for the x-dimension value. Use REFORM
to decrease the number of array dimensions so that TV can display the image:

sliceImg = REFORM(image[40,*,*])

This results in a 100 by 57 array.

6. Use CONGRID to compensate for the sampling rate of the scan slices:

sliceImg = CONGRID(sliceImg, 100, 100)

7. Display the slice in the 47th window position:

TVSCL, 255b - sliceImg, 47

Since the image size is now 100 x 100 pixels, the 47th position in the 800 by
600 window is the final position.

Your output should be similar to the following figure.

Figure 2-12: Planar Slices of a MRI Scan of a Human Head
Image Processing in IDL Planar Slicing of Volumetric Data

40 Chapter 2: Transforming Image Geometry
Note
This method of extracting slices of data is limited to orthogonal slices only. You
can extract single orthogonal and non-orthogonal slices of volumetric data using
EXTRACT_SLICE, described in the following section. See “Extracting a Slice of
Volumetric Data” below for more information.

Extracting a Slice of Volumetric Data

The EXTRACT_SLICE function extracts a single two-dimensional planar slice of
data from a three-dimensional volume. By setting arguments that specify the
orientation of the slice and a point in its center using the following syntax, you can
precisely control the orientation of the slicing plane.

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter,
Zcenter, Xrot, Yrot, Zrot [, ANISOTROPY=[xspacing, yspacing,
zspacing]] [, OUT_VAL=value] [, /RADIANS] [, /SAMPLE]
[, VERTICES=variable])

The following example demonstrates how to use EXTRACT_SLICE to extract the
same singular slice as that shown in the previous example.

Example Code
See extractslice.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples',
'data'])
volume = READ_BINARY(file, DATA_DIMS =[80, 100, 57])

2. Prepare the display device and load the grayscale color table.

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

3. Enter the following line to extract a sagittal planar slice from the MRI volume
of the head.

sliceImg = EXTRACT_SLICE $
(volume, 110, 110, 40, 50, 28, 90.0, 90.0, 0.0, OUT_VAL=0)
Planar Slicing of Volumetric Data Image Processing in IDL

RSI_PROCODE/examples/doc/image/extractslice.pro

Chapter 2: Transforming Image Geometry 41
Note
The code within the previous parentheses specifies: the volume (Data), a
size greater than the Xsize and Ysize of the volume (110,110), the Xcenter,
Ycenter and Zcenter (40, 50, 28) denoting the x, y, and z index points
through which the slice will pass, the degree of x, y, and z rotation of the
slicing plane (90.0, 90.0, 0.0) and the OUT_VAL = 0 indicating that
elements of the output array which fall outside the original values will be
given the value of 0 or black.

4. Use CONGRID to resize the output array to an easily viewable size. This is
also used to compensate for the sampling rate of the scan images.

bigImg = CONGRID (sliceImg, 400, 650, /INTERP)

5. Prepare a display window based on the resized array and display the image.

WINDOW, 0, XSIZE = 400, YSIZE = 650
TVSCL, bigImg

The image created by this example should appear similar to the following figure.

Interactive Planar Slicing of Volumetric Data

The series of two-dimensional images created by the magnetic resonance imaging
scan, shown in the section, “Displaying a Series of Planar Slices” on page 38, can

Figure 2-13: Example of Extracting a Slice of Data From a Volume
Image Processing in IDL Planar Slicing of Volumetric Data

42 Chapter 2: Transforming Image Geometry
also be visualized as a three-dimensional volume using either of IDL’s interactive
volume visualization tools, SLICER3 or XVOLUME.

SLICER3 quickly creates visualizations of 3D data using IDL Direct Graphics. The
XVOLUME procedure employs IDL Object Graphics to create highly interactive
visualizations that take advantage of OpenGL hardware acceleration and multiple
processors for volume rendering. Since Object Graphics are rendered in memory and
not simply drawn, both the time and amount of virtual memory required to create a
XVOLUME visualization exceed those needed to create a Direct Graphics, SLICER3
visualization.

Tip
For more information and examples of displaying volumes and slicing volumetric
data using XVOLUME, see “XVOLUME” in the IDL Reference Guide manual.

Displaying Volumetric Data Using SLICER3

The Direct Graphics SLICER3 widget-based application allows you to view single or
multiple slices of a volume or to create an isosurface of the three-dimensional data.
Complete the following steps to load the head.dat volume into the SLICER3
application.

Example Code
See displayslicer3.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Select the data file and read in the data using known dimensions:

file = FILEPATH('head.dat', $
SUBDIRECTORY=['examples', 'data'])

volume = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. To display all slices of the head.dat file as a volume in SLICER3, create a
pointer called pdata which passes the data array information to the
SLICER3 application.

pData = PTR_NEW(volume)

Note
You can load multiple arrays into the SLICER3 application by creating a pointer for
each array. Each array must have the same dimensions.
Planar Slicing of Volumetric Data Image Processing in IDL

RSI_PROCODE/examples/doc/image/displayslicer3.pro

Chapter 2: Transforming Image Geometry 43
3. Load the data into the SLICER3 application. The DATA_NAMES designates
the data set in the application’s Data list. This field will be greyed out if only
one volumetric array has been loaded.

SLICER3, pData, DATA_NAMES ='head'

At first it is not apparent that your data has been passed to the SLICER3 application.
See the following section, “Manipulating Volumetric Data Using SLICER3” for
details on how to use this interface.

Manipulating Volumetric Data Using SLICER3

Once you have loaded a three-dimensional array into the SLICER3 application, the
interface offers numerous ways to visualize the data. The following steps cover
creating an isosurface, viewing a slice of data within the volume and rotating the
display.

1. In the SLICER3 application, select Surface from the Mode: list. Left-click in
the Surface Threshold window containing the logarithmic histogram plot of
the data and drag the green line to change the threshold value of the display. A
value in the low to mid 40’s works well for this image. Click Display to view
the isosurface of the data.

Figure 2-14: An Isosurface of Volumetric Data
Image Processing in IDL Planar Slicing of Volumetric Data

44 Chapter 2: Transforming Image Geometry
Note
To undo an action resulting in an unwanted image in the SLICER3 window,
you can either choose Tools → Delete and select the last item on the list to
undo the last action or choose Tools → Erase to erase the entire image.

2. Select Slice from the Mode list. Select the Expose, Orthogonal, and X
options. Left-click in the image window and drag the mouse halfway along the
X axis and then release the mouse button. The planar slice of volumetric data
appears at the point where you release the mouse button.

3. Change the colors used to display the slice by selecting Tools → Colors →
Slice/Block. In the color table widget, select STD Gamma-II from the list and
click Done to load the new color table.

4. Change the view of the display by selecting View from the Mode list. Here
you can change the rotation and zoom factors of the displayed image. Use the
slider bars to rotate the orientation cube. A preview of the cube’s orientation
appears in the small window above the controls. To create the orientation
shown in the following figure, move the slider to a rotation of -18 for Z and -80
for X. Click Display to change the orientation of the image in the window.

Figure 2-15: Visualizing a Slice of Volumetric Data
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 2: Transforming Image Geometry 45
The following figure displays the final image.

To save the image currently in the display window, select File → Save → Save TIFF
Image. For more information about using the SLICER3 interface to manipulate
volumetric data, see “SLICER3” in the IDL Reference Guide.

Note
Enter the following line after closing the SLICER3 application to release memory
used by the pointer: PTR_FREE, pData

Figure 2-16: A Slice Overlaying an Isosurface
Image Processing in IDL Planar Slicing of Volumetric Data

46 Chapter 2: Transforming Image Geometry
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 3

Mapping an Image onto
Geometry
This chapter describes the following topics:
Mapping Images onto Surfaces Overview . . 48
Mapping an Image onto Elevation Data . . . 50

Mapping an Image onto a Sphere 57
Image Processing in IDL 47

48 Chapter 3: Mapping an Image onto Geometry
Mapping Images onto Surfaces Overview

Mapping an image onto geometry, also known as texture mapping, involves
overlaying an image or function onto a geometric surface. Images may be realistic,
such as satellite images, or representational, such as color-coded functions of
temperature or elevation. Unlike volume visualizations, which render each voxel
(volume element) of a three-dimensional scene, mapping an image onto geometry
efficiently creates the appearance of complexity by simply layering an image onto a
surface. The resulting realism of the display also provides information that is not as
readily apparent as with a simple display of either the image or the geometric surface.

Mapping an image onto a geometric surface is a two step process. First, the image is
mapped onto the geometric surface in object space. Second, the surface undergoes
view transformations (relating to the viewpoint of the observer) and is then displayed
in 2D screen space. You can use IDL Direct Graphics or Object Graphics to display
images mapped onto geometric surfaces.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description

“Mapping an
Image onto
Elevation Data”
on page 50.

SHADE_SURF Display the elevation data.

IDLgrWindow::Init
IDLgrView::Init
IDLgrModel::Init

Initialize the objects necessary
for an Object Graphics display.

IDLgrSurface::Init Initialize a surface object
containing the elevation data.

IDLgrImage::Init Initialize an image object
containing the satellite image.

XOBJVIEW Display the object in an
interactive IDL utility allowing
rotation and resizing.

Table 3-1: Tasks and Routines Associated with Mapping an Image onto
Geometry
Mapping Images onto Surfaces Overview Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 49
“Mapping an
Image onto a
Sphere Using
Direct Graphics”
on page 57.

MESH_OBJ
REPLICATE

Create a sphere.

SCALE3 Specify system variables
required for 3D viewing.

SET_SHADING Control the light source used by
POLYSHADE.

TVSCL
POLYSHADE

Map the image onto the sphere
using POLYSHADE and
display the example with
TVSCL.

“Mapping an
Image onto a
Sphere Using
Object Graphics”
on page 60.

MESH_OBJ
REPLICATE

Create a sphere.

IDLgrModel::Init
IDLgrPalette::Init
IDLgrImage::Init

Initialize model, palette and
image objects.

FINDGEN
REPLICATE

Create normalized coordinates
in order to map the image onto
the sphere.

IDLgrPolygon::Init Assign the sphere to a polygon
object and apply the image
object.

XOBJVIEW Display the object in an
interactive IDL utility allowing
rotation and resizing.

Task Routine(s)/Object(s) Description

Table 3-1: Tasks and Routines Associated with Mapping an Image onto
Geometry (Continued)
Image Processing in IDL Mapping Images onto Surfaces Overview

50 Chapter 3: Mapping an Image onto Geometry
Mapping an Image onto Elevation Data

The following Object Graphics example maps a satellite image from the Los
Angeles, California vicinity onto a DEM (Digital Elevation Model) containing the
area’s topographical features. The realism resulting from mapping the image onto the
corresponding elevation data provides a more informative view of the area’s
topography. The process is segmented into the following three sections:

• “Opening Image and Geometry Files”, in the following section

• “Initializing the IDL Display Objects” on page 52

• “Displaying the Image and Geometric Surface Objects” on page 53

Note
Data can be either regularly gridded (defined by a 2D array) or irregularly gridded
(defined by irregular x, y, z points). Both the image and elevation data used in this
example are regularly gridded. If you are dealing with irregularly gridded data, use
GRIDDATA to map the data to a regular grid.

Complete the following steps for a detailed description of the process.

Example Code
See elevation_object.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

Opening Image and Geometry Files

The following steps read in the satellite image and DEM files and display the
elevation data.

1. Select the satellite image:

imageFile = FILEPATH('elev_t.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the JPEG file:

READ_JPEG, imageFile, image

3. Select the DEM file:

demFile = FILEPATH('elevbin.dat', $
SUBDIRECTORY = ['examples', 'data'])
Mapping an Image onto Elevation Data Image Processing in IDL

RSI_PROCODE/examples/doc/image/elevation_object.pro

Chapter 3: Mapping an Image onto Geometry 51
4. Define an array for the elevation data, open the file, read in the data and close
the file:

dem = READ_BINARY(demFile, DATA_DIMS = [64, 64])

5. Enlarge the size of the elevation array for display purposes:

dem = CONGRID(dem, 128, 128, /INTERP)

6. To quickly visualize the elevation data before continuing on to the Object
Graphics section, initialize the display, create a window and display the
elevation data using the SHADE_SURF command:

DEVICE, DECOMPOSED = 0
WINDOW, 0, TITLE = 'Elevation Data'
SHADE_SURF, dem

After reading in the satellite image and DEM data, continue with the next section to
create the objects necessary to map the satellite image onto the elevation surface.

Figure 3-1: Visual Display of the Elevation Data
Image Processing in IDL Mapping an Image onto Elevation Data

52 Chapter 3: Mapping an Image onto Geometry
Initializing the IDL Display Objects

After reading in the image and surface data in the previous steps, you will need to
create objects containing the data. When creating an IDL Object Graphics display, it
is necessary to create a window object (oWindow), a view object (oView) and a model
object (oModel). These display objects, shown in the conceptual representation in the
following figure, will contain a geometric surface object (the DEM data) and an
image object (the satellite image). These user-defined objects are instances of
existing IDL object classes and provide access to the properties and methods
associated with each object class.

Note
The XOBJVIEW utility (described in “Mapping an Image onto a Sphere Using
Object Graphics” on page 60) automatically creates window and view objects.

Complete the following steps to initialize the necessary IDL objects.

1. Initialize the window, view and model display objects. For detailed syntax,
arguments and keywords available with each object initialization, see
IDLgrWindow::Init, IDLgrView::Init and IDLgrModel::Init. The following
three lines use the basic syntax oNewObject = OBJ_NEW('Class_Name')
to create these objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, COLOR_MODEL = 0)
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')

Figure 3-2: Conceptualization of Object Graphics Display Example

oModel - an IDLgrModel object

oView - an IDLgrView object

oWindow - an IDLgrWindow object

oSurface - the geometric elevation object
oImage - the satellite image object
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 53
2. Assign the elevation surface data, dem, to an IDLgrSurface object. The
IDLgrSurface::Init keyword, STYLE = 2, draws the elevation data using a
filled line style:

oSurface = OBJ_NEW('IDLgrSurface', dem, STYLE = 2)

3. Assign the satellite image to a user-defined IDLgrImage object using
IDLgrImage::Init:

oImage = OBJ_NEW('IDLgrImage', image, INTERLEAVE = 0, $
/INTERPOLATE)

INTERLEAVE = 0 indicates that the satellite image is organized using pixel
interleaving, and therefore has the dimensions (3, m, n). The INTERPOLATE
keyword forces bilinear interpolation instead of using the default nearest-
neighbor interpolation method.

Displaying the Image and Geometric Surface Objects

This section displays the objects created in the previous steps. The image and surface
objects will first be displayed in an IDL Object Graphics window and then with the
interactive XOBJVIEW utility.

1. Center the elevation surface object in the display window. The default object
graphics coordinate system is [–1,–1], [1,1]. To center the object in the
window, position the lower left corner of the surface data at [–0.5,–0.5, –0.5]
for the x, y and z dimensions:

oSurface -> GETPROPERTY, XRANGE = xr, YRANGE = yr, $
ZRANGE = zr

xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
zs = NORM_COORD(zr)
zs[0] = zs[0] - 0.5
oSurface -> SETPROPERTY, XCOORD_CONV = xs, $

YCOORD_CONV = ys, ZCOORD = zs

2. Map the satellite image onto the geometric elevation surface using the
IDLgrSurface::Init TEXTURE_MAP keyword:

oSurface -> SetProperty, TEXTURE_MAP = oImage, $
COLOR = [255, 255, 255]

For clearest display of the texture map, set COLOR = [255, 255, 255]. If the
image does not have dimensions that are exact powers of 2, IDL resamples the
image into a larger size that has dimensions which are the next powers of two
Image Processing in IDL Mapping an Image onto Elevation Data

54 Chapter 3: Mapping an Image onto Geometry
greater than the original dimensions. This resampling may cause unwanted
sampling artifacts. In this example, the image does have dimensions that are
exact powers of two, so no resampling occurs.

Note
If your texture does not have dimensions that are exact powers of 2 and you
do not want to introduce resampling artifacts, you can pad the texture with
unused data to a power of two and tell IDL to map only a subset of the
texture onto the surface.

For example, if your image is 40 by 40, create a 64 by 64 image and fill part
of it with the image data:

textureImage = BYTARR(64, 64)
textureImage[0:39, 0:39] = image ; image is 40 by 40
oImage = OBJ_NEW('IDLgrImage', textureImage)

Then, construct texture coordinates that map the active part of the texture to a
surface (oSurface):

textureCoords = [[], [], [], []]
oSurface -> SetProperty, TEXTURE_COORD = textureCoords

The surface object in IDL 5.6 is has been enhanced to automatically perform
the above calculation. In the above example, just use the image data (the 40
by 40 array) to create the image texture and do not supply texture
coordinates. IDL computes the appropriate texture coordinates to correctly
use the 40 by 40 image.

Note
Some graphic devices have a limit for the maximum texture size. If your
texture is larger than the maximum size, IDL scales it down into dimensions
that work on the device. This rescaling may introduce resampling artifacts
and loss of detail in the texture. To avoid this, use the TEXTURE_HIGHRES
keyword to tell IDL to draw the surface in smaller pieces that can be texture
mapped without loss of detail.

3. Add the surface object, covered by the satellite image, to the model object.
Then add the model to the view object:

oModel -> Add, oSurface
oView -> Add, oModel
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 55
4. Rotate the model for better display in the object window. Without rotating the
model, the surface is displayed at a 90° elevation angle, containing no depth
information. The following lines rotate the model 90° away from the viewer
along the x-axis and 30° clockwise along the y-axis and the x-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], 30
oModel -> ROTATE, [1, 0, 0], 30

5. Display the result in the Object Graphics window:

oWindow -> Draw, oView

6. Display the results using XOBJVIEW, setting the SCALE = 1 (instead of the
default value of 1/SQRT3) to increase the size of the initial display:

XOBJVIEW, oModel, /BLOCK, SCALE = 1

This results in the following display.

Figure 3-3: Image Mapped onto a Surface in an Object Graphics Window
Image Processing in IDL Mapping an Image onto Elevation Data

56 Chapter 3: Mapping an Image onto Geometry
After displaying the model, you can rotate it by clicking in the application
window and dragging your mouse. Select the magnify button, then click near
the middle of the image. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display.

7. Destroy unneeded object references after closing the display windows:

OBJ_DESTROY, [oView, oImage]

The oModel and oSurface objects are automatically destroyed when oView is
destroyed.

For an example of mapping an image onto a regular surface using both Direct and
Object Graphics displays, see “Mapping an Image onto a Sphere” on page 57.

Figure 3-4: Displaying the Image Mapped onto the Surface in XOBJVIEW
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 57
Mapping an Image onto a Sphere

The following example maps an image containing a color representation of world
elevation onto a sphere using both Direct and Object Graphics displays. The example
is broken down into two sections:

• “Mapping an Image onto a Sphere Using Direct Graphics”

• “Mapping an Image onto a Sphere Using Object Graphics” on page 60

Mapping an Image onto a Sphere Using Direct
Graphics

Complete the following steps for a detailed description of the process.

Example Code
See maponsphere_direct.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Select the file containing the world elevation image. Define the array, read in
the data and close the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [360, 360])

2. Prepare the display device to display a PseudoColor image:

DEVICE, DECOMPOSED = 0

3. Load a color table and using TVLCT, set the final index value of the red, green
and blue bands to 255 (white). Setting these index values to white provides for
the creation of a white window background in a later step.

LOADCT, 33
TVLCT, 255,255,255, !D.TABLE.SIZE - 1

(For comparison, TVLCT, 0, 0, 0, !D.TABLE_SIZE+1 would designate
a black window background.)

4. Create a window and display the image containing the world elevation data:

WINDOW, 0, XSIZE = 360, YSIZE = 360
TVSCL, image
Image Processing in IDL Mapping an Image onto a Sphere

RSI_PROCODE/examples/doc/image/maponsphere_direct.pro

58 Chapter 3: Mapping an Image onto Geometry
This image, shown in the following figure, will be mapped onto the sphere.

5. Use MESH_OBJ to create a sphere onto which the image will be mapped. The
following line specifies a value of 4, indicating a spherical surface type:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 360, 360), $
/CLOSED

The vertices and polygons variables are the lists that contain the mesh vertices
and mesh indices of the sphere. REPLICATE generates a 360 by 360 array,
each element of which will contain the value 0.25. Using REPLICATE in the
Array1 argument of MESH_OBJ specifies that the vertices variable is to
consist of 360 by 360 vertices, each positioned at a constant radius of 0.25
from the center of the sphere.

6. Create a window and define the 3D view. Use SCALE3 to designate
transformation and scaling parameters for 3D viewing. The AX and AZ
keywords specify the rotation, in degrees about the x and z axes:

WINDOW, 1, XSIZE = 512, YSIZE = 512
SCALE3, XRANGE = [-0.25,0.25], YRANGE = [-0.25,0.25], $

ZRANGE = [-0.25,0.25], AX = 0, AZ = -90

Figure 3-5: World Elevation Image
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 59
7. Set the light source to control the shading used by the POLYSHADE function.
Use SET_SHADING to modify the light source, moving it from the default
position of [0,0,1] with rays parallel to the z-axis to a light source position of
[-0.5, 0.5, 2.0]:

SET_SHADING, LIGHT = [-0.5, 0.5, 2.0]

8. Set the system background color to the default color index, defining a white
window background:

!P.BACKGROUND = !P.COLOR

9. Use TVSCL to display the world elevation image mapped onto the sphere.
POLYSHADE references the sphere created with the MESH_OBJ routine, sets
SHADES = image to map the image onto the sphere and uses the image
transformation defined by the T3D transformation matrix:

TVSCL, POLYSHADE(vertices, polygons, SHADES = image, /T3D)

The specified view of the image mapped onto the sphere is displayed in a
Direct Graphics window as shown in the following figure.

10. After displaying the image, restore the system’s default background color:

!P.BACKGROUND = 0

To create a Object Graphics display featuring a sphere that can be interactively
rotated and resized, complete the steps contained in the section, “Mapping an Image
onto a Sphere Using Object Graphics” below.

Figure 3-6: Direct Graphics Display of an Image Mapped onto a Sphere
Image Processing in IDL Mapping an Image onto a Sphere

60 Chapter 3: Mapping an Image onto Geometry
Mapping an Image onto a Sphere Using Object
Graphics

This example maps an image containing world elevation data onto the surface of a
sphere and displays the result using the XOBJVIEW utility. This utility automatically
creates the window object and the view object, previously shown in the section,
“Initializing the IDL Display Objects” on page 52. Therefore, this example creates an
object based on IDLgrModel that contains the sphere, the image and the image
palette, as shown in the conceptual representation in the following figure.

Complete the following steps for a detailed description of the process.

Example Code
See maponsphere_object.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

Note
If you are continuing the exercise from the previous section, “Mapping an Image
onto a Sphere Using Direct Graphics”, skip steps 1, and 2. Proceed with step 3 to
create the necessary objects.

1. Select the world elevation image. Define the array, read in the data and close
the file.

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [360, 360])

Figure 3-7: Conceptualization of XOBJVIEW Object Graphics Example

oModel - an IDLgrModel object
containing the sphere, image, and
palette
oPolygon - an object defining the sphere,

oImage - an object containing the image
oPalette - an object defining the color table

containing the image and palette
Mapping an Image onto a Sphere Image Processing in IDL

RSI_PROCODE/examples/doc/image/maponsphere_object.pro

Chapter 3: Mapping an Image onto Geometry 61
2. Use the MESH_OBJ procedure to create a sphere onto which the image will be
mapped. The following invocation of MESH_OBJ uses a value of 4, which
represents a spherical mesh:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)

When the MESH_OBJ procedure completes, the vertices and polygons
variables contain the mesh vertices and polygonal mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining all the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh vertices will increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of vertices that are located in a sphere shape with a radius of 0.25.

3. Initialize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObject = OBJ_NEW('Class_Name'), create the model,
palette and image objects:

oModel = OBJ_NEW('IDLgrModel')
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 33
oPalette -> SetRGB, 255, 255, 255, 255
oImage = OBJ_NEW('IDLgrImage', image, PALETTE = oPalette)

The previous lines initialize the oPalette object with the color table and then
set the final index value of the red, green and blue bands to 255 (white) in
order to use white (instead of black) to designate the highest areas of elevation.
The palette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModel::Init, IDLgrPalette::Init and IDLgrImage::Init.

4. Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at a vertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across a texture, so a texture coordinate of [0.5, 0.5] at a vertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex.

In this example, we want to do a simple linear mapping of the texture around
the sphere, so we create a convenience vector that describes the mapping in
Image Processing in IDL Mapping an Image onto a Sphere

62 Chapter 3: Mapping an Image onto Geometry
each of the texture’s x- and y-directions, and then create these texture
coordinates:

vector = FINDGEN(101)/100.
texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector

The code above copies the convenience vector through the array in each
direction.

5. Enter the following line to initialize a polygon object with the image and
geometry data using the IDLgrPolygon::Init function. Set SHADING = 1 for
gouraud (smoother) shading. Set the DATA keyword equal to the sphere defined
with the MESH_OBJ function. Set COLOR to draw a white sphere onto which
the image will be mapped. Set TEXTURE_COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MAP keyword and force bilinear
interpolation:

oPolygons = OBJ_NEW('IDLgrPolygon', SHADING = 1, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = oImage, /TEXTURE_INTERP)

Note
When mapping an image onto an IDLgrPolygon object, you must specify
both TEXTURE_MAP and TEXTURE_COORD keywords.

6. Add the polygon containing the image and the palette to the model object:

oModel -> ADD, oPolygons

7. Rotate the model -90° along the x-axis and y-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90

8. Display the results using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVIEW, oModel, /BLOCK

After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near
the middle of the sphere. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 3: Mapping an Image onto Geometry 63
Select the left-most button on the XOBJVIEW toolbar to reset the display. The
following figure shows a rotated and magnified view of the world elevation
object.

9. After closing the XOBJVIEW display, remove unneeded object references:

OBJ_DESTROY, [oModel, oImage, oPalette]

Figure 3-8: Magnified View of World Elevation Object
Image Processing in IDL Mapping an Image onto a Sphere

64 Chapter 3: Mapping an Image onto Geometry
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 4

Working with Masks
and Image Statistics
This chapter describes the following topics:
Overview of Masks and Image Statistics . . . 66
Masking Images . 68
Clipping Images . 72

Locating Pixel Values in an Image 76
Calculating Image Statistics 80
Image Processing in IDL 65

66 Chapter 4: Working with Masks and Image Statistics
Overview of Masks and Image Statistics

Mathematical operations used with images include logic (conditional) operations and
statistics. Logic operations are used to make masks to apply threshold levels to clip
the pixel values of an image, and to locate pixel values. These operations help to
segment features in an image, after which statistics can be derived to provide a means
of comparison.

Masks are used to isolate specific features. A mask is a binary image, made by using
relational operators. A binary mask is multiplied by the original image to omit
specific areas. For more information, see “Masking Images” on page 68.

Threshold levels can be applied to an image to clip the pixel values to a floor or a
ceiling. Clipping enhances specific features, and is applied through minimum and
maximum operators. After the resulting images are byte-scaled, the specific features
remain while the other areas become part of the background. For more information,
see “Clipping Images” on page 72.

Locating pixel values is another way to segment specific features. Mathematical
expressions are used to determine the location of pixels with particular values within
the two-dimensional array representing the image. For more information, see
“Locating Pixel Values in an Image” on page 76.

When specific features have been segmented, image statistics (such as total, mean,
standard deviation, and variance) can be derived to quantify and compare them. For
more information, see “Calculating Image Statistics” on page 80.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image math operations and associated IDL math
operators and routines covered in this chapter.

Task Operator(s) and Routine(s) Description

“Masking
Images” on
page 68.

Relational Operators

Mathematical Operators

Make masks and
apply them to
images.

Table 4-1: Image Math Tasks and Related Image Math Operators and
Routines
Overview of Masks and Image Statistics Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 67
Note
This chapter uses data files from the IDL examples/data and
examples/demo/demodata directories. Two files, data.txt and index.txt,
contain descriptions of the files, including array sizes.

“Clipping
Images” on
page 72.

Minimum and Maximum Operators

Mathematical Operators

Clip the pixel values
of an image to
highlight specific
features.

“Locating Pixel
Values in an
Image” on
page 76.

WHERE

Mathematical Operators

Locate specific
pixel values within
an image.

“Calculating
Image
Statistics” on
page 80

Mathematical Operators

IMAGE_STATISTICS

Calculate the sum,
mean, standard
deviation, and
variance of the pixel
values within an
image.

Task Operator(s) and Routine(s) Description

Table 4-1: Image Math Tasks and Related Image Math Operators and
Routines (Continued)
Image Processing in IDL Overview of Masks and Image Statistics

68 Chapter 4: Working with Masks and Image Statistics
Masking Images

Masking (also known as thresholding) is used to isolate features within an image
above, below, or equal to a specified pixel value. The value (known as the threshold
level) determines how masking occurs. In IDL, masking is performed with the
relational operators. IDL’s relational operators are shown in the following table.

For example, if you have an image variable and you want to mask it to include only
the pixel values equaling 125, the resulting mask variable is created with the
following IDL statement.

mask = image EQ 125

The mask level is applied to every element in the image array, which results in a
binary image.

Note
You can also provide both upper and lower bounds to masks by using the bitwise
operators; AND, NOT, OR, and XOR. See Bitwise Operators in the Building IDL
Applications for more information on these operators.

The following example uses masks derived from the image contained in the
worldelv.dat file, which is in the examples/data directory. Masks are derived
to extract the oceans and land. These masks are applied back to the image to show
only on the oceans or the land. Masks are applied by multiplying them with the
original image. Complete the following steps for a detailed description of the process.

Operator Description

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 4-2: IDL’s Relational Operators
Masking Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 69
Example Code
See maskingimages.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Determine the path to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 38

5. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'World Elevation'

TV, image

The following figure shows the original image, which represents the elevation
levels of the world.

Figure 4-1: World Elevation Image
Image Processing in IDL Masking Images

RSI_PROCODE/examples/doc/image/maskingimages.pro

70 Chapter 4: Working with Masks and Image Statistics
6. Make a mask of the oceans:

oceanMask = image LT 125

7. Multiply the ocean mask by the original image:

maskedImage = image*oceanMask

8. Create another window and display the mask and the results of the
multiplication:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Oceans Mask (left) and Resulting Image (right)'

TVSCL, oceanMask, 0
TV, maskedImage, 1

The following figure shows the mask of the world’s oceans and the results of
applying it to the original image.

9. Make a mask of the land:

landMask = image GE 125

10. Multiply the land mask by the original image:

maskedImage = image*landMask

Figure 4-2: Oceans Mask (left) and the Resulting Image (right)
Masking Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 71
11. Create another window and display the mask and the results of the
multiplication:

WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Land Mask (left) and Resulting Image (right)'

TVSCL, landMask, 0
TV, maskedImage, 1

The following figure shows the mask of the land masses of the world and the
results of applying it to the original image.

Figure 4-3: Land Mask (left) and the Resulting Image (right)
Image Processing in IDL Masking Images

72 Chapter 4: Working with Masks and Image Statistics
Clipping Images

Clipping is used to enhance features within an image. You provide a threshold level
to determine how the clipping occurs. The values above (or below) the threshold
level remain the same while the other values are set equal to the level.

In IDL, clipping is performed with the minimum and maximum operators. IDL’s
minimum and maximum operators are shown in the following table.

The operators are used in an expression that contains an image array, the operator,
and then the threshold level. For example, if you have an image variable and you
want to scale it to include only the values greater than or equal to 125, the resulting
clippedImage variable is created with the following IDL statement.

clippedImage = image > 125

The threshold level is applied to every element in the image array. If the element
value is less than 125, it is set equal to 125. If the value is greater than or equal to
125, it is left unchanged.

Note
When clipping is combined with byte-scaling, this is equivalent to performing a
stretch on an image. See “Determining Intensity Values for Threshold and Stretch”
in Chapter 9 for more information.

The following example shows how to threshold an image of Hurricane Gilbert, which
is in the hurric.dat file in the examples/data directory. Two clipped images
are created. One contains all data values greater than 125 and the other contains all
values less than 125. Since these clipped images are grayscale images and do not use
the entire 0 to 255 range, they are displayed with the TV procedure and then scaled
with the TVSCL procedure, which scales the range of the image from 0 to 255.
Complete the following steps for a detailed description of the process.

Operator Description

< Less than or equal to

> Greater than or equal to

Table 4-3: IDL’s Minimum and Maximum Operators
Clipping Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 73
Example Code
See clippingimages.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Determine the path to the worldtmp.png file:

file = FILEPATH('hurric.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Define the image size parameter:

imageSize = [440, 340]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

5. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Hurricane Gilbert'

TV, image

The following figure shows the original image of Hurricane Gilbert.

6. Clip the image to determine which pixel values are greater than 125:

topClippedImage = image > 125

Figure 4-4: Image of Hurricane Gilbert
Image Processing in IDL Clipping Images

RSI_PROCODE/examples/doc/image/clippingimages.pro

74 Chapter 4: Working with Masks and Image Statistics
7. Create another window and display the clipped image with the TV (left) and
the TVSCL (right) procedures:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Image Greater Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, topClippedImage, 0
TVSCL, topClippedImage, 1

The following figure shows the resulting image of pixel values greater than
125 with the TV and TVSCL procedures.

8. Clip the image to determine which pixel values are less than a 125:

bottomClippedImage = image < 125

9. Create another window and display the clipped image with the TV and the
TVSCL procedures:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Image Less Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, bottomClippedImage, 0
TVSCL, bottomClippedImage, 1

Figure 4-5: Pixel Values Greater Than 125, TV (left) and TVSCL (right)
Clipping Images Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 75
The following figure shows the resulting image of pixel values less than 125
with the TV (left) and TVSCL (right) procedures.

Figure 4-6: Pixel Values Less Than 125, TV (left) and TVSCL (right)
Image Processing in IDL Clipping Images

76 Chapter 4: Working with Masks and Image Statistics
Locating Pixel Values in an Image

Locating pixel values within an image helps to segment features. You can use IDL’s
WHERE function to determine where features characterized by specific values
appear within the image. The WHERE function returns a vector of one-dimensional
indices, locating where the specified values occur within the image. The values are
specified with an expression input argument to the WHERE function. The expression
is defined with the relational operators, similar to how masking is performed. See
“Masking Images” on page 68 for more information on relational operators.

Since the WHERE function only returns the one-dimensional indices, you must
derive the column and row locations with the following statements.

column = index MOD imageSize[0]
row = index/imageSize[0]

where index is the result from the WHERE function and imageSize[0] is the width of
the image.

The WHERE function returns one-dimensional indices to allow you to easily use
these results as subscripts within the original image array or another array. This
ability allows you to combine values from one image with another image. The
following example combines specific values from the image within the
worldelv.dat file with the image within the worldtmp.png file. The
worldelv.dat file is in the examples/data directory and the worldtmp.png file
is in the examples/demo/demodata directory. First, the temperature data is shown
in the oceans and the elevation data is shown on the land. Then, the elevation data is
shown in the oceans and the temperature data is shown on the land. Complete the
following steps for a detailed description of the process.

Example Code
See combiningimages.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Determine the path to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]

3. Import the elevation image from the file:

elvImage = READ_BINARY(file, DATA_DIMS = imageSize)
Locating Pixel Values in an Image Image Processing in IDL

RSI_PROCODE/examples/doc/image/combiningimages.pro

Chapter 4: Working with Masks and Image Statistics 77
4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 38

5. Create a window and display the elevation image:

WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'World Elevation (left) and Temperature (right)'

TV, elvImage, 0

6. Determine the path to the other file:

file = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

7. Import the temperature image:

tmpImage = READ_PNG(file)

8. Display the temperature image:

TV, tmpImage, 1

The following figure shows the original world elevation and temperature
images.

9. Determine where the oceans are located within the elevation image:

ocean = WHERE(elvImage LT 125)

Figure 4-7: World Elevation (left) and Temperature (right)
Image Processing in IDL Locating Pixel Values in an Image

78 Chapter 4: Working with Masks and Image Statistics
10. Set the temperature image as the background:

image = tmpImage

11. Replace values from the temperature image with the values from the elevation
image only where the ocean pixels are located:

image[ocean] = elvImage[ocean]

12. Create another window and display the resulting temperature over land image:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Temperature Over Land (left) ' +
'and Over Oceans (right)'

TV, image, 0

13. Determine where the land is located within the elevation image:

land = WHERE(elvImage GE 125)

14. Set the temperature image as the background:

image = tmpImage

15. Replace values from the temperature image with the values from the elevation
image only where the land pixels are located:

image[land] = elvImage[land]

16. Display the resulting temperature over oceans image:

TV, image, 1
Locating Pixel Values in an Image Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 79
The following figure shows two possible image combinations using the world
elevation and temperature images.

Tip
You could also construct the same image using masks and adding them together.
For example, to create the second image (temperature over oceans), you could have
done the following:

mask = elvImage GE 125
image = (tmpImage*(1 - mask)) + (elvImage*mask)

For large images, using masks may be faster than using the WHERE routine.

Figure 4-8: Temperature Over Land (left) and Over Oceans (right)
Image Processing in IDL Locating Pixel Values in an Image

80 Chapter 4: Working with Masks and Image Statistics
Calculating Image Statistics

The statistical properties of an image provide useful information, such as the total,
mean, standard deviation, and variance of the pixel values. IDL’s
IMAGE_STATISTICS procedure can be used to calculate these statistical properties.
The MOMENT, N_ELEMENTS, TOTAL, MAX, MEAN, MIN, STDDEV, and
VARIANCE routines can also be used to calculate individual statistics, but most of
these values are already provided by the IMAGE_STATISTICS procedure.

The following example shows how to use the IMAGE_STATISTICS procedure to
calculate the statistical properties of an image. First, a mask is used to subtract the
convection of the earth’s core from the convection image contained in the
convec.dat file, which is in the examples/data directory. The resulting
difference represents the convection of just the earth’s mantle. The
IMAGE_STATISTICS procedure is applied to this difference image, and the
resulting values are displayed in the Output Log. Then, a mask is derived for the non-
zero values of the difference image, and the IMAGE_STATISTICS procedure is used
again, this time with the mask applied through the MASK keyword. The resulting
statistics can than be compared. The color table associated with this example is white
for zero values and dark red for 255 values. Complete the following steps for a
detailed description of the process.

Example Code
See calculatingstatistics.pro in the examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example.

1. Determine the path to the file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter.

imageSize = [248, 248]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 27
Calculating Image Statistics Image Processing in IDL

RSI_PROCODE/examples/doc/image/calculatingstatistics.pro

Chapter 4: Working with Masks and Image Statistics 81
5. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Earth Mantle Convection'

TV, image

The following figure shows the original convection image.

6. Make a mask of the core and scale it to range from 0 to 255:

core = BYTSCL(image EQ 255)

7. Subtract the scaled mask from the original image:

difference = image - core

8. Create another window and display the difference of the original image and the
scaled mask:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Difference of Original & Core'

TV, difference

Figure 4-9: Earth Mantle Convection
Image Processing in IDL Calculating Image Statistics

82 Chapter 4: Working with Masks and Image Statistics
The following figure shows the convection of just the earth’s mantle.

9. Determine the statistics of the difference image:

IMAGE_STATISTICS, difference, COUNT = pixelNumber, $
DATA_SUM = pixelTotal, MAXIMUM = pixelMax, $
MEAN = pixelMean, MINIMUM = pixelMin, $
STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

10. Print out the resulting statistics:

PRINT, ''
PRINT, 'IMAGE STATISTICS:'
PRINT, 'Total Number of Pixels = ', pixelNumber
PRINT, 'Total of Pixel Values = ', pixelTotal
PRINT, 'Maximum Pixel Value = ', pixelMax
PRINT, 'Mean of Pixel Values = ', pixelMean
PRINT, 'Minimum Pixel Value = ', pixelMin
PRINT, 'Standard Deviation of Pixel Values = ', $

pixelDeviation
PRINT, 'Total of Squared Pixel Values = ', $

pixelSquareSum
PRINT, 'Variance of Pixel Values = ', pixelVariance

IDL prints:

IMAGE STATISTICS:
Total Number of Pixels = 61504
Total of Pixel Values = 2.61691e+006
Maximum Pixel Value = 253.000
Mean of Pixel Values = 42.5486
Minimum Pixel Value = 0.000000

Figure 4-10: The Difference of the Original Image and the Core
Calculating Image Statistics Image Processing in IDL

Chapter 4: Working with Masks and Image Statistics 83
Standard Deviation of Pixel Values = 48.7946
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 2380.91

11. Derive a mask of the non-zero values of the image:

nonzeroMask = difference NE 0

12. Determine the statistics of the image with the mask applied:

IMAGE_STATISTICS, difference, COUNT = pixelNumber, $
DATA_SUM = pixelTotal, MASK = nonzeroMask, $
MAXIMUM = pixelMax, MEAN = pixelMean, $
MINIMUM = pixelMin, STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

13. Print out the resulting statistics:

PRINT, ''
PRINT, 'MASKED IMAGE STATISTICS:'
PRINT, 'Total Number of Pixels = ', pixelNumber
PRINT, 'Total of Pixel Values = ', pixelTotal
PRINT, 'Maximum Pixel Value = ', pixelMax
PRINT, 'Mean of Pixel Values = ', pixelMean
PRINT, 'Minimum Pixel Value = ', pixelMin
PRINT, 'Standard Deviation of Pixel Values = ', $

pixelDeviation
PRINT, 'Total of Squared Pixel Values = ', $

pixelSquareSum
PRINT, 'Variance of Pixel Values = ', pixelVariance

IDL prints:

MASKED IMAGE STATISTICS:
Total Number of Pixels = 36325
Total of Pixel Values = 2.61691e+006
Maximum Pixel Value = 253.000
Mean of Pixel Values = 72.0416
Minimum Pixel Value = 1.00000
Standard Deviation of Pixel Values = 43.6638
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 1906.53

The difference in the resulting statistics are because of the zero values, which
are a part of the calculations for the image before the mask is applied.
Image Processing in IDL Calculating Image Statistics

84 Chapter 4: Working with Masks and Image Statistics
Calculating Image Statistics Image Processing in IDL

Chapter 5

Warping Images
This chapter describes the following topics:
Overview of Warping Images 86
Creating Transparent Image Overlays 88

Warping Images Using Direct Graphics . . . 89
Image Processing in IDL 85

86 Chapter 5: Warping Images
Overview of Warping Images

In image processing, image warping is used primarily to correct optical distortions
introduced by camera lenses, or to register images acquired from either different
perspectives or different sensors. When correcting optical distortions, the original
image may be registered to a regular grid rather than to another image. In image
warping, corresponding control points (selected in the input and reference images)
control the geometry of the warping transformation. The arrays of control points from
the original input image, Xi and Yi, are stretched to conform to the control point
arrays Xo and Yo, designated in the reference image. Because these transformations
are frequently nonlinear, image warping is often known as rubber sheeting. For
general tips regarding control point selection see “Tips for Selecting Control Points”
on page 87.

Image warping in IDL is a three-step process. First, control points are selected
between two displayed images or between an image and a grid. Second, the resulting
arrays of control points, Xi, Yi, Xo, and Yo, are then input into one of IDL’s warping
routines. Third, the warped image resulting from the translation of the Xi, Yi points to
the Xo, Yo points, is displayed. It is often useful to display the warped image as a
transparency, overlaying the reference image. For more information on creating
transparencies with Direct and Object Graphics, see “Creating Transparent Image
Overlays” on page 88.

The following table introduces the tasks and routines covered in this chapter.

Task Routine Description

Creating a Direct
Graphics Display
of Image Warping

See “Warping
Images Using
Direct Graphics”
on page 89.

WSET

CURSOR

Set the window focus and select control
point coordinates.

WARP_TRI Warp the images using WARP_TRI’s
triangulation and interpolation.

POLYWARP Create arrays of polynomial coefficients
from the control point arrays before
using POLY_2D.

POLY_2D Warp the images using the polynomial
warping functions of POLY_2D.

XPALETTE Use XPALETTE to view a color table.

Table 5-1: Image Warping Tasks and Routines
Overview of Warping Images Image Processing in IDL

Chapter 5: Warping Images 87
Tips for Selecting Control Points

Both examples in this chapter use control points to define the image warping
transformation. To produce accurate results, use the following guidelines when
selecting corresponding control points:

• Select numerous control points. A warping transformation based on many
control points produces a more accurate result than one based on only a few
control points.

• Select control points near the edges of the image in addition to control points
near the center of the image.

• Select a higher density of control points in irregular or highly varying areas of
the image.

• Select points in which you are confident. Including points with poor accuracy
may generate worse results then a warp model with fewer points.

Creating an
Object Graphics
Display of Image
Warping

See “Warping
Image Objects” in
Chapter 4 of the
Object
Programming
manual.

IDLgrPalette::Init Create a palette object.

XROI Select control points using the XROI
utility.

WARP_TRI Warp the input image to the reference
image using the triangulation and
interpolation functions of WARP_TRI.

SIZE

BYTARR

Change the warped image into a RGB
image containing an alpha channel to
enable transparency.

IDLgrImage::Init Initialize transparent image and base
image objects.

IDLgrWindow::Init

IDLgrView::Init

IDLgrModel::Init

Initialize the objects necessary for an
Object Graphics display.

Task Routine Description

Table 5-1: Image Warping Tasks and Routines (Continued)
Image Processing in IDL Overview of Warping Images

88 Chapter 5: Warping Images
Creating Transparent Image Overlays

It is possible to create and display a transparent image using either IDL Direct
Graphics or IDL Object Graphics. Creating a transparent image is useful in the
warping process when you want to overlay a transparency of the warped image onto
the reference image (the image in which Xo, Yo control points were selected). The
method used to create and display the transparent image depends on whether the
resulting image is being displayed with Direct Graphics or Object Graphics.

Displaying Image Transparencies Using Direct
Graphics

Creating a transparent overlay in Direct Graphics requires devising a mask to alter
the array of the image that is to be displayed as a transparency. The mask retains only
the pixel values that will appear in the transparent overlay. The base image and the
transparent warped image can then be displayed as a blended image in a Direct
Graphics window.

With Direct Graphics displays, only a single color table can be applied to the blended
image in a display window. For an example of creating a blended image, combining a
warped image and a base image, see “Warping Images Using Direct Graphics” on
page 89.

Note
For precise control over the color tables associated with the reference image and the
warped image transparency, consider using Object Graphics.

Displaying Image Transparencies Using Object
Graphics

In Object Graphics, a transparent image object is created by adding an alpha channel
to the image array. The alpha channel is used to define the level of transparency in an
image object. For an example, see “Defining Transparency in Image Objects” and
“Warping Image Objects” in Chapter 4 of the Object Programming manual.
Creating Transparent Image Overlays Image Processing in IDL

Chapter 5: Warping Images 89
Warping Images Using Direct Graphics

Image warping requires selection of corresponding control points in an input image
and either a reference image or a regular grid. The input image is warped so that the
input image control points match the control points specified in the reference image.

Using Direct Graphics, the following example warps the input image, a Magnetic
Resonance Image (MRI) proton density scan of a human thoracic cavity, to the
reference image, a Computed Tomography (CT) bone scan of the same region.
Complete the following steps for a detailed description of the process.

Example Code
See mriwarping_direct.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Select the MRI proton density image file:

mriFile= FILEPATH('pdthorax124.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use READ_JPEG to read in the input image, which will be warped to the CT
bone scan image. Then prepare the display device, load a grayscale color table,
create a window and display the image:

READ_JPEG, mriFile, mriImg
DEVICE, DECOMPOSED = 0
LOADCT, 0
WINDOW, 0, XSIZE = 256, YSIZE = 256, $

TITLE = 'MRI Proton Density Input Image'
TV, mriImg

3. Select the CT bone scan image file:

ctboneFile = FILEPATH('ctbone157.jpg', $
SUBDIRECTORY = ['examples', 'data'])

4. Use READ_JPEG to read in the reference image and create a window:

READ_JPEG, ctboneFile, ctboneImg
WINDOW, 2, XSIZE = 483, YSIZE = 410, $

TITLE = 'CT Bone Scan Reference Image'

5. Load the “Hue Sat Lightness 2" color table, making the image’s features easier
to distinguish. After displaying the image, return to the gray scale color table.

LOADCT, 20
TV, ctboneImg
LOADCT, 0
Image Processing in IDL Warping Images Using Direct Graphics

RSI_PROCODE/examples/doc/image/mriwarping_direct.pro

90 Chapter 5: Warping Images
Proceed with the following section to begin selecting control points.

Direct Graphics Example: Selecting Control Points

This section describes selecting corresponding control points in the two displayed
images. The array of control points (Xi, Yi) in the input image will be mapped to the
array of points (Xo, Yo) selected in the reference image. The following image shows
the points to be selected in the input image.

1. Set focus on the first image window:

WSET, 0

2. Select the first control point using the CURSOR function. After entering the
following line, the cursor changes to a cross hair when positioned over the
image window. Position the cross hair so that it is on the first control point,
“CP 1", depicted by a white circle in the lower-left corned of the previous

Figure 5-1: Control Points (CP) Selection in the Input Image

(xi1, yi1)

(xi3, yi3)

(xi4, yi4)

(xi5, yi5)

(xi6, yi6)

CP 1

CP 2

CP 3

CP 4

CP 5

CP 6
(xi2, yi2)

(xi7, yi7)

CP 8

CP 7

(xi9, yi9) (xi8, yi8)
CP 9

(xi7, yi7)
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 91
figure, and click the left mouse button. The x, y coordinate values of the first
control point will be saved in the variables xi1, yi1:

CURSOR, xi1, yi1, /DEVICE

Note
The values for xi1 and yi1 are displayed in the IDLDE Variable Watch
window. If you are not running the IDLDE, you can type PRINT, xi1,
yi1 to see the values.

Note
After entering the first line and selecting the first control point in the display
window, place your cursor in the IDL command line and press the Up Arrow
key. The last line entered is displayed and can be easily modified.

3. Continue selecting control points. After you enter each of the following lines,
select the appropriate control point in the input image as shown in the previous
figure:

CURSOR, xi2, yi2, /DEVICE
CURSOR, xi3, yi3, /DEVICE
CURSOR, xi4, yi4, /DEVICE
CURSOR, xi5, yi5, /DEVICE
CURSOR, xi6, yi6, /DEVICE
CURSOR, xi7, yi7, /DEVICE
CURSOR, xi8, yi8, /DEVICE
CURSOR, xi9, yi9, /DEVICE

4. Set the focus on the window containing the reference image to prepare to
select corresponding control points:

WSET, 2

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length,
meaning that you must select the same number of control points in the
reference image as you selected in the input image. The control points must
also be selected in the same order since the point Xi1, Yi1 will be warped to
Xo1, Yo1.
Image Processing in IDL Warping Images Using Direct Graphics

92 Chapter 5: Warping Images
The following figure displays the control points to be selected in the next step.

5. Select the control points in the reference image. These are the corresponding
points to which the input image control points will be warped. After entering
each line, select the appropriate control point as shown in the previous figure:

CURSOR, xo1, yo1, /DEVICE
CURSOR, xo2, yo2, /DEVICE
CURSOR, xo3, yo3, /DEVICE
CURSOR, xo4, yo4, /DEVICE
CURSOR, xo5, yo5, /DEVICE
CURSOR, xo6, yo6, /DEVICE
CURSOR, xo7, yo7, /DEVICE
CURSOR, xo8, yo8, /DEVICE
CURSOR, xo9, yo9, /DEVICE

6. Place the control points into vectors (one-dimensional arrays) required by IDL
warping routines. WARP_TRI and POLYWARP use the variables Xi, Yi and
Xo, Yo as containers for the control points selected in the original input and
reference images. Geometric transformations control the warping of the input

Figure 5-2: Control Point (CP) Selection in the Reference Image
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 93
image (Xi, Yi) values to the reference image (Xo, Yo) values. Enter the
following lines to load the control point values into the one-dimensional
arrays:

Xi = [xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9]
Yi = [yi1, yi2, yi3, yi4, yi5, yi6, yi7, yi8, yi9]
Xo = [xo1, xo2, xo3, xo4, xo5, xo6, xo7, xo8, xo9]
Yo = [yo1, yo2, yo3, yo4, yo5, yo6, yo7, yo8, yo9]

Example Code: Warping and Displaying a Transparent Image
Using Direct Graphics

This section uses the control points defined in the previous section to warp the
original MRI scan to the CT scan, using both of IDL’s warping routines, WARP_TRI
and POLY_2D. After outputting the warped image, it will be altered for display as a
transparency in Direct Graphics.

1. Warp the input image, mriImg, onto the reference image using WARP_TRI.
This function uses the irregular grid of the reference image, defined by Xo, Yo,
as a basis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image, OUTPUT_SIZE=vector]
[, /QUINTIC] [, /EXTRAPOLATE])

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of the selected control points:

warpTriImg = WARP_TRI(Xo, Yo, Xi, Yi, mriImg, $
OUTPUT_SIZE=[483, 410], /EXTRAPOLATE)

Note
Images requiring more aggressive warp models may not have good results
outside of the extent of the control points when WARP_TRI is used with the
/EXTRAPOLATE keyword.

2. Create a new window and display the warped image:

WINDOW, 3, XSIZE = 483, YSIZE = 410, TITLE = 'WARP_TRI image'
TV, warpTriImg
Image Processing in IDL Warping Images Using Direct Graphics

94 Chapter 5: Warping Images
You can see the how precisely the control points were selected by the amount
of distortion in the resulting warped image. The following figure shows little
distortion.

3. Use POLYWARP in conjunction with POLY_2D to create another warped
image for comparison with the WARP_TRI image. First use the POLYWARP
procedure to create arrays (p, q) containing the polynomial coefficients
required by the POLY_2D function:

POLYWARP, Xi, Yi, Xo, Yo, 1, p, q

4. Using the p, q array values generated by POLYWARP, warp the original
image, mriImg, onto the CT bone scan using the POLY_2D function syntax,

Result = POLY_2D(Array, P, Q [, Interp [, Dimx, Dimy]]
[, CUBIC={-1 to 0}] [, MISSING=value])

Specify a value of 1 for the Interp argument to use bilinear interpolation and
set DimX, DimY equal to the reference image dimensions:

warpPolyImg = POLY_2D(mriImg, p, q, 1, 483, 410)

5. Create a new window and display the image created using POLY_2D:

WINDOW, 4, XSIZE = 483, YSIZE = 410, TITLE = 'Poly_2D image'
TV, warpPolyImg

Figure 5-3: Warped Image Produced with WARP_TRI
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 95
The following image shows little difference from the WARP_TRI image other
than more accurate placement in the display window.

Direct Graphics displays in IDL allow you to display a combination of images
in the same Direct Graphics window. The following steps display various
intensities of the warped image and the reference image in a Direct Graphics
window.

6. Use the XPALETTE tool to view the color table applied to the bone scan
image by first entering:

XPALETTE

In the XPALETTE utility, display a color table by selecting the Predefined
button. In the resulting XLOADCT dialog, scroll down and select Hue
Saturation Lightness 2. Click Done. In the XPALETTE utility, click
Redraw. Compare the bone scan image, displayed in window 2, to the
displayed color table. To mask out the less important background information,
select a color close to that of the body color in the image.

Figure 5-4: Warped Image Produced with POLY_2D
Image Processing in IDL Warping Images Using Direct Graphics

96 Chapter 5: Warping Images
The following figure displays a portion of the XPALETTE utility with such a
selection.

7. Using the knowledge that the body color’s index number is 55, mask out the
less important background information of the bone scan image by creating an
array containing only pixel values greater than 55. Multiply the mask by the
image to retain the color information and use BYTSCL to scale the resulting
array from 0 to 255:

ctboneMask = BYTSCL((ctboneImg GT 55) * ctboneImg)

8. Display a blended image using the full intensity of the bone scan image and a
75% intensity of the warped image. The following statement displays the
pixels in the bone scan with the full range of colors in the color table while
using the lower 75% of the color table values for the warped image. After
adding the arrays, scale the results for display purposes:

blendImg = BYTSCL(ctboneMask + 0.75 * warpPolyImg)

9. Create a window and display the result:

WINDOW, 5, XSIZE = 483, YSIZE = 410, TITLE = 'Blended Image'
TV, blendImg

Figure 5-5: Using XPALETTE to Identify Mask Values
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 5: Warping Images 97
The clavicles and rib bones of the reference image are clearly displayed in the
following figure.

While Direct Graphics supports displaying indexed images as transparent blended
images, you could also apply alpha blending to RGB images that are output to a
TrueColor display. However, creating image transparencies which retain their color
information is more easily accomplished using Object Graphics. For an example of
using Object Graphics to display a warped image transparency over another image
see “Warping Image Objects” in Chapter 4 of the Object Programming manual.

Figure 5-6: Direct Graphics Display of a Transparent Blended Image
Image Processing in IDL Warping Images Using Direct Graphics

98 Chapter 5: Warping Images
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 6

Working with Regions
of Interest (ROIs)
This chapter describes creating and analyzing regions of interest (ROIs) and includes the following
topics:
Overview of Working with ROIs 100
Defining Regions of Interest 103
Displaying ROI Objects in a Direct Graphics
Window . 105
Programmatically Defining ROIs 109

Growing a Region 113
Creating and Displaying an ROI Mask . . 118
Testing an ROI for Point Containment . . . 122
Creating a Surface Mesh of an ROI Group 125
Image Processing in IDL 99

100 Chapter 6: Working with Regions of Interest (ROIs)
Overview of Working with ROIs

A region of interest (ROI) is an area of an image defined for further analysis or
processing. There are several ways to define ROIs. The XROI utility enables the
interactive definition of single or multiple regions from an image using the mouse.
Routines such as CONTOUR or REGION_GROW enable the programmatic
definition of ROIS. CONTOUR traces the outlines of thresholded ROIs while the
REGION_GROW routine expands an initial region to include all connected,
neighboring pixels that meet given conditions. Once an ROI is defined, it can be
displayed or undergo further analysis.

An ROI can be displayed using either Direct Graphics or Object Graphics. In Direct
Graphics, the DRAW_ROI routine quickly displays single or multiple ROI objects or
an ROI group. In Object Graphics, see IDLanROI and IDLgrROI in the IDL
Reference Guide for more information.

Note
When computing ROI geometry, there is a difference between a region’s area when
it is displayed on a screen versus the region’s computed, geometric area. See
“Contrasting an ROI’s Geometric Area and Mask Area” on page 101 for details.

Multiple ROIs can also be defined from a multi-image data set and added to an
IDLanROIGroup object for triangulation into a 3D mesh. Alternatively, multiple
ROIs can be defined in a single image and added to a group object. ROI groups can
be displayed in a Direct Graphics window with DRAW_ROI or with the Object
Graphics XOBJVIEW utility.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description

“Defining Regions
of Interest” on
page 103.

XROI Create an ROI
interactively, prior to
analysis or display.

“Displaying ROI
Objects in a Direct
Graphics Window”
on page 105.

DRAW_ROI Display ROI objects in a
Direct Graphics window.

Table 6-1: Tasks and Routines Associated with Regions of Interest
Overview of Working with ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 101
Contrasting an ROI’s Geometric Area and Mask Area

When working with ROIs, many users note a discrepancy between the computation
of an ROI’s geometric area and the computation of the mask area (the number of
pixels an ROI contains when displayed). Intuition might lead one to believe that the
results should be the same. However, as the following figure shows, the computed
geometric area (the result of a pure mathematical calculation) differs from the
displayed (masked) area, which is subject to the artifacts of digital sampling.

When displaying a region (or computing the area of its mask), each vertex of the
region is mapped to a corresponding discrete pixel location. No matter where the

“Programmatically
Defining ROIs” on
page 109.

CONTOUR
DRAW_ROI
IDLanROI::ComputeMask
IMAGE_STATISTICS
IDLanROI::ComputeGeometry

Define ROIs using
CONTOUR and display
them using DRAW_ROI.
Return various statistics
for each ROI.

 “Growing a
Region” on
page 113.

REGION_GROW Expand an original region
to include all connected,
neighboring pixels which
meet specified
constraints.

“Creating and
Displaying an ROI
Mask” on page 118.

IDLanROI::ComputeMask Create a 2D mask of an
ROI, compute the area of
the mask and display a
magnified view of the
image region.

“Testing an ROI for
Point Containment”
on page 122.

IDLanROI::ContainsPoints Determine whether a
point lies within the
boundary of a region.

“Creating a Surface
Mesh of an ROI
Group” on
page 125.

IDLanROIGroup::Add
IDLanROIGroup::ComputeMesh
XOBJVIEW

Add ROIs to an ROI
group object, triangulate
a surface mesh and
display the group object
using XOBJVIEW.

Task Routine(s)/Object(s) Description

Table 6-1: Tasks and Routines Associated with Regions of Interest (Continued)
Image Processing in IDL Overview of Working with ROIs

102 Chapter 6: Working with Regions of Interest (ROIs)
vertex falls within the pixel, the entire pixel location is set since the region is being
displayed. For example, for any vertex coordinate (x, y) where:

1.5 ≤ x < 2.5 and 1.5 ≤ y < 2.5

the vertex coordinate is assigned a value of (2, 2). Therefore, the area of the displayed
(masked) region is typically larger than the computed geometric area. While the
geometric area of a 2 by 2 region equals 4 as expected, the mask area of the identical
region equals 9 due to the centering of the pixels when the region is displayed.

The ROI Information dialog of the XROI utility reports the region’s “Area”
(geometric area) and “# Pixels” (mask area). To programmatically compute an ROI’s
geometric area, use IDLanROI::ComputeGeometry. To programmatically compute
the area of a displayed region, use IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS. See “Programmatically Defining ROIs” on page 109 for
examples of these computations.

Figure 6-1: A Region’s Undisplayed Area (left) vs. Displayed Area (right)
Overview of Working with ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 103
Defining Regions of Interest

The XROI utility allows you to quickly load an image file, define single or multiple
ROIs, and obtain geometry and statistical data about the ROIs. While regions can be
defined programmatically (see “Programmatically Defining ROIs” on page 109 and
“Growing a Region” on page 113), the XROI utility enables the interactive creation
and selection of an ROI using the mouse.

For a quick introduction to creating ROIs using XROI, complete the following steps:

1. Open XROI by typing the following at the command line:

XROI

2. Load an image using the image file selection dialog. Select earth.jpg from
the examples/demo/demodata directory. Click Open.The image appears in
the XROI utility.

See “Using XROI” under “XROI” in the IDL Reference Guide manual for
details on the interface elements.Flip the image vertically to display it right-
side-up by clicking the Flip button.

3. Select the Draw Freehand button and use the mouse to interactively define an
ROI encompassing the African continent. Your image should be similar to the
following figure.

Figure 6-2: Defining an ROI of Africa and Showing the ROI Information Dialog
Image Processing in IDL Defining Regions of Interest

104 Chapter 6: Working with Regions of Interest (ROIs)
4. After releasing the mouse button, the ROI Information dialog appears,
displaying ROI statistics. You can now define another ROI, save the defined
ROI as a .sav file or exit the XROI utility.

Using XROI syntax allows you to programmatically load an image and specify a
variable for REGIONS_OUT that will contain the ROI data. The region data can then
undergo further analysis and processing. The following code lines open the
previously opened image for ROI creation and selection and specify to save the
region data as oROIAfrica.

; Select the file, read the data and load the image’s color table.
imgFile = FILEPATH('earth.jpg', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])
image = READ_IMAGE(imgFile, R, G, B)
TVLCT, R, G, B

; Display the image using XROI. Specify a variable for REGIONS_OUT
; to save the ROI information.
XROI, image, R, G, B, REGIONS_OUT = oROIAfrica

The ROI information, oROIAfrica, can then be analyzed using IDLanROI methods or
the REGION_GROW procedure. The ROI data can also be displayed using
DRAW_ROI or as an IDLgrROI object. Such tasks are covered in the following
sections.
Defining Regions of Interest Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 105
Displaying ROI Objects in a Direct Graphics
Window

The DRAW_ROI procedure displays single or multiple IDLanROI objects in a Direct
Graphics window. The procedure allows you to layer the ROIs over the original
image and specify the line style and color with which each region is drawn. The
DRAW_ROI procedure also provides a means of easily displaying interior regions or
“holes” within a defined ROI.

The following example uses the XROI utility to define two regions, a femur and tibia
from a DICOM image of a knee, and draws them in a Direct Graphics window.
Complete the following steps for a detailed description of the process.

Example Code
See drawroiex.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file using the READ_DICOM function and get its
size:

kneeImg = READ_DICOM(FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples','data']))

dims = SIZE(kneeImg, /DIMENSIONS)

3. Rotate the image 180 degrees so that the femur will be at the top of the display:

kneeImg = ROTATE(BYTSCL(kneeImg), 2)

4. Open the file in the XROI utility to create an ROI containing the femur. The
following line includes the ROI_GEOMETRY and STATISTICS keywords so
that specific ROI information can be retained for printing in a later step:

XROI, kneeImg, REGIONS_OUT = femurROIout, $
ROI_GEOMETRY = femurGeom,$
STATISTICS = femurStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar, shown in the
following figure. Position the crosshairs anywhere along the border of the
femur and click the left mouse button to begin defining the ROI. Move your
mouse to another point along the border and left-click again. Repeat the
process until you have defined the outline for the ROI. To close the region,
Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

RSI_PROCODE/examples/doc/image/drawroiex.pro

106 Chapter 6: Working with Regions of Interest (ROIs)
double-click the left mouse button. Your display should appear similar to the
following figure. Close the XROI utility to store the ROI information in the
variable, femurROIout.

5. Create an ROI containing the tibia, using the following XROI statement:

XROI, kneeImg, REGIONS_OUT = tibiaROIout, $
ROI_GEOMETRY = tibiaGeom, $
STATISTICS = tibiaStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol anywhere along the border of the tibia and draw the region
shown in the following figure, repeating the same steps as those used to define
the femur ROI. Close the XROI utility to store the ROI information in the
specified variables.

Figure 6-3: Defining the Femur ROI

Figure 6-4: Defining the Tibia ROI

Draw Polygon
Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 107
6. Create a Direct Graphics display containing the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, kneeImg

7. Load the 16-level color table to display the regions using different colors. Use
DRAW_ROI statements to specify how each ROI is drawn:

LOADCT, 12
DRAW_ROI, femurROIout, /LINE_FILL, COLOR = 80, $

 SPACING = 0.1, ORIENTATION = 315, /DEVICE
DRAW_ROI, tibiaROIout, /LINE_FILL, COLOR = 42, $

SPACING = 0.1, ORIENTATION = 30, /DEVICE

In the previous statements, the ORIENTATION keyword specifies the degree
of rotation of the lines used to fill the drawn regions. The DEVICE keyword
indicates that the vertices of the regions are defined in terms of the device
coordinate system where the origin (0,0) is in the lower-left corner of the
display.

Your results should appear similar to the following figure, with the ROI
objects layered over the original image.

Figure 6-5: Defined Region Objects Overlaid onto Original Image
Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

108 Chapter 6: Working with Regions of Interest (ROIs)
8. Print the statistics for the femur and tibia ROIs. This information has been
stored in the femurGeom, femurStat, tibiaGeom and tibiaStat variable
structures, defined in the previous XROI statements. Use the following lines to
print geometrical and statistical data for each ROI:

PRINT, 'FEMUR Region Geometry and Statistics'
PRINT, 'area =', femurGeom.area, $

'perimeter = ', femurGeom.perimeter, $
'population =', femurStats.count

PRINT, ' '
PRINT, 'TIBIA Region Geometry and Statistics'
PRINT, 'area =', tibiaGeom.area, $

'perimeter = ', tibiaGeom.perimeter, $
'population =', tibiaStats.count

Note
Notice the difference between the “area” value, indicating the region’s
geometric area, and the “population” value, indicating the number of pixels
covered by the region when it is displayed. This difference is expected and is
explained in the section, “Contrasting an ROI’s Geometric Area and Mask
Area” on page 101.

9. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [femurROIout, tibiaROIout]
Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 109
Programmatically Defining ROIs

While most examples in this chapter use interactive methods to define ROIs, a region
can also be defined programmatically. The following example uses thresholding and
the CONTOUR function to programmatically trace region outlines. After the path
information of the regions has been input into ROI objects, the DRAW_ROI
procedure displays each region. The example then computes and returns the
geometric area and perimeter of each region as well as the number of pixels making
up each region when it is displayed. Complete the following steps for a detailed
description of the process.

Example Code
See programdefineroi.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Prepare the display device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file and get its dimensions:

img = READ_PNG(FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data']))

dims = SIZE(img, /DIMENSIONS)

3. Create a window and display the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, img

The following figure displays the initial image.

Figure 6-6: Initial Image
Image Processing in IDL Programmatically Defining ROIs

RSI_PROCODE/examples/doc/image/programdefineroi.pro
RSI_PROCODE/examples/doc/image/ProgramDefineROI.pro

110 Chapter 6: Working with Regions of Interest (ROIs)
4. Create a mask that identifies the darkest pixels, whose values are less than 50:

threshImg = (img LT 50)

Note
See “Determining Intensity Values for Threshold and Stretch” on page 243
for a useful strategy to use when determining threshold values.

5. Create and apply a 3x3 square structuring element, using the erosion and
dilation operators to close gaps in the thresholded image:

strucElem = REPLICATE(1, 3, 3)
threshImg = ERODE(DILATE(TEMPORARY(threshImg), $

strucElem), strucElem)

6. Use the CONTOUR procedure to extract the boundaries of the thresholded
regions. Store the path information and coordinates of the contours in the
variables pathInfo and pathXY as follows:

CONTOUR, threshImg, LEVEL = 1, $
XMARGIN = [0, 0], YMARGIN = [0, 0], $
/NOERASE, PATH_INFO = pathInfo, PATH_XY = pathXY, $
XSTYLE = 5, YSTYLE = 5, /PATH_DATA_COORDS

The PATH_INFO variable contains the path information for the contours.
When used in conjunction with the PATH_XY variable, containing the
coordinates of the contours, the CONTOUR procedure records the outline of
closed regions. See CONTOUR in the IDL Reference Guide for full details.

7. Display the original image in a second window and load a discrete color table:

WINDOW, 2, XSIZE = dims[0], YSIXE = dims[1]
TVSCL, img
LOADCT, 12

8. Input the data of each of the contour paths into IDLanROI objects:

FOR I = 0,(N_ELEMENTS(PathInfo) - 1) DO BEGIN & $

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in ProgramDefineROI.pro in
the examples/doc/image subdirectory of the IDL installation directory.
Programmatically Defining ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 111
9. Initialize oROI with the contour information of the current region:

line = [LINDGEN(PathInfo(I).N), 0] & $
oROI = OBJ_NEW('IDLanROI', $

(pathXY(*, pathInfo(I).OFFSET + line))[0, *], $
(pathXY(*, pathInfo(I).OFFSET + line))[1, *]) & $

10. Draw the ROI object in a Direct Graphics window using DRAW_ROI:

DRAW_ROI, oROI, COLOR = 80 & $

11. Use the IDLanROI::ComputeMask function in conjunction with
IMAGE_STATISTICS to obtain maskArea, the number of pixels covered by
the region when it is displayed. The variable, maskResult, is input as the value
of MASK in the second statement in order to return the maskArea:

maskResult = oROI -> ComputeMask($
DIMENSIONS = [dims[0], dims[1]]) & $

IMAGE_STATISTICS, img, MASK = maskResult, $
COUNT = maskArea & $

12. Use the IDLanROI::ComputeGeometry function to return the geometric area
and perimeter of each region. In the following example, SPATIAL_SCALE
defines that each pixel represents 1.2 by 1.2 millimeters:

ROIStats = oROI -> ComputeGeometry($
AREA = geomArea, PERIMETER = perimeter, $
SPATIAL_SCALE = [1.2, 1.2, 1.0]) & $

Note
The value for SPATIAL _SCALE in the previous statement is used only as
an example. The actual spatial scale value is typically known based upon
equipment used to gather the data.

13. Print the statistics for each ROI when it is displayed and wait 3 seconds before
proceeding to the display and analysis of the next region:

PRINT, ' ' & $
PRINT, 'Region''s mask area = ', $

FIX(maskArea), ' pixels' & $
PRINT, 'Region''s geometric area = ', $

FIX(geomArea), ' mm' & $
PRINT, 'Region''s perimeter = ', $

FIX(perimeter),' mm' & $
WAIT, 3

14. Remove each unneeded object reference after displaying the region:

OBJ_DESTROY, oROI & $
Image Processing in IDL Programmatically Defining ROIs

112 Chapter 6: Working with Regions of Interest (ROIs)
15. End the FOR loop:

ENDFOR

The outlines of the ROIs recorded by the CONTOUR function have been
translated into ROI objects and displayed using DRAW_ROI. Each region’s
“mask area,” (computed using IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS) shows the number of pixels covered by the region
when it is displayed on the screen.

Each region’s geometric area and perimeter, (computed using
IDLanROI::ComputeGeometry’s SPATIAL_SCALE keyword) results in the
following geometric area and perimeter measurements in millimeters.

Figure 6-7: Display of Programmatically Defined Regions
Programmatically Defining ROIs Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 113
Growing a Region

The REGION_GROW function is an analysis routine that allows you to identify a
complicated region without having to manually draw intricate boundaries. This
function expands a given region based upon the constraints imposed by either a
threshold range (minimum and maximum pixel values) or by a multiplier of the
standard deviation of the original region. REGION_GROW expands an original
region to include all connected neighboring pixels that fall within the specified limits.

The following example interactively defines an initial region within a cross-section
of a human skull. The initial region is then expanded using both methods of region
expansion, thresholding and standard deviation multiplication. Complete the
following steps for a detailed description of the process.

Example Code
See regiongrowex.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select the file, read in the data and get the image dimensions:

file = FILEPATH('md1107g8a.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

3. Double the size of the image for display purposes and compute the new
dimensions:

img = REBIN(BYTSCL(img), dims[0]*2, dims[1]*2)
dims = 2*dims

4. Create a window and display the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = 'Click on Image to Select Point of ROI'

TVSCL, img
Image Processing in IDL Growing a Region

RSI_PROCODE/examples/doc/image/regiongrowex.pro

114 Chapter 6: Working with Regions of Interest (ROIs)
The following figure shows the initial image.

5. Define the original region pixels. Using the CURSOR function, select the
original region by positioning your cursor over the image and clicking on the
region indicated in the previous figure by the “+” symbol. Then create a 10 by
10 square ROI, named roipixels, at the selected x, y, coordinates:

CURSOR, xi, yi, /DEVICE
x = LINDGEN(10*10) MOD 10 + xi
y = LINDGEN(10*10) / 10 + yi
roiPixels = x + y * dims[0]

Note
A region can also be defined and grown using the XROI utility. See the
XROI procedure in the IDL Reference Guide for more information.

6. Delete the window after selecting the point:

WDELETE, 0

7. Set the topmost color table entry to red:

topClr = !D.TABLE_SIZE - 1
TVLCT, 255, 0, 0, topClr

Figure 6-8: Original Image Showing Region to be Selected

+

Growing a Region Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 115
8. Display the initial region using the previously defined color:

regionPts = BYTSCL(img, TOP = (topClr - 1))
regionPts[roiPixels] = topClr
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Original Region'
TV, regionPts

The following figure shows the initial ROI that will be input and expanded
with the REGION_GROW function.

9. Using the REGION_GROW function syntax,

Result = REGION_GROW(Array, ROIPixels [, /ALL_NEIGHBORS]
[, STDDEV_MULTIPLIER=value | THRESHOLD=[min,max]])

input the original region, roipixels, and expand the region to include all
connected pixels which fall within the specified THRESHOLD range:

newROIPixels = REGION_GROW(img, roiPixels, $
THRESHOLD = [215,255])

Note
If neither the THRESHOLD nor the STDDEV_MULTIPLIER keywords are
specified, REGION_GROW automatically applies THRESHOLD, using the
minimum and maximum pixels values occurring within the original region.

Figure 6-9: Square ROI at Selected Coordinates
Image Processing in IDL Growing a Region

116 Chapter 6: Working with Regions of Interest (ROIs)
10. Show the results of growing the original region using threshold values:

regionImg = BYTSCL(img, TOP = (topClr-1))
regionImg[newROIPixels] = topClr
WINDOW, 2, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'THRESHOLD Grown Region'
TV, regionImg

Note
An error message such as Attempt to subscript REGIONIMG with
NEWROIPIXELS is out of range indicates that the pixel values within
the defined region fall outside of the minimum and maximum THRESHOLD
values. Either define a region containing pixel values that occur within the
threshold range or alter the minimum and maximum values.

The left-hand image in the following figure shows that the region has been
expanded to clearly identify the optic nerves. Now expand the original region
by specifying a standard deviation multiplier value as described in the
following step.

11. Expand the original region using a value of 7 for STDDEV_MULTIPLIER:

stddevPixels = REGION_GROW(img, roiPixels, $
STDDEV_MULTIPLIER = 7)

12. Create a new window and show the resulting ROI:

WINDOW, 3, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = "STDDEV_MULTIPLIER Grown Region"

regionImg2 = BYTSCL(img, TOP = (topClr - 1))
regionImg2[stddevPixels] = topClr
TV, regionImg2
Growing a Region Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 117
The following figure displays the results of growing the original region using
thresholding (left) and standard deviation multiplication (right).

Note
Your results for the right-hand image may differ. Results of growing a region using
a standard deviation multiplier will vary according to the exact mean and deviation
of the pixel values within the original region.

Figure 6-10: Regions Expanded Using REGION_GROW
Image Processing in IDL Growing a Region

118 Chapter 6: Working with Regions of Interest (ROIs)
Creating and Displaying an ROI Mask

The IDLanROI::ComputeMask function method defines a 2D mask of a region
object, returning an array in which all pixels that lie outside of the region have a value
of 0. The mask can then be used to extract the portion of the original image that lies
within the ROI. The following example defines an ROI, computes a mask, applies the
mask to retain only the portion of the image defined by the ROI, and produces a
magnified view of the ROI. Complete the following steps for a detailed description of
the process.

Example Code
See scalemask_object.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Select the file, read in the data and get the image dimensions:

file = FILEPATH('md5290fc1.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

2. Pass the image to XROI and use the Draw Polygon tool to define the region:

XROI, img, REGIONS_OUT = ROIout, /BLOCK

Figure 6-11: ROI Definition in XROI

Draw Polygon
Creating and Displaying an ROI Mask Image Processing in IDL

RSI_PROCODE/examples/doc/image/scalemask_object.pro

Chapter 6: Working with Regions of Interest (ROIs) 119
Close the XROI window to save the region object data in the variable, ROIout.

3. Assign the ROI data to the arrays, x and y:

ROIout -> GetProperty, DATA = ROIdata
x = ROIdata[0,*]
y = ROIdata[1,*]

4. Set the properties of the ROI:

ROIout -> SetProperty, COLOR = [255,255,255], THICK = 2

5. Initialize an IDLgrImage object containing the original image data:

oImg = OBJ_NEW('IDLgrImage', img,$
DIMENSIONS = dims)

6. Create a window in which to display the image and the ROI:

oWindow = OBJ_NEW('IDLgrWindow', DIMENSIONS = dims, $
RETAIN = 2, TITLE = 'Selected ROI')

7. Create the view plane and initialize the view:

viewRect = [0, 0, dims[0], dims[1]]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

8. Initialize a model object and add the image and ROI to the model. Add the
model to the view and draw the view in the window to display the ROI
overlaid onto the original image:

oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oImg
oModel -> Add, ROIout
oView -> Add, oModel
oWindow -> Draw, oView

9. Use the IDLanROI::ComputeMask function to create a 2D mask of the region.
Pixels that fall outside of the ROI will be assigned a value of 0:

maskResult = ROIout -> ComputeMask(DIMENSIONS = dims)

10. Use the IMAGE_STATISTICS procedure to compute the area of the mask,
inputting maskResult as the MASK value. Print count to view the number of
pixels occurring within the masked region:

IMAGE_STATISTICS, img, MASK = MaskResult, COUNT = count
PRINT, 'area of mask = ', count,' pixels'
Image Processing in IDL Creating and Displaying an ROI Mask

120 Chapter 6: Working with Regions of Interest (ROIs)
Note
The COUNT keyword to IMAGE_STATISTICS returns the number of pixels
covered by the ROI when it is displayed, the same value as that shown in the
“# Pixels” field of XROI’s ROI Information dialog.

11. From the ROI mask, create a binary mask, consisting of only zeros and ones.
Multiply the binary mask times the original image to retain only the portion of
the image that was defined in the original ROI:

mask = (maskResult GT 0)
maskImg = img * mask

12. Using the minimum and maximum values of the ROI array, create a cropped
array, cropImg, and get its dimensions:

cropImg = maskImg[min(x):max(x), min(y): max(y)]
cropDims = SIZE(cropImg, /DIMENSIONS)

13. Initialize an image object with the cropped region data:

oMaskImg = OBJ_NEW('IDLgrImage', cropImg, $
DIMENSIONS = dims)

14. Using the cropped region dimensions, create an offset window. Multiply the x
and y dimensions times the value by which you wish to magnify the ROI:

oMaskWindow = OBJ_NEW('IDLgrWindow', $
DIMENSIONS = 2 * cropDims, RETAIN = 2, $
TITLE = 'Magnified ROI', LOCATION = dims)

15. Create the display objects and display the cropped and magnified ROI:

oMaskView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)
oMaskModel = OBJ_NEW('IDLgrModel')
oMaskModel -> Add, oMaskImg
oMaskView -> Add, oMaskModel
OMaskWindow -> Draw, oMaskView
Creating and Displaying an ROI Mask Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 121
The original and the magnified view of the ROI are shown in the following
figure.

16. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oView, oMaskView, ROIout]

Figure 6-12: Original and Magnified View of the ROI
Image Processing in IDL Creating and Displaying an ROI Mask

122 Chapter 6: Working with Regions of Interest (ROIs)
Testing an ROI for Point Containment

The IDLanROI::ContainsPoints function method determines whether a point having
given coordinates lies inside, outside, on the boundary of, or on the vertex of a
designated ROI. The following example allows the creation of an ROI within an
image of the world using XROI. After exiting XROI, a point is selected and tested to
determine its relationship to the ROI. The example then creates textual and graphical
displays of the results. Complete the following steps for a detailed description of the
process.

Example Code
See containmenttest.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Prepare the display device:

DEVICE, DECOMPOSED = 0, RETAIN = 2

2. Select and open the image file and get its dimensions:

img = READ_PNG(FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data']), R, G, B)

dims = SIZE(img, /DIMENSIONS)

3. Open the file in the XROI utility to create an ROI:

XROI, img, REGIONS_OUT = ROIout, R, G, B, /BLOCK, $
TITLE = 'Create ROI and Close Window'

After creating any region using the tool of your choice, close the XROI utility
to save the ROI object data in the variable, ROIout.

4. Load the image color table and display the image in a new window:

TVLCT, R, G, B
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Left-Click Anywhere in Image'
TV, img

5. The CURSOR function allows you to select and define the coordinates of a
point. After entering the following line, position your cursor anywhere in the
image window and click the left mouse button to select a point:

CURSOR, xi, yi, /DEVICE

6. Delete the window after selecting the point:

WDELETE, 0
Testing an ROI for Point Containment Image Processing in IDL

RSI_PROCODE/examples/doc/image/containmenttest.pro

Chapter 6: Working with Regions of Interest (ROIs) 123
7. Using the coordinates returned by the CURSOR function, determine the
placement of the point in relation to the ROI object using
IDLanROI::ContainsPoints:

ptTest = ROIout -> ContainsPoints(xi,yi)

8. The value of ptTest, returned by the previous statement, ranges from 0 to 3.
Create the following vector of string data where the index value of the string
element relates to value of ptTest. Print the actual and textual value of ptTest:

containResults = [$
'Point lies outside ROI', $
'Point lies inside ROI', $
'Point lies on the edge of the ROI', $
'Point lies on vertex of the ROI']

PRINT, 'Result =',ptTest,': ', containResults[ptTest]

9. Complete the following steps to create a visual display of the ROI and the
point that you have defined. First, create a 7 by 7 ROI indicating the point:

x = LINDGEN(7*7) MOD 7 + xi
y = LINDGEN(7*7) / 7 + yi
point = x + y * dims[0]

10. Define the color with which the ROI and point are drawn:

maxClr = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxClr

11. Draw the point within the original image and display it:

regionPt = img
regionPt[point] = maxClr
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE='Containment Test Results'
TV, regionPt

12. Draw the ROI over the image using DRAW_ROI:

DRAW_ROI, ROIout, COLOR = maxClr, /LINE_FILL, $
THICK = 2, LINESTYLE = 0, ORIENTATION = 315, /DEVICE

13. Clean up object references that are not destroyed by the window manager:

OBJ_DESTROY, ROIout
Image Processing in IDL Testing an ROI for Point Containment

124 Chapter 6: Working with Regions of Interest (ROIs)
The following figure displays a region covering South America and a point
within the African continent. Your results will depend upon the ROI and point
you have defined when running this program.

Figure 6-13: Detail of Point Containment Test
Testing an ROI for Point Containment Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 125
Creating a Surface Mesh of an ROI Group

An IDLanROIGroup contains multiple ROIs. The ROI group consists of either
several ROIs defined in a single image, or a stack of ROIs, each of which has been
defined from a separate slice of a multi-image data set. An ROI group can be
translated into a surface mesh, a mask, or tested for point containment. The following
example defines ROIs from a data set containing 57 MRI images of a human head.
After all ROIs have been defined with the utility and each region has been added to
the group, IDLanROI::ComputeMesh triangulates a surface mesh. The resulting
vertices and connectivity array are used to create a polygon object that is displayed
using XOBJVIEW. Complete the following steps for a detailed description of the
process.

Example Code
See grouproimesh.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Prepare the display device and load a color table to more easily distinguish
image features:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5
TVLCT, R, G, B, /GET

2. Select and open the file:

file = FILEPATH('head.dat', SUBDIRECTORY =
['examples','data'])
img = READ_BINARY(file, DATA_DIMS = [80,100,57])

3. Resize the array for display purposes and to compensate for the sampling rate
of the scan slices:

img = CONGRID(img, 200, 225, 57)

4. Initialize an IDLanROIGroup object to which individual ROIs will be added:

oROIGroup = OBJ_NEW('IDLgrROIGroup')
Image Processing in IDL Creating a Surface Mesh of an ROI Group

RSI_PROCODE/examples/doc/image/grouproimesh.pro

126 Chapter 6: Working with Regions of Interest (ROIs)
5. Use a FOR loop to define an ROI within every fifth slice of data. Add each
ROI to the group:

FOR i=0, 54, 5 DO BEGIN & $
XROI, img[*, *,i], R, G, B, REGIONS_OUT = oROI, $

/BLOCK, ROI_SELECT_COLOR = [255, 255, 255] & $
oROI -> GetProperty, DATA = roiData & $
roiData[2, *] = 2.2*i & $
oRoi -> ReplaceData, roiData & $
oRoiGroup -> Add, oRoi & $

ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in GroupROIMesh.pro in the
examples/doc/image subdirectory of the IDL installation directory.

The following image shows samples of the ROIs to be defined.

Figure 6-14: ROIs to be Defined
Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 6: Working with Regions of Interest (ROIs) 127
To limit the time needed complete this exercise, the previous FOR statement
arranges to display every fifth slice of data for ROI selection. To obtain higher
quality results, consider selecting an ROI in every other slice of data.

6. Compute the mesh for the ROI group using IDLanROIGroup::ComputeMesh:

result = oROIGroup -> ComputeMesh(verts, conn)

Note
The ComputeMesh function will fail if the ROIs contain interior regions
(holes), are self-intersecting or are of a TYPE other than the default, closed
polygon.

7. Prepare to display the mesh, scaling and translating the array for display in
XOBJVIEW:

nImg = 57
xymax = 200.0
zmax = float(nImg)
oModel = OBJ_NEW('IDLgrModel')
oModel -> Scale, 1./xymax,1./xymax, 1.0/zmax
oModel -> Translate, -0.5, -0.5, -0.5
oModel -> Rotate, [1,0,0], -90
oModel -> Rotate, [0, 1, 0], 30
oModel -> Rotate, [1,0,0], 30

8. Create an IDLgrPolygon object using the results of ComputeMesh:

oPoly = OBJ_NEW('IDLgrPolygon', verts, POLYGON = conn, $
COLOR = [128, 128, 128], SHADING = 1)

9. Add the polygon to the model and display the polygon object in XOBJVIEW:

oModel -> Add, oPoly
XOBJVIEW, oModel, /BLOCK

10. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oROI, oROIGroup, oPoly, oModel]
Image Processing in IDL Creating a Surface Mesh of an ROI Group

128 Chapter 6: Working with Regions of Interest (ROIs)
The following figure displays the mesh created by defining an ROI in every
other slice of data instead of from every fifth slice as described in this example.
Therefore, your results will likely vary.

Figure 6-15: Result of Creating a Mesh from a Group of ROIs
Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 7

Transforming Between
Domains
This chapter describes the following topics:
Overview of Transforming Between Image
Domains . 130
Transforming Between Domains with FFT . . .
. 132

Transforming Between Domains with
Wavelets . 148
Transforming to and from the Hough and
Radon Domains . 161
Image Processing in IDL 129

130 Chapter 7: Transforming Between Domains
Overview of Transforming Between Image
Domains

Some processes performed on an image in the spatial domain may be very
computationally expensive. These same processes may be significantly easier to
perform after transforming an image to a different domain. These transformations are
the basis for many image filters, applied to remove noise, to sharpen, or extract
features. Domain transformations also provide additional information about an image
and can offer compression benefits.

The most common representation of a pixel’s value and location is spatial, where it
appears in three dimensions (x, y, and z). Pixel value and location in this space is
usually referred to by column (x), row (y), and value (z), and is known as the spatial
domain. However, a pixel’s value and location can be represented in other domains.

In the frequency or Fourier domain, the value and location are represented by
sinusoidal relationships that depend upon the frequency of a pixel occurring within
an image. In this domain, pixel location is represented by its x- and y-frequencies and
its value is represented by an amplitude. Images can be transformed into the
frequency domain to determine which pixels contain more important information and
whether repeating patterns occur. See “Transforming Between Domains with FFT”
on page 132 for more information on the frequency domain.

In the time-frequency or wavelet domain, the value and location are represented by
sinusoidal relationships that only partially transform the image into the frequency
domain. Like the transformation to the full frequency domain, the transformation to
the time-frequency domain helps to determine the important information in an image.
See “Transforming Between Domains with Wavelets” on page 148 for more
information on the time-frequency domain.

In the Hough domain, pixels are presented by sinusoidal lines. Since straight lines
within an image are transformed into the Hough domain as intersecting sinusoidal
lines, these intersections can be used to determine if and where straight lines occur
within an image. See “Transforming to and from the Hough and Radon Domains” on
page 161 for more information on the Hough domain.

In the Radon domain, a line of pixels occurring in an image is represented by a single
point. This transformation is useful for detecting specific features and image
compression. Since transforming images to and from the Hough and Radon domains
use similar methods, the Radon image representation is described in the same section
as the Hough representation. See “Transforming to and from the Hough and Radon
Domains” on page 161 for more information on the Radon domain.
Overview of Transforming Between Image Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 131
Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image domain transformations and associated IDL
image transformation routines covered in this chapter.

Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

Task Routine(s) Description

“Transforming
Between Domains
with FFT” on page 132

FFT Transform images into the
frequency domain and back
into the spatial domain with
the Fast Fourier Transform.
Then show how to use this
process to remove noise from
an image.

“Transforming
Between Domains
with Wavelets” on
page 148

WTN Transform images into the
time-frequency domain and
back into the spatial domain
with the Wavelet transform.
Then show how to use this
process to remove noise from
an image.

“Transforming to and
from the Hough and
Radon Domains” on
page 161

HOUGH

RADON

Transform images into the
Hough and the Radon
domains and back into the
spatial domain with the Hough
and Radon transforms. Then
show how to use these
processes to detect straight
lines and improve contrast
within an image.

Table 7-1: Image Transformation Tasks and Related Routines
Image Processing in IDL Overview of Transforming Between Image Domains

132 Chapter 7: Transforming Between Domains
Transforming Between Domains with FFT

The Fast Fourier Transform (FFT) is used in numerical analysis to transform an
image between spatial and frequency domains. The FFT decomposes an image into
sines and cosines of varying amplitudes and phases. The values of the resulting
transform represent the amplitudes of particular horizontal and vertical frequencies.
This image information in the frequency domain shows how often patterns are
repeated within an image. Low frequencies represent gradual variations in an image,
while high frequencies correspond to abrupt variations in the image.

Low frequencies tend to contain the most information because they determine the
overall shape or pattern in the image. High frequencies provide detail in the image,
but they are often contaminated by the spurious effects of noise. Masks can be easily
applied to the image within the frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and Fast
Fourier Transforms (FFTs):

• “Transforming to the Frequency Domain”

• “Displaying Images in the Frequency Domain” on page 136

• “Transforming from the Frequency Domain” on page 140

The FFT process is the basis for many filters used in image processing. One of the
easiest FFT filters to understand is the one used for background noise removal. This
filter is simply a mask applied to the image in the frequency domain. See “Removing
Noise with the FFT” on page 143 for an example of how to use this type of filter.

Transforming to the Frequency Domain

When an image is transformed with FFT from the spatial domain to the frequency
domain, the transformation process is referred to as a forward FFT. The forward FFT
process can be performed with IDL’s FFT function.

In the frequency domain, the lowest frequencies usually contain most of the
information, which is shown by the large peak in the center of the data. If the
transform is shown as a surface, the peak of low frequencies appears as a spike. If the
transform is shown as an image, the peak of low frequencies is composed of the
brightest pixels.

If the image does not contain any background noise, the rest of the data frequencies
are very close to zero. However, the results of the FFT function have a very wide
range. An initial display may not show any variations from zero, but a smaller range
will show that the image does actually contain background noise. Since scaling a
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 133
range can sometimes be quite arbitrary, different methods are used. See “Displaying
Images in the Frequency Domain” on page 136 for more information on displaying
the results of a forward FFT.

The following example shows how to use IDL’s FFT function to compute a forward
FFT. This example uses the first image within the abnorm.dat file in the
examples/data directory. The results of the FFT function are shifted to move the
origin (0, 0) of the x- and y-frequencies to the center of the data. Frequency
magnitude then increases with distance from the origin. If the results are not centered,
then the negative frequencies appear after the positive frequencies because of the
storage scheme of the FFT process. See the FFT description in the IDL Reference
Guide for more information on this storage scheme. Complete the following steps for
a detailed description of the process.

Example Code
See forwardfft.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Define a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Image Processing in IDL Transforming Between Domains with FFT

RSI_PROCODE/examples/doc/image/forwardfft.pro

134 Chapter 7: Transforming Between Domains
The following figure shows the original image.

5. With the FFT function, transform the image into the frequency domain:

ffTransform = FFT(image)

6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the display axes.

interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $
 FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $
 FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the
FFT process. See the FFT description in the IDL Reference Guide for more
information on this storage scheme.

Figure 7-1: Original Gated Blood Pool Image
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 135
8. Create another window and display the frequency transform:

WINDOW, 1, TITLE = 'FFT: Transform'
SHADE_SURF, fftShifted, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Real Part of Transform', CHARSIZE = 1.5

The following figure shows the results of applying the FFT to the image. The
data at the high frequencies seem to be close to zero, but the peak (spike) along
the z-axis is so large that a closer look is needed.

Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The amplitude is the absolute value of the
FFT, while the phase is the angle of the complex number, computed using
the arctangent. In the above surface, we are only displaying the real part. In
most cases, the imaginary part will look the same as the real part.

Figure 7-2: FFT of the Gated Blood Pool Image
Image Processing in IDL Transforming Between Domains with FFT

136 Chapter 7: Transforming Between Domains
9. Create another window and display the frequency transform with a data (z)
range of 0 to 5:

WINDOW, 2, TITLE = 'FFT: Transform (Closer Look)'
SHADE_SURF,fftShifted, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Real Part of Transform', CHARSIZE = 1.5, $
ZRANGE = [0., 5.]

The following figure shows the resulting transform after scaling the z-axis
range from 0 to 5. You can now see that the central peak is surrounded by
smaller peaks containing both high frequency information and noise.

Displaying Images in the Frequency Domain

Within the frequency domain, the range of values from the peak to the high frequency
noise is extreme. You can use a logarithmic scale to retain the shape of the surface,
but reduce its range. Since the logarithmic scale only applies to positive values, you
should first compute the power spectrum, which is the absolute value squared of the
transform.

Figure 7-3: FFT of the Gated Blood Pool Image Scaled Between 0 and 5
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 137
The following example shows how to display the results of IDL’s FFT function. This
example also uses the first image within the abnorm.dat file in the
examples/data directory. The results of the transform are shifted to move the
origin (0, 0) of the horizontal and vertical frequencies to the center of the display. If
the results are not centered then the negative frequencies appear after the positive
frequencies because of the storage scheme of the FFT process. See FFT for more
information on its storage scheme. Complete the following steps for a detailed
description of the process.

Example Code
See displayfft.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Image Processing in IDL Transforming Between Domains with FFT

RSI_PROCODE/examples/doc/image/displayfft.pro

138 Chapter 7: Transforming Between Domains
The following figure shows the original image.

5. Transform the image into the frequency domain:

ffTransform = FFT(image)

6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the display axes.

interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $
 FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $
 FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the
FFT process. See the FFT description in the IDL Reference Guide for more
information on this storage scheme.

Figure 7-4: Original Gated Blood Pool Image
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 139
8. Compute the power spectrum of the transform:

powerSpectrum = ABS(fftShifted)^2

9. Apply a logarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

10. Create another window and display the power spectrum as a surface:

WINDOW, 1, TITLE = 'FFT Power Spectrum: '+ $
'Logarithmic Scale (surface)'

SHADE_SURF, scaledPowerSpect, hFreqShifted, vFreqShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Log-scaled Power Spectrum', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Log(Squared Amplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum as a surface. Both
low and high frequency information are visible in this display.

Figure 7-5: Log-scaled FFT Power Spectrum of Image (as a surface)
Image Processing in IDL Transforming Between Domains with FFT

140 Chapter 7: Transforming Between Domains
Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The amplitude is the absolute value of the
FFT, while the phase is the angle of the complex number, computed using
the arctangent. In the above surface, we are only displaying the real part. In
most cases, the imaginary part will look the same as the real part.

11. Create another window and display the log-scaled transform as an image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'FFT Power Spectrum: Logarithmic Scale (image)'

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1])

The following figure shows the log-scaled power spectrum as an image. The
brighter pixels near the center of the display represent the low frequency peak
of information-containing data. The noise appears as random darker pixels
within the image.

Transforming from the Frequency Domain

After manipulating an image within the frequency domain, you will need to
transform the image back to the spatial domain. This transformation process is
referred to as an inverse FFT. The inverse FFT process can be performed with IDL’s
FFT function by setting the INVERSE keyword.

The following example shows how to use IDL’s FFT function to compute an inverse
FFT. This example uses the first image within the abnorm.dat file in the
examples/data directory. The image is not manipulated in this example while it is

Figure 7-6: Log-scaled FFT Power Spectrum of Image (as an image)
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 141
in the frequency domain to show that no information is lost when using the FFT.
However, manipulating spurious high frequency data within the frequency domain is
a useful way to remove background noise from an image, as shown in “Removing
Noise with the FFT” on page 143. Complete the following steps for a detailed
description of the process.

Example Code
See inversefft.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. With the FFT function, transform the image into the frequency domain:

ffTransform = FFT(image)

5. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

Note
This step was performed because of the storage scheme of the FFT process.
See the FFT description in the IDL Reference Guide for more information on
this storage scheme.

6. Compute the power spectrum of the transform:

powerSpectrum = ABS(fftShifted)^2

7. Apply a logarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)
Image Processing in IDL Transforming Between Domains with FFT

RSI_PROCODE/examples/doc/image/inversefft.pro

142 Chapter 7: Transforming Between Domains
8. Create a window and display the power spectrum as an image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Power Spectrum Image'

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1])

The following figure shows the log-scaled power spectrum.

9. With the FFT function, transform the frequency domain data back to the
original image (obtain the inverse transform):

fftInverse = REAL_PART(FFT(ffTransform, /INVERSE))

Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The amplitude is the absolute value of the
FFT, while the phase is the angle of the complex number, computed using
the arctangent. In the above surface, we are only displaying the real part. In
most cases, the imaginary part will look the same as the real part.

10. Create another window and display the inverse transform as an image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'FFT: Inverse Transform'

TVSCL, CONGRID(fftInverse, displaySize[0], $
displaySize[1])

Figure 7-7: Log-scaled FFT Power Spectrum of the Gated Blood Pool Image
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 143
The inverse transform is the same as the original image as shown in the
following figure. Unlike some domain transformations, all image information
is retained when transforming data to and from the frequency domain.

Removing Noise with the FFT

This example uses IDL’s FFT function to remove noise from an image. The image
comes from the abnorm.dat file found in the examples/data directory. The first
display contains the original image and its transform. The noise is very evident in the
transform. A surface representation of the power spectrum helps to determine the
threshold necessary to remove the noise from the image. In the surface
representation, the noise appears random and below a ridge containing the spike. The
ridge and spike represent coherent information within the image. A mask is applied to
the transform to remove the noise and the inverse transform is applied, resulting in a
clearer image. Complete the following steps for a detailed description of the process.

Example Code
See removingnoisewithfft.pro in the examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

Figure 7-8: Inverse FFT of the Gated Blood Pool Image
Image Processing in IDL Transforming Between Domains with FFT

RSI_PROCODE/examples/doc/image/removingnoisewithfft.pro

144 Chapter 7: Transforming Between Domains
2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the original image

WINDOW, 0, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image and Power Spectrum'

TVSCL, CONGRID(image, displaySize[0], displaySize[1]), 0

5. Transform the image into the frequency domain:

ffTransform = FFT(image)

6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the axes of the display.

interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $
 FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $
 FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the
FFT process. See the FFT description in the IDL Reference Guide for more
information on this storage scheme.

8. Compute the power spectrum of the transform:

powerSpectrum = ABS(fftShifted)^2

9. Apply a logarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 145
10. Display the log-scaled power spectrum:

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1]), 1

The following figure shows the original image and its log-scaled power
spectrum. The black pixels (which appear random) in the power spectrum
represent noise.

11. Scale the power spectrum to make its maximum value equal to zero:

scaledPS0 = scaledPowerSpect - MAX(scaledPowerSpect)

12. Create another window and display the scaled transform as a surface:

WINDOW, 1, $
TITLE = 'Power Spectrum Scaled to a Zero Maximum'

SHADE_SURF, scaledPS0, hFreqShifted, vFreqShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Zero Maximum Power Spectrum', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Max-Scaled(Log(Power Spectrum))', $
CHARSIZE = 1.5

Figure 7-9: Original Image and Its FFT Power Spectrum
Image Processing in IDL Transforming Between Domains with FFT

146 Chapter 7: Transforming Between Domains
The following figure shows the resulting log-scaled power spectrum as a
surface.

Note
The data type of the array returned by the FFT function is complex, which
contains real and imaginary parts. The real part is the amplitude, and the
imaginary part is the phase. In image processing, we are more concerned
with the amplitude, which is the only part represented in the surface and
displays of the results of the transformation. However, the imaginary part is
retained for the inverse transform back into the spatial domain.

13. Threshold the image at a value of -5.25, which is just below the peak of the
power spectrum, to remove the noise:

mask = REAL_PART(scaledPS0) GT -5.25

14. Apply the mask to the transform to exclude the noise:

maskedTransform = fftShifted*mask

Figure 7-10: FFT Power Spectrum of the Image Scaled to a Zero Maximum
Transforming Between Domains with FFT Image Processing in IDL

Chapter 7: Transforming Between Domains 147
15. Create another window and display the power spectrum of the masked
transform:

WINDOW, 2, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Power Spectrum of Masked Transform and Results'

TVSCL, CONGRID(ALOG10(ABS(maskedTransform^2)), $
displaySize[0], displaySize[1]), 0, /NAN

16. Shift the masked transform to the position of the original transform:

maskedShiftedTrans = SHIFT(maskedTransform, -center)

17. Apply the inverse transformation to the masked transform:

inverseTransform = REAL_PART(FFT(maskedShiftedTrans, $
/INVERSE))

18. Display the results of the inverse transformation:

TVSCL, CONGRID(inverseTransform, displaySize[0], $
displaySize[1]), 1

The following figure shows the power spectrum of the masked transform and
its inverse, which contains less noise than the original image.

Figure 7-11: Masked FFT Power Spectrum and Resulting Inverse Transform
Image Processing in IDL Transforming Between Domains with FFT

148 Chapter 7: Transforming Between Domains
Transforming Between Domains with
Wavelets

Images do not have to be completely transformed into the frequency domain. Some
transformations only partially convert an image into the frequency domain. One of
the most common types of these transformations is into the time-frequency or
wavelet domain.

The Discrete Wavelet Transform (DWT) is used in numerical analysis to transform
an image from the spatial domain to the time-frequency domain and back again. This
transform is different from the FFT. The FFT decomposes an image with sines and
cosines over the entire image. In contrast, the wavelet functions are applied multiple
times over portions.

The image information within the time-frequency domain shows the frequency of
patterns within an image, and how these patterns vary over the image. The low
frequencies typically contain most of the information, which is commonly seen as a
peak (spike) of data within the time-frequency domain. The information at the high
frequencies is usually noise. The image can easily be altered within the time-
frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and
Discrete Wavelet Transforms (DWTs):

• “Transforming to the Time-Frequency Domain”

• “Displaying Images in the Time-Frequency Domain” on page 152

• “Transforming from the Time-Frequency Domain” on page 155

The wavelet transformation process is the basis for many image compression
algorithms. See “Removing Noise with the Wavelet Transform” on page 158 for an
example of how wavelets can be used to compress data and remove noise.

Transforming to the Time-Frequency Domain

When an image is transformed with a DWT from the spatial domain to the time-
frequency domain, the transformation process is referred to as a forward DWT. The
forward DWT process can be performed with IDL’s WTN function.

The low frequencies usually contain most of the useful information within the image,
which is shown by the peak (spike) of data around the origin within the time-
frequency domain. If the image does not contain any background noise, the rest of the
data frequency values are very close to zero. However, the results of the WTN
Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 149
function have a very wide range. An initial display may not show any variations from
zero, but a smaller surface range will show that the image does actually contain
background noise. Since scaling a range can sometimes be quite arbitrary, different
methods are used. See “Displaying Images in the Time-Frequency Domain” on
page 152 for more information on displaying the results of a forward DWT.

The following example shows how to use IDL’s WTN function to compute a forward
DWT. This example uses the first image within the abnorm.dat file, which is in the
examples/data directory. Complete the following steps for a detailed description
of the process.

Example Code
See forwardwavelet.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Image Processing in IDL Transforming Between Domains with Wavelets

RSI_PROCODE/examples/doc/image/forwardwavelet.pro

150 Chapter 7: Transforming Between Domains
The following figure shows the original image.

5. With the WTN function, transform the image into the wavelet domain:

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Create another window and display the wavelet transform:

WINDOW, 1, TITLE = 'Wavelet: Transform'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

Figure 7-12: Original Gated Blood Pool Image
Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 151
The following figure shows the wavelet transform. The data at the high
frequencies seems to be close to zero, but the peak (spike) in the z range is so
large that a closer look is needed.

7. Create another window and display the wavelet transform, scaling the data (z)
range from 0 to 200:

WINDOW, 2, TITLE = 'Wavelet: Transform (Closer Look)'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number',
ZTITLE = 'Amplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 200.]

Figure 7-13: Wavelet Transform of Gated Blood Pool Image
Image Processing in IDL Transforming Between Domains with Wavelets

152 Chapter 7: Transforming Between Domains
The following figure shows the wavelet transform with the z-axis ranging from
0 to 200. A closer looks shows that the image does contain background noise.

Displaying Images in the Time-Frequency Domain

Within the time-frequency domain, the range of values from the peak to the spurious
high frequency data is extreme. The logarithmic scale is applied to retain the shape of
the surface, but reduce its range. Since the logarithmic scale only applies to positive
values, you should first compute the power spectrum, which is the absolute value
squared of the transform.

The following example shows how to display the results of IDL’s WTN function.
This example also uses the first image within the abnorm.dat file, which is in the
examples/data directory. Complete the following steps for a detailed description
of the process.

Example Code
See displaywavelet.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

Figure 7-14: Wavelet Transform of Image Scaled Between 0 and 200
Transforming Between Domains with Wavelets Image Processing in IDL

RSI_PROCODE/examples/doc/image/displaywavelet.pro

Chapter 7: Transforming Between Domains 153
1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

The following figure shows the original image.

5. Transform the image into the time-frequency domain.

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Compute the power spectrum.

powerSpectrum = ABS(waveletTransform)^2

Figure 7-15: Original Gated Blood Pool Image
Image Processing in IDL Transforming Between Domains with Wavelets

154 Chapter 7: Transforming Between Domains
7. Apply a logarithmic scale to the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

8. Create another window and display the log-scaled power spectrum as a
surface:

WINDOW, 1, TITLE = 'Wavelet Power Spectrum: ' + $
'Logarithmic Scale (surface)'

SHADE_SURF, scaledPowerSpect, /XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Log-scaled Power Spectrum of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Log(Squared Amplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum of the wavelet
transform as a surface.

9. Create another window and display the log-scaled power spectrum as an
image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Wavelet Power Spectrum: Logarithmic Scale

(image)'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])

Figure 7-16: Log-scaled Wavelet Power Spectrum of Image (as a surface)
Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 155
The following figure shows the log-scaled power spectrum as an image. Most
of the signal is located near the origin (the lower left of the power spectrum
image). This data is shown as bright pixels at the origin. The noise appears in
the rest of the image.

Transforming from the Time-Frequency Domain

After manipulating an image within the time-frequency domain, you will need to
transform it back to the spatial domain. This transformation process is referred to as
an inverse DWT. The inverse DWT process can be performed with IDL’s WTN
function by setting the INVERSE keyword.

The following example shows how to use IDL’s WTN function to compute an
inverse DWT. This example uses the first image within the abnorm.dat file, which
is in the examples/data directory. The image is not manipulated while it is in the
time-frequency domain to show that no data is lost when using the DWT. However,
manipulating data within the time-frequency domain is a useful way to compress data
and remove background noise from an image, as shown in “Removing Noise with the
Wavelet Transform” on page 158. Complete the following steps for a detailed
description of the process.

Example Code
See inversewavelet.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

Figure 7-17: Log-scaled Wavelet Power Spectrum of Image (as am image)
Image Processing in IDL Transforming Between Domains with Wavelets

RSI_PROCODE/examples/doc/image/inversewavelet.pro

156 Chapter 7: Transforming Between Domains
1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. With the WTN function, transform the image into the wavelet domain:

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

5. Compute the power spectrum:

powerSpectrum = ABS(waveletTransform)^2

6. Apply a logarithmic scale to the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

7. Create a window and display the log-scaled power spectrum as an image:

; Create a window and display the transform.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Power Spectrum Image'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])
Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 157
The following figure shows the log-scaled power spectrum of the image.

8. With the WTN function, transform the wavelet domain data back to the
original image (obtain the inverse transform):

waveletInverse = WTN(waveletTransform, 20, /INVERSE)

9. Create another window and display the inverse transform as an image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Wavelet: Inverse Transform'

TVSCL, CONGRID(waveletInverse, displaySize[0], $
displaySize[1])

The inverse transform is the same as the original image. No image data is lost when
transforming an image to and from the time-frequency domain.

Figure 7-18: Log-scaled Wavelet Power Spectrum of Image

Figure 7-19: Inverse of the Wavelet Transform of the Gated Blood Pool Image
Image Processing in IDL Transforming Between Domains with Wavelets

158 Chapter 7: Transforming Between Domains
Removing Noise with the Wavelet Transform

This example uses IDL’s WTN function to remove noise from an image. The image
comes from the abnorm.dat file found in the examples/data directory. The first
display contains the original image and its wavelet transform. The noise is very
evident in the image. A surface of the transform helps to determine beyond which
point the noise occurs. Only the important data is kept and noise is replaced by zero
values. The inverse transform is then applied, resulting in a cleaner image. Complete
the following steps for a detailed description of the process.

Example Code
See removingnoisewithwavelet.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image and Power Spectrum'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1]), 0

5. Determine the wavelet transform of the image:

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Display the power spectrum of the transform:

TVSCL, CONGRID(ALOG10(ABS(waveletTransform^2)), $
displaySize[0], displaySize[1]), 1
Transforming Between Domains with Wavelets Image Processing in IDL

RSI_PROCODE/examples/doc/image/removingnoisewithwavelet.pro

Chapter 7: Transforming Between Domains 159
The following figure shows the original image and its power spectrum within
the time-frequency domain.

7. Crop the transform to only include the quadrant of data closest to the spike of
low frequency in the lower-left corner:

croppedTransform = FLTARR(imageSize[0], imageSize[1])
croppedTransform[0, 0] = waveletTransform[0:(imageSize[0]/2),
$

0:(imageSize[1]/2)]

8. Create another window and display the power spectrum of the cropped
transform as an image:

WINDOW, 1, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Power Spectrum of Cropped Transform and Results'

TVSCL, CONGRID(ALOG10(ABS(croppededTransform^2)), $
displaySize[0], displaySize[1]), 0, /NAN

9. Apply the inverse transformation to the masked power spectrum:

inverseTransform = WTN(maskedTransform, 20, /INVERSE)

10. Display results of the inverse transform:

TVSCL, CONGRID(inverseTransform, displaySize[0], $
displaySize[1]), 1

Figure 7-20: Gated Blood Pool Image and Its Wavelet Power Spectrum
Image Processing in IDL Transforming Between Domains with Wavelets

160 Chapter 7: Transforming Between Domains
The following figure shows the power spectrum of the cropped transform and
its resulting inverse transform. The cropping process shows that only one
quarter of the data was needed to reconstruct the image. The image is
compressed by a 4:1 ratio.

Figure 7-21: Masked Wavelet Power Spectrum and Its Resulting Inverse
Transform
Transforming Between Domains with Wavelets Image Processing in IDL

Chapter 7: Transforming Between Domains 161
Transforming to and from the Hough and
Radon Domains

The Hough transform is used to transform from the spatial domain to the Hough
domain and back again. The image information within the Hough domain shows the
pixels of the original (spatial) image as sinusoidal curves. If the points of the original
image form a straight line, their related sinusoidal curves in the Hough domain will
intersect. Many intersections produce a peak. Masks can be easily applied to the
image within the Hough domain to determine if and where straight lines occur.

The Radon transform is used to transform from the spatial domain to the Radon
domain and back again. The image information within the Radon domain shows a
line through the original image as a point. Specific features (geometries) in the
original image produce peaks or collections of points. Masks can be easily applied to
the image within the Radon domain to determine if and where these specific features
occur.

Unlike transformations to and from the frequency and time-frequency domains, the
Hough and Radon transforms do lose some data during the transformation process.
These transformations are usually applied to the original image as a mask instead of
producing an image from the results of the transform itself. See the HOUGH and
RADON descriptions in the IDL Reference Guide for more information on Hough
and Radon transform theory.

The following sections introduce the concepts needed to work with images and these
transforms:

• “Transforming to the Hough and Radon Domains (Projecting)” on page 162

• “Transforming from the Hough and Radon Domains (Backprojecting)” on
page 165

The Hough transformation process is used to find straight lines within an image. See
“Finding Straight Lines with the Hough Transform” on page 168 for an example. The
Radon transformation process is used to enhance contrast within an image. See
“Color Density Contrasting with the Radon Transform” on page 174 for an example.
Image Processing in IDL Transforming to and from the Hough and Radon Domains

162 Chapter 7: Transforming Between Domains
Transforming to the Hough and Radon Domains
(Projecting)

When an image is transformed from the spatial domain to either the Hough or Radon
domain, the transformation process is referred to as a Hough or Radon projection.
The projection process can be performed with either IDL’s HOUGH function or
IDL’s RADON function, depending on which transform you want to use.

The following example shows how to use IDL’s HOUGH and RADON functions to
compute and display the Hough and Radon projections. This example uses the first
image within the abnorm.dat file, which is in the examples/data directory.
Complete the following steps for a detailed description of the process.

Example Code
See forwardhoughandradon.pro in the examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Define the display size and offset parameters to resize and position the images
when displaying them:

displaySize = 2*imageSize
offset = displaySize/3

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Transforming to and from the Hough and Radon Domains Image Processing in IDL

RSI_PROCODE/examples/doc/image/forwardhoughandradon.pro

Chapter 7: Transforming Between Domains 163
The following figure shows the original image.

5. With the HOUGH function, transform the image into the Hough domain:

houghTransform = HOUGH(image, RHO = houghRadii, $
THETA = houghAngles, /GRAY)

6. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(houghTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

Figure 7-22: Original Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

164 Chapter 7: Transforming Between Domains
The following figure shows the resulting Hough transform.

7. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTransform = RADON(image, RHO = radonRadii, $
THETA = radonAngles, /GRAY)

8. Create another window and display the Radon transform:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

Figure 7-23: Hough Transform of the Gated Blood Pool Image
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 165
The following figure shows the resulting Radon transform.

Transforming from the Hough and Radon Domains
(Backprojecting)

After manipulating an image within either the Hough or Radon domain, you may
need to transform the image from that domain back to the spatial domain. This
transformation process is referred to as a Hough or Radon backprojection. The
backprojection process can be performed with either IDL’s HOUGH function or
IDL’s RADON function, depending on which domain your image is in. You can
perform the backprojection process with these functions by setting the
BACKPROJECT keyword.

The following example shows how to use IDL’s HOUGH and RADON functions to
compute the backprojection from these domains. This example uses the first image
within the abnorm.dat file, which is in the examples/data directory. Although
the image is not manipulated while it is in the Hough or Radon domain, information
is lost when using these transforms. Complete the following steps for a detailed
description of the process.

Figure 7-24: Radon Transform of the Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

166 Chapter 7: Transforming Between Domains
Example Code
See backprojecthoughandradon.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import in the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Define the display size and offset parameters to resize and position the images
when displaying them:

displaySize = 2*imageSize
offset = displaySize/3

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. With the HOUGH function, transform the image into the Hough domain:

houghTransform = HOUGH(image, RHO = houghRadii, $
THETA = houghAngles, /GRAY)

5. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(houghTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

6. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTransform = RADON(image, RHO = radonRadii, $
THETA = radonAngles, /GRAY)
Transforming to and from the Hough and Radon Domains Image Processing in IDL

RSI_PROCODE/examples/doc/image/backprojecthoughandradon.pro

Chapter 7: Transforming Between Domains 167
7. Create another window and display the Radon transform:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

The following figure shows the Hough and Radon transforms.

8. Backproject the Hough and Radon transforms:

backprojectHough = HOUGH(houghTransform, /BACKPROJECT, $
RHO = houghRadii, THETA = houghAngles, $
NX = imageSize[0], NY = imageSize[1])

backprojectRadon = RADON(radonTransform, /BACKPROJECT, $
RHO = radonRadii, THETA = radonAngles, $
NX = imageSize[0], NY = imageSize[1])

Figure 7-25: Hough (left) and Radon (right) Transforms of Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

168 Chapter 7: Transforming Between Domains
9. Create another window and display the original image with the Hough and
Radon backprojections:

WINDOW, 2, XSIZE = (3*displaySize[0]), $
YSIZE = displaySize[1], $
TITLE = 'Hough and Radon Backprojections'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1]), 0

TVSCL, CONGRID(backprojectHough, displaySize[0], $
displaySize[1]), 1

TVSCL, CONGRID(backprojectRadon, displaySize[0], $
displaySize[1]), 2

The following figure shows the original image and its Hough and Radon
transforms. These resulting images shows information is blurred when using
the Hough and Radon transformations.

Finding Straight Lines with the Hough Transform

This example uses the Hough transform to find straight lines within an image. The
image comes from the rockland.png file found in the examples/data directory.
The image is a saturation composite of a 24 hour period in Rockland, Maine. A
saturation composite is normally used to highlight intensities, but the Hough
transform is used in this example to extract the power lines, which are straight lines.
The Hough transform is applied to the green band of the image. The results of the
transform are scaled to only include lines longer than 85 pixels. The scaled results are
then backprojected by the Hough transform to produce an image of only the straight
power lines. Complete the following steps for a detailed description of the process.

Figure 7-26: Original Gated Blood Pool Image (left), Hough Backprojection
(center), and Radon Backprojection (right)
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 169
Example Code
See findinglineswithhough.pro in the examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example.

1. Import the image from the rockland.png file:

file = FILEPATH('rockland.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file)

2. Determine the size of the image:

imageSize = SIZE(image, /DIMENSIONS)

3. Initialize a TrueColor display:

DEVICE, DECOMPOSED = 1

4. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[1], YSIZE = imageSize[2], $
TITLE = 'Rockland, Maine'

TV, image, TRUE = 1

The following figure shows the original image.

Figure 7-27: Image of Rockland, Maine
Image Processing in IDL Transforming to and from the Hough and Radon Domains

RSI_PROCODE/examples/doc/image/findinglineswithhough.pro

170 Chapter 7: Transforming Between Domains
5. Use the image from green channel to provide an outline of shapes:

intensity = REFORM(image[1, *, *])

6. Determine the size of the intensity image derived from the green channel:

intensitySize = SIZE(intensity, /DIMENSIONS)

7. Threshold the intensity image to highlight the power lines:

mask = intensity GT 240

Note
The intensity image values range from 0 to 255. The threshold was derived
by iteratively viewing the intensity image at several different values.

8. Initialize the remaining displays:

DEVICE, DECOMPOSED = 0
LOADCT, 0

9. Create another window and display the masked image:

WINDOW, 1, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1], $
TITLE = 'Mask to Locate Power Lines'

TVSCL, mask
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 171
The following figure shows the mask of the original image.

10. Transform the mask with the HOUGH function:

transform = HOUGH(mask, RHO = rho, THETA = theta)

11. Define the size and offset parameters for the transform displays:

displaySize = [256, 256]
offset = displaySize/3

12. Reverse the color table to clarify the lines:

TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue

13. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $

Figure 7-28: Mask of Rockland Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

172 Chapter 7: Transforming Between Domains
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

14. Scale the transform to obtain just the power lines, retaining only those lines
longer than 85 pixels:

transform = (TEMPORARY(transform) - 85) > 0

The value of 85 comes from an estimate of the length of the power lines within
the original and intensity images.

15. Create another window and display the scaled Hough transform with axes
provided by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Scaled Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

The top image in the following figure shows the Hough transform of the
intensity image. This transform is masked to only include straight lines of
more than 85 pixels. The bottom image in the following figure shows the
results of this mask. Only the far left and right intersections are retained.
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 173
16. Backproject to compare with the original image:

backprojection = HOUGH(transform, /BACKPROJECT, $
RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1])

Figure 7-29: The Hough Transform (top) and the Scaled Transform (bottom) of
the Masked Intensity Image

Remaining
Intersections
Image Processing in IDL Transforming to and from the Hough and Radon Domains

174 Chapter 7: Transforming Between Domains
17. Create another window and display the resulting backprojection:

WINDOW, 4, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1], $
TITLE = 'Resulting Power Lines'

TVSCL, backprojection

The following figure shows the resulting backprojection, which contains only
the power lines.

Color Density Contrasting with the Radon Transform

This example uses the Radon transform to provide more contrast within an image
based on its color density. The image comes from the endocell.jpg file found in
the examples/data directory. The image is a photomicrograph of cultured
endothelial cells. The edges (outlines) within the image are defined by the Roberts
filter. The Radon transform is then applied to the filtered image. The transform is
scaled to only include the values above the mean of the transform. The scaled results
are backprojected by the Radon transform. The resulting backprojection is used as a
mask on the original image. The final resulting image shows more color contrast
along the edges of the cell nuclei within the image.

Figure 7-30: The Resulting Backprojection of the Scaled Hough Transform
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 175
Example Code
See contrastingcellswithradon.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import in the image from the endocell.jpg file:

file = FILEPATH('endocell.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, endocellImage

2. Determine the image’s size, but divide it by 4 to reduce the image:

imageSize = SIZE(endocellImage, /DIMENSIONS)/4

3. Resize the image to a quarter of its original length and width:

endocellImage = CONGRID(endocellImage, $
imageSize[0], imageSize[1])

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

5. Create a window and display the original image:

WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original (left) and Filtered (right)'

TV, endocellImage, 0

6. Filter the original image to clarify the edges of the cells and display it:

image = ROBERTS(endocellImage)
TVSCL, image, 1

The following figure shows the results of the edge detection filter.

Figure 7-31: Original Image (left) and the Resulting Edge-Filtered Image (right)
Image Processing in IDL Transforming to and from the Hough and Radon Domains

RSI_PROCODE/examples/doc/image/contrastingcellswithradon.pro

176 Chapter 7: Transforming Between Domains
7. Transform the filtered image:

transform = RADON(image, RHO = rho, THETA = theta)

8. Define the size and offset parameters for the transform displays:

displaySize = [256, 256]
offset = displaySize/3

9. Create another window and display the Radon transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

10. Scale the transform to include only the density values above the mean of the
transform:

scaledTransform = transform > MEAN(transform)

11. Create another window and display the scaled Radon transform with axes
provided by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Scaled Radon Transform'

TVSCL, CONGRID(scaledTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

The following figure shows the original Radon transform of the edge-filtered
image and the resulting scaled transform. The high intensity values within the
diamond shape of the center of the transform represent high color density
within the filtered and original image. The transform is scaled to highlight this
segment of intersecting lines.
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 7: Transforming Between Domains 177
12. Backproject the scaled transform:

backprojection = RADON(scaledTransform, /BACKPROJECT, $
RHO = rho, THETA=theta, NX = imageSize[0], $
NY = imageSize[1])

Figure 7-32: Radon Transform (top) and Scaled Transform (bottom)
of the Edge-Filtered Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

178 Chapter 7: Transforming Between Domains
13. Create another window and display the backprojection:

WINDOW, 3, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Backproject (left) and Final Result (right)'

TVSCL, backprojection, 0

14. Use the backprojection as a mask to provide a color density contrast of the
original image:

constrastingImage = endocellImage*backprojection

15. Display the resulting contrast image:

TVSCL,constrastingImage, 1

The following figure shows the Radon backprojection and a combined image
of the original and the backprojection. The cell nuclei now have more contrast
than the rest of the image.

Figure 7-33: The Backprojection of the Radon Transform and the Resulting
Contrast Image
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 8

Contrasting and
Filtering
This chapter describes the following topics:
Overview of Contrasting and Filtering . . . 180
Byte-Scaling . 183
Working with Histograms 186
Filtering an Image 195

Smoothing an Image 211
Sharpening an Image 220
Detecting Edges . 224
Removing Noise . 229
Image Processing in IDL 179

180 Chapter 8: Contrasting and Filtering
Overview of Contrasting and Filtering

Contrast within an image is based on the brightness or darkness of a pixel in relation
to other pixels. Modifying the contrast among neighboring pixels can enhance the
ability to extract information from the image. Operations such as noise removal and
smoothing decrease contrast and make neighboring pixel values more similar. Other
operations such as scaling pixel values, edge detection and sharpening increase
contrast to highlight specific image features.

A simple way to modify contrast is to scale the pixel values within an image. Within
IDL, the pixel values of displayed images typically range from 0 to 255. Byte-scaling
changes the range of values within an image to a linear progression from a minimum
of 0 to a maximum of 255. For images with pixel values exceeding 255, byte-scaling
produces a more linear display with the minimum value as the darkest pixel and the
maximum value as the brightest pixel. For images with a smaller range in pixel
values, byte-scaling increases the contrast and brightens dark areas. See “Byte-
Scaling” on page 183 for more information on byte-scaling.

Contrast can also be increased to show more variations within uniform areas of the
image using histogram equalization operations. These operations modify the
distribution of pixel values within an image. See “Working with Histograms” on
page 186 for more information on using histograms to modify contrast.

Filters provide another means of changing contrast within an image. A filter is
represented by a kernel, which is an array that is multiplied and added to each pixel
(and its surrounding values) within an image. Examples of such filters include low
pass, high pass, directional, and Laplacian filters. See “Filtering an Image” on
page 195 for more information on these filters. The following list introduces some of
the specific operations covered in this section:

• Low pass filtering - a low pass filter provides the basis for smoothing
operations. If an image contains too many variations to be able to determine
specific features, smoothing can decrease the contrast so that some areas
(especially the background) will not distract from viewing other areas of the
image. See “Smoothing an Image” on page 211 for more information on
smoothing.

• High pass filtering - a high pass filter provides the basis for sharpening
operations. Some variations within areas of an image are too slight, causing
some features to be indistinguishable from other features (usually the
background). Sharpening increases the contrast in these areas, allowing these
features to be clearly displayed. See “Sharpening an Image” on page 220 for
more information on sharpening.
Overview of Contrasting and Filtering Image Processing in IDL

Chapter 8: Contrasting and Filtering 181
• Directional and Laplacian filters - these filters are the basis for edge
detection operations. Shapes within an image are distinguished by their edges,
which typically involve a sharp gradient. Edge detection increases the contrast
between the boundary of the shape and the adjoining areas. See “Detecting
Edges” on page 224 for more information on edge detection.

• Windowing and adaptive filters - more advanced filters are used to remove
noise from an image. The variation in values between the noise and the image
data is typically extreme, which detracts from the image clarity. Decreasing
the contrast reduces the visible noise and allows the image to be properly
viewed. See “Removing Noise” on page 229 for more information on
removing noise within an image.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image contrasting and filtering tasks and associated
IDL image routines covered in this chapter.

Type of Contrasts
or Filters Routines Description

“Byte-Scaling” on
page 183

BYTSCL Byte-scale the data
values of an image to
produce a more
continuous display or to
increase its contrast.

“Working with
Histograms” on
page 186

HIST_EQUAL

ADAPT_HIST_EQUAL

Use histogram
equalization to show
minor variations in
uniform areas.

“Filtering an Image”
on page 195

CONVOL Enhance contrast by
applying some basic
filters (low pass, high
pass, directional, and
Laplacian) to images.

Table 8-1: Image Contrasting and Filtering Tasks and Related Routines
Image Processing in IDL Overview of Contrasting and Filtering

182 Chapter 8: Contrasting and Filtering
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

“Smoothing an Image”
on page 211

SMOOTH

MEDIAN

Smooth high variations
within an image.

“Sharpening an
Image” on page 220

CONVOL Sharpen an image by
decreasing too bright
pixels and increasing too
dark pixels.

“Detecting Edges” on
page 224

ROBERTS

SOBEL

Use the contrast within
an image to detect the
possible edges of shapes.

“Removing Noise” on
page 229

HANNING

LEEFILT

Remove noise from an
image by either
windowing or using an
adaptive filter.

Type of Contrasts
or Filters Routines Description

Table 8-1: Image Contrasting and Filtering Tasks and Related Routines
Overview of Contrasting and Filtering Image Processing in IDL

Chapter 8: Contrasting and Filtering 183
Byte-Scaling

The data values of some images may be greater than 255. When displayed with the
TV routine or the IDLgrImage object, the data values above 255 are wrapped around
the range of 0 to 255. This type of display may produce discontinuities in the
resulting image.

The display can be changed to not wrap around and appear more linear by byte-
scaling the image. The scaling process is linear with the minimum data value scaled
to 0 and the maximum data value scaled to 255. You can use the BYTSCL function to
perform this scaling process.

If the range of the pixel values within an image is less than 0 to 255, you can use the
BYTSCL function to increase the range from 0 to 255. This change will increase the
contrast within the image by increasing the brightness of darker regions. Keywords to
the BYTSCL function also allow you to decrease contrast by setting the highest value
of the image to less than 255.

Note
The BYTSCL function usually results in a different data type (byte) and range (0 to
255) from the original input data. When converting data with BYTSCL for display
purposes, you may want to keep your original data as a separate variable for
statistical and numerical analysis.

The following example shows how to use the BYTSCL function to scale data with
values greater than 255, producing a more uniform display. This example uses a
Magnetic Resonance Image (MRI) of a human brain within the mr_brain.dcm file
in the examples/data directory. The values of this data are unsigned integer and
range from 0 to about 800. Complete the following steps for a detailed description of
the process.

Example Code
See bytescaling.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Import the image from the mr_brain.dcm file:

file = FILEPATH('mr_brain.dcm', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_DICOM(file)
imageSize = SIZE(image, /DIMENSIONS)
Image Processing in IDL Byte-Scaling

RSI_PROCODE/examples/doc/image/bytescaling.pro

184 Chapter 8: Contrasting and Filtering
2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 5

3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image.

4. Byte-scale the image:

scaledImage = BYTSCL(image)

5. Create another window and display the byte-scaled image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Byte-Scaled Image'

TV, scaledImage

Figure 8-1: Magnetic Resonance Image (MRI) of a Human Brain
Byte-Scaling Image Processing in IDL

Chapter 8: Contrasting and Filtering 185
The following figure shows the result of byte-scaling. Unlike the original image, the
byte-scaled image accurately represents the maximum and minimum pixel values by
linearly adjusting the range for display.

Figure 8-2: Byte-Scaled MRI
Image Processing in IDL Byte-Scaling

186 Chapter 8: Contrasting and Filtering
Working with Histograms

The histogram of an image shows the number of pixels for each pixel value within
the range of the image. If the minimum value of the image is 0 and the maximum
value of the image is 255, the histogram of the image shows the number of pixels for
each value ranging between and including 0 and 255. Peaks in the histogram
represent more common values within the image that usually consist of nearly
uniform regions. Valleys in the histogram represent less common values. Empty
regions within the histogram indicate that no pixels within the image contain those
values.

The following figure shows an example of a histogram and its related image. The
most common value in this image is 180, composing the background of the image.
Although the background appears nearly uniform, it contains many small variations.

The contrast of these variations can be increased by equalizing the image’s
histogram. Either the image’s color table or the image itself can be equalized based
on the information within the image’s histogram. This section shows how to enhance
the contrast within an image by modifying the image itself. See “H_EQ_CT” in the
IDL Reference Guide manual for more information on enhancing contrast by
modifying the color table of an image using the image’s histogram information.

During histogram equalization, the values occurring in the empty regions of the
histogram are redistributed equally among the peaks and valleys. This process creates
intensity gradients within these regions (replacing nearly uniform values), thus
highlighting minor variations.

Figure 8-3: Example of a Histogram (left) and Its Related Image (right)
Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 187
IDL contains the ability to perform histogram equalization and adaptive histogram
equalization. The following sections show how to use these forms of histogram
equalization to modify images within IDL:

• “Equalizing with Histograms”

• “Adaptive Equalizing with Histograms” on page 190

Equalizing with Histograms

You can use the HIST_EQUAL function to perform basic histogram equalization
within IDL. Unlike histogram equalization methods performed on color tables, the
HIST_EQUAL function results in a modified image, which has a different histogram
than the original image. The resulting image shows more variations (increased
contrast) within uniform areas than the original image.

The following example applies histogram equalization to an image of mineral
deposits to reveal previously indistinguishable features. This example uses the
mineral.png file in the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See equalizing.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Import the image and color table from the mineral.png file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file, red, green, blue)
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

3. Create a window and display the original image with its color table:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image
Image Processing in IDL Working with Histograms

RSI_PROCODE/examples/doc/image/equalizing.pro

188 Chapter 8: Contrasting and Filtering
The following figure shows the original image.

4. Create another window and display the histogram of the original image:

WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM(image), /XSTYLE, /YSTYLE, $

TITLE = 'Mineral Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

The following figure shows the original image’s histogram.

Figure 8-4: The Mineral Image and Its Related Color Table

Figure 8-5: Histogram of the Original Image
Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 189
5. Histogram equalize the image:

equalizedImage = HIST_EQUAL(image)

6. Create another window and display the equalized image:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Equalized Image'

TV, equalizedImage

The following figure shows the results of the histogram equalization. Small
variations within the uniform regions are now much more noticeable.

7. Create another window and display the histogram of the equalized image:

WINDOW, 3, TITLE = 'Histogram of Equalized Image'
PLOT, HISTOGRAM(equalizedImage), /XSTYLE, /YSTYLE, $

TITLE = 'Equalized Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

Figure 8-6: Equalized Mineral Image
Image Processing in IDL Working with Histograms

190 Chapter 8: Contrasting and Filtering
The following figure shows the modified image’s histogram. The resulting
histogram is now more uniform than the original histogram.

Adaptive Equalizing with Histograms

Adaptive histogram equalization involves applying equalization based on the local
region surrounding each pixel. Each pixel is mapped to an intensity proportional to its
rank within the surrounding neighborhood. This type of equalization also tends to
reduce the disparity between peaks and valleys within the image’s histogram.

You can use the ADAPT_HIST_EQUAL function to perform the adaptive histogram
equalization process within IDL. Like the HIST_EQUAL function, the
ADAPT_HIST_EQUAL function results in a modified image, which has a different
histogram than the original image.

The following example applies adaptive histogram equalization to an image of
mineral deposits to reveal previously indistinguishable features. This example uses a
the mineral.png file in the examples/data directory. Complete the following
steps for a detailed description of the process.

Example Code
See adaptiveequalizing.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

Figure 8-7: Histogram of the Equalized Image
Working with Histograms Image Processing in IDL

RSI_PROCODE/examples/doc/image/adaptiveequalizing.pro

Chapter 8: Contrasting and Filtering 191
1. Import the image and color table from the mineral.png file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file, red, green, blue)
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

3. Create a window and display the original image with its color table:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image.

4. Create another window and display the histogram of the original image:

WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM(image), /XSTYLE, /YSTYLE, $

TITLE = 'Mineral Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

Figure 8-8: The Mineral Image and Its Related Color Table
Image Processing in IDL Working with Histograms

192 Chapter 8: Contrasting and Filtering
The following figure shows the resulting display.

5. Apply adaptive histogram equalization to the image:

equalizedImage = ADAPT_HIST_EQUAL(image)

6. Create another window and display the equalized image:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Adaptive Equalized Image'

TV, equalizedImage

Figure 8-9: Histogram of the Original Image
Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 193
The following figure shows the results of adaptive histogram equalization. All
the variations within the image are now noticeable.

7. Create another window and display the histogram of the equalized image:

WINDOW, 3, TITLE = 'Histogram of Adaptive Equalized Image'
PLOT, HISTOGRAM(equalizedImage), /XSTYLE, /YSTYLE, $
 TITLE = 'Adaptive Equalized Image Histogram', $
 XTITLE = 'Intensity Value', $
 YTITLE = 'Number of Pixels of That Value'

Figure 8-10: Adaptive Equalized Mineral Image
Image Processing in IDL Working with Histograms

194 Chapter 8: Contrasting and Filtering
The following figure shows the modified image’s histogram. The resulting
histogram contains no empty regions and fewer extreme peaks and valleys
than the original image.

Figure 8-11: Histogram of the Adaptive Equalized Image
Working with Histograms Image Processing in IDL

Chapter 8: Contrasting and Filtering 195
Filtering an Image

Image filtering is useful for many applications, including smoothing, sharpening,
removing noise, and edge detection. A filter is defined by a kernel, which is a small
array applied to each pixel and its neighbors within an image. In most applications,
the center of the kernel is aligned with the current pixel, and is a square with an odd
number (3, 5, 7, etc.) of elements in each dimension. The process used to apply filters
to an image is known as convolution, and may be applied in either the spatial or
frequency domain. See Chapter 7, “Overview of Transforming Between Image
Domains” for more information on image domains.

Within the spatial domain, the first part of the convolution process multiplies the
elements of the kernel by the matching pixel values when the kernel is centered over
a pixel. The elements of the resulting array (which is the same size as the kernel) are
averaged, and the original pixel value is replaced with this result. The CONVOL
function performs this convolution process for an entire image.

Within the frequency domain, convolution can be performed by multiplying the FFT
(Fast Fourier Transform) of the image by the FFT of the kernel, and then
transforming back into the spatial domain. The kernel is padded with zero values to
enlarge it to the same size as the image before the forward FFT is applied. These
types of filters are usually specified within the frequency domain and do not need to
be transformed. IDL’s DIST and HANNING functions are examples of filters already
transformed into the frequency domain. See “Windowing to Remove Noise” on
page 229 for more information on these types of filters.

The following examples in this section will focus on some of the basic filters applied
within the spatial domain using the CONVOL function:

• “Low Pass Filtering” on page 196

• “High Pass Filtering” on page 199

• “Directional Filtering” on page 203

• “Laplacian Filtering” on page 206

Since filters are the building blocks of many image processing methods, these
examples merely show how to apply filters, as opposed to showing how a specific
filter may be used to enhance a specific image or extract a specific shape. This basic
introduction provides the information necessary to accomplish more advanced
image-specific processing.
Image Processing in IDL Filtering an Image

196 Chapter 8: Contrasting and Filtering
Note
The following filters mentioned are not the only filters used in image processing.
Most image processing textbooks contain more varieties of filters.

Low Pass Filtering

A low pass filter is the basis for most smoothing methods. An image is smoothed by
decreasing the disparity between pixel values by averaging nearby pixels (see
“Smoothing an Image” on page 211 for more information).

Using a low pass filter tends to retain the low frequency information within an image
while reducing the high frequency information. An example is an array of ones
divided by the number of elements within the kernel, such as the following 3 by 3
kernel:

Note
The above array is an example of one possible kernel for a low pass filter. Other
filters may include more weighting for the center point, or have different smoothing
in each dimension.

The following example shows how to use IDL’s CONVOL function to smooth an
aerial view of New York City within the nyny.dat file in the examples/data
directory. Complete the following steps for a detailed description of the process.

Example Code
See lowpassfiltering.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

1 9⁄ 1 9⁄ 1 9⁄
1 9⁄ 1 9⁄ 1 9⁄
1 9⁄ 1 9⁄ 1 9⁄
Filtering an Image Image Processing in IDL

RSI_PROCODE/examples/doc/image/lowpassfiltering.pro

Chapter 8: Contrasting and Filtering 197
2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Create a kernel for a low pass filter:

kernelSize = [3, 3]
kernel = REPLICATE((1./(kernelSize[0]*kernelSize[1])), $

kernelSize[0], kernelSize[1])

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

Figure 8-12: Cropped New York Image
Image Processing in IDL Filtering an Image

198 Chapter 8: Contrasting and Filtering
7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Low Pass Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

The following figure shows the resulting display. The high frequency pixel
values have been blurred as a result of the low pass filter.

8. Add the original and the filtered image together to show how the filter effects
the image.

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Low Pass Combined New York Image'

TVSCL, CONGRID(croppedImage + filteredImage, $
displaySize[0], displaySize[1])

Figure 8-13: Low Pass Filtered New York Image
Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 199
The following figure shows the resulting display. In the resulting combined
image, the structures within the city are not as pixelated as in the original
image. The image is smoothed (blurred) to appear more continuous.

High Pass Filtering

A high pass filter is the basis for most sharpening methods. An image is sharpened
when contrast is enhanced between adjoining areas with little variation in brightness
or darkness (see “Sharpening an Image” on page 220 for more detailed information).

A high pass filter tends to retain the high frequency information within an image
while reducing the low frequency information. The kernel of the high pass filter is
designed to increase the brightness of the center pixel relative to neighboring pixels.
The kernel array usually contains a single positive value at its center, which is
completely surrounded by negative values. The following array is an example of a 3
by 3 kernel for a high pass filter:

Note
The above array is an example of one possible kernel for a high pass filter. Other
filters may include more weighting for the center point.

Figure 8-14: Low Pass Combined New York Image

1 9⁄– 1– 9⁄ 1– 9⁄
1– 9⁄ 8 9⁄ 1– 9⁄
1– 9⁄ 1– 9⁄ 1– 9⁄
Image Processing in IDL Filtering an Image

200 Chapter 8: Contrasting and Filtering
The following example shows how to use IDL’s CONVOL function with a 3 by 3
high pass filter to sharpen an aerial view of New York City within the nyny.dat file
in the examples/data directory. Complete the following steps for a detailed
description of the process.

Example Code
See highpassfiltering.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])
Filtering an Image Image Processing in IDL

RSI_PROCODE/examples/doc/image/highpassfiltering.pro

Chapter 8: Contrasting and Filtering 201
The following figure shows the cropped section of the original image.

5. Create a kernel for a high pass filter:

kernelSize = [3, 3]
kernel = REPLICATE(-1., kernelSize[0], kernelSize[1])
kernel[1, 1] = 8.

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'High Pass Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 8-15: Cropped New York Image
Image Processing in IDL Filtering an Image

202 Chapter 8: Contrasting and Filtering
The following figure shows the results of applying the high pass filter. The
high frequency information is retained.

8. Add the original and the filtered image together to show how the filter effects
the image.

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'High Pass Combined New York Image'

TVSCL, CONGRID(croppedImage + filteredImage, $
displaySize[0], displaySize[1])

The following figure shows the resulting display. In the resulting combined
image, the structures within the city are more pixelated than in the original
image. The pixels are highlighted and appear more discontinuous, exposing
the three-dimensional nature of the structures within the image.

Figure 8-16: High Pass Filtered New York Image

Figure 8-17: High Pass Combined New York Image
Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 203
Directional Filtering

A directional filter forms the basis for some edge detection methods. An edge within
an image is visible when a large change (a steep gradient) occurs between adjacent
pixel values. This change in values is measured by the first derivatives (often referred
to as slopes) of an image. Directional filters can be used to compute the first
derivatives of an image (see “Detecting Edges” on page 224 for more information on
edge detection).

Directional filters can be designed for any direction within a given space. For images,
x- and y-directional filters are commonly used to compute derivatives in their
respective directions. The following array is an example of a 3 by 3 kernel for an x-
directional filter (the kernel for the y-direction is the transpose of this kernel):

Note
The above array is an example of one possible kernel for a x-directional filter. Other
filters may include more weighting in the center of the nonzero columns.

The following example shows how to use IDL’s CONVOL function to determine the
first derivatives of an image in the x-direction. The resulting derivatives are then
scaled to just show negative, zero, and positive slopes. This example uses the aerial
view of New York City within the nyny.dat file in the examples/data directory.
Complete the following steps for a detailed description of the process.

Example Code
See directionfiltering.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

1– 0 1

1– 0 1

1– 0 1
Image Processing in IDL Filtering an Image

RSI_PROCODE/examples/doc/image/directionfiltering.pro

204 Chapter 8: Contrasting and Filtering
2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Create a kernel for an x-directional filter:

kernelSize = [3, 3]
kernel = FLTARR(kernelSize[0], kernelSize[1])
kernel[0, *] = -1.
kernel[2, *] = 1.

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

Figure 8-18: Cropped New York Image
Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 205
7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Direction Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

The resulting image shows some edge information. The most noticeable edge
is seen as a “shadow” for each bridge. This information represents the slopes in
the x-direction of the image. The filtered image can then be scaled to highlight
these slopes.

8. Create another window and display negative slopes as black, zero slopes as
gray, and positive slopes as white:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Slopes of Direction Filtered New York Image'

TVSCL, CONGRID(-1 > FIX(filteredImage/50) < 1,
displaySize[0], $

displaySize[1])

The following figure shows the negative slopes (black areas), zero slopes (gray
areas), and positive slopes (white areas) produced by the x-directional filter.

Figure 8-19: Direction Filtered New York Image
Image Processing in IDL Filtering an Image

206 Chapter 8: Contrasting and Filtering
The adjacent black and white areas show edges in the x-direction, such as
along the bridge closest to the right side of the image.

Laplacian Filtering

A Laplacian filter forms another basis for edge detection methods. A Laplacian filter
can be used to compute the second derivatives of an image, which measure the rate at
which the first derivatives change. This helps to determine if a change in adjacent
pixel values is an edge or a continuous progression (see “Detecting Edges” on
page 224 for more information on edge detection).

Kernels of Laplacian filters usually contain negative values in a cross pattern (similar
to a plus sign), which is centered within the array. The corners are either zero or
positive values. The center value can be either negative or positive. The following
array is an example of a 3 by 3 kernel for a Laplacian filter:

Note
The above array is an example of one possible kernel for a Laplacian filter. Other
filters may include positive, nonzero values in the corners and more weighting in
the centered cross pattern.

Figure 8-20: Slopes of Direction Filtered New York Image

0 1– 0

1– 4 1–

0 1– 0
Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 207
The following example shows how to use IDL’s CONVOL function with a 3 by 3
Laplacian filter to determine the second derivatives of an image. This type of
information is used within edge detection processes to find ridges. This example uses
an aerial view of New York City within the nyny.dat file in the examples/data
directory. Complete the following steps for a detailed description of the process.

Example Code
See laplacefiltering.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])
Image Processing in IDL Filtering an Image

RSI_PROCODE/examples/doc/image/laplacefiltering.pro

208 Chapter 8: Contrasting and Filtering
The following figure shows the cropped section of the original image.

5. Create a kernel of a Laplacian filter:

kernelSize = [3, 3]
kernel = FLTARR(kernelSize[0], kernelSize[1])
kernel[1, *] = -1.
kernel[*, 1] = -1.
kernel[1, 1] = 4.

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Laplace Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 8-21: Cropped New York Image
Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 209
The following figure contains positive and negative second derivative
information. The positive values represent depressions (valleys) and the
negative values represent ridges.

8. Create another window and display only the negative values (ridges) within
the image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Negative Values of Laplace Filtered New York

Image'
TVSCL, CONGRID(filteredImage < 0, $

displaySize[0], displaySize[1])

Figure 8-22: Laplacian Filtered New York Image
Image Processing in IDL Filtering an Image

210 Chapter 8: Contrasting and Filtering
The following figure shows the negative values produced by the Laplacian
filter. The most noticeable ridges in this result are the medians within the wide
boulevards of the city.

Figure 8-23: Negative Values of Laplacian Filtered New York Image
Filtering an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 211
Smoothing an Image

Smoothing is often used to reduce noise within an image or to produce a less
pixelated image. Most smoothing methods are based on low pass filters. See “Low
Pass Filtering” on page 196 for more information.

Smoothing is also usually based on a single value representing the image, such as the
average value of the image or the middle (median) value. The following examples
show how to smooth using average and middle values:

• “Smoothing with Average Values”

• “Smoothing with Median Values” on page 215

Smoothing with Average Values

The following example shows how to use the SMOOTH function to smooth an image
with a moving average. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the
rbcells.jpg file in the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See smoothingwithsmooth.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Import the image from the rbcells.jpg file:

file = FILEPATH('rbcells.jpg', $
 SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
 TITLE = 'Original Image'
TV, image
Image Processing in IDL Smoothing an Image

RSI_PROCODE/examples/doc/image/smoothingwithsmooth.pro

212 Chapter 8: Contrasting and Filtering
The following figure shows the original image. This image contains many
varying pixel values within the background.

4. Create another window and display the original image as a surface:

WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Red Blood Cell Image'

Figure 8-24: Original Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 213
The following figure shows the surface of the original image. This image
contains many discontinuous values shown as sharp peaks (spikes) in the
middle range of values.

5. Smooth the image with the SMOOTH function, which uses the average value
of each group of pixels affected by the 5 by 5 kernel applied to the image:

smoothedImage = SMOOTH(image, 5, /EDGE_TRUNCATE)

The width argument of 5 is used to specify that a 5 by 5 smoothing kernel is to
be used.

6. Create another window and display the smoothed image as a surface:

WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Smoothed Cell Image'

Figure 8-25: Surface of Original Red Blood Cells Image
Image Processing in IDL Smoothing an Image

214 Chapter 8: Contrasting and Filtering
The following figure shows the surface of the smoothed image. The sharp
peaks in the original image have been decreased.

7. Create another window and display the smoothed image:

WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Smoothed Image'

TV, smoothedImage

Figure 8-26: Surface of Average-Smoothed Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 215
The following figure shows the smoothed image. Less variations between
pixel values occur within the background of the resulting image.

Smoothing with Median Values

The following example shows how to use IDL’s MEDIAN function to smooth an
image by median values. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the
rbcells.jpg file in the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See smoothingwithmedian.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Import the image from the rbcells.jpg file:

file = FILEPATH('rbcells.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)

Figure 8-27: Average-Smoothed Red Blood Cells Image
Image Processing in IDL Smoothing an Image

RSI_PROCODE/examples/doc/image/smoothingwithmedian.pro

216 Chapter 8: Contrasting and Filtering
2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image. This image contains many
varying pixel values within the background.

4. Create another window and display the original image as a surface:

WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Red Blood Cell Image'

Figure 8-28: Original Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 217
The following figure shows the surface of the original display. This image
contains many discontinuous values shown as sharp peaks (spikes) in the
middle range of values.

5. Smooth the image with the MEDIAN function, which uses the middle value of
each group of pixels affected by the 5 by 5 kernel applied to the image:

smoothedImage = MEDIAN(image, 5)

6. Create another window and display the smoothed image as a surface:

WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Smoothed Cell Image'

Figure 8-29: Surface of Original Red Blood Cells Image
Image Processing in IDL Smoothing an Image

218 Chapter 8: Contrasting and Filtering
The following figure shows the smoothed surface. The sharp peaks in the
original image are decreased by the MEDIAN function.

7. Create another window and display the smoothed image:

WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Smoothed Image'

TV, smoothedImage

Figure 8-30: Surface of Middle-Smoothed Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 219
The following figure shows the results of applying the median filter. Less
variations occur within the background of the resulting image, yet feature
edges remain clearly defined.

Figure 8-31: Middle-Smoothed Red Blood Cells Image
Image Processing in IDL Smoothing an Image

220 Chapter 8: Contrasting and Filtering
Sharpening an Image

Sharpening an image increases the contrast between bright and dark regions to bring
out features.

The sharpening process is basically the application of a high pass filter to an image.
The following array is a kernel for a common high pass filter used to sharpen an
image:

Note
The above array is an example of one possible kernel for a sharpening filter. Other
filters may include more weighting for the center point.

As mentioned in the filtering section of this chapter, filters can be applied to images
in IDL with the CONVOL function. See “High Pass Filtering” on page 199 for more
information on high pass filters.

The following example shows how to use IDL’s CONVOL function and the above
high pass filter kernel to sharpen an image. This example uses the Magnetic
Resonance Image (MRI) of a human knee contained within the mr_knee.dcm file in
the examples/data directory. Within the original knee MRI, some information is
nearly as dark as the background. This image is sharpened to display these dark areas
with improved contrast. Complete the following steps for a detailed description of the
process.

Example Code
See sharpening.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Import the image from the mr_knee.dcm file:

file = FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_DICOM(file)
imageSize = SIZE(image, /DIMENSIONS)

1 9⁄– 1– 9⁄ 1– 9⁄
1– 9⁄ 1 1– 9⁄
1– 9⁄ 1– 9⁄ 1– 9⁄
Sharpening an Image Image Processing in IDL

RSI_PROCODE/examples/doc/image/sharpening.pro

Chapter 8: Contrasting and Filtering 221
2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Knee MRI'

TVSCL, image

The following figure shows the original image.

4. Create a kernel for a sharpening (high pass) filter:

kernelSize = [3, 3]
kernel = REPLICATE(-1./9., kernelSize[0], kernelSize[1])
kernel[1, 1] = 1.

5. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(image), kernel, $
/CENTER, /EDGE_TRUNCATE)

Figure 8-32: Original Knee MRI
Image Processing in IDL Sharpening an Image

222 Chapter 8: Contrasting and Filtering
6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Sharpen Filtered Knee MRI'

TVSCL, filteredImage

The following figure shows the results of applying the sharpening (high pass)
filter. Pixels that differ dramatically in contrast with surrounding pixels are
brightened.

7. Create another window and display the combined images:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Sharpened Knee MRI'

TVSCL, image + filteredImage

Figure 8-33: Sharpen FIltered Knee MRI
Sharpening an Image Image Processing in IDL

Chapter 8: Contrasting and Filtering 223
The following figure shows the combination of the sharpened and original
images. This image is sharper, containing more information within several
regions, especially the tips of the bones.

Figure 8-34: Sharpened Knee MRI
Image Processing in IDL Sharpening an Image

224 Chapter 8: Contrasting and Filtering
Detecting Edges

Detecting edges is another way to help extract features. Many edge detection
methods use either directional or Laplacian filters. See “Directional Filtering” on
page 203 and “Laplacian Filtering” on page 206 for more information on directional
and Laplacian filters.

IDL contains two basic edge detection routines, the ROBERTS and SOBEL
functions. See the ROBERTS and SOBEL descriptions in the IDL Reference Guide
for more information on these operators. Morphological operators are used for more
complex edge detection. See “Detecting Edges of Image Objects” in Chapter 9 for
more information on these operators.

The following examples show how to use these routines to detect edges of shapes
within an image:

• “Enhancing Edges with the Roberts Operator”

• “Enhancing Edges with the Sobel Operator” on page 226

The results of these edge detection routines can be added or subtracted from the
original image to enhance the contrast of the edges within that image. Edge detection
results are also used to calculate masks. See “Masking Images” in Chapter 4 for more
information on masks.

Enhancing Edges with the Roberts Operator

The following example shows how to use the ROBERTS function to detect edges
within an image. This example uses the aerial view of New York City within the
nyny.dat file in the examples/data directory. Complete the following steps for a
detailed description of the process.

Example Code
See detectingedgeswithroberts.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)
Detecting Edges Image Processing in IDL

RSI_PROCODE/examples/doc/image/detectingedgeswithroberts.pro

Chapter 8: Contrasting and Filtering 225
2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Apply the Roberts filter to the image:

filteredImage = ROBERTS(croppedImage)

6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 8-35: Cropped New York Image
Image Processing in IDL Detecting Edges

226 Chapter 8: Contrasting and Filtering
The following figure shows the results of applying the Roberts filter. Edges
have been highlighted around all elements separated by significant differences
in pixel values.

Enhancing Edges with the Sobel Operator

The following example shows how to use the SOBEL function to detect edges within
an image. This example uses the aerial view of New York City within the nyny.dat
file in the examples/data directory. Complete the following steps for a detailed
description of the process.

Example Code
See detectingedgeswithsobel.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0

Figure 8-36: Roberts Filter Applied to the New York Image
Detecting Edges Image Processing in IDL

RSI_PROCODE/examples/doc/image/detectingedgeswithsobel.pro

Chapter 8: Contrasting and Filtering 227
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Apply the Sobel filter to the image:

filteredImage = SOBEL(croppedImage)

6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 8-37: Cropped New York Image
Image Processing in IDL Detecting Edges

228 Chapter 8: Contrasting and Filtering
The following figure shows the edge enhancement results of applying the
Sobel operator.

Figure 8-38: Sobel Filter Applied to the New York Image
Detecting Edges Image Processing in IDL

Chapter 8: Contrasting and Filtering 229
Removing Noise

When a device (such as a camera or scanner) captures an image, the device
sometimes adds extraneous noise to the image. This noise must be removed from the
image for other image processing operations to return valuable results. Some noise
can simply be removed by smoothing an image or masking it within the frequency
domain, but most noise requires more involved filtering, such as windowing or
adaptive filters. The following example shows how to use windowing and adaptive
filters to remove noise from an image within IDL:

• “Windowing to Remove Noise”

• “Lee Filtering to Remove Noise” on page 233

Windowing to Remove Noise

Within the frequency domain, a filter is applied to an image by multiplying the FFT
of that image by the FFT of the filter. When the FFT of a image is multiplied by the
FFT of a filter to perform convolution, this process is known as windowing.

The DIST and HANNING functions are examples of windowing filters already
transformed into the frequency domain. Windowing with the DIST function has the
same effect as applying a high pass filter. The high frequency information is retained,
while the effect of the low frequency information is decreased. In contrast, the
HANNING function retains the low frequency information. The results of the
HANNING function are similar to a mask used to remove noise in an image. The
HANNING function can be used to create either a Hanning or Hamming window.
Although the DIST and the HANNING functions perform different filtering tasks,
these filters are applied the same way, so only one example is provided in this
section.

Windowing is different than simply using a mask within the frequency domain.
Using a mask omits information within the image, while windowing retains the
information, but decreases its effect on the image. See Chapter 7, “Removing Noise
with the FFT” for more information on using a mask to remove noise from an image.

The following example shows how to use the HANNING function when windowing
an image to remove background noise. This example uses the first image within the
abnorm.dat file in the examples/data directory. Complete the following steps
for a detailed description of the process.
Image Processing in IDL Removing Noise

230 Chapter 8: Contrasting and Filtering
Example Code
See removingnoisewithhanning.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import the image from the abnorm.dat file:

file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [64, 64]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the original image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], displaySize[1])

The following figure shows the original image.

5. Determine the forward Fourier transformation of the image:

transform = SHIFT(FFT(image), (imageSize[0]/2), $
(imageSize[1]/2))

Figure 8-39: Original Gated Blood Pool Image
Removing Noise Image Processing in IDL

RSI_PROCODE/examples/doc/image/removingnoisewithhanning.pro

Chapter 8: Contrasting and Filtering 231
6. Create another window and display the power spectrum:

WINDOW, 1, TITLE = 'Surface of Forward FFT'
SHADE_SURF, (2.*ALOG10(ABS(transform))), /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Power Spectrum', $
 XTITLE = 'Mode', YTITLE = 'Mode', $
 ZTITLE = 'Amplitude', CHARSIZE = 1.5

The following figure shows the power spectrum of the original image. Noise
within the image is shown as small peaks.

7. Use a Hanning mask to filter out the noise:

mask = HANNING(imageSize[0], imageSize[1])
maskedTransform = transform*mask

8. Create another window and display the masked power spectrum:

WINDOW, 2, TITLE = 'Surface of Filtered FFT'
SHADE_SURF, (2.*ALOG10(ABS(maskedTransform))), $

/XSTYLE, /YSTYLE, /ZSTYLE, TITLE = 'Masked Power
Spectrum', $

XTITLE = 'Mode', YTITLE = 'Mode', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

Figure 8-40: Power Spectrum of the Gated Blood Pool Image
Image Processing in IDL Removing Noise

232 Chapter 8: Contrasting and Filtering
The following figure shows the results of applying the Hanning window. The
Hanning window gradually smooths the high frequency peaks within the
image.

9. Apply the inverse transformation to the masked frequency domain image:

inverseTransform = FFT(SHIFT(maskedTransform, $
(imageSize[0]/2), (imageSize[1]/2)), /INVERSE)

10. Create another window and display the results of the inverse transformation:

WINDOW, 3, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Hanning Filtered Image'

TVSCL, CONGRID(REAL_PART(inverseTransform), $
displaySize[0], displaySize[1])

Figure 8-41: Masked Power Spectrum of the Gated Blood Pool Image
Removing Noise Image Processing in IDL

Chapter 8: Contrasting and Filtering 233
The following figure shows the resulting display. Visible noise within the
image has been reduced, while the valuable image data has been retained.

Lee Filtering to Remove Noise

Unlike the Hanning window, the Lee filter is convolved within the spatial domain.
The Lee filter is an adaptive filter, which changes according to the local statistics of
the current pixel. The LEEFILT routine applies the Lee filter to an image to remove
background noise.

The following example shows how to use the LEEFILT function to remove
background noise from an image. This example uses the first image within the
abnorm.dat file in the examples/data directory. Complete the following steps
for a detailed description of the process.

Example Code
See removingnoisewithleefilt.pro in the examples/doc/image
subdirectory of the IDL installation directory for code that duplicates this example.

1. Import the image from the abnorm.dat file:

file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [64, 64]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

Figure 8-42: Resulting Hanning Filtered Image
Image Processing in IDL Removing Noise

RSI_PROCODE/examples/doc/image/removingnoisewithleefilt.pro

234 Chapter 8: Contrasting and Filtering
3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the original image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], displaySize[1])

The following figure shows the original image.

5. Apply the Lee filter to the image:

filteredImage = LEEFILT(image, 1)

6. Create another window and display the Lee filtered image:

WINDOW, 1, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Lee Filtered Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 8-43: Original Gated Blood Pool Image
Removing Noise Image Processing in IDL

Chapter 8: Contrasting and Filtering 235
The following figure shows the results of applying the Lee filter, which
adaptively smooths areas that contains noise.

Figure 8-44: Lee Filtered Gated Blood Pool Image
Image Processing in IDL Removing Noise

236 Chapter 8: Contrasting and Filtering
Removing Noise Image Processing in IDL

Chapter 9

Extracting and
Analyzing Shapes
This chapter describes using morphological operations in conjunction with image analysis routines
to extract and analyze image elements. This chapter includes the following topics:
Overview of Extracting and Analyzing Image
Shapes . 238
Determining Structuring Element Shapes and
Sizes . 241
Determining Intensity Values for Threshold
and Stretch . 243
Eroding and Dilating Image Objects 246
Smoothing with MORPH_OPEN 251
Smoothing with MORPH_CLOSE 254

Detecting Peaks of Brightness 257
Creating Image Object Boundaries 260
Selecting Specific Image Objects 264
Detecting Edges of Image Objects 269
Creating Distance Maps 272
Thinning Image Objects 275
Combining Morphological Operations . . . 280
Analyzing Image Shapes 285
Image Processing in IDL 237

238 Chapter 9: Extracting and Analyzing Shapes
Overview of Extracting and Analyzing Image
Shapes

Morphological image processing operations reveal the underlying structures and
shapes within binary and grayscale images, clarifying basic image features. While
individual morphological operations perform simple functions, they can be combined
to extract specific information from an image. Morphological operations often
precede more advanced pattern recognition and image analysis operations such as
segmentation. Shape recognition routines commonly include image thresholding or
stretching to separate foreground and background image features. See “Determining
Intensity Values for Threshold and Stretch” on page 243 for tips on how to produce
the desired results.

This chapter also provides examples of more advanced image analysis routines that
return information about specific image elements. One example identifies unique
regions within an image and the other finds the area of a specific image feature. See
“Analyzing Image Shapes” on page 285 for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

Applying a Morphological Structuring Element to an
Image

Morphological operations apply a structuring element or morphological mask to an
image. A structuring element that is applied to an image must be 2 dimensional,
having the same number of dimensions as the array to which it is applied. A
morphological operation passes the structuring element, of an empirically determined
size and shape, over an image. The operation compares the structuring element to the
underlying image and generates an output pixel based upon the function of the
morphological operation. The size and shape of the structuring element determines
what is extracted or deleted from an image. In general, smaller structuring elements
preserve finer details within an image than larger elements. For more information on
selecting and creating a structuring element, see “Determining Structuring Element
Shapes and Sizes” on page 241.

Morphological operations can be applied to either binary or grayscale images. When
applied to a binary image, the operation returns pixels that are either black, having a
logical value of 0, or white, having a logical value of 1. Each image pixel and its
Overview of Extracting and Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 239
neighboring pixels are compared against the structuring element to determine the
pixel’s value in the output image. With grayscale images, pixel values are determined
by taking a neighborhood minimum or neighborhood maximum value (as required by
the morphological process). The structuring element provides the definition of the
shape of the neighborhood.

The following table introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description

 “Eroding and
Dilating Image
Objects” on
page 246.

ERODE Reduce the size of objects in
relation to their background.

DILATE Expand the size of objects in
relation to their background.

 “Smoothing with
MORPH_OPEN”
on page 251.

MORPH_OPEN Apply an erosion operation
followed by a dilation
operation to a binary or
grayscale image.

 “Smoothing with
MORPH_CLOSE”
on page 254.

MORPH_CLOSE Apply a dilation operation
followed by an erosion
operation to a binary or
grayscale image.

 “Detecting Peaks
of Brightness” on
page 257.

MORPH_TOPHAT Retain only the brightest pixels
within a grayscale image.

 “Creating Image
Object Boundaries”
on page 260.

WATERSHED Detect boundaries between
similar regions in a grayscale
image.

“Selecting Specific
Image Objects” on
page 264.

MORPH_HITORMISS Use “hit” and “miss”
structures to identify image
elements that meet the
specified conditions.

Table 9-1: Shape Extraction and Analysis Tasks and Routines
Image Processing in IDL Overview of Extracting and Analyzing Image Shapes

240 Chapter 9: Extracting and Analyzing Shapes
Note
For an example that uses a combination of morphological operations to remove
bridges from the waterways of New York, see “Combining Morphological
Operations” on page 280.

“Detecting Edges
of Image Objects”
on page 269.

MORPH_GRADIENT Subtract an eroded version of a
grayscale image from a dilated
version of the image,
highlighting edges.

 “Creating Distance
Maps” on
page 272.

MORPH_DISTANCE Estimate for each binary
foreground pixel the distance
to the nearest background
pixel, using a given norm.

 “Thinning Image
Objects” on
page 275.

MORPH_THIN Subtract hit-or-miss results
from a binary image. Repeated
thinning results in pixel-wide
linear representations of image
objects.

 “Analyzing Image
Shapes” on
page 285.

LABEL_REGION Identify and assign index
numbers to discrete regions
within a binary image.

CONTOUR Create a contour plot and
extract information about
specific contours.

Task Routine(s) Description

Table 9-1: Shape Extraction and Analysis Tasks and Routines (Continued)
Overview of Extracting and Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 241
Determining Structuring Element Shapes and
Sizes

Determining the size and shape of a structuring element is largely an empirical
process. However, the overall selection of a structuring element depends upon the
geometric shapes you are attempting to extract from the image data. For example, if
you are dealing with biological or medical images, which contain few straight lines or
sharp angles, a circular structuring element is an appropriate choice. When extracting
shapes from geographic aerial images of a city, a square or rectangular element will
allow you to extract angular features from the image.

While most examples in this chapter use simple structuring elements, you may need
to create several different elements or different rotations of a singular element in
order to extract the desired shapes from your image. For example, if you wish to
extract the rectangular roads from an aerial image, the initial rectangular element will
need to be rotated a number of ways to account for multiple orientations of the roads
within the image.

The size of the structuring element depends upon what features you wish to extract
from the image. Larger structuring elements preserve larger features while smaller
elements preserve the finer details of image features.

The following table shows how to easily create simple disk-shaped, square, rectangle,
diagonal and custom structuring elements using IDL. The visual representations of
the structures, shown in the right-hand column, indicate that the shape of each binary
structuring element is defined by foreground pixels having a value of one.

IDL Code For Structuring Element Shapes Examples

Disk-Shaped Structuring Element

Use SHIFT in conjunction with DIST to create the disk shape.

radius = 3
strucElem = SHIFT(DIST(2*radius+1), radius, $

radius) LE radius

Change radius to alter the size of the structuring element.

Table 9-2: Creating Various Structuring Elements Shapes with IDL
Image Processing in IDL Determining Structuring Element Shapes and Sizes

242 Chapter 9: Extracting and Analyzing Shapes
Square Structuring Element

Use DIST to define the square array.

side = 3
strucElem = DIST(side) LE side

Change side to alter the size of the structuring element.

Vertical Rectangular Structuring Element

Use BYTARR to define the initial array.

strucElem = BYTARR(3,3)
strucElem [0,*] = 1

Create a 2 x 3 structure by adding strucElem[1,*] = 1.

Horizontal Rectangular Structuring Element

Use BYTARR to define the initial array.

strucElem = BYTARR(3,3)
strucElem [*,0] = 1

Create a 3 x 2 structure by adding, strucElem[*,1] = 1.

Diagonal Structuring Element

Use IDENTITY to create the initial array.

strucElem = BYTE(IDENTITY(3))

Note - BYTE is used to create a byte array, consistent with the
other structuring elements.

Irregular Structuring Elements

Define custom arrays to create irregular structuring elements
or a series of rotations of a single structuring element.

strucElem = [[1,0,0,0,0,0,1], $
[1,1,0,0,0,1,1], $
[0,1,1,1,1,1,0], $
[0,0,1,1,1,0,0], $
[0,0,1,1,1,0,0], $
[0,1,1,0,1,1,0], $
[1,1,0,0,0,1,1], $
[1,0,0,0,0,0,1]]

Note - Creating a series of rotations of a single structuring
element is covered in “Thinning Image Objects” on page 275.

IDL Code For Structuring Element Shapes Examples

Table 9-2: Creating Various Structuring Elements Shapes with IDL
Determining Structuring Element Shapes and Sizes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 243
Determining Intensity Values for Threshold
and Stretch

Thresholding and stretching images separate foreground pixels from background
pixels and can be performed before or after applying a morphological operation to an
image. While a threshold operation produces a binary image and a stretch operation
produces a scaled, grayscale image, both operations rely upon the definition of an
intensity value. This intensity value is compared to each pixel value within the image
and an output pixel is generated based upon the conditions stated within the threshold
or stretch statement.

Intensity histograms provide a means of determining useful intensity values as well
as determining whether or not an image is a good candidate for thresholding or
stretching. A histogram containing definitive peaks of intensities indicates that an
image’s foreground and background features can be successfully separated. A
histogram containing connected, graduated ranges of intensities indicates the image
is likely a poor candidate for thresholding or stretching.

Note
To quickly view the intensity histogram of an image, create a window and use
PLOT in conjunction with HISTOGRAM, entering PLOT, HISTOGRAM(image)
where image denotes the image for which you wish to view a histogram.

Figure 9-1: Determining Appropriateness of Images for Thresholding or
Stretching Using Intensity Histograms

Poor CandidateGood Candidate
Image Processing in IDL Determining Intensity Values for Threshold and Stretch

244 Chapter 9: Extracting and Analyzing Shapes
Thresholding an Image

Thresholding outputs a binary image as determined by a threshold intensity and one
of the relational operators: EQ, NE, GE, GT, LE, or LT. In a statement containing a
relational operator, thresholding compares each pixel in the original image to a
threshold intensity. The output pixels (comprising the binary image) are assigned a
value of 1 (white) when the relational statement is true and 0 (black) when the
statement is false.

The following figure shows an intensity histogram of an image containing mineral
crystals. The histogram indicates that the image can be successfully thresholded since
there are definitive peaks of intensities. Also shown in the following figure, a
statement such as img LE 50 produces an image where all pixels less than the
threshold intensity value of 50 are assigned a foreground pixel value of 1 (white). The
statement, img GE 50 produces a contrasting image where all original pixels values
greater than 50 are assigned a foreground pixel value (white).

Figure 9-2: Image Thresholding

Original Image img LE 50 img GE 50

Intensity Histogram of Original Image
Determining Intensity Values for Threshold and Stretch Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 245
Stretching an Image

Stretching an image (also know as scaling) creates a grayscale image, scaling a range
of selected pixel values across all possible intensities. When using TVSCL or
BYTSCL in conjunction with the > and < operators, a range of pixels defined by the
intensity value and operator are scaled across the entire intensity range, (0 to 255).

• image = img < 50 — All pixel values greater than 50 are assigned a value
of 50, now the maximum pixel value (white). Applying TVSCL or BYTSCL
stretches the remaining pixel values across all possible intensities (0 to 255).

• image = img < 190 — All pixel values greater than 190 are assigned a
value of 190, now the maximum pixel value (white). Applying TVSCL or
BYTSCL stretches the remaining pixel values across all possible intensities
(0 to 255).

• image = img > 150 < 190 — Using two intensity values, extract a single
peak of values shown in the histogram, all values less than 150 are assigned a
minimum pixel value (black) and all values greater than 190 are assigned a
maximum pixel value (white). Applying TVSCL or BYTSCL stretches the
remaining pixel values across all possible intensities (0 to 255).

The following figure shows the results of displaying each image stretching statement
using TVSCL, image:

Figure 9-3: Image Stretching

Original Image and Intensity Histogram

img < 50 img < 190 img > 150 < 190
Image Processing in IDL Determining Intensity Values for Threshold and Stretch

246 Chapter 9: Extracting and Analyzing Shapes
Eroding and Dilating Image Objects

The basic morphological operations, erosion and dilation, produce contrasting results
when applied to either grayscale or binary images. Erosion shrinks image objects
while dilation expands them. The specific actions of each operation are covered in the
following sections.

Characteristics of Erosion

• Erosion generally decreases the sizes of objects and removes small anomalies
by subtracting objects with a radius smaller than the structuring element.

• With grayscale images, erosion reduces the brightness (and therefore the size)
of bright objects on a dark background by taking the neighborhood minimum
when passing the structuring element over the image.

• With binary images, erosion completely removes objects smaller than the
structuring element and removes perimeter pixels from larger image objects.

Characteristics of Dilation

• Dilation generally increases the sizes of objects, filling in holes and broken
areas, and connecting areas that are separated by spaces smaller than the size
of the structuring element.

• With grayscale images, dilation increases the brightness of objects by taking
the neighborhood maximum when passing the structuring element over the
image.

• With binary images, dilation connects areas that are separated by spaces
smaller than the structuring element and adds pixels to the perimeter of each
image object.

Applying Erosion and Dilation

The following example applies erosion and dilation to grayscale and binary images.
When using erosion or dilation, avoid the generation of indeterminate values for
objects occurring along the edges of the image by padding the image, as shown in the
following example. Complete the following steps for a detailed description of the
process.
Eroding and Dilating Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 247
Example Code
See morpherodedilate.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

Note
This example uses a file from the examples/demo/demodata directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

1. Prepare the display device:

DEVICE, DECOMPOSED = 0, RETAIN = 2

2. Load a grayscale color table:

LOADCT, 0

3. Select and read in the image file. Use the GRAYSCALE keyword to
READ_JPEG to open the grayscale image:

file = FILEPATH('pollens.jpg', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

READ_JPEG, file, img, /GRAYSCALE

4. Get the size of the image:

dims = SIZE(img, /DIMENSION)

5. Define the structuring element. A radius of 2 results in a structuring element
near the size of the specks of background noise. This radius also affects only
the edges of the larger objects (whereas a larger radius would cause significant
distortion of all image features):

radius = 2

6. Create a disk-shaped structuring element that corresponds to the shapes
occurring within the image:

strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

7. Add a border to the image to avoid generating indeterminate values when
passing the structuring element over objects along the edges of an image. If the
starting origin of the structuring element is not specified in the call to ERODE,
the origin defaults to one half the width of the structuring element. Therefore,
Image Processing in IDL Eroding and Dilating Image Objects

RSI_PROCODE/examples/doc/image/morpherodedilate.pro

248 Chapter 9: Extracting and Analyzing Shapes
creating a border equal to one half of the structuring element width (equal to
the radius) is sufficient to avoid indeterminate values. Create padded images
for both the erode operation (using the maximum array value for the border),
and the dilate operation (using the minimum array value for the border) as
follows:

erodeImg = REPLICATE(MAX(img), dims[0]+2, dims[1]+2)
erodeImg [1,1] = img

dilateImg = REPLICATE(MIN(img), dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

Note
Padding is only necessary when accurate edge values are important. Adding
a pad equal to more that one half the width of the structuring element does
not negatively effect the morphological operation, but does minutely add to
the processing time. The padding can be removed from the image after
applying the morphological operation and before displaying the image if
desired.

8. Get the size of either of the padded images, create a window and display the
original image:

padDims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*padDims[0], YSIZE = padDims[1], $

TITLE = "Original, Eroded and Dilated Grayscale Images"
TVSCL, img, 0

9. Apply the ERODE function to the grayscale image using the GRAY keyword
and display the image:

erodeImg = ERODE(erodeImg, strucElem, /GRAY)
TVSCL, erodeImg, 1

10. For comparison, apply DILATE to the same image and display it:

dilateImg = DILATE(dilateImg, strucElem, /GRAY)
TVSCL, dilateImg, 2
Eroding and Dilating Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 249
The following image displays the effects of erosion (middle) and dilation
(right). Erosion removes pixels from perimeters of objects, decreases the
overall brightness of the grayscale image and removes objects smaller than the
structuring element. Dilation adds pixels to perimeters of objects, brightens the
image, and fills in holes smaller than the structuring element as shown in the
following figure.

11. Create a window and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

12. To compare the effects of erosion and dilation on binary images, create a
binary image, retaining pixels with values greater than or equal to 120:

img = img GE 120

13. Create padded binary images for the erode and dilation operations, using 1 as
the maximum array value for the erosion image and 0 as the minimum value
for the dilation image:

erodeImg = REPLICATE(1B, dims[0]+2, dims[1]+2)
erodeImg [1,1] = img

dilateImg = REPLICATE(0B, dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

Figure 9-4: Original (left), Eroded (center) and Dilated (right) Grayscale Images
Image Processing in IDL Eroding and Dilating Image Objects

250 Chapter 9: Extracting and Analyzing Shapes
14. Get the dimensions of either image, create a second window and display the
binary image:

dims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 2, XSIZE = 3*dims[0], YSIZE = dims[1], $

TITLE = "Original, Eroded and Dilated Binary Images"
TVSCL, img, 0

15. Using the structuring element defined previously, apply the erosion and
dilation operations to the binary images and display the results by entering the
following lines:

erodeImg = ERODE(erodeImg, strucElem)
TVSCL, erodeImg, 1
dilateImg = DILATE(dilateImg, strucElem)
TVSCL, dilateImg, 2

The results are shown in the following figure.

Figure 9-5: Original, Eroded and Dilated Binary Images
Eroding and Dilating Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 251
Smoothing with MORPH_OPEN

The MORPH_OPEN function applies the opening operation, which is erosion
followed by dilation, to a binary or grayscale image. The opening operation removes
noise from an image while maintaining the overall sizes of objects in the foreground.
Opening is a useful process for smoothing contours, removing pixel noise,
eliminating narrow extensions, and breaking thin links between features. After using
an opening operation to darken small objects and remove noise, thresholding or other
morphological processes can be applied to the image to further refine the display of
the primary shapes within the image.

The following example applies the opening operation to an image of microscopic
spherical organisms, Rhinosporidium seeberi protozoans. After applying the opening
operation and thresholding the image, only the largest elements of the image are
retained, the mature R.seeberi organisms. Complete the following steps for a detailed
description of the process.

Example Code
See morphopenexample.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Prepare the display device and load grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, image, /GRAYSCALE

3. Get the image dimensions, prepare a window and display the image:

dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Defining Shapes with Opening Operation'
TVSCL, image, 0

4. Define the radius of the structuring element and create a disk-shaped element
to extract circular features:

radius = 7
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius
Image Processing in IDL Smoothing with MORPH_OPEN

RSI_PROCODE/examples/doc/image/morphopenexample.pro

252 Chapter 9: Extracting and Analyzing Shapes
Compared to the previous example, a larger element is used in order to retain
only the larger image elements, discarding all of the smaller background
features. Further increases in the size of the structuring element would extract
even larger image features.

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

5. Apply the MORPH_OPEN function to the image, specifying the GRAY
keyword for the grayscale image:

morphImg = MORPH_OPEN(image, strucElem, /GRAY)

6. Display the image:

TVSCL, morphImg, 1

The following figure shows the original image (left) and the application of the
opening operation to the original image (right). The opening operation has
enhanced and maintained the sizes of the large bright objects within the image
while blending the smaller background features.

The following steps apply the opening operator to a binary image.

7. Create a window and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

Figure 9-6: Application of the Opening Operation to a Grayscale Image
Smoothing with MORPH_OPEN Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 253
Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

8. Using the histogram as a guide, create a binary image. To prepare to remove
background noise, retain only areas of the image where pixel values are equal
to or greater than 160:

threshImg = image GE 160
WSET, 0
TVSCL, threshImg, 2

9. Apply the opening operation to the binary image to remove noise and smooth
contours, and then display the image:

morphThresh = MORPH_OPEN(threshImg, strucElem)
TVSCL, morphThresh, 3

The combination of thresholding and applying the opening operation has successfully
extracted the primary foreground features as shown in the following figure.

Figure 9-7: Binary Image (left) and Application of the Opening Operator to the
Binary Image (right)
Image Processing in IDL Smoothing with MORPH_OPEN

254 Chapter 9: Extracting and Analyzing Shapes
Smoothing with MORPH_CLOSE

The morphological closing operation performs dilation followed by erosion, the
opposite of the opening operation. The MORPH_CLOSE function smooths contours,
links neighboring features, and fills small gaps or holes. The operation effectively
brightens small objects in binary and grayscale images. Like the opening operation,
primary objects retain their original shape.

The following example uses the closing operation and a square structuring element to
extract the shapes of mineral crystals. Complete the following steps for a detailed
description of the process.

Example Code
See morphcloseexample.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select the file, read the data and get the image dimensions:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

img = READ_PNG(file)
dims = SIZE(img, /DIMENSIONS)

3. Using the dimensions of the image add a border for display purposes:

padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

4. Get the padded image size, create a window and display the original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE=2*dims[0], YSIZE=2*dims[1], $

TITLE='Defining Shapes with the Closing Operator'
TVSCL, padImg, 0

5. Using DIST, define a small square structuring element in order to retain the
detail and angles of the image features:

side = 3
strucElem = DIST(side) LE side
Smoothing with MORPH_CLOSE Image Processing in IDL

RSI_PROCODE/examples/doc/image/morphcloseexample.pro

Chapter 9: Extracting and Analyzing Shapes 255
Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply MORPH_CLOSE to the image and display the resulting image:

closeImg = MORPH_CLOSE(padImg, strucElem, /GRAY)
TVSCL, closeImg, 1

The following figure shows the original image (left) and the results of applying
the closing operator (right). Notice that the closing operation has removed
much of the small, dark noise from the background of the image, while
maintaining the characteristics of the foreground features.

7. Determine a threshold value, using an intensity histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(closeImg)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

8. Threshold the original image and display the resulting binary image:

binaryImg = padImg LE 160
WSET, 0
TVSCL, binaryImg, 2

Figure 9-8: Original (left) and Closed Image (right)
Image Processing in IDL Smoothing with MORPH_CLOSE

256 Chapter 9: Extracting and Analyzing Shapes
9. Now display a binary version of the closed image:

binaryClose = closeImg LE 160
TVSCL, binaryClose, 3

The results of thresholding the original and closed image using the same intensity
value clearly display the actions of the closing operator. The dark background noise
has been removed, much as if a dilation operation had been applied, yet the sizes of
the foreground features have been maintained.

Figure 9-9: Threshold of Original Image (left) and Closed Image (right)
Smoothing with MORPH_CLOSE Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 257
Detecting Peaks of Brightness

The morphological top-hat operation, MORPH_TOPHAT, is also known as a peak
detector. This operator extracts only the brightest pixels from the original grayscale
image by first applying an opening operation to the image and then subtracting the
result from the original image. The top-hat operation is especially useful when
identifying small image features with high levels of brightness.

The following example applies the top-hat operation to an image of a mature
Rhinosporidium seeberi sporangium (spore case) with endospores. The circular
endospores will be extracted using a small disk-shaped structuring element. The top-
hat morphological operation effectively highlights the small bright endospores within
the image. Complete the following steps for a detailed description of the process.

Example Code
See morphtophatexample.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT,0

2. Select and open the image file as a grayscale image:

file = FILEPATH('r_seeberi_spore.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the image dimensions, and add a border for display purposes:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

4. Get the new dimensions, create a window and display the original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 1, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Detecting Small Features with MORPH_TOPHAT'
TVSCL, padImg, 0

5. After examining the structures you want to extract from the image (the small
bright specks), define a circular structuring element with a small radius:

radius = 3
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius
Image Processing in IDL Detecting Peaks of Brightness

RSI_PROCODE/examples/doc/image/morphtophatexample.pro

258 Chapter 9: Extracting and Analyzing Shapes
Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply MORPH_TOPHAT to the image and display the results:

tophatImg = MORPH_TOPHAT(padImg, strucElem)
TVSCL, tophatImg, 1

The following figure shows the original image (left) and the peaks of
brightness that were detected after the top-hat operation subtracted an opened
image from the original image (right).

7. Determine an intensity value with which to stretch the image using an intensity
histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(padImg)

Note
Using an intensity histogram as a guide for determining intensity values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

Figure 9-10: Original (left) and Top-hat Image (right)
Detecting Peaks of Brightness Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 259
8. Highlight the brighter image features by displaying a stretched version of the
image:

stretchImg = tophatImg < 70
WSET, 0
TVSCL, stretchImg, 2

Pixels with values greater than 70 are assigned the maximum pixel value
(white) and the remaining pixels are scaled across the full range of intensities.

9. Create a binary mask of the image to display only the brightest pixels:

threshImg = tophatImg GE 60
TVSCL, threshImg, 3

The stretched top-hat image (left) and the image after applying a binary mask
(right) are shown in the following figure. The endospores within the image
have been successfully highlighted and extracted using the
MORPH_TOPHAT function.

Figure 9-11: Stretched Top-hat Image (left) and Binary Mask (right)
Image Processing in IDL Detecting Peaks of Brightness

260 Chapter 9: Extracting and Analyzing Shapes
Creating Image Object Boundaries

The WATERSHED function applies the watershed operation to grayscale images.
This operation creates boundaries in an image by detecting borders between poorly
distinguished image areas that contain similar pixel values.

To understand the watershed operation, imagine translating the brightness of the
image pixels into height. The brightest pixels become tall peaks and the darkest
pixels become basins or depressions. Now imagine flooding the image. The
watershed operation detects boundaries among areas with nearly the same value or
height by noting the points where single pixels separate two similar areas. The points
where these areas meet are then translated into boundaries.

Note
Images are usually smoothed before applying the watershed operation. This
removes noise and small, unimportant fluctuations in the original image that can
produce oversegmentation and a lack of meaningful boundaries.

The following example combines an image containing the boundaries defined by the
watershed operation and the original image, a 1982 Landsat satellite image of the
Barringer Meteor Crater in Arizona. Complete the following steps for a detailed
description of the process.

Example Code
See watershedexample.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Prepare the display device and load the grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image of Barringer Meteor Crater, AZ:

file = FILEPATH('meteor_crater.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the image size and create a window:

dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1]
Creating Image Object Boundaries Image Processing in IDL

RSI_PROCODE/examples/doc/image/watershedexample.pro

Chapter 9: Extracting and Analyzing Shapes 261
4. Display the original image, annotating it using the XYOUTS procedure:

TVSCL, img, 0
XYOUTS, 50, 444, 'Original Image', Alignment = .5, $

/DEVICE, COLOR = 255

5. Using /EDGE_TRUNCATE to avoid spikes along the edges, smooth the
image to avoid oversegmentation and display the smoothed image:

smoothImg = smooth(7, /EDGE_TRUNCATE)
TVSCL, smoothImg, 1
XYOUTS, (60 + dims[0]), 444, 'Smoothed Image', $

Alignment = .5, /DEVICE, COLOR = 255

The following figure shows that the smoothing operation retains the major
features within the image.

6. Define the radius of the structuring element and create the disk:

radius = 3
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

7. Use the top-hat operation before using watershed to highlight the bright areas
within the image.

tophatImg = MORPH_TOPHAT(smoothImg, strucElem)

Figure 9-12: Smoothing the Original Image
Image Processing in IDL Creating Image Object Boundaries

262 Chapter 9: Extracting and Analyzing Shapes
8. Display the image:

TVSCL, tophatImg, 2
XYOUTS, (60 + 2*dims[0]), 444, 'Top-hat Image', $

Alignment = .5, /DEVICE, COLOR = 255

9. Determine an intensity value with which to stretch the image using an intensity
histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(smoothImg)

An intensity histogram of the smoothed image is used instead of the top-hat
image since it was empirically determined that the top-hat histogram did not
provide the required information.

Note
Using an intensity histogram as a guide for determining intensity values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

10. Stretch the image to set all pixels with a value greater than 70 to the maximum
pixel value (white) and display the results:

WSET, 0
tophatImg = tophatImg < 70
TVSCL, tophatImg
XYOUTS, 75, 210, 'Stretched Top-hat Image', $

Alignment = .5, /DEVICE, COLOR = 255

The original top-hat image (left) and the results of stretching the image (right)
are shown in the following figure.

Figure 9-13: Original (left) and Stretched Top-hat Image (right)
Creating Image Object Boundaries Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 263
11. Apply the WATERSHED function to the stretched top-hat image. Specify
8-neighbor connectivity to survey the eight closest pixels to the given pixel,
resulting in fewer enclosed regions, and display the results:

watershedImg = WATERSHED(tophatImg, CONNECTIVITY = 8)
TVSCL, watershedImg, 4
XYOUTS, (70 + dims[0]), 210, 'Watershed Image', $

Alignment = .5, /DEVICE, COLOR = 255

12. Combine the watershed image with the original image and display the result:

img [WHERE (watershedImg EQ 0)]= 0
TVSCL, img, 5
XYOUTS, (70 + 2*dims[0]), 210, 'Watershed Overlay', $

Alignment = .5, /DEVICE, COLOR = 255

The following display shows all images created in the previous example. The final
image, shown in the lower right-hand corner of the following figure, shows the
original image with an overlay of the boundaries defined by the watershed operation.

Figure 9-14: Boundaries Defined by the Watershed Operation
Image Processing in IDL Creating Image Object Boundaries

264 Chapter 9: Extracting and Analyzing Shapes
Selecting Specific Image Objects

The hit-or-miss morphological operation is used primarily for identifying specific
shapes within binary images. The MORPH_HITORMISS function uses two
structuring elements; a “hit” structure and a “miss” structure. The operation first
applies an erosion operation with the hit structure to the original image. The
operation then applies an erosion operator with the miss structure to an inverse of the
original image. The matching image elements entirely contain the hit structure and
are entirely and solely contained by the miss structure.

Note
An image must be padded with a border equal to one half the size of the structuring
element if you want the hit-or-miss operation to be applied to image elements
occurring along the edges of the image.

The hit-or-miss operation is very sensitive to the shape, size and rotation of the two
structuring elements. Hit and miss structuring elements must be specifically designed
to extract the desired geometric shapes from each individual image. When dealing
with complicated images, extracting specific image regions may require multiple
applications of hit and miss structures, using a range of sizes or several rotations of
the structuring elements.

The following example uses the image of the Rhinosporidium seeberi parasitic
protozoans, containing simple circular shapes. After specifying distinct hit and miss
structures, the elements of the image that meet the hit and miss conditions are
identified and overlaid on the original image. Complete the following steps for a
detailed description of the process.

Example Code
See morphhitormissexample.pro in the examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples','data'])

READ_JPEG, file, img, /GRAYSCALE
Selecting Specific Image Objects Image Processing in IDL

RSI_PROCODE/examples/doc/image/morphhitormissexample.pro

Chapter 9: Extracting and Analyzing Shapes 265
3. Pad the image so that objects at the edges of the image are not discounted:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

Failing to pad an image causes all objects occurring at the edges of the image
to fail the hit and miss conditions.

4. Get the image dimensions, create a window and display the padded image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1], $

TITLE='Displaying Hit-or-Miss Matches'
TVSCL, padImg, 0

5. Define the radius of the structuring element and create a large, disk-shaped
element to extract the large, circular image objects:

radstr = 7
strucElem = SHIFT(DIST(2*radstr+1), radstr, radstr) LE radstr

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply MORPH_OPEN for a smoothing effect and display the image:

openImg = MORPH_OPEN(padImg, strucElem, /GRAY)
TVSCL, openImg, 1

7. Since the hit-or-miss operation requires a binary image, display an intensity
histogram as a guide for determining a threshold value:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(openImg)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

8. Create a binary image by retaining only those image elements with pixel
values greater than or equal to 150 (the bright foreground objects):

threshImg = openImg GE 150
WSET, 0
TVSCL, threshImg, 2
Image Processing in IDL Selecting Specific Image Objects

266 Chapter 9: Extracting and Analyzing Shapes
The results of opening (left) and thresholding (right) are shown in the
following figure.

9. Create the structuring elements for the hit-or-miss operation:

radhit = 7
radmiss = 23
hit = SHIFT(DIST(2*radhit+1), radhit, radhit) LE radhit
miss = SHIFT(DIST(2*radmiss+1), radmiss, radmiss) GE radmiss

While the shapes of the structuring elements are purposefully circular, the
sizes were chosen after empirically testing, seeking elements suitable for this
example.

Tip
Enter PRINT, hit or PRINT, miss to view the structures.

The following figures shows the hit and miss structuring elements and the
binary image. Knowing that the region must enclose the hit structure and be
surrounded by a background area at least as large as the miss structure, can you
predict which regions will be “matches?”

Figure 9-15: Results of Opening (left) and Thresholding (right)

Figure 9-16: Applying the Hit and Miss Structuring Elements to a Binary Image

Hit Structure

Miss Structure
Selecting Specific Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 267
10. Apply the MORPH_HITORMISS function to the binary image. Image regions
matching the hit and miss conditions are designated at matches:

matches = MORPH_HITORMISS(threshImg, hit, miss)

11. Display the elements matching the hit and miss conditions, dilating the
elements to the radius of a hit:

dmatches = DILATE(matches, hit)
TVSCL, dmatches, 3

12. Display the original image overlaid with the matching elements:

padImg [WHERE (dmatches EQ 1)] = 1
TVSCL, padImg, 4

The following figure shows the elements of the image which matched the hit and
miss conditions, having a radius of at least 7 (the hit structure), yet fitting entirely
inside a structure with a radius of 23 (the miss structure).

Initially, it may appear that more regions should have been “matches” since they met
the hit condition of having a radius of 7 or more. However, as the following figure
shows, many such regions failed the miss condition since neighboring regions
impinged upon the miss structure. Such a region appears on the left in the following
figure.

Figure 9-17: Image Elements Matching Hit and Miss Conditions

Figure 9-18: Example of Hit and Miss Relationship

Region is entirely
contained within
the “miss” structure.

Other regions prevent
a match for the miss
structuring element.

MatchNo Match
Image Processing in IDL Selecting Specific Image Objects

268 Chapter 9: Extracting and Analyzing Shapes
Considering the simplicity of the previous image, it is understandable that selecting
hit and miss structures for more complex images can require significant empirical
testing. It is to your advantage to keep in mind how sensitive the hit-or-miss
operation is to the shapes, sizes and rotations of the hit and miss structures.
Selecting Specific Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 269
Detecting Edges of Image Objects

The MORPH_GRADIENT function applies the gradient operation to a grayscale
image. This operation highlights object edges by subtracting an eroded version of the
original image from a dilated version. Repeatedly applying the gradient operator or
increasing the size of the structuring element results in wider edges.

The following example extracts image features by applying the morphological
gradient operation to an image of the Mars globe. Complete the following steps for a
detailed description of the process.

Example Code
See morphgradientex.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

1. Prepare the display device and load the grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and read in the file:

file = FILEPATH('marsglobe.jpg', $
SUBDIRECTORY=['examples', 'data'])

READ_JPEG, file, image, /GRAYSCALE

3. Get the image size, create a window and display the smoothed image:

dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE =2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Original and MORPH_GRADIENT Images'
Image Processing in IDL Detecting Edges of Image Objects

RSI_PROCODE/examples/doc/image/morphgradientex.pro

270 Chapter 9: Extracting and Analyzing Shapes
The original image is shown in the following figure.

4. Preserve the greatest amount of detail within the image by defining a
structuring element with a radius of 1, avoiding excessively thick edge lines:

radius = 1
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

5. Apply the MORPH_GRADIENT function to the image and display the result:

morphImg = MORPH_GRADIENT(image, strucElem)
TVSCL, morphImg, 2

6. To more easily distinguish features within the dark image, prepare to stretch
the image by displaying an intensity histogram:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(1-image)

The previous line returns a histogram of an inverse of the original image since
the final display will also be an inverse display for showing the greatest detail.

7. Stretch the image and display its inverse:

WSET, 0
TVSCL, 1-(morphImg < 87), 3

Figure 9-19: Image of Mars Globe
Detecting Edges of Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 271
The following figure displays the initial and stretched gradient images.

Figure 9-20: Initial and Stretched Results of the Gradient Operation
Image Processing in IDL Detecting Edges of Image Objects

272 Chapter 9: Extracting and Analyzing Shapes
Creating Distance Maps

The MORPH_DISTANCE function computes a grayscale, N-dimensional distance
map from a binary image. The map shows, for each foreground pixel, the distance to
the nearest background pixel using a given norm. The norm simply defines how
neighboring pixels are sampled. See the MORPH_DISTANCE description in the IDL
Reference Guide for full details. The resulting values in the grayscale image denote
the distance from the surveyed pixel to the nearest background pixel. The brighter the
pixel, the farther it is from the background.

The following example applies the distance transformation to a grayscale image of a
cultured sample of Neocosmospora vasinfecta, a common fungal plant pathogen.
Complete the following steps for a detailed description of the process.

Example Code
See morphdistanceexample.pro in the examples/doc/image subdirectory
of the IDL installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and load an image:

file = FILEPATH('n_vasinfecta.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the size of the image and create a border for display purposes:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg[5,5] = img

4. Get the dimensions of the padded image, create a window and display the
original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE='Distance Map and Overlay of Binary Image'
TVSCL, padImg, 0

5. Use an intensity histogram as a guide for creating a binary image:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(padImg)
Creating Distance Maps Image Processing in IDL

RSI_PROCODE/examples/doc/image/morphdistanceexample.pro

Chapter 9: Extracting and Analyzing Shapes 273
Note
Using an intensity histogram as a guide for determining intensity values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

6. Before using the distance transform, the grayscale image must be translated
into a binary image. Create and display a binary image containing the dark
tubules. Threshold the image, masking out pixels with values greater than 120:

binaryImg = padImg LT 120
WSET, 0
TVSCL, binaryImg, 1

The original image (left) and binary image (right) appear in the following
figure.

7. Compute the distance map using MORPH_DISTANCE, specifying
“chessboard” neighbor sampling, which surveys each horizontal, vertical and
diagonal pixel touching the pixel being surveyed, and display the result:

distanceImg = MORPH_DISTANCE(binaryImg, $
NEIGHBOR_SAMPLING = 1)

TVSCL, distanceImg, 2

8. Display a combined image of the distance map and the binary image. Black
areas within the binary image (having a value of 0) are assigned the maximum
pixel value occurring in the distance image:

distanceImg [WHERE (binaryImg EQ 0)] = MAX(distanceImg)
TVSCL, distanceImg, 3

Figure 9-21: Original Image (left) and Binary Image (right)
Image Processing in IDL Creating Distance Maps

274 Chapter 9: Extracting and Analyzing Shapes
The distance map (left) and resulting blended image (right) show the distance
of each image element pixel from the background.

Figure 9-22: Distance Map (left) and Merged Map and Binary Image (right)
Creating Distance Maps Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 275
Thinning Image Objects

The MORPH_THIN function performs a thinning operation on binary images. After
designating “hit” and “miss” structures, the thinning operation applies the hit-or-miss
operator to the original image and then subtracts the result from the original image.

The thinning operation is typically applied repeatedly, leaving only pixel-wide linear
representations of the image objects. The thinning operation halts when no more
pixels can be removed from the image. This occurs when the thinning operation
(applying the hit and miss structures and subtracting the result) produces no change
in the input image. At this point, the thinned image is identical to the input image.

When repeatedly applying the thinning operation, each successive iteration uses hit
and miss structures that have had the individual elements of the structures rotated one
position clockwise. For example, the following 3-by-3 arrays show the initial
structure (left) and the structure after rotating the elements one position clockwise
around the central value (right).

h0 = [[0,0,0], h1 = [[0,0,0],
[0,1,0], [1,1,0],
[1,1,1]] [1,1,0]]

The following example uses eight rotations of each of the original hit and miss
structuring elements. The repeated application of the thinning operation results in an
image containing only pixel-wide lines indicating the original grains of pollen. This
example displays the results of each successive thinning operation. Complete the
following steps for a detailed description of the process.

Example Code
See morphthinexample.pro in the examples/doc/image subdirectory of the
IDL installation directory for code that duplicates this example.

Note
This example uses a file from the examples/demo/demodata directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0
Image Processing in IDL Thinning Image Objects

RSI_PROCODE/examples/doc/image/morphthinexample.pro

276 Chapter 9: Extracting and Analyzing Shapes
2. Select and open the image file:

file = FILEPATH('pollens.jpg', $
SUBDIRECTORY = ['examples','demo','demodata'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the image dimensions, create a window and display the original image:

dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE='Original, Binary and Thinned Images'
TVSCL, img, 0

4. The thinning operation requires a binary image. Create a binary image,
retaining pixels with values greater than or equal to 140, and display the
image:

binaryImg = img GE 140
TVSCL, binaryImg, 1

Note
The following lines were used to determine the threshold value:
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)
See “Determining Intensity Values for Threshold and Stretch” on page 243
for details about using a histogram to determine intensity values.

5. Prepare hit and miss structures for thinning. Rotate the outer elements of each
successive hit and miss structure one position clockwise:

Note
For a version of these structures that is easy to copy and paste into an Editor
window, see MorphThinExample.pro in the examples/doc/image
subdirectory of the IDL installation directory. This code displays the eight
pairs of hit and miss structuring elements on individual lines so that the code
can be easily copied into an Editor window. Although it is less visible, the
elements of each successive structure are rotated as shown below and as
described in the beginning of this section, “Thinning Image Objects” on
page 275.

h0 = [[0b,0,0], $
[0,1,0], $
[1,1,1]]

m0 = [[1b,1,1], $
[0,0,0], $
[0,0,0]]

h1 = [[0b,0,0], $
Thinning Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 277
[1,1,0], $
[1,1,0]]

m1 = [[0b,1,1], $
[0,0,1], $
[0,0,0]]

h2 = [[1b,0,0], $
[1,1,0], $
[1,0,0]]

m2 = [[0b,0,1], $
[0,0,1], $
[0,0,1]]

h3 = [[1b,1,0], $
[1,1,0], $
[0,0,0]]

m3 = [[0b,0,0], $
[0,0,1], $
[0,1,1]]

h4 = [[1b,1,1], $
[0,1,0], $
[0,0,0]]

m4 = [[0b,0,0], $
[0,0,0], $
[1,1,1]]

h5 = [[0b,1,1], $
[0,1,1], $
[0,0,0]]

m5 = [[0b,0,0], $
[1,0,0], $
[1,1,0]]

h6 = [[0b,0,1], $
[0,1,1], $
[0,0,1]]

m6 = [[1b,0,0], $
[1,0,0], $
[1,0,0]]

h7 = [[0b,0,0], $
[0,1,1], $
[0,1,1]]

m7 = [[1b,1,0], $
[1,0,0], $
[0,0,0]]

6. Define the iteration variables for the WHILE loop and prepare to pass in the
binary image:

bCont = 1b
iIter = 1
thinImg = binaryImg
Image Processing in IDL Thinning Image Objects

278 Chapter 9: Extracting and Analyzing Shapes
7. Enter the following WHILE loop statements into the Editor window. The loop
specifies that the image will continue to be thinned with MORPH_THIN until
the thinned image is equal to the image input into the loop. Since thinImg
equals inputImg, the loop is exited when a complete iteration produces no
changes in the image. In this case, the condition, bCont eq 1 fails and the
loop is exited.

WHILE bCont EQ 1b DO BEGIN & $
PRINT,'Iteration: ', iIter & $
inputImg = thinImg & $
thinImg = MORPH_THIN(inputImg, h0, m0) & $
thinImg = MORPH_THIN(thinImg, h1, m1) & $
thinImg = MORPH_THIN(thinImg, h2, m2) & $
thinImg = MORPH_THIN(thinImg, h3, m3) & $
thinImg = MORPH_THIN(thinImg, h4, m4) & $
thinImg = MORPH_THIN(thinImg, h5, m5) & $
thinImg = MORPH_THIN(thinImg, h6, m6) & $
thinImg = MORPH_THIN(thinImg, h7, m7) & $
TVSCL, thinImg, 2 & $
WAIT, 1 & $
bCont = MAX(inputImg - thinImg) & $
iIter = iIter + 1 & $

ENDWHILE

Note
The & after BEGIN and the $ allow you to use the WHILE/DO loop at the
IDL command line. These & and $ symbols are not required when the
WHILE/DO loop in placed in an IDL program as shown in
MorphThinExample.pro in the examples/doc/image subdirectory of
the IDL installation directory.

8. Display an inverse of the final result:

TVSCL, 1 - thinImg, 3
Thinning Image Objects Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 279
The following figure displays the results of the thinning operation, reducing the
original objects to a single pixel wide lines.

Each successive thinning iteration removed pixels marked by the results of the
hit-or-miss operation as long as the removal of the pixels would not destroy the
connectivity of the line.

Figure 9-23: Original Image (top left), Binary Image (top right), Thinned Image
(bottom left) and Inverse Thinned Image (bottom right)
Image Processing in IDL Thinning Image Objects

280 Chapter 9: Extracting and Analyzing Shapes
Combining Morphological Operations

The following example uses a variety of morphological operations to remove bridges
from a satellite image of New York waterways. Complete the following steps for a
detailed description of the process.

Example Code
See removebridges.pro in the examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example.

1. Prepare the display device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Specify the known dimensions and use READ_BINARY to load the image:

xsize = 768
ysize = 512
img = READ_BINARY(FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data']), $
 DATA_DIMS = [xsize, ysize])

3. Increase the image's contrast and display the image:

img = BYTSCL(img)
WINDOW, 1, TITLE = 'Original Image'
TVSCL, img
Combining Morphological Operations Image Processing in IDL

RSI_PROCODE/examples/doc/image/removebridges.pro

Chapter 9: Extracting and Analyzing Shapes 281
4. Prepare to threshold the image, using an intensity histogram as a guide for
determining the intensity value:

WINDOW, 4, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

5. Create a mask of the darker pixels that have values less than 70:

maskImg = img LT 70

6. Define and create a small square structuring element, which has a shape
similar to the bridges which will be masked out:

side = 3
strucElem = DIST(side) LE side

7. Remove details in the binary mask's shape by applying the opening operation:

maskImg = MORPH_OPEN(maskImg, strucElem)

Figure 9-24: Original Image
Image Processing in IDL Combining Morphological Operations

282 Chapter 9: Extracting and Analyzing Shapes
8. Fuse gaps in the mask's shape by applying the closing operation and display
the image:

maskImg = MORPH_CLOSE(maskImg, strucElem)
WINDOW, 1, title='Mask After Opening and Closing'
TVSCL, maskImg

This results in the following figure:

9. Prepare to remove all but the largest region in the mask by labeling the
regions:

labelImg = LABEL_REGION(maskImg)

10. Discard the black background by keeping only the white areas of the previous
figure:

regions = labelImg[WHERE(labelImg NE 0)]

11. Define mainRegion as the area where the population of the labelImg region
matches the region with the largest population:

mainRegion = WHERE(HISTOGRAM(labelImg) EQ $
MAX(HISTOGRAM(regions)))

12. Define maskImg as the area of labelImg equal to the largest region of
mainRegion, having an index number of 0 and display the image:

maskImg = labelImg EQ mainRegion[0]
Window, 3, TITLE = 'Final Masked Image'
TVSCL, maskImg

Figure 9-25: Image Mask After Opening and Closing Operations
Combining Morphological Operations Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 283
This results in a mask of the largest region, the waterways, as shown in the
following figure.

13. Remove noise and smooth contours in the original image:

newImg = MORPH_OPEN(img, strucElem, /GRAY)

14. Replace the new image with the original image, where it’s not masked:

newImg[WHERE(maskImg EQ 0)] = img[WHERE(maskImg EQ 0)]

15. View the results using FLICK to alternate the display between the original
image and the new image containing the masked areas:

WINDOW, 0, XSIZE = xsize, YSIZE = ysize
FLICK, img, newImg

Figure 9-26: Final Image Mask
Image Processing in IDL Combining Morphological Operations

284 Chapter 9: Extracting and Analyzing Shapes
Hit any key to stop the image from flickering. Details of the two images are
shown in the following figure.

Figure 9-27: Details of Original (left) and Resulting Image of New York (right)
Combining Morphological Operations Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 285
Analyzing Image Shapes

After using a morphological operation to expose the basic elements within an image,
it is often useful to then extract and analyze specific information about those image
elements. The following examples use the LABEL_REGION function and the
CONTOUR procedure to identify and extract information about specific image
objects.

The LABEL_REGION function labels all of the regions within a binary image,
giving each region a unique index number. Use this function in conjunction with the
HISTOGRAM function to view the population of each region. See “Using
LABEL_REGION to Extract Image Object Information” in the following section for
an example.

The CONTOUR procedure draws a contour plot from image data, and allows the
selection of image objects occurring at a specific contour level. Further processing
using PATH_* keywords returns the location and coordinates of polygons that define
a specific contour level. See “Using CONTOUR to Extract Image Object
Information” on page 289 for an example.

Using LABEL_REGION to Extract Image Object
Information

The following example identifies unique regions within the image of the
Rhinosporidium seeberi parasitic protozoans and prints out region populations.
Complete the following steps for a detailed description of the process.

Example Code
See labelregionexample.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples','data'])

READ_JPEG, file, image, /GRAYSCALE
Image Processing in IDL Analyzing Image Shapes

RSI_PROCODE/examples/doc/image/labelregionexample.pro

286 Chapter 9: Extracting and Analyzing Shapes
3. Get the image dimensions and add a border (for display purposes only):

dims = SIZE(image, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+20, dims[1]+20)
padImg[10,10] = image

4. Get the dimensions of the padded image, create a window and display the
original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Opened, Thresholded and Labeled Region Images'
TVSCL, padImg, 0

5. Create a large, circular structuring element to extract the large circular
foreground features. Define the radius of the structuring element and create the
disk:

radius = 5
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous
statement.

6. Apply the opening operation to the image to remove background noise and
display the image:

openImg = MORPH_OPEN(padImg, strucElem, /GRAY)
TVSCL, openImg, 1

This original image (left) and opened image (right) appear in the following
figure.

Figure 9-28: Original Image (left) and Application of Opening Operator (right)
Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 287
7. Display an intensity histogram to use as a guide when thresholding:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(openImg)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values for Threshold and
Stretch” on page 243.

8. Retain only the brighter, foreground pixels by setting the threshold intensity at
170 and display the binary image:

threshImg = openImg GE 170
WSET, 0
TVSCL, threshImg, 2

9. Identify unique regions using the LABEL_REGION function:

regions = LABEL_REGION(threshImg)

10. Use the HISTOGRAM function to calculate the number of elements in each
region:

hist = HISTOGRAM(regions)

11. Create a FOR loop that will return the population and percentage of each
foreground region based on the results returned by the HISTOGRAM
function:

FOR i=1, N_ELEMENTS (hist) - 1 DO PRINT, 'Region', i, $
', Pixel Popluation = ', hist(i), $
' Percent = ', 100.*FLOAT(hist[i])/(dims[0]*dims[1])

12. Load a color table and display the regions. For this example, use the sixteen
level color table to more easily distinguish individual regions:

LOADCT, 12
TVSCL, regions, 3
Image Processing in IDL Analyzing Image Shapes

288 Chapter 9: Extracting and Analyzing Shapes
In the following figure, the image containing the labeled regions (right) shows
19 distinct foreground regions.

Tip
Display the color table by entering XLOADCT at the command line. By
viewing the color table, you can see that region index values start in the
lower-left corner of the image. Realizing this makes it easier to relate the
region populations printed in the Output Log with the regions shown in the
image.

13. Create a new window and display the individual region populations by
graphing the values of hist using the SURFACE procedure:

WINDOW, 1, $
TITLE = 'Surface Representation of Region Populations'

FOR i = 1, N_ELEMENTS(hist)-1 DO $
regions[WHERE(regions EQ i)] = hist[i]

SURFACE, regions

Figure 9-29: Binary Image (left) and Image of Unique Regions (right)
Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 289
The previous command results in the following display of the region
populations.

Using CONTOUR to Extract Image Object Information

It is possible to extract information about an image feature using the CONTOUR
procedure. The following example illustrates how to select an image feature and
return the area of that feature, in this case, calculating the size of a gas pocket in a CT
scan of the thoracic cavity. Complete the following steps for a detailed description of
the process.

Example Code
See extractcontourinfo.pro in the examples/doc/image subdirectory of
the IDL installation directory for code that duplicates this example.

Note
For more information on computing statistics for defined image objects see Chapter
6, “Working with Regions of Interest (ROIs)”

1. Prepare the display device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5

Figure 9-30: Surface Representation of Region Populations
Image Processing in IDL Analyzing Image Shapes

RSI_PROCODE/examples/doc/image/extractcontourinfo.pro

290 Chapter 9: Extracting and Analyzing Shapes
2. Determine the path to the file:

file = FILEPATH('ctscan.dat', $
 SUBDIRECTORY = ['examples', 'data'])

3. Initialize the size parameters:

dims = [256, 256]

4. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = dims)

5. Create a window and display the image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, image

6. Create another window and use CONTOUR to display a filled contour of the
image, specifying 255 contour levels which correspond to the number of
values occurring in byte data:

WINDOW, 2
CONTOUR, image, /XSTYLE, /YSTYLE, NLEVELS = 255, $

/FILL

Note
Replace NLEVELS = 255 with NLEVELS = MAX(image) if your display
uses less than 256 colors.

7. Use the PATH_* keywords to obtain information about the contours occurring
at level 40:

CONTOUR, image, /XSTYLE, /YSTYLE, LEVELS = 40, $
PATH_INFO = info, PATH_XY = xy, /PATH_DATA_COORDS

The PATH_INFO variable, info, contains information about the paths of the
contours, which when used in conjunction with PATH_XY, traces closed
contour paths. Specify PATH_DATA_COORDS when using PATH_XY if
you want the contour positions to be measured in data units instead of the
default normalized units.

8. Using the coordinate information obtained in the previous step, use the PLOTS
procedure to draw the contours of image objects occurring at level 40, using a
different line style for each contour:

FOR i = 0, (N_ELEMENTS(info) - 1) DO PLOTS, $
 xy[*, info[i].offset:(info[i].offset + info[i].n - 1)], $
 LINESTYLE = (i < 5), /DATA
Analyzing Image Shapes Image Processing in IDL

Chapter 9: Extracting and Analyzing Shapes 291
9. The specified contour is drawn with a dashed line or LINESTYLE number 2
(determined by looking at “Graphics Keywords” in Appendix B of the IDL
Reference Guide). Use REFORM to create vectors containing the x and y
boundary coordinates of the contour:

x = REFORM(xy[0, info[2].offset:(info[2].offset + $
info[2].n - 1)])

y = REFORM(xy[1, info[2].offset:(info[2].offset + $
info[2].n - 1)])

10. Set the last element of the coordinate vectors equal to the first element to
ensure that the contour area is completely enclosed:

x = [x, x[0]]
y = [y, y[0]]

11. This example obtains information about the left-most gas pocket. For display
purposes only, draw an arrow pointing to the region of interest:

ARROW, 10, 10, (MIN(x) + MAX(x))/2, COLOR = 180, $
(MIN(y) + MAX(y))/2, THICK = 2, /DATA

The gas pocket is indicated with an arrow as shown in the following figure.

Figure 9-31: Gas Pocket Indicated in CT Scan of Thoracic Cavity
Image Processing in IDL Analyzing Image Shapes

292 Chapter 9: Extracting and Analyzing Shapes
12. Output the resulting coordinate vectors, using TRANSPOSE to print vertical
lists of the coordinates:

PRINT, ''
PRINT, ' x , y'
PRINT, [TRANSPOSE(x), TRANSPOSE(y)], FORMAT = '(2F15.6)'

The FORMAT statement tells IDL to format two 15 character floating point
values that have 6 characters following the decimal of each value.

13. Use the POLY_AREA function to compute the area of the polygon created by
the x and y coordinates and print the result:

area = POLY_AREA(x, y)
PRINT, 'area = ', ROUND(area), ' square pixels'

The result, 121 square pixels, appears in the Output Log.
Analyzing Image Shapes Image Processing in IDL

Index

A
adaptive

filtering, 233
histogram equalization, 190

adaptiveequalizing.pro, 190
adding borders. See padding images
arbitraryrotation.pro, 36

B
backprojecthoughandradon.pro, 166
backprojection

Hough transform, 165
Radon transform, 165

binary images
data definition, 12
masking, 66

morphological operations, 238
thinning operation, 275

borders. See padding images
boundaries, 260
byte scaling

images, 183
bytescaling.pro, 183

C
calculatingstatistics.pro, 80
clipping

images, 72
clippingimages.pro, 73
closing operator, 254
color density contrasting, 174
combiningimages.pro, 76
Image Processing in IDL 293

294
compression
wavelet transformation, 148

containmenttest.pro, 122
contrast

enhancements, 180
IDL routines, 181

contrasting color density, 174
contrastingcellswithradon.pro, 175
control points, 87, 90
converting

data types, 13
convolution, 195
correcting shifted images, 28
cropping images

code example, 20
cropworld.pro, 20

D
data types

converting, 13
image files, 13

DEM
geometric surface object, 52
overlaying images, 50

derivatives
first, 203
second, 206

detecting edges
directional filtering, 203
Laplacian filtering, 206
Roberts operator, 224
Sobel operator, 226

detectingedgeswithroberts.pro, 224
detectingedgeswithsobel.pro, 226
Digital Elevation Model. See DEM
dilation operator, 246
Direct Graphics

displaying
transparent images, 88

ROI selection, 105, 109

directional filtering, 203
directionfiltering.pro, 203
displayfft.pro, 137
displaying

frequency transform, 136
Hough transform, 162
images

mapped onto surfaces, 53
Radon transform, 162
time-frequency transform, 152
wrap around, 183

displayslicer3.pro, 42
displayslices.pro, 38
displaywavelet.pro, 152
distance map, 272
distance windowing, 229
domains

frequency, 130
Hough, 130
Radon, 130
spatial, 130
time-frequnecy, 130

drawroiex.pro, 105

E
edge detection, 269

directional filtering, 203
Laplacian filtering, 206
Roberts operator, 224
Sobel operator, 226

elevation data, overlaying on surfaces, 50
elevation_object.pro, 50
enhancing images, 180
equalizing

adaptive, 190
histograms, 187

equalizing.pro, 187
erosion operator, 246
examples

image
Index Image Processing in IDL

295
adaptiveequalizing.pro, 190
arbitraryrotation.pro, 36
backprojecthoughandradon.pro, 166
bytescaling.pro, 183
calculatingstatistics.pro, 80
clippingimages.pro, 73
combiningimages.pro, 76
containmenttest.pro, 122
contrastingcellswithradon.pro, 175
cropworld.pro, 20
detectingedgeswithroberts.pro, 224
detectingedgeswithsobel.pro, 226
directionfiltering.pro, 203
displayfft.pro, 137
displayslicer3.pro, 42
displayslices.pro, 38
displaywavelet.pro, 152
drawroiex.pro, 105
elevation_object.pro, 50
equalizing.pro, 187
extractcontourinfo.pro, 289
extractslice.pro, 40
findinglineswithhough.pro, 169
forwardfft.pro, 133
forwardhoughandradon.pro, 162
forwardwavelet.pro, 149
grouproimesh.pro, 125
highpassfiltering.pro, 200
inversefft.pro, 141
inversewavelet.pro, 155
labelregionexample.pro, 285
laplacefiltering.pro, 207
magnifyimage.pro, 26
maponsphere_direct.pro, 57
maponsphere_object.pro, 60
maskingimages.pro, 69
morphcloseexample.pro, 254
morphdistanceexample.pro, 272
morpherodedilate.pro, 247
morphgradientex.pro, 269
morphhitormissexample.pro, 264

morphopenexample.pro, 251
morphthinexample.pro, 275
morphtophatexample.pro, 257
mriwarping_direct.pro, 89
paddedimage.pro, 23
programdefineroi.pro, 109
regiongrowex.pro, 113
removebridges.pro, 280
removingnoisewithfft.pro, 143
removingnoisewithhanning.pro, 230
removingnoisewithleefilt.pro, 233
removingnoisewithwavelet.pro, 158
reverseimage.pro, 30
rotateimage.pro, 34
scalemask_object.pro, 118
sharpening.pro, 220
shiftimageoffset.pro, 28
smoothingwithmedian.pro, 215
smoothingwithsmooth.pro, 211
transposeimage.pro, 32
watershedexample.pro, 260

expanding
image objects, 246
images, 26

extractcontourinfo.pro, 289
extractin

image object information with CONTOUR,
289

extracting
image object information with

LABEL_REGION, 285
volume slices, 40

extractslice.pro, 40

F
Fast Fourier transform

See also frequency transform
examples

displayfft.pro, 137
forwardfft.pro, 133
Image Processing in IDL Index

296
inversefft.pro, 141
transforming to frequency domain, 132

filtering
adaptive, 233
detecting edges, 206
directional, 203
high pass, 199
images, 195
low pass, 196
removing noise, 233
routines, 181
smoothing, 196
windowing, 229

filters
Laplacian, 206
Lee, 233

finding
straight lines, 168

findinglineswithhough.pro, 169
first derivatives, 203
forward transforms

frequency, 132
time-frequency, 148

forwardfft.pro, 133
forwardhoughandradon.pro, 162
forwardwavelet.pro, 149
frequency domain, 130
frequency transform

See also Fast Fourier transform.
displaying, 136
forward, 132
inverse, 140
removing noise, 143

G
geometric area, 101
geometric transformations

IDL routines, 18
gradient operator, 269
grayscale images

data definition, 12
morphological operations, 238

grouproimesh.pro, 125
growing an ROI, 113

H
Hamming window

removing noise, 229
Hanning window

removing noise, 229
high pass filtering, 199
highpassfiltering.pro, 200
histogram

determining stretch/threshold values, 243
using, 186

histogram equalization
adaptive, 190
pixel value contrast, 187

hit-or-miss operator, 264
Hough domain, 130
Hough transform

backprojection, 165
displaying, 162
finding straight lines, 168
projecting, 162

I
image processing

calculating statistics, 80
geometric transformations, 18
mapping images onto geometry, 47
morphological operations, 238
references, 16
ROI analysis, 100
shape analysis, 241
techniques, 10
warping transparent images, 89

image registration. See warping images
Index Image Processing in IDL

297
image transformations, 18
image transparency, 88
images

accessing, 15
adding a border, 23
calculating statistics, 80
clipping, 72
compression, 148
correcting misalignment, 28
creating boundaries, 260
cropping, 20
data types, 13
expanding, 26
file types, 12
first derivatives, 203
flipping, 30
interpolation, 18
magnifying, 26
masking, 66
morphological operations, 238
padding, 20, 23
pixel value location, 76
resampling, 18
resizing, 20, 26
reversing, 30
ROI analysis, 100
scaling, 26
second derivatives, 206
shifting, 28
shrinking, 26
statistical calculations, 80
thresholding, 244
transparent overlays, 88
transposing, 30, 32
warping a transparency, 88

indexed images
data definition, 12

intensity histogram, 243
intensity value, 243
inverse transforms

frequency, 140

time-frequency, 155
inversefft.pro, 141
inversewavelet.pro, 155
isosurfaces

of 3D data, 42

K
kernels

directional, 203
high pass, 199
Laplacian, 206
low pass, 196

L
LABEL_REGION function

example, 285
labeling

regions, 285
labelregionexample.pro, 285
laplacefiltering.pro, 207
Laplacian filtering, 206
layering images, 48
Lee filtering, 233
linear transformations, 18
locating

pixel values, 76
low pass filtering, 196

M
magnifyimage.pro, 26
magnifying an image, 26
manipulating volume data

SLICER3, 43
maponsphere_direct.pro, 57
maponsphere_object.pro, 60
mapping

images onto a sphere
Image Processing in IDL Index

298
creating display objects, 60
Direct Graphics, 57
Object Graphics, 60

images onto geometry
creating objects, 52
Digital Elevation Model, 50
displaying, 53
IDL objects, 48
IDL routines, 48
Object Graphics, 50

mask area (ROI), 101
masking an image, 66
maskingimages.pro, 69
morphcloseexample.pro, 254
morphdistanceexample.pro, 272
morpherodedilate.pro, 247
morphgradientex.pro, 269
morphhitormissexample.pro, 264
morphological mask. See structuring element
morphological operations

closing, 254
combining operations, 280
dilation, 246
distance map, 272
erosion, 246
gradient, 269
hit-or-miss, 264
IDL routines, 239
opening, 251
structuring element, 238
thinning, 275
top-hat, 257
watershed, 260

morphopenexample.pro, 251
morphthinexample.pro, 275
morphtophatexample.pro, 257
mriwarping_direct.pro, 89

N
noise removal

adaptive filtering, 233
frequency transform, 143
Lee filter, 233
smoothing, 251
time-frequency, 158
windowing, 229

nonlinear transformations, 86

O
object graphics

displaying transparent images, 88
ROI selection, 103

objects
mapping images onto geometry, 48
region of interest (ROI), 100

opening operator, 251
operators

closing, 254
dilation, 246
erosion, 246
gradient, 269
hit-or-miss, 264
opening, 251
Roberts, 224
Sobel, 226
thinning, 275
top-hat, 257
watershed, 260

optical distortion correction, 86
overlaying images

on geometries, 48

P
paddedimage.pro, 23
padding images

borders, 20
morphological processing, 246

peak detector. See top-hat operator
Index Image Processing in IDL

299
pivoting in rotation, 36
pixels

locating by value, 76
planar slicing

interactively, 41
volumes, 38

programdefineroi.pro, 109
projecting

Hough transform, 162
Radon transform, 162

R
Radon transform

backprojecting, 165
contrasting color, 174
displaying, 162
overview, 130
projecting, 162

region labeling, 285
region of interest

interior, 105
see also ROI

regiongrowex.pro, 113
removebridges.pro, 280
removing noise

adaptive filtering, 233
frequency transform, 143
Lee filter, 233
time-frequency transform, 158
windowing, 229

removingnoisewithfft.pro, 143
removingnoisewithhanning.pro, 230
removingnoisewithleefilt.pro, 233
removingnoisewithwavelet.pro, 158
resizing images, 20, 26
reverseimage.pro, 30
reversing

images, 30, 32
RGB images

data definition, 12

Roberts operator, 224
ROI

determining point location, 122
geometric area, 101
grouping multiple ROIs, 125
growing an area, 113
IDL objects, 100
mask area, 101
masking an area, 118
routines, 100
selecting interactively, 103
selecting programmatically, 109
surface mesh, 125

rotateimage.pro, 34
rotating

images
90 degree increments, 34
arbitrary increments, 36

rubber sheeting. See warping images

S
scalemask_object.pro, 118
scaling

See also stretching
byte, 183
images, 26
stretching images, 245

second derivatives, 206
segmenting image features, 76
setting

pivot points, 36
shape analysis, 241
shape detection, 238
sharpening an image, 199, 220
sharpening.pro, 220
shift correction, 28
shiftimageoffset.pro, 28
shifting

images, 28
shrinking
Image Processing in IDL Index

300
image objects, 246
images, 26

slicing volumes
extracting a slice, 40
series of slices, 38

smoothing
average values, 211
dilation/erosion, 254
erosion/dilation, 251
low pass filtering, 196
median values, 215

smoothingwithmedian.pro, 215
smoothingwithsmooth.pro, 211
Sobel

operator, 226
spatial domain, 130
statistics

image processing calculations, 80
masking, 80

stretching
intensity values, 245
scaling images, 245

structuring element, 238, 241, 264
surfaces

overlaying images, 48
triangulated ROI mesh, 125

T
texture mapping.

See mapping, images onto geometry
thinning operator, 275
thresholding

clipping levels, 72
intensity, 244
intensity values, 243
masking features, 68
ROI analysis, 109

tie points. See control points
time-frequency domain, 130
time-frequency transform

displaying, 152
forward, 148
inverse, 155
removing noise, 158

top-hat operator, 257
transformations

geometric, 18
linear, 18
nonlinear, 86
warping, 86

transforms
frequency

displaying, 136
forward, 132
inverse, 140
removing noise, 143

Hough
backprojecting, 165
displaying, 162
finding straight lines, 168
projecting, 162

IDL routines, 131
Radon

backprojecting, 165
contrasting color, 174
displaying, 162
projecting, 162

time-frequency
displaying, 152
forward, 148
inverse, 155
removing noise, 158

transparency
displaying in Direct Graphics, 88

transparent image overlays
creating, 88
Direct Graphics, 89

transposeimage.pro, 32
transposing an image, 30, 32
triangulating surface meshes, 125
Index Image Processing in IDL

301
V
volumes

manipulating, 43
slicing, 38

volumetric data
displaying with SLICER3, 42

W
warping images

Direct Graphics display, 89

routines, 86
selecting control points, 87

watershed operator, 260
watershedexample.pro, 260
wavelet transform.

See time-frequency transform
windowing

distance, 229
Hamming, 229, 229
Hanning, 229

wrap around displays, 183
Image Processing in IDL Index

302
Index Image Processing in IDL

	Online Manuals
	IDL Documentation
	What's New in IDL 6.2
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Image Processing in�IDL
	Contents
	Introduction to Image Processing in IDL
	Overview of Image Processing
	Digital Images and Image Processing

	Understanding Image Definitions in IDL
	Representing Image Data in IDL
	Accessing Images
	Querying Images

	References

	Transforming Image Geometry
	Overview of Geometric Transformations
	Cropping Images
	Padding Images
	Resizing Images
	Shifting Images
	Reversing Images
	Transposing Images
	Rotating Images
	Rotating an Image by 90 Degree Increments
	Using the ROT Function for Arbitrary Rotations

	Planar Slicing of Volumetric Data
	Displaying a Series of Planar Slices
	Extracting a Slice of Volumetric Data
	Interactive Planar Slicing of Volumetric Data
	Displaying Volumetric Data Using SLICER3
	Manipulating Volumetric Data Using SLICER3

	Mapping an Image onto Geometry
	Mapping Images onto Surfaces Overview
	Mapping an Image onto Elevation Data
	Opening Image and Geometry Files
	Initializing the IDL Display Objects
	Displaying the Image and Geometric Surface Objects

	Mapping an Image onto a Sphere
	Mapping an Image onto a Sphere Using Direct Graphics
	Mapping an Image onto a Sphere Using Object Graphics

	Working with Masks and Image Statistics
	Overview of Masks and Image Statistics
	Masking Images
	Clipping Images
	Locating Pixel Values in an Image
	Calculating Image Statistics

	Warping Images
	Overview of Warping Images
	Tips for Selecting Control Points

	Creating Transparent Image Overlays
	Displaying Image Transparencies Using Direct Graphics
	Displaying Image Transparencies Using Object Graphics

	Warping Images Using Direct Graphics

	Working with Regions of Interest (ROIs)
	Overview of Working with ROIs
	Contrasting an ROI’s Geometric Area and Mask Area

	Defining Regions of Interest
	Displaying ROI Objects in a Direct Graphics Window
	Programmatically Defining ROIs
	Growing a Region
	Creating and Displaying an ROI Mask
	Testing an ROI for Point Containment
	Creating a Surface Mesh of an ROI Group

	Transforming Between Domains
	Overview of Transforming Between Image Domains
	Transforming Between Domains with FFT
	Transforming to the Frequency Domain
	Displaying Images in the Frequency Domain
	Transforming from the Frequency Domain
	Removing Noise with the FFT

	Transforming Between Domains with Wavelets
	Transforming to the Time-Frequency Domain
	Displaying Images in the Time-Frequency Domain
	Transforming from the Time-Frequency Domain
	Removing Noise with the Wavelet Transform

	Transforming to and from the Hough and Radon Domains
	Transforming to the Hough and Radon Domains (Projecting)
	Transforming from the Hough and Radon Domains (Backprojecting)
	Finding Straight Lines with the Hough Transform
	Color Density Contrasting with the Radon Transform

	Contrasting and Filtering
	Overview of Contrasting and Filtering
	Byte-Scaling
	Working with Histograms
	Equalizing with Histograms
	Adaptive Equalizing with Histograms

	Filtering an Image
	Low Pass Filtering
	High Pass Filtering
	Directional Filtering
	Laplacian Filtering

	Smoothing an Image
	Smoothing with Average Values
	Smoothing with Median Values

	Sharpening an Image
	Detecting Edges
	Enhancing Edges with the Roberts Operator
	Enhancing Edges with the Sobel Operator

	Removing Noise
	Windowing to Remove Noise
	Lee Filtering to Remove Noise

	Extracting and Analyzing Shapes
	Overview of Extracting and Analyzing Image Shapes
	Applying a Morphological Structuring Element to an Image

	Determining Structuring Element Shapes and Sizes
	Determining Intensity Values for Threshold and Stretch
	Thresholding an Image
	Stretching an Image

	Eroding and Dilating Image Objects
	Characteristics of Erosion
	Characteristics of Dilation
	Applying Erosion and Dilation

	Smoothing with MORPH_OPEN
	Smoothing with MORPH_CLOSE
	Detecting Peaks of Brightness
	Creating Image Object Boundaries
	Selecting Specific Image Objects
	Detecting Edges of Image Objects
	Creating Distance Maps
	Thinning Image Objects
	Combining Morphological Operations
	Analyzing Image Shapes
	Using LABEL_REGION to Extract Image Object Information
	Using CONTOUR to Extract Image Object Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

