
IDL Version 6.2
July 2005 Edition
Copyright © RSI
All Rights Reserved

External
Development
Guide

0705IDL62EDG

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty
RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, RSI grants you a limited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice page in their
entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1
External Development Overview .. 11
About This Manual .. 12
Supported Inter-Language Communication Techniques in IDL 13
Dynamic Linking Terminology and Concepts .. 20
When Is It Appropriate to Combine External Code with IDL? 22
Skills Required to Combine External Code with IDL ... 23
IDL Organization .. 27
External Definitions .. 29
Interpreting Logical Boolean Values .. 30
Compilation and Linking Details .. 31
Recommended Reading ... 32
External Development Guide 3

4

Part I: Techniques That Do Not Use IDL’s Internal API

Chapter 2
Using SPAWN and UNIX Pipes .. 37

Chapter 3
Overview: COM and ActiveX in IDL .. 41
COM Objects and IDL ... 42
Using COM Objects with IDL ... 44
Skills Required to Use COM Objects .. 46

Chapter 4
Using COM Objects
in IDL .. 47
About Using COM Objects in IDL .. 48
IDLcomIDispatch Object Naming Scheme ... 50
Creating IDLcomIDispatch Objects .. 54
Method Calls on IDLcomIDispatch Objects .. 55
Managing COM Object Properties .. 63
References to Other COM Objects .. 65
Destroying IDLcomIDispatch Objects .. 66
COM-IDL Data Type Mapping ... 67
Example: RSIDemoComponent ... 69

Chapter 5
Using ActiveX Controls in IDL ... 73
About Using ActiveX Controls in IDL .. 74
ActiveX Control Naming Scheme ... 76
Creating ActiveX Controls .. 77
Method Calls on ActiveX Controls .. 79
Managing ActiveX Control Properties .. 80
ActiveX Widget Events ... 81
Destroying ActiveX Controls .. 84
Example: Calendar Control .. 85
Example: Spreadsheet Control ... 88

Chapter 6
The IDLDrawWidget ActiveX Control .. 93
Overview .. 94
Contents External Development Guide

5

Creating an Interface and Handling Events ... 96
Working with IDL Procedures .. 102
Advanced Examples .. 105
Copying and Printing IDL Graphics ... 106
XLoadCT Functionality Using Visual Basic ... 110
XPalette Functionality Using Visual Basic ... 112
Integrating Object Graphics Using VB ... 113
Sharing a Grid Control Array with IDL .. 114
Handling Events within Visual Basic .. 116
Distributing Your ActiveX Application .. 118

Chapter 7
IDLDrawWidget Control Reference .. 119
IDLDrawWidget .. 120
Methods ... 121
Do Methods (Runtime Only) ... 131
Properties ... 133
Read Only Properties ... 137
Auto Event Properties ... 139
Events .. 141

Chapter 8
Using Java Objects in IDL .. 143
Overview of Using Java Objects ... 144
Initializing the IDL-Java Bridge .. 147
IDL-Java Bridge Data Type Mapping ... 150
Creating IDL-Java Objects .. 156
Method Calls on IDL-Java Objects ... 158
Managing IDL-Java Object Properties .. 160
Destroying IDL-Java Objects .. 162
Showing IDL-Java Output in IDL ... 163
The IDLJavaBridgeSession Object ... 164
Java Exceptions ... 166
IDL-Java Bridge Examples ... 169
Troubleshooting Your Bridge Session .. 187
External Development Guide Contents

6

Chapter 9
Using CALL_EXTERNAL .. 191
The CALL_EXTERNAL Function .. 192
Passing Parameters ... 202
Using Auto Glue .. 204
Basic C Examples .. 206
Wrapper Routines .. 210
Passing String Data .. 212
Passing Array Data .. 216
Passing Structures .. 218
Fortran Examples ... 220

Chapter 10
Remote Procedure Calls .. 225
IDL and Remote Procedure Calls .. 226
Using IDL as an RPC Server ... 227
Client Variables ... 228
Linking to the Client Library ... 229
Compatibility with Older IDL Code .. 231
The IDL RPC Library .. 233
RPC Examples ... 258

Part II: IDL’s Internal API

Chapter 11
IDL Internals:
Types ... 261
Type Codes .. 262
Mapping of Basic Types .. 264
IDL_MEMINT and IDL_FILEINT Types .. 267

Chapter 12
IDL Internals:
Keyword Processing .. 269
IDL and Keyword Processing .. 270
Creating Routines that Accept Keywords .. 271
Overview Of IDL Keyword Processing ... 272
The IDL_KW_PAR Structure .. 274
Contents External Development Guide

7

The IDL_KW_ARR_DESC_R Structure .. 277
Keyword Processing Options .. 278
The KW_RESULT Structure .. 280
Processing Keywords .. 281
Cleaning Up ... 284
Keyword Examples ... 285
The Pre-IDL 5.5 Keyword API ... 292

Chapter 13
IDL Internals:
Variables .. 299
IDL and Internal Variables .. 300
The IDL_VARIABLE Structure ... 301
Scalar Variables ... 304
Array Variables ... 305
Structure Variables .. 307
Heap Variables .. 312
Temporary Variables ... 313
Creating an Array from Existing Data .. 320
Getting Dynamic Memory ... 322
Accessing Variable Data ... 324
Copying Variables ... 325
Storing Scalar Values .. 326
Obtaining the Name of a Variable ... 328
Looking Up Main Program Variables ... 329
Looking Up Variables in Current Scope ... 330

Chapter 14
IDL Internals:
String Processing ... 331
String Processing and IDL .. 332
Accessing IDL_STRING Values .. 333
Copying Strings ... 334
Deleting Strings ... 335
Setting an IDL_STRING Value .. 336
Obtaining a String of a Given Length ... 337
External Development Guide Contents

8

Chapter 15
IDL Internals:
Error Handling .. 339
Message Blocks ... 340
Issuing Error Messages .. 342
Looking Up A Message Code by Name .. 348
Checking Arguments ... 349

Chapter 16
IDL Internals:
Type Conversion ... 353
Converting Arguments to C Scalars .. 354
General Type Conversion .. 355
Converting to Specific Types ... 356

Chapter 17
IDL Internals:
UNIX Signals ... 357
IDL and Signals ... 358
Signal Handlers .. 361
Establishing a Signal Handler .. 362
Removing a Signal Handler ... 363
UNIX Signal Masks ... 364

Chapter 18
IDL Internals:
Timers .. 369
IDL and Timers .. 370
Making Timer Requests ... 371
Canceling Asynchronous Timer Requests ... 373
Blocking UNIX Timers .. 374

Chapter 19
IDL Internals: Files and Input/Output ... 377
IDL and Input/Output Files .. 378
File Information ... 380
Opening Files ... 384
Closing Files .. 387
Contents External Development Guide

9

Preventing File Closing ... 388
Checking File Status .. 389
Allocating and Freeing File Units ... 391
Detecting End of File .. 393
Flushing Buffered Data ... 394
Reading a Single Character ... 395
Output of IDL Variables .. 396
Adding to the Journal File ... 397

Chapter 20
IDL Internals: Miscellaneous .. 399
Dynamic Memory .. 400
Exit Handlers ... 403
User Interrupts ... 404
Functions for Returning System Variables ... 405
Terminal Information .. 406
Ensuring UNIX TTY State .. 408
Type Information ... 409
User Information ... 411
Constants ... 412
Macros ... 413

Part III: Techniques That Use IDL’s Internal API

Chapter 21
Adding System Routines .. 417
IDL and System Routines .. 418
The System Routine Interface ... 419
Example: Hello World ... 420
Example: Doing a Little More (MULT2) .. 421
Example: A Complete Numerical Routine Example (FZ_ROOTS2) 424
Example: An Example Using Routine Design Iteration (RSUM) 433
Registering Routines ... 443
Enabling and Disabling System Routines ... 446
LINKIMAGE .. 454
Dynamically Loadable Modules ... 456
External Development Guide Contents

10
Chapter 22
Callable IDL ... 465
Calling IDL as a Subroutine .. 466
When is Callable IDL Appropriate? .. 467
Licensing Issues and Callable IDL .. 470
Using Callable IDL .. 471
Initialization ... 473
Diverting IDL Output .. 477
Executing IDL Statements ... 479
Runtime IDL and Embedded IDL .. 480
Cleanup .. 481
Issues and Examples: UNIX .. 482
Issues and Examples: Microsoft Windows .. 498

Chapter 23
Adding External Widgets to IDL .. 509
IDL and External Widgets ... 510
WIDGET_STUB .. 511
WIDGET_CONTROL/WIDGET_STUB .. 512
Functions for Use with Stub Widgets .. 514
Internal Callback Functions ... 517
UNIX WIDGET_STUB Example: WIDGET_ARROWB .. 519

Appendix A
Obsolete Internal Interfaces .. 525
Interfaces Obsoleted in IDL 5.5 ... 526
Interfaces Obsoleted in IDL 5.2.1 .. 539
Simplified Routine Invocation ... 542
Obsolete Error Handling API ... 549

Index .. 551
Contents External Development Guide

Chapter 1

External Development
Overview
This chapter discusses the following topics:
About This Manual 12
Supported Inter-Language Communication
Techniques in IDL . 13
Dynamic Linking Terminology and Concepts .
 . 20
When Is It Appropriate to Combine External
Code with IDL? . 22

Skills Required to Combine External Code
with IDL . 23
IDL Organization . 27
External Definitions 29
Interpreting Logical Boolean Values 30
Compilation and Linking Details 31
Recommended Reading 32
External Development Guide 11

12 Chapter 1: External Development Overview
About This Manual

The External Development Guide describes options for using code not written in the
IDL language alongside IDL itself. It is divided into three parts:

Part I: Techniques That Do Not Use IDL’s Internal API

This section discusses techniques that allow IDL to work together with programs
written in other programming languages, using IDL’s “public” interfaces. Little or no
familiarity with IDL’s internal interfaces is required. For many users, the techniques
in this section will solve most problems that require IDL to use — or be used by —
other programs. Topics covered in Part I include:

• Letting IDL programs interact with UNIX programs via pipes.

• Incorporating COM objects and ActiveX controls into IDL programs.

• Giving Microsoft Windows programs access to IDL features via the
IDLDrawWidget ActiveX control.

• Incorporating Java objects into IDL programs.

• Using IDL as a Remote Procedure Call server on a UNIX system.

• Calling routines written in other programming languages from within IDL
using the CALL_EXTERNAL function.

Part II: IDL’s Internal API

This section describes IDL’s internal implementation in enough detail to allow you to
write an IDL system routine in another compiled programming language (usually C)
and link it with IDL.

Part III: Techniques That Use IDL’s Internal API

This section describes the process of combining IDL with code written in another
programming language. Topics covered in Part III include:

• Creating a system routine using the interface described in Part II and linking
that routine into IDL at runtime.

• Calling IDL as a subroutine from another program (“Callable IDL”).

• Adding user-defined widgets to IDL widget applications.
About This Manual External Development Guide

Chapter 1: External Development Overview 13
Supported Inter-Language Communication
Techniques in IDL

IDL supports a number of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We
recommend that you favor the simpler options at the head of this list over the more
complex ones that follow if they are capable of solving your problem.

It can be difficult to choose the best option — there is a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method as well as make recommendations to help you decide which approach to take.
By comparing this list with the requirements of the problem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using a high level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages

Not always possible.

Recommendation

Writing in IDL is the easiest path. If you have existing code in another language that
is simple enough to translate to IDL, this is the best way to go. You should
investigate the other options if the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
is if you wish to access IDL abilities from a large program written in some other
language.

SPAWN

The simplest (but most limited) way to access programs external to IDL is to use the
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified
External Development Guide Supported Inter-Language Communication Techniques in IDL

14 Chapter 1: External Development Overview
command. The output from SPAWN can be captured in an IDL string variable.
Under UNIX, IDL can communicate with a child process through a bi-directional
pipe using SPAWN. More information about SPAWN can be found in Chapter 2,
“Using SPAWN and UNIX Pipes” or in the documentation for “SPAWN” in the IDL
Reference Guide manual.

Advantages

• Simplicity

• Allows use of existing standalone programs.

• Under UNIX, data can be sent to and returned by the program via a pipe,
making sophisticated inter-program communication possible quickly and
easily.

Disadvantages

• Non-UNIX hosts are unable to use the pipe facility to communicate with the
program. Data can only be sent to the command via arguments to SPAWN.

Recommendation

SPAWN is the easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

Microsoft COM and ActiveX

IDL supports the inclusion of COM objects and ActiveX controls within IDL
applications running on Microsoft Windows systems by encapsulating the object or
control in an IDL object. Full access to the COM object or ActiveX control’s
methods is available in this manner, allowing you to incorporate features not
available in IDL into IDL programs. For more information, see Chapter 3,
“Overview: COM and ActiveX in IDL”.

IDL also provides the IDLDrawWidget ActiveX control. The IDLDrawWidget
control is built around IDL for Windows and provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in languages such as C,
C++, Visual Basic, Fortran, Delphi, and others. For more information, see Chapter 6,
“The IDLDrawWidget ActiveX Control”.

Advantages

• Integrates easily with an important interprocess communication mechanism
under Microsoft Windows.
Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 15
• May support a higher level interface than the function call interfaces supported
by the remaining options.

Disadvantages

• Only supported under Microsoft Windows.

Recommendation

Incorporate COM objects or ActiveX controls into your Windows-only IDL
application if doing so provides functionality you cannot easily duplicate in IDL.

Use the IDL ActiveX control if you are writing a Windows-only application in a
language that supports ActiveX and you wish to use IDL to perform computation or
graphics within a framework established by this other application.

Sun Java

IDL also supports the inclusion of Java objects within IDL applications by
encapsulating the object or control in an IDL object. Full access to the Java object is
available in this manner, allowing you to incorporate features not available in IDL
into IDL programs. For more information, see Chapter 8, “Using Java Objects in
IDL”.

Advantages

• Integrates easily with all types of Java code.

• Can easily leverage existing Java objects into IDL.

Disadvantages

• Only supported under Microsoft Windows, Linux, Solaris, and Macintosh
platforms supported in IDL.

Recommendation

Incorporate Java objects into your IDL application if doing so provides functionality
you cannot easily duplicate in IDL.

UNIX Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL is run as an RPC server and your own program
External Development Guide Supported Inter-Language Communication Techniques in IDL

16 Chapter 1: External Development Overview
is run as a client. IDL’s RPC functionality is documented in Chapter 10, “Remote
Procedure Calls”.

Advantages

• Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

• API is similar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

• Possibility of overlapped execution on a multi-processor system.

Disadvantages

• Complexity of managing RPC servers.

• Bandwidth limitations of network for moving large amounts of data.

• Only supported under UNIX.

Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amount
of data being moved is reasonable on your network. CALL_EXTERNAL might be
more appropriate for especially simple tasks, or if the external code is not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL’s CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL is much easier to use than either system routines
(LINKIMAGE, DLMs) or Callable IDL and is often the best (and simplest) way to
communicate with other programs. CALL_EXTERNAL is also supported on all IDL
platforms.

While many of the topics in this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter
9, “Using CALL_EXTERNAL” and the documentation for “CALL_EXTERNAL” in
the IDL Reference Guide manual.
Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 17
Advantages

• Allows calling arbitrary code written in other languages.

• Requires little or no understanding of IDL internals.

Disadvantages

• Errors in coding can easily corrupt the IDL program.

• Requires understanding of system programming, compiler, and linker.

• Data must be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

• System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language
(that is, without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functions within special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risks of
corruption and give your callers an appropriate IDL-like interface to the new
functionality. If you use this method to incorporate external code into IDL, RSI
highly recommends that you also use the MAKE_DLL procedure and the
AUTO_GLUE keyword to CALL_EXTERNAL.

If you lack knowledge of IDL internals, CALL_EXTERNAL is the best way to add
external code quickly. Programmers who do understand IDL internals will often
write a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, DLMs)

It is possible to write system routines for IDL using a compiled language such as C.
Such routines are written to have the standard IDL calling interface, and are
dynamically linked, as with CALL_EXTERNAL. They are more difficult to write,
but more flexible and powerful. System routines provide access to variables and other
objects inside of IDL.

This book contains the information necessary to successfully add your own code to
IDL as a system routine. Especially important is Chapter 21, “Adding System
Routines”. Additional information about system routines can be found in Chapter 9,
“Using CALL_EXTERNAL” and in the documentation for “LINKIMAGE” in the
IDL Reference Guide manual.
External Development Guide Supported Inter-Language Communication Techniques in IDL

18 Chapter 1: External Development Overview
Advantages

• This is the most fully integrated option. It allows you to write IDL system
routines that are indistinguishable from those written by RSI.

• In use, system routines are very robust and fault tolerant.

• Allows direct access to IDL user variables and other important data structures.

Disadvantages

• All the disadvantages of CALL_EXTERNAL.

• Requires in-depth understanding of IDL internals, discussed in Part II of this
manual.

Recommendation

Use system routines if you require the highest level of integration of your code into
the IDL system. UNIX users with RPC experience should consider using RPCs to get
the benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or time to learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL is packaged in a shareable form that allows other programs to call IDL as a
subroutine. This shareable portion of IDL can be linked into your own programs.
This use of IDL is referred to as “Callable IDL” to distinguish it from the more usual
case of calling your code from IDL via CALL_EXTERNAL or as a system routine
(LINKIMAGE, DLM).

This book contains the information necessary to successfully call IDL from your own
code.

Advantages

• Supported on all systems.

• Allows extremely low level access to IDL.

Disadvantages

• All the disadvantages of CALL_EXTERNAL or IDL system routines.

• IDL imposes some limitations on programming techniques that your program
can use.
Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 19
Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows users should consider the ActiveX control or COM
component. UNIX users should consider using the IDL RPC server. If these options
are not appropriate for your task and you wish to call IDL from another program, then
use Callable IDL.
External Development Guide Supported Inter-Language Communication Techniques in IDL

20 Chapter 1: External Development Overview
Dynamic Linking Terminology and Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into a form which is loadable by
programs at run time as well as link time. The ability to load them at run time is what
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

• UNIX: Sharable Libraries

• Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable libraries in order to have a consistent
and uniform way to refer to them. It should be understood that this is a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbols).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
this manual. If you intend to use any of these techniques, you should first be sure to
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as system routines.

Callable IDL

Most of IDL is built as a sharable library. The actual IDL program that implements
the standard interactive IDL program links to this library and uses it to do its work.
Since IDL is a sharable library, it can be called by other programs.
Dynamic Linking Terminology and Concepts External Development Guide

Chapter 1: External Development Overview 21
Remote Procedure Calls (RPCs)

The IDL RPC server is a program that links to the IDL sharable library. The IDL
RPC client side library is also a sharable library. Your RPC client program links
against it to obtain access to the IDL RPC system.
External Development Guide Dynamic Linking Terminology and Concepts

22 Chapter 1: External Development Overview
When Is It Appropriate to Combine External
Code with IDL?

IDL is an interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys a large amount of portability across these
platforms because IDL provides access to system abilities at a relatively high level of
abstraction. The large majority of IDL users have no need to understand its inner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

• Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

• It is often best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviors to it, and incur the ongoing maintenance costs of supporting it.

• IDL may be largely suitable for a given task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats:

• RSI attempts to keep the interfaces described in this document stable, and we
endeavor to minimize gratuitous change. However, we reserve the right to
make any changes required by the future evolution of the system. Code linked
with IDL is more likely to require updates and changes to work with new
releases of IDL than programs written in the IDL language.

• The act of linking compiled code to IDL is inherently less portable than use of
IDL at the user level.

• Troubleshooting and debugging such applications can be very difficult. With
standard IDL, malfunctions in the program are clearly the fault of RSI, and
given a reproducible bug report, we attempt to fix them promptly. A program
that combines IDL with other code makes it difficult to unambiguously
determine where the problem lies. The level of support RSI can provide in
such troubleshooting is minimal. The programmer is responsible for locating
the source of the difficulty. If the problem is in IDL, a simple program
demonstrating the problem must be provided before we can address the issue.
When Is It Appropriate to Combine External Code with IDL? External Development Guide

Chapter 1: External Development Overview 23
Skills Required to Combine External Code
with IDL

There is a large difference between the level at which a typical user sees IDL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL is a large C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the
following areas:

Microsoft COM

To incorporate a COM object into your IDL program, you should be familiar with
COM interfaces in general and the interface of the object you are using in particular.

Microsoft ActiveX

To incorporate an ActiveX control into your IDL widget application, you should be
familiar with COM interfaces in general and the interface of the control you are using
in particular.

To use the IDLDrawWidget ActiveX control, you should be familiar with the
programming environment in which you will be using the control (Visual Basic, for
example). A level of understanding of ActiveX and COM is necessary.

Sun Java

To incorporate a Java object into your IDL program, you should be familiar with Java
object classes in general and the methods and data members of the object you are
using in particular.

UNIX RPC

To use IDL as an RPC server, a knowledge of Sun RPC (Also known as ONC RPC)
is required. Sun RPC is the fundamental enabling technology that underlies the
popular NFS (Network File System) software available on all UNIX systems, and as
such, is universally available on UNIX. The system documentation on this subject
should be sufficient.
External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: External Development Overview
ANSI C

IDL is written in ANSI C. To understand the data structures and routines described in
this document, you must have a complete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might
interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions (C++, Fortran, …)

It is possible to link IDL directly with code written in compiled languages other than
C although the details differ depending on the machine, language, and compiler used.
It is the programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilities
for RSI to actively document them all. ANSI C is a standard system programming
language on all systems supported by IDL, so it is usually straightforward to combine
it with code written in other compiled languages. You need to understand:

• The conventions used to pass parameters to functions in both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

• Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or end of names of functions and
global data.

• Any run-time initialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs some initialization work and then calls your main() function. Usually
these issues have been addressed by the system vendor, who has a large
interest in allowing such inter-language usage:

• If you call IDL from a program written in a language other than C, has the
necessary initialization occurred?

• If you use IDL to call code written in a language other than C, do you need
to take steps to initialize the runtime system for that language?

• Are the two runtime systems compatible?

Alternatives to direct linking (Microsoft COM or Active X) exist on some systems
that simplify the details of inter-language linking.
Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 25
C++

We are often asked if IDL can call C++ code. Compatibility with C has always been
a strong design goal for C++, and C++ is largely a superset of the C language. It
certainly is possible to combine IDL with C++ code. Callable IDL is especially
simple, as all you need to do is to include the idl_export.h header file in your C++
code and then call the necessary IDL functions directly. Calling C++ code from IDL
(CALL_EXTERNAL, System Routines) is also possible, but there are some issues
you should be aware of:

• As a C program, IDL is not able to directly call C++ methods, or use other
object-oriented features of the C++ language. To use these C++ features, you
must supply a function with C linkage (using an extern “C” specification) for
IDL to call. That routine, which is written in C++ is then able to use the C++
features.

• IDL does not initialize any necessary C++ runtime code. Your system may
require such code to be executed before your C++ code can run. Consult your
system documentation for details. (Please be aware that this information can be
difficult to find; locating it may require some detective work on your part.)

Fortran

Issues to be aware of when combining IDL with Fortran:

• The primary issue surrounding the calling of Fortran code from IDL is one of
understanding the calling conventions of the two languages. C passes
everything by value, and supplies an operator that lets you explicitly take the
address of a memory object. Fortran passes everything by reference (by
address). Difficulties in calling FORTRAN from C usually come down to
handling this issue correctly. Some people find it helpful to write a C wrapper
function to call their Fortran code, and then have IDL call the wrapper. This is
generally not necessary, but may be convenient.

• IDL is a C program, and as such, does not initialize any necessary Fortran
runtime code. Your system may require such code to be executed before your
Fortran code can run. In particular, Fortran code that does its own input output
often requires such startup code to be executed. Consult your system
documentation for details. One common strategy that can minimize this sort of
problem is to use IDL’s I/O facilities to do I/O, and have your Fortran code
limit itself to computation.
External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: External Development Overview
Operating System Features and Conventions

With the exception of purely numerical code, the programmer must usually fully
understand the target operating system environment in which IDL is running in order
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of 32–bit
applications, WIN32, and DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.
Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 27
IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about its internal operation. This section is intended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following algorithm:

while (statements remaining) {
Get next statement.
Perform lexical analysis and parse statement.
Execute statement.

}

This description is accurate at a conceptual level, and most early interpreters did their
work in exactly this way due to its simplicity. However, this scheme is inefficient
because:

• The meaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and every
time the statement is encountered.

• Since each statement is considered in isolation, any statement that requires
jumping to a different location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interpreter.
The interpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. This internal form is a
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into this internal form by the IDL compiler when the .RUN
executive command is issued, or when any other command requires a new routine to
be executed. Once the IDL routine is compiled, the original version is ignored, and all
references to the routine are to the compiled version. Some of the advantages of this
organization are:

• The expensive compilation process is only performed once, no matter how
often the resulting code is executed.

• Statements are not considered in isolation, so the compiler keeps track of the
information required to make jumping to a new location in the program fast.

• The binary internal form is much faster to interpret than the original form.
External Development Guide IDL Organization

28 Chapter 1: External Development Overview
• The internal form is compact, leading to better use of main memory, and
allowing more code to fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which are implemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure” on page 301). Pointers to IDL_VARIABLEs are
referred to as IDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to the resulting IDL_VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of arguments is specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up the requested routine in the internal table of routines.

2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If the routine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does all the work related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing a result.
IDL Organization External Development Guide

Chapter 1: External Development Overview 29
External Definitions

The file idl_export.h, found in the external/include subdirectory of the IDL
distribution, supplies all the IDL-specific definitions required to write code for
inclusion with IDL. As such, this file defines the interface between IDL and your
code. It will be worth your while to examine this file, reading the comments and
getting a general idea of what is available. If you are not writing in C, you will have
to translate the definitions in this file to suit the language you are using.

Warning
idl_export.h contains some declarations which are necessary to the compilation
process, but which are still considered private to RSI. Such declarations are likely to
be changed in the future and should not be depended on. In particular, many of the
structure data types discussed in this document have more fields than are discussed
here—such fields should not be used. For this reason, you should always include
idl_export.h rather than entering the type definitions from this document. This
will also protect you from changes to these data structures in future releases of IDL.
Anything in idl_export.h that is not explicitly discussed in this document
should not be relied upon.

The following two lines should be included near the top of every C program file that
is to become part of IDL:

#include <stdio.h>
#include "idl_export.h"
External Development Guide External Definitions

30 Chapter 1: External Development Overview
Interpreting Logical Boolean Values

IDL is written in the C programming language, and this manual therefore discusses C
language functions and data structures from the IDL program. In this documentation,
you will see references to logical (boolean) arguments and results referred to in any
of the following forms: True, False, TRUE, FALSE, IDL_TRUE, IDL_FALSE, and
possibly other permutations on these. In all cases, the meaning of true and false in
this manual correspond to those of the C programming language: A zero (0) value is
interpreted as “false”, and a non-zero value is “true”.

When reading this manual, please be aware of the following points:

• Unless otherwise specified, the actual word used when discussing logical
values is not important (i.e. true, True, TRUE, and IDL_TRUE) all mean the
same thing.

• Internally, IDL uses the IDL_TRUE and IDL_FALSE macros described in
“Macros” on page 413, for hard-wired logical constants. These macros have
the values 1, and 0 respectively. This convention is nothing more than
reflection of the need for a consistent standard within our code, and a desire to
keep IDL names within a standard namespace to avoid collisions with user
selected names. Otherwise, any of those other alternative names might have
been used with equally good results.

• We don’t use the IDL_TRUE and IDL_FALSE convention in the text of this
book because it would be unnecessarily awkward, preferring the more natural
True/TRUE and False/FALSE.

• The convention for truth values in the IDL Language differ from those used in
the C language. It is important to keep the language being used in mind when
reading code to avoid drawing incorrect conclusions about its meaning.
Interpreting Logical Boolean Values External Development Guide

Chapter 1: External Development Overview 31
Compilation and Linking Details

Once you’ve written your code, you need to compile it and link it into IDL before it
can be run. Information on how to do this is available in the various subdirectories of
the external subdirectory of the IDL distribution. References to files that are useful
in specific situations are contained in this book.

In addition:

• The IDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

• The IDL !MAKE_DLL system variable is used by the MAKE_DLL procedure
to construct C compiler and linker commands appropriate for the target
platform. If you do not use MAKE_DLL to compile and link your code, you
may find the value of !MAKE_DLL.CC and !MAKE_DLL.LD helpful in
determining which options to specify to your compiler and linker, in
conjunction with your system and compiler documentation. For the C
language, the options in !MAKE_DLL should be very close to what you need.
For other languages, the !MAKE_DLL options should still be helpful in
determining which options to use, as on most systems, all the language
compilers accept similar options.

• The UNIX IDL distribution has a bin subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with these files is a Makefile that shows how to build IDL from
the shareable libraries present in the directory. The link line in this makefile
should be used as a starting point when linking your code with Callable IDL—
simply omit main.o and include your own object files, containing your own
main program.

• A more detailed description of the issues involved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL” on page 482.
External Development Guide Compilation and Linking Details

32 Chapter 1: External Development Overview
Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the years in
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are also excellent. The absence of a book from this list
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
This is the original C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.

Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applications that call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows, The Definitive Guide to the Win32 API,
Microsoft Press, 1998. ISBN 157231995X (Supersedes: Programming Windows 95).

Richter, Jeffrey. Programming Applications for Microsoft Windows. Microsoft Press,
1999. ISBN 1572319968 (Supersedes: Advanced Windows, Third Edition).

The Microsoft Developer Network (MSDN) supplies essential documentation for
programming in the Windows environment. This documentation is part of the Visual
C++ environment. More information on the MSDN is available at
http://msdn.microsoft.com .

Sun Java

Flanagan, David. Java in a Nutshell, Fourth Edition, O’Reilly & Associates, March
2002. ISBN 0596002831. This book provides an accelerated introduction to the Java
language and key APIs.

In addition, you should study the Java tutorials and documentation provided on the
Sun’s Java website (http://www.java.sun.com).

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
Massachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. This is the definitive
Recommended Reading External Development Guide

http://www.java.sun.com

Chapter 1: External Development Overview 33
reference for UNIX system programmers. It covers all the important UNIX concepts
and covers the major UNIX variants in complete detail.

Rochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1985. ISBN 0-13-011818-4. This volume is also extremely well
written and does an excellent job of explaining and motivating the fundamental
UNIX concepts that underlie the UNIX system calls. This book suffers in comparison
to the Stevens book in that it discusses older UNIX systems rather than current
systems and lacks discussion of networking. However, what it does cover is correct
and very readable, and it is much shorter than Stevens.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

X Windows

The X Windows series by O’Reilly & Associates contains all the information needed
to program for the X Window system. There are several volumes—the ones you will
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. This is
purely a reference manual, as opposed to the O’Reilly books which contain a large
amount of tutorial as well as reference information. This book is primarily useful for
those using XLIB to draw graphics into Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 is the current version at this printing.)
External Development Guide Recommended Reading

34 Chapter 1: External Development Overview
Recommended Reading External Development Guide

Part I: Techniques
That Do Not Use IDL’s

Internal API

Chapter 2

Using SPAWN and
UNIX Pipes
IDL’s SPAWN procedure spawns a child process to execute a command or series of
commands. Cross-platform use of SPAWN is described in detail in the IDL Reference
Guide. This section describes a procedure available only on UNIX systems:
communicating with the spawned child process using UNIX pipes.

By default, calls to the SPAWN procedure cause the IDL process to wait until the
child process has finished before continuing. On UNIX systems, IDL can attach a
bidirectional pipe to the standard input and output of the child process, and then
continue without waiting for the child process to finish. The pipe created in this
manner appears in the IDL process as a normal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
can be used to communicate with it. The ability to use a child process in this manner
allows you to solve specialized problems using other languages and to take advantage
of existing programs.
External Development Guide 37

38 Chapter 2: Using SPAWN and UNIX Pipes
In order to start such a process, use the UNIT keyword to SPAWN to specify a named
variable in which the logical file unit number will be stored. Once the child process
has done its work, use the FREE_LUN procedure to close the pipe and delete the
process.

When using a child process in this manner, it is important to understand the following
points:

• Closing the file unit causes the child process to be killed. Therefore, do not
close the unit until the child process completes its work.

• A UNIX pipe is simply a buffer maintained by the operating system. It has a
fixed length and can therefore become completely filled. When this happens,
the operating system puts the process that is filling the pipe to sleep until the
process at the other end consumes the buffered data. The use of a bidirectional
pipe can lead to deadlock situations in which both processes are waiting for the
other. This can happen if the parent and child processes do not synchronize
their reading and writing activities.

• Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situations where IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function as the first statement of the child
program to eliminate such buffering.

(void) setbuf(stdout, (char *) 0);

It is important that this statement occur before any output operation is
executed; otherwise, it may not have any effect.

Example: Communicating with a Child Process
Under UNIX

The C program shown in the following example (test_pipe.c) accepts floating-
point values from its standard input and returns their average on the standard output.
In actual practice, such a trivial program would never be used from IDL, since it is
simpler and more efficient to perform the calculation within IDL itself. The example
does, however, serve to illustrate a method by which significant programs can be
called from IDL.

In the interest of brevity, some error checking that would normally be included in
such a program has been omitted. For example, a real program would need to check
External Development Guide

Chapter 2: Using SPAWN and UNIX Pipes 39
the non-zero return values from fread(3) and fwrite(3) to ensure that the
desired amount of data was actually transferred.

This program performs the following steps:

1. Reads a long integer that tells how many data points to expect, because it is
desirable to be able to average an arbitrary number of points.

2. Obtains dynamic memory via the malloc() function, and reads the data into it.

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

main()
{
 float *data, total = 0.0;
 char *err_str;
 int i, n;

 /* Make sure the output is not buffered */
 setbuf(stdout, (char *) 0);

 /* Find out how many points */
 if (!fread(&n, sizeof(n), 1, stdin)) goto error;

 /* Get memory for the array */
 if (!(data = (float *) malloc(n * sizeof(*data)))) goto error;

 /* Read the data */
 if (!fread(data, sizeof(*data), n, stdin)) goto error;

 /* Calculate the average */
 for (i=0; i < n; i++) total += data[i];
 total /= (float) n;

 /* Return the answer */
 if (!fwrite(&total, sizeof(*data), 1, stdout)) goto error;
 return;

error:
 err_str = strerror(errno);
 if (!err_str) err_str = "<unknown error>";
 fprintf(stderr, "test_pipe: %s\n", err_str);
}

Table 2-1: test_pipe.c
External Development Guide

40 Chapter 2: Using SPAWN and UNIX Pipes
3. Calculates the average of the points.

4. Returns the answer as a single floating-point value.

Since the amount of input and output for this program is explicitly known and
because it reads all of its input at the beginning and writes all of its results at the end,
a deadlock situation cannot occur.

The following IDL statements use test_pipe to determine the average of the values 0
to 9:

;Start test_pipe. The use of the NOSHELL keyword is not necessary,
;but speeds up the start-up process.
SPAWN, 'test_pipe', UNIT = UNIT, /NOSHELL

;Send the number of points followed by the actual data.
WRITEU, UNIT, 10L, FINDGEN(10)

;Read the answer.
READU, UNIT, ANSWER

;Announce the result.
PRINT, "Average = ", ANSWER

;Close the pipe, delete the child process, and deallocate the
;logical file unit.
FREE_LUN, UNIT

Executing these statements gives the result:

Average = 4.50000

This mechanism provides the UNIX IDL user a simple and efficient way to augment
IDL with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred. For example, the above example
can be performed entirely in IDL using a simple statement such as the following:

PRINT, 'Average = ', TOTAL(FINDGEN(10))/10.0
External Development Guide

Chapter 3

Overview: COM and
ActiveX in IDL
This chapter discusses the following topics:
COM Objects and IDL 42
Using COM Objects with IDL 44

Skills Required to Use COM Objects 46
External Development Guide 41

42 Chapter 3: Overview: COM and ActiveX in IDL
COM Objects and IDL

Microsoft’s Component Object Model, or COM, is a specification for developing
modular software components. COM is not a programming language or an API, but
an implementation of a component architecture. A component architecture is a
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodology include the Object Management Group’s
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a special class of COM object that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM-based software
components in your applications:

• Exposing a COM object as an IDL object,

• Including an ActiveX control in an IDL widget hierarchy,

• Including the IDLDrawWidget ActiveX control in an application written in a
language other than IDL.

Note
While COM components can be developed for numerous platforms, most COM-
based software is written for Microsoft Windows platforms. IDL for Windows
supports the inclusion of COM technologies, but IDL for UNIX does not. The
chapters in this section will discuss COM in the context of Microsoft Windows
exclusively.

What are COM Objects?

A COM object, or component, is a piece of software that:

• is a library, rather than a standalone application (that is, it runs inside some sort
of client application such as IDL, a Visual Basic application, or a web
browser);

• is distributed in a compiled, executable form;

• exposes a group of methods and properties to its client application;
COM Objects and IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 43
In addition to these criteria, a component may also supply a user interface that can be
manipulated by the user. COM objects that supply a user interface and send events to
the programs that use them are generally packaged as ActiveX controls, although it is
not a requirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (.exe), dynamic link library(.dll), or object linking and embedding
(.ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL:

• COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

• COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster
than coding the same functionality in IDL.

• Using the IDLDrawWidget ActiveX control, you can rapidly incorporate IDL
functionality into a Windows application created with any COM-aware
environment. COM-aware environments include Visual Basic, Visual C++,
and even VBScript.
External Development Guide COM Objects and IDL

44 Chapter 3: Overview: COM and ActiveX in IDL
Using COM Objects with IDL

The three methods for using COM objects with IDL are:

• Exposing a COM Object as an IDL Object,

• Including an ActiveX Control in an IDL Widget Hierarchy,

• Using the IDLDrawWidget ActiveX Control in an application written in a
language other than IDL.

Exposing a COM Object as an IDL Object

IDL’s IDLcomIDispatch object class creates an IDL object that communicates with
an underlying COM object using the COM object’s IDispatch interface. When you
create an IDLcomIDispatch object, you provide the identifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcomIDispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to use is an
ActiveX control, use the WIDGET_ACTIVEX routine, discussed below.

For details on using the IDLcomIDispatch object class to incorporate COM objects
into your IDL applications, see Chapter 4, “Using COM Objects in IDL”.

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL’s WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. This allows you to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanisms it uses when creating IDLcomIDispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsulates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This allows you to call the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.
Using COM Objects with IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 45
For details on using the WIDGET_ACTIVEX routine to incorporate ActiveX
controls into your IDL applications, see Chapter 5, “Using ActiveX Controls in IDL”.

Using the IDLDrawWidget ActiveX Control

IDL for Windows distributions include an ActiveX control that makes IDL
functionality available to other applications. Including the IDLDrawWidget control
in your Windows application allows you to create your own user interface using the
programming language of your choice, while using IDL’s data analysis and display
functionality.

Note
The IDLDrawWidget ActiveX control provides a COM interface to IDL, but
requires an IDL installation to function. This means that in order for an application
to use the IDLDrawWidget control, a licensed copy of IDL must be installed on the
same computer.

For details on using the IDLDrawWidget ActiveX control in your own Windows
applications, see Chapter 6, “The IDLDrawWidget ActiveX Control”.
External Development Guide Using COM Objects with IDL

46 Chapter 3: Overview: COM and ActiveX in IDL
Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to successfully intertwine COM and IDL.

If You Are Using COM Objects

If you are using a COM object directly, via the IDLcomIDispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objects is useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need a thorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controls is useful.

If You Are Using the IDLDrawWidget ActiveX Control

If you are incorporating the IDLDrawWidget ActiveX control in your own Windows
application, you will need a thorough understanding of your own application
development tools, including how they are used to interact with ActiveX controls.
Details about the IDLDrawWidget control itself are provided in Chapter 6, “The
IDLDrawWidget ActiveX Control” and Chapter 7, “IDLDrawWidget Control
Reference”.

If You Are Creating Your Own COM Object

If you are creating your own COM object to be included in IDL, you will need a
thorough understanding of both your development environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.
Skills Required to Use COM Objects External Development Guide

Chapter 4

Using COM Objects
in IDL
This chapter discusses the following topics:
About Using COM Objects in IDL 48
IDLcomIDispatch Object Naming Scheme . 50
Creating IDLcomIDispatch Objects 54
Method Calls on IDLcomIDispatch Objects 55
Managing COM Object Properties 63

References to Other COM Objects 65
Destroying IDLcomIDispatch Objects 66
COM-IDL Data Type Mapping 67
Example: RSIDemoComponent 69
External Development Guide 47

48 Chapter 4: Using COM Objects in IDL
About Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomIDispatch object class.

IDL’s IDLcomIDispatch object class creates an IDL object that uses the COM
IDispatch interface to communicate with an underlying COM object. When you
create an IDLcomIDispatch object, you provide information about the COM object
you wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application is an ActiveX control,
use the WIDGET_ACTIVEX routine, discussed in Chapter 5, “Using ActiveX
Controls in IDL”.

Array Data Storage Format

COM, like C, stores array data in row-major format. IDL stores array data in column-
major format. See “Columns, Rows, and Array Majority” in Chapter 15 of the
Building IDL Applications manual for a detailed discussion of this issue and its
implications for IDL application design.

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ_NEW function
as described in “Creating IDLcomIDispatch Objects” on page 54. IDL creates a
dynamic subclass of the IDLcomIDispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your IDLcomIDispatch object within IDL, use normal IDL
object method calls to interact with the object. (See Chapter 1, “The Basics of Using
Objects in IDL” in the Object Programming manual for a discussion of IDL objects.)
COM object properties can be set and retrieved using the GetProperty and
SetProperty methods implemented for the IDLcomIDispatch class. See “Method
Calls on IDLcomIDispatch Objects” on page 55 and “Managing COM Object
Properties” on page 63 for details.
About Using COM Objects in IDL External Development Guide

Chapter 4: Using COM Objects in IDL 49
Object Destruction

Destroy IDLcomIDispatch objects using the OBJ_DESTROY procedure. See
“Destroying IDLcomIDispatch Objects” on page 66 for details.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by a client program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register a component (.dll or .exe) or a control (.ocx), use the Windows
command line program regsvr32, supplying it with name of the component or
control to register. For example, the IDL distribution includes a COM component
named RSIDemoComponent, contained in a file named RSIDemoComponent.dll
located in the examples\doc\bridges\COM subdirectory of the IDL distribution.
To register this component, do the following:

1. Open a Windows command prompt.

2. Change directories to the examples\doc\bridges\COM subdirectory of the
IDL distribution.

3. Enter the following command:

regsvr32 RSIDemoComponent.dll

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the “ /s ” parameter to regsvr32 to prevent the dialog
from being displayed.)

Note
You only need to register a component once on a given machine. It is not necessary
to register a component before each use.
External Development Guide About Using COM Objects in IDL

50 Chapter 4: Using COM Objects in IDL
IDLcomIDispatch Object Naming Scheme

When you create an IDLcomIDispatch object, IDL automatically creates a dynamic
subclass of the IDLcomIDispatch class to contain the COM object. IDL determines
which COM object to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM object to use by creating a class name
that combines the name of the base class (IDLcomIDispatch) with either the COM
class identifier or the COM program identifier for the object. The resulting class
name looks like

IDLcomIDispatchID_typeID

where ID_type is one of the following:

• CLSID if the object is identified by its COM class ID, or

• PROGID if the object is identified by its COM program ID,

and ID is the COM object’s actual class or program identifier string.

Note
While COM objects incorporated into IDL are instances of the dynamic subclass
created when the COM object is instantiated, they still expose the functionality of
the class IDLcomIDispatch, which is the direct superclass of the dynamic subclass.
All IDLcomIDispatch methods are available to the dynamic subclass.

Class Identifiers

A COM object’s class identifier (generally referred to as the CLSID) is a 128-bit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM as class IDs are also referred to as Globally Unique Identifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class IDs are generated, but it is certain that every COM
object has a unique CLSID.

COM class IDs are 32-character strings of alphanumeric characters and numerals that
look like this:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

The above class identifier identifies the RSIDemoComponent class included with
IDL.
IDLcomIDispatch Object Naming Scheme External Development Guide

Chapter 4: Using COM Objects in IDL 51
When you create an IDLcomIDispatch object using a CLSID, you must modify the
standard CLSID string in two ways:

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores (_).

See “Creating IDLcomIDispatch Objects” on page 54 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the class ID of the COM object you wish to expose as an IDL
object, you may be able to determine it using an application provided by Microsoft;
see “Finding COM Class and Program IDs” on page 52 for details.

Program Identifiers

A COM object’s program identifier (generally referred to as the PROGID) is a
mapping of the class identifier to a more human-friendly string. Unlike class IDs,
program IDs are not guaranteed to be unique, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program IDs are alphanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM.Component.version

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSIDemoComponent.RSIDemoObj1.1

When you create an IDLcomIDispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores (_).

See “Creating IDLcomIDispatch Objects” on page 54 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see “Finding COM Class and Program IDs” on page 52 for details.
External Development Guide IDLcomIDispatch Object Naming Scheme

52 Chapter 4: Using COM Objects in IDL
Finding COM Class and Program IDs

In general, if you wish to incorporate a COM object into an IDL program, you will
know the COM class or program ID — either because you created the COM object
yourself, or because the developer of the object provided you with the information.

If you do not know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no
charge directly from Microsoft. As of this writing, you can locate the tool by pointing
your Web browser to:

http://www.microsoft.com/com

and then selecting “Downloads” from the “Resources” menu.

The OLE/COM Object Viewer displays all of the COM objects installed on a
computer, and allows you to view information about the objects and their interfaces.

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

Figure 4-1: Microsoft’s OLE/COM Object Viewer Application
IDLcomIDispatch Object Naming Scheme External Development Guide

http://www.microsoft.com/com

Chapter 4: Using COM Objects in IDL 53
If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program ID that was used when the object
was created.
External Development Guide IDLcomIDispatch Object Naming Scheme

54 Chapter 4: Using COM Objects in IDL
Creating IDLcomIDispatch Objects

To expose a COM object as an IDL object, use the OBJ_NEW function to create a
dynamic subclass of the IDLcomIDispatch object class. The name of the subclass
must be constructed as described in “IDLcomIDispatch Object Naming Scheme” on
page 50, and identifies the COM object to be instantiated.

Note
If the COM object you want to use within IDL is an ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 5, “Using ActiveX Controls
in IDL”. Instantiating the ActiveX control as part of an IDL widget hierarchy
allows you to respond to events generated by the control, whereas COM objects that
are instantiated using the OBJ_NEW do not generate events that IDL is aware of.

For example, suppose you wish to include a COM component with the class ID

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

and the program ID

RSIDemoComponent.RSIDemoObj1.1

in an IDL program. Use either of the following calls to the OBJ_NEW function:

ObjRef = OBJ_NEW($
'IDLcomIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52')

or

ObjRef = OBJ_NEW($
'IDLcomIDispatch$PROGID$RSIDemoComponent_RSIDemoObj1_1')

IDL’s internal COM subsystem instantiates the COM object within an
IDLcomIDispatch object with one of the following the dynamic class names

IDLcomIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52

or

IDLcomIDispatch$PROGID$RSIDemoComponent_RSIDemoObj1_1

and sets up communication between the object and IDL. You can work with the
IDLcomIDispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See “IDLcomIDispatch” in the IDL Reference Guide manual for additional details.
Creating IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 55
Method Calls on IDLcomIDispatch Objects

IDL allows you to call the underlying COM object’s methods by calling methods on
the IDLcomIDispatch object. IDL handles conversion between IDL data types and
the data types used by the component, and any results are returned in IDL variables of
the appropriate type.

As with all IDL objects, the general syntax is:

result = ObjRef -> Method([Arguments])

or

ObjRef -> Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLcomIDispatch class.

Function vs. Procedure Methods

In COM, all object methods are functions. IDL’s implementation of the
IDLcomIDispatch object maps COM methods that supply a return value using the
retval attribute as IDL functions, and COM methods that do not supply a return
value via the retval attribute as procedures. See “Displaying Interface Information
using the Object Viewer” on page 59 for more information on determining which
methods use the retval attribute.

The IDLcomIDispatch::GetProperty and IDLcomIDispatch::SetProperty methods are
special cases. These methods are IDL object methods — not methods of the
underlying COM object — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in IDLcomIDispatch objects is
discussed in “Managing COM Object Properties” on page 63.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDLcomIDispatch
object implements Init or Cleanup methods, they will be overridden by IDL’s
lifecycle methods — the COM object’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcomIDispatch object, so any methods of the underlying COM object that use
these names will be inaccessible from IDL.
External Development Guide Method Calls on IDLcomIDispatch Objects

56 Chapter 4: Using COM Objects in IDL
What Happens When a Method Call is Made?

When a method is called on an IDLcomIDispatch object, the method name and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate IDispatch method calls for the underlying COM object.

From the point of view of an IDL user issuing method calls on the IDLcomIDispatch
object, this process is completely transparent. The IDL user simply calls the COM
object’s method using IDL syntax, and IDL handles the translation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle all conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 67.

For example, if the COM object that underlies an IDLcomIDispatch object has a
method that requires a value of type INT as an input argument, you would supply the
value as an IDL Long. If you supplied the value as any other IDL data type, IDL
would first convert the value to an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object as an INT.

Similarly, if a COM object returns a BOOL value, IDL will place the value in a
variable of Byte type, with a value of 1 (one) signifying True or a value of 0 (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on IDLcomIDispatch
objects, and to the IDLcomIDispatch::GetProperty method. This means that if an
argument is not required by the underlying COM object method, it can be omitted
from the method call used on the IDLcomIDispatch object.
Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 57
Note
Only method arguments defined with the optional token in the object’s interface
definition are optional. See “Displaying Interface Information using the Object
Viewer” on page 59 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDLcomIDispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
a difference where in the argument list an argument occurs. (Contrast this with IDL’s
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments

2. Optional arguments for which default values are defined

3. Optional arguments for which no default values are defined

The same order applies when the method is called on an IDLcomIDispatch object.

Default Argument Values

COM allows objects to specify a default value for any method arguments that are
optional. If a call to a method that has an optional argument with a default value
omits the optional argument, the default value is used. IDL behaves in the same way
as COM when calling COM object methods on IDLcomIDispatch objects, and when
calling the IDLcomIDispatch::GetProperty method.

Method arguments defined with the defaultvalue() token in the object’s interface
definition are optional, and will use the specified default value if omitted from the
method call. See “Displaying Interface Information using the Object Viewer” on
page 59 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional arguments to accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on
External Development Guide Method Calls on IDLcomIDispatch Objects

58 Chapter 4: Using COM Objects in IDL
IDLcomIDispatch objects, but not for the IDLcomIDispatch::GetProperty or
SetProperty methods.

To skip one or more arguments from a list of optional arguments, include the SKIP
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
The indices for the list of method arguments are zero-based — that is, the first
method argument (either optional or required) is argument 0 (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

ObjMethod, arg1, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDLcomIDispatch object that encapsulates the underlying
COM object, skipping arg2, use the following command:

objRef -> ObjMethod, arg1, arg3, arg4, SKIP=1

Note that the SKIP keyword uses the index value 1 to indicate the second argument in
the argument list. Similarly, to skip arg2 and arg3, use the following command:

objRef -> ObjMethod, arg1, arg4, SKIP=[1,2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip arg3 and arg4, use the following command:

objRef -> ObjMethod, arg1, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM object’s methods are and what arguments and data types those
methods take — either because you created the COM object yourself, or because the
developer of the object provided you with the information.
Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 59
If for some reason you do not know what methods the COM object supports, you may
be able to determine which methods are available and what parameters they accept
using the OLE/COM Object Viewer application provided by Microsoft. (See “Finding
COM Class and Program IDs” on page 52 for information on acquiring the
OLE/COM Object Viewer.)

Warning
Finding information about a COM object’s methods using the OLE/COM Object
Viewer requires a moderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hints in this section
on how to interpret the interface definition, if you are not already familiar with the
structure of COM objects you may find this material inadequate. If possible, consult
the developer of the COM object you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM object on your Windows machine. Select a COM object in the leftmost panel of
the object viewer, click the right mouse button, and select “View Type
Information...” A new window titled “ITypeLib Viewer” will be displayed, showing
all of the component’s interfaces (Figure 4-2).

Figure 4-2: Viewing a COM Object’s Interface Definition
External Development Guide Method Calls on IDLcomIDispatch Objects

60 Chapter 4: Using COM Objects in IDL
Note
The top lines in the right-hand panel will say something like:

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: RSIDemoComponent.dll

The “.IDL file” in this case has nothing to do with IDL, the Interactive Data
Language. Here “IDL” stands for Interface Description Language — a language
used to define component interfaces. If you are familiar with the Interface
Description Language, you can often determine what a component is designed to
do.

With the top-level object selected in the left-hand pane of the ITypelib Viewer, scroll
down in the right-hand pane until you find the section that defines the IDispatch
interface for the object in question. The definition will look something like this:

interface IRSIDemoObj1 : IDispatch {
[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);
[id(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);
[id(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);
[id(0x00000003)]
HRESULT DisplayMessageStr();
[id(0x00000004)]
HRESULT Msg2InParams(

[in] BSTR str,
[in] long val,
[out, retval] BSTR* pVal);

[id(0x00000005)]
HRESULT GetIndexObject(

[in] long ndxObj,
[out, retval] IDispatch** ppDisp);

[id(0x00000006)]
HRESULT GetArrayOfObjects(

[out] long* pObjCount,
[out, retval] VARIANT* psaObjs);

};

Method definitions look like this:

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);
Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 61
where the line including the id string is an identifier used by the object to refer to its
methods and the following line or lines (usually beginning with HRESULT) define the
method’s interface.

Again, while it is beyond the scope of this manual to discuss COM object methods in
detail, the following points may assist you in determining how to use a COM object:

• Methods whose definitions include the retval attribute will appear in IDL as
functions.

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);

• Methods that do not include the retval attribute will appear in IDL as
procedures.

[id(0x00000003)]
HRESULT DisplayMessageStr();

• Methods whose definitions include the propget attribute allow you to retrieve
an object property using the IDLcomIDispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties” on page 63 for additional details.

[id(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);

• Methods whose definitions include the propput attribute allow you to set an
object property using the IDLcomIDispatch::SetProperty method. You cannot
call these methods directly in IDL; see “Managing COM Object Properties” on
page 63 for additional details.

[id(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);

• Methods that accept optional input values will include the optional token in
the argument’s definition. For example, the following definition indicates that
the second input argument is optional:

[id(0x00000004)]
HRESULT Msg1or2InParams(

[in] BSTR str,
[in, optional] int val,
[out, retval] BSTR* pVal);

• Methods that provide default values for optional arguments replace the
optional token with the defaultvalue() token, where the default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:
External Development Guide Method Calls on IDLcomIDispatch Objects

62 Chapter 4: Using COM Objects in IDL
HRESULT Msg1or2InParams(
[in] BSTR str,
[in, defaultvalue(15)] int val,
[out, retval] BSTR* pVal);

• While methods generally return an HRESULT value, this is not a requirement.

Displaying Interface Information using the IDL HELP Procedure

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displays a list of objects, along
with their methods, with function and procedure methods in separate groups for each
object class.
Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 63
Managing COM Object Properties

As a convenience to the IDL programmer, COM object methods that have been
defined using the propget and propput attributes are accessible via the
IDLcomIDispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM object’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If a COM object method’s interface definition includes either the propget or the
propput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

As with all IDL objects, the IDLcomIDispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword values represent either an IDL
variable into which the property value is placed or an IDL expression that is the value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set a property value on a COM object, use the following syntax:

ObjRef->SetProperty, KEYWORD=Expression

where ObjRef is the IDLcomIDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Expression is an IDL expression
representing the property value to be set.

You can set multiple property values in a single statement by supplying multiple
KEYWORD=Expression pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property setting method. The partial keyword name functionality provided by IDL
is not valid with IDLcomIDispatch objects.

IDL lets you to set multiple properties at once in the same SetProperty call. For
example:

ObjRef->SetProperty, OPTION=1, INDEX=99L
External Development Guide Managing COM Object Properties

64 Chapter 4: Using COM Objects in IDL
This command is equivalent to the following lines:

ObjRef->SetProperty, OPTION=1
ObjRef->SetProperty, INDEX=99L

If you pass parameters when setting multiple properties, the parameter or parameters
are sent to each property being set. For example:

ObjRef->SetProperty, 'Parm1', 24L, oRef, OPTION=1, INDEX=99L

This command is equivalent to the following lines:

ObjRef->SetProperty, 'Parm1', 24L, oRef, OPTION=1
ObjRef->SetProperty, 'Parm1', 24L, oRef, INDEX=99L

Thus, when you are setting multiple properties at the same time and passing
parameters, all the properties that are set at the same time must be defined as
receiving the same sets of parameters.

Getting Properties

To retrieve a property value from a COM object, use the following syntax:

ObjRef->GetProperty, KEYWORD=Variable

where ObjRef is the IDLcomIDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Variable is the name of an IDL
variable that will contain the retrieved property value.

You can get multiple property values in a single statement by supplying multiple
KEYWORD=Variable pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property getting method. The partial keyword name functionality provided by IDL
is not valid with IDLcomIDispatch objects.

Because some of the underlying COM object’s propget methods may require
arguments, the IDLcomIDispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

ObjRef->GetProperty, KEYWORD=Variable [, arg0, arg1, ... argn]

Note, however, that if arguments are required, you can only specify one property to
retrieve.
Managing COM Object Properties External Development Guide

Chapter 4: Using COM Objects in IDL 65
References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an IDLcomIDispatch object
returns a reference to another COM object’s IDispatch interface, IDL automatically
creates an IDLcomIDispatch object to contain the object reference.

For example, suppose the GetOtherObject method to the COM object
encapsulated by the IDLcomIDispatch object Obj1 returns a reference to another
COM object.

Obj2 = Obj1->GetOtherObject()

Here, Obj2 is an IDLcomIDispatch object that encapsulates some other COM object.
Obj2 behaves in the same manner as any IDLcomIDispatch object.

Note that IDLcomIDispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above example, this means that
destroying Obj1 does not destroy Obj2. If the COM object you are using creates new
IDLcomIDispatch objects in this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the
OBJ_DESTROY procedure.
External Development Guide References to Other COM Objects

66 Chapter 4: Using COM Objects in IDL
Destroying IDLcomIDispatch Objects

Use the OBJ_DESTROY procedure to destroy and IDLcomIDispatch object.

When OBJ_DESTROY is called with an IDLcomIDispatch object as an argument,
the underlying reference to the COM object is released and IDL resources relating to
that object are freed.

Note
Destroying an IDLcomIDispatch object does not automatically cause the
destruction of the underlying COM object. COM employs a reference-counting
methodology and expects the COM object to destroy itself when there are no
remaining references. When an IDLcomIDispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM object.
Destroying IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 67
COM-IDL Data Type Mapping

When data moves from IDL to a COM object and back, IDL handles conversion of
variable data types automatically. The data type mappings are shown in Table 4-1.

COM Type IDL Type

BOOL (VT_BOOL) Byte (true =1, false=0)

ERROR
(VT_ERROR)

Long

CY (VT_CY) Double (see note below)

DATE (VT_DATE) Double

I1 (VT_I1) Byte

INT (VT_INT) Long

UINT (VT_UINT) Unsigned Long

VT_USERDEFINED The IDL type is passed through.

VT_UI1 Byte

VT_I2 Integer

VT_UI2 Unsigned integer

VT_ERROR Long

VT_I4 Long

VT_UI4 Unsigned Long

VT_I8 Long64

VT_UI8 Unsigned Long 64

VT_R4 Float

VT_BSTR String

VT_R8 Double

VT_DISPATCH IDLcomIDispatch

Table 4-1: IDL-COM Data Type Mapping
External Development Guide COM-IDL Data Type Mapping

68 Chapter 4: Using COM Objects in IDL
Note on the COM CY Data Type

The COM CY data type is a scaled 64-bit integer, supporting exactly four digits to the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, allowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234.56789 would be passed to the
COM object as 234.5678.

VT_UNKNOWN IDLcomIDispatch

COM Type IDL Type

Table 4-1: IDL-COM Data Type Mapping (Continued)
COM-IDL Data Type Mapping External Development Guide

Chapter 4: Using COM Objects in IDL 69
Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent is included purely for demonstration purposes, and does not
perform any useful work beyond illustrating how IDLcomIDispatch objects are
created and used.

The RSIDemoComponent is contained in a file named RSIDemoComponent.dll
located in the examples\doc\bridges\COM subdirectory of the IDL distribution.
Before attempting to execute this example, make sure the component is registered on
your system as described in “Registering COM Components on a Windows
Machine” on page 49.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj1, which has the program ID:

RSIDemoComponent.RSIDemoObj1

and the class ID:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

Example Code
The following section develops an IDL procedure called IDispatchDemo that
illustrates use of the RSIDemoComponent. The complete .pro file is included in
the examples\doc\bridges\COM subdirectory of the IDL distribution as
IDispatchDemo.pro.

1. Begin by creating an IDLcomIDispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

obj1 = OBJ_NEW($
'IDLCOMIDispatch$PROGID$RSIDemoComponent_RSIDemoObj1')

or (with Class ID):

obj1 = OBJ_NEW($
'IDLCOMIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52')

2. The COM object implements the GetCLSID method, which returns the class
ID for the component. You can retrieve this value in and IDL variable and
print it. The string should be '{A77BC2B2-88EC-4D2A-B2B3-
F556ACB52E52}'.
External Development Guide Example: RSIDemoComponent

RSI_PROCODE/examples/doc/bridges/COM/IDispatchDemo.pro

70 Chapter 4: Using COM Objects in IDL
strCLSID = obj1->GetCLSID()
PRINT, strCLSID

Note
The GetCLSID method returns the class identifier of the object using the
standard COM separators (-).

3. The COM object has a property named MessageStr. To retrieve the value of
the MessageStr property, enter:

obj1 -> GetProperty, MessageStr = outStr
PRINT, outStr

IDL should print 'RSIDemoObj1'.

4. You can also set the MessageStr property of the object and display it using
the object’s DisplayMessageStr method, which displays the value of the
MessageStr property in a Windows dialog:

obj1 -> SetProperty, MessageStr = 'Hello, world'
obj1 -> DisplayMessageStr

5. The Msg2InParams method takes two input parameters and concatenates
them into a single string. Executing the following commands should cause IDL
to print 'The value is: 25'.

instr = 'The value is: '
val = 25L
outStr = obj1->Msg2InParams(instr, val)
PRINT, outStr

6. To view all known information about the IDLcomIDispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECTS keyword:

HELP, obj1, /OBJECTS

7. The GetIndexObject() method returns an object reference to one of the
following three possible objects:

• RSIDemoObj1 (index = 1)

• RSIDemoObj2 (index = 2)

• RSIDemoObj3 (index = 3)

Note
If the index is not 1, 2, or 3, the GetIndexObject method will return an
error.
Example: RSIDemoComponent External Development Guide

Chapter 4: Using COM Objects in IDL 71
To get a reference to RSIDemoObj3, use the following command:

obj3 = obj1->GetIndexObject(3)

8. All three objects have the GetCLSID method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be '{13AB135D-A361-4A14-B165-785B03AB5023}'.

obj3CLSID = obj3->GetCLSID()
PRINT, obj3CLSID

9. Remember to destroy a retrieved object when you are finished with it:

OBJ_DESTROY, obj3

10. Next, use the COM object’s GetArrayOfObjects() method to return a
vector of object references to RSIDemoObj1, RSIDemoObj2, and
RSIDemoObj3, respectively. The number of elements in the vector is returned
in the first parameter; the result should 3.

objs = obj1->GetArrayOfObjects(cItems)
PRINT, cItems

11. Since each object implements the GetCLSID method, you could loop through
all the object references and get its class ID:

FOR i = 0, cItems-1 do begin
objCLSID = objs[i] -> GetCLSID()
PRINT, 'Object[',i,'] CLSID: ', objCLSID

ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, obj1
External Development Guide Example: RSIDemoComponent

72 Chapter 4: Using COM Objects in IDL
Example: RSIDemoComponent External Development Guide

Chapter 5

Using ActiveX Controls
in IDL
This chapter discusses the following topics:
About Using ActiveX Controls in IDL 74
ActiveX Control Naming Scheme 76
Method Calls on ActiveX Controls 79
Managing ActiveX Control Properties 80

ActiveX Widget Events 81
Destroying ActiveX Controls 84
Example: Calendar Control 85
Example: Spreadsheet Control 88
External Development Guide 73

74 Chapter 5: Using ActiveX Controls in IDL
About Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL’s WIDGET_ACTIVEX routine
to place the control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls as it does for COM objects
incorporated using the IDLcomIDispatch object interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows 2000/XP (and later)
platforms.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. IDLcomActiveX
objects are a subclass of the IDLcomIDispatch object class, and share all of the
IDLcomIDispatch methods and mechanisms discussed in Chapter 4, “Using COM
Objects in IDL”. You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controls in your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActiveX
control, use the IDLcomIDispatch object class.

Warning: Modeless Dialogs

When displaying an ActiveX form or dialog box, it is the responsibility of the COM
object to pump messages. Modal dialogs pump messages themselves, but modeless
dialogs do not. IDL’s COM subsystem does not provide the ability to pump messages
explicitly, giving IDL no way to pump messages while a modeless dialog is
displayed. As a result, calling a modeless dialog from IDL will result in an error.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by a client program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
About Using ActiveX Controls in IDL External Development Guide

Chapter 5: Using ActiveX Controls in IDL 75
component manually. For a description of the registration process, see “Registering
COM Components on a Windows Machine” on page 49.
External Development Guide About Using ActiveX Controls in IDL

76 Chapter 5: Using ActiveX Controls in IDL
ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to instantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (which is
itself a subclass of the IDLcomIDispatch class) to contain the ActiveX control. The
resulting class name looks like

IDLcomActiveXID_typeID

where ID_type is one of the following:

• CLSID if the object is identified by its COM class ID, or

• PROGID if the object is identified by its COM program ID,

and ID is the COM object’s actual class or program identifier string.

For more on COM class and program IDs see “Class Identifiers” on page 50 and
“Program Identifiers” on page 51.

While you will never need to use this dynamic class name directly, you may see it
reported by IDL via the HELP routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen characters in a
class ID and the dot characters in a program ID with underscore characters. This is
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In general, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID — either because you created
the control yourself, or because the developer of the control provided you with the
information.

If you do now know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see “Finding COM Class and Program
IDs” on page 52.
ActiveX Control Naming Scheme External Development Guide

Chapter 5: Using ActiveX Controls in IDL 77
Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control as the
COM_ID argument.

Note
If the object you want to use in your IDL application is not an ActiveX control, use
the IDLcomIDispatch object class as described in Chapter 4, “Using COM Objects
in IDL”. Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may lead to unpredictable results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can call the control’s native methods as described in “Method Calls on ActiveX
Controls” on page 79, and access or modify its properties as described in “Managing
ActiveX Control Properties” on page 80. IDL widget events generated by the control
are discussed in “ActiveX Widget Events” on page 81.

For example, suppose you wished to include an ActiveX control with the class ID:

{0002E510-0000-0000-C000-000000000046}

and the program ID:

OWC.Spreadsheet.9

in an IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

wAx = WIDGET_ACTIVEX(wBase, $
'0002E510-0000-0000-C000-000000000046')

or

wAx = WIDGET_ACTIVEX(wBase, 'OWC.Spreadsheet.9', ID_TYPE=1)

where wBase is the widget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDLcomIDispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from a class ID or the dots from a program ID with
underscore characters.
External Development Guide Creating ActiveX Controls

78 Chapter 5: Using ActiveX Controls in IDL
IDL’s internal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class names

IDLcomActiveX$CLSID$0002E510_0000_0000_C000_000000000046

or

IDLcomActiveX$PROGID$OWC_Spreadsheet_9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See “WIDGET_ACTIVEX” in the IDL Reference Guide manual for additional
details.
Creating ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 79
Method Calls on ActiveX Controls

IDL allows you to call the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX object that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL data types and
the data types used by the component, and any results are returned in IDL variables of
the appropriate type. As with all IDL objects, the general syntax is:

result = ObjRef -> Method([Arguments])

or

ObjRef -> Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object class is a direct subclass of the IDLcomIDispatch object
class and provides none of its own methods. As a result, method calls on
IDLcomActiveX objects follow the same rules as calls on IDLcomIDispatch objects.
You should read and understand “Method Calls on IDLcomIDispatch Objects” on
page 55 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcomIDispatch objects, which you create explicitly with a call to the
OBJ_NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomActiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = WIDGET_BASE()
wAx = WIDGET_ACTIVEX(wBase, 'myProgram.myComponent.1', ID_TYPE=1)
WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wAx, GET_VALUE=oAx

The first line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. The third line realizes the base widget and the ActiveX
control it contains — note that the ActiveX widget must be realized before you can
retrieve a reference to the IDLcomActiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the
IDLcomActiveX object in the variable oAx. You can use this object reference to call
the ActiveX control’s methods and set its properties.
External Development Guide Method Calls on ActiveX Controls

80 Chapter 5: Using ActiveX Controls in IDL
Managing ActiveX Control Properties

As a convenience to the IDL programmer, ActiveX control methods that have been
defined using the propget and propput attributes are accessible via the
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the IDLcomIDispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object class is a direct subclass of the IDLcomIDispatch object
class and provides none of its own methods. As a result, IDL’s facilities for managing
the properties of ActiveX controls follow the same rules as for IDLcomIDispatch
objects. You should read and understand “Managing COM Object Properties” on
page 63 before working with an ActiveX control’s properties.
Managing ActiveX Control Properties External Development Guide

Chapter 5: Using ActiveX Controls in IDL 81
ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard IDL
widget methodology. When an ActiveX event is passed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure’s format:

{ID : 0L,
 TOP : 0L,
 HANDLER : 0L,
 DISPID : 0L, ; The DISPID of the callback method
 EVENT_NAME : "", ; The name of the callback method
<Param1 name> : <Param1 value>,
<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>
}

As with other IDL Widget event structures, the first three fields are standard. ID is
the widget id of the widget generating the event, TOP is the widget ID of the top level
widget containing ID, and HANDLER contains the widget ID of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this ID
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it is important to check the type of event before
processing values in IDL. Successfully parsing the event structure requires a detailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
data types of the values returned.
External Development Guide ActiveX Widget Events

82 Chapter 5: Using ActiveX Controls in IDL
For example, suppose the ActiveX control you are incorporating into your IDL
application includes two methods named Method1 and Method2 in a dispatch
interface that looks like this:

dispinterface MyDispInterface {
properties:
methods:

[id(0x00000270)]
void Method1([in] EventInfo* EventInfo);
[id(0x00000272)]
HRESULT Method2([out, retval] BSTR* EditData);

};

A widget event generated by a call to Method1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, length=32, data length=32:
ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 624
EVENT_NAME STRING 'Method1'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by a call to Method2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, length=32, data length=32:
ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 626
EVENT_NAME STRING 'Method2'
EDITDATA STRING 'some text value'

An IDL event-handler routine could use the value of the DISPID field to check which
of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO myRoutine_event, event
IF(event.DISPID eq 626) THEN BEGIN

PRINT, event.EDITDATA
ENDIF ELSE BEGIN

<do something else>
ENDELSE

END
ActiveX Widget Events External Development Guide

Chapter 5: Using ActiveX Controls in IDL 83
Dynamic Elements in the ActiveX Event Structure

Parameter data included in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, is included in the IDL event structure.
Similarly, an ActiveX control may return a reference to another COM object, as
described in “References to Other COM Objects” on page 65, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it is the
IDL programmer’s responsibility free them using a routine such as PTR_FREE,
HEAP_FREE, or OBJ_DESTROY.

If it is unclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. This will ensure that all
dynamic portions of the structure are released.
External Development Guide ActiveX Widget Events

84 Chapter 5: Using ActiveX Controls in IDL
Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

• When the widget hierarchy to which the ActiveX widget belongs is destroyed.

• When a call to WIDGET_CONTROL, wAx, /DESTROY is made, where wAx
is the widget ID of the ActiveX widget.

• When the underlying IDLcomActiveX object is destroyed by a call to
OBJ_DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, because it is
possible for an ActiveX control to return references to other COM objects to IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “References to Other COM Objects” on page 65 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elements in the ActiveX Event Structure” on page 83 for more information.
Destroying ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 85
Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained in the file mscal.ocx, is installed along with a typical installation of
Microsoft Office 97, and may also be present on your system if you have upgraded to
a more recent version of Microsoft Office. If the control is not present on your system
(you’ll know the control is not present if the example code does not display a
calendar similar to the one shown in Figure 5-1 on page 87), you can download a the
control as part of a package of sample ActiveX controls included in the file
actxsamp.exe, discussed in Microsoft Knowledge Base Article 165437.

If you download the control, place the file mscal.exe in a known location and
execute the file; you will be prompted for a directory in which to place mscal.ocx.
Open a command prompt window in the directory you chose and register the control
as described in “Registering COM Components on a Windows Machine” on page 49.

The calendar control has the program ID:

MSCAL.Calendar.7

and the class ID:

{8E27C92B-1264-101C-8A2F-040224009C02}

Example Code
The following section develops an IDL routine called ActiveXCal that illustrates
use of the calendar ActiveX control within an IDL widget hierarchy. The complete
.pro file is included in the examples\doc\bridges\COM subdirectory of the
IDL distribution as ActiveXCal.pro.

1. Create the ActiveXCal procedure. (Remember that in the ActiveXCal.pro
file, this procedure occurs last.)

PRO ActiveXCal

2. Create a top-level base widget to hold the ActiveX control.

wBase = WIDGET_BASE(COLUMN = 1, SCR_XSIZE = 400, $
TITLE='IDL ActiveX Widget Calendar Control')

3. Create base widgets to hold labels for the selected month, day, and year. Set
the initial values of the labels.

wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, value = 'Month: ')
wMonth = WIDGET_LABEL(wSubBase, value = 'October')
External Development Guide Example: Calendar Control

RSI_PROCODE/examples/doc/bridges/COM/ActiveXCal.pro

86 Chapter 5: Using ActiveX Controls in IDL
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Day: ')
wDay = WIDGET_LABEL(wSubBase, VALUE = '22')
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Year: ')
wYear = WIDGET_LABEL(wSubBase, VALUE = '1999')

4. Instantiate the ActiveX Control, using the control’s class ID.

wAx=WIDGET_ACTIVEX(wBase, $
'{8E27C92B-1264-101C-8A2F-040224009C02}')

5. Realize the top-level base widget.

WIDGET_CONTROL, wBase, /REALIZE

6. Set the top-level base’s user value to an anonymous structure containing
widget IDs of the month, day, and year label widgets.

WIDGET_CONTROL, wBase, $
SET_UVALUE = {month:wMonth, day:wDay, year:wYear}

7. Retrieve the object ID of the IDLcomActiveX object that encapsulates the
ActiveX control. Use the GetProperty method to retrieve the current values of
the month, day, and year from the control.

WIDGET_CONTROL, wAx, GET_VALUE = oAx
oAx->GetProperty, month=month, day=day, year=year

8. Set the values of the label widgets to reflect the current date, as reported by the
ActiveX control.

WIDGET_CONTROL, wMonth, SET_VALUE=STRTRIM(month, 2)
WIDGET_CONTROL, wDay, SET_VALUE=STRTRIM(day, 2)
WIDGET_CONTROL, wYear, SET_VALUE=STRTRIM(year, 2)

9. Call XMANAGER to manage the widget events, and end the procedure.

XMANAGER, 'ActiveXCal', wBase

END

10. Now create an event-handling routine for the calendar control. (Remember that
in the ActiveXCal.pro file, this procedure occurs before the ActiveXCal
procedure.)

PRO ActiveXCal_event, ev

11. The ActiveX widget is the only widget in this application that generates widget
events, so the ID field of the event structure is guaranteed to contain the widget
ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.
Example: Calendar Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 87
WIDGET_CONTROL, ev.ID, GET_VALUE = oCal

12. The user value of the top-level base widget is an anonymous structure that
holds the widget IDs of the month, day, and year label widgets (see step 6
above). Retrieve the structure into a variable named state.

WIDGET_CONTROL, ev.TOP, GET_UVALUE = state

13. Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar control.

ocal->GetProperty, month=month, day=day, year=year

14. Use WIDGET_CONTROL to set the values of the month, day, and year label
widgets.

WIDGET_CONTROL, state.month, SET_VALUE = STRTRIM(month,2)
WIDGET_CONTROL, state.day, SET_VALUE = STRTRIM(day,2)
WIDGET_CONTROL, state.year, SET_VALUE = STRTRIM(year,2)

15. Call HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP_FREE, ev

END

Running the ActiveXCal procedure displays a widget that looks like the following:

Figure 5-1: An IDL widget program using an ActiveX calendar control.
External Development Guide Example: Calendar Control

88 Chapter 5: Using ActiveX Controls in IDL
Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained in the file msowc.dll, is installed along with a typical installation
of Microsoft Office. If the control is not present on your system (you’ll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:

OWC.Spreadsheet.9

and the class ID:

{0002E510-0000-0000-C000-000000000046}

Information about the spreadsheet control’s properties and methods was gleaned
from Microsoft Excel 97 Visual Basic Step by Step by Reed Jacobson (Microsoft
Press, 1997) and by inspection of the control’s interface using the OLE/COM Object
Viewer application provided by Microsoft. It is beyond the scope of this manual to
describe the spreadsheet control’s interface in detail.

Example Code
The following section develops an IDL routine called ActiveXExcel that illustrates
use of the spreadsheet ActiveX control within an IDL widget hierarchy. The
complete .pro file is included in the examples\doc\bridges\COM subdirectory
of the IDL distribution as ActiveXExcel.pro.

1. Create a function that will retrieve data from cells selected in the spreadsheet
control. The function takes two arguments: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and a variable
to contain the data from the selected cells.

FUNCTION excel_getSelection, oExcel, aData

2. Retrieve an object that represents the selected cells. Note that when the
ActiveX control returns this object, IDL automatically creates an
IDLcomActiveX object that makes it accessible within IDL.

oExcel->GetProperty, SELECTION=oSel

3. Retrieve the total number of cells selected.

oSel->GetProperty, COUNT=nCells

4. If no cells are selected, destroy the selection object and return zero (the failure
code).
Example: Spreadsheet Control External Development Guide

RSI_PROCODE/examples/doc/bridges/COM/ActiveXExcel.pro

Chapter 5: Using ActiveX Controls in IDL 89
IF (nCells LT 1) THEN BEGIN
OBJ_DESTROY, oSel
RETURN, 0

ENDIF

5. Retrieve objects that represent the dimensions of the selection.

oSel->GetProperty, COLUMNS=oCols, ROWS=oRows

6. Get the dimensions of the selection, then destroy the column and row objects.

oCols->GetProperty, COUNT=nCols
OBJ_DESTROY, oCols
oRows->GetProperty, COUNT=nRows
OBJ_DESTROY, oRows

7. Create a floating point array with the same dimensions as the selection.

aData = FLTARR(nCols, nRows, /NOZERO);

8. Iterate through the cells, doing the following:

• Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

• Get the value contained in the cell.

• Set the appropriate element of the aData array to the cell's value.

• Destroy the object.

FOR i=1, nCells DO BEGIN
oSel->GetProperty, ITEM=oItem, i
oItem->GetProperty, VALUE=vValue
aData[i-1] = vValue
OBJ_DESTROY, oItem

ENDFOR

9. Destroy the selection object.

OBJ_DESTROY, oSel

10. Return one (the success code) and end the function definition.

RETURN, 1

END
External Development Guide Example: Spreadsheet Control

90 Chapter 5: Using ActiveX Controls in IDL
11. Next, create a procedure that sets the values of the cells in the spreadsheet.
This procedure takes one argument: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control.

PRO excel_setData, oExcel

12. Define the size of the data array.

nX = 20

13. Get an object representing the active spreadsheet.

oExcel->GetProperty, ActiveSheet=oSheet

14. Get an object representing the cells in the spreadsheet.

oSheet->GetProperty, CELLS=oCells

15. Generate some data.

im = BESELJ(DIST(nX))

16. Iterate through the elements of the data array, doing the following:

• Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

• Set the value of the cell.

• Destroy the object.

FOR i=0, nX-1 DO BEGIN
FOR j=0, nX-1 DO BEGIN

oCells->GetProperty, ITEM=oItem, i+1, j+1
oItem->SetProperty, VALUE=im(i,j)
OBJ_DESTROY, oItem

ENDFOR
ENDFOR

17. Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END

18. Next, create a procedure to handle events generated by the widget application.

PRO ActiveXExcel_event, ev
Example: Spreadsheet Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 91
19. The user value of the top-level base widget is set equal to a structure that
contains the widget ID of the ActiveX widget. Retrieve the structure into the
variable sState.

WIDGET_CONTROL, ev.TOP, GET_UVALUE=sState, /NO_COPY

20. Use the value of the DISPID field of the event structure to sort out “selection
changing” events.

IF (ev.DISPID EQ 1513) THEN BEGIN

21. Place data from selected cells in variable aData, using the
excel_getSelection function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

IF (excel_getSelection(sState.oExcel, aData) NE 0) THEN BEGIN

22. Get the dimensions of the aData variable.

szData = SIZE(aData)

23. If aData is two-dimensional, display a surface, otherwise, plot the data.

IF (szData[0] GT 1 AND szData[1] GT 1 AND szData[2] GT 1) $
THEN SURFACE, aData $

ELSE $
PLOT, aData

ENDIF

ENDIF

24. Reset the state variable sState and end the procedure.

WIDGET_CONTROL, ev.TOP, SET_UVALUE=sState, /NO_COPY

END

25. Create the main widget creation routine.

PRO ActiveXExcel

!EXCEPT=0 ; Ignore floating-point underflow errors.

26. Create a top-level base widget.

wBase = WIDGET_BASE(COLUMN=1, $
TITLE="IDL ActiveX Spreadsheet Example")

27. Instantiate the ActiveX spreadsheet control in a widget.

wAx=WIDGET_ACTIVEX(wBase, $
'{0002E510-0000-0000-C000-000000000046}', $
SCR_XSIZE=600, SCR_YSIZE=400)
External Development Guide Example: Spreadsheet Control

92 Chapter 5: Using ActiveX Controls in IDL
28. Realize the widget hierarchy.

WIDGET_CONTROL, wBase, /REALIZE

29. The value of an ActiveX widget is an object reference to the IDLcomActiveX
object that encapsulates the ActiveX control. Retrieve the object reference in
the variable oExcel.

WIDGET_CONTROL, wAx, GET_VALUE=oExcel

30. Turn off the TitleBar property on the spreadsheet control.

oExcel->SetProperty, DisplayTitleBar=0

31. Populate the spreadsheet control with data, using the excel_setData
function defined above.

excel_setData, oExcel

32. Set the user value of the top-level base widget to an anonymous structure that
contains the widget ID of the spreadsheet ActiveX widget.

WIDGET_CONTROL, wBase, SET_UVALUE={oExcel:oExcel}

33. Call XMANAGER to manage the widgets, and end the procedure.

XMANAGER,'ActiveXExcel', wBase, /NO_BLOCK
END

Running the ActiveXExcel procedure display widgets that look like the following:

Figure 5-2: An IDL Widget Program Using an ActiveX Spreadsheet Control
Example: Spreadsheet Control External Development Guide

Chapter 6

The IDLDrawWidget
ActiveX Control
This chapter discusses the following topics:
Overview . 94
Creating an Interface and Handling Events . 96
Working with IDL Procedures 102
Advanced Examples 105
Copying and Printing IDL Graphics 106
XLoadCT Functionality Using Visual Basic . 110

XPalette Functionality Using Visual Basic 112
Integrating Object Graphics Using VB . . 113
Sharing a Grid Control Array with IDL . . 114
Handling Events within Visual Basic 116
Distributing Your ActiveX Application . . 118
External Development Guide 93

94 Chapter 6: The IDLDrawWidget ActiveX Control
Overview

The Microsoft Windows version of IDL includes an ActiveX control that provides a
powerful way to integrate all the data analysis and visualization features of IDL with
other programming languages that support ActiveX controls. ActiveX is a set of
technologies that enables software components to interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

• The IDL ActiveX control makes it possible to display IDL direct and object
graphics within an OLE container that supports ActiveX controls;

• The IDL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself;

• The IDL ActiveX control greatly simplifies the process of moving data to and
from IDL and an external program;

• And finally, the interface to the IDL ActiveX control appears native to the
external application.

Other issues to note regarding the ActiveX control are:

• The IDL ActiveX control is intended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visual Basic application and IDL. A
Visual C++ programmer will need to use OLE’s VARIANT and SAFEARRAY
types. A discussion of how to use the IDL ActiveX control with these
languages is beyond the scope of this manual.

• The IDL ActiveX control does not support any non-blocking IDL widgets.
When you call a widget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of a widget using the given functionality.
For an example, see “XLoadCT Functionality Using Visual Basic” on
page 110.
Overview External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 95
The ActiveX interface to IDL consists of a single control called IDLDrawWidget.
When this control is included in a project, it exposes the features of IDL through its
properties and methods. The IDLDrawWidget can also trigger events. The
properties and methods of the IDLDrawWidget are listed in Chapter 7,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visual Basic. These techniques begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphics in a Visual Basic
window.

A Note about Versions of the IDL ActiveX Control

Periodically, RSI releases a new version of the IDLDrawX ActiveX control. Older
versions of the control will continue to work as they always have, but the new
versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM is that interfaces are immutable. That is to say that when
you create an interface, you “contractually” agree that the interface won’t change.
Changes to the way the control interacts with other components require that a new
interface — and thus a new version of the control — must be created. Since the IDL
ActiveX control is a COM object it is bound by this agreement. When RSI makes
improvements to the ActiveX control interface by adding new methods and
properties, we release a new ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you are a Visual Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6 and later,
you would add this control to your project and remove the “IDLDrawX ActiveX
Control Module” or “IDLDrawX2 ActiveX Control Module” from your project. The
source code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.
External Development Guide Overview

96 Chapter 6: The IDLDrawWidget ActiveX Control
Creating an Interface and Handling Events

The goal of this first example is very simple: to create a user interface in Microsoft
Visual Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

As the figure shows, our first example program consists of two buttons (“Plot Data”
and “Exit”), a graphics area, and a text box. All of these elements reside on top of
what is called a form in Visual Basic parlance. (A form in Visual Basic is similar to a
top level base in IDL.) Clicking the “Plot Data” button causes IDL to produce the
surface plot shown. Clicking “Exit” causes IDL and the Visual Basic program to free
memory and exit.

Figure 6-1: A simple example showing the IDLDrawWidget and
text returned by IDL
Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 97
Drawing the Interface

Begin building the first example by creating a new Visual Basic project, adding the
IDL ActiveX control, and drawing the interface components.

Launch Microsoft Visual Basic and create a new project.

1. Add the IDL ActiveX component to the project. Visual Basic displays a list of
all available components when you select the Components from the Project
menu.

Visual
Basic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Private Sub Form_Load()
 n = IDLDrawWidget1.InitIDL(Form1.hWnd)
 If n <= 0 Then
 MsgBox ("IDL failed to initialize")
 End
 End If
 IDLDrawWidget1.CreateDrawWidget
 IDLDrawWidget1.SetOutputWnd (IDL_Output_Box.hWnd)
End Sub

Private Sub Plot_Button_Click()
 IDLDrawWidget1.ExecuteStr ("Z = SHIFT(DIST(40), 20, 20)")
 IDLDrawWidget1.ExecuteStr ("Z = EXP(-(Z/10)^2)")
 IDLDrawWidget1.ExecuteStr ("SURFACE, Z")
 IDLDrawWidget1.ExecuteStr ("PRINT, SIZE(Z)")
End Sub

Private Sub Exit_Button_Click()
 IDLDrawWidget1.DoExit
 End
End Sub

Table 6-1: Source code for a simple example
External Development Guide Creating an Interface and Handling Events

98 Chapter 6: The IDLDrawWidget ActiveX Control
Select the “IDLDrawX3 ActiveX Control module” check box and close the
Components window. Visual Basic will display the IDLDrawWidget’s icon in
the toolbar.

2. Begin drawing the interface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display area was created with IDLDrawWidget.

Specifying the IDL Path and Graphics Level

Having added IDLDrawWidget to the Visual Basic project, we now have access to
IDLDrawWidget’s properties and methods. Use the IdlPath and GraphicsLevel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capabilities. Refer to Chapter 7,
“IDLDrawWidget Control Reference” for a complete list of the properties and
methods to IDLDrawWidget.

1. Use Visual Basic’s Properties window to select the IDLDrawWidget. All of
the IDLDrawWidget’s properties can be set using the Properties window.
Many properties can also be set within the source code. These distinctions are
noted in Chapter 7, “IDLDrawWidget Control Reference”.

Figure 6-2: List of Available Components
Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 99
2. Locate the IdlPath property and enter the directory path to your IDL
installation. If you installed IDL in its default location, this path will be:

c:\rsi\idlxx

where xx is the current IDL version.

3. Locate the GraphicsLevel property and set it equal to 1. This selects IDL’s
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the IDLDrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form_Load()
End Sub

Figure 6-3: Visual Basic Properties window
External Development Guide Creating an Interface and Handling Events

100 Chapter 6: The IDLDrawWidget ActiveX Control
Visual Basic’s Form_Load routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the IDLDrawWidget,
and direct output from IDL to a text box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needs to be initialized before Visual Basic can interact with the
IDLDrawWidget. This is done with the InitIDL method. InitIDL takes the hWnd
of the form containing the IDLDrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the IDLDrawWidget were not changed, IDL
can be initialized with the following statement.

n = IDLDrawWidget1.InitIDL(Form1.hWnd)

A conditional statement is included to display an error message and exit the program
if IDL failed to initialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX frame
is created. This is a container for the IDLDrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. This is accomplished with the CreateDrawWidget method, as shown in the
following statement:

IDLDrawWidget1.CreateDrawWidget

Directing IDL Output to a Text Box

The example program displays any output returned by IDL in a text box created in
Visual Basic. This is accomplished with the SetOutputWnd method of the
IDLDrawWidget. The SetOutputWnd method takes the hWnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named IDL_Output_Box, hence the following statement.

IDLDrawWidget1.SetOutputWnd (IDL_Output_Box.hWnd)

Note
Although this is the last statement within the Form_Load() subroutine, it could be
placed before the call to InitIDL to get standard IDL version information printed.
Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 101
Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basic is to let Visual Basic manage the
events and pass instructions to IDL. Recall that our example program contains two
buttons: “Plot Data” and “Exit”. When you double-click on “Plot Data”, Visual Basic
automatically creates the following subroutine:

Private Sub Plot_Button_Click()
End Sub

Visual Basic will execute any statements within this subroutine when the user clicks
“Plot Data”. Instructions are passed to IDL using the ExecuteStr method to the
IDLDrawWidget. The ExecuteStr method takes a string as an argument. This string
is passed to IDL for execution as if it were entered at the IDL command line.

The five statements which follow instruct IDL to produce the surface plot shown in
the figure above.

IDLDrawWidget1.ExecuteStr ("Z = SHIFT(DIST(40), 20, 20)")
IDLDrawWidget1.ExecuteStr ("Z = EXP(-(Z/10)^2)")
IDLDrawWidget1.ExecuteStr ("SURFACE, Z")
IDLDrawWidget1.ExecuteStr ("PRINT, SIZE(Z)")

Cleaning Up and Exiting

This project exits when the user clicks “Exit”. Exiting is a two step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.

Private Sub Exit_Button_Click()
IDLDrawWidget1.DoExit
End

End Sub
External Development Guide Creating an Interface and Handling Events

102 Chapter 6: The IDLDrawWidget ActiveX Control
Working with IDL Procedures

In this next example a project is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It is important to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructions to IDL is identical to entering the same instructions at the IDL command
line. In this example Visual Basic is only used to create the user interface and
dispatch events. The data resides in memory controlled by IDL. IDL is used for all
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and resides in the
examples\doc\ActiveX\SecondExample directory.

The user interface consists of two IDLDrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Figure 6-4: The User Interface with Two Draw Widgets
Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 103
Creating the Interface

The interface is created as it was in the first example, by drawing the interface
components in Visual Basic. Two IDLDrawWidgets are created. Set the path
(c:\rsi\idlxx where xx is the current IDL version) and graphics level properties
(type 1) of both.

Initializing IDL

Although there are two IDLDrawWidget objects, only one instance of the ActiveX
control needs to be initialized. Both of the IDLDrawWidget objects do need to be
created, however.

This is done with the two statements below:

IDLDrawWidget1.CreateDrawWidget
IDLDrawWidget2.CreateDrawWidget

Compiling the IDL Code

This example uses IDL procedures contained in a .pro file named
SecondExample.pro. This file contains IDL procedures. Before these procedures
can be called from Visual Basic, SecondExample.pro needs to be compiled.
This assumes that the .pro file resides in the same directory as the Visual Basic
project. The path method of the App object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, ’" + App.Path + "’"
IDLDrawWidget1.ExecuteStr (WorkingDirectory)

The .pro can then be compiled. A conditional statement is used to exit the program
if IDL was unable to locate the .pro file.

Dispatching Button Events to IDL

Because Visual Basic is used primarily for the user interface components of the
application, IDL’s procedures have been created for processing the button events in
the application. This is accomplished through the ExecuteStr method of the
External Development Guide Working with IDL Procedures

104 Chapter 6: The IDLDrawWidget ActiveX Control
IDLDrawWidget, as called in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

OpenFile is a user procedure that utilizes IDL’s DIALOG_PICKFILE function to
enable the user to select a file for display within the IDLDrawWidget.

Cleaning Up and Exiting

Like the first example, this program exits when the user clicks “Exit”. An additional
call has been made to DestroyDrawWidget. This isn’t necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsLevel property of the IDLDrawWidget during program execution use this
method.

Visual
Basic

1
2
3
4

Private Sub Open_Button_Click(Index As Integer)
 IDLCommand = "OpenFile, " + Str(BaseID)
 IDLDrawWidget1.ExecuteStr (IDLCommand)
End Sub

Table 6-2: User Interface of Example Project

IDL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

PRO OpenFile, TLB
WIDGET_CONTROL, TLB, GET_UVALUE = ptr
PathName = DIALOG_PICKFILE(TITLE = $

'Select a JPEG file', FILTER = '*.jpg')
IF (PathName NE '') THEN BEGIN

DEVICE, DECOMPOSED = 0
READ_JPEG, PathName, Data, ColorTable
(*(*ptr).OriginalArrayPTR) = Data
(*(*ptr).OrigColorMapPTR) = ColorTable
TVLCT, (*(*ptr).OrigColorMapPTR)
TV, (*(*ptr).OriginalArrayPTR)

ENDIF ELSE BEGIN
Result = DIALOG_MESSAGE('No JPEG file selected', /ERROR)

ENDELSE
END

Table 6-3: The Open File Procedure
Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 105
Advanced Examples

Each of the following examples builds on the concepts that you’ve already learned in
this chapter.

Example Code
The user interface and projects for each of the examples have been created and can
be found in the distribution in the examples\doc\ActiveX\project
directory where project is the name of the example.

These examples assume that you are already familiar with the following concepts:

• Creating a new project in Visual Basic;

• Adding the IDLDrawWidget control to the VB control toolbar;

• Drawing the IDLDrawWidget on your form;

• Initializing IDL with InitIDL;

• Creating the draw widget with CreateDrawWidget;

• Executing commands with ExecuteStr;

• Using IDL .pro code to respond to auto-events within the IDLDrawWidget;

• Setting properties for the IDLDrawWidget objects.

These examples demonstrate the following:

• Copying and Printing IDL Graphics

• XLoadCT Functionality Using Visual Basic

• XPalette Functionality Using Visual Basic

• Integrating Object Graphics Using VB

• Sharing a Grid Control Array with IDL

• Handling Events within Visual Basic
External Development Guide Advanced Examples

106 Chapter 6: The IDLDrawWidget ActiveX Control
Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an IDLDrawWidget window.

This example illustrates the following concepts:

• Opening an existing project in Visual Basic;

• Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

• Executing IDL user routines;

• Printing an IDL graphic.

Opening the VBCopyPrint project

Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,
change to the examples\docs\ActiveX\VBCopyPrint directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

Figure 6-5: Opening the VBCopyPrint project
Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 107
Running the VBCopyPrint Example

Select “Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Copying IDL Graphic to the clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as shown in line
6 of the following table.

Figure 6-6: VBCopyPrint example

Visual
Basic

1
2
3
4
5
6
7
8
9
10

Private Sub cmdCopy_Click()
'Copy the direct graphics window to the clipboard
Screen.MousePointer = vbHourglass
'Erase anything currently on the clipboard
Clipboard.Clear
'Copy the draw widget to the clipboard
IDLDrawWidget1.CopyWindow
Screen.MousePointer = vbDefault
MsgBox "Window copied to clipboard."

End Sub

Table 6-4: Copy button Source Code
External Development Guide Copying and Printing IDL Graphics

108 Chapter 6: The IDLDrawWidget ActiveX Control
Printing the IDL Graphic using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The “IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.

Executing IDL user routines with Visual Basic

The VBCopyPrint example executes a user routine, written in IDL, to support the
printing of the IDLDrawWidget window. This is done with the ExecuteStr method,

IDL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

PRO VBPrintWindow, DrawId
.
.
.

;Get the window index of the drawable to be printed
WIDGET_CONTROL, DrawId, Get_Value=Index

.

.

.
;Create a Printer object and draw the graphic to it
oPrinter = OBJ_NEW ('IDLgrPrinter')

;Display a print dialog box
Result = DIALOG_PRINTERSETUP(oPrinter)

.

.

.
oPrinter->Draw, oView

.

.

.
END ;VBPrintWindow

Table 6-5: IDL VBPrintWindow Code
Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 109
as shown in line 4 below, by passing a string of the routine name along with the ID of
the IDLDrawWidget.

Printing the IDL Graphic Using Visual Basic

The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.

Visual
Basic

1
2
3
4
5
6
7
8
9

Private Sub cmdPrintIDL_Click()
'Print the current drawable widget's window contents
'using IDL object graphics
Screen.MousePointer = vbHourglass
IDLDrawWidget1.ExecuteStr "VBPrintWindow," &

Str$(IDLDrawWidget1.DrawId)
Screen.MousePointer = vbDefault
MsgBox "Window sent to printer."

End Sub

Table 6-6: Print Button Source Code

Visual
Basic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Private Sub cmdPrintVB_Click()
CommonDialog1.CancelError = True

 On Error GoTo ErrHandler
 CommonDialog1.ShowPrinter
'-- Copy the window's contents to the clipboard
 'Erase anything currently on the clipboard
 Clipboard.Clear
 IDLDrawWidget1.CopyWindow

'-- Send the picture located on the clipboard,
'to the printer

 Printer.PaintPicture Clipboard.GetData, 0, 0
 Printer.EndDoc 'Send it to the printer
Exit Sub
ErrHandler:

 Exit Sub
End Sub

Table 6-7: VBPrint Command
External Development Guide Copying and Printing IDL Graphics

110 Chapter 6: The IDLDrawWidget ActiveX Control
XLoadCT Functionality Using Visual Basic

The VBLoadCT example duplicates the XLOADCT functionality using a VB
interface. The VBLoadCT.pro source code (located in the
examples\docs\ActiveX\VBLoadCt directory of the IDL installation directory)
is a functional duplicate of XLOADCT with procedure calls replacing the
xloadct_event procedure as well as IDL widgets being replaced by VB controls.
See the following figure for more information.

In addition, this example extends XLOADCT by adding the following features:

• Options menu by clicking the right mouse button on a color;

• Use of IDL syntax to create separate functions for red, blue and green;

• Ability to save user created color tables.

This example illustrates the following concepts:

• Modifying existing IDL library code for use with the IDLDrawWidget;

• IDL to Visual Basic color table conversion
XLoadCT Functionality Using Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 111
.

Figure 6-7: VBLoadCT example
External Development Guide XLoadCT Functionality Using Visual Basic

112 Chapter 6: The IDLDrawWidget ActiveX Control
XPalette Functionality Using Visual Basic

Like VBLoadCT, VBPalette demonstrates how to duplicate IDL tool functionality
using a Visual Basic interface. The VBPalette.pro file (located in the
examples\docs\ActiveX\VBPalette directory of the IDL installation
directory) is a functional duplicate of the XPalette source with the event procedure
and IDL widgets replaced with auto-event procedures and VB controls.

This example illustrates the following concepts:

• Modifying existing IDL library code for use with the IDLDrawWidget;

• Converting an IDL event procedure to the IDLDrawWidget auto-event
procedures

.

Figure 6-8: VBPalette Example
XPalette Functionality Using Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 113
Integrating Object Graphics Using VB

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the IDLDrawWidget control. The IDLDrawWidget
can also use IDL’s object graphics sub-system by changing the
IDLDrawWidget.GraphicsLevel property as demonstrated with the VBObjGraph
example in the following figure. This example illustrates the following concepts:

• Setting the GraphicsLevel property to create an object graphics window;

• Translating a graphics object using VB controls.

• Using IDLDrawWidget auto-events.

Example Code
See the files located in the examples\docs\ActiveX\VBObjGraph directory
of the IDL installation directory for example code.

Figure 6-9: VBObjGraph example
External Development Guide Integrating Object Graphics Using VB

114 Chapter 6: The IDLDrawWidget ActiveX Control
Sharing a Grid Control Array with IDL

VBShare1D demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the IDLDrawWidget object. The data is
presented to the user in a Visual Basic grid control enabling the user to edit the data
and see the results in real time. See the following figure.

This example illustrates the following concepts:

• Shows how to process mouse events within VB to get the data coordinates of
an IDL plot.

• Demonstrates how to convert (x,y) VB coordinates into IDL data coordinates,
to give the cursor location in data values relative to the current plot.

• Demonstrates how to use a VB grid control to edit data values that are
reflected in the IDL plot after each keystroke

.

Figure 6-10: VBShare1D
Sharing a Grid Control Array with IDL External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 115
Example Code
See the files located in the examples\docs\ActiveX\VBShare1D directory of
the IDL installation directory for example code.
External Development Guide Sharing a Grid Control Array with IDL

116 Chapter 6: The IDLDrawWidget ActiveX Control
Handling Events within Visual Basic

The VBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:.

This example illustrates the following concepts:

• Converting from a VB pixel coordinate system to the IDL coordinate system;

• Converting a VB color representation (long) into an IDL color representation
(RGB);

• Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

• Processing mouse events within VB to draw into an IDL window

.

Figure 6-11: VBPaint example
Handling Events within Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 117
Example Code
See the files located in the examples\docs\ActiveX\VBPaint directory of
the IDL installation directory for example code.
External Development Guide Handling Events within Visual Basic

118 Chapter 6: The IDLDrawWidget ActiveX Control
Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 27, “Distributing ActiveX Applications” in the Building IDL
Applications manual.
Distributing Your ActiveX Application External Development Guide

Chapter 7

IDLDrawWidget
Control Reference
This chapter describes the following topics:
IDLDrawWidget . 120
Methods . 121
Do Methods (Runtime Only) 131
Properties . 133

Read Only Properties 137
Auto Event Properties 139
Events . 141
External Development Guide 119

120 Chapter 7: IDLDrawWidget Control Reference
IDLDrawWidget

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visual
Basic, Fortran, Delphi, etc. Methods and properties of the IDLDrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the IDLDrawWidget:

• Methods

• Do Methods (Runtime Only)

• Properties

• Read Only Properties

• Auto Event Properties

• Events
IDLDrawWidget External Development Guide

Chapter 7: IDLDrawWidget Control Reference 121
Methods

In ActiveX terminology, methods are special statements that execute on behalf of an
object in a program. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of a method statement is:

object.method value

where

• Object is the name of an object you want to control, for example an
IDLDrawWidget.

• Method is the name of the method you want to execute.

• Value is an optional parameter used by the method. The various methods to the
IDLDrawWidget may require zero, one, or multiple parameters.

Note
When a method returns a BOOL, the value TRUE is equal to 1 and FALSE is equal
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.

Parameters

BSTR: The name of the array variable that you wish to copy.

Returns

VARIANT: Reference to the array.

Remarks

This function returns an array reference that is local to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.
External Development Guide Methods

122 Chapter 7: IDLDrawWidget Control Reference
CopyWindow

This method copies the contents of the IDLDrawWidget window to the Windows
clipboard.

Parameters

None.

Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an IDLDrawWidget in an ActiveX control frame. When you
drag and drop the IDLDrawWidget, you are creating the frame that will contain the
actual draw widget. Drawing operations to the control cannot be made until this
method is called.

Parameters

None.

Returns

LONG: The widget ID of the created draw widget or -1 in the event of an error.

DestroyDrawWidget

This method destroys the IDLDrawWidget, but not the ActiveX control frame.

Parameters

None.

Returns

None.

DoExit

This method exits the ActiveX control and frees any resources in use by IDL.
Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 123
After all IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoExit to allow the ActiveX control to shutdown IDL gracefully and
free any resources in use.

Parameters

None.

Returns

None.

Remarks

In spite of the name, DoExit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoExit is called, you are not allowed to call methods or set properties within
the IDL ActiveX control from the currently running EDE application, regardless of
which IDLDrawWidget the method was called on. Attempting to do so will result
in a runtime error subsequently causing the EDE application to crash.

ExecuteStr

This method passes a string to IDL which IDL then executes.

Parameters

BSTR: A string containing the command that IDL will execute.

Returns

LONG: 0 if successful or the IDL error code if it fails.

Remarks

Most IDL commands that are executed with ExecuteStr run in the main level.

GetNamedData

This method returns the IDL data value associated with the named variable.
External Development Guide Methods

124 Chapter 7: IDLDrawWidget Control Reference
Parameters

BSTR: A string containing the name of an IDL variable.

Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT data types.

InitIDL

This method initializes IDL. IDL only needs to be initialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL is called with the hWnd of the main window for the container
application. If this value is null, the ActiveX control uses the hWnd of the ActiveX
control frame.

IDL Type Variant Type

IDL_TYP_BYTE VT_UI1

IDL_TYP_INT VT_I2

IDL_TYP_LONG VT_I4

IDL_TYP_FLOAT VT_R4

IDL_TYP_DOUBLE VT_R8

IDL_TYP_STRING VT_BSTR

Table 7-1: Supported IDL data types and the corresponding
VARIANT data types
Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 125
Returns

LONG: Long value indicating status of IDL

If your application contains more than a single IDLDrawWidget (e.g.
IDLDrawWidget1 and IDLDrawWidget2) the InitIDL method should only be
called on one of the objects, not both.

The IDL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The IdlPath property can be set so the
control can find a valid IDL distribution (the idl32.dll). If a valid distribution is
not found in either the path as set in the IdlPath property or the current directory, a
dialog will be displayed giving the user the opportunity to specify the location of his
IDL distribution. This behavior may be overridden at runtime by locating and
specifying the path to the IDL distribution prior to calling either the InitIDL or
SetOutputWnd methods.

InitIDLEx

This method initializes IDL. It is identical to the InitIDL method except that it has an
additional parameter, Flags, allowing initialization flags to be passed on to IDL. See
the description of the “InitIDL” on page 124 for details on the return value.

Parameters

LONG: InitIDL is called with the hWnd of the main window for the container
application. If this value is null, the ActiveX control uses the hWnd of the ActiveX
control frame.

Value Meaning

1 Successful

0 Failure

-1 IDL ActiveX control is
not licensed

-2 IDL is unlicensed (demo)

Table 7-2: Status of IDL
External Development Guide Methods

126 Chapter 7: IDLDrawWidget Control Reference
LONG: Flags. A bitmask used to specify initialization options. The allowed bit
values are:

Returns

LONG: Long value indicating status of IDL. See the description of the return value
under “InitIDL” on page 124 for details.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, see the
BufferId property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphics tree (an IDLgrView object) with the IDLgrWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

;Retrieve the window object associated with the draw widget.

Flag Meaning

IDL_INIT_RUNTIME Setting this bit causes IDL to check out a runtime
license instead of the normal license. In Visual C++
applications, the #define IDL_INIT_RUNTIME
value exported in export.h can be used. For Visual
Basic applications use the actual value of this
constant, IDL_INIT_RUNTIME=4, since the defined
constant is not available.

IDL_INIT_STUDENT Setting this bit causes IDL to check out a student
license instead of the normal license. In Visual C++
applications, the #define IDL_INIT_STUDENT
value exported in export.h can be used. For Visual
Basic applications use the actual value of this
constant, IDL_INIT_STUDENT=128, since the
defined constant is not available.

Table 7-3: InitIDLEx Flags
Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 127
IDLDrawWidget::ExecuteStr("Widget_Control, IDLDrawWidget, $
Get_Value =oWindow");

;Set the Graphics_Tree property to the view object.
IDLDrawWidget::ExecuteStr("oWindow->SetProperty, $

Graphics_Tree = oView");

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.

YOffset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.

Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of a single page.
The Y offset plus the height should be less than or equal to the height of a single
page. The origin of the offset 0,0 is in the upper left corner of a page. If these values
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.

RegisterForEvents

This method causes IDLDrawWidget to pass the specified events to the application.
These events only apply if the user hasn’t set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning

0 Stop forwarding all events

1 Forward mouse move events

2 Forward mouse button events

Table 7-4: Forwarding Events
External Development Guide Methods

128 Chapter 7: IDLDrawWidget Control Reference
Note
Motion events may be generated continuously in response to certain operations in
IDL. As a result, if you forward mouse move events, your event handler should
check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.

SetNamedArray

This method creates a named IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changes in either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variable to create in IDL.

VARIANT: Array data to be shared with IDL.

BOOL: True if IDL should free a shared array when IDL releases its reference, false
if not.

Returns

WORD: 1 if successful, 0 if set failed.

Remarks

Because SetNamedArray creates an array whose data is shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

4 Forward view scrolled events

8 Forward expose events

Value Meaning

Table 7-4: Forwarding Events (Continued)
Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 129
The array parameter of SetNamedArray must have a lifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note
In order to allow data to be shared between IDL and the external environment, the
lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not allow array locking to extend beyond a
single method call and will signal an error when SetNamedArray() returns. If this
occurs, the data cannot be shared between IDL and the external environment using
SetNamedArray(). Use the SetNamedData() method to insert a copy of the array
into IDL.

The following table lists the accepted variant types and the corresponding IDL types.

SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can also be used
to change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to create in IDL.

VARIANT: Data to be copied in IDL.

Variant Types IDL Types

VT_UI1 - unsigned char IDL_TYP_BYTE

VT_I1 - signed char IDL_TYP_BYTE

VT_I2 - signed short IDL_TYP_INT

VT_I4 - signed long IDL_TYP_LONG

VT_R4 - float IDL_TYP_FLOAT

VT_R8 - double IDL_TYP_DOUBLE

Table 7-5: Accepted Variant Types and the Corresponding IDL Types
External Development Guide Methods

130 Chapter 7: IDLDrawWidget Control Reference
Returns

WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.

Parameters

HWND: The hWnd of the edit control that will receive the output.

Returns

None.

Note
SetOutputWnd is the only method that can be called prior to a call to InitIDL.

VariableExists

This method determines if a specified variable is defined in IDL.

Parameters

BSTR: Name of variable to check.

Returns

BOOL:TRUE if variable is defined in IDL at the main level. False if the variable is
not defined.
Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 131
Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress

This method calls the IDL procedure specified in the OnButtonPress property.

Parameters

None.

Returns

None.

DoButtonRelease

This method calls the IDL procedure specified in the OnButtonRelease property.

Parameters

None.

Returns

None.

DoExpose

This method calls the IDL procedure specified in the OnExpose property.

Parameters

None.

Returns

None.
External Development Guide Do Methods (Runtime Only)

132 Chapter 7: IDLDrawWidget Control Reference
DoMotion

This method calls the IDL procedure specified in the OnMotion property.

Parameters

None.

Returns

None.
Do Methods (Runtime Only) External Development Guide

Chapter 7: IDLDrawWidget Control Reference 133
Properties

Properties are used to specify the various attributes of an IDLDrawWidget, such as
its color, width and height. Most properties may be set at design time by configuring
the properties sheet in Visual Basic, or at runtime by executing statements in the
program code.

The syntax for setting a property in the code is:

object.property = value

where

• Object is the name of the object you want to change, e.g. IDLDrawWidgetn
where n is the number Visual Basic assigned to the IDLDrawWidget.

• Property is the characteristic you want to change.

• Value is the new property setting.

Note
All properties relating to window size and/or position are in pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names a variable that IDL will use for the pseudo base. If this property
is set, the IDLDrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not
destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

Default=IDLDrawWidgetBase

BufferId

The BufferId controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).
External Development Guide Properties

134 Chapter 7: IDLDrawWidget Control Reference
1. A value of -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. A value of 0 will cause the graphics to print at roughly two times the screen
resolution. This format is suitable for shaded surfaces or vertex colored mesh
surfaces. This is the default.

3. A value greater then 0 will be construed a s an IDLgrBuffer object reference
whose data will be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” in the IDL Reference Guide manual.

Note
You must set the GRAPHICS_TREE property of the IDLgrWindow object for
these print options to work.

DrawWidgetName

Returns or sets a variable that IDL will use for the draw widget. If this property is set,
the IDLDrawWidget will create an IDL variable with this name that contains the ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to a call to CreateDrawWidget.

Default=IDLDrawWidget

Enabled

Returns or sets a value that determines whether a form or control can respond to user-
generated events such as mouse events.

Default=TRUE

GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Legal values are 1 or 2.
If you set the GraphicsLevel = 1 and call the CreateDrawWidget method, the
procedure will create an IDL direct graphics window. GraphicsLevel = 2 results in
an IDL object graphics window. The GraphicsLevel property can be set at design
time or at runtime prior to a call to CreateDrawWidget.

Default=1
Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 135
IdlPath

This property specifies the fully qualified path to the IDL32.DLL. The IdlPath
property can be set at design time or at runtime prior to a call to InitIDL or
SetOutputWnd.

Default=NULL

Renderer

This property specifies either the software or hardware renderer for object graphics
windows is to be used. It has no effect if the GraphicsLevel property is set to 1. Valid
values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, the setting in your IDL preferences is used.

Retain (Runtime/Design time)

This property sets the retain mode of the IDLDrawWidget: 0, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifies that IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to a call to
CreateDrawWidget.

Default=1

Visible (Runtime/Design time)

Shows or hides the IDLDrawWidget. When Visible is TRUE the IDLDrawWidget is
shown, when FALSE the IDLDrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended
for display.

Default=TRUE

Xsize (Design time)

Virtual width of IDLDrawWidget. If this value is greater than the Xviewport value,
scroll bars will be added.
External Development Guide Properties

136 Chapter 7: IDLDrawWidget Control Reference
Ysize (Design time)

Virtual height of IDLDrawWidget. If this value is greater than the Yviewport value,
scroll bars will be added.
Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 137
Read Only Properties

BaseId (Runtime)

Widget ID of the pseudo base. The BaseId property is not valid until a call to
CreateDrawWidget has been made.

DrawId (Runtime)

Widget ID of the created draw widget. The DrawId property is not valid until a call
to CreateDrawWidget has been made.

hWnd (Runtime)

Window handle of the ActiveX control. The hWnd property is not valid until a call to
CreateDrawWidget has been made.

LastIdlError (Runtime)

A string that contains the last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

True if the widget will contain scroll bars.

Default=FALSE

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present Xviewport will include the width of the
scroll bars.
External Development Guide Read Only Properties

138 Chapter 7: IDLDrawWidget Control Reference
Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

Yviewport

Set at design time when the control is dropped or moved. Represents the visible
height of the draw widget. If scroll bars are present Yviewport will include the height
of the scroll bars.
Read Only Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 139
Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The procedure
must be in the form:

pro button_press, drawId, button, xPos, yPos

Default=NULL

OnButtonRelease

An IDL procedure that will be called when a mouse button is released. The procedure
must be in the form:

pro button_release, drawId, button, xPos, yPos

Default=NULL

OnDblClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button_dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

• 1 — Left mouse button.

• 2 — Middle mouse button.

• 4 — Right mouse button.

xPos The horizontal position of the mouse when the button was clicked.

Table 7-6: OnDblClick Parameters
External Development Guide Auto Event Properties

140 Chapter 7: IDLDrawWidget Control Reference
Default=NULL

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, drawId

Default=NULL

OnInit

An IDL procedure that will be called when a draw widget is initially created. The
procedure must be in the form:

pro init, drawId, baseId

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

Default=NULL

OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawId, button, xPos, yPos

Default=NULL

Note
Motion events may be generated continuously in response to certain operations in
IDL. As a result, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it has in fact moved before doing extensive processing.

yPos The vertical position of the mouse when the button was clicked.

Parameter Description

Table 7-6: OnDblClick Parameters (Continued)
Auto Event Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 141
Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, IDLDrawWidget can respond to the following standard Visual Basic
events:

• MouseDown

• MouseMove

• MouseUp

OnViewScrolled

OnViewScrolled is an IDLDrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call RegisterForEvents passing the flags to indicate the events you want
to process. Neglecting this step will send the events to IDL for processing.
External Development Guide Events

142 Chapter 7: IDLDrawWidget Control Reference
Events External Development Guide

Chapter 8

Using Java Objects in
IDL
The following topics are covered in this chapter:
Overview of Using Java Objects 144
Initializing the IDL-Java Bridge 147
IDL-Java Bridge Data Type Mapping 150
Creating IDL-Java Objects 156
Method Calls on IDL-Java Objects 158
Managing IDL-Java Object Properties . . . 160

Destroying IDL-Java Objects 162
Showing IDL-Java Output in IDL 163
The IDLJavaBridgeSession Object 164
Java Exceptions . 166
IDL-Java Bridge Examples 169
Troubleshooting Your Bridge Session . . . 187
External Development Guide 143

144 Chapter 8: Using Java Objects in IDL
Overview of Using Java Objects

Java is an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Java in detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

The IDL-Java bridge allows you to access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. See “Creating IDL-Java Objects”
on page 156 for more information. The IDL-Java bridge allows the arrow operator
(->) to be used to call the methods of these Java objects just as with other IDL
objects, see “Method Calls on IDL-Java Objects” on page 158 for more information.
The public data members of a Java object are accessed through GetProperty and
SetProperty methods, see “Managing IDL-Java Object Properties” on page 160 for
more information. These objects can also be destroyed with the OBJ_DESTROY
routine, see “Destroying IDL-Java Objects” on page 162 for more information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. This access is provided by the IDLJavaBridgeSession object, which is a
Java object that maintains exceptions (errors) during a Java session, see “The
IDLJavaBridgeSession Object” on page 164 for more information.

Note
Visual Java objects cannot be embedded into IDL widgets.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, IRIX
(32-bit), and Macintosh platforms supported in IDL. See “Requirements for This
Release” in Chapter 4 of the What’s New in IDL 6.2 manual for more information.

Note
On Solaris, there are potential problems creating graphical windows from the IDL-
Java bridge using Java versions before 1.5. We recommend using the XToolkit
option, which the IDL-Java bridge will use by default.
Overview of Using Java Objects External Development Guide

http://java.sun.com

Chapter 8: Using Java Objects in IDL 145
Java Terminology

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Virtual Machine (JVM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.

Java Native Interface (JNI) - Standard programming interface for accessing Java
native methods and embedding the JVM into native applications. For example, JNI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one may embed the Java Virtual Machine
into your native application by linking the native application with the JVM shared
library.

Java Reflection API - Provides a small, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

• construct new class instances and new arrays

• access and modify fields of objects and classes

• invoke methods on objects and classes

• access and modify elements of arrays.

IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (JNI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ_NEW function can be used to create a Java object. A Java-specific
class token identifies the Java class used to create a Java proxy object. IDL parses this
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Java class is also
provided because Java itself is case-sensitive while IDL is not. IDL uses the case-
insensitive form to create the object definition while Java uses the case-sensitive
form.

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL object, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.
External Development Guide Overview of Using Java Objects

146 Chapter 8: Using Java Objects in IDL
The OBJ_DESTROY procedure in IDL is used to destroy the object. This process
releases the internal Java object and frees any resources associated with it.
Overview of Using Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 147
Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtual
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 164 for more information on the session object.

Configuring the Bridge

The .idljavabrc file on UNIX or idljavabrc on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create a valid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable IDLJAVAB_CONFIG is set, the file it indicates is
used.

Note
This environment variable must include both the path and the file name of
the configuration file.

2. If the environment variable IDLJAVAB_CONFIG is not set or the file
indicated by that variable is not found in that location, the path specified in the
HOME environment variable is used to try to locate the configuration file.

3. If the file is not found in the path indicated by the HOME environment
variable, the <IDL_DEFAULT>/external/objbridge/java path is used
to try to locate the configuration file.

The configuration file contains the following settings. With a text editor, open your
configuration file to verify these settings are correct for your system.

• The JVM Classpath setting specifies additional locations for user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying ’-classpath’ when running java or
External Development Guide Initializing the IDL-Java Bridge

148 Chapter 8: Using Java Objects in IDL
javac. You can also include the CLASSPATH environment variable in the
JVM Classpath:

JVM Classpath = $CLASSPATH:/home/johnd/myClasses.jar

which allows any class defined in the CLASSPATH environment variable to
be used in the IDL-Java bridge.

On Windows, an example of a typical JVM Classpath setting is:

JVM Classpath = E:\myClasses.jar;$CLASSPATH

On UNIX, an example of a typical JVM Classpath setting is:

JVM Classpath = /home/johnd/myClasses.jar:$CLASSPATH

• The JVM LibLocation setting tells the Windows IDL-Java bridge which
JVM shared library within a given Java version to use. Various versions of
Java ship with different types of JVM libraries. For example, Java 1.3 on
Windows ships with a “classic” JVM, a “hotspot” JVM, and a “server” JVM.
Other versions and platforms have different JVM types.

On Windows, an example of a typical JVM LibLocation setting is:

JVM LibLocation = E:\jdk1.3.1_02\jre\bin\hotspot

On UNIX, you should not set JVM LibLocation in the configuration file.
Instead, set the IDLJAVAB_LIB_LOCATION environment variable for the
session that will use the IDL-Java bridge. The following is a typical command
to set the environment variable:

SETENV IDLJAVAB_LIB_LOCATION
/usr/java/j2re1.4.0_02/lib/sparc/client

Note
You can also set the IDLJAVAB_LIB_LOCATION environment variable on
Windows platforms, rather than specifying the value in the configuration file.

Note
On Macintosh platforms, IDL is hard-coded to use the Java VM 1.3.1, and so
the system ignores any value you place in IDLJAVAB_LIB_LOCATION.

• The JVM Option# (where # is any whole number) setting allows you to send
additional parameters to the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in the initialization, the options are added to the end of the options
that the bridge sets by default.
Initializing the IDL-Java Bridge External Development Guide

Chapter 8: Using Java Objects in IDL 149
• The Log Location setting indicates the directory where IDL-Java bridge log
files will be created. The default location provided by the IDL installer is /tmp
on Unix and c:\temp on Windows.

• The Bridge Logging setting indicates the type of bridge debug logging to be
sent to a file called jb_log<pid>.txt (where <pid> is a process ID
number) located in the directory specified by the Log Location setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFIG,
CONFIGFINE. The default value is SEVERE, which specifies that bridge errors
are logged. The CONFIG value indicates the configuration settings are also
logged. The CONFIGFINE value is the same as CONFIG, but provides more
detail.

No log file is created if this setting is set to OFF.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. The file is used when the first instance of the IDLjavaObject class is created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made
to the file.
External Development Guide Initializing the IDL-Java Bridge

150 Chapter 8: Using Java Objects in IDL
IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts
variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Java.lang.String String Java has the notion
of a NULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both are identically
converted.

Arrays of the above types IDL array of the same
dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 8-1: Java to IDL Data Type Conversion
IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL 151
Java.lang.Object (or array of
java.lang.Object) and any
subclass of java.lang.Object

IDL array of
primitives or IDL
array of
IDLjavaObjects

In Java, everything is
a subclass of Object.
If the Java object is
an array of
primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
is created. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objects to an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL creates an object
reference of the
IDLjavaObject class.

Null object IDL Null object

Java Type (# bytes) IDL Type Notes

Table 8-1: Java to IDL Data Type Conversion (Continued)
External Development Guide IDL-Java Bridge Data Type Mapping

152 Chapter 8: Using Java Objects in IDL
The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes

Byte byte (1) IDL bytes range from 0 to 255,
Java bytes are -128 to 127. IDL
bytes converted to Java bytes
will retain their binary
representation but values greater
than 127 will change. For
example, BYTE(255) becomes a
Java byte of -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from 0 to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
a Java short of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 8-2: IDL to Java Data Type Conversion
IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL 153
Unsigned long int (4) IDL unsigned longs range from
0 to 4294967295, Java ints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Java ints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
a Java int of -1. If ULONG is
converted to wider Java value,
the sign and value is preserved.

Long64 long (8)

Unsigned Long64 long (8) IDL unsigned long64 range from
0 to 18446744073709551615,
Java ints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Java longs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,
ULONG64(1844674407370955
1615) becomes a Java long of -1.

Float float (4)

Double double (8)

String Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

IDL Type Java Type (# bytes) Notes

Table 8-2: IDL to Java Data Type Conversion (Continued)
External Development Guide IDL-Java Bridge Data Type Mapping

154 Chapter 8: Using Java Objects in IDL
When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Java relative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be time intensive. Care
should be taken to minimize array copying.

IDLjavaObject Object of corresponding
Java class

Arrays of objects Java array of the same
dimensions, consisting of
corresponding Java proxy
objects

Only objects of type
IDLjavaObject are converted.

Null object Java null

IDL Type Java Type (to order of
desired promotion) Notes

Byte byte, char, short, int, long,
float, double, boolean

Integer short, int, long, float, double,
boolean

Unsigned integer short, int, long, float, double,
boolean

Long int, long, float, double, boolean

Unsigned Long int, long, float, double, boolean

Long64 long, float, double, boolean

Table 8-3: Java Data Type Promotion Relative to IDL

IDL Type Java Type (# bytes) Notes

Table 8-2: IDL to Java Data Type Conversion (Continued)
IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL 155
Unsigned Long64 long, float, double, boolean

Float float, double

Double double

String Java.lang.String

IDLjavaObject Java.lang.Object

IDL Type Java Type (to order of
desired promotion) Notes

Table 8-3: Java Data Type Promotion Relative to IDL (Continued)
External Development Guide IDL-Java Bridge Data Type Mapping

156 Chapter 8: Using Java Objects in IDL
Creating IDL-Java Objects

As with all IDL objects, a Java object is created using the IDL OBJ_NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ_NEW to create a Java
object within IDL:

oJava = OBJ_NEW(IDLjavaObject$JAVACLASSNAME, JavaClassName, $
[Arg1, Arg2, ..., ArgN])

where JAVACLASSNAME is the class name token used by IDL to create the object,
JavaClassName is the class name used by Java to initialize the object, and Arg1
through ArgN are any data parameters required by the constructor. See “Java Class
Names in IDL” for more information.

Example Code
See the hellojava.pro file in the external/objbridge/java/examples
directory of the IDL distribution for a simple example of an IDL-Java object
creation.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge also provides the ability to access static Java methods and data
members. See “Java Static Access” on page 157 for more information.

Java Class Names in IDL

The underlying Java interpreter recognizes the Java class name including all objects
contained within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referred to as java.lang.String.

In the IDL class name, the Java class separator (’.’) should be replaced with an
underscore (’_’). If a Java class of type String were created, the following IDL
OBJ_NEW call would be used:

oJString = OBJ_NEW('IDLJavaObject$JAVA_LANG_STRING',$
'java.lang.String', 'My String')
Creating IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 157
The class name is provided twice because IDL is case-insensitive whereas Java is
case-sensitive, see “IDL-Java Bridge Architecture” on page 145 for more
information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUP,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This IDL
object wrapper references the underlying Java class, allowing the object to call static
methods on the class or allowing the object to use the Get/Set Property calls to access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ_NEW(IDLjavaObject$Static$JAVACLASSNAME, JavaClassName)

where JAVACLASNAME is the class name token used by IDL to create the object and
JavaClassName is the class name used by Java to initialize the object. See “Java
Class Names in IDL” on page 156 for more information.

A special static object would not need to be created to call an instantiated
IDLJavaObject with static methods:

oNotStatic = OBJ_NEW('IDLjavaObject$JAVACLASSNAME', $
'JavaClassName')

oNotStatic -> aStaticMethod ; this is OK

Example Code
See the javaprops.pro file in the external/objbridge/java/examples
directory of the IDL distribution for an example of working with static data
members.

Note
All restrictions on creating Java objects apply to this static object.
External Development Guide Creating IDL-Java Objects

158 Chapter 8: Using Java Objects in IDL
Method Calls on IDL-Java Objects

When a method is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Java data types. Any results are returned in
IDL variables of the appropriate type.

As with all IDL objects, the general syntax in IDL for an underlying Java method that
returns a value (known as a function method in IDL) is:

result = ObjRef -> Method([Arguments])

and the general syntax in IDL for an underlying Java method that does not return a
value, a void method, (known as a procedure method in IDL) is:

ObjRef -> Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call Is Made?

When a method is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java’s ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an algorithm to match the IDL method name and parameters to the
corresponding Java object method.
Method Calls on IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 159
Before the algorithm starts, IDL provides a case-insensitive <METHODNAME> and
a reference to the Java object. For a given object and its parent classes, the Java
bridge obtains a list of all the public method names, including static methods. This
algorithm performs the following steps:

1. If the Java class has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Java class has several method names that differ only in case and one is
all uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge
issues an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion algorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Java is preferred and only
widening promotion is allowed. If no match is found, an error is issued.

Data Type Conversions

IDL and Java use different data types. IDL’s dynamic type conversion facilities
handle all conversion of data types between IDL and the Java system. The data type
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 150.

For example, if the Java object has a method that requires a value of type int as an
input argument, IDL would supply the value as an IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal data type
conversion mechanism before passing the value to the Java object as an int.
External Development Guide Method Calls on IDL-Java Objects

160 Chapter 8: Using Java Objects in IDL
Managing IDL-Java Object Properties

Property names and arguments are also passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection API to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) are identified through arguments to the GetProperty and SetProperty
methods. See “Getting and Setting Properties” on page 161 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the algorithm starts, IDL provides a case-insensitive <PROPERTYNAME>
and a reference to the Java object. For the given object and its parent classes, the Java
bridge obtains a list of all the public data members including static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTYNAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Java class has several member names that differ only in case, the data
member name that exactly matches the IDL < PROPERTYNAME > (i.e. the
one that is all caps) is called. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTYNAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error is issued.

When retrieving a property with the GetProperty method, this step is skipped
and the value is returned to IDL.

Example Code
See the allprops.pro and publicmembers.pro files in the
external/objbridge/java/examples directory of the IDL distribution for
IDL routines that provide information about data members associated with given
Java classes.
Managing IDL-Java Object Properties External Development Guide

Chapter 8: Using Java Objects in IDL 161
Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:

ObjRef -> GetProperty, PROPERTY=variable

where ObjRef is an instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variable is
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:

ObjRef -> SetProperty, Property=value

where ObjRef is an instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property values in a single statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routines is assumed to be a fully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See “IDL-Java Bridge Data
Type Mapping” on page 150 for more information.

Note
Besides other Java-based objects, no complex types (structures, pointers, etc.) are
supported as parameters to property calls.
External Development Guide Managing IDL-Java Object Properties

162 Chapter 8: Using Java Objects in IDL
Destroying IDL-Java Objects

The OBJ_DESTROY routine is used to destroy instances of IDLjavaObject. When
OBJ_DESTROY is called with a Java-based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine’s garbage
collector runs.
Destroying IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 163
Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the System.out and System.err
output streams).

For example, given the following Java code:

public class helloWorld
{
// ctor
public helloWorld() {
System.out.println("helloWorld ctor");
}

public void sayHello() {
System.out.println("Hello! (from the helloWorld object)");
}

}

The following output occurs in IDL:

IDL> oJHello = OBJ_NEW('IDLjavaObject$HelloWorld', 'helloWorld')
% helloWorld ctor
IDL> oJHello -> SayHello
% Hello! (from the helloWorld object)
IDL> OBJ_DESTROY, oJHello

Example Code
This example code is also provided in the helloJava.java and
hellojava2.pro files, which are in the
external/objbridge/java/examples directory of the IDL distribution.

Note
Due to restrictions in IDL concerning receiving standard output from non-main
threads, the bridge will only send System.out and System.err information to
IDL from the main thread. Other threads’ output will be ignored.

Note
A print() in Java will not have a carriage return at the end of the line (as opposed
to println(), which does). However, when outputting to Java both print() and
println() will print to IDL followed by a carriage return. You can change this
result by having the Java-side application buffer its data up into the lines you wish
to see on the IDL-side.
External Development Guide Showing IDL-Java Output in IDL

164 Chapter 8: Using Java Objects in IDL
The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,
IDLJavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is a proxy to an internal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an IDLJavaObject to this
object using OBJ_NEW:

oJSession = OBJ_NEW('IDLjavaObject$IDLJAVABRIDGESESSION’)

Note
Only one Java session object needs to be created during an IDL session. Subsequent
calls to this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession -> GetException()

where oJSession is a reference to the session object and oJException is a proxy
object to a java.lang.Throwable object, which is the class used in Java to
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDLJavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDLJavaVersion object:

oJVersion = oJSession -> GetVersionObject()

where oJSession is a reference to the session object and oJVersion is a proxy
object to an IDLJavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.
The IDLJavaBridgeSession Object External Development Guide

Chapter 8: Using Java Objects in IDL 165
The IDLJavaVersion object provides the following function methods, which do not
require any arguments:

• GetBuildDate() - a java.lang.String object specifying the build date. For
example, Apr 1 2003.

• GetJavaVersion() - a java.lang.String object specifying the Java version. For
example, 1.3.1_02.

• GetBridgeVersion() - a java.lang.String object specifying the IDL-Java bridge
version.

Example Code
An example of the version object is provided in the bridge_version.pro file,
which is in IDL’s external/objbridge/java/examples directory.
External Development Guide The IDLJavaBridgeSession Object

166 Chapter 8: Using Java Objects in IDL
Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an IDLjavaObject, calling methods, setting properties, or getting
properties. Typically, these errors will be fixed by changing your IDL or Java code
(or by changing the bridge configuration). Java bridge errors operate like other IDL
errors in that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create a java.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
java.lang.Throwable) via the session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handle it, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetExpection method to the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on page 164
for more information about this object.

Uncaught Exceptions

If a Java exception is not caught, IDL will stop execution and display an Exception
thrown error message. For example, when the following program is saved as
ExceptIssued.pro, compiled, and ran in IDL:

PRO ExceptIssued

; This will throw a Java exception
oJStrBuffer = OBJ_NEW($

'IDLJavaObject$java_lang_StringBuffer', $
’java.lang.StringBuffer’, -2)

END
Java Exceptions External Development Guide

Chapter 8: Using Java Objects in IDL 167
IDL issues the following output:

IDL> ExceptIssued
% Exception thrown
% Execution halted at: EXCEPTISSUED 4 ExceptIssues.pro
% $MAIN$

From the IDL command line, you can then use the session object to help debug the
problem:

IDL> oJSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')
IDL> oJExc = oJSession -> GetException()
IDL> oJExc -> PrintStackTrace
% java.lang.NegativeArraySizeException:
% at java.lang.StringBuffer.<init>(StringBuffer.java:116)

Example Code
A similar example is also provided in the exception.pro file, which is in the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept.pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept.pro file is
also provided in the external/objbridge/java/examples directory of the
IDL distribution.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classes that you are using to ensure IDL is catching any expected exceptions.
For example:

PRO ExceptCaught

; Grab the special IDLJavaBridgeSession object
oJBridgeSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')

bufferSize = -2
; Our Java constructor might throw an exception, so let’s catch it
CATCH, error_status
IF (error_status NE 0) THEN BEGIN

; Use session object to get our Exception
oJExc = oJBridgeSession -> GetException()
; should be of type
; IDLJAVAOBJECT$JAVA_LANG_NEGATIVEARRAYSIZEEXCEPTION
HELP, oJExc
; Now we can access the members java.lang.Throwable
PRINT, 'Exception thrown:', oJExc -> ToString()
oJExc -> PrintStackTrace
External Development Guide Java Exceptions

168 Chapter 8: Using Java Objects in IDL
; Cleanup
OBJ_DESTROY, oJExc
; Increase the buffer size to avoid the exception.
bufferSize = bufferSize + 100

ENDIF

; This throws a Java exception the 1st time, but pass the 2nd time.
oJStrBuffer = OBJ_NEW('IDLJavaObject$java_lang_StringBuffer', $

'java.lang.StringBuffer', bufferSize)

OBJ_DESTROY, oJStrBuffer
OBJ_DESTROY, oJBridgeSession

END

Example Code
A similar example is also provided in the exception.pro file, which is in the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept.pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept.pro file is
also provided in the external/objbridge/java/examples directory of the
IDL distribution.
Java Exceptions External Development Guide

Chapter 8: Using Java Objects in IDL 169
IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

• “Accessing Arrays Example”

• “Accessing URLs Example” on page 172

• “Accessing Grayscale Images Example” on page 174

• “Accessing RGB Images Example” on page 177

Note
If IDL is not able to find any Java class associated with these examples, make sure
your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 147 for more information.

Accessing Arrays Example

This example creates a two-dimensional array within a Java class, which is contained
in a file named array2d.java. IDL then accesses this data through the ArrayDemo
routine, which is in a file named arraydemo.pro.

Example Code
These files are located in the external/objbridge/java/examples directory
of the IDL distribution.

The array2d.java file contains the following text for creating a two-dimensional
array in Java:

public class array2d
{
short[][] m_as;
long[][] m_aj;

// ctor
public array2d() {

int SIZE1 = 3;
int SIZE2 = 4;

// default ctor creates a fixed number of elements
m_as = new short[SIZE1][SIZE2];
m_aj = new long[SIZE1][SIZE2];
External Development Guide IDL-Java Bridge Examples

170 Chapter 8: Using Java Objects in IDL
for (int i=0; i<SIZE1; i++) {
for (int j=0; j<SIZE2; j++) {

m_as[i][j] = (short)(i*10+j);
m_aj[i][j] = (long)(i*10+j);

}
}

}

public void setShorts(short[][] _as) {
m_as = _as;

}
public short[][] getShorts() {return m_as;}
public short getShortByIndex(int i, int j) {return m_as[i][j];}

public void setLongs(long[][] _aj) {
m_aj = _aj;

}
public long[][] getLongs() {return m_aj;}
public long getLongByIndex(int i, int j) {return m_aj[i][j];}

}

The arraydemo.pro file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDemo

; The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. We can interrogate and
; change this array.
oJArr = OBJ_NEW('IDLJavaObject$ARRAY2D', 'array2d')

; First, let’s see what is in the short array at index
; (2,3).
PRINT, 'array2d short(2, 3) = ', $

oJArr -> GetShortByIndex(2, 3), $
' (should be 23)’

; Now, let’s copy the entire array from Java to IDL.
shortArrIDL = oJArr -> GetShorts()
HELP, shortArrIDL
PRINT, 'shortArrIDL[2, 3] = ', shortArrIDL[2, 3], $

' (should be 23)'

; Let’s change this value...
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 171
shortArrIDL[2, 3] = 999
; ...and copy it back to Java...
oJArr -> SetShorts, shortArrIDL
; ...now its value should be different.
PRINT, 'array2d short(2, 3) = ', $

oJArr -> GetShortByIndex(2, 3), ' (should be 999)'

; Let’s set our array to something different.
oJArr -> SetShorts, INDGEN(10, 8)
PRINT, 'array2d short(0, 0) = ', $

oJArr -> GetShortByIndex(0, 0), ' (should be 0)'
PRINT, 'array2d short(1, 0) = ', $

oJArr -> GetShortByIndex(1, 0), ' (should be 1)'
PRINT, 'array2d short(2, 0) = ', $

oJArr -> GetShortByIndex(2, 0), ' (should be 2)'
PRINT, 'array2d short(0, 1) = ', $

oJArr -> GetShortByIndex(0, 1), ' (should be 10)'

; Array2d has a setLongs method, but b/c arrays do not
; (currently) promote, the first call to setLongs works
; but the second fails.
oJArr -> SetLongs, L64INDGEN(10, 8)
PRINT, 'array2d long(0, 1) = ', $

oJArr -> GetLongByIndex(0, 1), ' (should be 10)'

;PRINT, '(expecting an error on the next line...)'
;oJArr -> SetLongs, INDGEN(10,8)

; Cleanup our object.
OBJ_DESTROY, oJArr

END

After saving and compiling the above files (array2d.java in Java and
ArrayDemo.pro in IDL), update the jbexamples.jar file in the
external/objbridge/java directory with the new compiled class and run the
ArrayDemo routine in IDL. The routine should produce the following results:

array2d short(2, 3) = 23 (should be 23)
SHORTARRIDL INT = Array[3, 4]
shortArrIDL[2, 3] = 23 (should be 23)
array2d short(2, 3) = 999 (should be 999)
array2d short(0, 0) = 0 (should be 0)
array2d short(1, 0) = 1 (should be 1)
array2d short(2, 0) = 2 (should be 2)
array2d short(0, 1) = 10 (should be 10)
array2d long(0, 1) = 10 (should be 10)
External Development Guide IDL-Java Bridge Examples

172 Chapter 8: Using Java Objects in IDL
Accessing URLs Example

This example finds and reads a given URL, which is contained in a file named
URLReader.java. IDL then accesses this data through the URLRead routine, which
is in a file named urlread.pro.

Example Code
These files are located in the external/objbridge/java/examples directory
of the IDL distribution.

The URLReader.java file contains the following text for reading a given URL in
Java:

import java.io.*;
import java.net.*;

public class URLReader
{
 private ByteArrayOutputStream m_buffer;

 // **
 //
 // Constructor. Create the reader
 //
 // **
 public URLReader() {
 m_buffer = new ByteArrayOutputStream();
 }

 // **
 //
 // readURL: read the data from the URL into our buffer
 //
 // returns: number of bytes read (0 if invalid URL)
 //
 // NOTE: reading a new URL clears out the previous data
 //
 // **
 public int readURL(String sURL) {
 URL url;
 InputStream in = null;

 m_buffer.reset(); // reset our holding buffer to 0 bytes

 int total_bytes = 0;
 byte[] tempBuffer = new byte[4096];
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 173
 try {
 url = new URL(sURL);
 in = url.openStream();

 int bytes_read;
 while ((bytes_read = in.read(tempBuffer)) != -1) {
 m_buffer.write(tempBuffer, 0, bytes_read);
 total_bytes += bytes_read;
 }
 } catch (Exception e) {
 System.err.println("Error reading URL: "+sURL);
 total_bytes = 0;
 } finally {
 try {
 in.close();
 m_buffer.close();
 } catch (Exception e) {}
 }

 return total_bytes;
 }

 // **
 //
 // getData: return the array of bytes
 //
 // **
 public byte[] getData() {
 return m_buffer.toByteArray();
 }

 // **
 //
 // main: reads URL and reports # of byts reads
 //
 // Usage: java URLReader <URL>
 //
 // **

 public static void main(String[] args) {
 if (args.length != 1)
 System.err.println("Usage: URLReader <URL>");
 else {
 URLReader o = new URLReader();
 int b = o.readURL(args[0]);
 System.out.println("bytes="+b);
 }
 }
External Development Guide IDL-Java Bridge Examples

174 Chapter 8: Using Java Objects in IDL
}

The urlread.pro file contains the following text for inputting an URL as an IDL
string and then accessing its data within IDL:

FUNCTION URLRead, sURLName

; Create an URLReader.
oJURLReader = OBJ_NEW('IDLjavaObject$URLReader', 'URLReader')

; Read the URL data into our Java-side buffer.
nBytes = oJURLReader -> ReadURL(sURLName)

;PRINT, 'Read ', nBytes, ' bytes'

; Pull the data into IDL.
byteArr = oJURLReader -> GetData()

; Cleanup Java object.
OBJ_DESTROY, oJURLReader

; Return the data.
RETURN, byteArr

END

After saving and compiling the above files (URLReader.java in Java and
urlread.pro in IDL), you can run the URLRead routine in IDL. This routine is a
function with one input argument, which should be a IDL string containing an URL.
For example:

address = 'http://www.RSInc.com'
data = URLRead(address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in a file named GreyBandsImage.java. IDL then accesses this data
through the ShowGreyImage routine, which is in the showgreyimage.pro file.

Example Code
These files are located in the external/objbridge/java/examples directory
of the IDL distribution.
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 175
The GreyBandsImage.java file contains the following text for creating a grayscale
image in Java:

import java.awt.*;
import java.awt.image.*;

public class GreyBandsImage extends BufferedImage
{
 // Members
 private int m_height;
 private int m_width;

 //
 // ctor
 //
 public GreyBandsImage() {
 super(100, 100, BufferedImage.TYPE_INT_ARGB);
 generateImage();
 m_height = 100;
 m_width = 100;
 }

 //
 // private method to generate the image
 //
 private void generateImage() {
 Color c;
 int width = getWidth();
 int height = getHeight();
 WritableRaster raster = getRaster();
 ColorModel model = getColorModel();

 int BAND_PIXEL_WIDTH = 5;
 int nBands = width/BAND_PIXEL_WIDTH;
 int greyDelta = 255 / nBands;
 for (int i=0 ; i < nBands; i++) {
 c = new Color(i*greyDelta, i*greyDelta, i*greyDelta);
 int argb = c.getRGB();
 Object colorData = model.getDataElements(argb, null);

 for (int j=0; j < height; j++)
 for (int k=0; k < BAND_PIXEL_WIDTH; k++)
 raster.setDataElements(j, (i*5)+k, colorData);

 }
 }
External Development Guide IDL-Java Bridge Examples

176 Chapter 8: Using Java Objects in IDL
 //
 // mutators
 //
 public int[] getRawData() {
 Raster oRaster = getRaster();
 Rectangle oBounds = oRaster.getBounds();
 int[] data = new int[m_height * m_width * 4];

 data = oRaster.getPixels(0,0,100,100, data);
 return data;
 }
 public int getH() {return m_height; }
 public int getW() {return m_width; }

}

The showgreyimage.pro file contains the following text for accessing the
grayscale image within IDL:

PRO ShowGreyImage

; Construct the GreyBandImage in Java. This is a sub-class of
; BufferedImage. It is actually a 4 band image that happens to
display bands in greyscale. It is 100x100 pixels.
oGrey = OBJ_NEW('IDLjavaObject$GreyBandsImage', 'GreyBandsImage')

; Get the 4 byte pixel values.
data = oGrey -> GetRawData()

; Get the height and width.
h = oGrey -> GetH()
w = oGrey -> GetW()

; Display the graphic in an IDL window
WINDOW, 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; Cleanup
OBJ_DESTROY, oGrey

END
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 177
After saving and compiling the above files (GreyBandsImage.java in Java and
showgreyimage.pro in IDL), you can run the ShowGreyImage routine in IDL.
The routine should produce the following image:

Accessing RGB Images Example

This example imports an RGB (red, green, and blue) image from the IDL distribution
into a Java class. The image is in the glowing_gas.jpg file, which is in the
examples/data directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, the image is accessed into IDL and
displayed with the new iImage tool.

Example Code
The Java and IDL code for this example is provided in the
external/objbridge/java/examples directory, but the Java code has not
been built as part of the jbexamples.jar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note
Due to a Java bug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

Figure 8-1: Java Grayscale Image Example
External Development Guide IDL-Java Bridge Examples

178 Chapter 8: Using Java Objects in IDL
The first and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the glowing_gas.jpg file. Copy and paste the
following text into a file, then save it as FrameTest.java:

import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.File;

public class FrameTest extends JFrame {

RSIImageArea c_imgArea;
int m_xsize;
int m_ysize;
Box c_controlBox;

public FrameTest() {

super("This is a JAVA Swing Program called from IDL");
// Dispose the frame when the sys close is hit
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
m_xsize = 350;
m_ysize = 371;
buildGUI();

}

public void buildGUI() {

c_controlBox = Box.createVerticalBox();

JLabel l1 = new JLabel("Example Java/IDL Interaction");
JButton bLoadFile = new JButton("Load new file");
bLoadFile.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JFileChooser chooser = new JFileChooser(new
File("c:\\RSI\\IDL62\\EXAMPLES\\DATA"));
chooser.setDialogTitle("Enter a JPEG file");
if (chooser.showOpenDialog(FrameTest.this) ==
JFileChooser.APPROVE_OPTION) {

java.io.File fname = chooser.getSelectedFile();
String filename = fname.getPath();
System.out.println(filename);
c_imgArea.setImageFile(filename);

}
}

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 179
});

JButton b1 = new JButton("Close this example");
b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
dispose();
}
});

c_imgArea = new
RSIImageArea("c:\\rsi\\idl62\\examples\\data\\glowing_gas.jpg",
new Dimension(m_xsize,m_ysize));

Box mainBox = Box.createVerticalBox();
Box rowBox = Box.createHorizontalBox();
rowBox.add(b1);
rowBox.add(bLoadFile);

c_controlBox.add(l1);
c_controlBox.add(rowBox);
mainBox.add(c_controlBox);
mainBox.add(c_imgArea);

getContentPane().add(mainBox);

pack();
setVisible(true);
c_imgArea.displayImage();
c_imgArea.addResizeListener(new RSIImageAreaResizeListener() {
public void areaResized(int newx, int newy) {
Dimension cdim = c_controlBox.getSize(null);
Insets i = getInsets();
newx = i.left + i.right + newx;
newy = i.top + cdim.height + newy + i.bottom;
setSize(new Dimension(newx, newy));
}
});
}

public void setImageData(int [] imgData, int xsize, int ysize) {
MemoryImageSource ims = new MemoryImageSource(xsize, ysize,
imgData, 0, ysize);
Image imgtmp = createImage(ims);
Graphics g = c_imgArea.getGraphics();
g.drawImage(imgtmp, 0, 0, null);

}

External Development Guide IDL-Java Bridge Examples

180 Chapter 8: Using Java Objects in IDL
public void setImageData(byte [][][] imgData, int xsize,
int ysize) {

System.out.println("SIZE = "+xsize+"x"+ysize);
int newArray [] = new int[xsize*ysize];
int pixi = 0;
int curpix = 0;
short [] currgb = new short[3];
for (int i=0;i<m_xsize;i++) {
for (int j=0;j<m_ysize;j++) {
for (int k=0;k<3;k++) {
currgb[k] = (short) imgData[k][i][j];
currgb[k] = (currgb[k] < 128) ? (short) currgb[k] : (short)
(currgb[k]-256);

}
curpix = (int) currgb[0] * +
((int) currgb[1] * (int) Math.pow(2,8)) +
((int) currgb[2] * (int) Math.pow(2,16));

if (pixi % 1000 == 0)
System.out.println("PIXI = "+pixi+" "+curpix);
newArray[pixi++] = curpix;
}
}

MemoryImageSource ims = new MemoryImageSource(xsize, ysize,
newArray, 0, ysize);
c_imgArea.setImageObj(c_imgArea.createImage(ims));

}

public byte[][][] getImageData()
{
int width = 1;
int height = 1;
PixelGrabber pGrab;

width = m_xsize;
height = m_ysize;

// pixarray for the grab - 3D bytearray for display
int [] pixarray = new int[width*height];
byte [][][] bytearray = new byte[3][width][height];

// create a pixel grabber
pGrab = new PixelGrabber(c_imgArea.getImageObj(),0,0,
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 181
width,height, pixarray, 0, width);

// grab the pixels from the image
try {
boolean b = pGrab.grabPixels();
} catch (InterruptedException e) {
System.err.println("pixel grab interrupted");
return bytearray;
}

// break down the 32-bit integers from the grab into 8-bit bytes
// and fill the return 3D array
int pixi = 0;
int curpix = 0;
for (int j=0;j<m_ysize;j++) {
for (int i=0;i<m_xsize;i++) {
curpix = pixarray[pixi++];
bytearray[0][i][j] = (byte) ((curpix >> 16) & 0xff);
bytearray[1][i][j] = (byte) ((curpix >> 8) & 0xff);
bytearray[2][i][j] = (byte) ((curpix) & 0xff);
}
}
return bytearray;
}

public static void main(String [] args) {
FrameTest f = new FrameTest();
}

}

Note
The above text is for the FrameTest class that accesses the glowing_gas.jpg file
in the examples/data directory of a default installation of IDL on a Windows
system. The file’s location is specified as c:\\RSI\\IDL62\\EXAMPLES\\DATA
in the above text. If the glowing_gas.jpg file is not in the same location on
system, edit the text to change the location of this file to match your system.
External Development Guide IDL-Java Bridge Examples

182 Chapter 8: Using Java Objects in IDL
The FrameTest class uses two other user-defined classes, RSIImageArea and
RSIImageAreaResizeListener. These classes help to define the viewing area and
display the image in Java. Copy and paste the following text into a file, then save it as
RSIImageArea.java:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.io.File;

public class RSIImageArea extends JComponent implements
MouseMotionListener, MouseListener {

Image c_img;
int m_boxw = 100;
int m_boxh = 100;
Dimension c_dim;
boolean m_pressed = false;
int m_button = 0;
Vector c_resizelisteners = null;

public RSIImageArea(String imgFile, Dimension dim) {

c_img = getToolkit().getImage(imgFile);
c_dim = dim;
setPreferredSize(dim);
setSize(dim);
addMouseMotionListener(this);
addMouseListener(this);

}

public void addResizeListener(RSIImageAreaResizeListener l) {
if (c_resizelisteners == null) c_resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);
}
public void removeResizeListener(RSIImageAreaResizeListener l) {
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.remove(l);
}

public void displayImage() {
repaint();
}

public void paint(Graphics g) {
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 183
int xsize = c_img.getWidth(null);
int ysize = c_img.getHeight(null);
if (xsize != -1 && ysize != -1) {
if (xsize != c_dim.width || ysize != c_dim.height) {
c_dim.width = xsize;
c_dim.height = ysize;
setPreferredSize(c_dim);
setSize(c_dim);
if (c_resizelisteners != null) {
RSIImageAreaResizeListener l = null;
for (int j=0;j<c_resizelisteners.size();j++) {
l = (RSIImageAreaResizeListener)
c_resizelisteners.elementAt(j);
l.areaResized(xsize, ysize);
}
}
}
}
g.drawImage(c_img, 0, 0, null);
}

public void setImageFile(String fileName) {
c_img = null;
c_img = getToolkit().getImage(fileName);
repaint();
}

public Image getImageObj() {
return c_img;
}

public void setImageObj(Image img) {
c_img = img;
repaint();
}

public void drawZoomBox(MouseEvent e) {
int bx = e.getX() - m_boxw/2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - m_boxh/2;
by = (by >=0) ? by :0;
int ex = bx + m_boxw;
if (ex > c_dim.width) {
ex = c_dim.width;
bx = c_dim.width-m_boxw;
}
int ey = by + m_boxh;
if (ey > c_dim.height) {
External Development Guide IDL-Java Bridge Examples

184 Chapter 8: Using Java Objects in IDL
ey = c_dim.height;
by = c_dim.height-m_boxh;
}

repaint();
Graphics g = getGraphics();
g.drawImage(c_img, bx, by, ex, ey, bx+(m_boxw/4), by+(m_boxh/4),
ex-(m_boxw/4),ey-(m_boxh/4), null);
g.setColor(Color.white);
g.drawRect(bx, by, m_boxw, m_boxh);

}

public void mouseDragged(MouseEvent e) {
drawZoomBox(e);
}

public void mouseMoved(MouseEvent e) {

Graphics g = getGraphics();
if (m_pressed && (m_button == 1)) {
drawZoomBox(e);
g.setColor(Color.white);
g.drawString("DRAG", 10,10);
} else {

g.setColor(Color.white);
String s = "("+e.getX()+","+e.getY()+")";
repaint();
g.drawString(s, e.getX(), e.getY());
}

}

public void mouseClicked(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

public void mousePressed(MouseEvent e) {
m_pressed = true;
m_button = e.getButton();
repaint();
if (m_button == 1) drawZoomBox(e);
}

public void mouseReleased(MouseEvent e) {
m_pressed = false;
m_button = 0;
}
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 185
}

And copy and paste the following text into a file, then save it as
RSIImageAreaResizeListener.java:

public interface RSIImageAreaResizeListener {
public void areaResized(int newx, int newy);
}

Compile these classes in Java. Then either update the jbexamples.jar file in the
external/objbridge/java directory with the new compiled class, place the
resulting compiled classes in your Java class path, or edit the JVM Classpath setting
in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See “Configuring the Bridge” on page 147 for more information.

With the Java classes compiled, you can now access them in IDL. Copy and paste the
following text into the IDL Editor window, then save it as ImageFromJava.pro:

PRO ImageFromJava
; Create a Swing Java object and have it load image data
; into IDL.

; Create the Java object first.
oJSwing = OBJ_NEW('IDLjavaObject$FrameTest', 'FrameTest')

; Get the image from the Java object.
image = oJSwing -> GetImageData()
PRINT, 'Loaded Image Information:'
HELP, image

; Delete the Java object.
OBJ_DESTROY, oJSwing

; Interactively display the image.
IIMAGE, image

END
External Development Guide IDL-Java Bridge Examples

186 Chapter 8: Using Java Objects in IDL
After compiling the above routine, you can run it in IDL. This routine produces the
following Java Swing application.

Then, the routine produces the following iImage tool.

Note
After IDL starts the Java Swing application, the two displays are independent of
each other. If a new image is loaded into the Java application, the IDL iImage tool
is not updated. If the iImage tool modifies the existing image or opens a new image,
the Java Swing application is not updated.

Figure 8-2: Java Swing Application Example

Figure 8-3: iImage Tool from Java Swing Example
IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 187
Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

• “Calling System.exit”

• “Errors When Initializing the Bridge”

• “Errors When Creating Objects” on page 188

• “Errors When Calling Methods” on page 189

• “Errors When Accessing Data Members” on page 190

Calling System.exit

The Java method System.exit terminates the process in which the Java Virtual
Machine is running. When the Java Virtual Machine is initialized by IDL,
terminating its process also terminates IDL.

Errors When Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridge is not configured correctly, an error message is issued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the IDLJAVAB_LIB_LOCATION
environment variable, and on Windows, check the IDLJAVAB_LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
create it and set it equal to the location of the Java Virtual Machine on your system.
See “Configuring the Bridge” on page 147 for details:

• Bad JVM Home value: 'path', where path is the location of Java Virtual
Machine on your system.

• JVM shared lib not found in path 'JVM LibLocation', where JVM
shared lib is the location of the Java Virtual Machine shared library and JVM
LibLocation is the value of the IDLJAVAB_LIB_LOCATION environment
variable.

• No valid JVM shared library exists at location pointed to
by $IDLJAVAB_LIB_LOCATION
External Development Guide Troubleshooting Your Bridge Session

188 Chapter 8: Using Java Objects in IDL
• idljavab.jar not found in path 'path', where path is the location of
the external/objbridge/java directory in the IDL distribution.

• Bridge cannot determine which JVM to run

• Java virtual machine failed to start

• Failure loading JVM: path/JVM shared lib name, where path is the
location of the Java Virtual Machine and JVM shared lib name is the name of
the main Java shared library, which is usually libjvm.so on UNIX and
jvm.dll on Windows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

• IDL-Java bridge is not running

If this message occurs, fix the error and restart IDL.

Errors When Creating Objects

The following error messages can occur while creating a Java object in IDL. Possible
solutions for these errors are also provided:

• Wrong number of parameters - occurs if OBJ_NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; once in
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “Java Class Names in IDL” on page 156 for details.

• Second parameter must be the Java class name - occurs if 2nd
parameter is not an IDL string. When using OBJ_NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See “Java Class Names in IDL” on
page 156 for details.

• Class classname not found, where classname is the class name you
specified in the first two parameters to OBJ_NEW - occurs if the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL is referring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “Configuring the Bridge” on page 147 for details.

• Class classname is not a public class, where classname is the class
name you specified in the first two parameters to OBJ_NEW - occurs if
Troubleshooting Your Bridge Session External Development Guide

Chapter 8: Using Java Objects in IDL 189
specified class is not a public class. Edit your Java code to make sure the class
you want to access is public.

• Constructor class::class(signature) not found, where class is the class
name - occurs if the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and look in
your Java code to see if you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the data types in the Java signature. See “Java Class Names in IDL” on
page 156 for details.

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure is not allowed as a parameter to an IDLjavaObject.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 164 for details.

Errors When Calling Methods

The following error messages can occur while calling methods to Java objects in IDL.
Possible solutions for these errors are also provided:

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure are not allowed as a parameter to an IDLjavaObject.

• Class class has no method named method, where class is the class name
and method is the method name specified when trying to call the Java method -
occurs if the method of given name does not exist. Check the spelling of the
method name. Also compare the method name in the Java class source file with
the method name provided when calling the method in IDL. See “What
Happens When a Method Call Is Made?” on page 158 for details.

• class::method(signature) is a void method. Must be called as a
procedure, where class is the class name and method is the method name
specified when a void Java method is called as an IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects” on
page 158 for details.

• Method class::method(signature) not found, where class is the class
name and method is the method name specified when trying to call the Java
method - occurs if the IDL-Java bridge cannot find the method with a matching
External Development Guide Troubleshooting Your Bridge Session

190 Chapter 8: Using Java Objects in IDL
signature. Check the spelling of the method name. Also compare the method
name in the Java class source file with the method name provided when calling
the method in IDL. Also check to ensure your IDL data can be promoted to the
Java signature. See “What Happens When a Method Call Is Made?” on
page 158 for details.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 164 for details.

Errors When Accessing Data Members

The following error messages can occur while accessing data members to Java
objects in IDL. Possible solutions for these errors are also provided:

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure is not allowed as a parameter to an IDLjavaObject.

• Class class has no data member named property, where class is the
class name and property is the data member name specified when trying to
access the Java data member - occurs if the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing it in IDL. See “Managing IDL-Java Object Properties” on
page 160 for details.

• Property class::property of type type not found, where class is the
class name, property is the data member name specified, and type is property’s
data type when trying to access the Java data member - occurs if the IDL-Java
bridge cannot find the Java data member of the given type. Check the data type
of Java data member and make sure you are trying to use a similar type in IDL.
See “Getting and Setting Properties” on page 161 for details.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 164 for details.
Troubleshooting Your Bridge Session External Development Guide

Chapter 9

Using
CALL_EXTERNAL
This chapter discusses the following topics:
The CALL_EXTERNAL Function 192
Passing Parameters 202
Using Auto Glue . 204
Basic C Examples 206
Wrapper Routines 210

Passing String Data 212
Passing Array Data 216
Passing Structures 218
Fortran Examples 220
External Development Guide 191

192 Chapter 9: Using CALL_EXTERNAL
The CALL_EXTERNAL Function

IDL allows you to integrate programs written in other languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL’s internal system routine table:

• The CALL_EXTERNAL function allows you to call external functions
(written in C/C++ or Fortran, for example) from your IDL programs. You
should be comfortable writing and building programs in the external language
being used, but significant knowledge of IDL’s internals beyond basic type
mapping between the languages is generally not necessary.

• An alternative to CALL_EXTERNAL is to write an IDL system routine and
merge it with IDL at runtime. Routines merged in this fashion are added to
IDL’s internal system routine table and are available in the same manner as
IDL built-in routines. This technique is discussed in Chapter 21, “Adding
System Routines”. To write a system routine, you will need to understand the
IDL internals discussed in later sections of this book.

This chapter covers the basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX and Windows versions of IDL. It
can be helpful to refer to the documentation for “CALL_EXTERNAL” in the IDL
Reference Guide manual when reading this material.

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. Arguments passed to IDL are passed to this external code, and
returned data from the external code is automatically presented as the result from
CALL_EXTERNAL as an IDL variable. IDL and the called routine share the same
process address space. Because of this, CALL_EXTERNAL avoids the overhead of
process creation of the SPAWN routine. In addition, the shareable object library is
only loaded the first time it is referenced, saving overhead on subsequent calls.

CALL_EXTERNAL is much easier to use than writing a system routine. Unlike a
system routine, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errors in the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash. See
“Common CALL_EXTERNAL Pitfalls” on page 199 for help in avoiding some of
the more common mistakes.

Example Code in the IDL Distribution

This chapter contains examples of CALL_EXTERNAL use. All of the code for these
examples, along with additional examples, can be found in the call_external
The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 193
subdirectory of the external directory of the IDL distribution. The C language
examples use the MAKE_DLL procedure, and can therefore be easily run on any
platform supported by IDL. To build the sharable library containing the external C
code and then run all of the provided examples, execute the following IDL
statements:

PUSHD, FILEPATH(’’,SUBDIRECTORY=[’external’,’call_external’,’C’])
ALL_CALLEXT_EXAMPLES
POPD

Additional information on these examples, including details on running the
individual examples, can be found in the README file located in that directory.

CALL_EXTERNAL Compared to UNIX Child Process

In many situations, a UNIX IDL user has a choice of using the SPAWN procedure to
start a child process that executes external code and communicates with IDL via a
pipe connecting the two processes. The advantages of this approach are:

• Simplicity.

• The processes do not share address space, and are therefore protected from
each other’s mistakes.

The advantages of CALL_EXTERNAL are:

• IDL and the called routine share the same memory and data space. Although
this can be a disadvantage (as noted above) there are times where sharing
address space is advantageous. For example, large data can be easily and
cheaply shared in this manner.

• CALL_EXTERNAL avoids the overhead of process creation and parameter
passing.

• The shareable object library containing the called routine is only loaded the
first time it is referenced, whereas a SPAWNed process must be created for
each use of the external code.

Compilation and Linking of External Code

Each operating system requires different compilation and link statements for
producing a shareable object suitable for usage with CALL_EXTERNAL. This is
even true between different implementations of a common operating system family.
For example, most UNIX systems require unique options despite their shared
heritage. You must consult your system and compiler documentation to find the
appropriate options for your system.
External Development Guide The CALL_EXTERNAL Function

194 Chapter 9: Using CALL_EXTERNAL
The IDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
a portable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can completely
handle the task of building sharable libraries to be used with CALL_EXTERNAL.
MAKE_DLL requires that you have a C compiler installed on your system that is
compatible with the compiler described by the IDL !MAKE_DLL system variable.

The IDL !MAKE_DLL system variable is used by the MAKE_DLL procedure to
construct C compiler and linker commands appropriate for the target platform. If you
do not use MAKE_DLL to compile and link your code, you may find the contents of
!MAKE_DLL.CC and !MAKE_DLL.LD helpful in determining which options to
specify to your compiler and linker, in conjunction with your system and compiler
documentation. For the C language, the options in !MAKE_DLL should be very
close to what you need. For other languages, the !MAKE_DLL options should be
helpful in determining which options to use, as on most systems, all the language
compilers accept similar options.

AUTO_GLUE

As described in “Passing Parameters” on page 202, CALL_EXTERNAL uses the
IDL Portable Calling Convention to call external code. This convention uses an
(argc, argv) style interface to allow CALL_EXTERNAL to call routines with
arbitrary numbers and types of arguments. Such an interface is necessary, because
IDL, like any compiled program, cannot generate arbitrary function calls at runtime.

Of course, most C functions are not written to the IDL portable convention. Rather,
they are written using the natural form of argument passing used in compiled
programs. It is therefore common for IDL programmers to write so-called glue
functions to match the IDL calling interface to that of the target function. On systems
that have a C compiler installed that is compatible with the one described by the IDL
!MAKE_DLL system variable, the AUTO_GLUE keyword to CALL_EXTERNAL
can be used to instruct IDL to automatically write, compile, and load this glue code
on demand, and using a cache to preserve this glue code for future invocations of
functions with the same interface.

AUTO_GLUE thus allows CALL_EXTERNAL to call functions with a natural
interface, without requiring the user to write or compile additional code.
AUTO_GLUE is described in the documentation for “CALL_EXTERNAL” in the
IDL Reference Guide manual, as well as in “Using Auto Glue” on page 204. The
examples given in “Basic C Examples” on page 206 show CALL_EXTERNAL used
with and without AUTO_GLUE.
The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 195
Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL_Message(). Performing input/output from
code external to IDL, especially to the user console or tty (e.g. stdin or stdout),
may generate unexpected results.

Memory Cleanup

IDL has a strict internal policy that it never performs memory cleanup on memory
that it did not allocate. This policy is necessary so that external code which allocates
memory can use any memory allocation package it desires, and so that there is no
confusion about which code is responsible for releasing allocated memory.

Note
The code that allocates memory is always responsible for freeing it. IDL allocates
and frees memory for its internal needs, and external code is not allowed to release
such memory except through a proper IDL function documented for that purpose.
Similarly, IDL will never intentionally free memory that it did not allocate.

As such, IDL does not perform any memory cleanup calls on the values returned
from external code called via the CALL_EXTERNAL routine. Because of this, any
dynamic memory returned to IDL will not be returned to the system, which will result
in a memory leak. Users should be aware of this behavior and design their
CALL_EXTERNAL routines in such a manner as not to return dynamically allocated
memory to IDL. The discussion in “Passing String Data” on page 212 contains an
example of doing this with strings.

Memory Access

IDL and your external code share the same address space within the same running
program. This means that mistakes common in compiled languages, such as a wild
pointer altering memory that it does not own, can cause problems elsewhere. In
particular, external code can easily corrupt IDL’s data structures and otherwise cause
IDL to fail. Authors of such code must be especially careful to guard against such
errors.

Argument Data Types

When using CALL_EXTERNAL to call external code, IDL passes its arguments to
the called code using the data types that were passed to it. It has no way to verify
External Development Guide The CALL_EXTERNAL Function

196 Chapter 9: Using CALL_EXTERNAL
independently that these types are the actual types expected by the external routine. If
the data types passed are not of the types expected by the external code, the results
are undefined, and can easily include memory corruption or even crashing of the IDL
program.

Warning
You must ensure that the arguments passed to external code are of the exact type
expected by that routine. Failure to do so will result in undefined behavior.

Mapping IDL Data Types to External Language Types

When writing external code for use with CALL_EXTERNAL, your code must use
data types that are compatible with the C data types used internally by IDL to
represent the IDL data types. This mapping is the topic of Chapter 11, “IDL Internals:
Types”.

By-Value and By-Reference Arguments

There are two basic forms in which arguments can be passed between functions in
compiled languages such as C/C++ and Fortran. To use CALL_EXTERNAL
successfully, you should be comfortable with these terms and their meanings. In
particular, Fortran programmers are often unaware that Fortran code passes
everything by reference, and that C code defaults to passing everything by value. By
default, CALL_EXTERNAL passes arguments by reference (unless this behavior is
explicitly altered by the use of the ALL_VALUE or VALUE keywords), so no special
action is typically required to call Fortran code via CALL_EXTERNAL.

Warning
You must ensure that the arguments passed to external code are passed using the
correct method — by value, or by reference. Failure to do so will result in undefined
behavior.

Arguments Passed by Value

A copy of the value of the argument is passed to the called routine. Any changes
made to such a value by the called routine are local to that routine, and do not change
the original value of the variable in the calling routine. C/C++ pass everything by
value, but have an explicit address-of operator (&) that is used to pass addresses of
variables and get by-reference behavior.
The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 197
Arguments Passed by Reference

The machine address of the argument is passed to the called routine. Any changes
made to such a value by the called routine are immediately visible to the caller,
because both routines are actually modifying the same memory addresses. Fortran
passes everything by reference, but most Fortran implementations support intrinsic
operators that allow the programmer control over this (sometimes called %LOC and
%VAL, or just LOC and VAL). Consult your compiler documentation for details.

Microsoft Windows Calling Conventions

All operating system/hardware combinations define an inter-routine calling
convention. A calling convention defines the rules used for passing arguments
between routines, and specifies such details as how arguments of different types are
passed (i.e. in registers or on the system stack) and how and when such arguments are
cleaned up.

A stable and efficient calling convention is critical to the stability of an operating
system, and can affect most aspects of the system:

• The efficiency of the entire system depends on the efficiency of the core
calling convention.

• Backwards compatibility, and thus the longevity of binary software written for
the platform depends on the stability of the calling convention.

• Calling routines from different languages within a single program depends on
all the language compilers adhering to the same calling convention. Even
within the same language, the ability to mix code compiled by different
compilers requires those compilers to adhere to the same conventions. For
example, at the time of this writing, the C++ language standard lacks an
Application Binary Interface (ABI) that can be targeted by all C++ compilers.
This can lead to situations in which the same compiler must be used to build all
of the code within a given program.

Microsoft Windows is unique among the platforms supported by IDL in that it has
two distinct calling conventions in common use, whereas other systems define a
single convention. On single-convention systems, the calling convention is
unimportant to application programmers, and of concern only to hardware designers
and the authors of compilers, and operating systems. On a multiple convention
system, application programmers sometimes need to be aware of the issue, and
ensure that their code is compiled to use the proper convention and that calls to that
code use the same convention. The Microsoft Calling Conventions are:
External Development Guide The CALL_EXTERNAL Function

198 Chapter 9: Using CALL_EXTERNAL
STDCALL

STDCALL is the calling convention used by the majority of the Windows
operating system API. In a STDCALL call, the calling routine places the
arguments in the proper registers and/or stack locations, and the called routine
is responsible for cleaning them up and unwinding the stack.

CDECL

CDECL is the calling convention used by C/C++ code by default. This default
can be changed via compiler switches, declspec declarations, or #pragmas.
With CDECL, the caller is responsible for both setup and cleanup of the
arguments. CDECL is able to call functions with variable numbers of
arguments (varargs functions) because the caller knows the actual number of
arguments passed at runtime, whereas STDCALL cannot call such functions.
This is because the STDARGS routine cannot know efficiently at compile time
how many arguments it will be passed at runtime in these situations.

The inconvenience of having two distinct and incompatible calling conventions is
usually minor, because the header files that define functions for C/C++ programs
include the necessary definitions such that the compiler knows to generate the proper
code to call them and the programmer is not required to be aware of the issue.
However, CALL_EXTERNAL does have a problem: Unlike a C/C++ program, IDL
determines how to call a function solely by the arguments passed to
CALL_EXTERNAL, and not from a header file.

IDL therefore has no way to know how your external code was compiled. It uses the
STDARG convention by default, and the CDECL keyword can be used to change the
default. CALL_EXTERNAL therefore relies on the IDL user to tell it which
convention to use. If IDL calls your code using the correct convention, it will work
correctly. If it calls using the wrong convention, the results are undefined, including
memory corruption and possible crashing of the IDL program.

Warning
The default calling convention for CALL_EXTERNAL is STDCALL, whereas the
default convention for the Microsoft C compiler is CDECL. Hence, Windows users
must usually specify the CDECL keyword when calling such code from IDL. Non-
Windows versions of IDL ignore the CDECL keyword, so it is safe to always
include it in cross platform code.

Here is what happens when external code is called via the wrong calling convention:

• If a STDARG call is made to a CDECL function, the caller places the
arguments in the proper registers/stack locations, and relies on the called
The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 199
routine to cleanup and unwind the stack. The called routine, however, does not
do these things because it is a CDECL routine. Hence, cleanup does not
happen.

• If a CDECL call is made to a STDARG function, the caller places the
arguments in the proper register/stack locations. The called routine cleans up
on exit, and then the caller cleans up again.

Either combination is bad, and can corrupt or kill the program. Sometimes this
happens, and sometimes it doesn’t, so the results can be random and mysterious to
programmers who are not aware of the issue.

Note
When the wrong calling convention is used, it is common for the process stack to
become confused. A “smashed stack” visible from the C debugger following a
CALL_EXTERNAL is usually indicative of having used the wrong calling
convention.

Common CALL_EXTERNAL Pitfalls

Following are a list of common errors and mistakes commonly seen when using
CALL_EXTERNAL.

• The number of arguments and their types, as passed to CALL_EXTERNAL,
must be the exact types expected by the external routine. In particular, it is
common for programmers to forget that the default IDL integer is a 16-bit
value and that most C compilers define the int type as being a 32-bit value.
You should be careful to use IDL LONG integers, which are 32-bit, in such
cases. See “Argument Data Types” on page 195 for additional details.

• Passing data using the wrong form: Using by-value to pass an argument to a
function expecting it by-reference, or the reverse. See“By-Value and By-
Reference Arguments” on page 196 for additional details.

• Under Microsoft Windows, using the incorrect calling convention for a given
external function. See “Microsoft Windows Calling Conventions” on page 197
for additional details.

• Failure to understand that IDL uses IDL_STRING descriptors to represent
strings, and not just a C style NULL terminated string. Passing a string value
by reference passes the address of the IDL_STRING descriptor to the external
code. See Chapter 14, “IDL Internals: String Processing” for additional details.

• Attempting to make IDL data structures use memory allocated by external
code rather than using the proper IDL API for creating such data structures.
External Development Guide The CALL_EXTERNAL Function

200 Chapter 9: Using CALL_EXTERNAL
For instance, attempting to give an IDL_STRING descriptor a different value
by using C malloc() to allocate memory for the string and then storing the
address of that memory in the IDL_STRING descriptor is not supported, and
can easily crash or corrupt IDL. Although IDL uses malloc()/free() internally
on most platforms, you should be aware that this is not part of IDL’s public
interface, and that RSI can change this at any time and without notice. Even on
platforms where IDL does use these functions, its use of them is not directly
compatible with similar calls made by external code because IDL allocates
additional memory for bookkeeping that is generally not present in memory
allocations from other sources. See Chapter 14, “IDL Internals: String
Processing” for information on changing the value of an IDL_STRING
descriptor using supported IDL interfaces. See Chapter 9, “Memory Cleanup”
for more on memory allocation and cleanup.

• IDL is written in the C language, and when IDL starts, any necessary runtime
initialization code required by C programs is automatically executed by the
system before the IDL main() function is called. Hence, calling C code from
IDL usually does not require additional runtime initialization. However, when
calling external code written in languages other than C, you may find that your
code does not run properly unless you arrange for the necessary runtime
support for that language to run first. Such details are highly system specific,
and you must refer to your system and compiler documentation for details.
Code that is largely computational rarely encounters this issue. It is more
common for code that performs Input/Output directly.

• Programming errors in the external code. It is easy to make mistakes in
compiled languages that have bad global consequences for unrelated code
within the same program. For example, a wild memory pointer can lead to the
corruption of unrelated data. If you are lucky, such an error will immediately
kill your program, making it easy to locate and fix. Less fortunate is the
situation in which the program dies much later in a seemingly unrelated part of
the program. Finding such problems can be difficult and time consuming.
When IDL crashes following a call to external code, an error in the external
code or in the call to CALL_EXTERNAL is the cause in the vast majority of
cases.

• Some compilers and operating systems have a convention of adding leading or
trailing underscore characters to the names of functions they compile. These
conventions are platform specific, and as they are of interest only to system
linker and compiler authors, not generally well documented. This is usually
transparent to the user, but can sometimes be an issue with inter language
function calls. If you find that a function you expect to call from a library is not
being found by CALL_EXTERNAL, and the obvious checks do not uncover
The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 201
the error (usually a simple misspelling), this might be the cause. Under UNIX,
the nm command can be helpful in diagnosing such problems.

• C++ compilers use a technique commonly called name munging to encode the
types of method arguments and return values into the name of the routine as
written to their binary object files. Such names often have only a passing
resemblance to the name seen by the C++ programmer in their source code.
IDL can only call C++ code that has C linkage, as discussed in “C++” on
page 25. C linkage code does not use name munging.

• When calling external code written in other languages, there are sometimes
platform and language specific hidden arguments that must be explicitly
supplied. Such arguments are usually provided by the compiler when you work
strictly within the target language, but become visible in inter-language calls.
An example of this can be found in “Hidden Arguments” on page 221. In this
example, the Fortran compiler provides an extra hidden length argument when
a NULL terminated string is passed to a function.
External Development Guide The CALL_EXTERNAL Function

202 Chapter 9: Using CALL_EXTERNAL
Passing Parameters

IDL calls routines within a shareable library using the IDL portable calling
convention, in which the routine is passed two arguments:

argc

A count of the number of arguments being passed to the routine

argv

An array of argc memory pointers, which are the addresses of the arguments
(by reference) or the actual value of the argument (by value) depending on the
types of arguments passed to CALL_EXTERNAL and the setting of the
VALUE keyword to that function. You should note that while all types of data
can be passed by reference, there are limitations on data types that can be
passed by value, as described in the documentation for “CALL_EXTERNAL”
in the IDL Reference Guide manual.

The CALL_EXTERNAL portable convention is necessary because IDL, like any
program written in a compiled language, cannot generate arbitrary function calls at
runtime. Only calls to interfaces that were known to it when it was compiled are
possible. Naturally, most existing C functions are not written to use this interface.
Calling such functions typically requires IDL users to write glue functions, the sole
purpose of which is to be called by CALL_EXTERNAL with the portable
convention, and then to take the arguments and pass them to the real target function
using the natural interface for that function. The AUTO_GLUE keyword to
CALL_EXTERNAL can be used to generate, compile, and load such glue routines
automatically and on demand, without requiring user intervention. Auto Glue is
described in “Using Auto Glue” on page 204. AUTO_GLUE does not eliminate the
need for, or use of, the portable convention, but it can relieve the IDL user of the
requirement to handle it explicitly. The end result is that calling existing function
interfaces is easier to do, and less error prone.

Routines called by CALL_EXTERNAL with the portable convention are defined
with a prototype similar to the following:

return_type example(int argc; void *argv[])

where return_type is one of the data types which CALL_EXTERNAL can return. If
this return_type is not IDL_LONG, a keyword must be used in the
CALL_EXTERNAL call to indicate the actual type of the result.
Passing Parameters External Development Guide

Chapter 9: Using CALL_EXTERNAL 203
The parameter argc gives the number of arguments passed to the external routine by
CALL_EXTERNAL in the argv array, while argv is an array containing the
arguments. Arguments are passed either by value or by reference. Those passed by
value are copied directly into the argv array, with the exception of scalar strings,
which place a pointer to a null-terminated string in argv[i]. All arrays are passed
by reference. Scalar items passed by reference (the default) place a pointer to the
datum in argv[i]. Strings and string arrays passed by reference place a pointer to an
IDL_STRING structure in argv[i]. This structure is defined as follows:

typedef struct {
IDL_STRING_SLEN_T slen; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamic */
char *s; /* Addr of string, invalid if slen == 0. */

} IDL_STRING;

See “CALL_EXTERNAL” in the IDL Reference Guide manual for additional details
about passing parameters by value.

It is important to note that IDL integer variables correspond to a 16-bit integer (a C
signed short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A = 5 ;default type of integer, not LONG

The variable could then be passed by reference in a CALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[0];

or

IDL_INT *a;
a = (IDL_INT *) argv[0];

IDL_INT corresponds to a C short (16-bit integer), so either form is correct. The
corresponding type in Fortran would be INTEGER*2.
External Development Guide Passing Parameters

204 Chapter 9: Using CALL_EXTERNAL
Using Auto Glue

Users of CALL_EXTERNAL frequently write small functions with the sole purpose
of matching the CALL_EXTERNAL portable calling convention with its (argc,
argv) interface to the actual interface presented by some existing function that they
wish to call. Such functions are often called glue functions.

It quickly becomes obvious to anyone who has written a few glue functions that there
isn’t much to them, and that producing such functions is a purely mechanical
operation. As you read the examples in this chapter, you will see many such
functions, and will notice that they are all essentially the same. Further examination
should serve to convince you that IDL already has all of the information, in the form
of the arguments and keywords specified to the CALL_EXTERNAL function, to
generate such functions without requiring human intervention. Examining the
CALL_EXTERNAL routine’s interface, we see that:

• the number and types of arguments to the CALL_EXTERNAL function
provide the same information about the arguments for the target external
function;

• the VALUE keyword, and CALL_EXTERNAL’s built in rules for deciding
whether or not to pass arguments by value or by reference determine how the
arguments should be passed;

• in the case of Microsoft Windows, the CDECL keyword tells it which system
calling convention to employ;

• keywords to CALL_EXTERNAL determine the result type.

Furthermore, other than the actual name of the user function being called, these glue
functions are generic in the sense that they could be used to call any function that
accepted arguments of the same types and produce a result of the same type.

The AUTO_GLUE keyword to CALL_EXTERNAL exploits these facts to allow you
to call functions with natural interfaces, without the need to write, compile, and load
a glue function to do the job. The sole requirement is that your system must have a C
compiler installed that is compatible with the compiler described by the IDL
!MAKE_DLL system variable. This is almost always the case if you are interested in
calling external code, since a compiler is necessary to compile such code.
Using Auto Glue External Development Guide

Chapter 9: Using CALL_EXTERNAL 205
AUTO_GLUE automatically writes the C code for the glue function, uses the
MAKE_DLL procedure to build a sharable library containing it, loads that library,
and then calls the glue function, passing it a pointer to the target function and all of its
arguments. It maintains a cache of glue functions that have been built previously, and
never builds the same glue function more than once. From the user perspective, there
is a slight pause the first time a given glue function is used. In that brief moment,
AUTO_GLUE performs the steps described above, and then makes the call to the
user function. All of this happens transparently to the IDL user — no user interaction
is required, and no output is produced by the process. Subsequent calls to the same
glue function happen instantaneously, as IDL loads the existing glue function from
the MAKE_DLL cache without rebuilding it. In principle, it is similar to the way IDL
automatically compiles IDL language programs on demand, only with C code instead
of IDL code.

See “CALL_EXTERNAL” in the IDL Reference Guide manual for additional details
about how AUTO_GLUE works, and the options for controlling its use.

Generating Glue Without Executing It

AUTO_GLUE is the preferred option for most calls to functions with natural
interfaces, due to it’s simplicity and ease of use. However, you might find yourself in
a situation where you would like your glue functions to be automatically generated,
but wish to simply get the resulting C code so that you can modify it or incorporate it
into a larger library. For example, you might have a large library of IDL specific
code, and wish to give it all IDL callable interfaces without requiring the overhead of
AUTO_GLUE for all of them.

The WRITE_WRAPPER keyword to CALL_EXTERNAL can be used to produce
such code without compiling or using the results. See “CALL_EXTERNAL” in the
IDL Reference Guide manual for additional information on this keyword.
External Development Guide Using Auto Glue

206 Chapter 9: Using CALL_EXTERNAL
Basic C Examples

All of the code for the examples in this section can be found in the
/external/call_external/C subdirectory of the IDL distribution. Please read
the README file in that directory for details on how to run the examples. In many
cases, the files in that directory go into more detail, and are more fully commented
than the versions shown here. Also, the examples provide IDL wrapper routines that
perform the necessary CALL_EXTERNAL calls, while the examples shown here use
CALL_EXTERNAL directly in order to explain how it is used. It is worth reading the
contents of the .c and IDL .pro files in that directory in addition to reading the code
shown here.

Example: Passing Parameters by Reference to IDL

The following routine, found in simple_vars.c, accepts several of IDL’s basic
data types as arguments. The parameters are passed in by reference and the new
squared values of the numbers are passed back to IDL. This is implemented as a
function with a natural C interface, and a second glue routine that implements the
Basic C Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 207
IDL portable convention, using the one with the natural interface to do the actual
work.

The IDL statements necessary to call the simple_vars() function from IDL can be
written:

B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’simple_vars’, $

b,i,l,f,d, /CDECL)

Note
GET_CALLEXT_EXLIB() is a function provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returns the
path to the library as its result.

Using the AUTO_GLUE keyword to CALL_EXTERNAL, you can call the function
with the natural C interface directly:

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <stdio.h>
#include "idl_export.h" /* IDL external definitions */

int simple_vars_natural(char *byte_var, short *short_var,
IDL_LONG *long_var, float *float_var,
double *double_var)

{
 /* Square each variable. */
 *byte_var *= *byte_var;
 *short_var *= *short_var;
 *long_var *= *long_var;
 *float_var *= *float_var;
 *double_var *= *double_var;

 return 1;
}

int simple_vars(int argc, void* argv[])
{
 /* Insure that the correct number of arguments were passed in */
 if(argc != 5) return 0;

 return simple_vars_natural((char *) argv[0], (short *) argv[1],
 (IDL_LONG *) argv[2], (float *) argv[3],
 (double *) argv[4]);
}

Table 9-1: Passing Parameters by Reference to IDL — simple_vars.c
External Development Guide Basic C Examples

208 Chapter 9: Using CALL_EXTERNAL
B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’simple_vars_natural’, $

b,i,l,f,d, /CDECL, /AUTO_GLUE)

Example: Calling a C Routine to Perform
Computation

The following example demonstrates an external function that returns the sum of a
floating point array. It is similar in function to the TOTAL function in IDL. The code
for this example is found in the file sum_array.c in the IDL distribution. As with
the previous example, this function is implemented by a function that has a natural C
interface, and a second glue function is provided that matches the IDL portable
calling convention to the natural interface:

The IDL statements necessary to call the sum_array() function from IDL can be
written:

X = FINDGEN(10)
S = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’sum_array’$

X, N_ELEMENTS(X),VALUE=[0,1], /F_VALUE, /CDECL)

Note
GET_CALLEXT_EXLIB() is a function provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returns the
path to the library as its result.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#include <stdio.h>
#include "idl_export.h"

float sum_array_natural(float *fp, IDL_LONG n)
{
 float s = 0.0;

 while (n--) s += *fp++;
 return(s);
}

float sum_array(int argc, void *argv[])
{
 return sum_array_natural((float *) argv[0], (IDL_LONG) argv[1]);
}

Table 9-2: Calling a C routine — example.c
Basic C Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 209
Using the AUTO_GLUE keyword, you can call the function with the natural C
interface directly:

X = FINDGEN(10)
S = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’sum_array_natural’$

X, N_ELEMENTS(X),VALUE=[0,1], /F_VALUE,/CDECL,$
/AUTO_GLUE)

In this example, sum_array and sum_array_natural are the names of the entry
points for the external functions, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The F_VALUE keyword specifies that the returned value is a
floating-point number rather than an IDL_LONG.
External Development Guide Basic C Examples

210 Chapter 9: Using CALL_EXTERNAL
Wrapper Routines

CALL_EXTERNAL routines are very sensitive to the number and type of the
arguments they receive. Calling a CALL_EXTERNAL routine with the wrong
number of arguments or with arguments of the wrong type can cause IDL to crash.
For this reason, it is a good practice to provide an IDL wrapper routine that is used to
make the actual CALL_EXTERNAL call. The job of this wrapper, which is written
in the IDL language, is to ensure that the arguments that are passed to the external
code are always of the correct number and type. The following IDL procedure is the
wrapper used in the simple_vars() example of the previous section (“Example:
Passing Parameters by Reference to IDL” on page 206).

Example Code
This file, simple_vars.pro, is located in the external/call_external/C
subdirectory of the IDL installation directory.

.

IDL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

PRO SIMPLE_VARS, b, i, l, f, d, AUTO_GLUE=auto_glue, DEBUG=debug, $
 VERBOSE=verbose

if ~ (KEYWORD_SET(debug)) THEN ON_ERROR,2

; Type checking: Any missing (undefined) arguments will be set
; to a default value. All arguments will be forced to a scalar
; of the appropriate type, which may cause errors to be thrown
; if structures are passed in. Local variables are used so that
; the values and types of the user supplied arguments don’t change.
b_l = (SIZE(b,/TYPE) EQ 0) ? 2b : byte(b[0])
i_l = (SIZE(i,/TYPE) EQ 0) ? 3 : fix(i[0])
l_l = (SIZE(l,/TYPE) EQ 0) ? 4L : long(l[0])
f_l = (SIZE(f,/TYPE) EQ 0) ? 5.0 : float(f[0])
d_l = (SIZE(d,/TYPE) EQ 0) ? 6.0D : double(d[0])

PRINT, ’Calling simple_vars with the following arguments:’
HELP, b_l, i_l, l_l, f_l, d_l
func = keyword_set(auto_glue) ? ’simple_vars_natural’ : ’simple_vars’
IF (CALL_EXTERNAL(GET_CALLEXT_EXLIB(VERBOSE=verbose), func, $

b_l, i_l, l_l, f_l, d_l, /CDECL, $
AUTO_GLUE=auto_glue, VERBOSE=verbose, $
SHOW_ALL_OUTPUT=verbose) EQ 1) then BEGIN

PRINT,’After calling simple_vars:’
HELP, b_l, i_l, l_l, f_l, d_l

ENDIF ELSE MESSAGE,’External call to simple_vars failed’
END

Table 9-3: Wrapper Routine — simple_vars.pro
Wrapper Routines External Development Guide

Chapter 9: Using CALL_EXTERNAL 211
The routine simple_vars.pro uses the system routine SIZE() to examine the
arguments that are passed in by the user to the simple_vars routine. If one of the
arguments is undefined, a default value will be used in the call to the external routine.
Otherwise, the argument will be converted to a scalar of the appropriate type.

Note
GET_CALLEXT_EXLIB() is a function provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returns the
path to the library as its result.
External Development Guide Wrapper Routines

212 Chapter 9: Using CALL_EXTERNAL
Passing String Data

IDL represents strings internally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 13, “IDL Internals: Variables” and Chapter 14,
“IDL Internals: String Processing”. These descriptors are defined in the C language
as:

typedef struct {
IDL_STRING_SLEN_T slen;

 unsigned short stype;
 char *s;
} IDL_STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

• Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

• The slen field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

• The stype field is used internally by IDL to keep track of how the memory for
the string was obtained, and should be ignored by CALL_EXTERNAL users.

• s is the pointer to the actual C string represented by the descriptor. If the string
is NULL, IDL represents it as a NULL (0) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for a NULL pointer before dereferencing it.

• You must use the functions discussed in Chapter 14, “IDL Internals: String
Processing” to allocate the memory for an IDL_STRING. Attempting to do
this directly by allocating dynamic memory and assigning it to the
IDL_STRING descriptor is a common pitfall, as discussed in “Common
CALL_EXTERNAL Pitfalls” on page 199.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold it.
On return, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.
Passing String Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 213
Note
IDL will not free dynamically-allocated memory for this use.

Example

The following routine, found in string_array.c, demonstrates how to handle
string variables in external code. This routine takes a string or array of strings as input
and returns a copy of the longest string that it received. It is important to note that this
routine uses a static char array as its return value, which avoids the possibility of a
memory leak, but which must be long enough to handle the longest string required by
the application. This is implemented as a function with a natural C interface, and a
second glue routine that implements the IDL portable convention, using the one with
the natural interface to do the actual work:
External Development Guide Passing String Data

214 Chapter 9: Using CALL_EXTERNAL
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

#include <stdio.h>
#include <string.h>
#include "idl_export.h"
/*
 * IDL_STRING is declared in idl_export.h like this:
 * typedef struct {
* IDL_STRING_SLEN_T slen; Length of string, 0 for null
 * short stype; Type of string, static or dynamic
 * char *s; Address of string
 * } IDL_STRING;
 * However, you should rely on the definition in idl_export.h instead
 * of declaring your own string structure.
*/

char* string_array_natural(IDL_STRING *str_descr, IDL_LONG n)
{

/*
* IDL will make a copy of the string that is returned (if it is
* not NULL). One way to avoid a memory leak is therefore to return
* a pointer to a static buffer containing a null terminated string.
* IDL will copy the contents of the buffer and drop the reference
* to our buffer immediately on return.
*/

#define MAX_OUT_LEN 511 /* truncate any string
longer than this */

 static char result[MAX_OUT_LEN+1]; /* leave a space for a ’\0’
on the longest string */

 int max_index; /* index of longest string */
 int max_sofar; /* length of longest string*/
 int i;

 /* Check the size of the array passed in. n should be > 0.*/
 if (n < 1) return (char *) 0;
 max_index = 0;
 max_sofar = 0;
 for(i=0; i < n; i++) {
 if (str_descr[i].slen > max_sofar) {
 max_index = i;
 max_sofar = str_descr[i].slen;
 }
 }

Figure 9-1: Handling String Variables in External Code — string_array.c
Passing String Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 215
C

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 /*
* If all strings in the array are empty, the longest
* will still be a NULL string.
*/
if (str_descr[max_index].s == NULL) return (char *) 0;

/*
* Copy the longest string into the buffer, up to MAX_OUT_LEN
* characters.
* Explicitly store a NULL byte in the last byte of the buffer,
* because strncpy() does not NULL terminate if the string copied
* is truncated.
*/
strncpy(result, str_descr[max_index].s, MAX_OUT_LEN);
result[sizeof(result)-1] = ’\0’;
return(result);

#undef MAX_OUT_LEN
}

char* string_array(int argc, void* argv[])
{

/*
* Make sure there are the correct # of arguments.
* IDL will convert the NULL into an empty string (’’).
*/
if (argc != 2) return (char *) NULL;
return string_array_natural((IDL_STRING *) argv[0], (IDL_LONG) argv[1]);

}

Figure 9-1: Handling String Variables in External Code — string_array.c (Continued)
External Development Guide Passing String Data

216 Chapter 9: Using CALL_EXTERNAL
Passing Array Data

When you pass an IDL array into a CALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such as the array’s size
and number of dimensions. With CALL_EXTERNAL, you will need to pass this
information explicitly as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needs to know the size of the array at
compile time. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensional arrays. However, you can still build
your own indices to access an array as if it had more than one dimension in C. For
example, the IDL array index:

array[x,y]

could be represented in a CALL_EXTERNAL routine as:

array_ptr[x + x_size*y];

The following routine, found in sum_2d_array.c, calculates the sum of a
subsection of a two dimensional array. This is implemented as a function with a
natural C interface, and a second glue routine that implements the IDL portable
convention, using the one with the natural interface to do the actual work:
Passing Array Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 217
The IDL system routine interface provides much more support for the manipulation
of IDL array variables. See Chapter 21, “Adding System Routines” for more
information.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

#include <stdio.h>
#include "idl_export.h"
double sum_2d_array_natural(double *arr, IDL_LONG x_start, IDL_LONG x_end,

IDL_LONG x_size, IDL_LONG y_start,
IDL_LONG y_end, IDL_LONG y_size)

/* Since we didn’t know the dimensions of the array at compile time, we
* must treat the input array as if it were a one dimensional vector. */

 IDL_LONG x,y;
 double result = 0.0;

 /* Make sure that we don’t go outside the array.strictly speaking, this
*is redundant since identical checks are performed in the IDL wrapper
* routine.IDL_MIN() and IDL_MAX() are macros from idl_export.h */

 x_start = IDL_MAX(x_start,0);
y_start = IDL_MAX(y_start,0);

 x_end = IDL_MIN(x_end,x_size-1);
 y_end = IDL_MIN(y_end,y_size-1);

 /* loop through the subsection */
 for (y = y_start;y <= y_end;y++)
 for (x = x_start;x <= x_end;x++)
 result += arr[x + y*x_size]; /* build the 2d index: arr[x,y] */
 return result;
}

double sum_2d_array(int argc,void* argv[])
{
 if (argc != 7) return 0.0;
 return sum_2d_array_natural((double *) argv[0], (IDL_LONG) argv[1],
 (IDL_LONG) argv[2], (IDL_LONG) argv[3],
 (IDL_LONG) argv[4], (IDL_LONG) argv[5],
 (IDL_LONG) argv[6]);
}

Table 9-4: Adding the Elements of a 2D IDL Array — sum_2d_array.c
External Development Guide Passing Array Data

218 Chapter 9: Using CALL_EXTERNAL
Passing Structures

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variables into CALL_EXTERNAL routines,
as long as the layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:

s = {ASTRUCTURE,zero:0B,one:0L,two:0.0,three:0D,four: intarr(2)}

the corresponding C structure would look like the following:

typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four[2];

} ASTRUCTURE;

Then, cast the pointer from argv to the structure type, as follows:

ASTRUCTURE* mystructure;
mystructure = (ASTRUCTURE*) argv[0];

The following routine, found in incr_struct.c, increments each field of an IDL
structure of type ASTRUCTURE. This is implemented as a function with a natural C
interface, and a second glue routine that implements the IDL portable convention,
using the one with the natural interface to do the actual work:
Passing Structures External Development Guide

Chapter 9: Using CALL_EXTERNAL 219
It is not possible to access structures with arbitrary definitions using the
CALL_EXTERNAL interface. The system routine interface, discussed in Chapter
21, “Adding System Routines”, does provide support for determining the layout of a
structure at runtime.

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <stdio.h>
#include "idl_export.h"

/*
 * C definition for the structure that this routine accepts.The
* corresponding IDL structure definition would look like this:
 * s = {zero:0B,one:0L,two:0.,three:0D,four: intarr(2)}
*/
typedef struct {
 unsigned char zero;
 IDL_LONG one;
 float two;
 double three;
 short four[2];
} ASTRUCTURE;

int incr_struct_natural(ASTRUCTURE *mystructure, IDL_LONG n)
{
 /* for each structure in the array, increment every field */
 for (; n--; mystructure++) {
 mystructure->zero++;
 mystructure->one++;
 mystructure->two++;
 mystructure->three++;
 mystructure->four[0]++;
 mystructure->four[1]++;
 }

 return 1;
}
int incr_struct(int argc, void *argv[])
{
 if (argc != 2) return 0;
 return incr_struct_natural((ASTRUCTURE*) argv[0], (IDL_LONG)
argv[1]);
}

Table 9-5: Accessing an IDL Structure from a C Routine — incr_struct.c
External Development Guide Passing Structures

220 Chapter 9: Using CALL_EXTERNAL
Fortran Examples

Example: Calling a Fortran Routine Using a C
Interface Routine

Calling Fortran is similar to calling C, with the significant difference that Fortran
code expects all arguments to be passed by reference and not by value (the C default).
This means that the address of the argument is passed rather than the argument
itself. This issue is discussed in “By-Value and By-Reference Arguments” on
page 196.

A C interface routine can easily extract the addresses of the arguments from the argv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointers that are being passed by value. Fortran expects all arguments to
be passed by reference — that is, it expects all arguments to be addresses. If C passes
a pointer (an address) by value, Fortran will interpret it correctly as the address of an
argument. The following code segments illustrate this. The example_c2f.c file
contains the C interface routine, which would be compiled as illustrated above. The
example.f file contains the Fortran routine that actually sums the array.

In these examples, we assume that the routines are being compiled under Sun Solaris.
The object name of the Fortran subroutine will be sum_array1_ to match the output
of the Solaris Fortran compiler. The following are the contents of example_c2f.c
and example.f:

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14

#include <stdio.h>

void sum_array(int argc, void *argv[])
{
 extern void sum_array1_();/* Fortran routine */
 int *n;
 float *s, *f;

 f = (float *) argv[0]; /* Array pntr */
 n = (int *) argv[1]; /* Get # of elements */
 s = (float *) argv[2]; /* Pass back result a parameter */

 sum_array1_(f, n, s); /* Compute sum */
}

Table 9-6: C Wrapper Used to Call Fortran Code (example_c2f.c)
Fortran Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 221
This example is compiled and linked in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the external/call_external/Fortran
subdirectory of the IDL distribution. This directory also contains a makefile, which
builds this example on UNIX platforms. To call the example program from within
IDL:

;Make an array.
X = FINDGEN(10)
;A floating result
SUM = 0.0
S = CALL_EXTERNAL('example.so', $

'sum_array', X, N_ELEMENTS(X), sum)

In this example, example.so is the name of the sharable image file, sum_array is
the name of the entry point, and X and N_ELEMENTS(X) are passed to the called routine
as parameters. The returned value is contained in the variable sum.

Hidden Arguments

When passing C null-terminated character strings into a Fortran routine, the C
function should also pass in the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not explicitly appear in the
Fortran routine.

For example, in C:

char * str1= 'IDL';
char * str2= 'RSI';

f77

1
2
3
4
5
6
7
8
9
10
11
12
13
14

c This subroutine is called by SUM_ARRAY and has no IDL-specific code.
c
SUBROUTINE sumarray1(array, n, sum)
INTEGER*4 n
REAL*4 array(n), sum

sum=0.0
DO i=1,n
sum = sum + array(i)
PRINT *, sum, array(i)
ENDDO

RETURN
END

Table 9-7: Fortran Code Called from IDL via C Wrapper (example.f)
External Development Guide Fortran Examples

222 Chapter 9: Using CALL_EXTERNAL
int len1=3;
int len2=3;
double data, info;
/* Call a Fortran sub-routine named example1 */
example1_(str1, data, str2, info, len1, len2)

In Fortran:

SUBROUTINE EXAMPLE1(STR1, DATA, STR2, INFO)
CHARACTER*(*)STR1, STR2
DOUBLE PRECISIONDATA, INFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortran is similar to calling C, with the significant difference that Fortran
expects all arguments to be passed by reference. This means that the address of the
argument is passed rather than the argument itself. See “By-Value and By-Reference
Arguments” on page 196 for more on this subject.

A Fortran interface routine can be written to extract the addresses of the arguments
from the argv array and pass them to the actual routine which will compute the sum.
Passing the contents of each argv element by value has the same effect as converting
the parameter to a normal Fortran parameter.

This method uses the OpenVMS Extensions to Fortran, %LOC and %VAL. On IBM
AIX, the LOC function is an intrinsic operator. The syntax of the call, which differs
from that used on other platforms, is:

y=loc(x)

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the file example1.f are shown in the following figure. This
example is compiled, linked, and called in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the external/fortran subdirectory of the IDL
distribution. This directory also contains a makefile, which builds this example on
UNIX platforms.
Fortran Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 223
Note
This example is written to run under a 32-bit operating system. To run the example
under a 64-bit operating system would require modifications; most notably, to
declare argv as INTEGER*8 rather than INTEGER*4.

To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.
sum = 0.0
S = CALL_EXTERNAL('example1.so', $

'sum_array_', X, N_ELEMENTS(X), sum)

In this example, example1.so is the name of the sharable image file, sum_array_
is the name of the entry point, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The returned value is contained in the variable sum.

f77

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

SUBROUTINE SUM_ARRAY(argc, argv) !Called by IDL
INTEGER*4 argc, argv(*) !Argc and Argv are integers

j = LOC(argc) !Obtains the number of arguments (argc)
!Because argc is passed by VALUE.

c Call subroutine SUM_ARRAY1, converting the IDL parameters
c to standard Fortran, passed by reference arguments:

CALL SUM_ARRAY1(%VAL(argv(1)), %VAL(argv(2)), %VAL(argv(3)))
RETURN
END

c This subroutine is called by SUM_ARRAY and has no
c IDL specific code.
c
SUBROUTINE SUM_ARRAY1(array, n, sum)
INTEGER*4 n
REAL*4 array(n), sum

sum=0.0
DO i=1,n
sum = sum + array(i)
ENDDO
RETURN
END

Table 9-8: Fortran Code Called Directly From IDL
External Development Guide Fortran Examples

224 Chapter 9: Using CALL_EXTERNAL
Note
The entry point name generated by the Fortran compiler may be different than that
produced by the C compiler. One of the best ways to find out what name was
generated is to use the UNIX nm utility on the object file. See your system’s man
page for nm for details.
Fortran Examples External Development Guide

Chapter 10

Remote Procedure
Calls
This chapter discusses the following topics:
IDL and Remote Procedure Calls 226
Using IDL as an RPC Server 227
Client Variables . 228
Linking to the Client Library 229

Compatibility with Older IDL Code 231
The IDL RPC Library 233
RPC Examples . 258
External Development Guide 225

226 Chapter 10: Remote Procedure Calls
IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just as if the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routines is included to handle communication between client programs
and the IDL server.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to be run as a client. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variables in the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL’s RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the API used by
callable IDL. See “Compatibility with Older IDL Code” on page 231 for details.
IDL and Remote Procedure Calls External Development Guide

Chapter 10: Remote Procedure Calls 227
Using IDL as an RPC Server

The IDL RPC Directory

All of the files related to using IDL’s RPC capabilities are found in the rpc
subdirectory of the external subdirectory of the main IDL directory. The main IDL
directory is referred to here as idldir.

Running IDL in Server Mode

To use IDL as an RPC server, run IDL in server mode by using the idlrpc
command. The RPC server can be invoked one of two ways:

idlrpc

or

idlrpc -server=server_number

where server_number is the hexadecimal server ID number (between 0x20000000
and 0x3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If a server ID number is not supplied, IDL uses the default,
IDL_RPC_DEFAULT_ID, defined in the file idldir/external/rpc/idl_rpc.h.
This value is originally set to 0x2010CAFE.
External Development Guide Using IDL as an RPC Server

228 Chapter 10: Remote Procedure Calls
Client Variables

The IDL RPC client API uses the same data structure as IDL to represent a variable,
namely an IDL_VARIABLE structure. By not using a unique data structure to
represent a variable, the IDL RPC client API can follow a format that is similar to the
API of Callable IDL.

When a variable is created by the IDL RPC client API (when a variable is returned
from the IDL_RPCGetMainVariable function, for example) dynamic memory is
allocated for the variable and for its value. These dynamic variables are similar to
temporary variables which are used in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dynamic
or IDL RPC client temporary variables. These API routines follow the same format
as the Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, use the IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could result
a memory “leak” in the client program.
Client Variables External Development Guide

Chapter 10: Remote Procedure Calls 229
Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

• Include the file idl_rpc.h in your application.

• Have a copy of idl_export.h in the include path when you compile the
client application.

• Link your client application to the IDL client shared object library
(libidl_rpc).

• If the client library is linked as a shared object, you must set the shared
object search path environment variable so that it includes the directory
that contains the IDL client library.

The name of this variable is normally LD_LIBRARY_PATH, except on HP
and IBM systems, where the variable names are:

• HP: SHLIB_PATH

• IBM: LIBPATH

If this variable is not set correctly, an error message will be issued by the
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -o example $(PRE_FLAGS) example.o -lidl_rpc
$(POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flags for
each UNIX operating system supported by IDL are contained in the file
rpc_link.txt, located in the in the rpc subdirectory of the external
subdirectory of the main IDL directory.

Example of IDL RPC Client API

To use the IDL client side API, execute the following sequence of steps:

1. Call IDL_RPCInit() to connect to the server

2. Perform actions on the server—get and set variables, run IDL commands, etc.

3. Call IDL_RPCCleanup() to disconnect from the server.
External Development Guide Linking to the Client Library

230 Chapter 10: Remote Procedure Calls
The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to
be linked against the supplied shared library libidl_rpc. This code is included in
the idldir/external/rpc directory as example.c.

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library” on page 229. Once this example is compiled, execute
it using the following commands:

% idlrpc

Then, in another process:

% example

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include "idl_rpc.h"
int main()
{
 CLIENT *pClient;
 char cmdBuffer[512];
 int result;

 /* Connect to the server */
 if((pClient = IDL_RPCInit(0, (char*)NULL)) == (CLIENT*)NULL){
 fprintf(stderr, "Can't register with IDL server\n");
 exit(1);
 }

/* Start a loop that will read commands and then send them to idl */
 for(;;){
 printf("RMTIDL> ");
 cmdBuffer[0]='\0';
 gets(cmdBuffer);
 if(cmdBuffer[0] == '\n' || cmdBuffer[0] == '\0')
 break;
 result = IDL_RPCExecuteStr(pClient, cmdBuffer);
 }

 /* Now disconnect from the server and kill it. */
 if(!IDL_RPCCleanup(pClient, 1))
 fprintf(stderr, "IDL_RPCCleanup: failed\n");
 exit(0);
 }

Table 10-1: Remote Execution of IDL via RPC
Linking to the Client Library External Development Guide

Chapter 10: Remote Procedure Calls 231
Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages:

• The new API mirrors the Callable IDL API.

• The RPC client-side library is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

• The RPC server-side executable, idlrpc, is built using Callable IDL,
providing an example of how Callable IDL can be used.

• Source code is provided for both the Server and Client side programs, allowing
you to enhance IDL’s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. This layer is contained in the files
idl_rpc_obsolete.c and idl_rpc_obsolete.h.

To use the compatibility routines, include the file lib_rpc_obsolete.h in your
application and use the following link statement as a template:

% cc -o old_example $(PRE_FLAGS) old_example.o \
idl_rpc_obsolete.o -lidl_rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 229.
External Development Guide Compatibility with Older IDL Code

232 Chapter 10: Remote Procedure Calls
While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

• idl_server_interactive: This function is no longer supported.

• get_idl_variable: The following return values are no longer supported:

• set_idl_timeout: the tv_usec field of the timeval struct is ignored.

• idl_set_verbosity(): This function is no longer supported.

All other functionality is supported.

Value Description

-2 Illegal variable name (for example, “213xyz”, “#a”,
“!DEVICE”)

-3 Variable not transportable (for example, the variable
is a structure or associated variable)

Table 10-2: get_idl_variable Unsupported Values
Compatibility with Older IDL Code External Development Guide

Chapter 10: Remote Procedure Calls 233
The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are:

• IDL_RPCCleanup • IDL_RPCSetMainVariable

• IDL_RPCDeltmp • IDL_RPCSetVariable

• IDL_RPCExecuteStr • IDL_RPCStoreScalar

• IDL_RPCGetMainVariable • IDL_RPCStrDelete

• IDL_RPCGettmp • IDL_RPCStrDup

• IDL_RPCGetVariable • IDL_RPCStrEnsureLength

• IDL_RPCImportArray • IDL_RPCStrStore

• IDL_RPCInit • IDL_RPCTimeout

• IDL_RPCMakeArray • IDL_RPCVarCopy

• IDL_RPCOutputCapture • IDL_RPCVarGetData

• IDL_RPCOutputGetStr • Variable Accessor Macros
External Development Guide The IDL RPC Library

234 Chapter 10: Remote Procedure Calls
IDL_RPCCleanup

Calling Sequence

int IDL_RPCCleanup(CLIENT *pClient, int iKill)

Description

Use this function to release the resources associated with the given CLIENT structure
or to kill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill

Set iKill to a non-zero value to kill the server when the connection is broken.

Return Value

This function returns 1 on success, or 0 on failure.
IDL_RPCCleanup External Development Guide

Chapter 10: Remote Procedure Calls 235
IDL_RPCDeltmp

Calling Sequence

void IDL_RPCDeltmp(IDL_VPTR vTmp)

Description

Use this function to de-allocate all dynamic memory associated with the IDL_VPTR
that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters

vTmp

The variable that will be de-allocated.

Return Value

None.
External Development Guide IDL_RPCDeltmp

236 Chapter 10: Remote Procedure Calls
IDL_RPCExecuteStr

Calling Sequence

int IDL_RPCExecuteStr(CLIENT *pClient, char * pCommand)

Description

Use this function to send IDL commands to the IDL RPC server. The command is
executed just as if it had been entered from the IDL command line.

This function cannot be used to send multiple line commands and will return an error
if a “$” is detected at the end of the command string. It will also return an error if “$”
is the first character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

pCommand

A null-terminated IDL command string.

Return Value

This function returns the following values:

1 — Success.

0 — Invalid command string.

For all other errors, the value of !ERROR_STATE.CODE is returned. This number
could be passed as an argument to the IDL function STRMESSAGE() to determine
the exact cause of the error.
IDL_RPCExecuteStr External Development Guide

Chapter 10: Remote Procedure Calls 237
IDL_RPCGetMainVariable

Calling Sequence

IDL_VPTR IDL_RPCGetMainVariable(CLIENT *pClient, char *Name)

Description

Call this function to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetMainVariable will then
return a pointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

The name of the variable to find.

Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable. On failure this
function returns NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables” on page 228.
External Development Guide IDL_RPCGetMainVariable

238 Chapter 10: Remote Procedure Calls
IDL_RPCGettmp

Calling Sequence

IDL_VPTR IDL_RPCGettmp(void)

Description

Use this function to create an IDL_VPTR to a dynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, pass it to
IDL_RPCDeltmp() to free any memory allocated by the variable.

Parameters

None.

Return Value

On success, this function returns an IDL_VPTR. On failure, it returns NULL.
IDL_RPCGettmp External Development Guide

Chapter 10: Remote Procedure Calls 239
IDL_RPCGetVariable

Calling Sequence

IDL_VPTR IDL_RPCGetVariable(CLIENT *pClient, char *Name)

Description

Use this function to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

The name of the variable to find.

Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables” on page 228.
External Development Guide IDL_RPCGetVariable

240 Chapter 10: Remote Procedure Calls
IDL_RPCImportArray

Calling Sequence

IDL_VPTR IDL_RPCImportArray(int n_dim, IDL_MEMINT dim[],
int type, UCHAR *data, IDL_ARRAY_FREE_CB free_cb)

Description

Use this function to create an IDL array variable whose data the server supplies,
rather than having the client API allocate the data space.

Parameters

n_dim

The number of dimensions in the array.

dim

An array of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “Type
Codes” on page 262.

data

A pointer to your array data.

free_cb

If non-NULL, free_cb is a pointer to a function that will be called when the IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the data is no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

An IDL_VPTR that points to an IDL_VARIABLE structure containing a reference
to the imported array. This function returns NULL if the operation was unsuccessful.
IDL_RPCImportArray External Development Guide

Chapter 10: Remote Procedure Calls 241
IDL_RPCInit

Calling Sequence

Client *IDL_RPCInit(long ServerId, char* pHostname)

Description

Use this function to initialize an IDL RPC client session.

The client program is registered as a client of the IDL RPC server. The server that the
client is registered with depends on the values of the parameters passed to the
function.

Parameters

ServerId

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

pHostname

This is the name of the machine where the IDL server is running. If this value is
NULL or “”, the default, “localhost”, is used.

Return Value

A pointer to the new CLIENT structure is returned upon successful completion. This
opaque data structure is then later used by the client program to perform operations
with the server. This function returns NULL if the operation was unsuccessful.
External Development Guide IDL_RPCInit

242 Chapter 10: Remote Procedure Calls
IDL_RPCMakeArray

Calling Sequence

char * IDL_RPCMakeArray(int type, int n_dim, IDL_MEMINT dim[],
int init, IDL_VPTR *var)

Description

This function creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “Type
Codes” on page 262.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

dim

A C array of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensions in the array is given by the n_dim argument.

init

This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

• IDL_ARR_INI_NOP — No initialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.

• IDL_ARR_INI_ZERO — The data area of the array is zeroed.

var

The address of an IDL_VPTR containing the address of the resulting IDL RPC client
temporary variable.
IDL_RPCMakeArray External Development Guide

Chapter 10: Remote Procedure Calls 243
Return Value

On success, this function returns a pointer to the data area of the allocated array. The
value returned is the same as is contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

As with variables returned from IDL_RPCGettmp(), the variable allocated via this
function must be de-allocated using IDL_RPCDeltmp() when the variable is no
longer needed.
External Development Guide IDL_RPCMakeArray

244 Chapter 10: Remote Procedure Calls
IDL_RPCOutputCapture

Calling Sequence

int IDL_RPCOutputCapture(CLIENT *pClient, int n_lines)

Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save this information so that the client program
can request the lines sent to the output buffer.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

n_lines

If this value is less than or equal to zero, no output lines will be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. If the value of this parameter is greater than zero, the specified number of
lines will be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.
IDL_RPCOutputCapture External Development Guide

Chapter 10: Remote Procedure Calls 245
IDL_RPCOutputGetStr

Calling Sequence

int IDL_RPCOutputGetStr(CLIENT *pClient, IDL_RPC_LINE_S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before this routine is called.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

pLine

A pointer to a valid IDL_RPC_LINE_S structure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flags field will be
set to one of the following (from idl_export.h):

• IDL_TOUT_F_STDERR — Send the text to stderr rather than stdout, if that
distinction means anything to your output device.

• IDL_TOUT_F_NLPOST — After outputting the text, start a new output line.
On a tty, this is equivalent to sending a new line (‘\n) character.

first

If first is set equal to a non-zero value, the first line is popped from the output buffer
on the IDL RPC server (the output buffer is treated like a stack). If first is set equal to
zero, the last line is de-queued from the output buffer (the output buffer is treated like
a queue).

Return value

A true value (1) is returned upon success. A false value (0) is returned when there are
no more lines available in the output buffer or when an RPC error is detected.
External Development Guide IDL_RPCOutputGetStr

246 Chapter 10: Remote Procedure Calls
IDL_RPCSetMainVariable

Calling Sequence

int IDL_RPCSetMainVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Use this routine to assign a value to a main level IDL variable in the IDL RPC server
session referred to by pClient. If the variable does not already exist, a new variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

A pointer to the null-terminated name of the variable, which must be in upper-case.

pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “Client Variables” on page 228.

Return Value

This function returns 1 on success, or 0 on failure.
IDL_RPCSetMainVariable External Development Guide

Chapter 10: Remote Procedure Calls 247
IDL_RPCSetVariable

Calling Sequence

int IDL_RPCSetVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Use this routine to assign a value to an IDL variable in the IDL RPC server session
referred to by pClient. If the variable does not already exist, a new variable will be
created. Unlike IDL_RPCSetMainVariable(), this routine sets the variable in the
current IDL program scope.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

A pointer to the null-terminated name of the variable, which must be in upper-case.

pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see “Client Variables” on page 228.

Return Value

This function returns 1 on success, or 0 on failure.
External Development Guide IDL_RPCSetVariable

248 Chapter 10: Remote Procedure Calls
IDL_RPCStoreScalar

Calling Sequence

void IDL_RPCStoreScalar(IDL_VPTR dest, int type,
IDL_ALLTYPES *value)

Description

Use this function to store a scalar value into an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE is de-
allocated.

Parameters

dest

An IDL_VPTR to the IDL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. IDL type codes are discussed in “Type Codes” on
page 262.

value

The address of an IDL_ALLTYPES union that contains the value to store.

Return Value

None.
IDL_RPCStoreScalar External Development Guide

Chapter 10: Remote Procedure Calls 249
IDL_RPCStrDelete

Calling Sequence

void IDL_RPCStrDelete(IDL_STRING *str, IDL_MEMINT n)

Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings” on page 335.
External Development Guide IDL_RPCStrDelete

250 Chapter 10: Remote Procedure Calls
IDL_RPCStrDup

Calling Sequence

void IDL_RPCStrDup(IDL_STRING *str, IDL_MEMINT n)

Description

Use this function to duplicate a string. See the description of IDL_StrDup() in
“Copying Strings” on page 334.
IDL_RPCStrDup External Development Guide

Chapter 10: Remote Procedure Calls 251
IDL_RPCStrEnsureLength

Calling Sequence

void IDL_RPCStrEnsureLength(IDL_STRING *s, int n)

Description

Use this function to check the length of a string. See the description of
IDL_StrEnsureLength() in “Obtaining a String of a Given Length” on page 337.
External Development Guide IDL_RPCStrEnsureLength

252 Chapter 10: Remote Procedure Calls
IDL_RPCStrStore

Calling Sequence

void IDL_RPCStrStore(IDL_STRING *s, char *fs)

Description

Use this function to store a string. See description of IDL_StrStore in “Setting an
IDL_STRING Value” on page 336.
IDL_RPCStrStore External Development Guide

Chapter 10: Remote Procedure Calls 253
IDL_RPCTimeout

Calling Sequence

int IDL_RPCTimeout(long lTimeOut)

Description

Use this function to set the timeout value used when the RPC client makes requests of
the server.

Parameters

lTimeOut

A integer value, in seconds, specifying the timeout value that will be used in RPC
operations.

Return Value

This function returns 1 on success, or 0 on failure.
External Development Guide IDL_RPCTimeout

254 Chapter 10: Remote Procedure Calls
IDL_RPCVarCopy

Calling Sequence

void IDL_RPCVarCopy(IDL_VPTR src, IDL_VPTR dst)

Description

Use this function to copy the contents of the src variable to the dst variable. Any
dynamic memory associated with dst is de-allocated before the source data is copied.
This function emulates the callable IDL function IDL_VarCopy().

Parameters

src

The source variable to be copied. If this variable is marked as temporary (returned
from IDL_RPCGettmp(), for example) the dynamic data will be moved rather than
copied to the destination variable.

dst

The destination variable that src is copied to.

Return Value

None.
IDL_RPCVarCopy External Development Guide

Chapter 10: Remote Procedure Calls 255
IDL_RPCVarGetData

Calling Sequence

void IDL_RPCVarGetData(IDL_VPTR v, IDL_MEMINT *n, char **pd,
int ensure_simple)

Description

Use this function to obtain a pointer to a variable’s data, and to determine how many
data elements the variable contains.

Parameters

v

The variable for which data is desired.

n

The address of a variable that will contain the number of elements in v.

pd

The address of a variable that will contain a pointer to v’s data, cast to be a pointer to
pointer to char (e.g. (char **) &myptr).

ensure_simple

If TRUE, this routine calls the ENSURE_SIMPLE macro on the argument v to
screen out variables of the types it prevents. Otherwise, EXCLUDE_FILE is called,
because file variables have no data area to return.

Return Value

On exit, IDL_RPCVarGetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.
External Development Guide IDL_RPCVarGetData

256 Chapter 10: Remote Procedure Calls
Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. These
macros are defined in idl_rpc.h.

All of these macros accept a single argument, v, of type IDL_VPTR.

IDL_RPCGetArrayData(v)

This macro returns a pointer (char*) to the data area of an array block.

IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.

IDL_RPCGetArrayNumDims(v)

This macro returns the number of dimensions of the array.

IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.

IDL_RPCGetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of a complex variable.

IDL_RPCGetVarComplexR(v)

This macro returns the real field of a complex variable.

IDL_RPCGetVarComplexI(v)

This macro returns the imaginary field of a complex variable.

IDL_RPCGetVarDComplex(v)

This macro returns the value (as a struct, not a pointer) of a double precision, complex
variable.

IDL_RPCGetVarDComplexR(v)

This macro returns the real field of a double-precision complex variable.

IDL_RPCGetVarDComplexI(v)

This macro returns the imaginary field of a double-precision complex variable.
Variable Accessor Macros External Development Guide

Chapter 10: Remote Procedure Calls 257
IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.

IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.

IDL_RPCGetVarInt(v)

This macro returns the value of a 2-byte integer variable.

IDL_RPCGetVarLong(v)

This macro returns the value of a 4-byte integer variable.

IDL_RPCGetVarLong64(v)

This macro returns the value of a 8-byte integer variable.

IDL_RPCVarIsArray(v)

This macro returns non-zero if v is an array variable.

IDL_RPCGetVarString(v)

This macro returns the value of a string variable (as a char*).

IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed in
“Type Codes” on page 262.

IDL_RPCGetVarUInt(v)

This macro returns the value of an unsigned 2-byte integer variable.

IDLRPCGetVarULong(v)

This macro returns the value of an unsigned 4-byte integer variable.

IDL_RPCGetVarULong64(v)

This macro returns the value of an unsigned 8-byte integer value.
External Development Guide Variable Accessor Macros

258 Chapter 10: Remote Procedure Calls
RPC Examples

A number of example files are included in the RSI_Directory/external/rpc
directory. A Makefile for these examples is also included. These short C programs
demonstrate the use of the IDL RPC library.

Source files for the idlrpc server program are located in the
RSI_Directory/external/rpc directory. Note that you do not need to build the
idlrpc server; it is pre-built and included in the IDL distribution. The idlrpc
server source files are provided as examples only.
RPC Examples External Development Guide

Part II: IDL’s Internal
API

Chapter 11

IDL Internals:
Types
This chapter describes the following topics:
Type Codes . 262
Mapping of Basic Types 264

IDL_MEMINT and IDL_FILEINT Types 267
External Development Guide 261

262 Chapter 11: IDL Internals: Types
Type Codes

Every IDL variable has a data type. The possible type codes and their mapping to C
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will always have the value zero.

Although it is rare, the number of types could change someday. Therefore, you
should always use the symbolic names when referring to any type except
IDL_TYP_UNDEF. Even in the case of IDL_TYP_UNDEF, using the symbolic
name will add clarity to your code. Note that all IDL structures are considered to be
of a single type (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinctions
are made at a different level. There are a few constants that can be used to make your
code easier to read and less likely to break if/when the idl_export.h file changes.
These are:

• IDL_MAX_TYPE—The value of the largest type.

• IDL_NUM_TYPES—The number of types. Since the types are numbered
starting at zero, IDL_NUM_TYPES is one greater than IDL_MAX_TYPE.

Name Type C Type

IDL_TYP_UNDEF Undefined <None>

IDL_TYP_BYTE Unsigned byte UCHAR

IDL_TYP_INT 16–bit integer IDL_INT

IDL_TYP_LONG 32–bit integer IDL_LONG

IDL_TYP_FLOAT Single precision floating float

IDL_TYP_DOUBLE Double precision floating double

IDL_TYP_COMPLEX Single precision complex IDL_COMPLEX

IDL_TYP_STRING String IDL_STRING

IDL_TYP_STRUCT Structure See “Structure Variables”
on page 307

IDL_TYP_DCOMPLEX Double precision
complex

IDL_DCOMPLEX

Table 11-1: IDL Types and Mapping to C
Type Codes External Development Guide

Chapter 11: IDL Internals: Types 263
Type Masks

There are some situations in which it is necessary to specify types in the form of a bit
mask rather than the usual type codes, for example when a single argument to a
function can represent more than a single type. For any given type, the bit mask value
can be computed as: Mask = 2TypeCode

The IDL_TYP_MASK preprocessor macro is provided to calculate these masks.
Given a type code, it returns the bit mask. For example, to specify a bit mask for all
the integer types:

IDL_TYP_MASK(IDL_TYP_BYTE)|IDL_TYP_MASK(IDL_TYP_INT)|
IDL_TYP_MASK(IDL_TYP_LONG)

Specifying all the possible types would require a long statement similar to the one
above. To avoid having to type so much for this common case, the
IDL_TYP_B_ALL constant is provided.

IDL_TYP_PTR 32–bit integer IDL_ULONG

IDL_TYP_OBJREF 32–bit integer IDL_ULONG

IDL_TYP_UINT Unsigned 16-bit integer IDL_UINT

IDL_TYP_ULONG Unsigned 32-bit integer IDL_ULONG

IDL_TYP_LONG64 64-bit integer IDL_LONG64

IDL_TYP_ULONG64 Unsigned 64-bit integer IDL_ULONG64

Name Type C Type

Table 11-1: IDL Types and Mapping to C (Continued)
External Development Guide Type Codes

264 Chapter 11: IDL Internals: Types
Mapping of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX, and IDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structures are
built out of the basic types by laying them out in memory in the specified order using
the same alignment rules used by the C compiler for the target machine.

Unsigned Byte Data

UCHAR is defined to be unsigned char in idl_export.h.

Integer Data

IDL_INT represents the signed 16-bit data type and is defined in idl_export.h.

Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined in
idl_export.h.

Long Integer Data

IDL long integers are defined to be 32-bits in size. The C long data type is not correct
on all systems because C compilers for 64-bit architectures usually define long as 64-
bits. Hence, the IDL_LONG typedef, declared in idl_export.h is used instead.

Unsigned Long Integer Data

IDL_ULONG represents the unsigned 32-bit data type and is defined in
idl_export.h.

64-bit Integer Data

IDL_LONG64 represents the 64-bit data type and is defined in idl_export.h.
Mapping of Basic Types External Development Guide

Chapter 11: IDL Internals: Types 265
Unsigned 64-bit Integer Data

IDL_ULONG64 represents the unsigned 64-bit data type and is defined in
idl_export.h.

Complex Data

The IDL_TYP_COMPLEX and IDL_TYP_DCOMPLEX data types are defined
by the following C declarations:

typedef struct { float r, i; } IDL_COMPLEX;
typedef struct { double r, i; } IDL_DCOMPLEX;

This is the same mapping used by Fortran compilers to implement their complex data
types, which allows sharing binary data with such programs.

String Data

The IDL_TYP_STRING data type is implemented by a string descriptor:

typedef struct {
IDL_STRING_SLEN_T slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */

} IDL_STRING;

The fields of the IDL_STRING struct are defined as follows:

slen

The length of the string, not counting the null termination. For example, the
string “Hello” has 5 characters.

stype

If stype is zero, the string pointed at by s (if any) was not allocated from
dynamic memory, and should not be freed. If non-zero, s points at a string
allocated from dynamic memory, and should be freed before being replaced.
For information on dynamic memory, see “Dynamic Memory” on page 400
and “Getting Dynamic Memory” on page 322.

s

If slen is non-zero, s is a pointer to a null-terminated string of slen characters.
If slen is zero, s should not be used. The use of a string pointer to memory
External Development Guide Mapping of Basic Types

266 Chapter 11: IDL Internals: Types
located outside the IDL_STRING structure itself allows IDL strings to have
dynamically-variable lengths.

Note
Strings are the most complicated basic data type, and as such, are at the root of
more coding errors than the other types. See “IDL Internals: String Processing” on
page 331.
Mapping of Basic Types External Development Guide

Chapter 11: IDL Internals: Types 267
IDL_MEMINT and IDL_FILEINT Types

Some of the IDL-supported operating systems limit memory and file lengths to a
signed 32-bit integer (approximately 2.3 GB). Some systems have 64-bit memory
capabilities and others allow files longer than 231-1 bytes despite being 32-bit
memory limited. To gracefully handle these differences without using conditional
code, IDL internals use two special types, IDL_TYP_MEMINT (data type
IDL_MEMINT) and IDL_TYP_FILEINT (data type IDL_FILEINT) to represent
memory and file length limits.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappings to the IDL types discussed in “Mapping of Basic Types” on
page 264. Specifically, they will be IDL_LONG for 32-bit quantities, and
IDL_LONG64 for 64-bit quantities.

As an IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your code
runs properly on all systems, use IDL_MEMINT and IDL_FILEINT in place of more
specific types. These types can be used anywhere that a normal IDL type can be used,
such as in keyword processing. Their systematic use for these purposes will ensure
that your code is correct on any IDL platform.

Programmers should be aware of the IDL_MEMINTScalar() and
IDL_FILEINTScalar() functions, described in “Converting Arguments to C Scalars”
on page 354.
External Development Guide IDL_MEMINT and IDL_FILEINT Types

268 Chapter 11: IDL Internals: Types
IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 12

IDL Internals:
Keyword Processing
This chapter discusses the following topics:
IDL and Keyword Processing 270
Creating Routines that Accept Keywords . 271
Overview Of IDL Keyword Processing . . . 272
The IDL_KW_ARR_DESC_R Structure . 277

Keyword Processing Options 278
The KW_RESULT Structure 280
Cleaning Up . 284
Keyword Examples 285
External Development Guide 269

270 Chapter 12: IDL Internals: Keyword Processing
IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They allow a multitude
of options to be specified to a routine in a straightforward, easily understood way.
The price of this added power is that it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effort is
well worth it.
IDL and Keyword Processing External Development Guide

Chapter 12: IDL Internals: Keyword Processing 271
Creating Routines that Accept Keywords

As described in “Adding System Routines” on page 417, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword arguments in one of the following ways:

• Specifying the KEYWORDS option for the routine in the module definition
file of a Dynamically Loadable Module (DLM)

• Setting the KEYWORDS keyword in a call to LINKIMAGE.

• OR-ing the constant IDL_SYSFUN_DEF_F_KEYWORDS into the flags
field of the IDL_SYSFUN_DEF2 struct passed to IDL_SysRtnAdd()

Routines that accept keywords must perform keyword processing. A routine that does
not allow keyword processing knows that its argc argument gives the number of
positional arguments, and argv contains only those positional arguments. In contrast,
a routine that accepts keywords receives an argc that gives the total number of
positional and keyword arguments, and these arguments are delivered in argv mixed
together in an undefined order.

The function IDL_KWProcessByOffset() is used to process keywords and separate
the positional and keyword arguments. It is passed an array of IDL_KW_PAR
structures that give information about the allowed keywords and their attributes. The
keyword data resulting from this process is stored in a user defined KW_RESULT
structure. Finally, the IDL_KW_FREE macro is used to clean up.

More information about these routines and structures can be found in the following
sections.
External Development Guide Creating Routines that Accept Keywords

272 Chapter 12: IDL Internals: Keyword Processing
Overview Of IDL Keyword Processing

IDL keyword processing can seem confusing at first glance, due to the interrelated
data structures involved. However, as the examples that follow in this chapter will
show, the concepts involved are relatively straightforward once you have seen and
understood a concrete example such as “Keyword Examples” on page 285.

Following is a skeleton of a system routine that accepts keyword arguments. These
elements must be present in any such system routine:

void keyword_sysrtn_skeleton(int argc, IDL_VPTR *argv, char *argk)
{

typedef struct {
IDL_KW_RESULT_FIRST_FIELD; /* Must be first entry in struct */
... /* Variables specific to your keywords go here */

} KW_RESULT;
static IDL_KW_PAR kw_pars[] = {
/*
* Keyword definitions for the keywords you accept go here,
* one definition per keyword. The keyword definitions refer
* to fields within the KW_RESULT type defined above.
*/
...
{ NULL } /* List must be NULL terminated */

};
KW_RESULT kw; /* Variable which will hold the keyword values */

(void) IDL_KWProcessByOffset(argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

/* The body of your routine */

IDL_KW_FREE;
}

IDL keyword processing is made up of the following data structures and steps:

• A NULL terminated array of IDL_KW_PAR structures must be present. Each
entry in this array describes the keyword processing required for a single
keyword.

• If a keyword represents an input-only, by-value array, the IDL_KW_PAR
structure that describes it points at an auxiliary IDL_KW_ARR_DESC_R
structure that supplies the additional array specific information.

• The system routine must declare a local type definition named KW_RESULT,
and a variable of this type named kw. The KW_RESULT type contains all of
Overview Of IDL Keyword Processing External Development Guide

Chapter 12: IDL Internals: Keyword Processing 273
the data fields that will be set as a result of processing the keywords described
by the IDL_KW_PAR and IDL_KW_ARR_DESC_R structures described
above. The IDL_KW_PAR and IDL_KW_ARR_DESC_R structures refer
to the fields of the KW_RESULT structure by their offset from the beginning
of the structure. The IDL_KW_OFFSETOF() macro is used to compute this
offset.

• The system routine calls the IDL_KWProcessByOffset() function, passing it
the address of the IDL_KW_PAR array, and the KW_RESULT variable
(kw).

• After IDL_KWProcessByOffset() is called, the KW_RESULT structure
(kw) contains the results, which can be accessed freely by the system routine.

• Before returning, the system routine must invoke the IDL_KW_FREE macro.
This macro ensures that any dynamic memory used by
IDL_KWProcessByOffset() is properly released.

• System routines are not required to, and generally do not, call
IDL_KW_FREE before throwing errors using IDL_Message() with the
IDL_MSG_LONGJMP or IDL_MSG_IO_LONGJMP action codes. In
these cases, the IDL interpreter automatically knows to release the resources
used by keyword processing on your behalf.

All of these data structures and routines are discussed in detail in the sections that
follow.
External Development Guide Overview Of IDL Keyword Processing

274 Chapter 12: IDL Internals: Keyword Processing
The IDL_KW_PAR Structure

The IDL_KW_PAR struct provides the basic specification for keyword processing.
The IDL_KWProcessByOffset() function is passed a null-terminated array of these
structures. IDL_KW_PAR structures specify which keywords a routine accepts, the
attributes required of them, and the kinds of processing that should be done to them.
IDL_KW_PAR structures must be defined in lexical order according to the value of
the keyword field.

The definition of IDL_KW_PAR is:

typedef struct {
char *keyword;
UCHAR type;
unsigned short mask;
unsigned short flags;
int *specified;
char *value;

} IDL_KW_PAR;

where:

keyword

A pointer to a null-terminated string. This is the name of the keyword, and must be
entirely upper case. The array of IDL_KW_PAR structures passed to
IDL_KWProcessByOffset() must be lexically sorted by the strings pointed to by
this field. The final element in the array is signified by setting the keyword field to
NULL ((char *) 0).

type

IDL_KWProcessByOffset() automatically converts the keywords to the IDL type
specified by the type field. Specify 0 (IDL_TYPE_UNDEF) in cases where
ID_KW_VIN or IDL_KW_OUT are specified in the flags field.

mask

The enable mask. This field is ANDed with the mask argument to
IDL_KWProcessByOffset() and if the result is non-zero, the keyword is accepted. If
the result is 0, the keyword is ignored. This ability allows you to share an array of
IDL_KW_PAR structures between several routines, and enable or disable the
keywords used by each one.
The IDL_KW_PAR Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 275
As an example of this, the IDL graphics and plotting routines have a large number of
keywords in common. In addition, each routine has a few keywords that are unique to
it. Keywords are implemented using a single shared array of IDL_KW_PAR with
appropriate values of the mask field. This technique dramatically reduces the amount
of data that would otherwise be required by graphics keyword processing, and makes
IDL easier to maintain.

flags

This field specifies special processing instructions. It is a bit mask made by ORing
the following values:

• IDL_KW_ARRAY — Set this bit to specify that the keyword must be an
array. Otherwise, a scalar is required. If IDL_KW_ARRAY is specified, the
value field must point at an associated IDL_KW_ARR_DESC_R structure.

• IDL_KW_OUT — Set this bit to indicate that the keyword specifies an output
parameter, passed by reference. Expressions and constants are excluded. In
other words, the routine is going to change the value of the keyword argument,
as opposed to the more usual case of simply reading it. The address of the
IDL_VARIABLE will be placed in a user supplied field of type IDL_VPTR
in the KW_RESULT structure (kw). The offset of this field in the
KW_RESULT structure is specified by the value field (discussed below).
IDL_KW_OUT implies that no type checking or processing will be
performed on the keyword—it is up to the routine to perform the same sort of
type checking normally carried out for plain positional arguments.

A standard approach to find out if an IDL_KW_OUT parameter is present in a
call to a system routine is to specify IDL_TYP_UNDEF (0) for the type field
and IDL_KW_OUT | IDL_KW_ZERO for flags. The IDL_VPTR
referenced by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE.

• IDL_KW_VIN — Set this bit to indicate that the keyword parameter is an
input parameter (expressions and/or constants are valid) passed by reference.
The address of the IDL_VARIABLE or expression is stored in a user-
supplied field of the KW_RESULT structure (kw) referenced by the value
field, as with IDL_KW_OUT. IDL_KW_VIN implies that no type checking
or processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for plain
positional arguments.

• IDL_KW_ZERO — Set this bit in order to zero the C variable pointed to by
the value field before parsing the keywords. This means that the object pointed
External Development Guide The IDL_KW_PAR Structure

276 Chapter 12: IDL Internals: Keyword Processing
to by value will always be zero unless it was specified by the user. Use this
technique to create keywords that have Boolean (on or off) meanings.

• IDL_KW_VALUE — If this bit is set and the specified keyword is present
and non-zero, the low 12 bits of this field (flags) will be bitwise ORed with the
IDL_LONG field of the KW_RESULT structure referenced by the value
field. Note that this implies the IDL_TYP_LONG type code, and is
incompatible with the IDL_KW_ARRAY, IDL_KW_VIN, and
IDL_KW_OUT flags.

specified

NULL, or the offset of the user supplied field within the KW_RESULT structure
(kw) of a C int variable that will be set to TRUE (non-zero) or FALSE (0) based on
whether the routine was called with the keyword present. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset. Setting this
field to NULL (0) indicates that this information is not needed.

value

If the keyword is a read-only scalar, this field is the offset of the user supplied field in
the KW_RESULT structure (kw) into which the keyword value will be copied. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset.

In the case of a read-only array, value is the memory address of an
IDL_KW_ARR_DESC_R, structure, which is discussed in “The
IDL_KW_ARR_DESC_R Structure” on page 277.

In the case of an input (IDL_KW_VIN) or output (IDL_KW_OUT) variable, this
field should contain the offset to the IDL_VPTR field within the user supplied
KW_RESULT that will be filled by IDL_KWProcessByOffset() with the address
of the keyword argument. The IDL_KW_OFFSETOF() macro should be used to
calculate the offset.
The IDL_KW_PAR Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 277
The IDL_KW_ARR_DESC_R Structure

When a keyword is specified to be a read-only array (i.e., the IDL_KW_ARRAY
flag is set), the value field of the IDL_KW_PAR struct should be set to point to an
IDL_KW_ARR_DESC_R structure. This structure is defined as:

typedef struct {
char *data;
IDL_MEMINT nmin;
IDL_MEMINT nmax;
IDL_MEMINT n_offset;

} IDL_KW_ARR_DESC_R;

where:

data

The offset of the field within the user supplied KW_RESULT structure, of the C
array to receive the data. This offset is computed using the IDL_KW_OFSETOF()
macro. This array must be of the C type specified by the type field of the
IDL_KW_PAR struct. For example, IDL_TYP_LONG maps into a C
IDL_LONG. There must be nmax elements in the array.

nmin

The minimum number of elements allowed.

nmax

The maximum number of elements allowed.

n_offset

The offset of the field within the user defined KW_RESULT structure into which
IDL_KWProcessByOffset() will store the number of elements actually stored into
the array field. This offset is computed using the IDL_KW_OFSETOF() macro.
External Development Guide The IDL_KW_ARR_DESC_R Structure

278 Chapter 12: IDL Internals: Keyword Processing
Keyword Processing Options

The following cases occur in keyword processing:

Scalar Input-Only

For scalar, input-only keywords, the user never sees the IDL_VARIABLE passed as
the keyword argument. Instead, the value of the IDL_VARIABLE is converted to
the type specified by the type field of the IDL_KW_PAR struct and is placed into
the field of the user specified KW_RESULT structure, the offset of which is given
by the value field. This offset is calculated using the IDL_KW_OFFSETOF()
macro.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that the value
field contains the address of an IDL_KW_ARR_DESC_R struct that supplies the
added information required to convert the passed array elements to the specified type
and place them into a C array for easy access. The array data is copied into a array
within the user supplied KW_RESULT structure. The data field of the
IDL_KW_ARR_DESC_R struct supplies the offset of the array field within the
KW_RESULT structure. This offset is calculated using the
IDL_KW_OFFSETOF() macro.

As part of this process, the number of array elements passed is checked to be within
the range specified in the IDL_KW_ARR_DESC_R struct, and if no error results,
the number is stored into a field of the user supplied KW_RESULT struct. The
n_offset field of the IDL_KW_ARR_DESC_R struct supplies the offset of this
“number of elements” field within the KW_RESULT structure. This offset is
calculated using the IDL_KW_OFFSETOF() macro.

It is worth noting that input-only array keywords don’t pass information about the
number of dimensions or their sizes, only the total number of elements. Therefore,
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Output
keyword instead.

Input/Output

This case occurs if the IDL_KW_VIN or IDL_KW_OUT flag is set in the
IDL_KW_PAR struct. In this case, the value field contains the offset of the
IDL_VPTR field (computed with the IDL_KW_OFFSETOF() macro) in the user
defined KW_RESULT struct into which the actual keyword argument is copied. In
this case, you must do all error checking and type conversion yourself, just like with
Keyword Processing Options External Development Guide

Chapter 12: IDL Internals: Keyword Processing 279
positional arguments. This is certainly the most flexible method. However, the other
two cases are much easier to use, and are suitable for the vast majority of keywords.
External Development Guide Keyword Processing Options

280 Chapter 12: IDL Internals: Keyword Processing
The KW_RESULT Structure

Each system routine that processes keywords is required to define a structure variable
into which IDL_KWProcessByOffset() will store all the results of keyword
processing. This variable must follow the following rules:

• The name of the structure type must be defined as KW_RESULT. This
requirement exists so that the IDL_KW_OFFSETOF() macro can properly
do its work.

• The first field within any KW_RESULT structure must be defined using the
IDL_KW_RESULT_FIRST_FIELD macro. The contents of this first field
are private, and should not be examined. It contains the information required
by IDL to properly track its resource use.

• The name of the KW_RESULT variable must be kw. This requirement exists
so that the IDL_KW_FREE macro can properly do its work.

Hence, all system routines that process keywords will contain statements similar to
the following:

typedef struct {
 IDL_KW_RESULT_FIRST_FIELD;/* Must be first entry in struct */

… /* Additional user specified fields */
 } KW_RESULT;

 KW_RESULT kw;

All fields within the KW_RESULT structure after the required first field can have
arbitrary user selected names. The types of these fields are dictated by the
IDL_KW_PAR and IDL_KW_ARR_DESC_R structures that refer to them.
The KW_RESULT Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 281
Processing Keywords

The IDL_KWProcessByOffset() function is used to process keywords.
IDL_KWProcessByOffset() performs the following actions on behalf of the calling
system routine:

• Verify that the keywords passed to the routine are all allowed by the routine.

• Carry out the type checking and conversions required for each keyword.

• Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in argv and copy them in order into the plain_args array.

• Return the number of plain arguments copied into plain_args.

IDL_KWProcessByOffset() has the form:

int IDL_KWProcessByOffset(int argc, IDL_VPTR *argv, char *argk,
IDL_KW_PAR *kw_list,
IDL_VPTR plain_args[], int mask,
void * base)

where:

argc

The number of arguments passed to the caller. This is the first parameter to all system
routines.

argv

The array of IDL_VPTR to arguments that was passed to the caller. This is the
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. This is the third
parameter to all system routines that accept keyword arguments.

kw_list

An array of IDL_KW_PAR structures (see “Overview Of IDL Keyword Processing”
on page 272) that specifies the acceptable keywords for this routine. This array is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).
External Development Guide Processing Keywords

282 Chapter 12: IDL Internals: Keyword Processing
plain_args

NULL, or an array of IDL_VPTR into which the IDL_VPTRs of the positional
arguments will be copied. This array must have enough elements to hold the
maximum possible number of positional arguments, as defined in
IDL_SYSFUN_DEF2. See “Registering Routines” on page 443.

Note
IDL_KWProcessByOffset() sorts the plain arguments into the front of the input
argv argument. Hence, plain_args is often not necessary, and can be set to NULL.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
as a valid keyword for the called system routine. If the result is zero, the keyword is
ignored.

base

Address of the user supplied KW_RESULT structure, which must be named kw.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_KWProcessByOffset() is a null
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and value fields
with IDL_KW_ZERO set), can become significant, especially when more than a
few keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN as the first keyword array
element. If IDL_KW_FAST_SCAN is the first keyword array element, the keyword
array is compiled by IDL_KWProcessByOffset() into a more efficient form the first
time it is used. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN is optional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL_KW_PAR kw_pars[] = {
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0,

IDL_KW_OFFSETOF(d_there), IDL_KW_OFFSET_OF(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1,IDL_KW_ZERO,0,IDL_KW_OFFSET_OF(f) },
{ NULL }

};
Processing Keywords External Development Guide

Chapter 12: IDL Internals: Keyword Processing 283
To use fast scanning, it would be written as:

static IDL_KW_PAR kw_pars[] = {
IDL_KW_FAST_SCAN,
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0,
IDL_KW_OFFSET_OF(d_there), IDL_KW_OFFSETOF(d) },

{"FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0,IDL_KW_OFFSETOF(f) },
{ NULL }

};
External Development Guide Processing Keywords

284 Chapter 12: IDL Internals: Keyword Processing
Cleaning Up

All normal exit paths from your system routine are required to call the
IDL_KW_FREE macro prior to returning. This macro must be called exactly once
for every call to IDL_KWProcessByOffset(). You must therefore structure your
code so that IDL_KW_FREE executes before any return statement. Many functions
to not use an explicit return statement, relying on the implicit return that occurs when
execution comes to the end of the function. In such a case, IDL_KW_FREE must be
the last statement in the function.
Cleaning Up External Development Guide

Chapter 12: IDL Internals: Keyword Processing 285
Keyword Examples

The following C function implements KEYWORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for a routine. It
prints the values of its keywords, changes the value of READWRITE to 42 if it is
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Note
The following code is designed to demonstrate keyword processing in a simple,
uncluttered example. In actual code, you would not use the printf mechanism used
on lines 42-53.
External Development Guide Keyword Examples

286 Chapter 12: IDL Internals: Keyword Processing
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

void keyword_demo(int argc, IDL_VPTR *argv, char *argk)
{

typedef struct {
IDL_KW_RESULT_FIRST_FIELD; /* Must be first entry in structure */
IDL_LONG l;
float f;
double d;
int d_there;
IDL_STRING s;
int s_there;
IDL_LONG arr_data[10];
int arr_there;
IDL_MEMINT arr_n;
IDL_VPTR var;

} KW_RESULT;
static IDL_KW_ARR_DESC_R arr_d = { IDL_KW_OFFSETOF(arr_data), 3, 10,

IDL_KW_OFFSETOF(arr_n) };

static IDL_KW_PAR kw_pars[] = {
IDL_KW_FAST_SCAN,
{ "ARRAY", IDL_TYP_LONG, 1, IDL_KW_ARRAY,

IDL_KW_OFFSETOF(arr_there), CHARA(arr_d) },
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0,

IDL_KW_OFFSETOF(d_there), IDL_KW_OFFSETOF(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, IDL_KW_OFFSETOF(f) },
{ "LONG", IDL_TYP_LONG, 1, IDL_KW_ZERO|IDL_KW_VALUE|15, 0,

IDL_KW_OFFSETOF(l) },
{ "READWRITE", IDL_TYP_UNDEF, 1, IDL_KW_OUT|IDL_KW_ZERO,

0, IDL_KW_OFFSETOF(var) },
{ "STRING", TYP_STRING, 1, 0,

IDL_KW_OFFSETOF(s_there), IDL_KW_OFFSETOF(s) },
{ NULL }

};

Figure 12-1: Keyword processing example.
Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 287
Executing this routine from the IDL command line, by entering:

KEYWORD_DEMO

gives the output:

LONG: <not present>
FLOAT: 0.000000
DOUBLE: <not present>
STRING: <not present>
ARRAY: <not present>
READWRITE: <not present>

Executing it again with keywords specified:

C

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

KW_RESULT kw;
int i;
IDL_ALLTYPES newval;

(void) IDL_KWProcessByOffset(argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

printf("LONG: <%spresent>\n", kw.l ? "": "not ");
printf("FLOAT: %f\n", kw.f);
printf("DOUBLE: <%spresent>\n", kw.d_there ? "": "not ");
printf("STRING: %s\n",

kw.s_there ? IDL_STRING_STR(&kw.s) : "<not present>");
printf("ARRAY: ");
if (kw.arr_there)
for (i = 0; i < kw.arr_n; i++)
printf(" %d", kw.arr_data[i]);
else
printf("<not present>");
printf("\n");

printf("READWRITE: ");
if (kw.var) {
IDL_Print(1, &kw.var, (char *) 0);
newval.l = 42;
IDL_StoreScalar(kw.var, TYP_LONG, &newval);
} else {
printf("<not present>");
}
printf("\n");

IDL_KW_FREE;

}

Figure 12-1: Keyword processing example. (Continued)
External Development Guide Keyword Examples

288 Chapter 12: IDL Internals: Keyword Processing
A = 56
KEYWORD_DEMO, /LONG, FLOAT=2, DOUBLE=34,$

STRING="hello", ARRAY=FINDGEN(10), READWRITE=A
PRINT, 'Final Value of A: ', A

gives the output:

LONG: <present>
FLOAT: 2.000000
DOUBLE: <present>
STRING: hello
ARRAY: 0 1 2 3 4 5 6 7 8 9
READWRITE: 56
Final Value of A: 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

3-15

Every system routine that processes keywords must define a KW_RESULT
structure type. All output from keyword processing is stored in the fields of this
structure.The first field in the KW_RESULT structure must always be
IDL_KW_RESULT_FIRST_FIELD. The remaining fields are dictated by the
keywords defined in kw_pars below, starting on line 19. The fields with named
ending in _there are used for the specified field of the IDL_KW_PAR structs, and
must be type int. The types of the other fields must match their definitions in the
relevant IDL_KW_PAR and IDL_KW_ARR_DESC_R structs.

16-17

The ARRAY keyword, defined on line 21, is a read-only array, and requires this
array description. Note that the data field specifies the location of the arr_data array
within KW_RESULT where the array contents should be copied, and the n_offset
field specifies the location of the arr_n field where the number of elements actually
seen is to be written. Both of these are specified as offsets into KW_RESULT, using
the IDL_KW_OFFSET() macro to compute this. The minimum number of elements
allowed is 3, the maximum is 10.

19

The start of the keyword definition array. Notice that all of the keywords are ordered
lexically (ASCII) and that there is a NULL entry at the end (line 32). Also, all of the
mask fields are set to 1, as is the mask argument to IDL_KWProcessByOffset() on
line 39. This means that all of the keywords in the list are to be considered valid in
this routine.
Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 289
20

This routine is requesting fast keyword processing. You can learn more about this
option in “Speeding Keyword Processing” on page 282.

21-22

ARRAY is a read-only array. Its value field is therefore the actual address (and not an
offset into KW_RESULT) of the IDL_KW_ARR_DESC_R struct that completes
the array definition. This program wants to know explicitly if ARRAY was specified,
so the specified field is set to the offset within KW_RESULT of the arr_there field.

23-24

DOUBLE is a scalar keyword of IDL_TYP_DOUBLE. It uses the variable
kw.d_there to know if the keyword is present. Both the specified and value fields are
specified as offsets into KW_RESULT.

25

FLOAT is an IDL_TYP_FLOAT scalar keyword. It does not use the specified field
of the IDL_KW_PAR struct to get notification of whether the keyword is present, so
that field is set to 0. Instead, it uses the IDL_KW_ZERO flag to make sure that the
variable kw.f is always zeroed. If the keyword is present, the value will be written
into kw.f, otherwise it will remain 0. The important point is that the routine can’t tell
the difference between the keyword being absent, or being present with a user-
supplied value of zero. If this distinction doesn’t matter, such as when the keyword is
to serve as an on/off toggle, use this method. If it does matter, use the specified field
as demonstrated with the DOUBLE keyword, above.

26-27

LONG is a scalar keyword of IDL_TYP_LONG. It sets the IDL_KW_ZERO flag
to get the variable kw.l zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable kw.l.

28-29

The IDL_KW_OUT flag indicates that the routine wants the IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO is also set, the variable
kw.var will be zero unless the keyword is present. The specification of
IDL_TYP_UNDEF here indicates that there is no type conversion or processing
applied to IDL_KW_OUT keywords.
External Development Guide Keyword Examples

290 Chapter 12: IDL Internals: Keyword Processing
30-31

The STRING keyword demonstrates scalar string keywords.

32

All IDL_KW_PAR arrays must be terminated with a NULL entry.

35

Every system routine that processes keywords must declare a variable named kw, of
type KW_RESULT. This variable should be a C stack based local variable (C auto
class).

37

The IDL_StoreScalar() function used on line 59 requires the scalar value to be
provided in an IDL_ALLTYPES struct.

39-40

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
this routine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWProcessByOffset() is
discarded. The final argument is the address of the KW_RESULT variable (kw) into
which the results will be written.

42

The kw.l variable will be 0 if LONG is not present, and 1 if it is.

43

The kw.f variable will always have some usable value, but if it is zero there is no way
to know if the keyword was actually specified or not.

44-46

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Values” on page 333.
Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 291
47-53

Accessing the ARRAY keyword is simple. The kw.arr_there variable indicates if
the keyword is present, and kw.arr_n gives the number of elements.

55-63

Since the READWRITE keyword is accessed via the argument’s IDL_VPTR, we
use the IDL_Print() function to print its value. This has the same effect as using the
user-level PRINT procedure when running IDL. See “Output of IDL Variables” on
page 396. Then, we change its value to 42 using IDL_StoreScalar().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_Print()) in your own code.

65

Normal exit from any routine that calls IDL_KWProcessByOffset() must be
preceded by a call to IDL_KW_FREE. This macro releases any dynamic resources
that were allocated by keyword processing.
External Development Guide Keyword Examples

292 Chapter 12: IDL Internals: Keyword Processing
The Pre-IDL 5.5 Keyword API

Versions of IDL prior to IDL 5.5 used a different, but similar, keyword processing
API to that found in the current versions. The remainder of this chapter provides
information of interest to programmers maintaining older system routines that were
written to that API.

Note
Research System recommends that all new code be written using the new keyword
processing API. The older API continues to be supported for backwards
compatibility, and there is no urgent reason to convert code that uses it. However,
the effort of converting old code to the new API is minimal, and can be beneficial.

Background

If you have system routines that were written for use with versions of IDL older than
IDL 5.5, your code uses an older keyword processing API, described in “Processing
Keywords With IDL_KWGetParams()” on page 528, that including the following
obsolete elements:

• IDL_KWGetParams()

• IDL_KW_ARR_DESC

• IDL_KWCleanup(), IDL_KW_MARK, IDL_KW_CLEAN

This old API served for many years, but it had some unfortunate features that made it
hard to use correctly:

• The rules for when and how to use IDL_KWCleanup() were difficult to
remember. The programmer had to decide whether or not to call it based on the
types of the keywords being processed. If you didn’t call it when you should,
memory would be leaked.

• In order to ensure correctness, many programmers would resort to always
calling IDL_KWCleanup() whether it was is needed or not. This is
inefficient, but otherwise fine.

• The use of IDL_KWCleanup() is based on a worst case assumption that the
keywords that require cleaning will actually be invoked by the IDL user. This
is often not the case, and is therefore inefficient.

• Imagine an existing system routine that does not need to use
IDL_KWCleanup(), and therefore is coded not to use it. If a new keyword
The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 293
should later be added to that routine, and that new keyword should require the
use of IDL_KWCleanup(), it is very likely that the programmer adding this
new keyword will fail to recognize that issue. This leads to memory leaking
from a formerly correct routine.

• If a future version of IDL should get a new data type that requires cleaning,
that will change the rules for when IDL_KWCleanup() needs to be called.
Existing code may need to be examined to fix this situation.

• The old keyword API is not reentrant, because it requires static variable
addresses to be embedded in the keyword list. This has always been a problem
for recursively callable routines (e.g. WIDGET_CONTROL, which can cause
an IDL procedure callback to execute, which can in turn call
WIDGET_CONTROL again). In the past, we have carefully coded these
complex routines to avoid problems, but the large amount of code required is
difficult to write and verify. The proper solution is a reentrant keyword API
that uses offsets to variables within a structure, instead of actual statically
scoped variable addresses. This is what the current API provides.

Advantages Of The IDL 5.5 API

In contrast, keyword processing, in IDL 5.5 and later is built around the
IDL_KWProcessByOffset() function, has the following advantages:

• The old API remains in place with full functionality. Hence, you are not
required to update your old code (There are benefits to such updating,
however).

• A transitional API, build around the IDL_KWProcessByAddr() function,
exists to help ease updating your code. See “The Transitional API” on
page 295 for details. The transitional API is a halfway measure designed to
solve the worst problems of the old API while requiring the minimum amount
of change.

• The new API, and the transitional API both eliminate the confusing
IDL_KWCleanup() routine and its requirement to KW_MARK before, and
KW_CLEAN after keyword processing based on the types of the keywords.
Instead, the keyword processing API keeps track of the need to cleanup itself,
and handles this efficiently. The user is freed from guesswork about how and
when to do the required cleanup.

• Keyword cleanup will only happen if the keyword module determines that it is
necessary as it processes the actual keywords used. This is more efficient, and
External Development Guide The Pre-IDL 5.5 Keyword API

294 Chapter 12: IDL Internals: Keyword Processing
it can be easily extended within IDL if a new data type is added to the IDL
system, without requiring any change to your code.

• The internal data structures used to maintaining keyword state are now
dynamically allocated, and do not have the static limits that the old
implementation did.

• The new API is able to process keywords using a re-entrant keyword
description. Results are written to stack based (C auto) variables rather than
statically defined variables. This can be used to greatly simplify the
implementation of recursive system routines, and has been used extensively
for that purpose within IDL.

Differences And Similarities Between APIs

The current IDL keyword processing API was designed to minimize the changes
necessary to convert existing older code. The differences and similarities between
these APIs are summarized below:

• The basic IDL_KW_PAR data structure is unchanged between the two.
However, in the old API, the specified, and value fields are addresses to
statically allocated C variables or IDL_KW_ARR_DESC structures. In the
new API, specified is always an offset into a user defined KW_RESULT
structure. The value field is an offset into KW_RESULT when it is used to
refer to data. It is an address when used to refer to an
IDL_KW_ARR_DESC_R structure.

• The old API uses the IDL_KW_ARR_DESC structure to define
IDL_KW_ARRAY read-only arrays. The new API uses the very similar
IDL_KW_ARR_DESC_R structure. This is necessary because
IDL_KW_ARR_DESC is not reentrant (the number of array elements used is
written into the struct), while IDL_KW_ARR_DESC_R causes them to be
written into a field in the KW_RESULT variable instead.

• The new API requires all keyword variables to be contained in a single
KW_RESULT structure, while the old API allowed them to be independent
variables. This is important to the offset-based scheme used in the new API, as
well as having the nice side effect of improving the organization and
readability of most code.

• The old API uses IDL_KWGetParams() to process keywords. The new API
uses IDL_KWProcessByOffset().
The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 295
• The old API uses IDL_KWCleanup() to free resources. The rules for using it
are complicated and lead to latent coding errors. The new API uses the
IDL_KW_FREE macro, and has a simple consistent rule for use.

Converting Existing Code To The New API

To convert code that uses the old API to the new version:

• Define a typedef for a struct named KW_RESULT, containing the keyword
variables. Make the first field be the predefined
IDL_KW_RESULT_FIRST_FIELD.

• Modify your keyword definition list so that the specified and value fields of
each IDL_KW_PAR struct contain offsets instead of addresses in all cases
except when the value field references an IDL_KW_ARR_DESC struct. To
do this, use the IDL_KW_OFFSETOF() macro.

• Any reference to an IDL_KW_ARR_DESC structure for an
IDL_KW_ARRAY keyword must be converted to an
IDL_KW_ARR_DESC_R struct.

• Replace the call to IDL_KWGetParams() with a call to
IDL_KWProcessByOffset().

• Remove any IDL_KWCleanup(IDL_KW_MARK) calls.

• Replace any IDL_KWCleanup(IDL_KW_CLEAN) calls with the
IDL_KW_FREE macro. Check to ensure that all exit paths from your
function other than via IDL_Message() include a call to this macro.

The Transitional API

RSI recommends that your convert your code to the reentrant keyword API based
around the IDL_KWProcessByOffset() and IDL_KWFree() functions. This is
almost always a straightforward operation, and the resulting code has all of the
advantages discussed in “Advantages Of The IDL 5.5 API” on page 293. However,
there is another alternative that may be useful is some situations. A third keyword
API, built around the IDL_KWProcessByAddr() function exists that provides the
benefits of eliminating the confusing IDL_KWCleanup() function, while not
requiring the use of static non-reentrant separate variables to change. The transitional
API is a halfway measure designed to solve the worst problems of the old API while
requiring the minimum amount of change to your code:

int IDL_KWProcessByAddr(int argc, IDL_VPTR *argv, char *argk,
IDL_KW_PAR *kw_list, IDL_VPTR *plain_args,
External Development Guide The Pre-IDL 5.5 Keyword API

296 Chapter 12: IDL Internals: Keyword Processing
int mask, int *free_required)

void IDL_KWFree(void)

where:

argc, argv, argk, plain_args, mask

These arguments are the same as those required by IDL_KWProcessByOffset()

kw_list

An array of IDL_KW_PAR structures, in the absolute address form required by the
old IDL_KWGetParams() keyword API (the specified and value fields use address
to static C variables).

free_required

The address of an integer to be filled in by IDL_KWProcessByAddr(). If set to
TRUE, the caller must call IDL_KWFree() prior to exit from the routine.

Example: Converting From The Old Keyword API

To illustrate the use of the old keyword API, the transitional API, and the new
reentrant API, this section provides an extremely simple example, written three
times, once with each API.

Another useful comparison is to compare the example “Keyword Examples” on
page 285 with its original version written with the old API which can be found in
“Keyword Examples” on page 532.

Old API

IDL_VPTR IDL_someroutine(int argc, IDL_VPTR *argv, char *argk)
{

static IDL_VPTR count_var;
static IDL_LONG debug;
static IDL_STRING name;
static IDL_KW_PAR kw_pars[] = {
{ "COUNT", 0,1,IDL_KW_OUT|IDL_KW_ZERO,0,IDL_CHARA(count_var)},
{ "DEBUG", IDL_TYP_LONG, 1, IDL_KW_ZERO, 0,IDL_CHARA(debug) },
{ "NAME", IDL_TYP_STRING, 1, IDL_KW_ZERO, 0,IDL_CHARA(name) },
{ NULL }

};
IDL_VPTR result;

IDL_KWCleanup(IDL_KW_MARK);
The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 297
argc = IDL_KWGetParams(argc,argv,argk,kw_pars,(IDL_VPTR *)0,1);

/* Your code goes here. Keyword values are available in the
* static variables.*/

 /* Cleanup keywords before leaving */
 IDL_KWCleanup(IDL_KW_CLEAN);
 return(result);
}

Transitional API

The transitional API provides the benefits of simplified and straightforward cleanup,
but does not require you to alter your IDL_KW_PAR array or gather the keyword
variables into a common structure. The resulting code is very similar to the old API.

IDL_VPTR IDL_someroutine(int argc, IDL_VPTR *argv, char *argk)
{

static IDL_VPTR count_var;
static IDL_LONG debug;
static IDL_STRING name;
static IDL_KW_PAR kw_pars[] = {
{"COUNT", 0, 1, IDL_KW_OUT|IDL_KW_ZERO,
0,IDL_KW_ADDROF(count_var) },
{ "DEBUG", IDL_TYP_LONG,1,IDL_KW_ZERO,0,IDL_KW_ADDROF(debug)},
{ "NAME", IDL_TYP_STRING,1,IDL_KW_ZERO,0,IDL_KW_ADDROF(name)},
{ NULL }

};

int kw_free;
IDL_VPTR result;

argc = IDL_KWProcessByAddr(argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw_free);

/* Your code goes here. Keyword values are available in the
* static variables.*/

/* Cleanup keywords before leaving */
if (kw_free) IDL_KWFree();

return(result);
}

New Reentrant API

IDL_VPTR IDL_someroutine(int argc, IDL_VPTR *argv, char *argk)
{

typedef struct {
External Development Guide The Pre-IDL 5.5 Keyword API

298 Chapter 12: IDL Internals: Keyword Processing
IDL_KW_RESULT_FIRST_FIELD; /* Must be first entry in struct */
IDL_VPTR count_var;
IDL_LONG debug;
IDL_STRING name;

} KW_RESULT;
static IDL_KW_PAR kw_pars[] = {
{ "COUNT", 0, 1, IDL_KW_OUT | IDL_KW_ZERO,

0, IDL_KW_OFFSETOF(count_var) },
{ "DEBUG", IDL_TYP_LONG, 1, IDL_KW_ZERO,

0, IDL_KW_OFFSETOF(debug) },
{ "NAME", IDL_TYP_STRING, 1, IDL_KW_ZERO,

0, IDL_KW_OFFSETOF(name) },
{ NULL }

};

KW_RESULT kw;
IDL_VPTR result;

argc = IDL_KWProcessByOffset(argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

/* Your code goes here. Keyword values are available in the
* kw struct.*/

/* Cleanup keywords before leaving if necessary */
IDL_KW_FREE;

return(result);
}

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 13

IDL Internals:
Variables
This chapter discusses the following topics:
IDL and Internal Variables 300
The IDL_VARIABLE Structure 301
Scalar Variables . 304
Array Variables . 305
Structure Variables 307
Heap Variables . 312
Temporary Variables 313
Creating an Array from Existing Data 320

Getting Dynamic Memory 322
Accessing Variable Data 324
Copying Variables 325
Storing Scalar Values 326
Obtaining the Name of a Variable 328
Looking Up Main Program Variables . . . 329
Looking Up Variables in Current Scope . 330
External Development Guide 299

300 Chapter 13: IDL Internals: Variables
IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. While
reading this chapter, you should refer to the following figure to see how each part fits
into the overall structure of an IDL variable.

Figure 13-1: Structure of an IDL variable

IDL_MEMINT elt_len
IDL_MEMINT arr_len
IDL_MEMINT n_elts
UCHAR *data
UCHAR n_dim
UCHAR flags
short file_unit
IDL_ARRAY_DIM dim
IDL_ARRAY_FREE_CB free_cb
IDL_FILEINT offset
IDL_LONG data_guard

Usually, data followed by a
trailing data guard.

Imported Data

UCHAR c
IDL_INT i
UINT ui
IDL_LONG l
IDL_ULONG ul
IDL_LONG64 l64

float f
double d

IDL_COMPLEX <struct>
cmp float r

float i

IDL_DCOMPLEX <struct>
dcmp double r

double i

IDL_STRING <struct>
str IDL_STRING_SLEN_T slen

short stype
char *s

IDL_ARRAY *arr
IDL_HVID hvid

IDL_SREF s <struct>
IDL_ARRAY *arr

IDL_STRUCTURE *sdef

Structures and object
definitions (opaque)

32-bit Assoc offset

IDL_ULONG ul64

UCHAR type
UCHAR flags

IDL_ALLTYPES value <union>

Normal
case
IDL and Internal Variables External Development Guide

Chapter 13: IDL Internals: Variables 301
The IDL_VARIABLE Structure

IDL variables are represented by IDL_VARIABLE structures. The definition of
IDL_VARIABLE is as follows:

typedef struct {
UCHAR type;
UCHAR flags;
IDL_ALLTYPES value;

} IDL_VARIABLE;

An IDL_VPTR is a pointer to an IDL_VARIABLE structure:

typedef IDL_VARIABLE *IDL_VPTR;

The IDL_ALLTYPES union is defined as:

typedef union {
UCHAR c; /* Scalar IDL_TYP_BYTE */
IDL_INT i; /* Scalar IDL_TYP_INT */
IDL_UINT ui; /* Unsigned short integer value */
IDL_LONG l; /* Scalar IDL_TYP_LONG */
IDL_ULONG ul; /* Unsigned long value */

 IDL_LONG64 l64; /* 64-bit integer value */
 IDL_ULONG64 ul64; /* Unsigned 64-bit integer value */

float f; /* Scalar IDL_TYP_FLOAT */
double d; /* Scalar IDL_TYP_DOUBLE */
IDL_COMPLEX cmp; /* Scalar IDL_TYP_COMPLEX */
IDL_DCOMPLEX dcmp; /* Scalar IDL_TYP_DCOMPLEX */
IDL_STRING str; /* Scalar IDL_TYP_STRING */
IDL_ARRAY *arr; /* Pointer to array descriptor */
IDL_SREF s; /* Structure descriptor */
IDL_HVID hvid; /* Heap variable identifier */

}IDL_ALLTYPES;

The basic scalar types are contained directly in this union, while arrays and structures
are represented by the IDL_ARRAY and IDL_SREF structures that are discussed
later in this chapter. The type field of the IDL_VARIABLE structure contains one of
the type codes discussed in “Type Codes” on page 262. When a variable is initially
created, it is given the type code IDL_TYP_UNDEF, indicating that the variable
contains no value.

The flags field is a bit mask that specifies information about the variable. As a
programmer adding code to the IDL system, you will rarely need to set bits in this
mask. These bits are set by whatever portion of IDL created the variable. You can
check them to make sure the characteristics of the variable fit the requirements of
your routine (see “Checking Arguments” on page 349).
External Development Guide The IDL_VARIABLE Structure

302 Chapter 13: IDL Internals: Variables
The defined bits in the mask are:

IDL_V_CONST

If this flag is set, the variable is actually a constant. This means that storage for the
IDL_VARIABLE resides inside the code section of the user procedure or function
that used it. The IDL compiler generates such IDL_VARIABLEs when an
expression involving a constant occurs. For example, the IDL statement:

PRINT, 23 * A

causes the compiler to generate a constant for the “23”. You must not change the
value of this type of “variable”.

IDL_V_TEMP

If this flag is set, the variable is a temporary variable. IDL maintains a pool of
nameless IDL_VARIABLEs that can be checked out and returned as needed. Such
variables are used by the interpreter to temporarily store the results of expressions on
the stack. For example, the statement:

PRINT, 2 * 3

will cause the interpreter to go through a sequence of events similar to:

1. Push a constant variable for the 2 on the stack.

2. Push a constant variable for the 3 on the stack.

3. Allocate a temporary variable, pop the two constants from the stack, perform
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.

5. Call the PRINT system procedure specifying one argument.

6. Remove the argument to PRINT from the stack, and return the temporary
variable.

Temporary variables are also used inside user procedures and functions. See
“Temporary Variables” on page 313.

IDL_V_ARR

If this flag is set, the variable is an array, and the value field of the IDL_VARIABLE
points to an array descriptor.

IDL_V_FILE

If this flag is set, the variable is a file variable, as created by IDL’s ASSOC function.
The IDL_VARIABLE Structure External Development Guide

Chapter 13: IDL Internals: Variables 303
IDL_V_DYNAMIC

If this flag is set, the memory used by this IDL_VARIABLE is dynamically
allocated. This bit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced via the string pointer is
dynamic).

IDL_V_STRUCT

If this flag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons, all
structure variables are also arrays, so IDL_V_STRUCT also implies IDL_V_ARR.
Therefore, it is impossible to have a scalar structure. However, single-element
structure arrays are quite common.

Because structure variables have their type field set to IDL_TYP_STRUCT, the
IDL_V_STRUCT bit is redundant. It exists for efficiency reasons.
External Development Guide The IDL_VARIABLE Structure

304 Chapter 13: IDL Internals: Variables
Scalar Variables

A scalar IDL_VARIABLE is distinguished by not having the IDL_V_ARR bit set
in its flags field. A scalar variable must have one of the basic data types (IDL
structures are never scalar) shown in Table 13-1. The data for a scalar variable is
stored in the IDL_VARIABLE itself, using the IDL_ALLTYPES union. The
following table gives the relationship between the data type and the field used.

Scalar Data Type
Field that Stores

Data

IDL_TYP_UNDEF None.

IDL_TYP_BYTE value.c

IDL_TYP_INT value.i

IDL_TYP_UINT value.ui

IDL_TYP_LONG value.l

IDL_TYP_ULONG value.ul

IDL_TYP_LONG64 value.l64

IDL_TYP_ULONG64 value.ul64

IDL_TYP_FLOAT value.f

IDL_TYP_DOUBLE value.d

IDL_TYP_COMPLEX value.cmp

IDL_TYP_DCOMPLEX value.dcmp

IDL_TYP_STRING value.str

IDL_TYP_PTR value.hvid

IDL_TYP_OBJ value.hvid

Table 13-1: Scalar Variable Data Locations
Scalar Variables External Development Guide

Chapter 13: IDL Internals: Variables 305
Array Variables

Array variables have the IDL_V_ARR bit of their flags field set, and the value.arr
field points to an array descriptor defined by the IDL_ARRAY structure:

typedef IDL_MEMINT IDL_ARRAY_DIM[IDL_MAX_ARRAY_DIM];

typedef struct {
IDL_MEMINT elt_len;
IDL_MEMINT arr_len;
IDL_MEMINT n_elts;
UCHAR *data;
UCHAR n_dim;
UCHAR flags;
short file_unit;
IDL_ARRAY_DIM dim;

} IDL_ARRAY;

The meaning of the fields of an array descriptor are:

elt_len

The length of each array element in bytes (chars). The array descriptor does not keep
track of the types of the array elements, only their lengths. Single elements can get
quite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align the
data along required boundaries. On a given platform, IDL creates structures the same
way a C compiler does on that platform. As a result, you should not assume that the
size of a structure is the sum of the sizes of the structure fields, or that the field offsets
are in specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts

The number of elements in the array.

data

A pointer to the data area for the array. This is a region of dynamically allocated
memory arr_len bytes long. This pointer should be cast to be a pointer of the correct
External Development Guide Array Variables

306 Chapter 13: IDL Internals: Variables
type for the data being manipulated. For example, if the array variable being
processed is pointed at by an IDL_VPTR named v and contains IDL_TYP_INT
data:

IDL_INT *data; /* Declare a pointer variable */
data = (IDL_INT *) v->value.arr->data;

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

flags

A bit mask that specifies characteristics of the array. Allowed values are:

IDL_A_FILE — This flag indicates that the array is a file variable, as created
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The data field of the
IDL_ARRAY structure does not contain useful information, and should not be
used.

IDL_A_PACKED — If array is an IDL_A_FILE variable and the data type is
IDL_TYP_STRUCT, then Input/Output to this struct should use a packed data
layout compatible with WRITEU instead of being a direct mapping onto the
struct (which reflects the C compiler layout of the structure including its
alignment holes).

file_unit

When the IDL_A_FILE bit is set in the flags field, file_unit contains the IDL
Logical Unit Number associated with the variable.

dim

An array that contains the dimensions of the IDL variable. There can be up to
IDL_MAX_ARRAY_DIM dimensions. The number of dimensions in the current
array is given by the n_dim field.
Array Variables External Development Guide

Chapter 13: IDL Internals: Variables 307
Structure Variables

Structure variables have the type code IDL_TYP_STRUCT. They also have the
IDL_V_STRUCT bit set in their flags field. The value.s field of such a variable
contains a structure descriptor defined by the IDL_SREF structure:

typedef struct {
IDL_ARRAY *arr; /* ^ to IDL_ARRAY containing data */
void *sdef; /* ^ to structure definition */

} IDL_SREF;

The arr field points at an array block, as described in “Array Variables” on page 305.
It is worth noting that in the definition of the IDL_ALLTYPES union (described in
“The IDL_VARIABLE Structure” on page 301), the arr field is a pointer to
IDL_ARRAY, while the s field is an IDL_SREF, a structure that contains a pointer
to IDL_ARRAY as its first member.

The resulting definition looks like:

union {
IDL_ARRAY arr;
struct {
IDL_ARRAY arr;
void *sdef;

} s;
} value;

Due to the way C lays out fields in structs and unions, value.arr will have the same
offset and size within the value union as value.s.arr. Therefore, it is possible to
access the array block of a structure variable as var->value.arr rather than the more
correct var->value.s.arr. You should avoid use of this shorthand, however, because
it is not strictly correct usage and because RSI reserves the right to change the
IDL_SREF definition in a way that could cause the memory layout of the
ALLTYPES union to change.

Creating Structures

The actual structure definition is accessed through the sdef field, which is a pointer to
an opaque IDL structure definition. Although the implementation of structure
definitions is not public information, they can be created using the
IDL_MakeStruct() function from a structure name and a list of tags:

void *IDL_MakeStruct(char *name, IDL_STRUCT_TAG_DEF *tags)
External Development Guide Structure Variables

308 Chapter 13: IDL Internals: Variables
name

The name of the structure definition, or NULL for anonymous structures.

tags

An array of IDL_STRUCT_TAG_DEF elements, one for each tag.

The result from this function can be passed to IDL_ImportArray() or
IDL_ImportNamedArray(), as described in “Creating an Array from Existing
Data” on page 320.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct {
char *name;
IDL_MEMINT *dims;
void *type;
UCHAR flags;

} IDL_STRUCT_TAG_DEF;

name

Null-terminated uppercase name of the tag.

dims

An array that contains information about the dimensions of the structure. The first
element of this array is the number of dimensions. Following elements contain the
size of each dimension.

type

Either a pointer to another structure definition, or a simple IDL type code cast to void
(e.g., (void *) IDL_TYP_BYTE).

flags

A bit mask that specifies additional characteristics of the tag. Allowed values are:

IDL_STD_INHERIT — Type must be IDL_TYP_STRUCT. This flag
indicates that the structure is inherited (inlined) instead of making it a sub-
structure as usual.

The following example shows how to define an anonymous structure. Suppose that
you want to create a structure whose definition in the IDL language is:

{TAG1: 0L, TAG2: FLTARR(2,3,4), TAG3: STRARR(10)}
Structure Variables External Development Guide

Chapter 13: IDL Internals: Variables 309
It can be created with IDL_MakeStruct() as follows:

static IDL_MEMINT one = 1;
static IDL_MEMINT tag2_dims[] = { 3, 2, 3, 4};
static IDL_MEMINT tag3_dims[] = { 1, 10 };
static IDL_STRUCT_TAG_DEF s_tags[] = {

{ "TAG1", 0, (void *) IDL_TYP_LONG},
{ "TAG2", tag2_dims, (void *) IDL_TYP_FLOAT},
{ "TAG3", tag3_dims, (void *) IDL_TYP_STRING},
{ 0 }

};
typedef struct data_struct {

IDL_LONG tag1_data;
float tag2_data [4] [3] [2];
IDL_STRING tag_3_data [10];

} DATA_STRUCT;
static DATA_STRUCT s_data;
void *s;
IDL_VPTR v;

/* Create the structure definition */
s = IDL_MakeStruct(0, s_tags);
/* Import the data area s_data into an IDL structure,

note that no data are moved. */
v = IDL_ImportArray(1, &one, IDL_TYP_STRUCT,

(UCHAR *) &s_data, 0, s);

Accessing Structure Tags

Given an opaque IDL structure definition, you can determine the offset of the data
and a description of its size and form (scalar, array, etc) for a given tag.
IDL_StructTagInfoByName() returns this information given the name of the tag.
IDL_StructTagInfoByIndex() does the same thing, given the numeric index of the
tag. They are essentially the same routine, although IDL_StructTagInfoByIndex()
is slightly more efficient:

IDL_MEMINT IDL_StructTagInfoByName(IDL_StructDefPtr sdef,
char *name, int msg_action,
 IDL_VPTR *var)

IDL_MEMINT IDL_StructTagInfoByIndex(IDL_StructDefPtr sdef,
int index,int msg_action,
IDL_VPTR *var)

where:

sdef

Structure definition for which offset is needed.
External Development Guide Structure Variables

310 Chapter 13: IDL Internals: Variables
name (IDL_StructTagInfoByName)

Name of tag for which information is required.

index (IDL_StructTagInfoByIndex)

Zero based index of tag for which information is required.

msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

var

NULL, or the address of an IDL_VPTR to be filled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the resulting
call to IDL_Message() returns to the caller, a -1 is returned. The data offset can be
added to the data pointer of an IDL variable of this structure type to obtain a pointer
to the actual data for that tag.

If the tag is successfully located and the var argument is non-NULL, the IDL_VPTR
it points at is filled in with a pointer to an IDL_VARIABLE structure that describes
the type and organization of the tag. It is important to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array tag, a
valid data pointer). Hence, the data part of the IDL_VARIABLE description should
be ignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition has in order to make
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int IDL_StructNumTags(IDL_StructDefPtr sdef)

where:

sdef

Structure definition for which offset is needed.
Structure Variables External Development Guide

Chapter 13: IDL Internals: Variables 311
Determining the Names Of Structures and their Tags

The IDL_StructTagNameByIndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *IDL_StructTagNameByIndex(IDL_StructDefPtr sdef, int index,
int msg_action, char **struct_name)

where:

sdef

Structure definition for which name information is needed.

index

Zero based index of tag within the structure.

msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to be filled in with a pointer to
the name of the structure. If the structure is anonymous, the string “<Anonymous>”
is returned.

On success, a pointer to the tag name is returned. On error, if the resulting call to
IDL_Message() returns to the caller, a NULL pointer is returned.

All strings returned by this function must be considered read-only, and must not be
modified by the caller.
External Development Guide Structure Variables

312 Chapter 13: IDL Internals: Variables
Heap Variables

Direct access to pointer and object reference heap variables (types IDL_TYP_PTR
and IDL_TYP_OBJREF, respectively) is not allowed. Rather than accessing the heap
variable directly, store the value of the heap variable (an IDL pointer or object
reference) in a regular IDL variable at the IDL user level. Access the data in the regular
variable, then store the results back in the heap variable (via the pointer or object
reference) when done.

Note
You can use IDL’s TEMPORARY function to avoid making copies of the data.
Heap Variables External Development Guide

Chapter 13: IDL Internals: Variables 313
Temporary Variables

As discussed previously, IDL maintains a pool of nameless variables known as
temporary variables. These variables are used by the interpreter to hold temporary
results from evaluating expressions, and are also used within system procedures and
functions that need temporary workspace. In addition, system functions often obtain
a temporary variable to return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

• All temporaries, when initially allocated, are of type IDL_TYP_UNDEF.

• Temporary variables do not have a name associated with them.

• Routines that check out temporaries must either check them back in or return
them as the result of the function. Once you return a temporary variable, you
cannot access it again.

• Temporary variables are reclaimed by the interpreter when it is about to exit
after executing a program, so it is not possible to lose them and leak dynamic
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If your routine exits by issuing an
IDL_MSG_LONGJMP or IDL_MSG_IO_LONGJMP error via
IDL_Message() however, allocated temporaries are expected, and are
reclaimed quietly. Hence, your routines need only return temporaries on
normal return, and not before issuing errors. See “IDL Internals: Error
Handling” on page 339.

The interpreter uses temporary variables to hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack where
they are often passed as arguments to other routines. For example, the IDL statement:

PRINT, MAX(FINDGEN(100))

causes the interpreter to perform the following steps:

1. Push a constant variable with the value 100 onto the stack.

2. Call the system function FINDGEN, passing it one argument.

3. FINDGEN returns a temporary variable which is a 100-element vector with
each element set to the value of its index.

4. The interpreter removes the arguments to FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack.
External Development Guide Temporary Variables

314 Chapter 13: IDL Internals: Variables
5. The MAX system function is called with a single argument—the temporary
result from FINDGEN.

6. MAX finds the largest element in its argument (99), places that value into a
temporary scalar variable, and returns that temporary variable as its result.

7. The interpreter removes the argument to MAX from the stack. This was the
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX is then pushed onto the
stack.

8. The PRINT system procedure is called with a single argument, which is the
temporary scalar variable from MAX. It prints the value of the variable and
returns.

9. The interpreter removes the argument to PRINT from the stack, and returns it
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained via the IDL_Gettmp() function:

IDL_VPTR IDL_Gettmp(void);

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to a temporary
variable. This variable must be returned to the pool of temporary variables (with a
call to IDL_Deltmp()) or be returned as the value of a system function before control
returns to the interpreter, or an error will occur.

A number of variants on IDL_Gettmp() exist, as convenience routines for creating
temporary scalar variables of a given type and value. In all cases, the value is
supplied as the sole argument, and the resulting type is indicated by the name of the
routine:

IDL_VPTR IDL_GettmpInt(IDL_INT value);
IDL_VPTR IDL_GettmpUInt(IDL_UINT value);
IDL_VPTR IDL_GettmpLong(IDL_LONG value);
IDL_VPTR IDL_GettmpULong(IDL_ULONG value);
IDL_VPTR IDL_GettmpFILEINT(IDL_FILEINT value);
IDL_VPTR IDL_GettmpMEMINT(IDL_MEMINT value);

Creating a Temporary Array

Temporary array variables can be obtained via the IDL_MakeTempArray()
function:

char *IDL_MakeTempArray(int type, int n_dim, IDL_MEMINT dim[],
Temporary Variables External Development Guide

Chapter 13: IDL Internals: Variables 315
int init, IDL_VPTR *var)

where:

type

The type code for the resulting array. See “Type Codes” on page 262.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

dim

An array of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensions in the array is given by the n_dim argument.

init

Specifies the sort of initialization that should be applied to the resulting array. The
init argument must be one of the following:

• IDL_ARR_INI_INDEX — Each element of the array is set to the value of its
index. The INDGEN family of built-in system functions is implemented using
this feature.

• IDL_ARR_INI_NOP — No initialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.
Experience has shown that IDL_TYP_STRING data should never be left
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore, IDL_TYP_STRING data is zeroed when
IDL_ARR_INI_NOP is specified.

• IDL_ARR_INI_ZERO — The data area of the array is zeroed.

var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

The data area of an array IDL_VARIABLE is accessible from its IDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the data area, IDL_MakeTempArray() returns the data area pointer as its
value. As with IDL_Gettmp(), the variable allocated via IDL_MakeTempArray()
must be returned to the pool of temporary variables or be returned as the value of a
system function before control returns to the interpreter, or an error will occur.
External Development Guide Temporary Variables

316 Chapter 13: IDL Internals: Variables
Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_MakeTempVector() function:

char *IDL_MakeTempVector(int type, IDL_MEMINT dim, int init,
IDL_VPTR *var)where:

type, init, var

These arguments are the same as for IDL_MakeTempArray().

dim

The number of elements in the resulting vector.

Creating a Temporary Structure

The IDL_MakeTempStruct() allows you to create an IDL structure variable using
memory allocated by IDL, in much the same way that IDL_MakeStruct() and
IDL_ImportArray() allow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained via the
IDL_MakeTempStruct() function:

char *IDL_MakeTempStruct(IDL_StructDefPtr sdef, int n_dim,
IDL_MEMINT dim[], IDL_VPTR *var, int zero)

where:

sdef

A pointer to the structure definition.

n_dim

The number of structure dimensions. The constant IDL_MAX_ARRAY_DIM
defines the upper limit of this value.

dim

A C array of IDL_MAX_ARRAY_DIM elements containing the structure
dimensions. The number of dimensions in the array is given by the n_dim argument.
Temporary Variables External Development Guide

Chapter 13: IDL Internals: Variables 317
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

The data area of an array IDL_VARIABLE is accessible from its IDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the data area, IDL_MakeTempStruct() returns the data area pointer as its
value. As with IDL_Gettmp(), the variable allocated via IDL_MakeTempStruct()
must be returned to the pool of temporary variables (with a call to IDL_Deltmp()) or
be returned as the value of a system function before control returns to the interpreter,
or an error will occur.

zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FALSE
otherwise. Unless the caller intends to immediately copy a valid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_MakeTempStructVector() function:

char *IDL_MakeTempStructVector(IDL_StructDefPtr sdef, IDL_MEMINT
dim,

IDL_VPTR *var, int zero)

where:

sdef, var, zero

These arguments are the same as for IDL_MakeTempStruct().

dim

The number of elements in the resulting vector.

Creating A Temporary Variable Using Another
Variable As A Template

It is common to want to create a temporary variable with a form that mimics that of a
variable you already have access to. Often, such a temporary variable has the same
number of elements and dimensions, but may vary in type. It is possible to do this by
External Development Guide Temporary Variables

318 Chapter 13: IDL Internals: Variables
using the basic temporary variable creation routines discussed earlier in this chapter,
but the resulting code will be complex, and this sort of code occurs frequently. The
best way to create such a variable is using the
IDL_VarMakeTempFromTemplate() function.

IDL_VarMakeTempFromTemplate() creates a temporary variable of the desired
type, using the template_var argument to specify its dimensionality. The address of
this temporary variable is stored at the address specified by the result_addr
argument. The address of the start of this variable’s data area is returned as the value
of the function.

char *IDL_VarMakeTempFromTemplate(IDL_VPTR template_var,int type,
IDL_StructDefPtr sdef,
IDL_VPTR *result_addr,int zero);

where:

template_var

Source variable to take dimensionality from. This can be a scalar or array of any type.

type

The IDL type code for the desired temporary variable.

sdef

NULL, or a pointer to a structure definition. This argument is ignored if type is not
IDL_TYP_STRUCT. If type is IDL_TYP_STRUCT, sdef supplies the structure
definition for the result. It is an error to specify a result type of IDL_TYP_STRUCT
without providing a value for sdef, with one exception: If type is
IDL_TYP_STRUCT and template_var is a variable of IDL_TYP_STRUCT, and
sdef is NULL, then IDL_VarMakeTempFromTemplate() will use structure
definition of template_var.

result_addr

Address of IDL_VPTR to receive a pointer to the newly allocated temporary
variable.

zero

TRUE if the resulting variable should be zeroed, and FALSE to not do this. Variables
of IDL_TYP_STRING, and structure types that contain strings, are always zeroed.
Temporary Variables External Development Guide

Chapter 13: IDL Internals: Variables 319
Freeing A Temporary Variable

Use IDL_Deltmp() to free a temporary variable:

void IDL_Deltmp(IDL_VPTR p)

where p is an IDL_VPTR to the temporary variable to be returned. IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deallocated a temporary
variable, you may not access it again. There is also a macro named IDL_DELTMP
which checks its argument to make sure it’s a temporary, and if so, calls
IDL_Deltmp() to return it.
External Development Guide Temporary Variables

320 Chapter 13: IDL Internals: Variables
Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose data
points at data you supply rather than having IDL allocate the data space. The routine
IDL_ImportArray() returns a temporary variable, while
IDL_ImportNamedArray() returns a named variable in the current execution scope,
creating the new variable if necessary. Your data must already exist in memory. The
data area, which can be quite large, is not copied. These functions simply create
variable and array descriptors that point to the data you supply and return the pointer
to the resulting variable. Their definitions are:

IDL_VPTR IDL_ImportArray(int n_dim, IDL_MEMINT dim[], int type,
UCHAR *data, IDL_ARRAY_FREE_CB free_cb, void *s)

IDL_VPTR IDL_ImportNamedArray(char *name, int n_dim,
IDL_MEMINT dim[], int type, UCHAR *data,
IDL_ARRAY_FREE_CB free_cb, void *s)

typedef void (* IDL_ARRAY_FREE_CB) (UCHAR *);

where:

name

The name of the variable to be created or modified.

n_dim

The number of dimensions in the array.

dim

An array of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. See “Type Codes” on page 262.

data

A pointer to your array data. Your data will not be modified unless the user explicitly
modifies elements of the array using subscripts.
Creating an Array from Existing Data External Development Guide

Chapter 13: IDL Internals: Variables 321
The temporary variable returned by IDL_ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can also be
assigned to a longer-lived variable using IDL_VarCopy().

Note
IDL frees only the memory that it allocates for the descriptors, not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using the free_cb argument, described below.

free_cb

If non-NULL, free_cb is a pointer to a function that will be called when IDL frees the
array. This feature gives the caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such as
freeing dynamic memory or releasing shared or mapped memory. The called function
should have no return value and should accept as its argument a (uchar *), which is a
pointer to the memory to be freed.

s

If the type of the variable is IDL_TYP_STRUCT, s points to the opaque structure
definition, as returned by IDL_MakeStruct().
External Development Guide Creating an Array from Existing Data

322 Chapter 13: IDL Internals: Variables
Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In the
C language, the functions malloc() and free() are used for this purpose, while other
languages have their own facilities. IDL provides its own memory allocation routines
(see “Dynamic Memory” on page 400). Use of such facilities within the IDL
interpreter and the system routines can lead to the loss of usable dynamic memory.
The following code fragment demonstrates how this can happen.

For example, assume that there is a need for 100 IDL_LONG integers:

char *c;

c = (char *) IDL_MemAlloc((unsigned) (sizeof(IDL_LONG) * 100)
(char *) 0, IDL_MSG_RET);

.

.

.
if (some_error_condition) IDL_Message(…, IDL_MSG LONGJMP,…);
.
.
.
IDL_MemFree((void *) c, (char *) 0, IDL_MSG_RET);

In the normal case, the allocated memory is released exactly as it should be.
However, if an error causes the IDL_Message() function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean up.
The dynamic memory allocated will therefore leak, and although it will continue to
occupy space in the IDL processes, will not be used again.

The IDL_GetScratch Function

To solve this problem, use a temporary variable to obtain dynamic memory. Then, if
an error should cause execution to return to the interpreter, the interpreter will
reclaim the temporary variable and no dynamic memory will be lost. This frequently-
needed operation is provided by the IDL_GetScratch() function:

char *IDL_GetScratch(IDL_VPTR *p, IDL_MEMINT n_elts,
IDL_MEMINT elt_size)

where:

p

The address of an IDL_VPTR that should be set to the address of the temporary
variable allocated.
Getting Dynamic Memory External Development Guide

Chapter 13: IDL Internals: Variables 323
n_elts

The number of elements for which memory should be allocated.

elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned using the
IDL_Deltmp() function. Using these functions, the above example becomes:

char *c;
IDL_VPTR v;

c = IDL_GetScratch(&v, 100L, (IDL_LONG) sizeof(IDL_LONG));
.
.
.
if (some error condition) IDL_Message(...,MSG LONGJMP,...);
.
.
.
IDL_Deltmp(v);

Using the IDL_GetScratch() and IDL_Deltmp() functions is similar to using
IDLMemAlloc() directly. In fact, IDL uses IDL_MemAlloc() and IDL_MemFree()
internally to implement array variables. The important difference is that dynamic
memory doesn’t leak when error conditions occur.

To avoid losing dynamic memory, always use the IDL_GetScratch() function in
preference to other ways of allocating dynamic memory, and use IDL_Deltmp() to
return it.
External Development Guide Getting Dynamic Memory

324 Chapter 13: IDL Internals: Variables
Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elements
there are. IDL_VarGetData() can be used to obtain this information:

void IDL_VarGetData(IDL_VPTR v, IDL_MEMINT *n, char **pd,
int ensure_simple)

where:

v

The variable for which data is desired.

n

The address of a variable that will hold the number of elements.

pd

The address of variable that will hold a pointer to data, cast to be a pointer to a pointer
to a character (for example (char **) &myptr).

ensure_simple

If TRUE, this routine calls the IDL_ENSURE_SIMPLE macro on the argument v to
screen out variables of the types it prevents. Otherwise, IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

On exit, IDL_VarGetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.
Accessing Variable Data External Development Guide

Chapter 13: IDL Internals: Variables 325
Copying Variables

To copy the contents of one variable to another, use the IDL_VarCopy() function:

void IDL_VarCopy(IDL_VPTR src, IDL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_VarCopy() uses the following rules when copying variables:

• If the destination variable already has a dynamic part, this dynamic part is
released.

• The destination becomes a copy of the source.

• If the source is a temporary variable, IDL_VarCopy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic part of
the source is given to the destination, and the source variable itself is returned
to the pool of free temporary variables. This is the equivalent of freeing the
temporary variable. Therefore, the variable must not be used any further and
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
special case occurs frequently.
External Development Guide Copying Variables

326 Chapter 13: IDL Internals: Variables
Storing Scalar Values

The IDL_StoreScalar() function sets an IDL_VARIABLE to a scalar value:

void IDL_StoreScalar(IDL_VPTR dest, int type,
IDL_ALLTYPES *value)

where:

dest

An IDL_VPTR to the IDL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. See “Type Codes” on page 262.

value

The address of the IDL_ALLTYPES union that contains the value to store.

If dest is a location that cannot be stored into (for example, a temporary variable,
constant, and so on), an error is issued and control returns to the interpreter.
Otherwise, any dynamic part of dest is freed and value is stored into it.

The IDL_StoreScalarZero() function is a specialized variation of
IDL_StoreScalar(). It stores a zero scalar value of any specified type into the
specified variable:

void IDL_StoreScalarZero(IDL_VPTR dest, int type)

where:

dest

An IDL_VPTR to the IDL_VARIABLE in which the scalar zero should be stored.

type

The type code for the scalar zero value. See “Type Codes” on page 262.

Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function, IDL_StoreScalar() and
IDL_StoreScalarZero() have two very useful side effects:
Storing Scalar Values External Development Guide

Chapter 13: IDL Internals: Variables 327
1. Storing a scalar value in a variable causes IDL to free any dynamic memory
currently used by that variable.

2. These routines do the required error checking to make sure the variable allows
a new value to be stored into it before performing the actual storage operation.

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returns to its caller, and the initial value of that
argument is of no interest to the routine. Storing a scalar value into such an argument
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memory. In one easy operation, the required error checking is
done, and you’ve improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

IDL_StoreScalarZero(&v, IDL_TYP_LONG);

Error handling is discussed further in “IDL Internals: Error Handling” on page 339.
External Development Guide Storing Scalar Values

328 Chapter 13: IDL Internals: Variables
Obtaining the Name of a Variable

The IDL_VarName() function returns the name of a variable, constant, or expression
given its address. If the item is a named variable, it must be in the currently active
program unit:

char *IDL_VarName(IDL_VPTR v)
Obtaining the Name of a Variable External Development Guide

Chapter 13: IDL Internals: Variables 329
Looking Up Main Program Variables

The IDL_GetVarAddr() function returns the address of a main program variable,
given its name:

IDL_VPTR IDL_GetVarAddr(char *name)

name

Points to the null terminated name of the variable, which must be in upper case.

The return value is NULL if the variable does not exist, otherwise the pointer to the
variable is returned.

Alternatively, IDL_GetVarAddr1() will enter a new variable into the symbol table
of the main program if called with the parameter ienter set to TRUE, and the
specified variable name does not already exist. Otherwise, its operation is the same as
IDL_GetVarAddr(). Note that new variables cannot be created if a user procedure
or function is active. IDL_GetVarAddr1() is called as shown following:

IDL_VPTR IDL_GetVarAddr1(char *name, int enter)

name

Points to the null-terminated name of the variable, which must be in upper case.

ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If ienter is TRUE and the specified variable name does not already exist, it will be
added to the symbol table of the main program. If ienter is FALSE,
IDL_GetVarAddr1() is equivalent to IDL_GetVarAddr().
External Development Guide Looking Up Main Program Variables

330 Chapter 13: IDL Internals: Variables
Looking Up Variables in Current Scope

The IDL_FindNamedVariable() function returns the address of a variable in the
current execution scope given its name:

IDL_VPTR IDL_FindNamedVariable(char *name, int ienter)

name

Name of the variable to find.

ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If the variable is found (or created if ienter is TRUE), its IDL_VPTR is returned.
Otherwise, NULL is returned.

Note
Even if ienter is TRUE, this routine can return NULL if creating the variable is not
possible due to memory constraints.
Looking Up Variables in Current Scope External Development Guide

Chapter 14

IDL Internals:
String Processing
This chapter discusses the following topics:
String Processing and IDL 332
Accessing IDL_STRING Values 333
Copying Strings . 334

Deleting Strings . 335
Setting an IDL_STRING Value 336
Obtaining a String of a Given Length . . . 337
External Development Guide 331

332 Chapter 14: IDL Internals: String Processing
String Processing and IDL

A number of functions exist to simplify the processing of IDL_STRING descriptors.
By using these functions instead of doing your own string management, you can
eliminate a common source of errors.
String Processing and IDL External Development Guide

Chapter 14: IDL Internals: String Processing 333
Accessing IDL_STRING Values

It is important to realize that the s field of an IDL_STRING struct does not contain a
valid string pointer in the case of a null string (i.e., when slen is zero). A common
error that can cause IDL to crash is illustrated by the following code fragment:

void print_str(IDL_STRING *s)
{

printf("%s", s->s);
}

The problem with this code is that it fails to consider the case where the argument s
describes a null string. The proper way to write this code is as follows:

void print str(IDL_STRING *s)
{

printf("%s", IDL_STRING_STR(s));
}

The macro IDL_STRING_STR takes as its argument a pointer to an IDL_STRING
struct. If the string is null, it returns a pointer to a zero length null-terminated string,
otherwise it returns the string pointer from the struct. Consistent use of this macro
will avoid the most common sort of error involving strings.

It is common for IDL system routines to accept arguments that provide names. Such
arguments must be scalar strings, or string arrays that contain a single element. To
properly process such an argument, it is necessary to screen out non-string types or
multi-element arrays, locate the string descriptor, and use the IDL_STRING_STR()
macro to extract a usable NULL terminated C string from it. The
IDL_VarGetString() is used for this purpose. It encapsulates all of the error
checking, and always returns a pointer to a NULL terminated C string, throwing the
proper IDL_MSG_LONGJMP error via the IDL_Message() function when this is
not possible:

char *IDL_VarGetString(IDL_VPTR v)

where

v

Variable from which string value is desired.
External Development Guide Accessing IDL_STRING Values

334 Chapter 14: IDL Internals: String Processing
Copying Strings

It is often necessary to copy one string to another. Assume, for example, that there are
two string descriptors s_src and s_dst, and that s_dst contains garbage. It would
almost suffice to simply copy the contents of s_src into s_dst. The reason this is not
quite correct is that both descriptors would then contain a pointer to the same string.
This aliasing can cause some strange effects, or even cause IDL to crash if one of the
two descriptors is freed and the string from the other is accessed.

IDL_StrDup() takes care of this problem by allocating memory for a second copy of
the string, and replacing the string pointer in the descriptor with a pointer to the fresh
copy. Naturally, if the string descriptor is for a null string, nothing is done.

void IDL_StrDup(IDL_STRING *str, IDL_MEMINT n)

where:

str

Pointer to one or more IDL_STRING descriptors which need their strings
duplicated.

n

The number of descriptors.

The proper way to copy a string is:

s_dst = s_src; /* Copy the descriptor */
IDL_StrDup(&s_dst, 1L); /* Duplicate the string */
Copying Strings External Development Guide

Chapter 14: IDL Internals: String Processing 335
Deleting Strings

Before an IDL_STRING can be discarded or re-used, it is important to release any
dynamic memory it might be using. The IDL_StrDelete() function should be used to
delete strings:

void IDL_StrDelete(IDL_STRING *str, IDL_MEMINT n)

where:

str

Pointer to one or more IDL_STRING descriptors which need their contents freed.

n

The number of descriptors.

IDL_StrDelete() deletes all dynamic memory used by the IDL_STRINGs. The
descriptors contain garbage once this has been done, and their contents should not be
used.

The IDL_Deltmp() function automatically calls IDL_StrDelete() when returning
temporary variables of type IDL_TYP_STRING, so it is not necessary or desirable
to call IDL_StrDelete() explicitly in this case.
External Development Guide Deleting Strings

336 Chapter 14: IDL Internals: String Processing
Setting an IDL_STRING Value

The IDL_StrStore() function should be used to store a null-terminated C string into
an IDL_STRING descriptor:

void IDL_StrStore(IDL_STRING *s, char *fs)

where:

s

Pointer to an IDL_STRING descriptor. This descriptor is assumed to contain
garbage, so call IDL_StrDelete() on it first if this is not the case.

fs

Pointer to the null-terminated string to be copied into s.

IDL_StrStore() is useful for placing a string value into an IDL_STRING. This
IDL_STRING does not need to be a component of a VARIABLE, which makes this
function very flexible.

One often needs a temporary, scalar VARIABLE of type IDL_TYP_STRING with
a given value. The function IDL_StrToSTRING() fills this need:

IDL_VPTR IDL_StrToSTRING(char *s)

where:

s

Pointer to the null-terminated string to be copied into the resulting temporary
variable.
Setting an IDL_STRING Value External Development Guide

Chapter 14: IDL Internals: String Processing 337
Obtaining a String of a Given Length

Sometimes you need to make sure that the string in an IDL_STRING descriptor has
a specific length. The IDL_StrEnsureLength() function can be used in this case:

void IDL_StrEnsureLength(IDL_STRING *s, int n)

where:

s

A pointer to the IDL_STRING that will have its length checked.

n

The number of characters the string must be able to contain, not including the
terminating null character.

If the IDL_STRING passed already has enough room for the specified number of
characters, it is not re-allocated. Otherwise, the existing string is freed and a new
string of sufficient length is allocated. In either case, the slen field of the
IDL_STRING will be set to the requested length.

If a new dynamic string is allocated, it will contain garbage values because
IDL_StrEnsureLength() only allocates memory of the specified size, it does not
copy a value into it. Therefore, the calling routine must copy a null-terminated string
into the new dynamic string.
External Development Guide Obtaining a String of a Given Length

338 Chapter 14: IDL Internals: String Processing
Obtaining a String of a Given Length External Development Guide

Chapter 15

IDL Internals:
Error Handling
This chapter discusses the following topics:
Message Blocks . 340
Issuing Error Messages 342
Looking Up A Message Code by Name . . 348

Looking Up A Message Code by Name . . 348
Checking Arguments 349
External Development Guide 339

340 Chapter 15: IDL Internals: Error Handling
Message Blocks

IDL maintains messages in opaque data structures known as Message Blocks. A
message block contains all the messages for a logically related area.

When IDL starts, there is only one defined block named IDL_MBLK_CORE,
containing all messages defined by the core IDL product. Typically, dynamically
loadable modules (DLMs) each define a message block for their error messages when
they are loaded (See “Dynamically Loadable Modules” on page 456 for a description
of DLMs).

There are often two versions of IDL message module functions. Those with names
that end in FromBlock require an explicit message block. The versions that do not
end in FromBlock use the IDL_MBLK_CORE message block.

To define a message block, you must supply an array of IDL_MSG_DEF structures:

typedef struct {
 char *name;
 char *format;
} IDL_MSG_DEF;

where:

name

A string giving the name of the message. We suggest that you adopt a consistent
unique prefix for all your error codes. All message codes defined by RSI start with
the prefix IDL_M_. You should not use this prefix when naming your blocks in order
to avoid unnecessary name collisions.

format

A format string, in printf(3) format. There is one extension to the printf formatting
codes: If the first two letters of the format are “%N”, then IDL will substitute the
name of the currently executing IDL procedure or function (if any) followed by a
colon and a space when this message is issued. For example:

IDL> print, undefined_var
% PRINT: Variable is undefined: UNDEFINED_VAR.

The IDL_MessageDefineBlock() function is used to define a new message block:

IDL_MSG_BLOCK IDL_MessageDefineBlock
(char *block_name, int n, IDL_MSG_DEF *defs)

The arguments to IDL_MessageDefineBlock() are as follows:
Message Blocks External Development Guide

Chapter 15: IDL Internals: Error Handling 341
block_name

Name of the message block. This can be any string, but it will be case folded to upper
case. We suggest a single word be used. It is important to pick names that are
unlikely to be used by any other application. All blocks defined by RSI start with the
prefix IDL_MBLK_. You should not use this prefix when naming your blocks in
order to avoid unnecessary confusion.

n

of message definitions pointed at by defs.

defs

An array of message definition structs, each one supplying the name and format
string for a message in printf(3) format. The memory used for this array, including
the strings it points at, must be in permanently allocated read-only storage. IDL does
not copy this memory, but simply uses it in place.

If possible, the new message block is defined and an opaque pointer to it is returned.
This pointer must be supplied to subsequent calls to the “FromBlock” message
module functions to identify the message block a given error is being issued from. If
it is not possible to define the message block, this function returns NULL.

The message functions require a message block pointer and the negative index of the
specific message to be issued. Hence, message codes start and zero and grow
negatively. For mnemonic convenience, it is standard practice to define preprocessor
macros to represent the error codes.

Example: Defining A Message Block

The following code defines a message block named TESTMODULE that contains
two messages:

static IDL_MSG_DEF msg_arr[] =
{
#define M_TM_INPRO 0
 { "M_TM_INPRO", "%NThis is from a loadable module procedure."
},
#define M_TM_INFUN -1
 { "M_TM_INFUN", "%NThis is from a loadable module function."
},
};

msg_block = IDL_MessageDefineBlock("Testmodule",
sizeof(msg_arr)/sizeof(msg_arr[0]),
msg_arr);
External Development Guide Message Blocks

342 Chapter 15: IDL Internals: Error Handling
Issuing Error Messages

Errors are reported using one of the following functions:

• IDL_Message()

• IDL_MessageFromBlock()

• IDL_MessageSyscode()

• IDL_MessageSyscodeFromBlock()

These functions are patterned after the standard C library printf() function. They are
really the same function, differing in which message block the error is issued from
(the FromBlock versions allow you to specify the block) and their reporting of
system errors that might accompany IDL errors (the Syscode versions allow you to
specify a system error). IDL documentation often refers to IDL_Message(). This
should be understood to be a generic reference to any of these four functions.

void IDL_Message(int code, int action, ...)
void IDL_MessageFromBlock(IDL_MSG_BLOCK block,int code,

int action, ...)
void IDL_MessageSyscode(int code, IDL_MSG_SYSCODE_T syscode_type,

int syscode, int action, ...)
void IDL_MessageSyscodeFromBlock(IDL_MSG_BLOCK block, int code,

IDL_MSG_SYSCODE_T syscode_type,
int syscode, int action, ...)

The arguments to are as follows:

block

Pointer to the IDL message block from which the error should be issued. If block is a
NULL pointer, the default IDL core block (IDL_MBLK_CORE) is used.

code

This is the error code associated with the error message to be issued. There are two
error codes in the default IDL core block (IDL_MBLK_CORE) that are available to
programmers adding system routines to IDL. The use of these codes is described
below. See “IDL_M_GENERIC” on page 346 and “IDL_M_NAMED_GENERIC”
on page 346.
Issuing Error Messages External Development Guide

Chapter 15: IDL Internals: Error Handling 343
Note
For any significant development involving an IDL system routine, RSI
recommends your code be packaged as a Dynamically Loadable Module (DLM),
and that your DLM define a message block to contain its errors instead of using the
GENERIC core block messages.

syscode_type

IDL_Message() always issues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file,” while the underlying system reason
for the error is “no such directory.” The IDL_MessageSyscode() functions
allow you to include the relevant system error code, and have it incorporated
into the IDL message on a second line of output. There are several different
types of system error code that can be specified. The syscode_type argument
is used to tell IDL_MessageSyscode() which type of system error is present:

IDL_MSG_SYSCODE_NONE — Indicates that there is no system error. In this case,
the syscode argument is ignored, and IDL_MessageSyscode() is functionally
equivalent to IDL_Message().

IDL_MSG_SYSCODE_ERRNO — The UNIX operating system uses a system
provided global variable named errno for communicating system level errors.
Whenever a call to a system function fails, it returns a value of -1, and puts an
error code into errno that specifies the reason for the failure. Other functions,
such as those provided by the standard C library, do not set errno. The system
documentation (man pages) describes which functions do and do not set errno,
and the rules for interpreting its value.

The C programming language and UNIX operating system share a common
heritage, as C was originally created by its authors as an implementation
language for UNIX. Since then, C has found broad acceptance on non-UNIX
platforms, bringing along with standard POSIX libraries that provide
functionality commonly expected by C programs. Hence, although errno is a
UNIX concept, non-UNIX C implementations generally provide it as a
convenience. Hence, IDL supports IDL_MSG_SYSCODE_ERRNO on all
platforms.

You should specify IDL_MSG_SYSCODE_ERRNO only if you are calling
IDL_MessageSyscode() as the result of a failed function that is documented to
set errno on your target platform. Otherwise, errno might contain an
External Development Guide Issuing Error Messages

344 Chapter 15: IDL Internals: Error Handling
unrelated garbage value resulting in an incorrect error message. When
specifying IDL_MSG_SYSCODE_ERRNO, you should supply the current
value of errno as the syscode argument to IDL_MessageSyscode().

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically does not set it. On this operating
system, specifying IDL_MSG_SYSCODE_ERRNO may have no effect.

IDL_MSG_SYSCODE_WIN (Microsoft Windows Only) — Microsoft Windows
system error codes. The value suppled to the syscode argument to
IDL_MessageSyscode() should be a system error code, as returned by the
Windows GetLastError() system function.

IDL_MSG_SYSCODE_WINSOCK (Microsoft Windows Only) — Microsoft
Windows winsock error codes. The value suppled to the syscode argument to
IDL_MessageSyscode() should be a system error code, as returned by the
Windows WSAGetLastError() system function

syscode

Value of the system error code that should be reported. This argument is ignored if its
value is zero (0), or if syscode_type is IDL_MSG_SYSCODE_NONE. Otherwise,
it is interpreted as an error code of the type given by syscode_type, and the text of the
specified system error will be output along with the IDL message on a separate
second line.

action

IDL_Message() can take a number of different actions after issuing the error
message. The action to take is specified by the action argument:

IDL_MSG_RET

Use this argument to make IDL_Message() return to the caller after issuing
the error message. In this case, the calling routine can either continue or return
to the interpreter as it sees fit.

IDL_MSG_INFO

Use this argument to issue a message that is not an error, but is simply
informational in nature. The message is output and IDL_Message() returns to
the caller. Normally, IDL_Message() sets the values of IDL’s
!ERROR_STATE system variables, but not in this case.
Issuing Error Messages External Development Guide

Chapter 15: IDL Internals: Error Handling 345
IDL_MSG_EXIT

Use this argument to cause the IDL process to exit after the message is issued.
This code should never be used in a system function or procedure—it is
intended for use in other sections of the system.

IDL_MSG_LONGJMP

Use this argument to cause IDL_Message() to exit directly back to the
interpreter after issuing the message. In this case, IDL_Message() does not
return to its caller. It is an error to use this action code in code not called by the
IDL interpreter since the resulting call to longjmp() will be invalid.

IDL_MSG_IO_LONGJMP

This action code is exactly like IDL_MSG_LONGJMP, except that it is
issued in response to an input/output error. This code is only used by the I/O
module. User written system routines should use the existing I/O routines, so
they do not need to use this action.

In addition, the following modifier codes can be ORed into the action code.
They modify the normal behavior of IDL_Message():

IDL_MSG_ATTR_NOPRINT

Suppress the printing of the error message, but do everything else in the
normal way.

IDL_MSG_ATTR_MORE

Use paging in the style of the UNIX more command to display the output.
This option exists primarily for use by the IDL compiler, and is unlikely to be
of interest to authors of system routines.

IDL_MSG_ATTR_NOPREFIX

Normally, IDL_Message() prefixes the output message with the string
contained in IDL’s !MSG_PREFIX system variable.
IDL_MSG_ATTR_NOPREFIX suppresses this prefix string.

IDL_MSG_ATTR_QUIET

If the IDL_MSG_INFO action has been specified and this bit mask has been
included, and the IDL user has IDL’s !QUIET system variable,
IDL_Message() returns without issuing a message.

IDL_MSG_ATTR_NOTRACE

Set this code to inhibit the traceback portion of the error message.
External Development Guide Issuing Error Messages

346 Chapter 15: IDL Internals: Error Handling
IDL_MSG_ATTR_BELL

Set this code to ring the bell when the message is output.

...

The message format string (specified by the code argument) specifies a format
string to be used for the error message. This format string is exactly like those
used by the standard C library printf() function. Any arguments following
action are taken to be arguments for this format string.

Error Codes

As mentioned above, RSI has reserved two error codes for use by writers of system
routines. They are:

IDL_M_GENERIC

This message code simply specifies a format string of “%s”. The first argument after
action is taken to be a null-terminated string that is substituted into the format string.
For example, the C statement:

IDL_Message(IDL_M_GENERIC, IDL_MSG_LONGJMP, "Error! Help!")

causes IDL to abort the current routine and issue the message:

% Error! Help!

IDL_M_NAMED_GENERIC

This message code is exactly like the one above, except that it prints the name of the
system routine in front of the error string. For example, assuming that the name of the
routine is MY_PROC, the C statement:

IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
"Error! Help!")

causes IDL to interrupt the current routine and issue the message:

% MY PROC: Error! Help!

Choosing an Error Code

Note
For any significant development involving an IDL system routine, RSI
recommends your code be packaged as a Dynamically Loadable Module (DLM),
Issuing Error Messages External Development Guide

Chapter 15: IDL Internals: Error Handling 347
and that your DLM define a message block to contain its errors instead of using the
GENERIC messages described here.

The choice of which code to use depends on the context in which the message is
issued, but IDL_M_NAMED_GENERIC is usually preferred.

If you wish to include arguments into your message string, you should use the
sprintf() function from the C standard library to format a string into a temporary
buffer, and then supply the buffer as the argument to IDL_Message(). For example,
executing the code:

char buf[128];
int unit = 23;

sprintf(buf, "Help! Error number %d.", unit);
IDL_Message(IDL_M_GENERIC, IDL_MSG_LONGJMP, buf);

interrupts the current routine and issues the message:

% Help! Error number 23.
External Development Guide Issuing Error Messages

348 Chapter 15: IDL Internals: Error Handling
Looking Up A Message Code by Name

Given a message block pointer and the name of a message from that block, the
IDL_MessageNameToCode() function returns the message code that corresponds to
it. This is especially useful for dynamically loadable modules that need to throw
errors from the IDL core block. The actual error codes are subject to change between
IDL releases, so looking them up this way at run-time allows a given DLM to work
with different IDL versions.

int IDL_MessageNameToCode(IDL_MSG_BLOCK block, char *name)

where:

block

Message block name should be translated against, or NULL to use the default core
IDL block.

name

The message name for which the code is desired. Name is case sensitive, and should
usually be specified as uppercase.

IDL_MessageNameToCode () returns the message code, or 0 if it is not found.
Looking Up A Message Code by Name External Development Guide

Chapter 15: IDL Internals: Error Handling 349
Checking Arguments

IDL allows a user to provide any number of arguments, of any type, to system
functions and procedures. IDL checks for a valid number of arguments, but the
routine itself must check the validity of types. This task consists of examining the
argv argument to the routine checking the type and flags field of each argument for
suitability. The IDL_StoreScalar() function (see “Storing Scalar Values” on
page 326) can be very useful in checking write-only arguments.

A number of macros exist in order to simplify testing of variable attributes. All of
these macros accept a single argument—the VPTR to the argument in question. The
macros check for a desired condition and use the IDL_Message() function with the
IDL_MSG_LONGJMP action to return to the interpreter if an argument type
doesn’t agree. Some of these macros overlap, and some are contradictory. You
should select the smallest set that covers your requirements for each argument. For an
example that uses one of these macros, see “Example: A Complete Numerical
Routine Example (FZ_ROOTS2)” on page 424.

IDL_EXCLUDE_UNDEF

The argument must not be of type IDL_TYP_UNDEF. This condition is usually
imposed if the argument is intended to provide some input information to the routine.

IDL_EXCLUDE_CONST

The argument must not be a constant. This condition should be specified if your
routine intends to change the value of the argument.

IDL_EXCLUDE_EXPR

The argument must not be a constant or a temporary variable (i.e., the argument must
be a named variable). Specify this condition if you intend to return a value in the
argument. Returning a value in a temporary variable is pointless because the
interpreter will remove it from the stack as soon as the routine completes, causing it
to be freed for re-use.

The IDL_VarCopy() and IDL_StoreScalar() functions automatically check their
destination and issue an error if it is an expression. Therefore, if you are using one of
these functions to write the new value into the argument variable, you do not need to
perform this check first.
External Development Guide Checking Arguments

350 Chapter 15: IDL Internals: Error Handling
IDL_EXCLUDE_FILE

The argument cannot be a file variable (as returned by the IDL ASSOC) function.
Most system routines exclude file variables—they are handled by a small set of
existing routines. This check is also handled by the IDL_ENSURE_SIMPLE
macro, which also excludes structure variables.

IDL_EXCLUDE_STRUCT

The argument cannot be a structure.

IDL_EXCLUDE_COMPLEX

The argument cannot be IDL_TYP_COMPLEX.

IDL_EXCLUDE_STRING

The argument cannot be IDL_TYP_STRING.

IDL_EXCLUDE_SCALAR

The argument cannot be a scalar.

IDL_ENSURE_ARRAY

The argument must be an array.

IDL_ENSURE_OBJREF

The argument must be an object reference heap variable.

IDL_ENSURE_PTR

The argument must be a pointer heap variable.

IDL_ENSURE_SCALAR

The argument must be a scalar.

IDL_ENSURE_STRING

The argument must be IDL_TYP_STRING.

IDL_ENSURE_SIMPLE

The argument cannot be a file variable, a structure variable, a pointer heap variable,
or an object reference heap variable.
Checking Arguments External Development Guide

Chapter 15: IDL Internals: Error Handling 351
IDL_ENSURE_STRUCTURE

The argument must be IDL_TYP_STRUCT.
External Development Guide Checking Arguments

352 Chapter 15: IDL Internals: Error Handling
Checking Arguments External Development Guide

Chapter 16

IDL Internals:
Type Conversion
This chapter discusses the following topics:
Converting Arguments to C Scalars 354
General Type Conversion 355

Converting to Specific Types 356
External Development Guide 353

354 Chapter 16: IDL Internals: Type Conversion
Converting Arguments to C Scalars

The routines described in this section convert the value of their IDL_VARIABLE
argument to the C scalar type indicated by their name. IDL_MEMINTScalar() and
IDL_FILEINTScalar() exist for processing memory and file sizes without the need
to know their actual types, as discussed in “IDL_MEMINT and IDL_FILEINT
Types” on page 267.The converted value is returned as the function value. The
functions are defined as:

IDL_LONG IDL_LongScalar(IDL_VPTR p)
IDL_ULONG IDL_ULongScalar(IDL_VPTR v)
IDL_LONG64 IDL_Long64Scalar(IDL_VPTR v)
IDL_ULONG64 IDL_ULong64Scalar(IDL_VPTR v)
double IDL_DoubleScalar(IDL_VPTR p)
IDL_MEMINT IDL_MEMINTScalar(IDL_VPTR p)
IDL_FILEINT IDL_FILEINTScalar(IDL_VPTR p)

If these functions are unable to perform the conversion (e.g., the argument is a file
variable, an array, etc.), they issue a descriptive error and jump back to the
interpreter. By using these functions, you avoid having to do any of the type checking
described in “Checking Arguments” on page 349.

For example, the following IDL system function (named PRINT_LONG) prints the
value of its first argument, converted to an IDL_LONG 32-bit integer:

IDL_VPTR print_long(int argc, IDL_VPTR argv[], char *argk)
{

printf("%d\n", IDL_LongScalar(argv[0]));
}

Executing it as:

PRINT_LONG, 23D

gives the output:

23

as expected, while the statement:

PRINT_LONG, FINDGEN(10)

causes the error:

% PRINT_LONG: Expression must be a scalar in this context:
<FLOAT Array(10)>

% Execution halted at $MAIN$.

because it is not possible to convert an array (the result of FINDGEN) to a scalar.
Converting Arguments to C Scalars External Development Guide

Chapter 16: IDL Internals: Type Conversion 355
General Type Conversion

The IDL_BasicTypeConversion() function provides general purpose type
conversion:

IDL_VPTR IDL_BasicTypeConversion(int argc, IDL_VPTR argv[]
int type)

where:

argc

The number of IDL_VPTRs contained in argv.

argv

An array of pointers to VARIABLE arguments.

type

The desired type code of the result. See “Type Codes” on page 262.

If argc is 1, this function returns a pointer to a temporary VARIABLE containing the
value of argv[0] converted to the type specified by the type argument. If the variable
is already of the correct type, the variable itself is returned.

If argv is greater than 1, argv[1] is taken to be an offset into the variable specified by
argv[0], and following arguments are taken as the dimensions to be used for the
result. In this case, enough bytes are copied (starting from the offset) to satisfy the
requirements of the dimensions given. This second form does not work for variables
of type string, so an error is issued in that case. RSI recommends ensuring that
variables of appropriate type are used with this function.

The IDL BYTE and STRING system routines (implemented by the IDL_CvtByte()
and IDL_CvtString() functions, described below) treat conversions between
variables of type byte and string in a special way. IDL_BasicTypeConversion()
does not handle this special case. Instead, it simply performs a straightforward type
conversion between those types.
External Development Guide General Type Conversion

356 Chapter 16: IDL Internals: Type Conversion
Converting to Specific Types

A series of functions exist to convert VARIABLEs to specific types:

IDL_VPTR IDL_CvtByte(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtBytscl(int argc, IDL_VPTR argv[], char *argk)
IDL_VPTR IDL_CvtFix(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtUInt(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtLng(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtULng(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtLng64(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtULng64(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtFlt(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtDbl(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtComplex(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtDComplex(int argc, IDL_VPTR argv[])
IDL_VPTR IDL_CvtString(int argc, IDL_VPTR argv[], char *argk)

When calling these functions, you should set the argk argument to NULL.

These functions are the direct implementations of the IDL commands BYTE,
BYTSCL, FIX, UINT, LONG, ULONG, LONG64, ULONG64, FLOAT, DOUBLE,
COMPLEX, DCOMPLEX, and STRING. See the description of these functions in
the IDL Reference Guide for details on their arguments and calling sequences.

The behavior of these functions is the same as IDL_BasicTypeConversion() except
when converting between bytes and strings. Calling IDL_CvtByte() with a single
argument of string type causes each string to be converted to a byte vector of the
same length as the string. Each array element is the character code of the
corresponding character in the string. Calling IDL_CvtString() with a single
argument of IDL_TYP_BYTE has the opposite effect.
Converting to Specific Types External Development Guide

Chapter 17

IDL Internals:
UNIX Signals
This chapter discusses the following topics:
IDL and Signals . 358
Signal Handlers . 361
Establishing a Signal Handler 362

Removing a Signal Handler 363
UNIX Signal Masks 364
External Development Guide 357

358 Chapter 17: IDL Internals: UNIX Signals
IDL and Signals

Signals pose one of the more difficult challenges faced by the UNIX programmer.
Although seemingly simple, they are a tough portability problem because there are
several variants, and their semantics are subtle, inconvenient, and easily confused.
These issues are only magnified when signals are used in a program like IDL that
employs multiple threads. IDL has always done whatever is necessary with signals in
order to get its job done, but its signal assumptions can also affect user written code
linked to it.

Note
This discussion refers primarily to UNIX IDL. Microsoft Windows uses different
mechanisms to solve the problems solved by signals under UNIX.

The following is a brief list of problems and contradictions inherent in UNIX signals.
For a more complete description, see Chapter 10 of External Programming in the
UNIX Environment by W. Richard Stevens.

• POSIX signals (sigaction) promise to unify and simplify signals, but not all
platforms support them fully.

• You can only have one signal handler function registered for each signal. This
means that if one part of a program uses a signal, the rest of the program must
leave that signal alone.

• In order to meet the needs of programs originally developed under different
UNIX systems (AT&T System V, BSD, Posix), most UNIX implementations
provide more than one package of signal functions. Typically, a given program
is restricted to one of these libraries. If a programmer links code into IDL that
chooses a library or signal options different from that used by IDL itself,
unexpected results may occur.

• The number and exact semantics of some signals differ in different versions.

• Details of signal blocking differ.

• Some System V implementations of signals are unreliable, meaning that
signals can occur in a process and be missed.

• Some older System V systems reset the handling action to SIG_DFL before
calling the handler. This opens a window in time where two signals in a row
can cause the process to be killed. Also, the signal handler must re-establish
itself every time it is called.
IDL and Signals External Development Guide

Chapter 17: IDL Internals: UNIX Signals 359
• On most platforms, if a signal is generated more than once while it is blocked,
the second and subsequent occurrences are lost. In other words, most UNIX
implementations do not queue signals.

These are among the reasons that most libraries avoid signals, and leave their use to
the end programmer. IDL, however, must use signals to function properly. In order to
allow users to link their code into IDL while using signals, IDL provides a signal API
built on top of the signal mechanism supported by the target platform. The IDL signal
API has the following attributes:

• It disallows use of SIGTRAP and SIGFPE. These signals are reserved to
IDL.

• It disallows use of SIGALRM. Most uses for SIGALRM are provided by the
IDL timer API.

• It works with all other signals, including those IDL doesn’t currently use, so
the interface won’t change over time.

• It allows multiple signal handlers for each signal, so IDL and other code can
use the same signal simultaneously.

• It unifies the signal interface by supplying a stable consistent interface with
known behavior to the underlying system signal mechanism.

• It keeps IDL in charge of which signal package is used and how.

This is not a perfect solution, it is a compromise between the needs of IDL and
programmers wishing to link code with it. Usually, the IDL signal abstraction is
sufficient, but it does have the following limitations:

• The calling program must not attempt to catch SIGTRAP or SIGFPE, either
directly or through library routines that use these signals to achieve their ends.
Furthermore, the IDL signal abstraction does not allow the caller to catch these
signals, so your program must leave exception handling to IDL.

• The caller loses control over signal package choice and some minor signal
abilities.

• Having multiple signal handler routines for a given signal opens the possibility
that one handler might do something that causes problems for the others (like
change the signal mask, or longjmp()). To minimize such problems, user code
linked into IDL must not call the actual system signal routines, and must not
longjmp() out of signal handlers—a tactic that is usually allowed, but which
would seriously damage IDL’s signal state.

• Since there may be more than one signal handler registered for a given signal,
the signal dispositions of SIG_IGN and SIG_DFL are not directly available to
External Development Guide IDL and Signals

360 Chapter 17: IDL Internals: UNIX Signals
the caller as they would be if you were allowed to use the system signal
facilities directly.

If you find that these restrictions are too limiting for your application, chances are
your code is not compatible with IDL and should be executed in a separate process.
We then encourage you to consider running IDL in a separate process and to use an
interprocess communication mechanism such as RPC.
IDL and Signals External Development Guide

Chapter 17: IDL Internals: UNIX Signals 361
Signal Handlers

IDL signal handler functions are defined as:

typedef void (* IDL_SignalHandler_t)(int signo);

When a signal is delivered to the process, all registered signal handlers are called.
signo is the integer number of the signal delivered, as defined by the C language
header file signal.h (found in /usr/include/signal.h on most UNIX
systems). signo can be used by a signal handler registered for more than one signal
to tell which signal called it.
External Development Guide Signal Handlers

362 Chapter 17: IDL Internals: UNIX Signals
Establishing a Signal Handler

To register a signal handler, use the IDL_SignalRegister() function:

int IDL_SignalRegister(int signo, IDL_SignalHandler_t func,
int msg_action)

where:

signo

The numeric value of the signal to register for, as defined in signal.h.

func

The signal handler to be called when the signal specified by signo is raised.

msg_action

One of the IDL_MSG_* action codes for IDL_Message(). If there is an error in
registering the signal handler, this action code is passed to IDL_Message() to direct
its recovery action. Note that it is incorrect to use any of the message codes that cause
IDL_Message() to longjmp() back to the IDL interpreter if your code is running in a
context where the IDL interpreter is not active—specifically as part of using Callable
IDL.

If func is successfully registered for signo, this routine returns TRUE. Otherwise,
FALSE is returned and IDL_Message() is called with msg_action to control its
behavior. Note that there are values of msg_action that result in this routine not
returning on error. Multiple registration of the same function is allowed, but has no
additional effect—the handler will only be called once.
Establishing a Signal Handler External Development Guide

Chapter 17: IDL Internals: UNIX Signals 363
Removing a Signal Handler

To remove a signal handler, use the IDL_SignalUnregister() function:

export int IDL_SignalUnregister(int signo,
IDL_SignalHandler_t func, int msg_action)

where:

signo

The signal to unregister.

func

The handler to be unregistered.

msg_action

One of the IDL_MSG_* action codes for IDL_Message(). If there is an error in
removing the signal handler, this action code is passed to IDL_Message() to direct its
recovery action.

Once IDL_SignalUnregister() has been called, func is unregistered and will no
longer be called if the signal is raised. IDL_SignalUnregister() returns TRUE for
success, FALSE for failure. Requests to unregister a function that has not been
previously registered are ignored.
External Development Guide Removing a Signal Handler

364 Chapter 17: IDL Internals: UNIX Signals
UNIX Signal Masks

UNIX processes contain a signal mask that defines which signals can be delivered
and which are blocked from delivery at any given time. When a signal arrives, the
UNIX kernel checks the signal mask: If the signal is in the process mask, it is
delivered, otherwise it is noted as undeliverable and nothing further is done until the
signal mask changes. Sets of signals are represented within IDL with the opaque type
IDL_SignalSet_t. UNIX IDL provides several functions that manipulate signal sets
to change the process mask and allow/disallow delivery of signals.

IDL_SignalSetInit()

IDL_SignalSetInit() initializes a signal set to be empty, and optionally sets it to
contain one signal.

void IDL_SignalSetInit(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to be emptied/initialized.

signo

If non-zero, a signal to be added to the new set. This is provided as a convenience for
the large number of cases where a set contains only one signal. Use
IDL_SignalSetAdd() to add additional signals to a set.

IDL_SignalSetAdd()

IDL_SignalSetAdd() adds the specified signal to the specified signal set:

void IDL_SignalSetAdd(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to be added to. The signal set must have been initialized by
IDL_SignalSetInit().

signo

The signal to be added to the signal set.
UNIX Signal Masks External Development Guide

Chapter 17: IDL Internals: UNIX Signals 365
IDL_SignalSetDel()

IDL_SignalSetDel() deletes the specified signal from a signal set:

void IDL_SignalSetDel(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to delete from. The signal set must have been initialized by
IDL_SignalSetInit().

signo

The signal to be removed from the signal set.

IDL_SignalSetIsMember()

IDL_SignalSetIsMember() tests a signal set for the presence of a specified signal,
returning TRUE if the signal is present and FALSE otherwise:

int IDL_SignalSetIsMember(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to test. The signal set must have been initialized by
IDL_SignalSetInit().

signo

The signal to be removed from the signal set.

IDL_SignalMaskGet()

IDL_SignalMaskGet() sets a signal set to contain the signals from the current
process signal mask:

void IDL_SignalMaskGet(IDL_SignalSet_t *set)

where:

set

The signal set in which the current process signal mask will be stored.
External Development Guide UNIX Signal Masks

366 Chapter 17: IDL Internals: UNIX Signals
IDL_SignalMaskSet()

IDL_SignalMaskSet() sets the current process signal mask to contain the signals
specified in a signal mask:

void IDL_SignalMaskSet(IDL_SignalSet_t *set,
IDL_SignalSet_t *omask)

where:

set

The signal set from which the current process signal mask will be set.

omask

If omask is non-NULL, the unmodified process signal mask is stored in it. This is
useful for restoring the mask later using IDL_SignalMaskSet().

There are some signals that cannot be blocked. This limitation is silently enforced by
the operating system.

IDL_SignalMaskBlock()

IDL_SignalMaskBlock() adds signals to the current process signal mask:

void IDL_SignalMaskBlock(IDL_SignalSet_t *set,
IDL_SignalSet_t *oset)

where:

set

The signal set containing the signals that will be added to the current process signal
mask.

oset

If oset is non-NULL, the unmodified process signal mask is stored in it. This is useful
for restoring the mask later using IDL_SignalMaskSet().

There are some signals that cannot be blocked. This limitation is silently enforced by
the operating system.
UNIX Signal Masks External Development Guide

Chapter 17: IDL Internals: UNIX Signals 367
IDL_SignalBlock()

IDL_SignalBlock() does the same thing as IDL_SignalMaskBlock() except it
accepts a single signal number instead of requiring a mask to be built:

void IDL_SignalBlock(int signo, IDL_SignalSet_t *oset)

where:

signo

The signal to be blocked.

There are some signals that cannot be blocked. This limitation is silently enforced by
the operating system.

IDL_SignalSuspend()

IDL_SignalSuspend() replaces the process signal mask with the ones in set and then
suspends the process until a signal is delivered. On return, the original process signal
mask is restored:

void IDL_SignalSuspend(IDL_SignalSet_t *set)

where:

set

The signal set containing the signals that will be added to the current process signal
mask.
External Development Guide UNIX Signal Masks

368 Chapter 17: IDL Internals: UNIX Signals
UNIX Signal Masks External Development Guide

Chapter 18

IDL Internals:
Timers
This chapter discusses the following topics:
IDL and Timers . 370
Making Timer Requests 371

Canceling Asynchronous Timer Requests 373
Blocking UNIX Timers 374
External Development Guide 369

370 Chapter 18: IDL Internals: Timers
IDL and Timers

The details of how timers work varies widely between operating systems and
between variants of the same operating system (different “flavors” of UNIX, for
example). IDL’s timer module is intended to provide a stable interface to the rest of
IDL, and to isolate the non-portable code in one place.

Under UNIX, IDL’s timer module performs a more important function. UNIX
processes contain a single timer that must be shared by the code in the process. When
the timer fires, it raises the SIGALRM signal which must be caught and handled by
the process. The IDL timer routines transparently multiplex this single timer to
provide multiple virtual timers.

Under UNIX, IDL provides both blocking and non-blocking timers. Blocking timers
put the calling process to sleep until they go off. Non-blocking timers are delivered
asynchronously when they fire.

Under Microsoft Windows, only the blocking form of timer requests are supported.
IDL and Timers External Development Guide

Chapter 18: IDL Internals: Timers 371
Making Timer Requests

The IDL_TimerSet() function registers a timer request. IDL timer requests are one-
shot timers. If you wish to have a timer go off repeatedly, your callback function
must make a new request each time it is called to set up the next timer.

void IDL_TimerSet(length, callback, from_callback, context)

where:

length

The length of time to delay before issuing the alarm, in microseconds. You
should be aware that other activity on the system, overhead incurred in
managing the timers, and non-realtime attributes of the operating system can
cause the actual duration of the timer to be longer than requested.

callback

Under UNIX, if callback is non-NULL, the timer request is queued and
IDL_TimerSet() returns immediately. When the alarm is due, the function
pointed at by callback is called. If callback is NULL (and not
from_callback), the request is queued and IDL_TimerSet() blocks until the
requested time expires.

Warning
When called, the callback function will be running in signal scope, meaning that it
has been called from a signal handler running asynchronously from the rest of the
program. There are significant restrictions on what code running in signal scope is
allowed to do. Most common C library functions (such as printf()) are disallowed.
Consult a book on UNIX programming or your system documentation for details.

Under Windows, callback should always be NULL. IDL_TimerSet() does not
support non-blocking timers on these platforms.

from_callback

Set this argument to TRUE if this invocation is from a callback function
previously set up via a call to IDL_TimerSet(). Set this argument to FALSE if
this is the first invocation. In other words, this argument should only be TRUE
if you call IDL_TimerSet() from within a timer callback.
External Development Guide Making Timer Requests

372 Chapter 18: IDL Internals: Timers
context

This argument is a pointer to a variable of type IDL_TIMER_CONTEXT, an
opaque IDL data type that uniquely identifies a timer request. If this is a top
level request (if from_callback is FALSE), the context pointed at will be
assigned a unique value that identifies the request.

If this request is coming from within a timer callback in order to make another
request on the same timer, the context pointed at should contain the value from
the previous request.

If context is NULL, no context value is returned.

Note
It is an error to queue more than one request using the same callback. The results
are undefined.

For the timer module to perform adequately, the time request must be large compared
to the run-time of the called function. Re-queuing an extremely short request
repeatedly will cause any other requests to starve.
Making Timer Requests External Development Guide

Chapter 18: IDL Internals: Timers 373
Canceling Asynchronous Timer Requests

Under UNIX, IDL_TimerCancel() can be used to cancel a timer request that has not
yet been delivered:

void IDL_TimerCancel(context)

where:

context

A timer request context returned by a previous call to IDL_TimerSet().
External Development Guide Canceling Asynchronous Timer Requests

374 Chapter 18: IDL Internals: Timers
Blocking UNIX Timers

Under UNIX operating systems, the delivery of signals such as SIGALRM (used to
manage timers) can cause system calls to be interrupted. In such cases, the system
call returns a status of -1 and the global errno variable is set to the value EINTR. It is
the caller’s responsibility to check for this result and restart the system call when it
occurs.

It is easy enough to handle this case when you make system calls directly, but
sometimes the problem surfaces in libraries (even those provided by the system, such
as libc) that are not properly coded against this possibility because the author
assumed that no interrupts would occur. There is very little that the end user can do
about such libraries except take steps that prevent signals from being raised during
these critical sections.

If the IDL timer module is being used to deliver asynchronous events, it is inevitable
that the delivery of SIGALRM will interfere with this sort of library code. The
IDL_TimerBlock() function is available under UNIX to suspend the delivery of the
timer signal. This can be used to provide a window in which no timer will fire. This
routine should always be called in pairs, so the timer doesn’t get turned off
permanently. It is important to be sure a longjmp() (such as caused by calling
IDL_Message() with the IDL_MSG_LONGJMP action code) doesn’t happen in
the critical region. In addition, this function is not re-entrant.

The effect of blocking timer delivery is that the UNIX SIGALRM signal is masked
to prevent delivery. If the timer fires during this window of time, the signal will not
be delivered until timers are unblocked. At that time, the timer module resumes
managing the single real UNIX timer. In the meantime, timer requests are arbitrarily
delayed from being queued and processed. Clearly, excessive blocking of the timer
can lead to poor timer performance and should only be performed when necessary
and on the smallest possible critical section of code. Of course, the act of blocking
and unblocking signals requires a context switch into the UNIX kernel and back,
making them relatively computationally expensive operations. It is therefore better to
block a longer section of code rather than block and unblock around every critical
library call.
Blocking UNIX Timers External Development Guide

Chapter 18: IDL Internals: Timers 375
It has been our experience that some UNIX platforms have more problem with this
issue than others. You should let experience guide you in deciding when to block
signals and when to let them go. Input/Output to device special files under HP-UX
and SGI IRIX are known to be especially vulnerable.

void IDL_TimerBlock(stop)

where:

stop

TRUE if the timer should be suspended, FALSE to restart it.
External Development Guide Blocking UNIX Timers

376 Chapter 18: IDL Internals: Timers
Blocking UNIX Timers External Development Guide

Chapter 19

IDL Internals: Files and
Input/Output
This chapter discusses the following topics:
IDL and Input/Output Files 378
File Information . 380
Opening Files . 384
Closing Files . 387
Preventing File Closing 388
Checking File Status 389

Allocating and Freeing File Units 391
Detecting End of File 393
Flushing Buffered Data 394
Reading a Single Character 395
Output of IDL Variables 396
Adding to the Journal File 397
External Development Guide 377

378 Chapter 19: IDL Internals: Files and Input/Output
IDL and Input/Output Files

IDL provides extensive Input/Output facilities at the user level. Internally, it uses
native Input/Output facilities (UNIX system calls or Win32 system API) in addition
to the standard C library stream package (stdio). The choice of which facilities to use
are made based on the target platform and the requested features for the file.

Most external code linked with IDL (CALL_EXTERNAL, system routines, etc.)
should not do Input/Output directly, for the following reasons:

• Part of the IDL philosophy is that Input/Output is handled by dedicated I/O
facilities provided by IDL, and that computational code should accept data
from IDL variables and return results in the same way. This gives the user of
your code the freedom and flexibility to save their data in any of the many
forms supported by IDL’s core I/O facilities, and frees you from writing
complex and error prone input/output code.

• Using IDL’s Input/Output facilities frees you from having to code around
platform specific differences in I/O behavior.

• Input/Output from languages other than C often require runtime library
support code to run at program startup before your code and successfully
perform I/O. For example, Fortran Input/Output may depend on a Fortran
runtime subsystem having been initialized. IDL, as a C program, does not
perform initialization of such libraries for other languages. If you know
enough about your Fortran system, you can often supply the missing
initialization call, but such workarounds are usually not well documented, and
are inherently platform specific.

For the reasons above, only minimal I/O abilities are available from IDL's internals,
and only for files that explicitly use the standard C stdio library. Therefore, if your
application must directly perform I/O to a file managed by IDL, it is necessary to use
the standard C library streampackage (stdio) by specifying the IDL_F_STDIO flag to
IDL_FileOpen(). Most of the routines associated with the standard C library I/O
package can be used in the normal manner.
IDL and Input/Output Files External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 379
Note, however, that the C library routines listed in the following table should not be
used; use the IDL-specific functions instead:

Note
In order to access a file opened using IDL_FileOpen() in this manner, you must
ensure that it is stdio compatible by specifying IDL_F_STDIO as part of the
extra_flags argument to IDL_FileOpen(). Failure to do this will cause your code to
fail to execute as expected.

C Library Function IDL Function

fclose() IDL_FileClose()

fdopen() IDL_FileOpen()

feof() IDL_FileEOF()

fflush() IDL_FileFlushUnit()

fopen() IDL_FileOpen()

freopen() IDL_FileOpen()

Table 19-1: Disallowed C Library Routines and Their IDL Counterparts
External Development Guide IDL and Input/Output Files

380 Chapter 19: IDL Internals: Files and Input/Output
File Information

IDL maintains a file table in which it keeps a file descriptor for each file opened with
IDL_FileOpen(). This table is indexed by the file Logical Unit Number, or LUN.
These are the same LUNs IDL users use.

The IDL_FileStat() function is used to get information about a file.

IDL_FileStat()

void IDL_FileStat(int unit, IDL_FILE_STAT *stat_blk)

unit

The logical unit number (LUN) of the file unit to be checked. This function should
only be called on file units that are known to be open.

stat_blk

A pointer to an IDL_FILE_STAT struct to be filled in with information about the file.
The information returned is valid only as long as the file remains open. You must not
access the fields of an IDL_FILE_STAT once the file it refers to has been closed.
This struct has the definition:

typedef struct {
char *name;
short access;
IDL_SFILE_FLAGS_T flags;
FILE *fptr;

} IDL_FILE_STAT;

The fields of this struct are listed below:

name

A pointer to a null-terminated string containing the name the file was opened with.
File Information External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 381
access

A bit mask describing the access allowed to the file. The allowed bit values are listed
in the following table:

flags

A bit mask that gives special information about the file. The defined bits are listed in
the following table:

Bit Value Description

IDL_OPEN_R The file is open for input.

IDL_OPEN_W The file is open for output.

IDL_OPEN_TRUNC The file was truncated when it was opened. This implies
that IDL_OPEN_W is also set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of data in the file (the file is open for appending).

Table 19-2: Bit values for the access field

Bit Value Description

IDL_F_ISATTY The file is a terminal.

IDL_F_ISAGUI The file is a Graphical User Interface.

IDL_F_NOCLOSE The CLOSE command will refuse to close the
file.

IDL_F_MORE If the file is a terminal, output is sent through a
pager similar to the UNIX more command.
Details on this pager are not included in this
document, and it is therefore not available for
general use.

IDL_F_XDR The file is read/written using XDR (eXternal
Data Representation).

IDL_F_DEL_ON_CLOSE The file will be deleted when it is closed.

Table 19-3: Bit values for the flags field
External Development Guide File Information

382 Chapter 19: IDL Internals: Files and Input/Output
IDL_F_SR The file is a SAVE/RESTORE file.

IDL_F_SWAP_ENDIAN The file has opposite byte order than that of
the current system.

IDL_F_VAX_FLOAT Binary float and double are in VAX F and D
format.

IDL_F_COMPRESS The file is in compressed gzip format. If
IDL_F_SR is set (the file is a
SAVE/RESTORE file), the file contains zlib
compressed data.

IDL_F_UNIX_F77 The file is read/written in the format used by
the UNIX Fortran (f77) compiler for
unformatted binary data.

IDL_F_UNIX_PIPE The file is a bi-directional data path
connecting IDL to a child process created by
the SPAWN procedure.

IDL_F_UNIX_RAWIO

(formerly called
IDL_F_UNIX_NOSTDIO)

No application level buffering will be
performed for the file and all data transfers
will go directly to the operating system for
processing (e.g. read() and write() system
calls under UNIX, Win32 API for MS
Windows). Note that setting this bit does not
guarantee that data will be written to the file
immediately, because the operating system
may buffer the data. This bit value was
formerly called IDL_F_UNIX_NOSTDIO.
IDL_F_UNIX_RAWIO is the preferred form,
but both names are supported.

IDL_F_UNIX_SPECIAL The file is a UNIX device special file, most
likely a pipe. This differs from
IDL_F_UNIX_PIPE because it applies to any
file, not only those opened with the SPAWN
procedure.

Bit Value Description

Table 19-3: Bit values for the flags field (Continued)
File Information External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 383
fptr

The stdio stream file pointer to the file. This field can be used with standard library
functions to perform I/O. This field is always valid, although you shouldn’t use it if
the file is an XDR file. You can check for this by looking for the IDL_F_XDR bit in
the flags field.

If the file is not opened with the IDL_F_STDIO flag, fptr may be returned as an
unusable NULL pointer, reflecting the fact that IDL is not using stdio to perform I/O
on the file. If access to a valid fptr is important to your application, you should be
sure to specify IDL_F_STDIO to the extra_flags argument to IDL_FileOpen, or
use the STDIO keyword to OPEN if opening the file from the IDL user level.

In addition to the requirement to set the IDL_F_STDIO flag, you should be aware
that IDL buffers I/O at a layer above the stdio package. If your code does I/O directly
to a file that is also being written to from the IDL user level, the IDL buffer may
cause data to be written to the file in a different order than you expect. There are
several approaches you can take to prevent this:

• Tell IDL not to buffer, by opening the file from the IDL user level and
specifying a value of -1 to the BUFSIZE keyword.

• Disable stdio buffering by calling the stdio setbuf() function.

• Ensure that you flush IDL’s buffer before you do any Input/Output, as
discussed in “Flushing Buffered Data” on page 394.

IDL_F_STDIO Use the C standard I/O library (stdio) to
perform I/O on this file instead of any other
native OS API that might be otherwise used.
People intending to access IDL files via their
own code should specify this flag if they
intend to access the file from their external
code as a stdio stream.

IDL_F_SOCKET File is an internet TCP/IP socket.

Bit Value Description

Table 19-3: Bit values for the flags field (Continued)
External Development Guide File Information

384 Chapter 19: IDL Internals: Files and Input/Output
Opening Files

Files are opened using the IDL_FileOpen() function.

IDL_FileOpen()

int IDL_FileOpen(int argc, IDL_VPTR *argv, char *argk,
int access_mode, IDL_SFILE_FLAGS_T extra_flags,
int longjmp_safe, int msg_attr)

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise.

Note
If longjmp_safe is TRUE, the usual course is to jump back to the IDL interpreter, in
which case the routine won’t return.

argc

The number of arguments in argv. This value should always be 2.

argv

The arguments to IDL_File_Open(). argv[0] should be a scalar integer value giving
the file unit number (LUN) to be opened. argv[1] is a scalar string giving the file
name.

argk

Keywords. Set this argument to NULL.

access_mode

A bit mask that specifies the access to be allowed to the file being opened. The
allowed bit values are listed in the following table:

Bit Value Description

IDL_OPEN_R The file is open for input.

IDL_OPEN_W The file is open for output.

Table 19-4: Bit Values for the access_mode Argument
Opening Files External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 385
It is important that conflicting bits not be set together (for example, do not specify
IDL_OPEN_TRUNC | IDL_OPEN_APND). Also, one or both of IDL_OPEN_R and
IDL_OPEN_W must always be specified.

extra_flags

Used to specify additional file attributes using the flags defined in the description of
the flags field of the IDL_FILE_STAT struct (see “File Information” on page 380).
Note that some flags are set by IDL based on the actual attributes of the opened file
(e.g. IDL_F_ISTTY) and that it makes no sense to set such flags in this mask.

If you intend to use the opened file as a C standard I/O (stdio) stream file, you must
specify the IDL_F_STDIO flag when calling IDL_FileOpen(). Otherwise, IDL may
choose not to use stdio.

longjmp_safe

If set to TRUE, IDL_FileOpen() is being called in a context where an
IDL_MSG_LONGJMP IDL_Message action code is okay. If set to FALSE, the
routine won’t longjmp().

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise. Of course, if longjmp_safe is TRUE, the usual course is to jump back to
the IDL interpreter, in which case the routine won’t return.

msg_attr

A zero (0), or any combination of the IDL_MSG_ATTR_ flags, used to fine tune the
error handling specified by the longjmp_safe argument. Note that you must not
specify any of the base IDL_MSG_ codes, but only the attributes. The base code (e.g.
IDL_MSG_LONGJMP) is determined by the value of longjmp_safe. For a
discussion of the IDL_MSG_ATTR_ flags, see “Issuing Error Messages” on
page 342.

IDL_OPEN_TRUNC The file was truncated when it was opened. This implies
that IDL_OPEN_W is also set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of data in the file (the file is open for appending).

Bit Value Description

Table 19-4: Bit Values for the access_mode Argument (Continued)
External Development Guide Opening Files

386 Chapter 19: IDL Internals: Files and Input/Output
Special File Units

There are three files that are always open. The three units are:

• IDL_STDIN_UNIT — Unit 0 (zero) is the standard input for the IDL process.

• IDL_STDOUT_UNIT — Unit –1 is the standard output.

• IDL_STDERR_UNIT — Unit –2 is the standard error.

Note
The constant IDL_NON_UNIT always has a value that is not a valid file unit.
Opening Files External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 387
Closing Files

Files are closed using the IDL_FileClose() function.

IDL_FileClose()

void IDL_FileClose(int argc, IDL_VPTR *argv, char *argk)

argc

The number of arguments in argv.

argv

The arguments to the close function. These should be scalar integer values giving the
Logical Unit Numbers of the file units to close.

argk

Keywords. Set this argument to NULL.
External Development Guide Closing Files

388 Chapter 19: IDL Internals: Files and Input/Output
Preventing File Closing

Use the IDL_FileSetClose() function to prevent files from closing. It does this by
setting or clearing the IDL_F_NOCLOSE bit in the flags field of the internal file
descriptor maintained by IDL for the file (see “File Information” on page 380). This
feature is used primarily in graphics drivers for printers. For example, the PostScript
driver uses this feature to prevent the user from closing the plot data file prematurely.

When IDL exits, it only closes open files that do not have the IDL_F_NOCLOSE bit
set. Files with close inhibited are simply left alone. Often, you will want to declare an
exit handler which takes care of closing such files.

IDL_FileSetClose()

void IDL_FileSetClose(int unit, int allow)

unit

The Logical Unit Number (LUN) of the file in question. The file must be open for
this function to have effect.

allow

Set this field to TRUE if users are allowed to close the file. Set to FALSE if users
should be prevented from closing the file.
Preventing File Closing External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 389
Checking File Status

System routines that deal with files must verify that the files have the proper
attributes for the intended operation. Use the function IDL_FileEnsureStatus() for
this.

IDL_FileEnsureStatus()

int IDL_FileEnsureStatus(int action, int unit, int flags)

action

If the file unit does not satisfy the requirements of the flags argument,
IDL_FileEnsureStatus() will issue an error using the IDL_Message() function (see
“Issuing Error Messages” on page 342). This action is the action argument to
IDL_Message() and should be IDL_MSG_RET, IDL_MSG_LONGJMP, or
IDL_MSG_IO_LONGJMP.

unit

The Logical Unit Number of the file to be checked.

flags

IDL_FileEnsureStatus() always checks to make sure unit is a valid logical file unit. In
addition, flags is a bit mask specifying the file attributes that should be checked. The
possible bit values are listed in the following table:

Bit Value Description

IDL_EFS_USER The file must be a user unit. This means that the file
is not one of the three special files, stdin, stdout, or
stderr.

IDL_EFS_IDL_OPEN The file unit must be open.

IDL_EFS_CLOSED The file unit must be closed.

IDL_EFS_READ The file unit must be open for input.

IDL_EFS_WRITE The file unit must be open for output.

IDL_EFS_NOTTY The file unit cannot be a tty.

Table 19-5: Bit Values for the flags Argument
External Development Guide Checking File Status

390 Chapter 19: IDL Internals: Files and Input/Output
Note
Some of these values are contradictory. The caller must select a consistent set.

If the file unit meets the desired conditions, IDL_FileEnsureStatus() returns TRUE. If
it does not meet the conditions, and action was IDL_MSG_RET, then it returns
FALSE.

IDL_EFS_NOGUI The file unit cannot be a Graphical User Interface.

IDL_EFS_NOPIPE The file unit cannot be a pipe.

IDL_EFS_NOXDR The file unit cannot be a XDR file.

IDL_EFS_ASSOC The file unit can be ASSOC’ed. This implies
IDL_EFS_USER, IDL_EFS_OPEN,
IDL_EFS_NOTTY, IDL_EFS_NOPIPE,
IDL_EFS_NOXDR, IDL_EFS_NOCOMPRESS,
and IDL_EFS_NOSOCKET.

IDL_EFS_NOT_RAWIO
(formerly called
IDL_EFS_NOT_NOSTDIO
)

The file was not opened with the
IDL_F_UNIX_RAWIO attribute. This bit was
formerly called IDL_F_NOTSTDIO.
IDL_EFS_NOT_RAWIO is the preferred form, but
both names are accepted.

IDL_EFS_NOCOMPRESS The file unit cannot have been opened for
compressed input/output (IDL_F_COMPRESS).

IDL_EFS_STDIO The file must be using the C stdio package
(IDL_F_STDIO).

IDL_EFS_NOSOCKET The file unit cannot be a socket (IDL_F_SOCKET).

Bit Value Description

Table 19-5: Bit Values for the flags Argument (Continued)
Checking File Status External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 391
Allocating and Freeing File Units

System routines must allocate and deallocate file units in order to avoid conflicts.
When writing IDL procedures, the GET_LUN and FREE_LUN procedures are used.
When writing system-level routines, you can access the same routines by calling
IDL_FileGetUnit() and IDL_FileFreeUnit().

Use IDL_FileGetUnit() to allocate file units:

IDL_FileGetUnit()

void IDL_FileGetUnit(int argc, IDL_VPTR *argv)

argc

argc should always be 1.

argv

argv[0] contains an IDL_VPTR to the IDL_VARIABLE that will be filled in with the
resulting unit number.

Use IDL_FileFreeUnit() to free file units:

IDL_FileFreeUnit()

void IDL_FileFreeUnit(int argc, IDL_VPTR *argv)

argc

argc gives the number of elements in argv.

argv

argv should contain scalar integer values giving the Logical Unit Numbers of the file
units to be returned.

Read the description of GET_LUN and FREE_LUN in the IDL Reference Guide for
additional details about these functions. The following code fragment demonstrates
how these functions might be used to open and close a file named junk.dat:

IDL_VPTR argv[2];
IDL_VARIABLE unit;
IDL_VARIABLE name;
.
.

External Development Guide Allocating and Freeing File Units

392 Chapter 19: IDL Internals: Files and Input/Output
.
/* Allocate a file unit. */
argv[0] = &unit;
unit.type = IDL_TYP_LONG;
unit.flags = 0;
IDL_FileGetUnit(1, argv);

/* Set up the file name */
name.type = IDL_TYP_STRING;
name.flags = IDL_V_CONST;
name.value.str.s = "junk.dat";
name.value.str.slen = sizeof("junk.dat") - 1;
name.value.str.stype = 0;
argv[1] = &name;
.
.
.
IDL_FileOpen(2, argv, (char *) 0, IDL_OPEN_R, 0, 1, 0);

/* Perform any required actions. */
.
.
.
/* Free the file unit. This will also close the file. */
IDL_FileFreeUnit(1, argv);
Allocating and Freeing File Units External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 393
Detecting End of File

IDL_FileEOF()

The IDL_FileEOF() function returns TRUE if the file specified by the Logical Unit
Number unit is at EOF, and FALSE otherwise:

int IDL_FileEOF(int unit)

unit

The Logical Unit Number (LUN) of the file in question.
External Development Guide Detecting End of File

394 Chapter 19: IDL Internals: Files and Input/Output
Flushing Buffered Data

IDL_FileFlushUnit()

File data might be buffered in system memory in order to boost input/output
performance. The IDL_FileFlushUnit() function forces any buffered data for the file
specified by the Logical Unit Number unit to be written out:

int IDL_FileFlushUnit(int unit)

unit

The Logical Unit Number (LUN) of the file in question.
Flushing Buffered Data External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 395
Reading a Single Character

IDL_GetKbrd()

The IDL_GetKbrd() function returns the character code of the next available
character from IDL_STDIN_UNIT:

int IDL_GetKbrd(int should_wait)

should_wait

Set this argument to TRUE if IDL_GetKbrd() should wait for a key to be struck,
FALSE otherwise.

If should_wait is FALSE and no input characters are waiting in the input stream,
IDL_GetKbrd() returns NULL. Otherwise, it waits until a key is struck (if necessary)
and then returns its ASCII value. This function will generate an error and return to the
interpreter if IDL_STDIN_UNIT is not a terminal.
External Development Guide Reading a Single Character

396 Chapter 19: IDL Internals: Files and Input/Output
Output of IDL Variables

IDL_Print() and IDL_PrintF()

The IDL_Print() and IDL_PrintF() functions output the value of IDL_VARIABLEs.
IDL_Print() simply outputs to IDL_STDOUT_UNIT, while IDL_PrintF() outputs to
a specified unit:

void IDL_Print(int argc, IDL_VPTR *argv, char *argk)
void IDL_PrintF(int argc, IDL_VPTR *argv, char *argk)

argc

The number of arguments to argv.

argv

IDL_VPTRs of the IDL_VARIABLEs to be output.

argk

Keywords. Set this argument to NULL ((char *) 0).

These functions are the implementation of the built-in IDL system procedures PRINT
and PRINTF. See “PRINT/PRINTF” in the IDL Reference Guide manual for
information on the available arguments and the order in which you must specify
them.
Output of IDL Variables External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 397
Adding to the Journal File

IDL_Logit()

The IDL_Logit() function can be used to add lines of output to the journal log file:

void IDL_Logit(char *s)

s

A pointer to a NULL terminated string to be added to the journal log file.

If a journal log file is currently open, this function writes the specified string to it on a
new line. If no journal file is open, IDL_Logit() returns quietly. The only way to open
or close the journal file is via the user-system-level JOURNAL procedure.
External Development Guide Adding to the Journal File

398 Chapter 19: IDL Internals: Files and Input/Output
Adding to the Journal File External Development Guide

Chapter 20

IDL Internals:
Miscellaneous
This chapter discusses the following topics:
Dynamic Memory 400
Exit Handlers . 403
User Interrupts . 404
Functions for Returning System Variables 405
Terminal Information 406

Ensuring UNIX TTY State 408
Type Information 409
User Information 411
Constants . 412
Macros . 413
External Development Guide 399

400 Chapter 20: IDL Internals: Miscellaneous
Dynamic Memory

IDL provides access to the dynamic memory allocation routines it uses internally.
Use these routines rather than system-provided routines such as malloc()/free() when
possible.

Warning
The memory pointers returned by the IDL memory allocation routines discussed in
this chapter do not necessarily correspond directly to malloc()/free() calls, or to any
other system memory allocation package. You must be careful not to mix memory
allocation packages. Memory allocated via a given API can only be freed by the
corresponding free call provided by that API. For example, memory allocated by an
IDL memory allocation routine can only be freed by the IDL IDL_MemFree()
function. Memory allocated by malloc() can only be freed by free().

Failure to follow this rule can lead to memory corruption, including possible
crashing of the IDL program.

Please note that code called via CALL_EXTERNAL, or as a system routine
(LINKIMAGE, Dynamically Loadable Modules) should not use the IDL dynamic
memory routines. Instead, use IDL_GetScratch() (see “Getting Dynamic Memory”
on page 322) which prevents memory from being lost under error conditions.

Warning
Our experience shows that in situations where IDL_GetScratch() is appropriate,
use of any other memory allocation mechanism should raise a warning flag to the
programmer that something is wrong in their code. Rarely if ever is a direct call to
malloc()/free() reasonable in such a situation — even if it appears to work
correctly, you will have to work harder to provide the error handling functionality
that IDL_GetScratch() provides automatically, or your code will leak memory in
such situations.

IDL_MemAlloc()

IDL_MemAlloc() is used to allocate dynamic memory.

void *IDL_MemAlloc(IDL_MEMINT n, char *err_str, int action)

where:
Dynamic Memory External Development Guide

Chapter 20: IDL Internals: Miscellaneous 401
n

The number of bytes to allocate.

err_str

NULL, or a null terminated text string describing the memory being allocated.

action

An action parameter to be passed to IDL_Message() if IDL_MemAlloc() is unable
to allocate the desired memory and err_str is non-NULL.

IDL_MemAlloc() attempts to allocate the desired amount of memory. If the
requested amount is allocated, a pointer to the memory is returned. The memory is
aligned strictly enough to be suitable for any object.

If the attempt to allocate memory fails and err_str is non-NULL, IDL_Message() is
called as:

IDL_Message(IDL_M_CNTGETMEM, action, err_str)

If IDL_Message() returns, or if err_str is NULL and IDL_Message() is not called,
IDL_MemAlloc() returns a NULL pointer indicating its failure.

IDL_MemFree()

Memory allocated via IDL_MemAlloc() should only be returned via
IDL_MemFree():

void IDL_MemFree(REGISTER void *m, char *err_str, int action)

m

A pointer to memory previously allocated via IDL_MemAlloc().

err_str

NULL, or a null terminated text string describing the memory being freed.

action

An action parameter to be passed to IDL_Message() if unable to free memory and
err_str is non-NULL.

IDL_MemFree() attempts to free the specified memory. If the attempt to free
memory fails and err_str is non-NULL, IDL_Message() is called as:
External Development Guide Dynamic Memory

402 Chapter 20: IDL Internals: Miscellaneous
IDL_Message(IDL_M_CNTFREMEM, action, err_str)

The following actions have undefined consequences, and should not be done:

• Returning memory allocated from a source other than IDL_MemAlloc().

• Freeing the same allocation more than once.

• Dereferencing memory once it has been freed.

IDL_MemAllocPerm()

Another memory allocation routine, IDL_MemAllocPerm(), exists to allocate
dynamic memory that will not be returned for reuse. IDL_MemAllocPerm()
allocates memory in moderately large units and carves out pieces of these blocks to
satisfy its requests. Use of this routine can help minimize the effects of memory
fragmentation.

void *IDL_MemAllocPerm(IDL_MEMINT n, char *err_str, int action)

IDL_MemAllocPerm() takes the same arguments as IDL_MemAlloc(), differing
only in that the memory allocated will not be freed until the process exits. Do not
attempt to free memory allocated by IDL_MemAllocPerm(). The results of such an
action are undefined.
Dynamic Memory External Development Guide

Chapter 20: IDL Internals: Miscellaneous 403
Exit Handlers

IDL maintains a list of exit handler functions that it calls as part of its shutdown
operations. These handlers perform actions such as closing files, wrapping up
graphics output, and restoring the user environment to its initial state. Exit handlers
accept no arguments and return no value.

A typical declaration would be:

void my_exit_handler(void)
{

/* Cleanup Code Here */
}

IDL_ExitRegister()

To register an exit handler, use the IDL_ExitRegister() function:

void IDL_ExitRegister(IDL_EXIT_HANDLER_FUNC)

where IDL_EXIT_HANDLER_FUNC is defined as:

typedef void(* IDL_EXIT_HANDLER_FUNC)(void);

proc

IDL will call proc just before it exits.

The order in which exit handlers are called is undefined, and you should not depend
on any particular ordering. If you have several exit handlers and the order in which
they are called is important, you should register a single handler that calls all the
others in the required order.

Note
Under some operating systems, it is possible that the IDL process will die in an
abnormal way that prevents the calling of the exit handlers. For example, under
UNIX, receiving some signals (possibly via the kill(1) command) will cause the
process to die immediately. IDL always calls exit handlers when possible, so this is
rarely a significant problem.
External Development Guide Exit Handlers

404 Chapter 20: IDL Internals: Miscellaneous
User Interrupts

IDL catches certain operating system signals including SIGINT, which occurs when
the user types the interrupt character (usually Control-C). When the interpreter
detects the interrupt character, it sets an internal flag which causes execution of the
program to stop at the next sequence statement. The interpreter clears this variable
every time it is invoked, and checks to see if it has been set before it executes each
statement. This means that when the user presses the interrupt character, the current
statement must complete before the interpreter checks the value of the variable and
halts execution.

Typical statements do not take long to complete, so this delay is not noticeable.
However, some system routines take a long time to complete, and the user can be
fooled by the long delay into thinking that IDL is ignoring the interrupt. While the
occasional long delay can be annoying, this method of handling interrupts is the only
way to maintain acceptable performance in the usual case where no interrupt is
pending. Therefore, it is the responsibility of system routines that take a long time to
complete to check the value of this internal variable and to clean up and return if
SIGINT is seen. IDL’s Input/Output and FFT routines, among others, do this.

IDL_BailOut()

The IDL_BailOut() function is used to sense or set the state of IDL’s internal
interrupt flag. It returns TRUE if the keyboard interrupt character has been typed,
otherwise FALSE.

int IDL_BailOut(int stop)

where:

stop

Set to FALSE to sense the state of the keyboard interrupt flag without changing its
value. Set to TRUE to set the keyboard interrupt flag.
User Interrupts External Development Guide

Chapter 20: IDL Internals: Miscellaneous 405
Functions for Returning System Variables

The following functions return the values of certain system variables. Note that these
values should be considered READ-ONLY.

IDL_STRING *IDL_SysvVersionArch(void)

This function returns a pointer to the !VERSION.ARCH system variable.

IDL_STRING *IDL_SysvVersionOS(void)

This function returns a pointer to the !VERSION.OS system variable.

IDL_STRING *IDL_SysvVersionOSFamily(void)

This function returns a pointer to the !VERSION.OS_FAMILY system variable.

IDL_STRING *IDL_SysvVersionRelease(void)

This function returns a pointer to the !VERSION.RELEASE system variable.

IDL_STRING *IDL_SysvDirFunc(void)

This function returns a pointer to the !DIR system variable.

IDL_STRING *IDL_SysvErrStringFunc(void)

This function returns a pointer to the !ERROR_STATE.MSG system variable.

IDL_STRING *IDL_SysvSyserrStringFunc(void)

This function returns a pointer to !ERROR_STATE.SYS_MSG system variable.

IDL_LONG IDL_SysvErrorCodeValue(void)

This function returns the value of the !ERROR_STATE system variable.

IDL_LONG IDL_SysvOrderValue(void)

This function returns the value of the !ORDER system variable.

For more information on IDL system variables, see Appendix D, “System Variables”
in the IDL Reference Guide manual.
External Development Guide Functions for Returning System Variables

406 Chapter 20: IDL Internals: Miscellaneous
Terminal Information

The global variable IDL_FileTerm is a structure of type IDL_TERMINFO:

typedef struct {
char *name; /* Name Of Terminal Type */
char is_tty; /* True if stdin is a terminal */
int lines; /* Lines on screen */
int columns; /* Width of output */

} IDL_TERMINFO;

Note
Under operating systems that do not support the concept of a terminal (Microsoft
Windows) the name and is_tty fields are not present.

IDL_FileTerm is initialized when IDL is started. Few, if any, user routines will need
this information, because user routines should not do their own I/O. User routines
that must do their own I/O should use this variable instead of making assumptions
about the output device.

Note
Under Microsoft Windows, the IDL_FileTerm is not accessible outside of the IDL
sharable library, and cannot be directly accessed by user code. Instead, use the
functions described in the following section.

Functions for Returning IDL_FileTerm Variable
Values

The following functions can be used to return values from the IDL_FileTerm
variable. They return the same information contained in the global variable, but in a
functional form. This is the preferred way to access the IDL_FileTerm information,
as it will work on any platform.

char *IDL_FileTermName(void)

This function returns the value of IDL_FileTerm.name. This function is only
available under UNIX.

int IDL_FileTermIsTty(void)

This function returns the value of IDL_FileTerm.is_tty. This function is only
available under UNIX.
Terminal Information External Development Guide

Chapter 20: IDL Internals: Miscellaneous 407
int IDL_FileTermLines(void)

This function returns the value of IDL_FileTerm.lines.

int IDL_FileTermColumns(void)

This function returns the value of IDL_FileTerm.columns.
External Development Guide Terminal Information

408 Chapter 20: IDL Internals: Miscellaneous
Ensuring UNIX TTY State

Under some UNIX operating systems, IDL keeps the users terminal in a raw mode,
required to implement command line editing. On these platforms, externally linked
code that performs output to the terminal will find that the output does not appear as
expected. A usual symptom of this is that newline characters (’\n’) do not move the
cursor to the left margin of the screen, and commands such as more(1) (perhaps
started via the C runtime library system() function) do not control the screen
properly.

This is not an issue for IDL routines such as SPAWN that start sub-programs,
because they are written to be aware of this issue and to ensure the TTY is in the
correct state before they do their work. Externally linked code can call the
IDL_TTYReset() function to do the same thing:

void IDL_TTYReset(void)

This function is available under all operating systems. On systems where such an
operation is not needed, it is a stub. On platforms that require the TTY to be managed
in this way, this operation ensures that the terminal is returned to its standard
configuration.
Ensuring UNIX TTY State External Development Guide

Chapter 20: IDL Internals: Miscellaneous 409
Type Information

The following read-only global variables provide information about IDL data.

Note
Under Microsoft Windows, these global variables are not available; use the
functions listed below to retrieve the values contained in the global variables.

IDL_OutputFormat

An array of pointers to character strings. IDL_OutputFormat is indexed by type
code, and specifies the default output formats for the different data types (see “Type
Codes” on page 262). The default formats are used by the PRINT and STRING built-
in routines as well as for type conversions.

IDL_OutputFormatLen

An array of integers. IDL_OutputFormatLen gives the length in characters of the
corresponding elements of IDL_OutputFormat.

IDL_TypeSize

An array of long integers. IDL_TypeSize is indexed by type code, and gives the size
of the data object used to represent each type.

IDL_TypeName

An array of pointers to character strings. IDL_TypeName is indexed by type code,
and gives a descriptive string for each type.

Functions for Returning Data Type Variable Values

The following functions can be used to return the values contained in the global
variables described above, but in a functional form.

char *IDL_OutputFormatFunc(int type)

Given an IDL type code, this function returns the default output format for that type.
This is equivalent to accessing the IDL_OutputFormat array.
External Development Guide Type Information

410 Chapter 20: IDL Internals: Miscellaneous
int IDL_OutputFormatLenFunc(int type)

Given an IDL type code, this function returns the default output format length for that
type. This is equivalent to accessing the IDL_OutputFormatLen array.

int IDL_TypeSizeFunc(int type)

Given an IDL type code, this function returns the size of the data object used to
represent that type. This is equivalent to accessing the IDL_TypeSize array.

char *IDL_TypeNameFunc(int type)

Given an IDL type code, this function returns the name of the type as a null
terminated character string. This is equivalent to accessing the IDL_TypeName
array.
Type Information External Development Guide

Chapter 20: IDL Internals: Miscellaneous 411
User Information

Use the IDL_GetUserInfo() function to get information about the current session.
This is the sort of information that can be used in the header of files produced by
graphics drivers. It is used, for example, by the PostScript driver:

void IDL_GetUserInfo(IDL_USER_INFO *user_info)

where the IDL_USER_INFO struct is defined as:

typedef struct {
char *logname; /* User’s login name */
char *homedir; /* User’s home directory */
char *pid; /* The process ID */
char host[64]; /* Machine name */
char wd[IDL_MAXPATH+1]; /* Working Directory */

char date[25]; /* Current System Time */
} IDL_USER_INFO;
External Development Guide User Information

412 Chapter 20: IDL Internals: Miscellaneous
Constants

Preprocessor constants defined in the idl_export.h file should be used in
preference to hardwired values. To accommodate the needs of various operating
systems, some of these constants have different values in different versions of IDL.
Those constants that are not discussed elsewhere in this book are listed below.

IDL_TRUE

A more readable alternative to the constant 1.

IDL_FALSE

A more readable alternative to the constant 0.

IDL_REGISTER

Some C compilers are good at allocating registers, and using the C register
declaration can cause efficiency to suffer. On the other hand, some C compilers
won’t put any variables into registers unless register definitions are used. Our
solution is to use IDL_REGISTER to declare variables we feel should be placed
into registers. For machines that we feel have a good register allocation scheme, we
define IDL_REGISTER to be a null macro. For lesser compilers, it is defined to be
the C register keyword.

IDL_MAX_ARRAY_DIM

The maximum number of dimensions an array can have.

IDL_MAXIDLEN

The maximum number of characters IDL allows in an identifier (variable names,
program names, and so on).

IDL_MAXPATH

The maximum number of characters allowed in a filepath.
Constants External Development Guide

Chapter 20: IDL Internals: Miscellaneous 413
Macros

The macros defined in idl_export.h handle recurring small jobs. Those macros
not discussed elsewhere in this book are covered here.

IDL_ABS(x)

IDL_ABS() accepts a single argument of any numeric C type, and returns its absolute
value. IDL_ABS() evaluates its argument more than once, so be careful to avoid
unwanted side effects, and for efficiency do not call it with a complex expression.

IDL_CARRAY_ELTS(arr)

This macro encapsulates a common C language idiom for determining the number of
elements in a statically defined array without requiring the programmer to provide a
constant or otherwise hardwire the length. It’s use improves the robustness of code
that uses it by automatically adapting to any change in the definition of the array
without requiring additional programmer effort. This macro corresponds directly to
the C expression:

sizeof(arr)/sizeof(arr[0])

The C compiler evaluates this expression at compile time, so there is no additional
runtime cost for using this macro instead of a hardwired constant.

IDL_CHAR(ptr)

IDL_CHAR() casts its argument to be a pointer to char. It is used to convert an
existing pointer into a generic pointer to a memory location.

IDL_CHARA(addr)

IDL_CHARA() takes the address of its argument and casts it to be a pointer to char.
It is used to get a generic pointer to a memory location.

IDL_MIN(x,y) and IDL_MAX(x,y)

The arguments can be of any numeric C type as long as they are compatible with each
other. IDL_MIN() and IDL_MAX() return the smaller and larger of their two
arguments, respectively. These macros evaluate their arguments more than once, so
be careful to avoid unwanted side effects, and for efficiency do not call them with a
complex expression.
External Development Guide Macros

414 Chapter 20: IDL Internals: Miscellaneous
IDL_ROUND_UP(x, m)

IDL_ROUND_UP() returns the value of x rounded up modulo m. m must be a
power of 2. This macro is useful for extending data regions out to a specified
alignment.

IDL_TRUE and IDL_FALSE

When performing logical expression evaluation the C programming language, in
which IDL is written, treats zero (0) as False, and non-zero as True, and when
returning the result of such an expression, uses 1 for True and 0 for False.
IDL_TRUE is defined as the constant 1, and IDL_FALSE is defined as the constant
0. These constants are used internally by IDL.
Macros External Development Guide

Part III: Techniques
That Use IDL’s Internal

API

Chapter 21

Adding System
Routines
This chapter discusses the following topics:
IDL and System Routines 418
The System Routine Interface 419
Example: Hello World 420
Example: Doing a Little More (MULT2) . 421
Example: A Complete Numerical Routine
Example (FZ_ROOTS2) 424

Example: An Example Using Routine Design
Iteration (RSUM) 433
Registering Routines 443
Enabling and Disabling System Routines 446
LINKIMAGE . 454
Dynamically Loadable Modules 456
External Development Guide 417

418 Chapter 21: Adding System Routines
IDL and System Routines

An IDL system routine is an IDL procedure or function that is written in a compiled
language with an IDL specific interface, and linked into IDL, instead of being written
in the IDL language itself.The best way to create an IDL system routine is to compile
and link the routine into a sharable library and then to add the routine to IDL at
runtime using either the LINKIMAGE procedure or by making your routines part of
a Dynamically Loadable Module (DLM).

Note
RSI recommends the use of Dynamically Loadable Modules rather than
LINKIMAGE whenever possible. The small additional effort is more than
compensated for by the superior integration into IDL.

This chapter explains how to write a system routine, including several examples, and
discusses the various options for adding such routines to IDL.
IDL and System Routines External Development Guide

Chapter 21: Adding System Routines 419
The System Routine Interface

All IDL system routines must supply the same calling interface to the system,
differing only in that system functions must return an IDL_VPTR to the
IDL_VARIABLE that contains the result while system procedures do not return
anything. Typical system routine definitions are:

IDL_VPTR my_function(int argc, IDL_VPTR argv[], char *argk)
void my_procedure(int argc, IDL_VPTR argv[], char *argk)

System routines that do not accept keywords are called with two arguments:

argc

The number of elements in argv.

argv

An array of IDL_VPTRs. These point to the IDL_VARIABLEs which comprise the
arguments to the function.

System routines that accept keywords are called with an additional third argument:

argk

The keywords which were present when the routine was called. argk is an opaque
object—the called routine is not intended to understand its contents. argk is provided
to the function IDL_KWProcessByOffset(), which processes the keywords in a
standard way. For more information on keywords, see “IDL Internals: Keyword
Processing” on page 269.
External Development Guide The System Routine Interface

420 Chapter 21: Adding System Routines
Example: Hello World

Thanks to the definitive text on the C language (Kernighan and Ritchie, The C
Programming Language, Prentice Hall, NJ, Second Edition, 1988), the “Hello
World” program is often used as an example of a trivial program. Our version of this
program is a system function that returns a scalar string containing the text “Hello
World!”:

#include <stdio.h>
#include "idl_export.h"

IDL_VPTR hello_world(int argc, IDL_VPTR argv[])
{

return(IDL_StrToSTRING("Hello World!"));
}

This is about as simple as an IDL system routine can be. The function
IDL_StrToSTRING(), returns a temporary variable which contains a scalar string.
Since this is exactly what is wanted, hello_world() simply returns the variable.

After compiling this function into a sharable object (named, for example, hello_exe),
we can link it into IDL with the following LINKIMAGE call:

LINKIMAGE, 'HELLO_WORLD', 'hello_exe', 1, 'hello_world', $
MAX_ARGS=0, MIN_ARGS=0

We can now issue the IDL command:

PRINT, HELLO_WORLD()

In response, IDL writes to the screen:

Hello World!
Example: Hello World External Development Guide

Chapter 21: Adding System Routines 421
Example: Doing a Little More (MULT2)

The system function shown in the following figure does a little more than the
previous one, though not by much. It expects a single argument, which must be an
array. It returns a single-precision, floating-point array that contains the values from
the argument multiplied by two.

Each line is numbered to make discussion easier. These numbers are not part of the
actual program. Each line of this routine is discussed below:

1-2

Include the required header files.

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include <stdio.h>
#include "idl_export.h"

IDL_VPTR mult2(int argc, IDL_VPTR argv[])
{
 IDL_VPTR dst, src;
 float *src_d, *dst_d;
 int n;
 src = dst = argv[0];

 IDL_ENSURE_SIMPLE(src);
 IDL_ENSURE_ARRAY(src);

 if (src->type != IDL_TYP_FLOAT)
 src = dst = IDL_CvtFlt(1, argv);

 src_d = dst_d = (float *) src->value.arr->data;

 if (!(src->flags & IDL_V_TEMP))
 dst_d = (float *)
 IDL_MakeTempArray(IDL_TYP_FLOAT,src->value.arr->n_dim,
 src->value.arr->dim,
 IDL_ARR_INI_NOP, &dst);

 for (n = src->value.arr->n_elts; n--;)
 *dst_d++ = 2.0 * *src_d++;

 return(dst);
}

Table 21-1: mult2.c
External Development Guide Example: Doing a Little More (MULT2)

422 Chapter 21: Adding System Routines
4

Every system routine takes the same two or three arguments. argc is the number of
arguments, argv is an array of arguments. This routine does not accept keywords, so
argk is not present.

6

dst will become a pointer to the resulting variable’s descriptor. src points at the input
variable which is found in argv[0].

7

src_d and dst_d will point to the source and destination data areas.

8

n will contain the number of elements in src.

10

Assume, for now, that the input variable will serve as both the source and destination.
This will only be true if the parameter is a temporary floating-point array.

11-12

Screen out any input that is not of a basic type, and only allow arrays. A better
version of this routine would handle scalar input also, but we want to keep the
example simple.

14

If the input is not of IDL_TYP_FLOAT, we call the IDL_CvtFlt() function to
create a floating-point copy of the argument (see “Converting to Specific Types” on
page 356 for information about converting types).

Note that the routine could also be written, more efficiently, with a C switch
statement which would handle each of the eight possible data types, eliminating
conversion of the input parameter. This would be more in the spirit of the IDL
language, where system routines work with all possible data types and sizes, but is
outside the scope of this example.

17

Here, we initialize the pointers to the source and destination data areas from the array
block structure pointed to by the input variable descriptor.
Example: Doing a Little More (MULT2) External Development Guide

Chapter 21: Adding System Routines 423
19-23

If the input variable is not a temporary variable, we cannot change its value and
return it as the function result. Instead, we allocate a new temporary floating point
array into which the result will be placed. Notice how the number of dimensions and
their sizes are taken from the source variable array block. See “Array Variables” on
page 305 and “Temporary Variables” on page 313.

25

Loop over each element of the arrays.

26

Do the multiplication for each element.

28

Return the temporary variable containing the result.

Testing the Example

Once we have compiled the function and linked it into IDL (possibly using
LINKIMAGE), we can use the built-in IDL function INDGEN to test the new
function, which we name MULT2. INDGEN returns an array of values with each
element set to the value of its array index. Therefore, the statement:

PRINT, INDGEN(5)

prints the following on the screen:

0 1 2 3 4

To test our new function we use INDGEN to provide an input argument:

PRINT, MULT2(INDGEN(5))

The result, as expected, is:

0.00000 2.00000 4.00000 6.00000 8.00000
External Development Guide Example: Doing a Little More (MULT2)

424 Chapter 21: Adding System Routines
Example: A Complete Numerical Routine
Example (FZ_ROOTS2)

The following is a complete implementation of the IDL system function FZ_ROOTS,
used to find the roots of an m-degree complex polynomial, using Laguerre’s method.
The result is an m-element complex vector. We call this version FZ_ROOTS2 to
avoid a name clash with the real routine. FZ_ROOTS2 has an additional keyword,
TC_INPUT, that is not present in the real routine.

FZ_ROOTS2 uses the routine zroots(), described in section 9.5 of Numerical
Recipes in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press:

void zroots(fcomplex a[], int m, fcomplex roots[], int polish)

Quoting from the referenced book:

Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial ,

this routine successively calls laguer and finds all m complex roots in roots[1..m].
The boolean variable polish should be input as true (1) if polishing (also by
Laguerre’s method) is desired, false (0) if the roots will be subsequently polished by
other means.

FZ_ROOTS2 will support both single and double precision complex values as well
as give the caller control over the error tolerance, which is hard wired into the
Numerical Recipes code as a C preprocessor constant named EPS. In order to support
these requirements, we have copied the zroots() function given in the book and
altered it to support both data types and make EPS a user specified parameter, giving
two functions:

void zroots_f(fcomplex a[], int m, fcomplex roots[], int polish,
float eps);

void zroots_d(dcomplex a[], int m, dcomplex roots[], int polish,
double eps);

Note that fcomplex and dcomplex are Numerical Recipes defined types that happen
to have the same definition as the IDL types IDL_COMPLEX and
IDL_DCOMPLEX, a convenient fact that eliminates some type conversion issues.

The definition of FZ_ROOTS2 from the IDL user perspective is:

a i()xi
i 0=

m
∑

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 425
Calling Sequence

Result = FZ_ROOTS2(C)

Arguments

C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order.

Keywords

DOUBLE

FZ_ROOTS2 normally uses the type of C to determine the type of the computation. If
DOUBLE is specified, it overrides this default. Setting DOUBLE to a non-zero value
causes the computation type and the result to be double precision complex. Setting it
to zero forces single precision complex.

EPS

The desired fractional accuracy. The default value is 2.0 ¥ 10-6.

NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’s method.

TC_INPUT

If present, TC_INPUT specifies a named variable that will be assigned the input
value C, with its type converted to the type of the result.

Example

The following figure gives the code for fzroots2.c,. This is ANSI C code that
implements FZ_ROOTS2. The line numbers are not part of the code and are present
to make the discussion easier to follow. Each line of this routine is discussed below.
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

426 Chapter 21: Adding System Routines
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include <stdio.h>
#include <stdarg.h>
#include "idl_export.h"
#include <nr/nr.h>

IDL_VPTR fzroots2(int argc, IDL_VPTR *argv, char *argk)
{
 typedef struct {
 IDL_KW_RESULT_FIRST_FIELD; /* Must be first entry in this
structure */
 int force_type;
 IDL_LONG do_double;
 double eps;
 IDL_LONG no_polish;
 IDL_VPTR tc_input;
 } KW_RESULT;
 static IDL_KW_PAR kw_pars[] = {
 {"DOUBLE", IDL_TYP_LONG, 1, 0,
 IDL_KW_OFFSETOF(force_type), IDL_KW_OFFSETOF(do_double) },
 { "EPS", IDL_TYP_DOUBLE, 1, 0, 0, IDL_KW_OFFSETOF(eps) },
 { "NO_POLISH", IDL_TYP_LONG, 1, IDL_KW_ZERO,
 0, IDL_KW_OFFSETOF(no_polish) },
 { "TC_INPUT", 0, 1, IDL_KW_OUT|IDL_KW_ZERO,
 0, IDL_KW_OFFSETOF(tc_input) },
 { NULL }
 };

 KW_RESULT kw;
 IDL_VPTR result;
 IDL_VPTR c_raw;
 IDL_VPTR c_tc;
 IDL_MEMINT m;
 void *outdata;
 IDL_ARRAY_DIM dim;
 int rtype;
 static IDL_ALLTYPES zero;

 kw.eps = 2.0e-6;
 (void) IDL_KWProcessByOffset(argc, argv, argk,
kw_pars,&c_raw,1,&kw);

 IDL_ENSURE_ARRAY(c_raw);
 IDL_ENSURE_SIMPLE(c_raw);
 if (c_raw->value.arr->n_dim != 1)
 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "Input argument must be a column vector.");
 m = c_raw->value.arr->dim[0];
 if (--m <= 0)
 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "Input array does not have enough elements");
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 427
4

nr.h is the header file provided with Numerical Recipes in C code.

6

FZROOTS2 has the usual three standard arguments.

C

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

 if (kw.tc_input)
 IDL_StoreScalar(kw.tc_input, IDL_TYP_LONG, &zero);

 if (kw.force_type) {
 rtype = kw.do_double ? IDL_TYP_DCOMPLEX : IDL_TYP_COMPLEX;
 } else {
 rtype = ((c_raw->type == IDL_TYP_DOUBLE)
 || (c_raw->type == IDL_TYP_DCOMPLEX))
 ? IDL_TYP_DCOMPLEX : IDL_TYP_COMPLEX;
 }
 dim[0] = m;
 outdata = (void *)
 IDL_MakeTempArray(rtype,1,dim,IDL_ARR_INI_NOP,&result);

 if (c_raw->type == rtype) {
 c_tc = c_raw;
 } else {
 c_tc = IDL_BasicTypeConversion(1, &c_raw, rtype);
 }

 if (rtype == IDL_TYP_COMPLEX) {
 zroots_f((fcomplex *) c_tc->value.arr->data, m,
 ((fcomplex *)outdata)-1,!kw.no_polish,(float) kw.eps);
 } else {
 zroots_d((dcomplex *) c_tc->value.arr->data, m,
 ((dcomplex *) outdata) - 1, !kw.no_polish, kw.eps);
 }

 if (kw.tc_input) IDL_VarCopy(c_tc, kw.tc_input);
 else if (c_raw != c_tc) IDL_Deltmp(c_tc);

 IDL_KW_FREE;
 return result;
}

Table 21-2: fzroots2.c (Continued)
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

428 Chapter 21: Adding System Routines
10

kw.force_type will be TRUE if the user specifies the DOUBLE keyword. In this
case, the value of the DOUBLE keyword will determine the result type without
regard for the type of the input argument.

If the user specifies DOUBLE, a zero value forces a single precision complex result
and non-zero forces double precision complex.

12

The value of the EPS keyword.

13

The value of the NO_POLISH keyword.

14

The value of the TC_INPUT keyword.

16

This array defines the keywords accepted by FZ_ROOTS2.

17

Since setting DOUBLE to 0 has a different meaning than not specifying the keyword
at all, kw.force_type is used to detect the fact that the keyword is set independent of
its value.

19

The EPS keyword allows the user to specify the kw.eps tolerance parameter. kw.eps
is specified as double precision to avoid losing accuracy for double precision
computations—it will be converted to single precision if necessary. The default value
for this keyword is non-zero, so no zeroing is specified here. If the user includes the
EPS keyword, the value will be placed in kw.eps, otherwise kw.eps will not be
changed.

20

This keyword lets the user suppress the usual polishing performed by zroots(). Since
specifying a value of 0 is equivalent to not specifying the keyword at all,
IDL_KW_ZERO is used to initialize the variable.
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 429
22

If present, TC_INPUT is an output keyword that will have the type converted value
of the input argument stored in it. By specifying IDL_KW_OUT and
IDL_KW_ZERO, we ensure that TC_INPUT is either zero or a pointer to a valid
IDL variable.

27

The results of keyword processing will all be written to this variable by
IDL_KWProcessByOffset().

28

This variable will receive the function result.

29

The input argument prior to any type conversion.

30

The type converted input variable. If the input variable is already of the correct type,
this will be the same as c_raw, otherwise it will be different.

31

The value of m to be passed to zroots().

32

Pointer to the data area of the result variable. We declare it as (void *) so that it
can point to data of any type.

33

Used to specify dimensions of the result. This will always be a vector of m elements.

34

IDL type code for result variable.

35

Used by IDL_StoreScalar() to type check the TC_INPUT keyword. It is declared as
static to ensure it is initialized to zero.
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

430 Chapter 21: Adding System Routines
37

Set the default EPS value before doing keyword processing. If the user specifies EPS,
the supplied value will override this. Otherwise, this value will still be in kw.eps and
will be passed to zroots() unaltered.

38

Perform keyword processing.

40-41

Ensure that the input argument is an array, and is one of the basic types (not a file
variable or structure).

42-44

The input variable must be a vector, and therefore should have only a single
dimension.

45-48

Ensure that the input variable is long enough for m to be non-zero. m is one less than
the number of elements in the input vector, so this is equivalent to saying that the
input must have at least 2 elements.

49

If the TC_INPUT keyword was present, use IDL_StoreScalar() to make sure the
named variable specified can receive the converted input value. A nice side effect of
this operation is that any dynamic memory currently being used by this variable will
be freed now instead of later after we have allocated other dynamic memory. This
freed memory might be immediately reusable if it is large enough, which would
reduce memory fragmentation and lower overall memory requirements.

52

If the user specified the DOUBLE keyword, it is used to control the resulting type,
otherwise the input argument type is used to decide.

53

The DOUBLE keyword was specified. If it is non-zero, use
IDL_TYP_DCOMPLEX, otherwise IDL_TYP_COMPLEX.
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 431
55-57

Use the input type to decide the result type. If the input is IDL_TYP_DOUBLE or
IDL_TYP_DCOMPLEX, use IDL_TYP_DCOMPLEX, otherwise
IDL_TYP_COMPLEX.

59-61

Create the output variable that will be passed back as the result of FZ_ROOTS2.

63-67

If necessary, convert the input argument to the result type. This is done after creation
of the output variable because it is likely to have a short lifetime. If it does get freed at
the end of this routine, it won’t cause memory fragmentation by leaving a hole in the
process virtual memory.

69

The version of zroots() to call depends on the data type of the result.

70-71

Single precision complex. Note that the outdata pointer is decremented by one
element. This compensates for the fact that the Numerical Recipe routine will index it
from [1..m] rather than [0..m-1] as is the usual C convention. Also, kw.eps is cast to
single precision.

73-74

Double precision complex case.

77

If the user specified the TC_INPUT keyword, copy the type converted input into the
keyword variable. Since VarCopy() frees its source variable if it is a temporary
variable, we are relieved of the usual responsibility to call IDL_Deltmp() if c_tc
contains a temporary variable created on line 66.

78

The user didn’t specify the TC_INPUT keyword. In this case, if we allocated c_tc on
line 66, we must free it before returning.
External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

432 Chapter 21: Adding System Routines
80

Free any resources allocated by keyword processing.

81

Return the result.
Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 433
Example: An Example Using Routine Design
Iteration (RSUM)

We now show how a simple routine can be developed in stages. RSUM is a function
that returns the running sum of the values in its single input argument. We will
present three versions of this routine, each one of which represents an improvement
in functionality and flexibility.

All three versions use the function IDL_MakeTempFromTemplate(), described in
“Creating A Temporary Variable Using Another Variable As A Template” on
page 317. The result of RSUM always has the same general shape and dimensions as
the input argument. IDL_MakeTempFromTemplate() encapsulates the task of
creating a temporary variable of the desired type and shape using the input argument
as a template.
External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

434 Chapter 21: Adding System Routines
Running Sum (Example 1)

The first example of RSUM is very simple. Here is a simple “Reference Manual”
style description of it:

RSUM1

Compute a running sum on the array input. The result is a floating point array of the
same dimensions.

Calling Sequence

Result = RSUM1(Array)

Arguments

Array

Array for which a running sum will be computed.

This is a minimal design that lacks some important characteristics that IDL
system routines usually embody:

• It does not handle scalar input.

• The type of the input is inflexible. IDL routines usually try to handle any
input type and do whatever type conversions are necessary.

• The result type is always single precision floating point. IDL routines
usually perform computations in the type of the input arguments and return
a value of the same type.
Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 435
We will improve on this design in our subsequent attempts. The code to implement
RSUM1 is shown in the following figure. The line numbers are not part of the code
and are present to make the discussion easier to follow. Each line of this routine is
discussed below:

1

The standard signature for an IDL system function that does not accept keywords.

3

This variable is used to access the input argument in a convenient way.

4

This IDL_VPTR will be used to return the result.

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

IDL_VPTR IDL_rsum1(int argc, IDL_VPTR argv[])
{
 IDL_VPTR v;
 IDL_VPTR r;
 float *f_src;
 float *f_dst;
 IDL_MEMINT n;

 v = argv[0];
 if (v->type != IDL_TYP_FLOAT)
 IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
 "argument must be float");
 IDL_ENSURE_ARRAY(v);
 IDL_EXCLUDE_FILE(v);

 f_dst = (float *)
IDL_VarMakeTempFromTemplate(v, IDL_TYP_FLOAT,

(IDL_StructDefPtr) 0, &r, FALSE);
 f_src = (float *) v->value.arr->data;
 n = v->value.arr->n_elts - 1;
 *f_dst++ = *f_src++;/* First element */
 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;

 return r;
}

Table 21-3: Code for IDL_rsum1()
External Development Guide Running Sum (Example 1)

436 Chapter 21: Adding System Routines
5–6

As the running sum is computed, f_src will point at the input data and f_dst will
point at the output data.

7

The number of elements in the input.

10

Obtain the input variable pointer from argv[0].

11

If the input is not single precision floating point, throw an error and quit. This is
overly rigid. Real IDL routines would attempt to either type convert the input or do
the computation in the input type.

14

This version can only handle arrays. If the user passes a scalar, it throws an error.

15

This routine cannot handle ASSOC file variables. Most IDL routines exclude such
variables as they do not contain any data to work with. ASSOC variable data usually
comes into a routine as the result of an expression that yields a temporary variable
(e.g. TMP = RSUM(MY_ASSOC_VAR(2))).

17

Create a single precision floating point temporary variable of the same size as the
input variable and get a pointer to its data area.

20

Get a pointer to the data area of the input variable. At this point we know this variable
is always a floating point array.

21

The number of data elements in the input.
Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 437
22-23

The running sum computation.

25

Return the result.

Running Sum (Example 2)

In our second example of RSUM, we improve on version 1 in several ways:

• RSUM2 accepts scalar input.

• If the input is not of floating type, we type convert it instead of throwing an
error.

• If the input is a temporary variable of the correct type, we will do the running
sum computation in place and return the input as our result variable rather than
creating an extra temporary. This optimization reduces memory use, and can
have positive effects on dynamic memory fragmentation.

As always, the first step in writing a system routine is to write a simple description of
its interface and intended behavior:

RSUM2

Compute a running sum on the input. The result is a floating point variable with the
same structure.

Calling Sequence

Result = RSUM2(Input)

Arguments

Input

Scalar or array data of any numeric type for which a running sum will be
computed.
External Development Guide Running Sum (Example 1)

438 Chapter 21: Adding System Routines
The following is the code for RSUM2:

Discussion of the code for the improvements introduced in this version follow:

10

If the input has the wrong type, obtain one of the right type. If it was already of the
correct type, IDL_BasicTypeConversion() will simply return the input value
without allocating a temporary variable. Hence, no explicit check for that is required.
Also, if the input argument cannot be converted to the desired type (e.g. it is a
structure or file variable) IDL_BasicTypeConversion() will throw an error. Hence,
we know that the result from this function will be what we want without requiring
any further checking.

C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

IDL_VPTR IDL_rsum2(int argc, IDL_VPTR argv[])
{
 IDL_VPTR v;
 IDL_VPTR r;
 float *f_src;
 float *f_dst;
 IDL_MEMINT n;

 v = IDL_BasicTypeConversion(1, argv, IDL_TYP_FLOAT);
 /* IDL_BasicTypeConversion calls IDL_ENSURE_SIMPLE, so
 skip it here. */
 IDL_VarGetData(v, &n, (char **) &f_src, FALSE);

 /* Get a result var, reusing the input if possible */
 if (v->flags & V_TEMP) {
 r = v;
 f_dst = f_src;
 } else {
 f_dst = (float *)

IDL_VarMakeTempFromTemplate(v, IDL_TYP_FLOAT,
(IDL_StructDefPtr) 0, &r, FALSE);

 }

 *f_dst++ = *f_src++;/* First element */
 n--;
 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;

 return r;
}

Table 21-4: Code for IDL_rsum2().
Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 439
13

IDL_VarGetData() is a more elegant way to obtain a pointer to variable data along
with a count of elements. A further benefit is that it automatically handles scalar
variables which removes the restriction from RSUM1.

15–23

If the input variable is a temporary, we will do the computation in place and return
the input. Otherwise, we create a temporary variable of the desired type to be the
result.

Note that if IDL_BasicTypeConversion() returned a pointer to anything other than
the passed in value of argv[0], that value will be a temporary variable which will then
be turned into the function result by this code. Hence, we never free the value from
IDL_BasicTypeConversion().

Running Sum (Example 3)

RSUM2 is a big improvement over RSUM1, but it still suffers from the fact that all
computation is done in a single data type. A real IDL system routine always tries to
perform computations in the most significant type presented by its arguments. In a
single argument case like RSUM, that would mean doing computations in the input
data type whatever that might be. Our final version, RSUM3, resolves this
shortcoming.

RSUM3

Compute a running sum on the input. The result is a variable with the same type and
structure as the input.

Calling Sequence

Result = RSUM3(Input)

Arguments

Input

Scalar or array data of any numeric type for which a running sum will be
computed.

The code for RSUM3 is given in the following figure. Discussion of the code for the
improvements introduced in this version follow:
External Development Guide Running Sum (Example 1)

440 Chapter 21: Adding System Routines
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

cx_public IDL_VPTR IDL_rsum3(int argc, IDL_VPTR argv[])
{

IDL_VPTR v, r;
union {
char *sc; /* Standard char */
UCHAR *c; /* IDL_TYP_BYTE */
IDL_INT *i; /* IDL_TYP_INT */
IDL_UINT *ui; /* IDL_TYP_UINT */
IDL_LONG *l; /* IDL_TYP_LONG */
IDL_ULONG *ul; /* IDL_TYP_ULONG */
IDL_LONG64 *l64; /* IDL_TYP_LONG64 */
IDL_ULONG64 *ul64; /* IDL_TYP_ULONG64 */
float *f; /* IDL_TYP_FLOAT */
double *d; /* IDL_TYP_DOUBLE */
IDL_COMPLEX *cmp; /* IDL_TYP_COMPLEX */
IDL_DCOMPLEX *dcmp; /* IDL_TYP_DCOMPLEX */

} src, dst;
IDL_LONG n;

v = argv[0];
if (v->type == IDL_TYP_STRING)

v = IDL_BasicTypeConversion(1, argv, IDL_TYP_FLOAT);
IDL_VarGetData(v, &n, &(src.sc), TRUE);
n--; /* First is a special case */

/* Get a result var, reusing the input if possible */
if (v->flags & IDL_V_TEMP) {

r = v;
dst = src;

} else {
dst.sc = IDL_VarMakeTempFromTemplate(v, v->type,

(IDL_StructDefPre) 0, &r, FALSE);
}

#define DOCASE(type, field) \
case type: for (*dst.field++ = *src.field++; n--;dst.field++)\

*dst.field = *(dst.field - 1) + *src.field++; break

Table 21-5: Code for IDL_rsum3
Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 441
17

f_src and f_dst are no longer pointers to float. They are now the IDL_ALLPTR
type, which can point to data of any IDL type. To reflect this change in scope, the
leading f_ prefix has been dropped.

22-23

Strings are the only input type that now require conversion. The other types can either
support the computation, or are not convertable to a type that can.

36-38

The code for the running sum computation is logically the same for all non-complex
data types, differing only in the IDL_ALLPTR field that is used for each type.

C

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

#define DOCASE_CMP(type, field) case type: \
for (*dst.field++ = *src.field++; n--; \

dst.field++, src.field++) { \
dst.field->r = (dst.field - 1)->r + src.field->r; \
dst.field->i = (dst.field - 1)->i + src.field->i; } \

break

switch (v->type) {
DOCASE(IDL_TYP_BYTE, c);
DOCASE(IDL_TYP_INT, i);
DOCASE(IDL_TYP_LONG, l);
DOCASE(IDL_TYP_FLOAT, f);
DOCASE(IDL_TYP_DOUBLE, d);
DOCASE_CMP(IDL_TYP_COMPLEX, cmp);
DOCASE_CMP(IDL_TYP_DCOMPLEX, dcmp);
DOCASE(IDL_TYP_UINT, ui);
DOCASE(IDL_TYP_ULONG, ul);
DOCASE(IDL_TYP_LONG64, l64);
DOCASE(IDL_TYP_ULONG64, ul64);
default: IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,

"unexpected type");
}

#undef DOCASE
#undef DOCASE_CMP

return r;
}

Table 21-5: Code for IDL_rsum3 (Continued)
External Development Guide Running Sum (Example 1)

442 Chapter 21: Adding System Routines
Using a macro for this means that the expression is only typed in once, and the C
compiler automatically fills in the different parts for each data type. This is less error
prone than entering the expression manually for each type, and leads to more
readable code. This is one of the rare cases where a macro makes things more reliable
and readable.

39-44

A macro for the 2 complex types.

46-60

A switch statement that uses the macros defined above to perform the running sum on
all possible types. Note the default case, which traps attempts to compute a running
sum on structures.

61-62

Don’t allow the macros used in the above switch statement to remain defined beyond
the scope of this function.
Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 443
Registering Routines

The IDL_SysRtnAdd() function adds system routines to IDL’s internal tables of
system functions and procedures. As a programmer, you will need to call this
function directly if you are linking a version of IDL to which you are adding routines,
although this is very rare and not considered to be a good practice for maintainability
reasons. More commonly, you use IDL_SysRtnAdd() in the IDL_Load() function
of a Dynamically Loadable Module (DLM). DLMs are discussed in “Dynamically
Loadable Modules” on page 456.

Note
LINKIMAGE or DLMs are the preferred way to add system routines to IDL
because they do not require building a separate IDL program. Of the two, RSI
recommends the use of DLMs whenever possible. These mechanisms are discussed
in the following sections of this chapter.

Syntax

int IDL_SysRtnAdd(IDL_SYSFUN_DEF2 *defs, int is_function, int cnt)

It returns True if it succeeds in adding the routine or False in the event of an error.

Arguments

defs

An array of IDL_SYSFUN_DEF2 structures, one per routine to be declared.
This array must be defined with the C language static storage class because
IDL keeps pointers to it. defs must be sorted by routine name in ascending
lexical order.

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SYSFUN_DEF2 structures contained in the defs array.

The definition of IDL_SYSFUN_DEF2 is:

typedef IDL_VARIABLE *(* IDL_SYSTRN_GENERIC)();
External Development Guide Registering Routines

444 Chapter 21: Adding System Routines
typedef struct {
IDL_SYSRTN_GENERIC funct_addr;
char *name;
unsigned short arg_min;
unsigned short arg_max;
int flags
void *extra;

} IDL_SYSFUN_DEF2;

IDL_VARIABLE structures are described in “The IDL_VARIABLE
Structure” on page 301.

funct_addr

Address of the function implementing the system routine.

name

The name by which the routine is to be invoked from within IDL. This should
be a pointer to a null terminated string. The name should be capitalized. If the
routine is an object method, the name should be fully qualified, which means
that it should include the class name at the beginning followed by two
consecutive colons, followed by the method name (e.g. CLASS::METHOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

The maximum number of arguments allowed for the routine. If the routine
does not place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

flags

A bitmask that provides additional information about the routine. Its value can
be any combination of the following values (bitwise OR-ed together to specify
more than one at a time) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue a warning message if this routine is called and
!WARN.OBS_ROUTINE is set.
Registering Routines External Development Guide

Chapter 21: Adding System Routines 445
IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

IDL_SYSFUN_DEF_F_METHOD

This routine is an object method.

extra

Reserved to Research Systems, Inc. The caller should set this to 0.

Example

The following example shows how to register a system routine linked directly with
IDL. For simplicity, everything is placed in a single file. Normally, you would
modularize things to allow easier code maintenance.

#include <stdio.h>
#include "idl_export.h"

void prox1(int argc, IDL_VPTR argv[])
{

printf("prox1 %d\n", IDL_LongScalar(argv[0]));
}

main(int argc, char *argv[])
{

static IDL_SYSFUN_DEF2 new_pros[] = {
{(IDL_SYSRTN_GENERIC) prox1, "PROX1", 1, 1, 0, 0}

};

if (!IDL_SysRtnAdd(new_pros, IDL_FALSE, 1))
IDL_Message(IDL_M_GENERIC, IDL_MSG_RET,
"Error adding system routine");

return IDL_Main(0, argc, argv);
}

This adds a system procedure named PROX1 which accepts a single argument. It
converts this argument to a scalar longword integer and prints it.
External Development Guide Registering Routines

446 Chapter 21: Adding System Routines
Enabling and Disabling System Routines

The following IDL internal functions allow the enabling and/or disabling of IDL
system routines. Disabled routines throw an error when called from IDL code instead
of performing their usual functions.

These routines are primarily of interest to authors of Runtime or Callable IDL
applications.
Enabling and Disabling System Routines External Development Guide

Chapter 21: Adding System Routines 447
Enabling Routines

The IDL_SysRtnEnable() function is used to enable and/or disable system routines.

Syntax

void IDL_SysRtnEnable(int is_function, IDL_STRING *names,
IDL_MEMINT n, int option,
IDL_SYSRTN_GENERIC disfcn)

Arguments

is_function

Set to TRUE if functions are being manipulated, FALSE for procedures.

names

NULL, or an array of names of routines.

n

The number of names in names.

option

One of the values from the following table which specify what this routine
should do.

Bit Description

IDL_SRE_ENABLE Enable specified routines.

IDL_SRE_ENABLE_EXCLUSIVE Enable specified routines and disable all
others.

IDL_SRE_DISABLE Disable specified routines.

IDL_SRE_DISABLE_EXCLUSIVE Disable specified routines and enable all
others.

Table 21-6: Values for option Argument
External Development Guide Enabling Routines

448 Chapter 21: Adding System Routines
disfcn

NULL, or address of an IDL system routine to be called by the IDL interpreter
for these disabled routines. If this argument is not provided, a default routine is
used.

Result

All routines are enabled/disabled as specified. If a non-existent routine is specified, it
is quietly ignored. Attempts to enable routines disabled for licensing reasons are also
quietly ignored.

Note
The routines CALL_FUNCTION, CALL_METHOD (function and procedure),
CALL_PROCEDURE, and EXECUTE are not real system routines, but are
actually special cases that result in different IDL pcode. For this reason, they cannot
be disabled. However, anything they can call can be disabled, so this is not a serious
drawback.
Enabling Routines External Development Guide

Chapter 21: Adding System Routines 449
Obtaining Enabled/Disabled Routine Names

The IDL_SysRtnGetEnabledNames() function can be used to obtain the names of
all system routines which are currently enabled or disabled, either due to licensing
reasons (i.e., some routines are disabled in IDL demo mode) or due to a call to
IDL_SysRtnEnable().

Syntax

void IDL_SysRtnGetEnabledNames(int is_function,
 IDL_STRING *str, int enabled)

Arguments

is_function

Set to TRUE if a list of functions is desired, FALSE for a list of procedures.

str

Points to a buffer of IDL_STRING descriptors to fill in. The caller must call
IDL_SysRtnNumEnabled() to determine how many such routines exist, and
this buffer must be large enough to hold that number.

enabled

Set to TRUE to receive names of enabled routines, FALSE to receive names of
disabled ones.

Result

The memory supplied via str is filled in with the desired names.
External Development Guide Obtaining Enabled/Disabled Routine Names

450 Chapter 21: Adding System Routines
Obtaining the Number of Enabled/Disabled Routines

The IDL_SysRtnGetEnabledNames() function requires you to supply a buffer large
enough to hold all of the names to be returned. IDL_SysRtnNumEnabled() can be
called to obtain the number of such routines, allowing you to properly size the buffer.

Syntax

IDL_MEMINT IDL_SysRtnNumEnabled(int is_function, int enabled)

Arguments

is_function

Set to TRUE if the number of functions is desired, FALSE for procedures.

enabled

Set to TRUE to receive number of enabled routines, FALSE to receive number
of disabled ones.

Result

Returns the requested count.
Obtaining the Number of Enabled/Disabled Routines External Development Guide

Chapter 21: Adding System Routines 451
Obtaining the Real Function Pointer

The IDL_SysRtnGetRealPtr() routine returns the pointer to the actual internal IDL
function that implements the system function or procedure of the specified name.

This routine can be used to interpose your own code in between IDL and the actual
routine. This process is sometimes called hooking in other systems. To implement
such a hook function, you must use the IDL_SysRtnEnable() function to register the
interposed routine, which in turn uses IDL_SysRtnGetRealPtr() to obtain the actual
IDLfunction pointer for the routine.

Syntax

IDL_SYSRTN_GENERIC IDL_SysRtnGetRealPtr(int is_function,
char *name)

Arguments

is_function

Set to TRUE if functions are being manipulated, FALSE for procedures.

name

The name of function or procedure for which the real function pointer is
required.

Result

If the specified routine...

• exists and is not disabled, it’s function pointer is returned.

• does not exist, a NULL pointer is returned.

• has been disabled by the user, its actual function pointer is returned.

• has been disabled for licensing reasons, the real function pointer does not exist,
and the pointer to its stub is returned.

Note
This routine can cause an IDL_MSG_LONGJMP message to be issued if the
function comes from a DLM and the DLM load fails due to memory allocation
errors. Therefore, it must not be called unless the IDL interpreter is active. The
External Development Guide Obtaining the Real Function Pointer

452 Chapter 21: Adding System Routines
prime intent for this routine is to call it from the stub routine of a disabled function
when the interpreter invokes the associated system routine.
Obtaining the Real Function Pointer External Development Guide

Chapter 21: Adding System Routines 453
Obtaining the IDL Name of the Current System
Routine

To get the IDL name for the currently executing system routine, use the
IDL_SysRtnGetCurrentName().

Syntax

char *IDL_SysRtnGetCurrentName(void)

This function returns a pointer to the name of the currently executing system
routine. If there is no currently executing system routine, a NULL (0) pointer
is returned.

This routine will never return NULL if called from within a system routine.
External Development Guide Obtaining the IDL Name of the Current System Routine

454 Chapter 21: Adding System Routines
LINKIMAGE

The IDL user level LINKIMAGE procedure makes the functionality of the
IDL_SysRtnAdd() function available to IDL programs. It allows IDL programs to
merge routines written in other languages with IDL at run-time. Each call to
LINKIMAGE defines a new system procedure or function by specifying the routine’s
name, the name of the file containing the code, and the entry point name. The name
of your routine is added to IDL’s internal system routine table, making it available in
the same manner as any other IDL built-in routine.

LINKIMAGE is the easiest way to add your system routines to IDL. It does not
require linking a separate version of the IDL program with your code the way a direct
call to IDL_SysRtnAdd() does, and it does not require writing the extra code
required for a Dynamically Loadable Module (DLM). It is therefore commonly used
for simple applications, and for testing during the development of a system routine.

If you are developing a larger application, or if you intend to redistribute your work,
you should package your routines as Dynamically Loadable Modules, which are
much easier for end-users to install and use than LINKIMAGE calls. You will find
that the small additional programming effort is more than repaid from the time saved
providing support for your code to your users.

If your IDL application relies on code written in languages other than IDL and linked
into IDL using the LINKIMAGE procedure, you must make sure that the routines
declared with LINKIMAGE are linked into IDL before any code that calls them is
restored. In practice, the best way to do this is to make the calls to LINKIMAGE in
your MAIN procedure, and include the code that uses the linked routines in a
secondary .SAV file. In this case your MAIN procedure may look something like
this:

PRO main

;Link the external code.
LINKIMAGE, 'link_function', 'new.dll'

;Restore code that uses linked code.
RESTORE, 'secondary.sav'

;Run your application.
myapp

END
LINKIMAGE External Development Guide

Chapter 21: Adding System Routines 455
In this scenario, the IDL code that calls the LINK_FUNCTION routine (the routine
linked into IDL in the LINKIMAGE call) is contained in the secondary .SAV file
'secondary.sav'.

Note
When creating your secondary .SAV file, you will need to issue the LINKIMAGE
command before calling the SAVE procedure to link your routine into IDL after
you have exited and restarted. The RESOLVE_ALL routine does not resolve
routines linked to IDL with the LINKIMAGE procedure.

Dynamically Loadable Modules do not have this issue, and are the best way to
avoid the problem.
External Development Guide LINKIMAGE

456 Chapter 21: Adding System Routines
Dynamically Loadable Modules

LINKIMAGE can be used to make IDL load your system routines in a simple and
efficient manner. However, it quickly becomes inconvenient if you are adding more
than a few routines. Furthermore, the limitation that the LINKIMAGE call must
happen before any code that calls it is compiled makes it difficult to use and
complicates the process of redistributing your routines to others. IDL offers an
alternative method of packaging your system routines, called Dynamically Loadable
Modules (DLMs), that address these and other problems.

The IDL_SYSFUN_DEF2 structure, which is described in “Registering Routines” on
page 443, contains all the information required by IDL for it to be able to compile
calls to a given system routine and call it:

• A routine signature (Name, minimum and maximum number of arguments, if
the routine accepts keywords).

• A pointer to a compiled language function (usually C) that supplies the
standard IDL system routine interface (argc, argv, argk) and which implements
the desired operation.

IDL does not require the actual code that implements the function until the routine is
called: It is able to compile other routines and statements that reference it based only
on its signature.

DLMs exploit this fact to load system routines on an “as needed” basis. The routines
in a DLM are not loaded by IDL unless the user calls one of them. A DLM consists of
two files:

1. A module description file (human readable text) that IDL reads when it starts
running. This file tells IDL the signature for all system routines contained in
the loadable module.

2. A sharable library that implements the actual system routines.This library must
be coded to present a specific IDL mandated interface (described below) that
allows IDL to automatically load it when necessary without user intervention.

DLMs are a powerful way to extend IDL’s built in system routines. This form of
packaging offers many advantages:

• Unlike LINKIMAGE, IDL automatically discovers DLMs when it starts up
without any user intervention. This makes them easy to install — you simply
copy the two files into a directory on your system where IDL will look for
them.
Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 457
• DLM routines work exactly like standard built in routines, and are
indistinguishable from them. There is no need for the user to load them (for
example, using LINKIMAGE) before compiling code that references them.

• As the amount of code added to IDL grows, using sharable libraries in this way
prevents name collisions in unrelated compiled code from fooling the linker
into linking the wrong code together. DLMs thus act as a firewall between
unrelated code. For example, there are instances where unrelated routines both
use a common third party library, but they require different versions of this
library. A specific example is that the HDF support in IDL requires its own
version of the NetCDF library. The NetCDF support uses a different
incompatible version of this library with the same names. Use of DLMs allows
each module to link with its own private copy of such code.

• Since DLMs are separate from the IDL program, they can be built and
distributed on their own schedule independent of IDL releases.

• System routines packaged as DLMs are effectively indistinguishable from
routines built into IDL by RSI.

Use of sharable libraries in this manner has ample precedent in the computer
industry. Most modern operating systems use loadable kernel modules to keep the
kernel small while the functionality grows. The same technique is used in user
programs in the form of sharable libraries, which allows unrelated programs to share
code and memory space (e.g. a single copy of the C runtime library is used by all
running programs on a given system).

How DLMs Work

IDL manages DLMs in the following manner:

1. When IDL starts, it looks in the current working directory for module
definition (.dlm) files. It reads any file found and adds the routines and
structure definitions thus defined to its internal routine and structure lookup
tables as “stubs”. In the system routine dispatch table, stubs are entries that
inform IDL of the routines existence, but which lack an actual compiled
function to call. They contain sufficient information for IDL to properly
compile calls to the routines, but not to actually call them. Similarly, stub
entries in the structure definition table allow IDL to know that the DLM
supplies the structure definition, but the actual definition is not present.

After the current working directory, IDL searches !DLM_PATH for .dlm files
and adds them to the table in the same manner. The default value of
!DLM_PATH is the directory in the IDL distribution where the binary
External Development Guide Dynamically Loadable Modules

458 Chapter 21: Adding System Routines
executables are kept. This default can be changed by defining the
IDL_DLM_PATH preference (similarly to the way the IDL_PATH preference
works with !PATH). This process happens once at startup, and never again.
This means that IDL’s knowledge of loadable modules is static and
unchangeable once the session is underway. This is very different from the
way !PATH works, and reflects the static nature of built in routines. The
format of .dlm files is discussed in “The Module Description File” on
page 458.

2. The IDL session then continues in the usual fashion until a call to a routine
from a loadable module occurs. At that time, the IDL interpreter notices the
fact that the routine is a stub, and loads the sharable library for the loadable
module that supplies the routine. It then looks up and calls a function named
IDL_Load(), which is required to exist, from the library. It’s job is to replace
the stubs from that module with real entries (by using IDL_SysRtnAdd()) and
otherwise prepare the module for use.

3. Once the module is loaded, the interpreter looks up the routine that caused the
load one more time. If it is still a stub then the module has failed to load
properly and an error is issued. Normally, a full routine entry is found and the
interpreter successfully calls the routine.

4. At this point the module is fully loaded, and cannot be distinguished from a
compiled in part of IDL. A module is only loaded once, and additional calls to
any routine, or access to any structure definition, from the module are made
immediately and without requiring any additional loading.

The Module Description File

The module description file is a simple text file that is read by IDL when it starts. The
information in this file tells IDL everything it needs to know about the routines
supplied by a loadable module. With this information, IDL can compile calls to these
routines and otherwise behave as if it contains the actual routine. The loadable
module itself remains unloaded until a call to one of its routines is made, or until the
user forces the module to load by calling the IDL DLM_LOAD procedure.

Empty lines are allowed in .dlm files. Comments are indicated using the # character.
All text from a # to the end of the line is ignored by IDL and is for the user’s benefit
only.

All other lines start with a keyword indicating the type of information being
conveyed, possibly followed by arguments. The syntax of each line depends on the
keyword. Possible lines are:
Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 459
MODULE Name

Gives the name of the DLM. This should always be the first non-comment line in a
.dlm file.There can only be one MODULE line.

MODULE JPEG

DESCRIPTION DescriptiveText

Supplies a short one line description of the purpose of the module. This information
is displayed by HELP,/DLM. This line is optional.

DESCRIPTION IDL JPEG support

VERSION VersionString

Supplies a version string that can be used by the IDL user to determine which version
of the module will be used. IDL does not interpret this string, it only displays it as
part of the HELP,/DLM output. This line is optional.

VERSION 6a

BUILD_DATE DateString

If present, IDL will display this information as part of the output from HELP,/DLM.
IDL does not parse this string to determine the date, it is simply for the users benefit.
This line is optional.

BUILD_DATE JAN 8 1998

SOURCE SourceString

A short one line description of the person or organization that is supplying the
module. This line is optional.

SOURCE Research Systems, Inc.

CHECKSUM CheckSumValue

This directive is used by RSI to sign the authenticity of the DLMs supplied with IDL
releases. It is not required for user-written DLMs.

STRUCTURE StructureName

There should be one STRUCTURE line in the DLM file for every named structure
definition supplied by the loadable module. If you refer to such a structure before the
External Development Guide Dynamically Loadable Modules

460 Chapter 21: Adding System Routines
DLM is loaded, IDL uses this information to cause the DLM to load. The IDL_Init()
function for the DLM will define the structure.

FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]

PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]

There should be one FUNCTION or PROCEDURE line in the DLM file for every
IDL routine supplied by the loadable module. These lines give IDL the information it
needs to compile calls to these routines before the module is loaded.

RtnName

The IDL user level name for the routine.

MinArgs

The minimum number of arguments accepted by this routine. If not supplied, 0 is
assumed.

MaxArgs

The maximum number of arguments accepted by this routine. If not supplied, 0 is
assumed.

Options

Zero or more of the following:

OBSOLETE

IDL should issue a warning message if this routine is called and
!WARN.OBS_ROUTINE is set.

KEYWORDS

This routine accepts keywords as well as plain arguments.

PROCEDURE READ_JPEG 1 3 KEYWORDS

The IDL_Load() function

Every loadable module sharable library must export a single symbol called
IDL_Load(). This function is called when IDL loads the module, and is expected to
do all the work required to load real definitions for the routines supplied by the
function and prepare the module for use. This always requires at least one call to
Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 461
IDL_SysRtnAdd(). It usually also requires a call to IDL_MessageDefineBlock() if
the module defines any messages. Any other initialization needed would also go here:

int IDL_Load(void)

This function takes no arguments. It is expected to return True (non-zero) if it was
successful, and False (0) if some initialization step failed.

DLM Example

This example creates a loadable module named TESTMODULE. TESTMODULE
provides 2 routines:

TESTFUN

A function that issues a message indicating that it was called, and then returns the
string “TESTFUN” This function accepts between 0 and IDL_MAXPARAMS
arguments, but it does not use them for anything.

TESTPRO

A procedure that issues a message indicating that it was called. This procedure
accepts between 0 and IDL_MAX_ARRAY_DIM arguments, but it does not use
them for anything.

The intent of this example is to show the support code required to write a DLM for a
completely trivial application. This framework can be easily adapted to real modules
by replacing TESTFUN and TESTPRO with other routines.

The first step is to create the module definition file for TESTMODULE, named
testmodule.dlm:

MODULE testmodule
DESCRIPTION Test code for loadable modules
VERSION 1.0
SOURCE Research Systems, Inc.
BUILD_DATE JAN 8 1998
FUNCTION TESTFUN 0 IDL_MAXPARAMS
PROCEDURE TESTPRO 0 IDL_MAX_ARRAY_DIM

The next step is to write the code for the sharable library. The contents of
testmodule.c is shown in the following figure. Comments in the code explain what
each step is doing.
External Development Guide Dynamically Loadable Modules

462 Chapter 21: Adding System Routines
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#include <stdio.h>
#include "idl_export.h"

/* Define message codes and their corresponding printf(3) format
 * strings. Note that message codes start at zero and each one is
 * one less that the previous one. Codes must be monotonic and
 * contiguous. */
static IDL_MSG_DEF msg_arr[] = {
#define M_TM_INPRO 0
 { "M_TM_INPRO", "%NThis is from a loadable module procedure.” },
#define M_TM_INFUN -1
 { "M_TM_INFUN”, "%NThis is from a loadable module function.” },
};

/* The load function fills in this message block handle with the
 * opaque handle to the message block used for this module. The other
 * routines can then use it to throw errors from this block. */
static IDL_MSG_BLOCK msg_block;

/* Implementation of the TESTPRO IDL procedure */
static void testpro(int argc, IDL_VPTR *argv)
{ IDL_MessageFromBlock(msg_block, M_TM_INPRO, IDL_MSG_RET); }

/* Implementation of the TESTFUN IDL function */
static IDL_VPTR testfun(int argc, IDL_VPTR *argv)
{
 IDL_MessageFromBlock(msg_block, M_TM_INFUN, IDL_MSG_RET);
 return IDL_StrToSTRING("TESTFUN");
}

int IDL_Load(void)
{
 /* These tables contain information on the functions and procedures
 * that make up the TESTMODULE DLM. The information contained in these
 * tables must be identical to that contained in testmodule.dlm.
 */
 static IDL_SYSFUN_DEF2 function_addr[] = {
 { testfun, "TESTFUN”, 0, IDL_MAXPARAMS, 0, 0},
 };
 static IDL_SYSFUN_DEF2 procedure_addr[] = {
 { (IDL_SYSTRN_GENERIC) testpro, "TESTPRO”, 0, IDL_MAX_ARRAY_DIM, 0, 0},
 };

 /* Create a message block to hold our messages. Save its handle where
 * the other routines can access it. */
 if (!(msg_block = IDL_MessageDefineBlock("Testmodule”,

IDL_CARRAY_ELTS(msg_arr),
msg_arr))) return IDL_FALSE;

 /* Register our routine. The routines must be specified exactly the same
 * as in testmodule.dlm. */
 return IDL_SysRtnAdd(function_addr, TRUE,

IDL_CARRAY_ELTS(function_addr))
 && IDL_SysRtnAdd(procedure_addr, FALSE,

IDL_CARRAY_ELTS(procedure_addr));
}

Table 21-7: testmodule.c
Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 463
If building a DLM for Microsoft Windows, a linker definition file (testmodule.def) is
also needed. All of these files, along with the commands required to build the module
can be found in the dlm subdirectory of the external directory of the IDL distribution.

Once the loadable module is built, you can cause IDL to find it by doing one of the
following:

• Move to the directory containing the .dlm and sharable library for the
module.

• Define the IDL_DLM_PATH preference to include the directory.

Running IDL to demonstrate the resulting module:

IDL> HELP,/DLM,’testmodule’
** TESTMODULE - Test code for loadable modules (not loaded)
Version:1.0,Build Date:JAN 8 1998,Source:ResearchSystems, Inc.
Path: /home/user/testmodule/external/testmodule.so
IDL> testpro
% Loaded DLM: TESTMODULE.
% TESTPRO: This is from a loadable module procedure.
IDL> HELP,/DLM,’testmodule’
** TESTMODULE - Test code for loadable modules (loaded)
Version:1.0,Build Date:JAN 8 1998,Source:ResearchSystems, Inc.
Path: /home/user/testmodule/external/testmodule.so
IDL> print, testfun()
% TESTFUN: This is from a loadable module function.
TESTFUN

The initial HELP output shows that the module starts out unloaded. The call to
TESTPRO causes the module to be loaded. As IDL loads the module, it prints an
announcement of the fact (similar to the way it announces the .pro files it
automatically compiles to satisfy calls to user routines). Once the module is loaded,
subsequent calls to HELP show that it is present. Calls to routines from this module
do not cause the module to be reloaded (as evidenced by the fact that calling
TESTFUN did not cause an announcement message to be issued).
External Development Guide Dynamically Loadable Modules

464 Chapter 21: Adding System Routines
Dynamically Loadable Modules External Development Guide

Chapter 22

Callable IDL
This chapter discusses the following topics:
Calling IDL as a Subroutine 466
When is Callable IDL Appropriate? 467
Licensing Issues and Callable IDL 470
Using Callable IDL 471
Initialization . 473
Diverting IDL Output 477

Executing IDL Statements 479
Runtime IDL and Embedded IDL 480
Cleanup . 481
Issues and Examples: UNIX 482
Issues and Examples: Microsoft Windows 498
External Development Guide 465

466 Chapter 22: Callable IDL
Calling IDL as a Subroutine

IDL can be called as a subroutine from other programs. This capability is referred to
as Callable IDL to distinguish it from the more common case of calling your code
from IDL (as with CALL_EXTERNAL or as a system routine (LINKIMAGE,
Dynamically Loadable Module)).

How Callable IDL is Implemented

IDL is built in a sharable form that allows other programs to call IDL as a subroutine.
The specific details of how IDL is packaged depend on the platform:

• IDL for UNIX has a small driver program linked to a sharable object library
that contains the actual IDL program.

• IDL for Windows consists of a driver program that implements the user
interface (known as the IDE) linked to a dynamic-link library (DLL) that
contains the actual IDL program.

In all cases, it is possible to link the sharable portion of IDL into your own programs.
Note that Callable IDL is not a separate copy of IDL that implements a library
version of IDL. It is in fact the same code, being used in a different context.
Calling IDL as a Subroutine External Development Guide

Chapter 22: Callable IDL 467
When is Callable IDL Appropriate?

Although Callable IDL is very powerful and convenient, it is not always the best
method of communication between IDL and other programs. There are usually easier
approaches that will solve a given problem. See “Supported Inter-Language
Communication Techniques in IDL” on page 13 for alternatives.

IDL will not integrate with all programs. Understanding the issues described in this
section will help you decide when Callable IDL is and is not appropriate.

Technical Issues Relating to Callable IDL

IDL makes computing easier by raising the level at which IDL users interface with
the computer. It is natural to think that calling IDL from other programs will have the
same effect, and under the correct circumstances this is true. However, using Callable
IDL is not as easy as using IDL. Programmers who wish to use Callable IDL need to
possess the skills described in “Skills Required to Combine External Code with IDL”
on page 23.

Be aware that the same things that make IDL powerful at the user level can make it
difficult to include in other programs. As an interactive, interpreted language, IDL is
a decidedly non-trivial object to add to a process. Unlike a simple mathematical
subroutine, IDL includes a compiler, a language interpreter, and related code that the
caller must work around. As an interactive program, IDL must control the process to
a high degree, which can conflict with the caller’s wishes. The following (certainly
incomplete) list summarizes some of the issues that must be dealt with.

UNIX IDL Signal API

IDL uses UNIX signals to manage many of its features, including exception
handling, user interrupts, and child processes. The exact signals used and the manner
in which they are used can change from IDL release to release as necessary. Although
the IDL signal API (described in “IDL Internals: UNIX Signals” on page 357) allows
you to use signals in an IDL-compatible way, the resulting constraints may require
changes to your code.

IDL Timer API

IDL’s use of the process timer requires you to use the IDL timer API instead of the
standard system routines. This restriction may require changes to some programs.
Under UNIX, the timer module can interrupt system calls. Timers are discussed in
“IDL Internals: Timers” on page 369.
External Development Guide When is Callable IDL Appropriate?

468 Chapter 22: Callable IDL
GUI Considerations

Most applications will call IDL and display IDL graphics in an IDL window.
However, programmers may want to write applications in which they create the
graphical user interface (GUI) and then have IDL draw graphics into windows that
IDL did not create. It is not always possible for IDL to draw into windows that it did
not create for the reasons described below:

X Windows

The IDL X Windows graphics driver can draw in windows it did not create as long as
the window is compatible with the IDL display connection (see Appendix A, “IDL
Direct Graphics Devices” in the IDL Reference Guide manual for details). However,
the design of IDL’s X Windows driver requires that it open its own display
connection and run its own event loop. If your program cannot support a separate
display connection, or if dividing time between two event loops is not acceptable,
consider the following options:

• Run IDL in a separate process and use interprocess communication (possibly
Remote Procedure Calls, to control it.

• If you choose to use Callable IDL, use the IDL Widget stub interface,
described in “Adding External Widgets to IDL” on page 509, to obtain the IDL
display connection, and create your GUI using that connection rather than
creating your own. The IDL event loop will dispatch your events along with
IDL’s, creating a well-integrated system.

Microsoft Windows

At this time, the IDL for Windows graphics driver does not have the ability to draw
into windows that were not created by IDL. However, the ActiveX control described
in Chapter 6, “The IDLDrawWidget ActiveX Control”, can do this.

Program Size Considerations

On systems that support preemptive multitasking, a single huge program is a poor use
of system capabilities. Such programs inevitably end up implementing primitive task-
scheduling mechanisms better left to the operating system.

Troubleshooting

Troubleshooting and debugging applications that call IDL can be very difficult. With
standard IDL, malfunctions in the program are clearly the fault of RSI, and given a
reproducible bug report, we attempt to fix them promptly. A program that combines
IDL with other code makes it difficult to unambiguously determine where the
When is Callable IDL Appropriate? External Development Guide

Chapter 22: Callable IDL 469
problem lies. The level of support RSI can provide in such troubleshooting is
minimal. The programmer is responsible for locating the source of the difficulty. If
the problem is in IDL, a simple program demonstrating the problem must be provided
before we can address the issue.

Threading

IDL uses threads to implement its thread pool functionality, which is used to speed
numerical computation on multi-CPU hardware. Despite this, it is essentially a single
threaded program, and is not designed to be called from different threads of a
threaded application. Attempting to use IDL from any thread other than the main
thread is unsupported, and may cause unpredictable results.

Inter-language Calling Conventions

IDL is written in standard ANSI C. Calling it from other languages is possible, but it
is the programmer’s responsibility to understand the inter-language calling
conventions of the target machine and compiler.

Appropriate Applications of Callable IDL

Callable IDL is most appropriate in the following situations:

• Callable IDL is clearly the correct choice when the resulting program is to be a
front-end that creates a different interface for IDL. For example, you might
wish to turn IDL into an RPC server that uses an RPC protocol not directly
supported by IDL, or use IDL as a module in a distributed system.

• Callable IDL is appropriate if either the calling program or IDL handles all
graphics, including the Graphical User Interface, without the involvement of
the other. Intermediate situations are possible, but more difficult. In particular,
beware of attempts to have two event/message loops.

• Callable IDL is appropriate when the calling program makes little or no use of
signals, timers, or exception handling, or is able to operate within the
constraints imposed by IDL.
External Development Guide When is Callable IDL Appropriate?

470 Chapter 22: Callable IDL
Licensing Issues and Callable IDL

If you intend to distribute an application that calls IDL, note that each copy of your
application must have access to a properly licensed copy of the IDL library. For
availability of a runtime version of IDL, contact RSI or your IDL distributor.
Licensing Issues and Callable IDL External Development Guide

Chapter 22: Callable IDL 471
Using Callable IDL

The process of using Callable IDL has three stages: initialization, IDL use, and
cleanup. Between the initialization and the cleanup, your program contains a
complete active IDL session, just as if a user were typing commands at an IDL>
prompt. In addition to the usual IDL abilities, you can import data from your program
and cause IDL to see it as an IDL variable. IDL can use such data in computations as
if it had created the variable itself. In addition, you can obtain pointers to data
currently held by IDL variables and access the results of IDL computations from your
program.

Note
The functions documented in this chapter should only be used when calling IDL
from other programs—their use in code called by IDL via CALL_EXTERNAL or a
system routine (LINKIMAGE, Dynamically Loadable Module) is not supported
and is certain to corrupt and/or crash the IDL process.

Before calling IDL to execute instructions, you must initialize it. Under UNIX, you
do this by calling IDL_Init(). Under Microsoft Windows, you call IDL_Win32Init()
instead. This is a one-time operation, and must occur before calling any other IDL
function. see “Initialization” on page 473 for complete information on this topic.
Once IDL is initialized, you can:

1. Send IDL commands to IDL for execution. Commands are sent as strings,
using the same syntax as interactive IDL. Note that there is not a separate C
language function for every IDL command—any valid IDL command can be
executed as IDL statements. This approach allows us to keep the callable IDL
API small and simple while allowing full access to IDL’s abilities. This is
explained in “Executing IDL Statements” on page 479.

2. Call any of the several routines that interact with IDL through other means to
perform operations such as:

• Importing data into IDL. (See “Creating an Array from Existing Data” on
page 320.)

• Accessing data within IDL. (See “Looking Up Variables in Current
Scope” on page 330.)

• Changing items in the process, such as signal handling or timers. (See
“IDL Internals: UNIX Signals” on page 357, or “IDL Internals: Timers”
on page 369.)
External Development Guide Using Callable IDL

472 Chapter 22: Callable IDL
• Redirecting IDL output to your own function for processing. See
“Diverting IDL Output” on page 477.

The above list is not complete, but is representative of the possibilities afforded by
Callable IDL.

Cleanup

After all IDL use is complete, but before the program exits, you must call
IDL_Cleanup() to allow IDL to shutdown gracefully and clean up after itself. Once
this has been done, you are not allowed to call IDL again from this process. See
“Cleanup” on page 481.
Using Callable IDL External Development Guide

Chapter 22: Callable IDL 473
Initialization

IDL for UNIX uses the IDL_Init() function (described below) to prepare Callable
IDL for use. IDL for Microsoft Windows uses IDL_Win32Init(), described in
“Initialization: Microsoft Windows” on page 475.

Note
IDL can only be initialized once for a given process; calling IDL_Init() more than
once for a process will cause an error. If you need to reinitialize an IDL session that
is already running, consider using

IDL_ExecuteStr(".reset_session");

Initialization: UNIX

IDL for UNIX uses the IDL_Init() function prepares Callable IDL for use. This must
be the first IDL routine called.

Note
Microsoft Windows applications should not call IDL_Init(). Instead, use
IDL_Win32Init(), described in “Initialization: Microsoft Windows” on page 475.

int IDL_Init(int options, int *argc, char *argv[]);

where:

options

A bitmask used to specify initialization options. The allowed bit values are:

IDL_INIT_EMBEDDED

Setting this bit causes IDL to initialize to run applications from a Save/Restore file
that contains an embedded license. IDL_RuntimeExec() is then used to run the
application(s).

IDL_INIT_GUI

Setting this bit causes IDL to use the IDL Development Environment (IDLDE) GUI
rather than using the standard tty based interface. This option is ignored under
Microsoft Windows.
External Development Guide Initialization

474 Chapter 22: Callable IDL
IDL_INIT_GUI_AUTO

Setting this bit causes IDL to try to use the IDL Development Environment (IDLDE)
GUI. If that fails, IDL uses the standard tty interface. This option is ignored under
Microsoft Windows.

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

IDL_INIT_NOLICALIAS

Our FLEXlm floating licence policy is to alias all IDL sessions that share the same
user/system/display to the same license. If IDL_INIT_NOLICALIAS is set, this IDL
session will force a unique license to be checked out. In this case, we allow the user
to change the DISPLAY environment variable. This is useful for RPC servers that
don’t know where their output will need to go before invocation.

IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)

Indicates to IDL that it is going to be used in a background mode by some other
program, and that IDL will not be in control of the user’s input command processing.

One effect of this is that XMANAGER will realize that the active command line
functionality for processing widget events is not available, and XMANAGER will
block to manage events when it is called rather than return immediately.

Normally under UNIX, if IDL sees that stdin and stdout are ttys, it puts the tty into
raw mode and uses termcap/terminfo to handle command line editing. When using
callable IDL in a background process that isn’t doing input/output to the tty, the
termcap initialization can cause the process to block (because of job control from the
shell) with a message like “Stopped (tty output) idl”. Setting this option prevents all
tty edit functions and disables the calls to termcap. I/O to the tty is then done with a
simple fgets()/printf(). If the IDL_INIT_GUI bit is set, this option is ignored.

For historical reasons, this option used to be called IDL_INIT_NOTTYEDIT. Use
of that name is still supported.

IDL_INIT_QUIET

Setting this bit suppresses the display of the startup announcement and message of
the day.
Initialization External Development Guide

Chapter 22: Callable IDL 475
IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license. IDL_RuntimeExec() is then used to run an IDL application restored from a
Save/Restore file.

argc

As passed by the operating system to main().

argv

As passed by the operating system to main().

IDL_Init() returns TRUE if the initialization is successful, and FALSE for failure.
Arguments not directly intended for IDL are removed from argv and argc is
decremented to match.

Initialization: Microsoft Windows

Under Microsoft Windows, the IDL_Win32Init() function prepares the IDL DLL for
use. IDL_Win32Init() must be called before any other function except
IDL_ToutPush().

Note
Windows applications should not call IDL_Init(), described in the previous section.
IDL_Win32Init() calls IDL_Init() on your behalf at the appropriate time.

int IDL_Win32Init(int iOpts, void *hinstExe, void *hwndExe,
void *hAccel);

where:

iOpts

A bitmask used to specify initialization options. The allowed bit values are:

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license. IDL_RuntimeExec() is then used to run an IDL application restored from a
Save/Restore file.
External Development Guide Initialization

476 Chapter 22: Callable IDL
IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

hinstExe

HINSTANCE from the application that will be calling IDL.

hwndExe

HWND for the application’s main window.

hAccel

Reserved. This argument should always be NULL.

IDL_Win32Init() returns TRUE if the initialization is successful, and FALSE for
failure.
Initialization External Development Guide

Chapter 22: Callable IDL 477
Diverting IDL Output

When using a tty-based interface (available only on UNIX platforms), IDL sends its
output to the screen for the user to see. When using a GUI-based interface (any
platform), the output goes to the IDL log window. The default output function is
automatically installed by IDL at startup. To divert IDL output to a function of your
own design, use IDL_ToutPush() and IDL_ToutPop() to change the output
function called by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() and IDL_ToutPop()) to manage them. The most recently pushed
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL_TOUT_OUTF)(int flags, char *buf, int n);

The arguments to an output function are:

flags

A bitmask of flag values that specify how the text should be output. The allowed bit
values are:

IDL_TOUT_F_STDERR

Send the text to stderr rather than stdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start a new output line. On a tty, this is equivalent to sending
a newline ('\n') character.

buf

The text to be output. There may or may not be a NULL termination, so the character
count provided by n must be used to move only the specified number of characters.

n

The number of characters in buf to be output.
External Development Guide Diverting IDL Output

478 Chapter 22: Callable IDL
IDL_ToutPush()

Use IDL_ToutPush() to push a new output function onto the stack. The most
recently pushed function is the one used by IDL for output.

void IDL_ToutPush(IDL_TOUT_OUTF outf);

IDL_ToutPop()

IDL_ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.

IDL_TOUT_OUTF IDL_ToutPop(void);

Warning
Do not pop an output function you did not push. It is an error to attempt to remove
the last remaining function.
Diverting IDL Output External Development Guide

Chapter 22: Callable IDL 479
Executing IDL Statements

There are two functions that allow you to execute IDL statements.
IDL_ExecuteStr() executes a single command, while IDL_Execute() takes an array
of commands and executes them in order. In both cases, the commands are null
terminated strings—just as they would be typed by an IDL user at the IDL> prompt.
It is important to realize that the full abilities of IDL are available at this point.
Typically, the commands you issue will run IDL programs of varying complexity,
including support routines written in IDL from the IDL Library (found via the IDL
!PATH system variable). This ability to “download” complicated programs into IDL
and then run them via a simple command can be very powerful.

IDL_Execute()

IDL_Execute() executes the command strings in the order given. It returns the value
of !ERROR_STATE.CODE after the final command has executed. If the value of
!ERROR_STATE.CODE is needed for an intermediate command, you should use
IDL_ExecuteStr() instead of IDL_Execute().

int IDL_Execute(int argc, char *argv[]);

argc

The number of commands contained in argv.

argv

An array of pointers to NULL-terminated strings containing IDL statements to
execute.

IDL_ExecuteStr()

IDL_ExecuteStr() returns the value of the !ERROR_STATE.CODE system variable
after the command has executed.

int IDL_ExecuteStr(char *cmd);

cmd

A NULL-terminated string containing an IDL statement to execute.
External Development Guide Executing IDL Statements

480 Chapter 22: Callable IDL
Runtime IDL and Embedded IDL

If you distribute programs that call IDL with a runtime license or an embedded
license, use IDL_RuntimeExec(). After initialization IDL_RuntimeExec() can be
used to run self-contained IDL applications from a Save/Restore file.
IDL_RuntimeExec() restores the file, then attempts to call an IDL procedure named
MAIN. If no MAIN procedure is found, the function attempts to call a procedure with
the same name as the restored Save file. (That is, if the Save file is named
myprog.sav, IDL_RuntimeExec() looks for a procedure named myprog.)

IDL_RuntimeExec() returns TRUE if the operation succeeded and the MAIN
procedure or the named procedure were called. Note that the returned status does not
indicate whether the actual IDL code ran successfully.

int IDL_RuntimeExec(char *file);

where:

file

The complete path specification to the Save file to be restored, in the native syntax of
the platform in use.
Runtime IDL and Embedded IDL External Development Guide

Chapter 22: Callable IDL 481
Cleanup

After your program is finished using IDL (typically just before it exits) it should call
IDL_Cleanup() to allow IDL to shut down gracefully. IDL_Cleanup() returns a
status value that can be passed to Exit().

int IDL_Cleanup(int just_cleanup);

where:

just_cleanup

If TRUE, IDL_Cleanup() does all the process shutdown tasks, but doesn’t actually
exit the process. If FALSE (the usual), the process exits.

Microsoft Windows applications should place this call in their Main WndProc to be
called as a result of the WM_CLOSE message.

switch(msg){
...

case WM_CLOSE:
IDL_Cleanup(TRUE);
any additional processing

 ...
External Development Guide Cleanup

482 Chapter 22: Callable IDL
Issues and Examples: UNIX

Interactive IDL

Under UNIX, IDL_Main() implements IDL as seen by the interactive user. In the
interactive version of IDL as shipped by RSI, the actual main() function simply
decodes its arguments to determine which options to specify and then calls
IDL_Main() to do the rest. IDL_Main() calls exit() and does not return to its caller.

int IDL_Main(int init_options, int argc, char *argv[]);

where:

init_options

The options argument to be passed to IDL_Init().

argc, argv

From main(). Arguments that correspond to options specified via the init_options
argument should be removed and converted to init_options flags prior to calling this
routine.

Compiling Programs That Call IDL

A complete discussion of the issues that arise when compiling and linking C
programs is beyond the scope of this manual. The following is a brief list of basic
concepts to consider when building programs that call IDL.

• Compilers for some languages add underscores at the beginning or end of user
defined names. To check the naming convention employed by your compiler,
use the UNIX nm(1) command to list the symbols exported from an object
file.

If you use only one language, naming details are handled transparently by the
compiler, linker, and debugger. If you use more than one language, problems
can arise if the different compilers use different naming conventions. For
example, the Fortran compiler might add an underscore to the end of each
name, while the C compiler does not. To call a Fortran routine from C, you
must then include this underscore in your code (to call the function my_code,
you would refer to it as my_code_). Note that you may also need to set a
compiler flag to make case significant.
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 483
To determine whether your compilers use compatible naming conventions,
consult your compiler documentation or experiment with small test programs
using the compilers and the nm command.

• Every program starts execution at a known routine. In the C language, this
routine is explicitly named main(). In Fortran, execution begins with the
implicit main program. If you are using Callable IDL, you must provide a
main() function for your program.

• When linking a C program, use the cc command instead of the ld command.
cc calls ld to perform the link operation, and when necessary adds a directive
to ld that causes the C runtime library to be used.

If you don’t use cc to link your program (if you are using ld directly or are
using a Fortran compiler, for example) and you get “unsatisfied symbol” errors
for symbols that are in the standard C library, try including the runtime library
explicitly in your link command. Usually, adding the string -lc to the end of
the command is all that is necessary.

Under Hewlett-Packard’s HP-UX operating system, if you use ld directly you
may also need to include the PA1.1 math library in order to locate
mathematics routines at runtime. Add the flag -L/lib/pa1.1 prior to -lm on
the link line to link with the PA1.1 math libraries.

See “Compilation and Linking Details” on page 31 for advice on how to
compile and link programs with the IDL libraries under various operating
systems.

Example: Calling IDL From C

The program in the following figure(calltest.c, found in the callable
subdirectory of the external subdirectory of the IDL distribution) demonstrates
how to import data from a C program into IDL, execute IDL statements, and obtain
data from IDL variables. It performs the following actions:

1. Create an array of 10 floating point values with each element set to the value of
its index. This is equivalent to the IDL command FINDGEN(10).

2. Initialize Callable IDL.

3. Import the floating point array into IDL as a variable named TMP.

4. Have IDL print the value of TMP.
External Development Guide Issues and Examples: UNIX

484 Chapter 22: Callable IDL
5. Execute a short sequence of IDL statements from a string array:

tmp2 = total(tmp)
print,'IDL total is ',tmp2
plot, tmp

6. Set TMP to zero, causing IDL to release the pointer to the floating point array.

7. Obtain a pointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TMP2 is a scalar floating point
value.

8. From our C program, print the value of the IDL TMP2 variable.

9. Execute a small widget program. Pressing the button allows the program to
end:

a = widget_base()
b = widget_button(a, value='Press When Done',xsize=300,

ysize=200)
widget_control, /realize, a
dummy = widget_event(a)
widget_control, /destroy, a

See “Compilation and Linking Statements” on page 497 for details on
compiling and linking this program.

Each line is numbered to make discussion easier. The line numbers are not part
of the actual program.
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 485
Following is commentary on this program, by line number:

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <stdio.h>
#include "idl_export.h"

static void free_callback(UCHAR *addr)
{
 printf("IDL released(%u)\n", addr);
}

int main(int argc, char **argv)
{
 float f[10];
 int i;
 IDL_VPTR v;
 IDL_MEMINT dim[IDL_MAX_ARRAY_DIM];
 static char *cmds[] = { "tmp2 = total(tmp)",
 "print,’IDL total is ’,tmp2", "plot,tmp" };
 static char *cmds2[] = { "a = widget_base()",
 "b = widget_button(a, value=’Press When Done’, xsize=300,
ysize=200)", "widget_control,/realize, a",
 "dummy = widget_event(a)",
 "widget_control,/destroy, a" };

 for (i=0; i < 10; i++) f[i] = (float) i;
 if (IDL_Init(0, &argc, argv)) {
 dim[0] = 10;
 printf("ARRAY ADDRESS(%u)\n", f);
 if (v=IDL_ImportNamedArray("TMP", 1, dim, IDL_TYP_FLOAT,
 (UCHAR *) f, free_callback, (void *) 0)) {
 (void) IDL_ExecuteStr("print, tmp");
 (void) IDL_Execute(sizeof(cmds)/sizeof(char *), cmds);
 (void) IDL_ExecuteStr("print, ’Free the user memory’");
 (void) IDL_ExecuteStr("tmp = 0");
 if (v = IDL_FindNamedVariable("tmp2", IDL_FALSE))
 printf("Program total is %f\n", v->value.f);
 (void) IDL_Execute(sizeof(cmds2)/sizeof(char *), cmds2);
 IDL_Cleanup(IDL_FALSE); /* Don’t return */
 }
 }

 return 1;
}

Table 22-1: Calling IDL from C on UNIX
External Development Guide Issues and Examples: UNIX

486 Chapter 22: Callable IDL
24

C equivalent to IDL command “F = FINDGEN(10)”

25

Initialize IDL

26–29

Import C array F into IDL as a FLTARR vector named TMP with 10 elements. Note
use of the callback argument free_callback. This function will be called when IDL is
finished with the array F, giving us a chance to properly clean up at that time.

30

Have IDL print the value of TMP.

31

Execute the commands contained in the C string array cmds defined on lines 15–16.
These commands create a new IDL variable named TMP2 containing the sum of the
elements of TMP, print its value, and plot the vector.

32–33

Set TMP to a new value. This will cause IDL to release the user supplied memory
from lines 26–29 and call free_callback.

34–35

From C, get a reference to the IDL variable TMP2 and print its value. This should
agree with the value printed by IDL on line 31. It is important to realize that the
pointer to the variable or anything it points at can only be used until the next call to
execute an IDL statement. After that, the pointer and the contents of the referenced
IDL_VARIABLE may become invalid as a result of IDL’s execution.

36

Run the simple IDL widget program contained in the array C string array cmds2
defined on lines 17–21.

37

Shut down IDL. The IDL_FALSE argument instructs IDL_Cleanup() to exit the
process, so this call should not return.
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 487
41

This line should never be reached. If it is, return the UNIX failing status.

Example: Calling an IDL Math Function

This example demonstrates how to write a simple C wrapper function that allows
calling IDL commands simply from another language. We implement a function
named call_idl_fft() that calls the IDL FFT function operating on data imported from
our C program. It returns TRUE on success, FALSE for failure:

int call_idl_fft(IDL_COMPLEX *data, int n, int direction);

data

A pointer to a linear array of complex data to be processed.

n

The number of data points contained in the array data.

dir

The direction of the FFT transform to take. Specify -1 for a forward transform, 1 for
the reverse

The program is shown in the following figure. Each line is numbered to make
discussion easier. These numbers are not part of the actual program. Following is
commentary on the above program, by line number:
External Development Guide Issues and Examples: UNIX

488 Chapter 22: Callable IDL
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <stdio.h>
#include "idl_export.h"

int call_idl_fft(IDL_COMPLEX *data, IDL_MEMINT n, int dir)
{
 int r;
 IDL_MEMINT dim[IDL_MAX_ARRAY_DIM];
 char buf[64];

 dim[0] = n;
 if (IDL_ImportNamedArray("TMP_FFT_DATA", 1, dim,
 IDL_TYP_COMPLEX, (UCHAR *) data, 0, 0)) {
 (void) IDL_ExecuteStr("MESSAGE, /RESET");
 sprintf(buf,"TMP_FFT_DATA=FFT(TMP_FFT_DATA,/OVERWRITE)"
 ,dir);
 r = !IDL_ExecuteStr(buf);
 (void) IDL_ExecuteStr("TMP_FFT_DATA=0");
 } else {
 r = FALSE;
 }

 return r;
}

main(int argc, char **argv)
{
#define NUM_PNTS 10
 IDL_COMPLEX data[NUM_PNTS];
 int i;

 for (i = 0; i < NUM_PNTS; i++) data[i].r = data[i].i = i;
 if (IDL_Init(0, &argc, argv)) {
 call_idl_fft(data, NUM_PNTS, -1);
 call_idl_fft(data, NUM_PNTS, 1);
 for (i = 0; i < NUM_PNTS; i++)
 printf("(%f, %f)\n", data[i].r, data[i].i);
 IDL_Cleanup(IDL_FALSE);
 }

 return 1;
}

Table 22-2: call_idl_fft()
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 489
7

The variable r holds the result from the function.

8

dim is used to import the data into IDL as an array.

9

A temporary buffer to format the IDL FFT command.

11–13

Import data into IDL as the variable TMP_FFT_DATA. We don’t set up a
free_callback because we will explicitly force IDL to release the pointer after the
call to FFT.

14

Set the !ERROR_STATE system variable back to the “success” state so previous
errors don’t confuse our results.

15–16

Format an FFT command to IDL into buf. Note the use of the OVERWRITE
keyword. This tells the IDL FFT function to place the results into the input variable
rather than creating a separate output variable. Hence, the results end up in our data
array without the need to obtain a pointer to the results and copy them out.

17

Have IDL execute the FFT statement. IDL_ExecuteStr() returns the value of
!ERROR_STATE.CODE, which should be zero for success and non-zero in case of
error. Hence, negating the result of IDL_ExecuteStr() yields the status value we
require for the result of this function.

18

Set TMP_FFT_DATA to 0 within IDL. This causes IDL to release the data pointer
imported previously.

20

If the call to IDL_ImportNamedArray() fails, we must report failure.
External Development Guide Issues and Examples: UNIX

490 Chapter 22: Callable IDL
26

In order to test the call_idl_fft() function, this main program calls it twice. Taking
numerical error into account the end result should be equal to the original data.

32

Set the real and imaginary part of each element to the index value.

33

Initialize Callable IDL.

34

Call call_idl_fft() to perform a forward transform.

35

Call call_idl_fft() to perform a reverse transform.

36–37

Print the results.

38

Shut down IDL and exit the process.

41

This line should never be reached. If it is, return the UNIX failing status.

Example: Calling IDL from Fortran

The program shown in the following figure (CALLTEST, found in the callable
subdirectory of the external subdirectory of the IDL distribution) demonstrates
how to import data from a Fortran program into IDL, execute IDL statements, and
obtain data from IDL variables. See “Compilation and Linking Statements” on
page 497 for details on compiling and linking this program. The source code for this
file can be found in the file calltest.f, located in the callable subdirectory of
the external subdirectory of the IDL distribution.

Each line is numbered to make discussion easier. The line numbers are not part of the
actual program:
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 491
f77

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

C---
C Routine to print a floating point value from an IDL variable.

 SUBROUTINE PRINT_FLOAT(VPTR)

C Declare a Fortran Record type that has a compatible form with
C the IDL C struct IDL_VARIABLE for a floating point value.
C Note this structure contains a union which is the size of
C the largest data type. This structure has been padded to
C support the union. Fortran records are not part of
C F77, but most compilers have this option.

 STRUCTURE /IDL_VARIABLE/
 CHARACTER*1 TYPE
 CHARACTER*1 FLAGS
 INTEGER*4 PAD !Pad for largest data type
 REAL*4 VALUE_F
 END STRUCTURE

 RECORD /IDL_VARIABLE/ VPTR

 WRITE(*, 10) VPTR.VALUE_F
 10 FORMAT(’Program total is: ’, F6.2)

 RETURN

 END

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

C---
C This function will be called when IDL is finished with the
C array F.

 SUBROUTINE FREE_CALLBACK(ADDR)

 INTEGER*4 ADDR

 WRITE(*,20) LOC(ADDR)
 20 FORMAT (’IDL Released:’, I12)

 RETURN

 END

Table 22-3: Calling IDL from Fortran On UNIX
External Development Guide Issues and Examples: UNIX

492 Chapter 22: Callable IDL
f77

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

C---
C This program demonstrates how to import data from a Fortran
C program into IDL, execute IDL statements and obtain data
C from IDL variables.

PROGRAM CALLTEST

C Some Fortran compilers require external defs. for IDL routines:
 EXTERNAL IDL_Init !$pragma C(IDL_Init)
 EXTERNAL IDL_Cleanup !$pragma C(IDL_Cleanup)
 EXTERNAL IDL_Execute !$pragma C(IDL_Execute)
 EXTERNAL IDL_ExecuteStr !$pragma C(IDL_ExecuteStr)
 EXTERNAL IDL_ImportNamedArray !$pragma C(IDL_ImportNamedArray)
 EXTERNAL IDL_FindNamedVariable !$pragma C(IDL_FindNamedVariable)

C Define arguments for IDL_Init routine
 INTEGER*4 ARGC
 INTEGER*4 ARGV(1)
 DATA ARGC, ARGV(1) /2 * 0/

C Define IDL Definitions for IDL_ImportNamedArray

 PARAMETER (IDL_MAX_ARRAY_DIM = 8)
 PARAMETER (IDL_TYP_FLOAT = 4)

 REAL*4 F(10)
 INTEGER*4 DIM(IDL_MAX_ARRAY_DIM)
 DATA DIM /10, 7*0/
 INTEGER*4 FUNC_PTR !Address of function
 INTEGER*4 VAR_PTR !Address of IDL variable
 EXTERNAL FREE_CALLBACK !Declare ext routine for use as arg

 PARAMETER (MAXLEN=80)
 PARAMETER (N=10)

C Define commands to be executed by IDL

 CHARACTER*(MAXLEN) CMDS(3)
 DATA CMDS /"tmp2 = total(tmp)",
 & "print, ’IDL total is ’, tmp2",
 & "plot, tmp"/
 INTEGER*4 CMD_ARGV(10)

Table 22-3: Calling IDL from Fortran On UNIX (Continued)
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 493
f77

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

C Define widget commands to be executed by IDL

 CHARACTER*(MAXLEN) WIDGET_CMDS(5)
 DATA WIDGET_CMDS /"a = widget_base()",
 & "b = widget_button(a,val=’Press When Done’,xs=300,ys=200)",
 & "widget_control, /realize, a",
 & "dummy = widget_event(a)",
 & "widget_control, /destroy, a"/

 INTEGER*4 ISTAT

C Null Terminate command strings and store the address
C for each command string in CMD_ARGV

 DO I = 1, 3
 CMDS(I)(MAXLEN:MAXLEN) = CHAR(0)
 CMD_ARGV(I) = LOC(CMDS(I))
 ENDDO

C Initialize floating point array, equivalent to IDL FINDGEN(10)

 DO I = 1, N
 F(I) = FLOAT(I-1)
 ENDDO

C Print address of F

 WRITE(*,30) LOC(F)
 30 FORMAT(’ARRAY ADDRESS:’, I12)

C Initialize Callable IDL

 ISTAT = IDL_Init(%VAL(0), ARGC, ARGV(1))

 IF (ISTAT .EQ. 1) THEN

C Import the floating point array into IDL as a variable named TMP

 CALL IDL_ImportNamedArray(’TMP’//CHAR(0), %VAL(1), DIM,
 & %VAL(IDL_TYP_FLOAT), F, FREE_CALLBACK, %VAL(0))

Table 22-3: Calling IDL from Fortran On UNIX (Continued)
External Development Guide Issues and Examples: UNIX

494 Chapter 22: Callable IDL
1-27

In order to print variables returned from IDL, we must define a Fortran structure type
for IDL_VARIABLE. This subroutine creates the IDL_VARIABLE structure and
defines a way to print the floating-point value returned in the an IDL variable.

f77

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

C Have IDL print the value of tmp

 CALL IDL_ExecuteStr(’print, tmp’//CHAR(0))

C Execute a short sequence of IDL statements from a string array

 CALL IDL_Execute(%VAL(3), CMD_ARGV)

C Set tmp to zero, causing IDL to release the pointer to the
C floating point array.

 CALL IDL_ExecuteStr(’tmp = 0’//CHAR(0))

C Obtain the address of the IDL variable containing the
C the floating point data

 VAR_PTR = IDL_FindNamedVariable(’tmp2’//CHAR(0), %VAL(0))

C Call a Fortran routine to print the value of the IDL tmp2 variable
 CALL PRINT_FLOAT(%VAL(VAR_PTR))

C Null Terminate command strings and store the address
C for each command string in CMD_ARGV

 DO I = 1, 5
 WIDGET_CMDS(I)(MAXLEN:MAXLEN) = CHAR(0)
 CMD_ARGV(I) = LOC(WIDGET_CMDS(I))
 ENDDO

C Execute a small widget program. Pressing the button allows
C the program to end

 CALL IDL_Execute(%VAL(5), CMD_ARGV)

C Shut down IDL
 CALL IDL_Cleanup(%VAL(0))

 ENDIF

 END

Table 22-3: Calling IDL from Fortran On UNIX (Continued)
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 495
14-17

Define a Fortran structure equivalent to the floating-point portion of the C
IDL_VARIABLE structure. Since we know our value is a floating-point number,
only the floating-point portion of the structure is implemented. The structure is
padded for the largest data type contained in the union. With some Fortran compilers,
the combination of UNION and MAP can be used to implement the ALLTYPES
union portion of the IDL_VARIABLE structure.

29-42

This subroutine is called when IDL releases the user-supplied memory.

44-164

This is the main Fortran program.

51-57

External definitions for IDL internal routines. These definitions may not be necessary
with some Fortran compilers.

59-62

Define the argc and argv arguments required by IDL_Init().

66-67

Define constants equivalent to C IDL constants for the maximum array dimensions
and type float.

69-77

Define parameters necessary for IDL_ImportNamedArray().

79-85

Define an array of IDL commands to be executed.

87-96

Define an array of IDL widget commands to be executed.
External Development Guide Issues and Examples: UNIX

496 Chapter 22: Callable IDL
98-104

Null-terminate each of the command strings and store the address of each command
to pass to IDL.

106-110

Initialize the floating-point array. This is the Fortran equivalent to the IDL command
F=FINDGEN(10).

117-121

Initialize IDL.

125-126

Import the Fortran array F in the IDL as a 10-element FLTARR vector named TMP.
Note the use of the callback argument FREE_CALLBACK(), which will be called
when IDL is finished with the array F, giving us a chance to clean up at that time.

134

Execute the commands contained in the character array CMDS defined on lines 71-
77. The address for each command is stored in the corresponding array element of
CMD_ARGV.

139

Set the TMP variable to a new value. This causes IDL to release the user-supplied
memory and call FREE_CALLBACK().

144

Get a reference to the IDL variable TMP2.

147

Call the routine PRINT_FLOAT to print the value of TMP2. This should agree with
the value printed by line 130. Note that the address of the IDL variable TMP2, and its
contents, can only be used until the next call to execute an IDL statement, since IDL
may change the value of the referenced IDL_VARIABLE.

150-161

Execute the commands contained in the character array WIDGET_CMDS defined
on lines 79-88.
Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 497
163-168

Shut down IDL. The 0 argument instructs IDL_CLEANUP() to exit the process, so
this call should not return.

Compilation and Linking Statements

Compilation and linking procedures used when calling IDL on a UNIX system are
described in the file calltest_unix.txt in the callable subdirectory of the
external subdirectory of the main IDL directory. Note that different UNIX systems
have different compilation and link statements. Note also that the name of the entry
point in the object may be different than that shown here, because compilers may add
leading or trailing underscores to the name of the source routine.

Note
The Makefile in the architecture-specific subdirectory of the bin subdirectory of
the IDL distribution contains a make rule for building the calltest application.
External Development Guide Issues and Examples: UNIX

498 Chapter 22: Callable IDL
Issues and Examples: Microsoft Windows

Building an Application that Calls IDL

To build your 32-bit, Win32 application that calls IDL, you must take the following
steps:

1. Use a #include line to include the declarations from idl_export.h into your
source code. This include file is found in the external/include
subdirectory of the IDL distribution.

2. Compile your application.

3. Link your application with IDL32.LIB.

4. Place IDL32.DLL in a directory with your application. See the readme.txt
file located in the RSI-directory/external/callable for more
information.

Example: A Simple Application

The following program demonstrates how to display message text sent from IDL,
execute IDL statements entered by a user, and how to obtain data from IDL variables.
It performs the following actions:

1. Creates a Main window with four client controls; a scrolling edit control to
display text messages from IDL, a single line edit control to allow a user to
enter an IDL command, a Send button to send the user command to IDL, and a
Quit button to exit the application.

2. Registers a callback function to handle text messages sent by IDL to the
application.

3. Initializes Callable IDL.

4. Call IDL_Cleanup() when we receive the WM_CLOSE message.

Each line is numbered to make discussion easier. These numbers are not part of the
actual program. The source code for this program can be found in the file simple.c,
located in the callable subdirectory of the external subdirectory of the IDL
distribution. See the source code for details of the program not printed here.
Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 499
1 /*---
2 * simple.c Source code for sample IDL callable application
3 *
4 * Copyright (c) 1992-1995, Research Systems Inc.
9 *--
*/
10 #include <windows.h>
11 #include <windowsx.h>
12 #include <ctl3d.h>
13 #include <string.h>
14 #include <stdio.h>
15 #include "simple.h"
16 #include "idl_export.h"
17
18 /*---
19 * WinMain
20 *
21 * This is the required entry point for all windows
applications.
22 *
23 * RETURNS: TRUE if successful
24 *---*/
25 int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE
hInstancePrev,
26 LPSTR lpszCmndline, int nCmdShow)
27 {
28 HWND hwnd;
29 MSG msg;
30
31 // Register the main window class.
32 if (!RegisterWinClass(hInstance)) {
33 return(0);
34 }
35
36 ...
37
38 // Create and display the main window.
39 if ((hwnd = InitMainWindow(hInstance)) == NULL) {
40 return(0);
41 }
42 MainhWnd = hwnd;
43
44 // Register our output function with IDL.
45 IDL_ToutPush(OutFunc);
46
47 // Initialize IDL
48 if (!IDL_Win32Init(0, hInstance, hwnd, NULL))
49 return(FALSE);
50
External Development Guide Issues and Examples: Microsoft Windows

500 Chapter 22: Callable IDL
51 // Main message loop.
52 while (GetMessage(&msg, NULL, 0, 0)) {
53 TranslateMessage(&msg);
54 DispatchMessage(&msg);
55 }
56
57 return(msg.wParam);
58 }
59
60 /*---
61 * RegisterWinClass
62 *
63 * To create a Main window (TLB in IDL speak). You must first
64 * register the class for that window
65 *
66 * RETURNS: TRUE if successful
67 *---*/
68 BOOL RegisterWinClass(HINSTANCE hInst)
69 {
70 WNDCLASS wc;
71
72 wc.style = CS_HREDRAW | CS_VREDRAW;
73 wc.lpfnWndProc = MainWndProc;
74 wc.cbClsExtra = 0;
75 wc.cbWndExtra = 0;
76 wc.hInstance = hInst;
77 wc.hIcon = NULL;
78 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
79 wc.hbrBackground = (HBRUSH)(COLOR_BTNFACE + 1);
80 wc.lpszMenuName = NULL;
81 wc.lpszClassName = "Simple";
82
83 if (!RegisterClass(&wc)) {
84 return(FALSE);
85 }
86
87 return(TRUE);
88 }
89
90 /*---
91 * InitMainWindow
92 *
93 * This is where our Main window is created and displayed
94 *
95 * RETURNS: Handle to window
96 *---*/
97 HWND InitMainWindow(HINSTANCE hInst)
98 {
99 HWND hwnd;
Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 501
100 CREATESTRUCT cs;
101
102
103 hwnd = CreateWindow("Simple",
104 "Callable IDL Sample Application",
105 WS_DLGFRAME | WS_SYSMENU | WS_MINIMIZEBOX | WS_VISIBLE,
106 CW_USEDEFAULT,
107 0,
108 600,
109 480,
110 NULL,
111 NULL,
112 hInst,
113 &cs);
114
115 if (hwnd) {
116 ShowWindow(hwnd, SW_SHOWNORMAL);
117 UpdateWindow(hwnd);
118 }
119
120 return(hwnd);
121 }
122
123 /*--
124 * MainWndProc
125 *
126 * The window procedure (event handler) for our main window.
127 * All messages (events) sent to our app are routed through
128 * here
129 * RETURNS: Depends of message.
130 *--*/
131 LRESULT WINAPI MainWndProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
132 {
133 static int nDisplayable = 0;
134
135
136 switch (uMsg) {
137 //When our app is first created, we are sent this message.
138 //We take this opportunity to create our child controls and
139 //place them in their desired locations on the window.
140 case WM_CREATE:
141 if (!CreateControls(((LPCREATESTRUCT)lParam)->hInstance, hwnd)) {
142 return(0);
143 }
144 if (!LayoutControls(hwnd)) {
145 return(0);
146 }
147 nDisplayable = GetCharacterHeight(GetDlgItem(hwnd, IDE_COMMANDLOG));
148 break;
External Development Guide Issues and Examples: Microsoft Windows

502 Chapter 22: Callable IDL
149
150 ...
151
152 case WM_DESTROY:
153 PostQuitMessage(1);
154 break;
155
156 //Each time a button or menu item is selected, we get this message
157 case WM_COMMAND:
158 OnCommand(hwnd, LOWORD(wParam), wParam, lParam);
159 return(FALSE);
160
161 //This is a message we send ourselves to indicate the need to
162 //display a text message in our log window.
163 case IDL_OUTPUT:
164 OutputMessage(wParam, lParam, nDisplayable);
165 return(FALSE);
166
167 case WM_CLOSE:
168 IDL_Cleanup(TRUE);
169 return(FALSE);
170
171 default:
172 break;
173 }
174
175 return(DefWindowProc(hwnd, uMsg, wParam, lParam));
176 }
177
178 /*--
179 * OnCommand
180 *
181 * This is the message handle for our WM_COMMAND messages
182 *
183 * RETURNS: FALSE
184 *--*/
185 BOOL OnCommand(HWND hWnd, UINT uId, WPARAM wParam, LPARAM lParam)
186 {
187
188 switch(uId){
189 case IDB_SENDCOMMAND:{
190 LPSTR lpCommand;
191 LPSTR lpOut;
192
193 lpCommand = GlobalAllocPtr(GHND, 256);
194 lpOut = GlobalAllocPtr(GHND, 256);
195 if(!lpCommand)
196 return(FALSE);
197
Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 503
198 /* First we get the string that is in the input window */
199 GetDlgItemText(hWnd, IDE_COMMANDLINE, lpCommand,
255);
200
201 /* and then clear the window */
202 SetDlgItemText(hWnd, IDE_COMMANDLINE, "");
203
204 lstrcpy(lpOut, "\r\nSent to IDL: ");
205 lstrcat(lpOut, lpCommand);
206
207 /* Send the string to our "log" window */
208 OutFunc(IDL_TOUT_F_NLPOST, lpOut, strlen(lpOut));
209
210 /* then send the string to IDL */
211 IDL_ExecuteStr(lpCommand);
212
213 /* Now clean up */
214 GlobalFreePtr(lpCommand);
215 GlobalFreePtr(lpOut);
216 }
217 break;
218 }
219 return(FALSE);
220 }
221
222 /*--
223 * OutFunc
224 *
225 * This is the output function that receives messages from IDL
226 * and displays them for the user
227 *
228 * RETURNS: NONE
229 *--*/
230 void OutFunc(long flags, char *buf, long n)
231 {
232 static fShowMain = FALSE;
233
234 /* If there is a message, post it to our MAIN window */
235 if (n){
236 SendMessage (MainhWnd, IDL_OUTPUT, 0, (LPARAM)buf);
237 }
238
239 /* If we need to post a new line message... */
240 if (flags & IDL_TOUT_F_NLPOST){
241 SendMessage (MainhWnd, IDL_OUTPUT, 0, (LPARAM)(LPSTR)"\r\n\0");
242 }
243
244 /* This message gets sent to the log window to have it scroll
245 and display the last message at the bottom of the window.
External Development Guide Issues and Examples: Microsoft Windows

504 Chapter 22: Callable IDL
246 With this, the user will always see the last screen full of
247 messages sent
248 */
249 SendMessage (MainhWnd, IDL_OUTPUT, (WPARAM)TRUE,
250 (LPARAM)(LPSTR)”\0”);
251
252 return;
253 }
254
255 /*--
256 * OutputMessage
257 *
258 * Here we do the actual display of the text to our log window
259 *
260 * RETURNS: nothing
261 *
262 *--*/
263 void OutputMessage(WPARAM wParam, LPARAM lParam, int nDisplayable)
264 {
265 LRESULT lRet;
266 LONG lBufflen, lNumLines, lFirstView;
267
268 /* Turn off the READONLY bit and postpone redraw */
269 lRet = SendMessage(hwndLog, EM_SETREADONLY, FALSE, 0L);
270 lRet = SendMessage(hwndLog, WM_SETREDRAW, FALSE, 0L);
271
272 /* Get the length of the text in the log window*/
273 lBufflen = SendMessage (hwndLog, WM_GETTEXTLENGTH, 0, 0L);
274 lNumLines = SendMessage (hwndLog, EM_GETLINECOUNT, 0, 0L);
275 lFirstView = SendMessage (hwndLog, EM_GETFIRSTVISIBLELINE, 0, 0L);
276 lRet = SendMessage (hwndLog, EM_SETSEL, lBufflen, lBufflen);
277
278 /* If we are adding text, wParam will be 0 */
279 if(!wParam)
280 lRet = SendMessage (hwndLog, EM_REPLACESEL, 0, lParam);
281 else{
282 if (lNumLines > (lFirstView + nDisplayable)){
283 int iLineLen = 0;
284 int iChar;
285 int iLines = 0;
286 lNumLines--;
287 while(!iLineLen){
288 iChar = SendMessage(hwndLog, EM_LINEINDEX,
289 (WPARAM)lNumLines, 0L);
290 iLineLen = SendMessage(hwndLog, EM_LINELENGTH,
291 iChar, 0L);
292 if(!iLineLen)
293 lNumLines--;
294 }
Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 505
295 iLines = lNumLines-(lFirstView + (nDisplayable - 1));
296 iLines = iLines >= 0 ? iLines : 0;
297 SendMessage (hwndLog, EM_LINESCROLL, 0, (LPARAM)iLines);
298 }
299 }
300
301 /* Set the window to redraw and reset the READONLY bit */
302 lRet = SendMessage(hwndLog, WM_SETREDRAW, TRUE, 0L);
303 lRet = SendMessage(hwndLog, EM_SETREADONLY, TRUE, 0L);
304
305 return;
306 }

The following is a commentary on the program, by line number:

16

idl_export.h contains the IDL_ function prototypes, IDL specific structures, and
IDL constants.

45

Call IDL_ToutPush() with the address of the output function (OutFunc) as it’s only
argument. This will register OutFunc as a callback for IDL. IDL will call OutFunc
when it needs to display text.

48

Initialize IDL with the handle to the main window and the HINSTANCE of the
application.

52

Start the windows message loop.

131-176

This is the Main window procedure. It will handle any messages that are sent to the
main window. This includes WM_COMMAND messages that occur as a result of
user interaction with the client controls. In addition, it handles a user defined message
called IDL_OUTPUT (the name doesn’t matter but this is a clue as to its purpose).

158

When the user presses either the “Send” or “Quit” buttons, route the message to the
OnCommand function.
External Development Guide Issues and Examples: Microsoft Windows

506 Chapter 22: Callable IDL
164

When we receive an IDL_OUTPUT message, call the function that displays text in
the scrolling window (OutputMessage. See line 263).

168

When we receive the WM_CLOSE message, call IDL_Cleanup() to unlink IDL
from our application.

185-220

OnCommand handles the WM_COMMAND messages generated when the user
clicks on the application’s buttons.

199

Get the IDL command that the user has entered in the single line edit control and
store it in a buffer.

202

Clear the text in the edit control.

208

Call the IDL_TOUT_ function to display the command sent to IDL in the output
window.

211

Call IDL_ExecuteStr() with the IDL command retrieved in line 199.

230-253

OutFunc is the callback registered with IDL to handle text messages IDL sends to
our application. In addition it will handle text from IDL routines that display
information, such as PRINT.

263-306

OutputMessage handles displaying the text to the output window. Since this window
is a multi-line edit control, we have created it as a read-only window. See the source
code for additional information on handling this situation.
Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 507
280

OutputMessage appends new messages to the existing text in the control.

281-299

When the text has been displayed, OutputMessage scrolls the window to display the
last line of text in the bottom of the window.
External Development Guide Issues and Examples: Microsoft Windows

508 Chapter 22: Callable IDL
Issues and Examples: Microsoft Windows External Development Guide

Chapter 23

Adding External
Widgets to IDL
This chapter discusses the following topics:
IDL and External Widgets 510
WIDGET_STUB . 511
WIDGET_CONTROL/WIDGET_STUB . 512

Functions for Use with Stub Widgets 514
Internal Callback Functions 517
UNIX WIDGET_STUB Example:
WIDGET_ARROWB 519
External Development Guide 509

510 Chapter 23: Adding External Widgets to IDL
IDL and External Widgets

This chapter describes an IDL widget type not documented in the IDL Reference
Guide, called the stub widget. It also describes a small set of internal functions to
manipulate stub widgets. Stub widgets allow CALL_EXTERNAL, LINKIMAGE,
DLM, and Callable IDL users to add their own widgets to IDL widget hierarchies.

This feature depends on your system providing the window system libraries used by
IDL (particularly the Motif libraries under UNIX) as sharable libraries. It will not
work with versions of IDL that statically link against the window system libraries.
This can be an issue under Linux, but one that we expect to eventually disappear as
Linux distributions start shipping Open Motif as a standard part of the systems.

The next two sections describe IDL’s WIDGET_STUB function and changes to
WIDGET_CONTROL when used with WIDGET_STUB. “Functions for Use with
Stub Widgets” on page 514 describes support functions that can be called from your
external code to manipulate stub widgets. “Internal Callback Functions” on page 517
describes how to make stub widgets generate IDL widget events. Finally, “UNIX
WIDGET_STUB Example: WIDGET_ARROWB” on page 519 illustrates the use of
stub widgets with an external program.

Note
Although WIDGET_STUB can be used under Microsoft Windows, this feature is
primarily of interest with UNIX IDL. Under Windows, RSI recommends the use of
the WIDGET_ACTIVEX functionality, which allows you to use ActiveX controls
with IDL without requiring external programming.
IDL and External Widgets External Development Guide

Chapter 23: Adding External Widgets to IDL 511
WIDGET_STUB

The WIDGET_STUB function creates a widget record that contains no actual
underlying widgets. Stub widgets are place holders for integrating external widget
types into IDL. Events from those widgets can then be processed in a manner
consistent with the rest of the IDL widget system.

First, the programmer calls WIDGET_STUB to create the widget, and then uses
CALL_EXTERNAL to call additional custom code to handle the rest. A number of
internal functions are provided to manipulate widgets from this custom code. See
“Functions for Use with Stub Widgets” on page 514.

The returned value of this function is the widget ID of the newly-created stub widget.

Calling Sequence

Result = WIDGET_STUB(Parent)

Arguments

Parent

The widget ID of the parent widget. Stub widgets can only have bases or other stub
widgets as their parents.

Keywords

The following keywords are accepted by WIDGET_STUB and work the same as for
other widget creation functions:

EVENT_FUNC SCR_XSIZE

EVENT_PRO SCR_YSIZE

FUNC_GET_VALUE UVALUE

GROUP_LEADER XOFFSET

KILL_NOTIFY XSIZE

NO_COPY YOFFSET

PRO_SET_VALUE YSIZE
External Development Guide WIDGET_STUB

512 Chapter 23: Adding External Widgets to IDL
WIDGET_CONTROL/WIDGET_STUB

The WIDGET_CONTROL procedure has some differences and limitations when
used with WIDGET_STUB that are not documented in the IDL Reference Guide.
These differences are described below.

Keywords

Only the most general keywords are allowed with WIDGET_CONTROL when used
with stub widgets. All other keywords are ignored. Here is a list of those keywords
that behave identically with all widgets including stub widgets:

The following keywords also work with stub widgets, but require additional
commentary:

DESTROY

When a widget hierarchy containing stub widgets is destroyed, the following steps
are taken:

• The lower-level code that deals with the system toolkit destroys any real
widgets currently used by the stub widgets.

• All IDL widget records are added to the free list for re-use.

BAD_ID PRO_SET_VALUE

CLEAR_EVENTS RESET

EVENT_FUNC SET_UVALUE

EVENT_PRO SHOW

FUNC_GET_VALUE TIMER

GET_UVALUE TLB_GET_OFFSET

GROUP_LEADER TLB_GET_SIZE

HOURGLASS TLB_SET_TITLE

ICONIFY TLB_SET_XOFFSET

KILL_NOTIFY TLB_SET_YOFFSET

MANAGED XOFFSET

NO_COPY YOFFSET
WIDGET_CONTROL/WIDGET_STUB External Development Guide

Chapter 23: Adding External Widgets to IDL 513
• Any requested KILL_NOTIFY callbacks are called.

You should register KILL_NOTIFY callbacks on the topmost stub widget in each
widget subtree. Remember that the actual widgets are gone before the callbacks are
issued, so don’t attempt to access them. However, the callback provides an
opportunity to clean up any related resources used by the widget.

MAP, REALIZE, and SENSITIVE

These keywords cause the toolkit-specific, lower layer of the IDL widgets
implementation to be called. In the process of satisfying the specified request, any
real widgets used by the stub widgets will be processed, along with the ones created
by the non-stub widgets, in the usual way. Any additional processing must be
provided via CALL_EXTERNAL.

XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

These keywords inform IDL how large the stub widget is expected to be. This
information is necessary for IDL to calculate sizes and offsets of the surrounding
widgets.

IDL tries to do something reasonable with these requests but, without knowledge of
the actual widget being manipulated, it is possible that the results will not be
satisfactory. In such cases, the IDL_WidgetStubSetSizeFunc() function can be used
to specify a routine that IDL can call to perform the necessary sizing for your stub
widget.
External Development Guide WIDGET_CONTROL/WIDGET_STUB

514 Chapter 23: Adding External Widgets to IDL
Functions for Use with Stub Widgets

The following functions present a highly simplified interface to the stub widget class
that gives the user enough access to IDL widget internals to make the stub widget
work while hiding the details of the actual implementation.

IDL_WidgetStubLock()

Syntax:

void IDL_WidgetStubLock(int set);

IDL event processing occurs asynchronously, so any code that manipulates widgets
must execute in a protected region. This function is used to create such a region. Any
code that manipulates widgets must be surrounded by two calls to
IDL_WidgetStubLock() as follows:

IDL_WidgetStubLock(TRUE);
/* Do your widget stuff */

IDL_WidgetStubLock(FALSE);

IDL_WidgetStubLookup()

Syntax:

char *IDL_WidgetStubLookup(IDL_ULONG id);

When IDL creates a widget, it returns an integer value to the caller of the widget
creation function. Internally, however, IDL widgets are represented by a pointer to
memory. The IDL_WidgetStubLookup() function is used to translate the user-level
integer value to this memory pointer. All the other internal routines use the memory
pointer to reference the widget.

Id is the integer returned at the user level. Your call to CALL_EXTERNAL should
pass this integer to your C-level code for use with IDL_WidgetStubLookup() which
translates the integer to the pointer.

If the specified id does not represent a valid IDL widget, this function returns NULL.
This situation can occur if a widget was killed but its integer handle is still lingering
somewhere.

IDL_WidgetIssueStubEvent()

Syntax:

void IDL_WidgetIssueStubEvent(char *rec, LONG value);
Functions for Use with Stub Widgets External Development Guide

Chapter 23: Adding External Widgets to IDL 515
Given a handle to the IDL widget, obtained via IDL_WidgetStubLookup(), this
function queues an IDL WIDGET_STUB_EVENT. Such an event is a structure that
contains the three standard fields (ID, TOP, and HANDLER) as well as an additional
field named VALUE that contains the specified value.

VALUE can provide a way to access additional information about the widget,
possibly by providing a memory address to the information.

IDL_WidgetSetStubIds()

Syntax:

void IDL_WidgetSetStubIds(char *rec, unsigned long t_id,
unsigned long b_id);

IDL widgets are built out of one or more actual widgets. Every IDL widget carries
two pointers that are used to locate the top and bottom real widget for a given IDL
widget. This function allows you to set these top and bottom pointers in the stub
widget for later use.

Since the actual pointer type differs from toolkit to toolkit, this function declares t_id
(the top real widget) and b_id (the bottom real widget) as unsigned long, an integer
data type large enough to safely contain any pointer. Use a C cast operator to handle
the difference.

After calling WIDGET_STUB to create an IDL stub widget, you will need to use
CALL_EXTERNAL to call additional code that creates the real widgets that
represent the stub. Having done that, use IDL_WidgetSetStubIds() to save the top
and bottom widget pointers.

IDL_WidgetGetStubIds()

Syntax:

void IDL_WidgetGetStubIds(char *rec, unsigned long *t_id,
unsigned long *b_id);

This function returns the top (t_id) and bottom (b_id) real widget pointers for any
specified widget (not just stub widgets). When using these values for non-stub
widgets, it is the caller’s responsibility to avoid damaging the IDL-created widgets in
any way.

IDL_WidgetStubSetSizeFunc()

Syntax:
External Development Guide Functions for Use with Stub Widgets

516 Chapter 23: Adding External Widgets to IDL
void IDL_WidgetStubSetSizeFunc(char *rec,
IDL_WIDGET_STUB_SET_SIZE_FUNC func)

typedef void (* IDL_WIDGET_STUB_SET_SIZE_FUNC);
(IDL_ULONG id, int width, int height);

When IDL needs to set the size of a stub widget, it attempts to set the size of the
bottom real widget to the necessary dimensions. Often, this is the desired behavior,
but cases can arise where it would be better to handle sizing differently. In such
cases, use IDL_WidgetStubSetSizeFunc() to register a function that IDL will call to
do the actual sizing.
Functions for Use with Stub Widgets External Development Guide

Chapter 23: Adding External Widgets to IDL 517
Internal Callback Functions

Real widget toolkits (upon which IDL widgets are built) are event driven. C language
programs register interest in specific events by providing callback functions that are
called when that event occurs. All but the most basic of widgets are capable of
generating events.

In order for IDL stub widgets to generate IDL events, you must use
CALL_EXTERNAL to invoke code that sets up real widget event callbacks for the
events you are interested in. This setup can be done as part of creating the real
widgets after the initial call to WIDGET_STUB. These callbacks then call
IDL_WidgetIssueStubEvent() to issue the IDL event.

Your C-language widget toolkit callback functions should be patterned after the
following template. Note that the arguments and return type will depend on the
widget toolkit used, and so cannot be shown here:

stub_widget_call()
{

char *idl_widget;
IDL_WidgetStubLock(TRUE);
/* Get the IDL user-level identifier for this widget */
if (idl_widget = IDL_WidgetStubLookup(id)) {

/* Do whatever work is required */
...
/* Optionally, issue an IDL event */
IDL_WidgetIssueStubEvent(idl_widget, value)

}
IDL_WidgetStubLock(FALSE);

}

Commentary on the Example Shown Above

Note that IDL_WidgetStubLock() is used to protect the critical section where
widgets are being manipulated.

Somehow, the callback must be able to find the user-level integer returned by
WIDGET_STUB when the stub widget was created in IDL. Usually, this is done in
one of two ways:

• When registering the callback, it is sometimes possible to specify a value that
will be passed to the callback without interpretation. For example, the X
windows XtAddCallback() function takes an argument named client_data.
This value is passed to the callback and can be used to supply the user-level
identifier.
External Development Guide Internal Callback Functions

518 Chapter 23: Adding External Widgets to IDL
• Some widget toolkits have a set of attributes that they carry along with each
widget. Under the X windows Xt toolkit, these attributes are called resources.
Xt widgets usually have a resource capable of holding a single integer or
memory address. This resource can be used to supply the user level identifier.

IDL_WidgetStubLookup() is used to translate the user level widget identifier into a
memory pointer. If this function returns NULL, no further event processing is done
since it would be a fatal error to issue an IDL event for a non-existent widget.

The event is issued via IDL_WidgetIssueStubEvent(). This step is not required.
Many of the IDL widget types process real widget events via callbacks that do not
always result in an IDL widget event being sent.
Internal Callback Functions External Development Guide

Chapter 23: Adding External Widgets to IDL 519
UNIX WIDGET_STUB Example:
WIDGET_ARROWB

The following example adds the Motif ArrowButton widget to UNIX IDL in the form
of an IDL program named widget_arrowb.pro.

The primary user interface to our arrow button widget is the WIDGET_ARROWB
function. It presents an interface much like any of the built in WIDGET_ functions
provided by IDL. WIDGET_ARROWB uses the MAKE_DLL procedure, and the
AUTO_GLUE keyword to CALL_EXTERNAL to automatically build and load the
C code required for this widget. This building and loading process is transparent to
the IDL user, requiring only that you have a C compiler installed on your system. All
the user has to do to use an arrow button widget is to call WIDGET_ARROWB

The WIDGET_ARROWB widget acts like a normal pushbutton. Events are sent
when the button is pressed (VALUE=1) and released (VALUE=0). If the
USE_OWN_SIZE keyword is set to zero, IDL performs its default sizing on the stub
widget. A non-zero value causes a special routine provided by the
WIDGET_ARROWB implementation to be registered to handle such sizing.

All of the code used in this example, including all code shown here, is available in the
external/widstub directory of the UNIX IDL distribution. To run it, execute the
following statements from IDL:

PUSHD, FILEPATH(’’, SUBDIRECTORY=[’external’,’widstub’])
WIDGET_ARROWB_TEST
POPD

When running WIDGET_ARROWB_TEST, you can specify the VERBOSE
keyword, in which case, it will show you the compilation and linking steps it takes to
build the sharable library from the C code. The use of pushd and popd are due to the
fact that your IDL search path (!PATH) is unlikely to have the directory containing
these examples in it. PUSHD changes your working directory to the location where
these files are found, and POPD restores it to its original location afterwards.

The IDL Program for WIDGET_ARROWB

The following text is the IDL program for WIDGET_ARROWB. It is found in the
file named WIDGET_ARROWB.PRO:

function WIDGET_ARROWB, parent, use_own_size, UVALUE=uvalue, $
VERBOSE=verbose, _EXTRA=extra

 ; Uses WIDGET_STUB, and a sharable library containing
; the necessary C support code, to provide the IDL user
External Development Guide UNIX WIDGET_STUB Example: WIDGET_ARROWB

520 Chapter 23: Adding External Widgets to IDL
; with a Motif Arrow Button widget. The interface is consistent
; with that presented by the built in IDL widgets.
;
; If the sharable library does not exist, it is built using
; MAKE_DLL.

common WIDGET_ARROWB_BLK, shlib

; Build sharable lib if first call or lib doesn’t exist
build_lib = n_elements(shlib) eq 0
if (not build_lib) then build_lib = not FILE_TEST(shlib, /READ)
if (build_lib) then begin
; Location of the widget_arrowb files from IDL distribution
arrowb_dir=FILEPATH(’’,SUBDIRECTORY=[’external’,’widstub’])

; Use MAKE_DLL to build the widget_arrowb sharable library
; in the !MAKE_DLL.COMPILE_DIRECTORY directory.
;
; Normally, you wouldn’t use VERBOSE, or SHOW_ALL_OUTPUT
; once your work is debugged, but as a learning exercize it
; can be useful to see all the underlying work that gets
; done. If the user specified VERBOSE, then use those
; keywords to show what MAKE_DLL is doing.
MAKE_DLL,’widget_arrowb’, ’widget_arrowb’, $

DLL_PATH=shlib, INPUT_DIR=arrowb_dir, $
VERBOSE=verbose,SHOW_ALL_OUTPUT=verbose

 endif

; Use a stub widget along with the C code in the library to
; create an arrow button widget. The use of the AUTO_GLUE
; keyword simplifies the call to the sharable library by
; eliminating the need to use the CALL_EXTERNAL portable
; calling convention.

 l_parent=LONG(parent)
 l_use_own_size = $

(n_elements(use_own_size) eq 0) ? 0L: LONG(use_own_size)
result = WIDGET_STUB(parent, _extra=extra)
if (n_elements(uvalue) ne 0) then $
WIDGET_CONTROL, result, set_uvalue=uvalue

JUNK = CALL_EXTERNAL(shlib, ’widget_arrowb’,l_parent,result,$
l_use_own_size, value=[1, 1, 1], /AUTO_GLUE)

RETURN, result
end
UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Chapter 23: Adding External Widgets to IDL 521
The C Program for widget_arrowb.c

The C language code invoked by the call to CALL_EXTERNAL in the above IDL
code is contained in a file named widget_arrowb.c This file can be found in the
widstub subdirectory of the external subdirectory of the IDL distribution. The
contents of this file are shown below:

/*
* widget_arrowb.c - This file contains C code to be called from
* UNIX IDL via CALL_EXTERNAL. It uses the IDL stub widget to add
* a Motif ArrowButton to an IDL created widget hierarchy. The
* button issues a WIDGET_STUB_EVENT every time the button is
* released.
*
* While this code is Motif-centric, the principles apply across *
platforms and could be adapted to Microsoft Windows.
 */
#include <stdio.h>
#include <X11/keysym.h> /* Keysyms for text widget events */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Shell.h>
#include <Xm/ArrowB.h>
#include "idl_export.h"

/*ARGSUSED*/
static void arrowb_CB(Widget w, caddr_t client_data,

caddr_t call_data)
{

char *rec;
XmArrowButtonCallbackStruct *abcs;

IDL_WidgetStubLock(TRUE);
if (rec = IDL_WidgetStubLookup((unsigned long) client_data)) {

abcs = (XmArrowButtonCallbackStruct *) call_data;
IDL_WidgetIssueStubEvent(rec, abcs->reason == XmCR_ARM);

}
IDL_WidgetStubLock(FALSE);

}

static void arrowb_size_func(IDL_ULONG stub, int width,
int height)

{
char *stub_rec;
unsigned long t_id, b_id;
char buf[128];
External Development Guide UNIX WIDGET_STUB Example: WIDGET_ARROWB

522 Chapter 23: Adding External Widgets to IDL
IDL_WidgetStubLock(TRUE);
if (stub_rec = IDL_WidgetStubLookup(stub)) {
IDL_WidgetGetStubIds(stub_rec, &t_id, &b_id);
sprintf(buf, "Setting WIDGET %d to width %d and height %d",

stub, width, height);
IDL_Message(IDL_M_NAMED_GENERIC, IDL_MSG_INFO, buf);
XtVaSetValues((Widget) b_id, XmNwidth, width, XmNheight,

height, NULL);
}
IDL_WidgetStubLock(FALSE);

}
int widget_arrowb(IDL_LONG parent, IDL_LONG stub, IDL_LONG

use_own_size_func)
{

Widget parent_w;
Widget stub_w;
char *parent_rec;
char *stub_rec;
unsigned long t_id, b_id;

IDL_WidgetStubLock(TRUE);
if ((parent_rec = IDL_WidgetStubLookup(parent))

&& (stub_rec = IDL_WidgetStubLookup(stub))) {
/* Bottom widget of parent is parent to arrow button */
IDL_WidgetGetStubIds(parent_rec, &t_id, &b_id);
parent_w = (Widget) b_id;
stub_w = XtVaCreateManagedWidget("arrowb",

xmArrowButtonWidgetClass,
parent_w, NULL);

IDL_WidgetSetStubIds(stub_rec, (unsigned long) stub_w,
(unsigned long) stub_w);

XtAddCallback(stub_w, XmNarmCallback,
(XtCallbackProc) arrowb_CB, (XtPointer) stub);

XtAddCallback(stub_w, XmNdisarmCallback,
(XtCallbackProc) arrowb_CB, (XtPointer) stub);

if (use_own_size_func)
IDL_WidgetStubSetSizeFunc(stub_rec, arrowb_size_func);

}
IDL_WidgetStubLock(FALSE);
return stub;

}

An IDL Program to Test the External Widget

Shown below is an IDL widget program to test the ARROWB widget. This program
is found in the file widget_arrowb_test.pro in the IDL distribution:

pro widget_arrowb_test_event, ev
UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Chapter 23: Adding External Widgets to IDL 523
widget_control, get_uvalue=val, ev.id
if (val eq 0) then begin
widget_control, /destroy, ev.top

endif else begin
HELP, /STRUCT, ev
if (ev.value eq 1) then begin

widget_control,val,set_value=’New label string’
tmp = widget_info(ev.id,/GEOMETRY)
widget_control, xsize=tmp.xsize+25, $

ysize=tmp.ysize+25, ev.id
endif

endelse
end

pro widget_arrowb_test, VERBOSE=verbose
a = widget_base(/COLUMN)
b = widget_button(a, value=’Done’, uvalue = 0)
label=widget_label(a,value=’A label’)
arrow_w = widget_arrowb(a, 0, xsize=100, ysize=100, $

uvalue=label, verbose=verbose)
arrow_w = widget_arrowb(a, 1, xsize=100, ysize=50, $

uvalue=label, verbose=verbose)
widget_control,/real,a
xmanager, ’WIDGET_ARROWB_TEST’, a, /NO_BLOCK

end
External Development Guide UNIX WIDGET_STUB Example: WIDGET_ARROWB

524 Chapter 23: Adding External Widgets to IDL
UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Appendix A

Obsolete Internal
Interfaces
This chapter discusses the following topics:
Interfaces Obsoleted in IDL 5.5 526
Interfaces Obsoleted in IDL 5.2.1 539

Simplified Routine Invocation 542
Obsolete Error Handling API 549
External Development Guide 525

526 Appendix A: Obsolete Internal Interfaces
Interfaces Obsoleted in IDL 5.5

The following areas changed in IDL 5.5, requiring the introduction of new interfaces,
and causing some old interfaces to become obsolete. These old interfaces remain in
IDL and can be used by user code. However, new code should not use them, and old
code might benefit from migration as part of normal maintenance:

• The IDL_Message() IDL_MSG_ATTR_SYS attribute has been retired,
in favor of the more general IDL_MessageSyscode() function.

• The IDL_MessageErrno() and IDL_MessageErrnoFromBlock()
functions have been retired in favor of the IDL_MessageSyscode() and
IDL_MessageSyscodeFromBlock() functions, which are more general.

• IDL’s keyword API has been redesigned to be easier to use and
understand, and to be reentrant.

IDL_MSG_ATTR_SYS

Note
IDL_MSG_ATTR_SYS is one of the possible attribute values that can be included
in the action argument to the IDL_Message() function. Its purpose was to cause
IDL_Message() to report the system error currently contained in the process errno
global variable. This functionality is now available in a more general and useful
form via the IDL_MessageSyscode() and IDL_MessageSyscodeFromBlock()
functions, documented in “Issuing Error Messages” on page 342

IDL_MSG_ATTR_SYS

IIDL_Message() always issues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file”, while the underlying system reason
for the error is “no such directory”.

The UNIX system provides a global variable named errno for communicating
such system level errors. Whenever a call to a system function fails, it returns a
1, and puts an error code into errno that specifies the reason for the failure.
Other functions, such as those provided by the standard C library, do not set
errno. These functions do set errno.
Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 527
Specifying IDL_MSG_ATTR_SYS tells IDL_Message() to check errno,
and if it is non-null, to issue a second line containing the text of the system
error message.

Specify IDL_MSG_ATTR_SYS only if you are calling IDL_Message() as
the result of a failed UNIX system call. Otherwise, errno might contain an
unrelated garbage value resulting in an incorrect error message.

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically do not set it. On these operating
systems, it is possible to specify IDL_MSG_ATTR_SYS, but it has no effect.

Specifying errno Explicitly: IDL_MessageErrno()

Note
The IDL_MessageErrno() and IDL_MessageErrnoFromBlock() functions allow
you to throw an error message that includes the system error from the UNIX/POSIX
errno global variable. These functions have been replaced by
IDL_MessageSyscode() and IDL_MessageSyscodeFromBlock() which in
addition to being able to throw UNIX/Posix errors, can also throw other types of
system error.

There are times when specifying the IDL_MSG_ATTR_SYS modifier code in the
action argument to IDL_Message() is inadequate. This situation usually occurs when
your code attempts to perform some cleanup operation when an operating system call
fails before calling IDL_Message() and this cleanup code might alter the value of
errno. In such cases, it is preferable to use the IDL_MessageErrno() or
IDL_MessageErrnoFromBlock() functions to issue the message:

void IDL_MessageErrno(int code, int errno, int action, …)
void IDL_MessageErrnoFromBlock(IDL_MSG_BLOCK block, int code, int
errno, int action, ...)

These function differs from IDL_Message() in two ways:

1. There is an additional argument used to specify the value of errno. See the
discussion of errno in “IDL_MSG_ATTR_SYS” on page 526 for additional
information about errno and its use.

2. The IDL_MSG_ATTR_SYS modifier code for the action argument is
ignored.-
External Development Guide Interfaces Obsoleted in IDL 5.5

528 Appendix A: Obsolete Internal Interfaces
Processing Keywords With IDL_KWGetParams()

Note
Previous versions of IDL used a keyword API based around the
IDL_KWGetParams() and IDL_KWCleanup() functions. This API was
confusing to use (It was difficult to know when IDL_KWCleanup() was supposed
to be called), and was not reentrant (requiring extensive and error prone code in
some IDL system routines). The new API, using IDL_KWProcessByOffset() and
IDL_KW_FREE, solve these problems and result in easier to write and maintain
code.

To enable rapid conversion from the old API to the new, the new API uses most of
the same data structures as the old (with the notable exception of
IDL_KW_ARR_DESC, which is replaced by IDL_KW_ARR_DESC_R).

This section reproduces those parts of the documentation of the original API that
differ from the current API, which is described in Chapter 12, “IDL Internals:
Keyword Processing”

The IDL_KW_PAR Structure

Note
IDL_KW_PAR is used with the old keyword API in largely the same manner as
the current API, as described in “Overview Of IDL Keyword Processing” on
page 272. The main difference is that the contents of the specified and value fields
are the addresses of static variables, rather than offsets into a KW_RESULT
structure as with the new API.

specified

The address of a C int variable that will be set to TRUE (non-zero) or FALSE (0)
based on whether the routine was called with the keyword present. This field should
be set to NULL ((int *) 0) if this information is not needed.

value

If the keyword is a read-only scalar, this field is a pointer to a C variable of the
correct type (IDL_LONG, IDL_ULONG, IDL_LONG64, IDL_ULONG64, float,
double, or IDL_STRING).
Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 529
In the case of a read-only array, value is a pointer to an IDL_KW_ARR_DESC,
which is discussed in “The IDL_KW_ARR_DESC Structure” on page 529. In the
case of an output variable (i.e., the IDL_KW_OUT flag is set), this field should
point to an IDL_VPTR that will be filled by IDL_KWGetParams() with the
address of the keyword argument.

The IDL_KW_ARR_DESC Structure

Note
The IDL_KW_ARR_DESC structure was superseded by
IDL_KW_ARR_DESC_R in the current API. The reason for this change is that
the n field of IDL_KW_ARR_DESC is modified by the call to
IDL_KWGetParams(), requiring the IDL_KW_ARR_DESC structure to be
defined in static memory, and rendering it non-reentrant.

When a keyword is specified to be a read-only array (i.e., the IDL_KW_ARRAY
flag is set), the value field of the IDL_KW_PAR struct should be set to point to an
IDL_KW_ARR_DESC structure. This structure is defined as:

typedef struct {
char *data;
IDL_MEMINT nmin;
IDL_MEMINT nmax;
IDL_MEMINT n;

} IDL_KW_ARR_DESC;

where:

data

The address of a C array to receive the data. This array must be of the C type mapped
into by the type field of the IDL_KW_PAR struct. For example, IDL_TYP_LONG
maps into a C IDL_LONG. There must be nmax elements in the array.

nmin

The minimum number of elements allowed.

nmax

The maximum number of elements allowed.
External Development Guide Interfaces Obsoleted in IDL 5.5

530 Appendix A: Obsolete Internal Interfaces
n

The number of elements actually present. Unlike the other fields, this field is set by
IDL_KWGetParams().

Processing Keywords

The IDL_KWGetParams() function is used to process keywords.
IDL_KWGetParams() performs the following actions on behalf of the calling
system routine:

• Verify that the keywords passed to the routine are all allowed by the routine.

• Carry out the type checking and conversions required for each keyword.

• Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in argv and copy them in order into the plain_args array.

• Return the number of plain arguments copied into plain_args.

IDL_KWGetParams() has the form:

int IDL_KWGetParams(int argc, IDL_VPTR *argv,char *argk,
IDL_KW_PAR *kw_list, IDL_VPTR plain_args[], int mask)

where:

argc

The number of arguments passed to the caller. This is the first parameter to all system
routines.

argv

The array of IDL_VPTR to arguments that was passed to the caller. This is the
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. This is the third
parameter to all system routines that accept keyword arguments.

kw_list

An array of IDL_KW_PAR structures (see“Overview Of IDL Keyword Processing”
on page 272, and “The IDL_KW_PAR Structure” on page 528) that specifies the
acceptable keywords for this routine. This array is terminated by setting the keyword
field of the final struct to NULL ((char *) 0).
Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 531
plain_args

An array of IDL_VPTR into which the IDL_VPTRs of the positional arguments
will be copied. This array must have enough elements to hold the maximum possible
number of positional arguments, as defined in IDL_SYSFUN_DEF2. See
“Registering Routines” on page 443.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
as a valid keyword for the called system routine. If the result is zero, the keyword is
ignored.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_KWGetParams() is a null
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and value fields
with IDL_KW_ZERO set), can become significant, especially when more than a few
keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN as the first keyword array
element. If IDL_KW_FAST_SCAN is the first keyword array element, the keyword
array is compiled by IDL_KWGetParams() into a more efficient form the first time
it is used. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN is optional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL_KW_PAR kw_pars[] = {
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f) },
{ NULL }

};

To use fast scanning, it would be written as:

static IDL_KW_PAR kw_pars[] = {
IDL_KW_FAST_SCAN,
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{"FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f) },
{ NULL }

};
External Development Guide Interfaces Obsoleted in IDL 5.5

532 Appendix A: Obsolete Internal Interfaces
Cleaning Up

The IDL_KWCleanup() function is necessary if the keywords allowed by a system
routine include any input-only keywords of type IDL_TYP_STRING, or if the
IDL_KW_VIN flag is used by any of the keyword IDL_KW_PAR structures. Such
keywords can cause keyword processing to allocate temporary variables that must be
cleaned up after they’ve outlived their usefulness. Call IDL_KWCleanup() as
follows:

void IDL_KWCleanup(int fcn)

where fcn specifies the operation to be performed, and must be one of the following
values:

IDL_KW_MARK

Mark the stack by placing the statement:

IDL_KWCleanup(IDL_KW_MARK);

above the call to IDL_KWGetParams(). In addition, you will need to make a call
with IDL_KW_CLEAN at the end.

IDL_KW_CLEAN

Clean up from the last call to IDL_KWGetParams() by placing the line:

IDL_KWCleanup(IDL_KW_CLEAN);

just above the return statement.

Keyword Examples

The following C function implements KEYWORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for a routine. It
prints the values of its keywords, changes the value of READWRITE to 42 if it is
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Note
The following code is designed to demonstrate keyword processing in a simple,
uncluttered example. In actual code, you would not use the printf mechanism used
on lines 35-39.
Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 533
C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

#include <stdio.h>
#include <idl_export.h>

void keyword_demo(int argc, IDL_VPTR *argv, char *argk)
{

int i;
IDL_ALLTYPES newval;

static int d_there, s_there, arr_there;
static IDL_LONG l;
static float f;
static double d;
static IDL_STRING s;
static IDL_LONG arr_data[10];
static IDL_KW_ARRAY_DESC arr_d = {(char *) arr_data,3,10,0};
static IDL_VPTR var;

static IDL_KW_PAR kw_pars[] = { IDL_KW_FAST_SCAN,
{ "ARRAY", IDL_TYP_LONG, 1, IDL_KW_ARRAY, &arr_there,

IDL_CHARA(arr_d) },
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, IDL_CHARA(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, IDL_CHARA(f) },
{ "LONG", IDL_TYP_LONG, 1, IDL_KW_ZERO|IDL_KW_VALUE|15, 0,

IDL_CHARA(l) },
{ "READWRITE", IDL_TYP_UNDEF, 1, IDL_KW_OUT|IDL_KW_ZERO,

0, IDL_CHARA(var) },
{ "STRING",TYP_STRING, 1, 0, &s_there, IDL_CHARA(s) },
{ NULL }

};

IDL_KWCleanup(IDL_KW_MARK);

(void) IDL_KWGetParams(argc, argv, argk, kw_pars, NULL, 1);

printf("LONG: <%spresent>\n", l ? "": "not ");
printf("FLOAT: %f\n", f);
printf("DOUBLE: <%spresent>\n", d_there ? "": "not ");
printf("STRING: %s\n", s_there ? IDL_STRING_STR(&s) : "<not present>");
printf("ARRAY: ");

External Development Guide Interfaces Obsoleted in IDL 5.5

534 Appendix A: Obsolete Internal Interfaces
Executing this routine from the IDL command line, by entering:

KEYWORD_DEMO

gives the output:

LONG: <not present>
FLOAT: 0.000000
DOUBLE: <not present>
STRING: <not present>
ARRAY: <not present>
READWRITE: <not present>

Executing it again with keywords specified:

A = 56
KEYWORD_DEMO, /LONG, FLOAT=2, DOUBLE=34,$

STRING="hello", ARRAY=FINDGEN(10), READWRITE=A
PRINT, 'Final Value of A: ', A

gives the output:

LONG: <present>
FLOAT: 2.000000
DOUBLE: <present>
STRING: hello
ARRAY: 0 1 2 3 4 5 6 7 8 9
READWRITE: 56
Final Value of A: 42

C

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

if (arr_there)
for (i = 0; i < arr_d.n; i++)
printf(" %d", arr_data[i]);

else
printf("<not present>");

printf("\n");

printf("READWRITE: ");
if (var) {

IDL_Print(1, &var, (char *) 0);
newval.l = 42;
IDL_StoreScalar(var, TYP_LONG, &newval);

} else {
printf("<not present>");

}
printf("\n");

IDL_KWCleanup(IDL_KW_CLEAN);
}

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 535
Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

7

The IDL_StoreScalar() function used on line 51 requires the scalar to be provided in
an IDL_ALLTYPES struct.

9

These variables are used to determine if a given keyword is present. Note that all the
keyword-related variables are declared static. This is necessary so that the C compiler
can build the IDL_KW_PAR structure at compile time.

10 – 13

C variables to receive the scalar read-only keyword values.

14

C array to be used for the ARRAY read-only array keyword.

15

The array descriptor used for ARRAY. arr_data is the address where the array
contents should be copied. The minimum number of elements allowed is 3, the
maximum is 10. The value set in the last field (0) is not important, because the
keyword processing routine never reads its value. Instead, it puts the number of
elements actually seen there.

16

The READWRITE keyword uses the IDL_KW_OUT flag, so the routine receives an
IDL_VPTR instead of a processed value.

18

The keyword definition array. Notice that all of the keywords are ordered lexically
(ASCII) and that there is a NULL entry at the end (line 28). Also, all of the mask
fields are set to 1, as is the mask argument to IDL_KWGetParams() on line 33. This
means that all of the keywords in the list are to be considered valid in this routine.

The IDL_KW_FAST_SCAN macro is used to define the first keyword array element,
speeding the processing of a long IDL_KW_PAR list.
External Development Guide Interfaces Obsoleted in IDL 5.5

536 Appendix A: Obsolete Internal Interfaces
19 – 20

ARRAY is defined to be a read-only array keyword of IDL_TYP_LONG. The
arr_there variable will be set to non-zero if the keyword is present. In that case, the
array contents will be placed in the variable arr_data and the number of elements
will be placed into arr_d.n.

21

DOUBLE is a scalar keyword of IDL_TYP_DOUBLE. It uses the variable d_there
to know if the keyword is present.

22

FLOAT is an IDL_TYP_FLOAT scalar keyword. It does not use the specified field
of the IDL_KW_PAR struct to get notification of whether the keyword is present.
Instead, it uses the IDL_KW_ZERO flag to make sure that the variable f is always
zeroed. If the keyword is present, the value will be written into f, otherwise it will
remain 0. The important point is that the routine can’t tell the difference between the
keyword being absent, or being present with a user-supplied value of zero. If this
distinction doesn’t matter, such as when the keyword is to serve as an on/off toggle,
use this method. If it does matter, use the specified field as demonstrated with the
DOUBLE keyword, above.

23 – 24

LONG is a scalar keyword of IDL_TYP_LONG. It sets the IDL_KW_ZERO flag
to get the variable l zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable l.

25 – 26

The IDL_KW_OUT flag indicates that the routine wants gets the IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO is also set, the variable var
will be zero unless the keyword is present. The specification of IDL_TYP_UNDEF
here indicates that there is no type conversion or processing applied to
IDL_KW_OUT keywords.

27

This keyword is included here to force the need for IDL_KWCleanup() on line 58.
Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 537
28

Every array of IDL_KW_PAR structs must end with a NULL entry.

31

Mark the stack in preparation for the IDL_KWCleanup() call on line 58.

33

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
this routine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWGetParams() is discarded.

35

The l variable will be 0 if LONG is not present, and 1 if it is.

36

The f variable will always have some usable value, but if it is zero there is no way to
know if the keyword was actually specified or not.

37 – 38

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Values” on page 333.

39– 45

Accessing the ARRAY keyword is simple. The arr_there variable indicates if the
keyword is present, and arr_d.n gives the number of elements.

47 – 55

Since the READWRITE keyword is accessed via the argument’s IDL_VPTR, we
use the IDL_Print() function to print its value. This has the same effect as using the
user-level PRINT procedure when running IDL. See “Output of IDL Variables” on
page 396. Then, we change its value to 42 using IDL_StoreScalar().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_PRINT()) in your own code.
External Development Guide Interfaces Obsoleted in IDL 5.5

538 Appendix A: Obsolete Internal Interfaces
57

The use of IDL_KWCleanup() is necessitated by the existence of the STRING
keyword, which is of IDL_TYP_STRING.
Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 539
Interfaces Obsoleted in IDL 5.2.1

Changes were required to implement the ability to enable and disable IDL system
routines from runtime and callable IDL. Rather than alter the IDL_SYSFUN_DEF
structure, and the IDL_AddSystemRoutine() function in an incompatible way, a new
structure (IDL_SYSFUN_DEF2) and new function (IDL_SysRtnAdd()) have been
created to accomplish the new tasks, and the old structure and function have been
obsoleted.

Note
The interfaces described in this section are considered functionally obsolete
although they continue to be supported by RSI. This section is supplied to help
those maintaining older code. New code should be written using the information
found in “Registering Routines” on page 443.

Registering Routines

The IDL_AddSystemRoutine() function adds system routines to IDL’s internal
tables of system functions and procedures. As a programmer, you will need to call
this function directly if you are linking a version of IDL to which you are adding
routines, although this is very rare and not considered to be a good practice for
maintainability reasons. More commonly, you use IDL_AddSystemRoutine() in the
IDL_Load() function of a Dynamically Loadable Module (DLM).

Note
LINKIMAGE or DLMs are the preferred way to add system routines to IDL
because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

int IDL_AddSystemRoutine(IDL_SYSFUN_DEF *defs, int is_function,
int cnt);

It returns True if it succeeds in adding the routine or False in the event of an error:

defs

An array of IDL_SYSFUN_DEF structures, one per routine to be declared. This
array must be defined with the C language static storage class because IDL keeps
pointers to it. defs must be sorted by routine name in ascending lexical order.
External Development Guide Interfaces Obsoleted in IDL 5.2.1

540 Appendix A: Obsolete Internal Interfaces
is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SYSFUN_DEF structures contained in the defs array.

The definition of IDL_SYSFUN_DEF is:

typedef IDL_VARIABLE *(* IDL_FUN_RET)();

typedef struct {
IDL_FUN_RET funct_addr;
char *name;
UCHAR arg_min;
UCHAR arg_max;
UCHAR flags

} IDL_SYSFUN_DEF;

IDL_VARIABLE structures are described in “The IDL_VARIABLE Structure” on
page 301.

funct_addr

Address of the function implementing the system routine.

name

The name by which the routine is to be invoked from within IDL. This should be a
pointer to a null terminated string. The name should be capitalized. If the routine is an
object method, the name should be fully qualified, which means that it should include
the class name at the beginning followed by two consecutive colons, followed by the
method name (e.g. CLASS::METHOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

The maximum number of arguments allowed for the routine. If the routine does not
place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.
Interfaces Obsoleted in IDL 5.2.1 External Development Guide

Appendix A: Obsolete Internal Interfaces 541
flags

A bitmask that provides additional information about the routine. Its value can be any
combination of the following values (bitwise OR’d together to specify more than one
at a time) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue a warning message if this routine is called and
!WARN.OBS_ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.
External Development Guide Interfaces Obsoleted in IDL 5.2.1

542 Appendix A: Obsolete Internal Interfaces
Simplified Routine Invocation

Note
The functions and techniques described in this section are no longer widely used,
and are considered functionally obsolete although they continue to be supported by
RSI. This section is supplied to help those maintaining older code. New code should
be written using the information found in Chapter 21, “Adding System Routines”.

A great deal of the work involved in writing IDL system routines involves checking
positional arguments, screening out illegal combinations of type and structure, and
converting them to desired type. The function IDL_EzCall() provides a simplified
way to handle this task. It processes an array of IDL_EZ_ARG structs which
describe the processing to be applied to each positional argument.

The IDL_EzCall() function is similar to the facility provided for keyword arguments
by IDL_KWGetParams():

void IDL_EzCall(int argc, IDL_VPTR argv[],
IDL_EZ_ARG arg_struct[]);

where:

argc

The number of positional arguments present.

argv

An array of pointers to the positional arguments.

arg_struct

An array of IDL_EZ_ARG structures defining the desired characteristics for each
possible argument. Note that this array must have a definition for every possible
parameter whether that argument is present in the current call or not. The order of the
IDL_EZ_ARG structures is the same as the order in which the arguments are
specified in the call. (See “The IDL_EZ_ARG struct” on page 543.)

There are some things you need to be aware of when using IDL_EzCall():

• IDL_EzCall() automatically excludes file variables (such as those created
by the ASSOC function) so you don’t have to take any special action to
screen such variables out.
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 543
• Every call to IDL_EzCall() must have a matching call to
IDL_EzCallCleanup() before execution returns to the interpreter.

• IDL_EzCall() does not handle keyword arguments. If the calling routine
allows keyword arguments, it must do its own keyword processing using
IDL_KWGetParams() (see “IDL Internals: Keyword Processing” on
page 269) and pass an argv containing only positional arguments to
IDL_EzCall().

• If you mark a variable as being write-only, you shouldn’t count on
anything useful being in the uargv or value fields. This implies that it is
not a good idea to set the IDL_EZ_POST_WRITEBACK field in the
post field. Instead, you will have to allocate a new temporary variable,
place the desired value into it, and use the IDL_VarCopy() function to
write its value back into the original argv entry yourself.

Note
IDL_EZ_POST_WRITEBACK is only useful when the access field is set to
IDL_EZ_ACCESS_RW.

The IDL_EZ_ARG struct

The IDL_EZ_ARG struct has the following definition:

typedef struct {
short allowed_dims;
short allowed_types;
short access;
short convert;
short pre;
short post;
IDL_VPTR to_delete;
IDL_VPTR uargv;
IDL_ALLTYPES value;

} IDL_EZ_ARG;

where:

allowed_dims

A bit mask that specifies the allowed dimensions. Bit 0 means scalar, bit 1 means
one-dimensional, etc. The IDL_EZ_DIM_MASK macro can be used to specify
certain bits. It accepts a single argument that specifies the number of dimensions that
are accepted, and returns the bit value that represents that number. For example, to
specify that the argument can be scalar or have 2 dimensions:
External Development Guide Simplified Routine Invocation

544 Appendix A: Obsolete Internal Interfaces
IDL_EZ_DIM_MASK(0) | IDL_EZ_DIM_MASK(2)

In addition, the following constants are defined to simplify the writing of common
cases:

IDL_EZ_DIM_ARRAY

Allow all but scalar.

IDL_EZ_DIM_ANY

Allow anything.

allowed_types

This is a bit mask defining the allowed data types for the argument. To convert type
codes to the appropriate bits, use the formula BitMask = 2TypeCode or use the
IDL_TYP_MASK macro (see “Type Masks” on page 263).

Note
If you specify a value for the convert field, its a good idea to specify
IDL_TYP_B_ALL or IDL_TYP_B_SIMPLE here. The type conversion will
catch any problems and your routine will be more flexible.

access

A bitmask that describes the type of access to be allowed to the argument. The
following constants should be OR’d together to set the proper value:

IDL_EZ_ACCESS_R

The value of the argument is used by the system routine.

IDL_EZ_ACCESS_W

The value of the argument is changed by the system routine. This means that it
must be a named variable (as opposed to a constant or expression).

IDL_EZ_ACCESS_RW

This is equivalent to IDL_EZ_ACCESS_R | IDL_EZ_ACCESS_W.

convert

The type code for the type to which the argument will be converted. A value of
IDL_TYP_UNDEF means that no conversion will be applied.
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 545
pre

A bitmask that specifies special purpose processing that should be performed on the
variable by IDL_EzCall(). These bits are specified with the following constants:

IDL_EZ_PRE_SQMATRIX

The argument must be a square matrix.

IDL_EZ_PRE_TRANSPOSE

Transpose the argument.

Note
This processing occurs after any type conversions specified by convert, and is only
done if the access field has the IDL_EZ_ACCESS_R bit set.

post

A bit mask that specifies special purpose processing that should be performed on the
variable by IDL_EzCallCleanup(). These bits are specified with the following
constants:

IDL_EZ_POST_WRITEBACK

Transfer the contents of the uargv field back to the actual argument.

IDL_EZ_POST_TRANSPOSE

Transpose uargv prior to transferring its contents back to the actual argument.

Note
This processing occurs only when the access field has the IDL_EZ_ACCESS_W
bit set. If IDL_EZ_POST_WRITEBACK is not present, none of the other actions
are considered, since that would imply wasted effort.

to_delete

Do not make use of this field. This field is reserved for use by the EZ module. If
IDL_EzCall() allocated a temporary variable to satisfy the conversion requirements
given by the convert field, the IDL_VPTR to that temporary is saved here for use by
IDL_EzCallCleanup().
External Development Guide Simplified Routine Invocation

546 Appendix A: Obsolete Internal Interfaces
uargv

After calling IDL_EzCall(), uargv contains a pointer to the IDL_VARIABLE
which is the argument. This is the IDL_VPTR that your routine should use.
Depending on the required type conversions, it might be the actual argument, or a
temporary variable containing a converted version of the original. This field won’t
contain anything useful if the IDL_EZ_ACCESS_R bit is not set in the access field.

value

This is a copy of the value field of the IDL_VARIABLE pointed at by uargv. For
scalar variables, it contains the value, for arrays it points at the array block. This field
is here to make reading read-only variables faster. Note that this is only a copy from
uargv, and changing it will not cause the actual value field in uargv to be updated.

Cleaning Up

Every call to IDL_EzCall() must be bracketed by a call to IDL_EzCallCleanup():

void IDL_EzCallCleanup(int argc, IDL_VPTR argv[],
IDL_EZ_ARG arg_struct[]);

The arguments are exactly the same as those passed to IDL_EzCall().

Example— using IDL_EzCall()

The following function skeleton shows how to use the simplified interface to handle
argument processing for an older version of the built-in SVD (Singular Value
Decomposition) function. SVD accepts the following positional arguments (in order):

A

An m by n matrix (input, required).

w

An n-element vector (output, required).

U

An n by m matrix (output, optional)

V

An n by n matrix (output, optional)
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 547
Each line is numbered to make discussion easier. These numbers are not part of the
actual program.

Those features of this procedure that are interesting in terms of plain argument
processing are, by line number:

7-8

The settings of the various fields of the IDL_EZ_ARG struct for the first positional
argument (A) specifies:

allowed_dims

The argument must be 2-dimensional.

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

void nr_svdcmp(int argc, IDL_VPTR argv[])
{

.

.

.
static IDL_EZ_ARG arg_struct[] = {
{ IDL_EZ_DIM_MASK(2), IDL_TYP_B_SIMPLE, IDL_EZ_ACCESS_R,

IDL_TYP_FLOAT, 0, 0 }, /* A */
{ IDL_EZ_DIM_ANY, IDL_TYP_B_ALL,

IDL_EZ_ACCESS_W, 0, 0, 0 }, /* w */
{ IDL_EZ_DIM_ANY, IDL_TYP_B_ALL,

IDL_EZ_ACCESS_W, 0, 0, 0 }, /* U */
{ IDL_EZ_DIM_ANY, IDL_TYP_B_ALL,

IDL_EZ_ACCESS_W, 0, 0, 0 } /* V */
};

IDL_EzCall(argc, argv, arg_struct);
.
.
.
/* Do the SVD calculation and prepare temporary

variables to be returned as w, U, and V */
.
.
.
IDL_EzCallCleanup(argc, argv, arg_struct);

}

Table A-1: IDL_EzCall() Argument Processing Example
External Development Guide Simplified Routine Invocation

548 Appendix A: Obsolete Internal Interfaces
allowed_types

It can have any simple type. Types and type codes are discussed in “IDL Internals:
Types” on page 261.

access

The routine will examine the argument’s value, but will not attempt to change it.

convert

The argument should be converted to IDL_TYP_FLOAT if necessary.

pre

No pre-processing is required.

post

No post-processing is required.

…

The remaining fields are all set by IDL_EzCall() in response to the above.

9-14

Arguments two through four are allowed to have any number of dimensions and are
allowed any type. This is because the routine does not intend to examine them, only
to change them. For the same reason, a zero (IDL_TYP_UNDEF) is specified for the
convert field indicating that no type conversion is desired. No pre or post-processing
is specified.

17

Process the positional arguments.

26

Clean up.
Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 549
Obsolete Error Handling API

The following variables can be accessed only on UNIX. These variables have been
superseded by the functions listed in “Functions for Returning System Variables” on
page 405, which are available on all platforms. In all cases, these variables should be
considered READ-ONLY:.

In addition, the following function has been superseded by the
IDL_SysvErrorCodeValue() function:

IDL_LONG IDL_SysvErrCodeValue(void)

This function returns the value of !ERR.

IDL System Variable Internal Variable Type

!DIR IDL_SysvDir IDL_STRING

!VERSION.ARCH IDL_SysvVersion.arch IDL_STRING

!VERSION.OS IDL_SysvVersion.os IDL_STRING

!VERSION.OS_FAMILY IDL_SysvVersion.os_family IDL_STRING

!VERSION.RELEASE IDL_SysvVersion.release IDL_STRING

!ERR IDL_SysvErrCode IDL_LONG

!ERROR IDL_SysvErrorCode IDL_LONG

!ORDER IDL_SysvOrder IDL_LONG

Table A-2: IDL System Variables Available to User Programs
External Development Guide Obsolete Error Handling API

550 Appendix A: Obsolete Internal Interfaces
Obsolete Error Handling API External Development Guide

Index

Symbols
!DIR system variable, 405
!DLM_PATH system variable

in managing DLMs, 457
!ERROR_STATE system variable, 405, 405

setting, 405
!ERROR_STATE.CODE system variable, 479
!ORDER system variable, 405
!VERSION. ARCH system variable, 405
!VERSION.OS system variable, 405
!VERSION.OS_FAMILY system variable,

405
!VERSION.RELEASE system variable, 405

A
ActiveX controls

See also IDLDrawWidget.
absolute value, 413
accessing structure tags, 309
accessing variable data, 324
action argument, 344
ActiveX controls

class ID, 76
destroying, 84
example IDL code, 85, 88
IDLcomActiveX object references, 79
inserting into IDL widget hierarchy, 44, 77
method calls, 79
naming scheme, 76
overview, 42
program ID, 76
properties, 80
registering, 74
skills required, 46
External Development Guide 551

552
using in IDL, 74
widget events, 81
WIDGET_ACTIVEX, 44

ActiveXCal.pro, 85
ActiveXExcel, 88
adding

journal file output, 397
system routines, 443

adding code to IDL
overview, 22
skills required, 23
system routines, 418

allocating and freeing file units, 391
allprops.pro, 160
anonymous structures, 308, 308
Appropriate Applications of Callable IDL, 469
arguments

checking, 349
keywords. See keywords

argv argument, 349
array variables, 305
arraydemo.pro, 169
arrays

creating
from existing data (external development),

320
passing with CALL_EXTERNAL, 216

arrray2d.java, 169
ASSOC function (external development), 302,

306
associated I/O (external development), 302,

306
AUTO_GLUE, 204

B
BackColor property (ActiveX), 133
Baseld property (ActiveX), 137
BaseName property (ActiveX), 133
bell, ringing with error messages, 346
blocking timers, 370

blocking UNIX timers, 374
bridge_version.pro, 165
buffered data, flushing, 394

C
CALL_EXTERNAL function

AUTO_GLUE, 194, 204
C examples, 206
calling a C routine, 208
calling convention, 202
common errors, 199
compared to UNIX child process, 193
compilation and linking, 193
data types, 195
Fortran examples, 220
glue functions, 194, 204
input/output, 195
memory cleanup, 195
Microsoft calling conventions, 197
overview, 16, 192
passing array data, 216
passing structures, 218
portable calling convention, 202
string data, 212
wrapper routines, 210

callable IDL
about, 18
appropriate uses, 469
cleanup, 472, 481
compiling and linking C programs, 482
diverting IDL output, 477
example programs, 483, 487, 490
executing IDL statements, 479
implementation, 466
interactive IDL sessions, 482
inter-language calling conventions, 469
licensing issues, 470, 474
program size considerations, 468
threading, 469
troubleshooting, 468
Index External Development Guide

553
using, 471
using the Windows graphics driver, 468
when to use, 467

callable IDL applications
simple math function example, 487

callable IDL, platform-specific implementa-
tion, 466

callbacks
timer, 371

calltest program listing
C, 483
Fortran, 490

characters
reading from the keyboard, 395

checking arguments, 349
checking file status, 389
child processes, under UNIX, 37
classes

Java
data members, 160
methods, 158
names, 156
path, 147
properties, 160
static, 157

client process, 226
client variables, 228
Closing Files, 387
code argument, 342
COM objects

class ID, 50
creating IDLcomIDispatch objects, 54
data type mapping, 67
data types, 56
definition, 42
destroying, 66
example IDL code, 69
exposing as IDLcomIDispatch objects, 44
in IDL, 48
method calls, 55
Microsoft Object Viewer, 52

optional method arguments, 56
overview, 42
program ID, 51
properties, 63
See also ActiveX
See also IDLcomIDispatch objects
skills required, 46

communicating with a child process, 37
Compatibility with older IDL code, 231
Compilation and Link Statements, 497
complex data types, 265
configuring the IDL-Java bridge, 147
connecting to Java objects, 144
constants

preprocessor, 412
copying

strings, 334
variables, 325

CopyNamedArray method (ActiveX), 121
CopyWindow method (ActiveX), 122
CreateDrawWidget method (ActiveX), 122
creating

Java object in IDL, 156
structures, 307

D
data types

default output formats, 409
IDL and Java, 152
IDL-Java bridge conversion, 154
Java and IDL, 150

data types. See types
default output formats for data types, 409
definitions

external, 29
deleting strings, 335
DestroyDrawWidget method (ActiveX), 122
Detecting End Of File, 393
device

special files, 382
External Development Guide Index

554
Diverting IDL Output, 477
DL_Load(), 460
DoButtonPress method (ActiveX), 131
DoButtonRelease method (ActiveX), 131
DoExit method (ActiveX), 122
DoExpose method (ActiveX), 131
DoMotion method (ActiveX), 132
Drawld property (ActiveX), 137
DrawWidgetName property (ActiveX), 134
dynamic memory, 322, 400

freed when deleting strings, 335
freeing, 327
IDL_MemAlloc(), 400
IDL_MemAllocPerm(), 402
IDL_MemFree(), 401

E
Enabled property (ActiveX), 134
ensuring length of, 337
errno global variable

system level errors, 343
errors

checking arguments, 349
handling

IDL-Java bridge, 166
issuing, 342
Java exceptions, 166
messages

format string, 346
ringing bell with error message, 346
suppressing

error messages, 345
message prefixes, 345
traceback portion of messages, 345

events
See also widget events

examples
ActiveX

IDLDrawWidget, 105
including controls, 88

SecondExample.pro, 103
VBLoadCT.pro, 110
VBPaint, 117
VBPalette.pro, 112
VBShare1D, 115

ActiveX control, 85
bridges

ActiveXCal.pro, 85
ActiveXExcel, 88
IDispatchDemo.pro, 69

C examples for CALL_EXTERNAL, 206
calling a simple math function, 487
COM

IDispatchDemo.pro, 69
Fortran CALL_EXTERNAL, 220
hello world, 420
helloJava.java, 163
Java

allprops.pro, 160
array2d.java, 169
arraydemo.pro, 169
bridge_version.pro, 165
exception.pro, 167, 168
GreyBandsImage.java, 174
hellojava.pro, 156
hellojava2.pro, 163
javaprops.pro, 157
jbexamples.jar, 177
publicmembers.pro, 160
showexcept.pro, 167, 168
showgreyimage.pro, 174
urlread.pro, 172
URLReader.java, 172

simple system routine, 421
simple_vars.pro, 210
using callable IDL

from C, 483
from Fortran, 490

using COM objects, 69
using WIDGET_STUB, 517, 519

exception.pro, 167, 168
Index External Development Guide

555
ExecuteStr, 101
ExecuteStr method (ActiveX), 123
exit handlers

IDL_ExitRegister(), 403
export.h see idl_export.h
external

definitions, 29
programs, accessing (SPAWN), 13

F
file

attributes, verifying, 389
descriptor, 380
end of file detection, 393
IDL_FileOpen(), 384
IDL-Java, 147
prevent closure, 388

file access
IDL_FILE_STAT struct, 381
mode, 384

file information
IDL_FILE_STAT struct, 380

file units
always open, 386

files
checking

attributes, 389
status, 389

closing
IDL_FileClose, 387

FLEXlm floating licence policy, 474
flushing buffered data, 394
Form_Load, VisualBasic, 100
Fortran

binary data, unformatted, 382
calling, 222
child processes, 40
compiler, 482
complex data types, 265
external functions, calling, 192

passing parameters, 24
free() function, 322
FZ_ROOTS function

example, 424

G
GetNamedData method (ActiveX), 123
getting dynamic memory, 322
getting file information, 380
GraphicsLevel property (ActiveX), 134
GreyBandsImage.java, 174

H
handling Java exceptions, 166
heap variables, 312
Hello World example, 420
helloJava.java, 163
hellojava.pro, 156
hellojava2.pro, 163
HELP,/DLM, 459, 463
hWnd property (ActiveX), 137

I
IDispatchDemo.pro, 69, 69
IDL

about language, 27
IDL output, diverting, 477
IDL portable calling convention, 202
IDL RPC

Client API Example, 229
variable accessor macros, 256

IDL signal API, 359
IDL statements, executing, 479
IDL_ABS() macro, 413
IDL_ALLTYPES union, 301, 304
IDL_ARR_INI_INDEX bit value, 315
IDL_ARR_INI_NOP bit value, 315
External Development Guide Index

556
IDL_ARR_INI_ZERO bit value, 315
IDL_ARRAY structure, 301
IDL_BailOut() function, 404
IDL_BasicTypeConversion() function, 355
IDL_CHAR() macro, 413
IDL_CHARA() macro, 413
IDL_Cleanup, 481
IDL_Cleanup() function, 472, 481
IDL_CvtByte function, 356
IDL_CvtBytscl function, 356
IDL_CvtComplex function, 356
IDL_CvtDbl function, 356
IDL_CvtDComplex function, 356
IDL_CvtFix function, 356
IDL_CvtFlt function, 356
IDL_CvtLng function, 356
IDL_CvtString function, 356
IDL_Deltmp() function, 319, 323
IDL_DLM_PATH, 458, 463
IDL_EFS_ASSOC bit value, 390
IDL_EFS_CLOSED bit value, 389
IDL_EFS_IDL_OPEN bit value, 389
IDL_EFS_NOGUI bit value, 390
IDL_EFS_NOPIPE bit value, 390
IDL_EFS_NOT_NOSTDIO bit value, 390
IDL_EFS_NOTTY bit value, 389
IDL_EFS_NOXDR bit value, 390
IDL_EFS_READ bit value, 389
IDL_EFS_USER bit value, 389
IDL_EFS_WRITE bit value, 389
IDL_ENSURE_ARRAY macro, 350
IDL_ENSURE_OBJREF macro, 350
IDL_ENSURE_PTR macro, 350
IDL_ENSURE_SCALAR macro, 350
IDL_ENSURE_SIMPLE macro, 350
IDL_ENSURE_STRING macro, 350
IDL_ENSURE_STRUCTURE macro, 351
IDL_EXCLUDE_COMPLEX macro, 350
IDL_EXCLUDE_CONST macro, 349
IDL_EXCLUDE_EXPR macro, 349
IDL_EXCLUDE_FILE macro, 350

IDL_EXCLUDE_SCALAR macro, 350
IDL_EXCLUDE_STRING macro, 350
IDL_EXCLUDE_STRUCT macro, 350
IDL_EXCLUDE_UNDEF macro, 349
IDL_Execute() function, 479
IDL_ExecuteStr() function, 479
IDL_ExitRegister() function, 403
idl_export.h file, 29
IDL_F_COMPRESS bit value, 382
IDL_F_DEL_ON_CLOSE bit value, 381
IDL_F_ISAGUI bit value, 381
IDL_F_ISATTY bit value, 381
IDL_F_MORE bit value, 381
IDL_F_NOCLOSE bit value, 381
IDL_F_SR bit value, 382
IDL_F_STDIO bit value, 383
IDL_F_SWAP_ENDIAN bit value, 382
IDL_F_UNIX_F77 bit value, 382
IDL_F_UNIX_NOSTDIO bit value, 382
IDL_F_UNIX_PIPE bit value, 382
IDL_F_UNIX_SPECIAL bit value, 382
IDL_F_VAX_FLOAT bit value, 382
IDL_F_XDR bit value, 381
IDL_FALSE preprocessor constant, 412
IDL_FILE_STAT struct, 380
IDL_FileClose() function, 387
IDL_FileEnsureStatus() function, 389
IDL_FileEOF() function, 393
IDL_FileFlushUnit() function, 394
IDL_FileFreeUnit() function, 391
IDL_FileGetUnit() function, 391
IDL_FileOpen() function, 384
IDL_FileSetClose() function, 388
IDL_FileStat() function, 380
IDL_FileTerm global variable, 406
IDL_FileTermColumns function, 407
IDL_FileTermIsTty function, 406
IDL_FileTermLines function, 407
IDL_FileTermName function, 406
IDL_FindNamedVariable() function, 330
IDL_GetKbrd() function, 395
Index External Development Guide

557
IDL_GetScratch function, 322
IDL_Gettmp() function, 314
IDL_GetUserInfo() function, 411
IDL_GetVarAddr() function, 329
IDL_GetVarAddr1() function, 329
IDL_ImportArray() function, 308, 320
IDL_ImportNamedArray() function, 308, 320
IDL_Init() function, 471, 473
IDL_INIT_BACKGROUND, 474
IDL_INIT_EMBEDDED bit value, 473
IDL_INIT_GUI bit value, 473
IDL_INIT_GUI_AUTO bit value, 474
IDL_INIT_NOLICALIAS bit value, 474
IDL_INIT_NOTTYEDIT bit value, 474
IDL_KW_ARR_DESC structure, 277
IDL_KW_ARRAY bit value, 275
IDL_KW_FAST_SCAN macro, 282
IDL_KW_OUT bit value, 275
IDL_KW_PAR structure, 271, 274
IDL_KW_VALUE bit value, 276
IDL_KW_VIN bit value, 275
IDL_KW_ZERO bit value, 275
IDL_KWCleanup() function, 271
IDL_KWGetParams() function, 271, 281
IDL_Load(), 443
IDL_Logit() function, 397
IDL_LONG type definition, 264
IDL_LONG64, 264
IDL_M_GENERIC message string, 346
IDL_M_NAMED_GENERIC message code,

346
IDL_Main() function, 482
IDL_MakeStruct() function, 307
IDL_MakeTempArray function, 314
IDL_MakeTempStruct() function, 316
IDL_MAX() macro, 413
IDL_MAX_ARRAY_DIM preprocessor con-

stant, 412
IDL_MAX_TYPE constant, 262
IDL_MAXIDLEN preprocessor constant, 412
IDL_MAXPATH preprocessor constant, 412

IDL_MBLK_CORE, 340
IDL_MemAlloc() function, 400
IDL_MemAllocPerm() function, 402
IDL_MemFree() function, 401
IDL_Message() function, 342, 362
IDL_MessageDefineBlock(), 340, 461
IDL_MessageNameToCode(), 348
IDL_MIN() macro, 413
IDL_MSG_ATTR_BELL bit value, 346
IDL_MSG_ATTR_MORE bit value, 345
IDL_MSG_ATTR_NOPREFIX bit value, 345
IDL_MSG_ATTR_NOPRINT bit value, 345
IDL_MSG_ATTR_NOTRACE bit value, 345
IDL_MSG_ATTR_QUIET bit value, 345
IDL_MSG_ATTR_SYS bit value, 346
IDL_MSG_DEF, 340
IDL_MSG_EXIT bit value, 345
IDL_MSG_INFO bit value, 344
IDL_MSG_IO_LONGJMP bit value, 345
IDL_MSG_LONGJMP bit value, 345
IDL_MSG_RET bit value, 344
IDL_NUM_TYPES constant, 262
IDL_OPEN_APND bit value, 381, 385
IDL_OPEN_R bit value, 381, 384
IDL_OPEN_TRUNC bit value, 381, 385
IDL_OPEN_W bit value, 381, 384
IDL_OutputFormat global variable, 409
IDL_OutputFormatFunc function, 409
IDL_OutputFormatLen global variable, 409
IDL_OutputFormatLenFunc function, 410
IDL_Print() function, 396
IDL_PrintF() function, 396
IDL_REGISTER preprocessor constant, 412
IDL_ROUND_UP() macro, 414
IDL_RPCCleanup, 234
IDL_RPCDeltmp, 235
IDL_RPCExecuteStr, 236
IDL_RPCGetArrayData, 256
IDL_RPCGetArrayNumDims, 256
IDL_RPCGetArrrayDimensions, 256
IDL_RPCGetMainVariable, 237
External Development Guide Index

558
IDL_RPCGettmp, 238
IDL_RPCGetVarByte, 256
IDL_RPCGetVarComplex, 256
IDL_RPCGetVarComplexl, 256
IDL_RPCGetVarComplexR, 256
IDL_RPCGetVarDComplex, 256
IDL_RPCGetVarDComplexI, 256
IDL_RPCGetVarDComplexR, 256
IDL_RPCGetVarDouble, 257
IDL_RPCGetVarFloat, 257
IDL_RPCGetVariable, 239
IDL_RPCGetVarInt, 257
IDL_RPCGetVarLong, 257
IDL_RPCGetVarLong64, 257
IDL_RPCGetVarString, 257
IDL_RPCGetVarType, 257
IDL_RPCGetVarUInt, 257
IDL_RPCGetVarULong64, 257
IDL_RPCImportArray, 240
IDL_RPCInit, 241
IDL_RPCMakeArray, 242
IDL_RPCOutputCapture, 244
IDL_RPCOutputGetStr, 245
IDL_RPCSetMainVariable, 246
IDL_RPCSetVariable, 247
IDL_RPCStoreScalar, 248
IDL_RPCStrDelete, 249
IDL_RPCStrDup, 250
IDL_RPCStrEnsureLength, 251
IDL_RPCStrStore, 252
IDL_RPCTimeout, 253
IDL_RPCVarCopy, 254
IDL_RPCVarGetData, 255
IDL_RPCVarIsArray, 257
IDL_RuntimeExec() function, 480
IDL_SignalBlock() function, 367
IDL_SignalMaskBlock() function, 366
IDL_SignalMaskGet() function, 365
IDL_SignalMaskSet() function, 366
IDL_SignalRegister() function, 362
IDL_SignalSetAdd() function, 364

IDL_SignalSetDel() function, 365
IDL_SignalSetInit() function, 364
IDL_SignalSetIsMember() function, 365
IDL_SignalSuspend() function, 367
IDL_SignalUnregister() function, 363
IDL_SREF structure, 301, 307
IDL_STDERR_UNIT file unit, 386
IDL_STDIN_UNIT file unit, 386
IDL_STDOUT_UNIT file unit, 386
IDL_StoreScalar() function, 326, 349
IDL_StoreScalarZero(), 326
IDL_StrDelete() function, 335
IDL_StrDup() function, 334
IDL_StrEnsureLength() function, 337
IDL_STRING struct, 265
IDL_STRING structure, 332
IDL_STRING_STR macro, 333
IDL_StrStore() function, 336
IDL_StrToSTRING() function, 336
IDL_STRUCT_TAG_DEF type definition,

308
IDL_StructNumTags(), 310
IDL_StructTagInfoByIndex() function, 309
IDL_StructTagInfoByName() function, 309
IDL_StructTagNameByIndex function, 311
IDL_SYSFUN_DEF, 443
IDL_SYSFUN_DEF_F_KEYWORDS, 271
IDL_SYSFUN_DEF2 struct, 271, 443
IDL_SysRtnAdd function, 271, 443
IDL_SysvDirFunc function, 405
IDL_SysvErrorCodeValue function, 405
IDL_SysvErrStringFunc function, 405
IDL_SysVersionArch function, 405
IDL_SysVersionOS function, 405
IDL_SysVersionOSFamily function, 405
IDL_SysVersionRelease function, 405
IDL_SysvOrderValue function, 405
IDL_SysvSyserrStringFunc function, 405
IDL_TERMINFO struct, 406
IDL_TIMER_CONTEXT variable, 372
IDL_TimerBlock() function, 374
Index External Development Guide

559
IDL_TimerCancel() function, 373
IDL_TimerSet() function, 371
IDL_TOUT_F_NLPOST bit value, 477
IDL_TOUT_F_STDERR bit value, 477
IDL_ToutPop() function, 478
IDL_ToutPush() function, 478
IDL_TRUE preprocessor constant, 412
IDL_TTYReset function, 408
IDL_TYP_B_ALL constant, 263
IDL_TYP_BYTE type code, 262
IDL_TYP_COMPLEX type code, 262, 265
IDL_TYP_DCOMPLEX type code, 262, 265
IDL_TYP_DOUBLE type code, 262
IDL_TYP_FLOAT type code, 262
IDL_TYP_INT type code, 262
IDL_TYP_LONG type code, 262
IDL_TYP_LONG64 type code, 263
IDL_TYP_MASK preprocessor macro, 263
IDL_TYP_OBJREF type code, 263
IDL_TYP_PTR type code, 263
IDL_TYP_STRING type code, 262, 265
IDL_TYP_STRUCT type code, 262, 307
IDL_TYP_UINT type code, 263
IDL_TYP_ULONG type code, 263
IDL_TYP_ULONG64 type code, 263
IDL_TYP_UNDEF, 262
IDL_TYP_UNDEF type code, 262
IDL_TypeName global variable, 409
IDL_TypeNameFunc function, 410
IDL_TypeSize global variable, 409
IDL_TypeSizeFunc function, 410
IDL_ULONG, 264
IDL_ULONG64, 265
IDL_USER_INFO struct, 411
IDL_V_ARR bit value, 302
IDL_V_CONST bit value, 302
IDL_V_DYNAMIC bit value, 303
IDL_V_FILE bit value, 302
IDL_V_STRUCT bit value, 303, 307
IDL_V_TEMP bit value, 302
IDL_VarCopy() function, 325

IDL_VarGetData() function, 324
IDL_VARIABLE structure, 301
IDL_VarName() function, 328
IDL_VPTR, 28, 301
IDL_WidgetGetStubIds() function, 515, 515
IDL_WidgetIssueStubEvent() function, 514
IDL_WidgetSetStubIds() function, 515, 515
IDL_WidgetStubLock() function, 514
IDL_WidgetStubLookup() function, 514
IDL_WidgetStubSetSizeFunc() function, 515,

516
IDL_Win32Init() function, 471, 475
IDLcomActiveX object

see ActiveX controls
IDLcomIDispatch objects

creating, 54
destroying, 66
method calls, 55
naming scheme, 50
overview, 44, 48

IDLDrawWidget ActiveX control
auto event properties, 139
compiling IDL code, 103
creating, 100
creating an interface and handling events, 96
do methods (runtime only), 131
drawing the interface, 97
events, 141
initializing IDL, 99, 103
integrating object graphics, 113
major features, 94
methods, 121
modifying IDL library code, 110
overview, 42
properties, 133
read only properties, 137
register for events, 127
sharing grid control array, 114
specifying IDL path, 98
using, 45

IDL-Java bridge. See Java
External Development Guide Index

560
IdlPath property, 99
IdlPath property (ActiveX), 135
IDLRPCGetVarULong, 257
information on open files

IDL_FILE_STAT struct, 380
InitIDL method (ActiveX), 124
InitIDLEx method (ActiveX), 125
inter-language

calling conventions, 24
supported communication techniques, 13

internal callback functions (widget stub), 517
internal functions for stub widgets, 514
interpreted languages, 27
interpreter stack, 28
interrupt flag, internal, 404

J
Java

bridge
class name in IDL, 156
configuration, 147
destroying objects, 162
IDL data types, 150
Java data types, 152
session object, 164
version, 164

classes
data members, 160
methods, 158
names, 156
path, 147
properties, 160
static, 157

converting data types with IDL, 154
creating IDL-Java bridge objects, 156
Native Interface (JNI), 145
objects, 144
static

classes, 157
data members, 157

methods, 157
Virtual Machine (JVM), 145

javaprops.pro, 157
jbexamples.jar, 177
journal file, adding to, 397

K
KEYWORD_DEMO procedure, 285
keywords

array, 275, 278
Boolean, 275
creating, 271
examples, 285
in external development, 270
input, 275
input/output, 278
output, 275
processing, 281
processing options, 278
read-only, 277
scalar, 278
speeding processing of, 282

L
language

about IDL, 27
libraries

IDL portable calling convention, 202
linking to, 229

licensing, 474
callable IDL issues, 470

linking
C programs with Callable IDL, 482
client library, 229
external code into IDL, 31
to IDL, 31

logical unit numbers, 306
long integer data type, 264
Index External Development Guide

561
longjmp() function, 345
LUNs see logical unit numbers

M
macros

defined in idl_export.h, 413
make file for IDL sharable libraries, 31
malloc() function, 322
mapping

IDL data types to C data types, 264
memory

allocating, 400
allocating permanent, 402
freeing, 401

messages
format string, 346
message blocks, 340

method calls
ActiveX controls, 79
COM objects, 55

Microsoft Object Viewer, 52

N
names

of variables (external code), 328

O
object properties (COM objects), 63
Object Viewer, 52
objects

IDL-Java bridge session
exceptions, 166
parameters, 164

Java classes
IDL-Java bridge, 144
path, 147

obtaining names of variables, 328

OLE/COM Object Viewer, 52, 52, 59, 76
OnButtonPress autoevent (ActiveX), 139
OnButtonRelease autoevent (ActiveX), 139
OnDblClick autoevent (ActiveX), 139
OnExpose autoevent (ActiveX), 140
OnInit autoevent (ActiveX), 140
OnMotion autoevent (ActiveX), 140
OnViewScrolled event (ActiveX), 141
opening files

IDL_FileOpen(), 384

P
parameters

passing mechanism, 202
preprocessor constants, 412
Preventing File Closing, 388
Print method (ActiveX), 126
printf() function, 342
printing

IDL variables, 396
using VisualBasic, 109

procedure calls, remote, 226
program size considerations

callable IDL, 468
properties

ActiveX controls, 80
COM objects, 63

publicmembers.pro, 160

R
recommended reading, 32
RegisterForEvents method (ActiveX), 127
registering

routines using IDL_SysRtnAdd(), 434
registering exit handlers, 403
Remote Procedure Calls, 15, 226

example code, 258
Renderer property (ActiveX), 135
External Development Guide Index

562
Retain property (ActiveX), 135
returning address in current execution scope,

330
ringing bell with error messages, 346
rounding values, 414
RPC Examples, 258
RPC library, 233
RPC server, using IDL as, 227
RPCs see Remote Procedure Calls
Running IDL in Server Mode, 227
runtime

embedded licensing, 480

S
scalars

values
storing, 326

variables, 304
Scroll property (ActiveX), 137
SecondExample.pro, 103
server ID number, 227
server process, 226
session object

IDL-Java bridge exceptions, 166
IDL-Java bridge parameters, 164

SetNamedArray method (ActiveX), 128
SetNamedData method (ActiveX), 129
SetOutputWnd

method, 100
SetOutputWnd method (ActiveX), 130
showexcept.pro, 167, 168
showgreyimage.pro, 174
shutting down

IDL, 403
SIG_DFL, 358, 359
SIG_IGN, 359
SIGALRM, 359, 374
SIGFPE, 359
SIGINT, 404
signal handlers

establishing, 362
removing, 363

signal masks
IDL_SignalBlock(), 367
IDL_SignalMaskBlock(), 366
IDL_SignalMaskGet(), 365
IDL_SignalMaskSet(), 366
IDL_SignalSetAdd(), 364
IDL_SignalSetDel(), 365
IDL_SignalSetInit(), 364
IDL_SignalSetIsMember(), 365
IDL_SignalSuspend(), 367
overview, 364

signals, 358
IDL API, 359
IDL limitations, 359
problems, 358

SIGTRAP, 359
simple_vars.pro, 210
Skills Required to Add Code to IDL, 23
SPAWN, 37
Special File Units, 386
stack, interpreter, 28
standard error, 386
standard input, 386
standard output, 386
stdio buffering, 382
storing

scalar values, 326
string data type, 265
strings, 337

accessing, 333
copying, 334
deleting, 335
passing with CALL_EXTERNAL, 212
processing, 332
setting value of, 336

structure
variables, 307

structures, 307
anonymous, 308, 308
Index External Development Guide

563
creating, 307
creating temporary, 316
passing with CALL_EXTERNAL, 218

stub widgets
internal functions, 514
overview, 510
WIDGET_STUB function, 511

symbol table, 329
system routines

adding, 443
examples, 420, 421
interface, 419
overview, 418

system variables
functions for returning, 405

T
Temporary array

getting, 314
Temporary variable

freeing, 319
getting, 314

temporary variables, 313
Terminal Information, 406
The IDL RPC directory, 227
timer modules in IDL, 370
timers

blocking, 370, 374
callbacks, 371
cancelling requests, 373
IDL_TimerBlock(), 374
IDL_TimerCancel(), 373
IDL_TimerSet(), 371

troubleshooting
callable IDL, 468

type codes, 262
Type Information, 409
types

complex, 265
long integer, 264

mapping of, 264
string, 265
type codes, 262
type masks, 263
unsigned byte, 264

U
UCHAR type definition, 264
UNIX Signal Masks, 364
unsigned byte data type, 264
urlread.pro, 172
URLReader.java, 172
user information (IDL), 411
User Interrupts, 404
Using Callable IDL

overview, 471
using callable IDL

from C, 483
from Fortran, 490

V
Variable Name

obtaining, 328
VariableExists method (ActiveX), 130
variables, 330

array, 305
copying, 325
in current scope, looking up, 330
obtaining names of, 328
returning address in main-level program, 329
scalar, 304
setting to scalar values, 326
structure, 307
system, 405
temporary, 313

VBCopyPrint
copying and printing IDL graphics, 106

VBLoadCT.pro, 110
External Development Guide Index

564
VBPaint
handling events within VB, 116

VBPalette.pro, 112
VBShare1D, 114
Virtual Machine

Java (JVM), 145
Visible property (ActiveX), 135
VisualBasic

printing, 109

W
When is it Appropriate to Add Code to IDL?,

22
When is it Appropriate to use Callable IDL?,

467
widget events

ActiveX controls, 81
WIDGET_ACTIVEX, 44
WIDGET_STUB

examples, 517, 519
interface, 468, 510
WIDGET_CONTROL keywords, 512

WIDGET_STUB function

reference, 511
widgets

adding custom to IDL, 510
internal functions, 514
WIDGET_ACTIVEX, 44
WIDGET_CONTROL, 512
WIDGET_STUB, 511

wrapper routines
CALL_EXTERNAL, 210

X
XLoadCT functionality using VB, 110
Xoffset property (ActiveX), 137
Xsize property (ActiveX), 135
Xviewport property (ActiveX), 137

Y
Yoffset property (ActiveX), 138
Ysize property (ActiveX), 136
Yviewport property (ActiveX), 138
Index External Development Guide

	Online Manuals
	IDL Documentation
	What's New in IDL 6.2
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	External Development Guide
	Contents
	External Development Overview
	About This Manual
	Supported Inter-Language Communication Techniques in IDL
	Translate into IDL
	SPAWN
	Microsoft COM and ActiveX
	Sun Java
	UNIX Remote Procedure Calls (RPCs)
	CALL_EXTERNAL
	IDL System Routine (LINKIMAGE, DLMs)
	Callable IDL

	Dynamic Linking Terminology and Concepts
	When Is It Appropriate to Combine External Code with IDL?
	Skills Required to Combine External Code with IDL
	IDL Organization
	The Interpreter Stack

	External Definitions
	Interpreting Logical Boolean Values
	Compilation and Linking Details
	Recommended Reading

	Part I: Techniques That Do Not Use IDL’s Internal API
	Using SPAWN and UNIX Pipes
	Example: Communicating with a Child Process Under UNIX

	Overview: COM and ActiveX in IDL
	COM Objects and IDL
	What are COM Objects?
	Why Use COM Objects with IDL?

	Using COM Objects with IDL
	Exposing a COM Object as an IDL Object
	Including an ActiveX Control in an IDL Widget Hierarchy
	Using the IDLDrawWidget ActiveX Control

	Skills Required to Use COM Objects
	If You Are Using COM Objects
	If You Are Using ActiveX Controls
	If You Are Using the IDLDrawWidget ActiveX Control
	If You Are Creating Your Own COM Object

	Using COM Objects in IDL
	About Using COM Objects in IDL
	Array Data Storage Format
	Object Creation
	Method Calls and Property Management
	Object Destruction
	Registering COM Components on a Windows Machine

	IDLcomIDispatch Object Naming Scheme
	Class Identifiers
	Program Identifiers
	Finding COM Class and Program IDs

	Creating IDLcomIDispatch Objects
	Method Calls on IDLcomIDispatch Objects
	Function vs. Procedure Methods
	What Happens When a Method Call is Made?
	Data Type Conversions
	Optional Arguments
	Finding Object Methods

	Managing COM Object Properties
	Setting Properties
	Getting Properties

	References to Other COM Objects
	Destroying IDLcomIDispatch Objects
	COM-IDL Data Type Mapping
	Example: RSIDemoComponent

	Using ActiveX Controls in IDL
	About Using ActiveX Controls in IDL
	Warning: Modeless Dialogs
	Registering COM Components on a Windows Machine

	ActiveX Control Naming Scheme
	Finding COM Class and Program IDs

	Creating ActiveX Controls
	Method Calls on ActiveX Controls
	Retrieving the Object Reference

	Managing ActiveX Control Properties
	ActiveX Widget Events
	Using the ActiveX Widget Event Structure
	Dynamic Elements in the ActiveX Event Structure

	Destroying ActiveX Controls
	Example: Calendar Control
	Example: Spreadsheet Control

	The IDLDrawWidget ActiveX Control
	Overview
	A Note about Versions of the IDL ActiveX Control

	Creating an Interface and Handling Events
	Drawing the Interface
	Specifying the IDL Path and Graphics Level
	Initializing IDL
	Creating the Draw Widget
	Directing IDL Output to a Text Box
	Responding to Events and Issuing IDL Commands
	Cleaning Up and Exiting

	Working with IDL Procedures
	Creating the Interface
	Initializing IDL
	Compiling the IDL Code
	Dispatching Button Events to IDL
	Cleaning Up and Exiting

	Advanced Examples
	Copying and Printing IDL Graphics
	Opening the VBCopyPrint project
	Running the VBCopyPrint Example
	Copying IDL Graphic to the clipboard
	Printing the IDL Graphic using IDL Object Graphics
	Executing IDL user routines with Visual Basic
	Printing the IDL Graphic Using Visual Basic

	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Object Graphics Using VB
	Sharing a Grid Control Array with IDL
	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDLDrawWidget Control Reference
	IDLDrawWidget
	Methods
	CopyNamedArray
	CopyWindow
	CreateDrawWidget
	DestroyDrawWidget
	DoExit
	ExecuteStr
	GetNamedData
	InitIDL
	InitIDLEx
	Print
	RegisterForEvents
	SetNamedArray
	SetNamedData
	SetOutputWnd
	VariableExists

	Do Methods (Runtime Only)
	DoButtonPress
	DoButtonRelease
	DoExpose
	DoMotion

	Properties
	BackColor
	BaseName
	BufferId
	DrawWidgetName
	Enabled
	GraphicsLevel (Runtime/Design time)
	IdlPath
	Renderer
	Retain (Runtime/Design time)
	Visible (Runtime/Design time)
	Xsize (Design time)
	Ysize (Design time)

	Read Only Properties
	BaseId (Runtime)
	DrawId (Runtime)
	hWnd (Runtime)
	LastIdlError (Runtime)
	Scroll
	Xoffset
	Xviewport
	Yoffset
	Yviewport

	Auto Event Properties
	OnButtonPress
	OnButtonRelease
	OnDblClick
	OnExpose
	OnInit
	OnMotion

	Events
	OnViewScrolled

	Using Java Objects in IDL
	Overview of Using Java Objects
	Java Terminology
	IDL-Java Bridge Architecture

	Initializing the IDL-Java Bridge
	Configuring the Bridge

	IDL-Java Bridge Data Type Mapping
	Creating IDL-Java Objects
	Java Class Names in IDL
	Java Static Access

	Method Calls on IDL-Java Objects
	What Happens When a Method Call Is Made?
	Data Type Conversions

	Managing IDL-Java Object Properties
	Getting and Setting Properties

	Destroying IDL-Java Objects
	Showing IDL-Java Output in IDL
	The IDLJavaBridgeSession Object
	Java Exceptions
	IDL-Java Bridge Examples
	Accessing Arrays Example
	Accessing URLs Example
	Accessing Grayscale Images Example
	Accessing RGB Images Example

	Troubleshooting Your Bridge Session
	Calling System.exit
	Errors When Initializing the Bridge
	Errors When Creating Objects
	Errors When Calling Methods
	Errors When Accessing Data Members

	Using CALL_EXTERNAL
	The CALL_EXTERNAL Function
	Example Code in the IDL Distribution
	CALL_EXTERNAL Compared to UNIX Child Process
	Compilation and Linking of External Code
	AUTO_GLUE
	Input and Output
	Memory Cleanup
	Memory Access
	Argument Data Types
	Mapping IDL Data Types to External Language Types
	By-Value and By-Reference Arguments
	Microsoft Windows Calling Conventions
	Common CALL_EXTERNAL Pitfalls

	Passing Parameters
	Using Auto Glue
	Generating Glue Without Executing It

	Basic C Examples
	Example: Passing Parameters by Reference to IDL
	Example: Calling a C Routine to Perform Computation

	Wrapper Routines
	Passing String Data
	Example

	Passing Array Data
	Passing Structures
	Fortran Examples
	Example: Calling a Fortran Routine Using a C Interface Routine
	Example: Calling a Fortran Routine Using a Fortran Interface Routine

	Remote Procedure Calls
	IDL and Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode

	Client Variables
	Linking to the Client Library
	Example of IDL RPC Client API

	Compatibility with Older IDL Code
	The IDL RPC Library
	IDL_RPCCleanup
	IDL_RPCDeltmp
	Description
	Parameters

	IDL_RPCExecuteStr
	IDL_RPCGetMainVariable
	IDL_RPCGettmp
	Parameters

	IDL_RPCGetVariable
	IDL_RPCImportArray
	IDL_RPCInit
	Description

	IDL_RPCMakeArray
	IDL_RPCOutputCapture
	IDL_RPCOutputGetStr
	IDL_RPCSetMainVariable
	IDL_RPCSetVariable
	IDL_RPCStoreScalar
	IDL_RPCStrDelete
	IDL_RPCStrDup
	IDL_RPCStrEnsureLength
	IDL_RPCStrStore
	IDL_RPCTimeout
	IDL_RPCVarCopy
	IDL_RPCVarGetData
	Variable Accessor Macros

	RPC Examples

	Part II: IDL’s Internal API
	IDL Internals: Types
	Type Codes
	Type Masks

	Mapping of Basic Types
	Unsigned Byte Data
	Integer Data
	Unsigned Integer Data
	Long Integer Data
	Unsigned Long Integer Data
	64-bit Integer Data
	Unsigned 64-bit Integer Data
	Complex Data
	String Data

	IDL_MEMINT and IDL_FILEINT Types

	IDL Internals: Keyword Processing
	IDL and Keyword Processing
	Creating Routines that Accept Keywords
	Overview Of IDL Keyword Processing
	The IDL_KW_PAR Structure
	The IDL_KW_ARR_DESC_R Structure
	Keyword Processing Options
	The KW_RESULT Structure
	Processing Keywords
	Speeding Keyword Processing

	Cleaning Up
	Keyword Examples
	The Pre-IDL 5.5 Keyword API
	Background
	Advantages Of The IDL 5.5 API
	Differences And Similarities Between APIs
	Converting Existing Code To The New API
	The Transitional API
	Example: Converting From The Old Keyword API

	IDL Internals: Variables
	IDL and Internal Variables
	The IDL_VARIABLE Structure
	Scalar Variables
	Array Variables
	Structure Variables
	Creating Structures
	Accessing Structure Tags
	Determining the Number Of Structure Tags
	Determining the Names Of Structures and their Tags

	Heap Variables
	Temporary Variables
	Getting a Temporary Variable
	Creating a Temporary Array
	Creating a Temporary Structure
	Creating a Temporary Vector
	Creating A Temporary Variable Using Another Variable As A Template
	Freeing A Temporary Variable

	Creating an Array from Existing Data
	Getting Dynamic Memory
	The IDL_GetScratch Function

	Accessing Variable Data
	Copying Variables
	Storing Scalar Values
	Using IDL_StoreScalar() to Free Dynamic Resources

	Obtaining the Name of a Variable
	Looking Up Main Program Variables
	Looking Up Variables in Current Scope

	IDL Internals: String Processing
	String Processing and IDL
	Accessing IDL_STRING Values
	Copying Strings
	Deleting Strings
	Setting an IDL_STRING Value
	Obtaining a String of a Given Length

	IDL Internals: Error Handling
	Message Blocks
	Issuing Error Messages
	Error Codes
	Choosing an Error Code

	Looking Up A Message Code by Name
	Checking Arguments

	IDL Internals: Type Conversion
	Converting Arguments to C Scalars
	General Type Conversion
	Converting to Specific Types

	IDL Internals: UNIX Signals
	IDL and Signals
	Signal Handlers
	Establishing a Signal Handler
	Removing a Signal Handler
	UNIX Signal Masks
	IDL_SignalSetInit()
	IDL_SignalSetAdd()
	IDL_SignalSetDel()
	IDL_SignalSetIsMember()
	IDL_SignalMaskGet()
	IDL_SignalMaskSet()
	IDL_SignalMaskBlock()
	IDL_SignalBlock()
	IDL_SignalSuspend()

	IDL Internals: Timers
	IDL and Timers
	Making Timer Requests
	Canceling Asynchronous Timer Requests
	Blocking UNIX Timers

	IDL Internals: Files and Input/Output
	IDL and Input/Output Files
	File Information
	IDL_FileStat()

	Opening Files
	IDL_FileOpen()
	Special File Units

	Closing Files
	IDL_FileClose()

	Preventing File Closing
	IDL_FileSetClose()

	Checking File Status
	IDL_FileEnsureStatus()

	Allocating and Freeing File Units
	IDL_FileGetUnit()
	IDL_FileFreeUnit()

	Detecting End of File
	IDL_FileEOF()

	Flushing Buffered Data
	IDL_FileFlushUnit()

	Reading a Single Character
	IDL_GetKbrd()

	Output of IDL Variables
	IDL_Print() and IDL_PrintF()

	Adding to the Journal File
	IDL_Logit()

	IDL Internals: Miscellaneous
	Dynamic Memory
	IDL_MemAlloc()
	IDL_MemFree()
	IDL_MemAllocPerm()

	Exit Handlers
	IDL_ExitRegister()

	User Interrupts
	IDL_BailOut()

	Functions for Returning System Variables
	Terminal Information
	Functions for Returning IDL_FileTerm Variable Values

	Ensuring UNIX TTY State
	Type Information
	Functions for Returning Data Type Variable Values

	User Information
	Constants
	Macros

	Part III: Techniques That Use IDL’s Internal API
	Adding System Routines
	IDL and System Routines
	The System Routine Interface
	Example: Hello World
	Example: Doing a Little More (MULT2)
	Testing the Example

	Example: A Complete Numerical Routine Example (FZ_ROOTS2)
	Calling Sequence
	Arguments
	Keywords
	Example

	Example: An Example Using Routine Design Iteration (RSUM)
	Running Sum (Example 1)
	RSUM1
	Running Sum (Example 2)
	Running Sum (Example 3)

	Registering Routines
	Example

	Enabling and Disabling System Routines
	Enabling Routines
	Obtaining Enabled/Disabled Routine Names
	Obtaining the Number of Enabled/Disabled Routines
	Obtaining the Real Function Pointer
	Obtaining the IDL Name of the Current System Routine

	LINKIMAGE
	Dynamically Loadable Modules
	How DLMs Work
	The Module Description File
	The IDL_Load() function
	DLM Example

	Callable IDL
	Calling IDL as a Subroutine
	When is Callable IDL Appropriate?
	Technical Issues Relating to Callable IDL
	Appropriate Applications of Callable IDL

	Licensing Issues and Callable IDL
	Using Callable IDL
	Cleanup

	Initialization
	Initialization: UNIX
	options
	argc
	argv
	Initialization: Microsoft Windows

	Diverting IDL Output
	flags
	buf
	n
	IDL_ToutPush()
	IDL_ToutPop()

	Executing IDL Statements
	IDL_Execute()

	Runtime IDL and Embedded IDL
	Cleanup
	Issues and Examples: UNIX
	Interactive IDL
	Compiling Programs That Call IDL
	Example: Calling IDL From C
	Example: Calling an IDL Math Function
	Example: Calling IDL from Fortran
	Compilation and Linking Statements

	Issues and Examples: Microsoft Windows
	Building an Application that Calls IDL
	Example: A Simple Application

	Adding External Widgets to IDL
	IDL and External Widgets
	WIDGET_STUB
	Calling Sequence
	Arguments
	Keywords

	WIDGET_CONTROL/WIDGET_STUB
	Keywords

	Functions for Use with Stub Widgets
	IDL_WidgetStubLock()
	IDL_WidgetStubLookup()
	IDL_WidgetIssueStubEvent()
	IDL_WidgetSetStubIds()
	IDL_WidgetGetStubIds()
	IDL_WidgetStubSetSizeFunc()

	Internal Callback Functions
	Commentary on the Example Shown Above

	UNIX WIDGET_STUB Example: WIDGET_ARROWB
	The IDL Program for WIDGET_ARROWB
	The C Program for widget_arrowb.c
	An IDL Program to Test the External Widget

	Obsolete Internal Interfaces
	Interfaces Obsoleted in IDL 5.5
	IDL_MSG_ATTR_SYS
	Specifying errno Explicitly: IDL_MessageErrno()
	Processing Keywords With IDL_KWGetParams()
	The IDL_KW_PAR Structure

	Interfaces Obsoleted in IDL 5.2.1
	Registering Routines

	Simplified Routine Invocation
	The IDL_EZ_ARG struct
	Cleaning Up
	Example— using IDL_EzCall()

	Obsolete Error Handling API

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

