External
Development
Guide

IDL Version 6.2
July 2005 Edition
Copyright © RSI

All Rights Reserved

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any othersresulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1

External Development OVEIVIEWciiiiiiiiiiiiii e eeeans 11
ADOUE TRISM@NUAE ...ttt eneeeeae e 12
Supported Inter-Language Communication Techniquesin IDLcccccecvvvvveeceecieenene 13
Dynamic Linking Terminology and CONCEPLScccceverieriiereiesiee e seeseeseeseesreesseesneens 20
When Is It Appropriate to Combine External Code with IDL?cccoeeevvveceececeenene 22
Skills Required to Combine External Code With DLcccevieveiienie e siee e 23
T]I @ o o (o] o ST 27
EXternal DEfINITIONSccoiiieiiee et e e e 29
Interpreting Logical BOOIEAN VAIUESccevviiuieieeieseceee et 30
Compilation and Linking DELAIIScccueieiiieriie ettt ee e sneesnee s 31
Recommended REBAINGccceviiiiiieiece ettt ens 32

External Development Guide 3

4

Part I: Techniques That Do Not Use IDL's Internal API

Chapter 2

Using SPAWN and UNIX PIPESouiiiiiiiiiiiiiieieeeee e 37
Chapter 3

Overview: COM and ActiveX in IDLcouuiiiiiiiiiiieeeeeeeeceeeeeeeii 41
(O(0 1Y @] 11= oi 5= 1o [5 SRS 42
Using COM ObJECISWIth IDLccueeieciicieceiese ettt 44
Skills Required to Use COM ODJECESoveeieiiiiieeieriese e 46
Chapter 4

Using COM Objects

T 5 USRS 47
About Using COM OBJECISIN IDLccvviiiiiecee et 48
IDLcomliDispatch Object Naming SChEMEccvcviieeie e 50
Creating IDLCOMIDISPatCh ODJECESccccoveieriirieieeeirie e 54
Method Calls on IDLcomIDispatCh ODJECEScecveeciereiiececiee e 55
Managing COM ODjJECt PrOPEITIESceoveeriiririereeeee e 63
References to Other COM ODBJECESc.vcviivieieie ettt 65
Destroying IDLcomIDiSpatCh ODJECLSeeoeierieieieere e 66
COM-IDL Data Type MapPiNg ...ccecveeverieereeeesiesresseeseessessesseessessessessesssessessessesssessessessens 67
Example: RSIDEMOCOMPONENccieriereeiererieeteenieseseesseeseeseesee e eeeneeseesnesseeneeseesaesns 69
Chapter 5

Using ActiveX Controls iN IDLceeiiiiiiiiiiiiviieeeeeee 73
About Using ActiveX ControlSin IDLcccvirireirienirereeeesese s 74
ActiveX Control Naming SChEMEcccce i 76
Creating ACHIVEX CONIOISccveivicieceesie sttt st sre e besreene s 77
Method Calls 0n ACtiVEX CONLIOISocueieieiesiesieet et 79
Managing ActiveX Control Properti€sScccccvvveeeeiene et 80
ACHVEX WiIAJEL EVENLS ..ottt sttt sne e eneesae e 81
Destroying ACVEX CONLIOIScceeiveiieiiieieie sttt e et e e resne s 84
Example: Calendar CONLIOLooeoieieieeiece et 85
Example: Spreadsheet CONLIoloovveiiiiece et 88
Chapter 6

The IDLDrawWidget ActiveX Controlccccceeeeiiieieeiiiiiieeeeeeeiinn 93
OVEIVIBIW ..t seieeee sttt este s e s teese e te st e sae e e e tessesse et e seesseeseensentesteeneensensensennenn 94

Contents External Development Guide

Creating an Interface and Handling EVENESccocviiiecece e 96
WOrking With IDL ProCEAUIEScceeiiiiiieieieese et 102
F o7 o ce e o] =R 105
Copying and Printing IDL GraphiCsScccceeeeeierireieeese e see e 106
XLoadCT Functionality Using Visual BaSICccceevueveiiiieieeseseceesee et s 110
XPalette Functionality Using Visual BaSICc.coeeeeeneiiniereereseeeeee e 112
Integrating Object GraphicSUSING VBc.ooeiiiiecee e 113
Sharing a Grid Control Array With IDLcoooiiieieee e 114
Handling Events within Visual BaSiCccccceeiiiiicieie e 116
Distributing Y our ACtiveX APPHICALIONceoeiriieeeee e 118
Chapter 7

IDLDrawWidget Control Referenceccccoeeevveeeiiiiiiiiieieeecceeee, 119
[DLDIAWWILGEL ..ottt 120
=210 LSRR 121
Do Methods (RUNEIME ONIY) ..ot 131
PrOPEITIES ...ttt e et b b e et b e nen e 133
Read ONlY PrOPErtiESoccveee ettt ne e e e e 137
AULO EVENE PrOPEITIES ..ottt 139
EVENLS e e e e e b b nre e sreenes 141
Chapter 8

Using Java ODJectS iN IDLociiiiiiiiiiiaeeeeeeee e 143
Overview of Using JAVAODJECEScccecieiiiicecece e 144
Initializing the IDL-JavaBridgecccovieieeee e 147
IDL-Java Bridge Data TYPe Mappingcccceeerreieieeiesiesieseeseesiesiesseesessesneeeesses e sneens 150
Creating IDL-JaVa ODJECLScceiiiieeeeiee et 156
Method Calls on IDL-Java ODJECESccceeeeiieiiecieceeieste ettt sreeneas 158
Managing IDL-Java ObjeCt ProOPertiesccooeeeieeeeee e 160
Destroying IDL-Java ObJECEScccveieiiiiieeiese et eeete ettt st sreeneas 162
Showing IDL-Java OUEPUL iN IDLoceeieie e 163
The IDLJavaBridgeSession ObJECEccccveveieiereeie sttt 164
JAVA EXCEPLIONS ...ttt sttt sttt ae e et st ne e e e nneneeenin 166
IDL-Java Bridge EXAMPIESccocceeiiiiiiiiiceeite ettt st 169
Troubleshooting Y our Bridge SESSIONccceiiiereeienese et 187

External Development Guide Contents

Chapter 9

Using CALL_EXTERNAL ..ooooeeeeieiie et 191
The CALL_EXTERNAL FUNCHONcoiiiiiiieiresieee st 192
[S gTa [== 0 £ T 202
USING AULO GIUE ..ottt sttt sttt s re et et e s ne e e e snesreeneenes 204
2 F S T ol O =] == U 206
WIEPPEr ROULINESoovieeieie sttt ettt e ettt e st e sresaaetesresteennensesaesreennas 210
[S gTa RS L gTo [- S 212
[S g Te [= Y D - S 216
[S g0 TS Tox LU = U 218
FOrtran EXAMPIESociieieeee ettt sttt b e nesreeneenes 220
Chapter 10

Remote Procedure CallSoouuuiiiiiiiiiiiie e 225
IDL and Remote Procedure CallSoocvivieieeie e 226
USING IDL @S @N RPC SEIVEN ..cuviiiecie ettt teeste e st s et ee e s sneesne e e 227
(O TS g A = o] =SOSR 228
Linking to the CHENt LIDIaryccccccvieriiee et 229
Compatibility with Older IDL COUEcovreririeieeririe e 231
THE IDL RPC LIBIaIY ..ocevieeeeieisesie et seenee s 233
RPC EXBMPIES ...ttt sttt st en e e 258

Part Il: IDL’s Internal API

Chapter 11

IDL Internals:

LY 015 T PRSPPI 261
L1377 0 L= 0o == 262
MapPING Of BESIC TYPES ...ueiviiiiieieesieriesie ettt sttt ene e enes 264
IDL_MEMINT and IDL_FILEINT TYPES ..ccorrureeeeiriririeieenerisieieesesesis e 267
Chapter 12

IDL Internals:

KeyWord ProCeSSING ..ocoviiiiiieeeiiiiiiiieie e et e e e e e e e 269
IDL and KeyWOrd PrOCESSINGcceeeeierieiieceeiisiestesee e ste e esae e sre e esesestesneesesnesneenes 270
Creating Routines that AcCept KEYWOISccoiieieiiiieee e 271
Overview Of IDL Keyword PrOCESSINGcccvcveieeiieriesieeeesiesie st esee e se e sre e seense e 272
The IDL_KW_PAR SIUCKUIEcueiiiieicieserisisie e 274

Contents External Development Guide

TheIDL_KW_ARR _DESC R SITUCIUIEccveivieeeeiee et 277
Keyword Processing OPLiONSccoerereeeeineneneeesesesseee s sressesessesnesneneas 278
The KW_RESULT SHTUCLUIEveeuveiecie ettt sttt sne s 280
Processing KEYWOITScoeiieiiiriieeerie sttt st esee e eeseeseesneenseseesneas 281
(@11 oo T TS 284
KeyWOrd EXAMPIES ...ttt e s e see e 285
The Pre-IDL 5.5 K@YWOrd APl ...ttt 292
Chapter 13

IDL Internals:

Variables ..o 299
IDL and INternal VariablESccocoi ittt ettt snee 300
The IDL_VARIABLE SITUCIUIEc.coeiiieeriesiesiece et 301
o o YT o] =SOSR 304
ATTAY VATADIES ... e 305
SIUCIUIE VAITADIES ...ttt s ens 307
HEAD VAITADIES ... 312
TeMPOrary VariableScccveiiieiiee ettt sne e ens 313
Creating an Array from EXiSting Datacceoeiiieieeiere e 320
Getting DYNAMIC MEMOTY ...o.vecieiisieceeies ettt aesae e ans 322
ACCESSING VATADIE DEIA ...c..eoeeieeeie ettt e e 324
(00 0) V1010 IV o) =P 325
SEOrNG SCAlAr VAIUES ..ottt st st neesee e 326
Obtaining the Name of aVariable ... 328
Looking Up Main Program Variablesccccccoeiieieeneii e 329
Looking Up Variablesin CUITENt SCOPEecvevverieeieeiiieiteceeieesteste e sse e sreeaensesreeneas 330
Chapter 14

IDL Internals:

SEHNG ProCESSING coiiiiiiiiiiii ittt 331
String Processing @nd IDLoouoieiiiieseeeses e 332
ACCeSSING IDL_STRING VAUEScooueeeiirienieieeeeee ettt s 333
COPYING SITTNGS vttt e st b e st b e b e st be e e e e e e besbeneneas 334
DE NG SIHNGS ..veeieeiecsiecse e e e s e s e e s re e sreesre e be e teeneeenreeeeennes 335
Setting an IDL_STRING VEIUEcooviiiieirise et 336
Obtaining a String of aGiven Length ... 337

External Development Guide Contents

Chapter 15

IDL Internals:

Error HANAIING oo 339
MESSAZE BIOCKS ...t re e nre e 340
[SSUING EITOr MESSAESc.ecveeiiiiieieieete sttt nne e 342
Looking Up A Message Code by NaMEcccccvvrier e 348
ChecKing ATQUMENTSceitiiiiieeeieeie ettt sttt b e e et b e e eb e e s 349
Chapter 16

IDL Internals:

TYPE CONVEISION oitiiiiiiiiiiiie e ettt e e e e e e e e e e e e eeee s 353
Converting ArgumentSt0 C SCAlAIScccovrerirerieeeiresreseeese e 354
General TYPE CONVEISIONeiuiiieeieeiesiesieeteesteste e et esaeste s e eseesaestesreeseesbessesreeseessessesseens 355
Converting to SPECITIC TYPEScvruerririeieieerie et 356
Chapter 17

IDL Internals:

UNIX SIGNAIS ceeiiiiiiii it e e e e 357
IDL @NA SIGNEIS ...veeeeeieeiesieeee et 358
o= oo 1= S 361
Establishing aSignal HanNQIer ... e 362
Removing aSignal HandIer ..o ieeieie et 363
UNIX SIGNal MESKScuecviiiieisieisieeseete sttt sae s et e st sesaeseseesanessensnes 364
Chapter 18

IDL Internals:

B L= TP PRPPPRRTR 369
1T To B I 0 1< PR 370
MaKiNg TimMEr REQUESEScoueiuiieieesiirieieeeie ettt e 371
Canceling Asynchronous TIMer REQUESEScovvvveieeieiieseeree e see e e see e s 373
BIOCKING UNEX TIMENS ...ttt e 374
Chapter 19

IDL Internals: Files and Input/Outputcoovrriiiiiiiiiiene e, 377
IDL and INPUL/OULPUL FITESoveeeieieieeeeeese e 378
FIle INFOrMELION ...ttt 380
OPENING FlES ... e n e 384
(O o1 e 1 1= 387

Contents External Development Guide

Preventing Fil@ CIOSINGccoeiiiiicecse ettt sttt sreeneas 388
CheCKiNg Fil@ SEALUSooveerierieieerierie et 389
Allocating and Freeing File UNItSccccovieieiiie et 391
Detecting ENG OF FIl@ ..ot 393
Flushing BUFfEred D@ccceiveeeeieiiesieceesesie ettt st st re et sreeneas 394
Reading a Single CharaCter ..o 395
Output Of IDL Variablescc.eeceiiieceeese ettt 396
Adding to the JOUrNal File ..o e 397
Chapter 20

IDL Internals: MIiSCellan@0ouUScccovvveeeiiiiiiiiiiieeeeeee e 399
(D)7l /= o] Y 400
Ll F= 00 1 £ 403
L0 LS o 101 (= (]]SSPSR 404
Functions for Returning System Variables ..o 405
Terminal INFOIMELIONcooiiiie et 406
ENSUNNG UNIX TTY SEAE ..ottt s 408
TYPE INFOIMEBLIONeeieeiee et e e e e s re e s e e sreesneesneenneens 409
USEN INFOMMALION ..ecuiiiieciece ettt st e st sr e s be e b e et e enreeresbeenras 411
CONSLANTS ...ttt et sttt st esae e sh e eae e she e saeesaeenreenreenree e 412
Y=ol 01 PSPPSR 413

Part Ill: Techniques That Use IDL's Internal API

Chapter 21

Adding System ROULINESccooiiiiiiieeecere e 417
IDL and SysStem ROULINEScccceieeeiiesiesieee sttt e ste et sae st sae e sne e e e se s 418
The System ROULING INTEITACEocueeeeereeeeere e 419
EXample: HEHOWOITA ...ttt et 420
Example: Doing aLittle More (MULTZ2) ..o 421
Example: A Complete Numerical Routine Example (FZ_ROOTS2)cccccvevevievinnene 424
Example: An Example Using Routine Design Iteration (RSUM)cccooovvviicinnneene 433
REQISLENING ROULINESc.viivieieieie sttt s re e enaennenresneas 443
Enabling and Disabling System ROULINEScooviiiieieese e 446
LINKIMAGE ..ottt 454
Dynamically Loadable MOAUIESccoiiiieee et 456

External Development Guide Contents

10

Chapter 22

(02 11 F= o] =3 | 5 PP PPUPPPPPPP 465
Calling IDL aSaSUDIOULINEcceiueeieiiecieeieeecs ettt sae et e et neene e 466
When is Callable IDL APPrOPriate?ccceoeeereeieenieneseeee e seesee e ses e ieeseeee e seeeneas 467
Licensing Issuesand Calabl@ IDLcccccveveieieceesese et 470
[0S T o = =o)L= 1 SR 471
Lo TR T2 o] o OSSPSR PRSTSRPRN 473
Diverting IDL OULPULcoveiieieeeeese e eeeiese st eee st eeseesae e aeseesreeseeneessesnesneeneenns 477
EXECUtiNg IDL SEALEMENESocviieicieeie ettt ettt sa e e ene e 479
Runtime IDL and Embedded IDLcccoiiieeeeeeee e 480
(@11~ L1 o TS 481
Issues and EXampleS: UNIX ...ttt 482
Issues and Examples: Microsoft WINAOWSccccoceveieeeeneie e 498
Chapter 23

Adding External Widgets tO IDLccoovvviiiiiiiiiiiiiiiieeeeeee 509
IDL and EXternal WIAJELScccooeiieirieriiieieee et 510
WIDGET _STUB ..ottt sttt st se e enestense e e e nsenseneas 511
WIDGET _CONTROL/WIDGET _STUBuoiiiiiiecie ettt e 512
Functions for Use With StUD WIAGELScceeovieiece e 514
Internal Callback FUNCLIONSc.ociiiiiiii e 517
UNIX WIDGET_STUB Example: WIDGET_ARROWSABcccoovviriireneneeeesienens 519
Appendix A

Obsolete Internal INterfaces ..o 525
Interfaces Obsoleted IN IDL 5.5 ... 526
Interfaces ObSoleted iN IDL 5.2.1ooioiiieeeeeee e 539
Simplified ROULINE INVOCALTIONcc.ecviiiciicieciece e st 542
Obsolete Error HandliNg APl ..ot 549
IO EX ettt 551

Contents External Development Guide

Chapter 1

External Development

Overview

This chapter discusses the following topics:

About This Manual

Supported I nter-Language Communication
TechniquesinIDL 13

Dynamic Linking Terminology and Concepts .
.................................... 20

When Is It Appropriate to Combine External
CodewithIDL? ...t 22

External Development Guide

Skills Required to Combine External Code
WIthIDL ... 23
IDL Organization 27
External Definitions 29
Interpreting Logical Boolean Values 30
Compilation and Linking Details 31
Recommended Reading 32
11

12 Chapter 1: External Development Overview

About This Manual

The External Devel opment Guide describes options for using code not written in the
IDL language alongside IDL itself. It is divided into three parts:

Part I: Techniques That Do Not Use IDL’s Internal API

This section discusses techniques that allow IDL to work together with programs
written in other programming languages, using IDL’s “public” interfaces. Little or no
familiarity with IDL’s internal interfacesisrequired. For many users, the techniques
in this section will solve most problems that require IDL to use — or be used by —
other programs. Topics covered in Part | include:

e Letting IDL programsinteract with UNIX programs via pipes.
* Incorporating COM objects and ActiveX controlsinto IDL programs.

e Giving Microsoft Windows programs access to IDL features viathe
IDLDrawWidget ActiveX contral.

e Incorporating Java objects into IDL programs.
e Using IDL as aRemote Procedure Call server on a UNIX system.

» Cdling routines written in other programming languages from within IDL
using the CALL_EXTERNAL function.

Part Il: IDL’s Internal API

This section describes IDL’s internal implementation in enough detail to alow you to
write an IDL system routine in another compiled programming language (usually C)
and link it with IDL.

Part Ill: Techniques That Use IDL’s Internal API

This section describes the process of combining IDL with code written in another
programming language. Topics covered in Part 111 include:

e Creating a system routine using the interface described in Part |1 and linking
that routineinto IDL at runtime.

e Cdling IDL as asubroutine from another program (“ Callable IDL™).
e Adding user-defined widgets to IDL widget applications.

About This Manual External Development Guide

Chapter 1: External Development Overview 13

Supported Inter-Language Communication
Techniques in IDL

IDL supports a number of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We
recommend that you favor the simpler options at the head of thislist over the more
complex ones that follow if they are capable of solving your problem.

It can be difficult to choose the best option — there is a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method aswell as make recommendationsto help you decide which approach to take.
By comparing thislist with the requirements of the problem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using a high level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages
Not always possible.
Recommendation

Writing in IDL isthe easiest path. If you have existing code in another language that
is simple enough to translate to IDL, thisis the best way to go. You should
investigate the other optionsif the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
isif you wishto access IDL ahilities from alarge program written in some other
language.

SPAWN

The simplest (but most limited) way to access programs external to IDL isto usethe
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified

External Development Guide Supported Inter-Language Communication Techniques in IDL

14 Chapter 1: External Development Overview

command. The output from SPAWN can be captured in an IDL string variable.
Under UNIX, IDL can communicate with a child process through a bi-directional
pipe using SPAWN. More information about SPAWN can be found in Chapter 2,
“Using SPAWN and UNIX Pipes’ or in the documentation for “SPAWN” in the IDL
Reference Guide manual.

Advantages
e Simplicity
¢ Allows use of existing standalone programs.

¢ Under UNIX, data can be sent to and returned by the program via a pipe,
making sophisticated inter-program communication possible quickly and
easily.

Disadvantages

¢ Non-UNIX hosts are unable to use the pipe facility to communicate with the
program. Data can only be sent to the command via arguments to SPAWN.

Recommendation

SPAWN isthe easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

Microsoft COM and ActiveX

IDL supportsthe inclusion of COM objects and ActiveX controls within IDL
applications running on Microsoft Windows systems by encapsulating the object or
control in an IDL object. Full accessto the COM object or ActiveX control’s
methods is available in this manner, allowing you to incorporate features not
availablein IDL into IDL programs. For more information, see Chapter 3,
“Overview: COM and ActiveX in IDL".

IDL also provides the IDLDrawWidget ActiveX control. The IDLDrawWidget
control is built around IDL for Windows and provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in languages such as C,
C++, Visua Basic, Fortran, Delphi, and others. For more information, see Chapter 6,
“The IDLDrawWidget ActiveX Control”.

Advantages

e Integrates easily with an important interprocess communication mechanism
under Microsoft Windows.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 15

e May support ahigher level interface than the function call interfaces supported
by the remaining options.

Disadvantages
* Only supported under Microsoft Windows.
Recommendation

Incorporate COM abjects or ActiveX controls into your Windows-only IDL
application if doing so provides functionality you cannot easily duplicate in IDL.

Usethe IDL ActiveX control if you are writing a Windows-only applicationin a
language that supports ActiveX and you wish to use IDL to perform computation or
graphics within a framework established by this other application.

Sun Java

IDL also supports the inclusion of Java objects within IDL applications by
encapsulating the object or control inan IDL object. Full access to the Java object is
available in this manner, allowing you to incorporate features not available in IDL
into IDL programs. For more information, see Chapter 8, “Using Java Objectsin
IDL".

Advantages

* Integrates easily with all types of Java code.
e Caneasily leverage existing Java objectsinto IDL.

Disadvantages

¢ Only supported under Microsoft Windows, Linux, Solaris, and Macintosh
platforms supported in IDL.

Recommendation

Incorporate Java objectsinto your IDL application if doing so provides functionality
you cannot easily duplicatein IDL.

UNIX Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL isrun asan RPC server and your own program

External Development Guide Supported Inter-Language Communication Techniques in IDL

16

Chapter 1: External Development Overview

isrunasaclient. IDL's RPC functionality is documented in Chapter 10, “Remote
Procedure Calls”.

Advantages

» Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

e APl issimilar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

* Possibility of overlapped execution on a multi-processor system.
Disadvantages

e Complexity of managing RPC servers.
e Bandwidth limitations of network for moving large amounts of data.

e Only supported under UNIX.
Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amount
of data being moved is reasonable on your network. CALL_EXTERNAL might be
more appropriate for especially simple tasks, or if the external codeis not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL’s CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL ismuch easier to use than either system routines
(LINKIMAGE, DLMs) or Cdlable IDL and is often the best (and simplest) way to
communicate with other programs. CALL_EXTERNAL is also supported on al IDL
platforms.

While many of the topicsin this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter
9,“Using CALL_EXTERNAL" and the documentation for “CALL _EXTERNAL” in
the IDL Reference Guide manual.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 17

Advantages

« Allows cdling arbitrary code written in other languages.

¢ Requireslittle or no understanding of IDL internals.
Disadvantages

» FErrorsin coding can easily corrupt the IDL program.
¢ Requires understanding of system programming, compiler, and linker.

« Datamust be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

e System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language
(that is, without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functionswithin special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risks of
corruption and give your calers an appropriate |DL-like interface to the new
functionality. If you use this method to incorporate external codeinto IDL, RS
highly recommends that you also use the MAKE_DLL procedure and the
AUTO_GLUE keyword to CALL_EXTERNAL.

If you lack knowledge of IDL internals, CALL_EXTERNAL isthe best way to add
external code quickly. Programmers who do understand IDL internals will often
write a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, DLMs)

It is possible to write system routines for IDL using a compiled language such as C.
Such routines are written to have the standard IDL calling interface, and are
dynamically linked, aswith CALL_EXTERNAL. They are more difficult to write,
but more flexible and powerful. System routines provide access to variables and other
objectsinside of IDL.

This book contains the information necessary to successfully add your own code to
IDL asasystem routine. Especially important is Chapter 21, “Adding System
Routines’. Additional information about system routines can be found in Chapter 9,
“Using CALL_EXTERNAL” and in the documentation for “LINKIMAGE” in the
IDL Reference Guide manual.

External Development Guide Supported Inter-Language Communication Techniques in IDL

18 Chapter 1: External Development Overview

Advantages

e Thisisthe most fully integrated option. It allows you to write IDL system
routines that are indistinguishable from those written by RSI.

¢ Inuse, system routines are very robust and fault tolerant.

e Allowsdirect accessto IDL user variables and other important data structures.
Disadvantages

e All the disadvantages of CALL_EXTERNAL.

¢ Requiresin-depth understanding of IDL internals, discussed in Part 11 of this
manual.

Recommendation

Use system routines if you require the highest level of integration of your code into
the IDL system. UNIX users with RPC experience should consider using RPCsto get
the benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or timeto learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL is packaged in a shareable form that allows other programsto call IDL asa
subroutine. This shareable portion of IDL can be linked into your own programs.
Thisuse of IDL isreferred to as“Callable IDL” to distinguish it from the more usual
case of calling your code from IDL viaCALL_EXTERNAL or as a system routine
(LINKIMAGE, DLM).

This book contains the information necessary to successfully call IDL from your own
code.

Advantages

e Supported on all systems.

* Allows extremely low level accessto IDL.
Disadvantages
e All the disadvantages of CALL_EXTERNAL or IDL system routines.

* IDL imposes some limitations on programming techniques that your program
can use.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 19

Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows users should consider the ActiveX control or COM
component. UNIX users should consider using the IDL RPC server. If these options
are not appropriate for your task and you wish to call IDL from another program, then
use Callable IDL.

External Development Guide Supported Inter-Language Communication Techniques in IDL

20 Chapter 1: External Development Overview

Dynamic Linking Terminology and Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into aform which is loadable by
programs at run time aswell aslink time. The ability to load them at run timeiswhat
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

e UNIX: Sharable Libraries
e Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable librariesin order to have a consistent
and uniform way to refer to them. It should be understood that thisis a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbols).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
thismanual. If you intend to use any of these techniques, you should first be sure to
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as system routines.

Callable IDL

Most of IDL isbuilt as asharable library. The actual IDL program that implements
the standard interactive IDL program links to this library and uses it to do its work.
Since IDL isasharable library, it can be called by other programs.

Dynamic Linking Terminology and Concepts External Development Guide

Chapter 1: External Development Overview 21

Remote Procedure Calls (RPCs)

The IDL RPC server isaprogram that links to the IDL sharable library. The IDL
RPC client side library is also a sharable library. Your RPC client program links
against it to obtain access to the IDL RPC system.

External Development Guide Dynamic Linking Terminology and Concepts

22 Chapter 1: External Development Overview

When Is It Appropriate to Combine External
Code with IDL?

IDL is an interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys alarge amount of portability across these
platforms because IDL provides access to system abilities at arelatively high level of
abstraction. The large majority of IDL users have no need to understand itsinner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

e Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

e |tisoften best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviorsto it, and incur the ongoing maintenance costs of supporting it.

« IDL may belargely suitable for a given task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats:

¢ RSl attempts to keep the interfaces described in this document stable, and we
endeavor to minimize gratuitous change. However, we reserve the right to
make any changes required by the future evolution of the system. Code linked
with IDL is more likely to require updates and changes to work with new
releases of IDL than programs written in the IDL language.

e Theact of linking compiled codeto IDL isinherently less portable than use of
IDL at the user level.

¢ Troubleshooting and debugging such applications can be very difficult. With
standard IDL, malfunctions in the program are clearly the fault of RSI, and
given areproducible bug report, we attempt to fix them promptly. A program
that combines IDL with other code makes it difficult to unambiguously
determine where the problem lies. The level of support RSI can providein
such troubleshooting is minimal. The programmer is responsible for locating
the source of the difficulty. If the problemisin IDL, asimple program
demonstrating the problem must be provided before we can address the issue.

When Is It Appropriate to Combine External Code with IDL? External Development Guide

Chapter 1: External Development Overview 23

Skills Required to Combine External Code
with IDL

There is alarge difference between the level at which atypical user sees|DL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL is alarge C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the
following areas:

Microsoft COM

To incorporate a COM object into your IDL program, you should be familiar with
COM interfaces in general and the interface of the object you are using in particular.

Microsoft ActiveX

To incorporate an ActiveX control into your IDL widget application, you should be
familiar with COM interfacesin genera and the interface of the control you are using
in particular.

To use the IDLDrawWidget ActiveX control, you should be familiar with the
programming environment in which you will be using the control (Visual Basic, for
example). A level of understanding of ActiveX and COM is necessary.

Sun Java

To incorporate a Java object into your IDL program, you should be familiar with Java
object classes in general and the methods and data members of the object you are
using in particular.

UNIX RPC

To use IDL as an RPC server, aknowledge of Sun RPC (Also known as ONC RPC)
isrequired. Sun RPC is the fundamental enabling technology that underlies the
popular NFS (Network File System) software available on all UNIX systems, and as
such, is universally available on UNIX. The system documentation on this subject
should be sufficient.

External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: External Development Overview

ANSI C

IDL iswrittenin ANSI C. To understand the data structures and routines described in
this document, you must have a complete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might
interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions (C++, Fortran, ...)

It ispossibleto link IDL directly with code written in compiled languages other than
C athough the details differ depending on the machine, language, and compiler used.
It isthe programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilities
for RSl to actively document them all. ANSI C is a standard system programming
language on all systems supported by IDL, soitisusually straightforward to combine
it with code written in other compiled languages. You need to understand:

e The conventions used to pass parameters to functions in both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

* Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or end of names of functions and
global data.

e Any run-timeinitialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs someinitialization work and then calls your main() function. Usually
these issues have been addressed by the system vendor, who has alarge
interest in allowing such inter-language usage:

* Ifyoucal IDL from aprogram written in alanguage other than C, has the
necessary initialization occurred?

e If youuseIDL to cal codewritten in alanguage other than C, do you need
to take steps to initialize the runtime system for that |anguage?

¢ Arethe two runtime systems compatible?

Alternatives to direct linking (Microsoft COM or Active X) exist on some systems
that smplify the details of inter-language linking.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 25

C++

We are often asked if IDL can call C++ code. Compatibility with C has always been
astrong design goal for C++, and C++ islargely a superset of the C language. It
certainly is possible to combine IDL with C++ code. Callable IDL is especially
simple, as all you need to do isto include the idl_export.h header filein your C++
code and then call the necessary IDL functions directly. Calling C++ code from IDL
(CALL_EXTERNAL, System Routines) is aso possible, but there are some issues
you should be aware of:

AsaC program, IDL isnot ableto directly call C++ methods, or use other
object-oriented features of the C++ language. To use these C++ features, you
must supply afunction with C linkage (using an extern “C” specification) for
IDL to call. That routine, which iswritten in C++ is then able to use the C++
features.

IDL does not initialize any necessary C++ runtime code. Your system may
reguire such code to be executed before your C++ code can run. Consult your
system documentation for details. (Please be aware that thisinformation can be
difficult to find; locating it may require some detective work on your part.)

Fortran

I ssues to be aware of when combining IDL with Fortran:

The primary issue surrounding the calling of Fortran code from IDL is one of
understanding the calling conventions of the two languages. C passes
everything by value, and supplies an operator that lets you explicitly take the
address of amemory object. Fortran passes everything by reference (by
address). Difficultiesin calling FORTRAN from C usually come down to
handling this issue correctly. Some people find it helpful to write a C wrapper
function to call their Fortran code, and then have IDL call the wrapper. Thisis
generally not necessary, but may be convenient.

IDL isaC program, and as such, does not initialize any necessary Fortran
runtime code. Your system may require such code to be executed before your
Fortran code can run. In particular, Fortran code that does its own input output
often requires such startup code to be executed. Consult your system
documentation for details. One common strategy that can minimize this sort of
problem isto use IDL’s /O facilities to do /O, and have your Fortran code
limit itself to computation.

External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: External Development Overview

Operating System Features and Conventions

With the exception of purely numerical code, the programmer must usualy fully
understand the target operating system environment in which IDL isrunning in order
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of 32—bit
applications, WIN32, and DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 27

IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about itsinternal operation. This section isintended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following algorithm:

while (statements remaining) {
Get next statement.
Perform lexical analysis and parse statement.
Execute statement.

}

This description isaccurate at a conceptual level, and most early interpreters did their
work in exactly this way due to its simplicity. However, this scheme is inefficient
because:

¢ Themeaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and every
time the statement is encountered.

e Since each statement is considered in isolation, any statement that requires
jumping to a different location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interpreter.
Theinterpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. Thisinternal formisa
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into thisinternal form by the IDL compiler when the .RUN
executive command is issued, or when any other command requires a new routine to
be executed. Oncethe IDL routine is compiled, the original versionisignored, and al
references to the routine are to the compiled version. Some of the advantages of this
organization are;

e The expensive compilation processis only performed once, no matter how
often the resulting code is executed.

e Statements are not considered in isolation, so the compiler keeps track of the
information required to make jumping to a new location in the program fast.

e Thebinary internal form is much faster to interpret than the original form.

External Development Guide IDL Organization

28 Chapter 1: External Development Overview

e Theinterna formis compact, leading to better use of main memory, and
allowing more codeto fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which areimplemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure’ on page 301). Pointersto IDL_VARIABLEs are
referred to asIDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to theresulting IDL_VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of arguments is specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up the requested routine in the internal table of routines.
2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If theroutine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does al the work related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing aresult.

IDL Organization External Development Guide

Chapter 1: External Development Overview 29

External Definitions

Thefileidl export.h, foundinthe external/include subdirectory of the IDL
distribution, supplies all the IDL-specific definitions required to write code for
inclusion with IDL. As such, thisfile defines the interface between IDL and your
code. It will be worth your while to examine thisfile, reading the comments and
getting ageneral idea of what is available. If you are not writing in C, you will have
to translate the definitions in thisfile to suit the language you are using.

Warning
idl export .h contains some declarations which are necessary to the compilation

process, but which are still considered private to RSI. Such declarations are likely to
be changed in the future and should not be depended on. In particular, many of the
structure data types discussed in this document have more fields than are discussed
here—such fields should not be used. For this reason, you should always include
idl_export .h rather than entering the type definitions from this document. This
will also protect you from changesto these data structuresin future releases of IDL.
Anythingin idl export .h that is not explicitly discussed in this document
should not be relied upon.

The following two lines should be included near the top of every C program file that
isto become part of IDL:

#include <stdio.h>
#include "idl export.h"

External Development Guide External Definitions

30

Chapter 1: External Development Overview

Interpreting Logical Boolean Values

IDL iswritten in the C programming language, and this manual therefore discusses C
language functions and data structures from the IDL program. In this documentation,
you will see referencesto logical (boolean) arguments and results referred to in any
of the following forms: True, False, TRUE, FALSE, IDL_TRUE, IDL_FALSE, and
possibly other permutations on these. In all cases, the meaning of true and falsein
this manual correspond to those of the C programming language: A zero (0) valueis
interpreted as “false”, and anon-zero value is “true”.

When reading this manual, please be aware of the following points:

Unless otherwise specified, the actual word used when discussing logical
valuesis not important (i.e. true, True, TRUE, and IDL_TRUE) all mean the
same thing.

Internally, IDL usesthe IDL_TRUE and IDL_FAL SE macros described in
“Macros’ on page 413, for hard-wired logical constants. These macros have
the values 1, and O respectively. This convention is nothing more than
reflection of the need for a consistent standard within our code, and adesire to
keep IDL names within a standard namespace to avoid collisions with user
selected names. Otherwise, any of those other alternative names might have
been used with equally good results.

We don’t usethe IDL_TRUE and IDL_FAL SE convention in the text of this
book because it would be unnecessarily awkward, preferring the more natural
True/TRUE and False/FAL SE.

The convention for truth valuesin the IDL Language differ from those used in
the C language. It isimportant to keep the language being used in mind when
reading code to avoid drawing incorrect conclusions about its meaning.

Interpreting Logical Boolean Values External Development Guide

Chapter 1: External Development Overview 31

Compilation and Linking Details

Once you've written your code, you heed to compileit and link it into IDL before it
can be run. Information on how to do thisis available in the various subdirectories of
the external subdirectory of the IDL distribution. Referencesto filesthat are useful
in specific situations are contained in this book.

In addition:

* ThelDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

e ThelDL IMAKE DLL system variableisused by the MAKE_DLL procedure
to construct C compiler and linker commands appropriate for the target
platform. If you do not use MAKE_DLL to compile and link your code, you
may find the value of IMAKE _DLL.CC and 'MAKE DLL.LD helpful in
determining which options to specify to your compiler and linker, in
conjunction with your system and compiler documentation. For the C
language, the optionsin IMAKE_DLL should be very close to what you need.
For other languages, the 'MAKE_DLL options should still be helpful in
determining which options to use, as on most systems, all the language
compilers accept similar options.

e TheUNIX IDL distribution has abin subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with thesefilesisaMakefile that shows how to build IDL from
the shareable libraries present in the directory. The link line in this makefile
should be used as a starting point when linking your code with Callable IDL—
simply omit main .o and include your own object files, containing your own
main program.

e A more detailed description of the issuesinvolved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL” on page 482.

External Development Guide Compilation and Linking Details

32 Chapter 1: External Development Overview

Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the yearsin
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are a so excellent. The absence of abook from thislist
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
Thisisthe original C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.
Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applicationsthat call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows, The Definitive Guide to the Win32 API,
Microsoft Press, 1998. ISBN 157231995X (Supersedes: Programming Windows 95).

Richter, Jeffrey. Programming Applications for Microsoft Windows. Microsoft Press,
1999. ISBN 1572319968 (Supersedes: Advanced Windows, Third Edition).

The Microsoft Developer Network (MSDN) supplies essential documentation for
programming in the Windows environment. This documentation is part of the Visual
C++ environment. More information on the MSDN is available at
http://msdn.microsoft.com.

Sun Java

Flanagan, David. Java in a Nutshell, Fourth Edition, O’ Reilly & Associates, March
2002. ISBN 0596002831. This book provides an accelerated introduction to the Java
language and key APIs.

In addition, you should study the Java tutorials and documentation provided on the
Sun’s Java website (http://www.java.sun.com).

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
Massachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. Thisis the definitive

Recommended Reading External Development Guide

http://www.java.sun.com

Chapter 1: External Development Overview 33

reference for UNIX system programmers. It covers all the important UNIX concepts
and covers the mgjor UNIX variants in complete detail.

Rochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1985. ISBN 0-13-011818-4. This volumeis also extremely well
written and does an excellent job of explaining and motivating the fundamental
UNIX conceptsthat underlie the UNIX system calls. Thisbook suffersin comparison
to the Stevens book in that it discusses older UNIX systems rather than current
systems and lacks discussion of networking. However, what it does cover is correct
and very readable, and it is much shorter than Stevens.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

X Windows

The X Windows series by O’ Rellly & Associates contains all the information needed
to program for the X Window system. There are several volumes—the ones you will
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. Thisis
purely areference manual, as opposed to the O’ Reilly books which contain alarge
amount of tutorial as well as reference information. This book is primarily useful for
those using XLIB to draw graphicsinto Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 is the current version at this printing.)

External Development Guide Recommended Reading

34

Recommended Reading

Chapter 1: External Development Overview

External Development Guide

Part I: Techniques
That Do Not Use IDL’s
Internal API

Chapter 2

Using SPAWN and
UNIX Pipes

IDL’s SPAWN procedure spawns a child process to execute a command or series of
commands. Cross-platform use of SPAWN is described in detail in the IDL Reference
Guide. This section describes a procedure available only on UNIX systems:
communicating with the spawned child process using UNIX pipes.

By default, calls to the SPAWN procedure cause the IDL processto wait until the
child process has finished before continuing. On UNIX systems, IDL can attach a
bidirectional pipe to the standard input and output of the child process, and then
continue without waiting for the child processto finish. The pipe created in this
manner appearsin the IDL process as anormal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
can be used to communicate with it. The ability to use a child process in this manner
allows you to solve specialized problems using other languages and to take advantage
of existing programs.

External Development Guide 37

Chapter 2: Using SPAWN and UNIX Pipes

In order to start such a process, use the UNIT keyword to SPAWN to specify a named
variable in which the logical file unit number will be stored. Once the child process
has done itswork, use the FREE_LUN procedure to close the pipe and delete the
process.

When using a child processin this manner, it isimportant to understand the following
points:

e Closing the file unit causes the child process to be killed. Therefore, do not
close the unit until the child process completes its work.

A UNIX pipeissimply abuffer maintained by the operating system. It hasa
fixed length and can therefore become completely filled. When this happens,
the operating system puts the process that is filling the pipe to sleep until the
process at the other end consumes the buffered data. The use of a bidirectional
pipe can lead to deadlock situations in which both processes are waiting for the
other. This can happen if the parent and child processes do not synchronize
their reading and writing activities.

* Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situationswhere IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function asthe first statement of the child
program to eliminate such buffering.

(void) setbuf (stdout, (char *) 0);

It isimportant that this statement occur before any output operation is
executed; otherwise, it may not have any effect.

Example: Communicating with a Child Process
Under UNIX

The C program shown in the following example (test_pipe. c) accepts floating-
point values from its standard input and returns their average on the standard outpui.
In actual practice, such atrivial program would never be used from IDL, sinceitis
simpler and more efficient to perform the calculation within IDL itself. The example
does, however, serveto illustrate a method by which significant programs can be
called from IDL.

In the interest of brevity, some error checking that would normally be included in
such a program has been omitted. For example, areal program would need to check

External Development Guide

Chapter 2: Using SPAWN and UNIX Pipes

the non-zero return values from fread (3) and fwrite (3) to ensurethat the
desired amount of datawas actually transferred.

39

W J o0 Ul b WDN

WWNNMNMNOMNNMNMNOMNNMNMNONRRRRRRRRR R
P OWOWSOU D WNRFEOWO®DUOU D WN R O W

32
33
34
35
36

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.hs>

main ()

{
float *data, total = 0.0;
char *err str;
int i, n;

/* Make sure the output is not buffered */
setbuf (stdout, (char *) 0);

/* Find out how many points */
if (!fread(&n, sizeof(n), 1, stdin)) goto error;

/* Get memory for the array */
if (! (data = (float *) malloc(n * sizeof(*data)))) goto error;

/* Read the data */
if (!fread(data, sizeof (*data), n, stdin)) goto error;

/* Calculate the average */
for (i=0; 1 < n; i++) total += datali];
total /= (float) n;

/* Return the answer */
if (!fwrite(&total, sizeof(*data), 1, stdout)) goto error;
return;

error:
err str = strerror(errno) ;
if (lerr str) err str = "<unknown error>";
fprintf (stderr, "test pipe: %s\n", err str);

}

Table 2-1: test_pipe.c

This program performs the following steps:

1. Readsalong integer that tells how many data pointsto expect, becauseit is

desirable to be able to average an arbitrary number of points.

2. Obtains dynamic memory viathe malloc() function, and reads the datainto it.

External Development Guide

40

Chapter 2: Using SPAWN and UNIX Pipes

3. Calculatesthe average of the points.
4. Returnsthe answer as a single floating-point value.

Since the amount of input and output for this program is explicitly known and
becauseit reads all of itsinput at the beginning and writes all of its results at the end,
adeadlock situation cannot occur.

Thefollowing IDL statements use test_pipe to determine the average of the values 0
to O

;Start test pipe. The use of the NOSHELL keyword is not necessary,
;but speeds up the start-up process.
SPAWN, 'test pipe', UNIT = UNIT, /NOSHELL

;Send the number of points followed by the actual data.
WRITEU, UNIT, 10L, FINDGEN(10)

;Read the answer.
READU, UNIT, ANSWER

;Announce the result.
PRINT, "Average = ", ANSWER

;Close the pipe, delete the child process, and deallocate the
;logical file unit.
FREE_LUN, UNIT

Executing these statements gives the result:
Average = 4.50000

This mechanism provides the UNIX IDL user asimple and efficient way to augment
IDL with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred. For example, the above example
can be performed entirely in IDL using a simple statement such as the following:

PRINT, 'Average = ', TOTAL(FINDGEN(10))/10.0

External Development Guide

Chapter 3

Overview: COM and
ActiveX In IDL

This chapter discusses the following topics:

COM Objectsand IDL 42 Skills Required to Use COM Objects 46
Using COM ObjectswithIDL 44

External Development Guide 41

42 Chapter 3: Overview: COM and ActiveX in IDL

COM Objects and IDL

Microsoft’'s Component Object Model, or COM, is a specification for developing
modular software components. COM is not a programming language or an API, but
an implementation of a component architecture. A component architectureis a
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodology include the Object Management Group’s
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a special class of COM object that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM-based software
components in your applications:

e Exposing aCOM abject as an IDL object,
¢ Including an ActiveX control inan IDL widget hierarchy,

¢ Including the IDL DrawWidget ActiveX control in an application written in a
language other than IDL.

Note
While COM components can be developed for numerous platforms, most COM-
based software is written for Microsoft Windows platforms. IDL for Windows
supports the inclusion of COM technologies, but IDL for UNIX does not. The
chaptersin this section will discuss COM in the context of Microsoft Windows
exclusively.

What are COM Objects?

A COM object, or component, is a piece of software that:

e isalibrary, rather than a standalone application (that is, it runsinside some sort
of client application such as IDL, aVisua Basic application, or aweb
browser);

e isdistributed in a compiled, executable form;

e exposes agroup of methods and propertiesto its client application;

COM Objects and IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 43

In addition to these criteria, a component may also supply auser interface that can be
manipulated by the user. COM objects that supply a user interface and send events to
the programs that use them are generally packaged as ActiveX controls, athoughit is
not a requirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (. exe), dynamic link library(.d11), or object linking and embedding
(.ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL:

e COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

¢ COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster
than coding the same functionality in IDL.

¢ Using the IDLDrawWidget ActiveX control, you can rapidly incorporate IDL
functionality into a Windows application created with any COM-aware
environment. COM-aware environments include Visual Basic, Visual C++,
and even VBScript.

External Development Guide COM Obijects and IDL

44

Chapter 3: Overview: COM and ActiveX in IDL

Using COM Objects with IDL

The three methods for using COM objects with IDL are:
e Exposing aCOM Object asan IDL Object,
¢ Including an ActiveX Control in an IDL Widget Hierarchy,

e Using the IDLDrawWidget ActiveX Control in an application writtenin a
language other than IDL.

Exposing a COM Object as an IDL Object

IDL’s IDLcomlDispatch object class creates an IDL object that communicates with
an underlying COM object using the COM object’s IDispatch interface. When you
create an | DL.coml Dispatch object, you provide the identifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcomlDispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to use is an
ActiveX control, use the WIDGET_ACTIVEX routine, discussed below.

For details on using the IDL comlIDispatch object class to incorporate COM objects
into your IDL applications, see Chapter 4, “Using COM Objectsin IDL”.

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL’'s WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. This allows you to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanismsit uses when creating | DL coml Dispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsulates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This allows you to call the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.

Using COM Objects with IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 45

For details on using the WIDGET_ACTIVEX routine to incorporate ActiveX
controlsinto your IDL applications, see Chapter 5, “Using ActiveX Controlsin IDL”.

Using the IDLDrawWidget ActiveX Control

IDL for Windows distributions include an ActiveX control that makes DL
functionality available to other applications. Including the IDL DrawWidget control
in your Windows application allows you to create your own user interface using the
programming language of your choice, while using IDL’s data analysis and display
functionality.

Note
The IDLDrawWidget ActiveX control providesa COM interfaceto IDL, but

requires an IDL installation to function. This meansthat in order for an application
to use the IDL DrawWidget control, alicensed copy of IDL must be installed on the

same computer.

For details on using the IDL DrawWidget ActiveX control in your own Windows
applications, see Chapter 6, “ The IDLDrawWidget ActiveX Control”.

External Development Guide Using COM Objects with IDL

46 Chapter 3: Overview: COM and ActiveX in IDL

Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to successfully intertwine COM and IDL.

If You Are Using COM Objects

If you are using a COM object directly, viathe IDLcoml Dispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objects is useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need athorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controlsis useful.

If You Are Using the IDLDrawWidget ActiveX Control

If you are incorporating the IDL DrawWidget ActiveX control in your own Windows
application, you will need athorough understanding of your own application
development tools, including how they are used to interact with ActiveX controls.
Details about the IDL DrawWidget control itself are provided in Chapter 6, “The
IDLDrawWidget ActiveX Control” and Chapter 7, “1DL DrawWidget Control
Reference’.

If You Are Creating Your Own COM Object

If you are creating your own COM object to be included in IDL, you will need a
thorough understanding of both your development environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.

Skills Required to Use COM Objects External Development Guide

Chapter 4

Using COM QObjects

In IDL

This chapter discusses the following topics:

About Using COM ObjectsinIDL 48
IDLcomlDispatch Object Naming Scheme . 50
Creating IDLcomlDispatch Objects 54
Method Calls on IDLcomlDispatch Objects 55
Managing COM Object Properties 63

External Development Guide

References to Other COM Objects. 65
Destroying IDLcomlDispatch Objects 66
COM-IDL DataTypeMapping 67
Example: RSIDemoComponent 69

47

48 Chapter 4: Using COM Objects in IDL

About Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomlDispatch object class.

IDL’s IDLcomiDispatch object class creates an IDL object that uses the COM

I Dispatch interface to communicate with an underlying COM object. When you
create an |DLcomlIDispatch object, you provide information about the COM object
you wish to use, and IDL handlesinstantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application is an ActiveX control,

use the WIDGET_ACTIVEX routine, discussed in Chapter 5, “Using ActiveX
Controlsin IDL".

Array Data Storage Format

COM, like C, stores array datain row-major format. IDL stores array datain column-
major format. See “Columns, Rows, and Array Magjority” in Chapter 15 of the
Building IDL Applications manual for a detailed discussion of thisissue and its
implications for IDL application design.

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ_NEW function
as described in “ Creating IDLcoml Dispatch Objects’ on page 54. IDL creates a
dynamic subclass of the IDLcomlDispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your IDLcoml Dispatch object within IDL, use normal 1DL
object method callsto interact with the object. (See Chapter 1, “The Basics of Using
Objectsin IDL" in the Object Programming manual for a discussion of IDL objects.)
COM object properties can be set and retrieved using the GetProperty and
SetProperty methods implemented for the IDLcoml Dispatch class. See “Method
Callson IDLcomlDispatch Objects’ on page 55 and “Managing COM Object
Properties’ on page 63 for details.

About Using COM Obijects in IDL External Development Guide

Chapter 4: Using COM Objects in IDL 49

Object Destruction

Destroy IDLcomlDispatch objects using the OBJ_DESTROY procedure. See
“Destroying IDLcomlDispatch Objects’ on page 66 for details.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register acomponent (.d11 or .exe) or acontrol (. ocx), use the Windows
command line program regsvr32, supplying it with name of the component or
control to register. For example, the IDL distribution includes a COM component
named RSIDemoComponent, contained in afile named RSIDemoComponent . d11
located in the examples\doc\bridges\coM subdirectory of the IDL distribution.
To register this component, do the following:

1. Open aWindows command prompt.

2. Change directoriesto the examples\doc\bridges\com subdirectory of the
IDL distribution.

3. Enter the following command:
regsvr32 RSIDemoComponent.dll

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the® /s " parameter to regsvr32 to prevent the dialog
from being displayed.)

Note
You only need to register acomponent once on a given machine. It is not necessary
to register a component before each use.

External Development Guide About Using COM Obijects in IDL

50 Chapter 4: Using COM Objects in IDL

IDLcomIDispatch Object Naming Scheme

When you create an | DL.coml Dispatch object, IDL automatically creates a dynamic
subclass of the IDLcomlDispatch class to contain the COM object. IDL determines
which COM object to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM aobject to use by creating a class name
that combines the name of the base class (IDLcoml Dispatch) with either the COM
classidentifier or the COM program identifier for the object. The resulting class
name looks like

IDLcomIDispatch$ID type$SID
where ID_type is one of the following:
e cLsIDIf the object isidentified by its COM class D, or
e PrOCID if the object isidentified by its COM program ID,
and ID isthe COM object’s actual class or program identifier string.

Note
While COM objectsincorporated into IDL are instances of the dynamic subclass
created when the COM object isinstantiated, they still expose the functionality of
the class IDLcoml Dispatch, which isthe direct superclass of the dynamic subclass.
All IDLcomlDispatch methods are available to the dynamic subclass.

Class Identifiers

A COM object’s classidentifier (generally referred to asthe CLSID) is a 128-hit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM as class |IDs are al so referred to as Globally Unique Identifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class IDs are generated, but it is certain that every COM
object has aunique CLSID.

COM class|Ds are 32-character strings of alphanumeric characters and numeral sthat
look like this:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

The above class identifier identifies the RSIDemoComponent class included with
IDL.

IDLcomIDispatch Object Naming Scheme External Development Guide

Chapter 4: Using COM Objects in IDL 51

When you create an | DL.coml Dispatch object using a CLSID, you must modify the
standard CLSID string in two ways.

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores (_).

See “Creating IDLcoml Dispatch Objects’ on page 54 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the class ID of the COM object you wish to expose asan IDL
object, you may be able to determine it using an application provided by Microsoft;
see “Finding COM Class and Program IDs” on page 52 for details.

Program Identifiers

A COM object’s program identifier (generally referred to as the PROGID) isa
mapping of the class identifier to a more human-friendly string. Unlike class IDs,
program IDs are not guaranteed to be unigue, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program IDs are a phanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM. Component .version

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSIDemoComponent .RSIDemoObjl.1

When you create an | DLcoml Dispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores ().

See " Creating DL coml Dispatch Objects’ on page 54 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see“Finding COM Class and Program IDs’ on page 52 for details.

External Development Guide IDLcomIDispatch Object Naming Scheme

52 Chapter 4: Using COM Objects in IDL

Finding COM Class and Program IDs

In generdl, if you wish to incorporate a COM aobject into an IDL program, you will
know the COM class or program ID — either because you created the COM object
yourself, or because the devel oper of the object provided you with the information.

If you do not know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no
charge directly from Microsoft. As of thiswriting, you can locate the tool by pointing
your Web browser to:

http://www.microsoft.com/com
and then selecting “Downloads’ from the “ Resources’ menu.

The OLE/COM Object Viewer displays all of the COM objectsinstalled on a
computer, and allows you to view information about the objects and their interfaces.

5 OLE/COM Dbject Yiewer] 3

File ©hject Yiew Help

=3 £l P |

--égz RequestMakeCall Class | Hoicon FSIDemalbjl Class

@, Reveal Transition Akl (i 77RCR2-BBEC-4D 24 B2E 3 FE5RACEE2E 62}
¢ RevealTrans

--égz RichText Apppearance
[, RichText General Prope LS = -

"é'fz RIPBWizard Class L [ATTBC2EE-B0EC-402 A-B2E3-FS5S6ACES2ESS} = RSIDemacbil Class
-G Ripple

i X InprocServer3z [<no name>] = d:\RSIdd\RSIDEM-~1.DLL
"éz RM Enlls.tment Helper InprocServer3Z [ThreadingModel] = Apartment

"éﬁ RMGetLicense Class PraglD = RSIDemaComponent. RSIDemaohil. 1

--égz Role-based Security Po - Programmable

@ Rall Typelib = {62AD7BE6-8067-48F7-B392-7F458936 1DCE}

"@ RotateBvr Class - YersionIndependentProgIh = RSIDemoomponent.RSIDemochil
@, Route Class

--égz RowsetHelper

.08

Registry Implementationl Activationl Launch Permissionsl Access Permissions

R_SIDemoComponent.RSIDemoObjl.1 = RSIDemoObjl Class
| “ CLSID = {A7TBC2E2-30EC-402A-B2B3-FSS6ACES2ES2}
Typelib =

g, R
@, RSIDemoObj3 Class

B, RTP Class _I;I o =
4 I I »

Figure 4-1: Microsoft's OLE/COM Obiject Viewer Application

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

IDLcomIDispatch Object Naming Scheme External Development Guide

http://www.microsoft.com/com

Chapter 4: Using COM Objects in IDL 53

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program ID that was used when the object

was created.

External Development Guide IDLcomIDispatch Object Naming Scheme

54 Chapter 4: Using COM Objects in IDL

Creating IDLcomIDispatch Objects

To expose a COM object asan IDL object, use the OBJ NEW function to create a
dynamic subclass of the IDLcoml Dispatch object class. The name of the subclass
must be constructed as described in “ DL coml Dispatch Object Naming Scheme” on
page 50, and identifies the COM aobject to be instantiated.

Note
If the COM object you want to use within IDL isan ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 5, “Using ActiveX Controls
in IDL". Instantiating the ActiveX control as part of an IDL widget hierarchy
allowsyou to respond to events generated by the control, whereas COM objects that
are instantiated using the OBJ_NEW do not generate eventsthat IDL is aware of.

For example, suppose you wish to include a COM component with the class ID
{A77BC2B2—88EC—4D2A—B2B3—F556ACB52E52}

and the program ID
RSIDemoComponent .RSIDemoObjl. 1

inan IDL program. Use either of the following calls to the OBJ_ NEW function:

ObjRef = OBJ NEW($
' IDLcomIDispatch$CLSIDSA77BC2B2 88EC 4D2A B2B3 F556ACB52E52')

or

ObjRef = OBJ NEW($
'IDLcomIDispatch$PROGIDSRSIDemoComponent RSIDemoObjl 1')

IDL’sinternal COM subsystem instantiates the COM object within an
IDLcomliDispatch object with one of the following the dynamic class names

IDLcomIDispatch$CLSIDSA77BC2B2 88EC 4D2A B2B3 F556ACB52ES2
or
IDLcomIDispatch$PROGIDSRSIDemoComponent RSIDemoObjl 1

and sets up communication between the object and IDL. You can work with the
IDLcomlDispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See“IDLcomlIDispatch” in the IDL Reference Guide manual for additional details.

Creating IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 55

Method Calls on IDLcomIDispatch Objects

IDL alowsyou to call the underlying COM object’s methods by calling methods on
the IDLcomlDispatch object. IDL handles conversion between IDL data types and
the datatypes used by the component, and any results are returned in IDL variables of
the appropriate type.

Aswith all IDL objects, the general syntax is:
result = ObjRef -> Method ([Arguments])
or
ObjRef -> Method [, Arguments]

where objRef isan object reference to an instance of a dynamic subclass of the
IDLcomlDispatch class.

Function vs. Procedure Methods

In COM, all object methods are functions. IDL’s implementation of the

IDL comlDispatch object maps COM methods that supply areturn value using the
retval attribute as IDL functions, and COM methods that do not supply areturn
valueviathe retval attribute as procedures. See “Displaying Interface Information
using the Object Viewer” on page 59 for more information on determining which
methods use the retval attribute.

The IDL coml Dispatch::GetProperty and | DL coml Dispatch:: SetProperty methods are
special cases. These methods are IDL object methods — not methods of the
underlying COM object — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in IDLcoml Dispatch objectsis
discussed in “Managing COM Object Properties’ on page 63.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDLcomlDispatch
object implements Init or Cleanup methods, they will be overridden by IDL's
lifecycle methods — the COM aobject’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcomliDispatch object, so any methods of the underlying COM aobject that use
these names will be inaccessible from IDL.

External Development Guide Method Calls on IDLcomIDispatch Objects

56 Chapter 4: Using COM Objects in IDL

What Happens When a Method Call is Made?

When amethod is called on an IDL coml Dispatch object, the method name and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate I Dispatch method calls for the underlying COM aobject.

From the point of view of an IDL user issuing method calls on the IDLcomlDispatch
object, this process is completely transparent. The IDL user simply calls the COM
object’s method using IDL syntax, and IDL handles the translation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle al conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 67.

For example, if the COM object that underlies an IDLcomlIDispatch object has a
method that requires avalue of type INT as an input argument, you would supply the
valueasan IDL Long. If you supplied the value as any other IDL datatype, IDL
would first convert the value to an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object as an INT.

Similarly, if aCOM object returns aBOOL value, IDL will place the valuein a
variable of Byte type, with avalue of 1 (one) signifying True or avaue of O (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on DL comlDispatch
objects, and to the IDLcoml Dispatch::GetProperty method. This means that if an
argument is not required by the underlying COM object method, it can be omitted
from the method call used on the IDL coml Dispatch object.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 57

Note
Only method arguments defined with the opt ional token in the object’s interface
definition are optional. See “Displaying Interface Information using the Object
Viewer” on page 59 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDLcomlDispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
adifference where in the argument list an argument occurs. (Contrast thiswith IDL’s
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments
2. Optiona arguments for which default values are defined
3. Optiona arguments for which no default values are defined

The same order applies when the method is called on an IDL coml Dispatch object.
Default Argument Values

COM adllows objects to specify a default value for any method arguments that are
optional. If acall to amethod that has an optional argument with a default value
omits the optional argument, the default valueis used. IDL behaves in the same way
as COM when calling COM object methods on IDLcoml Dispatch objects, and when
calling the IDL coml Dispatch::GetProperty method.

Method arguments defined withthe defaultvalue () tokenin the object’sinterface
definition are optional, and will use the specified default value if omitted from the
method call. See “ Displaying Interface Information using the Object Viewer” on
page 59 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional argumentsto accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on

External Development Guide Method Calls on IDLcomIDispatch Objects

58

Chapter 4: Using COM Objects in IDL

IDLcomliDispatch objects, but not for the IDLcoml Dispatch:: GetProperty or
SetProperty methods.

To skip one or more arguments from alist of optional arguments, include the SKIP
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
Theindices for the list of method arguments are zero-based — that is, the first

method argument (either optional or required) is argument O (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

ObjMethod, argl, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDLcoml Dispatch object that encapsul ates the underlying
COM abject, skipping arg2, use the following command:

objRef -> ObjMethod, argl, arg3, arg4, SKIP=1

Note that the SKIP keyword uses the index value 1 to indicate the second argument in
the argument list. Similarly, to skip arg2 and arg3, use the following command:

objRef -> ObjMethod, argl, arg4, SKIP=[1,2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip arg3 and arg4, use the following command:

objRef -> ObjMethod, argl, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM aobject’s methods are and what arguments and data types those
methods take — either because you created the COM object yourself, or because the
developer of the object provided you with the information.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Obijects in IDL 59

If for some reason you do not know what methods the COM object supports, you may
be able to determine which methods are available and what parameters they accept
using the OLE/COM Object Viewer application provided by Microsoft. (See* Finding
COM Class and Program IDs’ on page 52 for information on acquiring the
OLE/COM Ohbject Viewer.)

Warning
Finding information about a COM abject’s methods using the OLE/COM Object

Viewer requires a moderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hints in this section
on how to interpret the interface definition, if you are not already familiar with the
structure of COM objects you may find this material inadequate. If possible, consult
the devel oper of the COM object you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM abject on your Windows machine. Select aCOM object in the leftmost panel of
the object viewer, click the right mouse button, and select “ View Type
Information...” A new window titled “I TypeLib Viewer” will be displayed, showing
all of the component’sinterfaces (Figure 4-2).

s ITypeLib Yiewer -3 x|
File Wiew
B o 2|
E" RSIDEMOCOMPOMENTLIb (RSIDemaComp |/ Generated .IDL file (by the OLE/COM Object Viewar) -
. Iy
@ coclass RSIDemoObil o
H £k 1lib £il w2: RSIDamolon t.dll
- o dispinterface [RSIDemoObiL vpsLib bilenans =mekerponan
w- § interface IRSIDemo0k]L [
@ roclass RSIDemoChj2 uuid{52ADTEEG-8D67-48F7-BE92-TF488936100E) ,
dispinterface IRSIDemoOkjz ;EISi?’::l-D']l;{SID - £ 1.0 Typs Lib .
. . elpstring (" ol omporEn: . = Library").
7 '”terFaCEIRSIDemDQbJZ custom (DE77BAS4-5170-1101-A20A-0000F87730E9, 83951780),
@ coclass RSIDemoObj3 custom (DET7BAG3-5170-1101-A2DA-0000F2773CE9, 1017680769

(dispinterface IRSIDemaoObj3

- ¢ interface IRSIDemoObj3 1
library RSIDEMOCOMPONENTLib
(

/4 TLib - /¢4 TLib : OLE Automation : (00020430-0000-
0000-Co00-000000000046)

importlib({"stdole2.t1b") ;

/¢ Forward declare all types defined in this typelib
interface IRSIDemctbil;
4 I I _’I interface IRSIDemctbiz;

interface IRSIDemoObid:

LER

Ready

Figure 4-2: Viewing a COM Object’s Interface Definition

External Development Guide Method Calls on IDLcomIDispatch Objects

60 Chapter 4: Using COM Objects in IDL

Note
Thetop lines in the right-hand panel will say something like:

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: RSIDemoComponent.dll

The“.IDL file” in this case has nothing to do with IDL, the Interactive Data
Language. Here “IDL" stands for Interface Description Language — alanguage
used to define component interfaces. If you are familiar with the Interface

Description Language, you can often determine what a component is designed to
do.

With the top-level object selected in the left-hand pane of the I Typelib Viewer, scroll
down in the right-hand pane until you find the section that defines the | Dispatch
interface for the object in question. The definition will look something like this:

interface IRSIDemoObjl : IDispatch {
[1d (0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);
[1d (0x00000002), propput]
HRESULT MessageStr ([in] BSTR pstr);
[1d(0x00000002), propget]
HRESULT MessageStr ([out, retval] BSTR* pstr);
[1d (0x00000003)]
HRESULT DisplayMessageStr () ;
[1d(0x00000004)]
HRESULT Msg2InParams (
[in] BSTR str,
[in] long val,
[out, retval] BSTR* pVal) ;
[1d (0x00000005)]
HRESULT GetIndexObject (
[in] long ndxObj,
[out, retval] IDispatch** ppDisp) ;
[1d (0x00000006)]
HRESULT GetArrayOfObjects (
[out] long* pObjCount,
[out, retval] VARIANT* psaObjs) ;

}i
Method definitions look like this:

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr) ;

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 61

where the line including the id string is an identifier used by the object to refer to its
methods and the following line or lines (usually beginning with HRESULT) define the
method'’s interface.

Again, whileit is beyond the scope of this manual to discuss COM object methodsin
detail, the following points may assist you in determining how to use a COM object:

* Methods whose definitions include the retval attribute will appear in IDL as
functions.

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr) ;

* Methods that do not include the retval attribute will appear in IDL as
procedures.

[id (0x00000003) 1
HRESULT DisplayMessageStr () ;

* Methods whose definitionsinclude the propget attribute allow you to retrieve
an object property using the IDLcoml Dispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties’ on page 63 for additional details.

[1d(0x00000002), propget]
HRESULT MessageStr ([out, retval] BSTR* pstr);

e Methods whose definitions include the propput attribute allow you to set an
object property using the IDLcoml Dispatch::SetProperty method. You cannot
call these methodsdirectly in IDL; see*“Managing COM Object Properties’ on
page 63 for additional details.

[1d(0x00000002), propput]
HRESULT MessageStr ([in] BSTR pstr) ;

* Methods that accept optional input values will include the optional tokenin
the argument’s definition. For example, the following definition indicates that
the second input argument is optional:

[1d(0x00000004)]

HRESULT Msglor2InParams (
[in] BSTR str,
[in, optional] int wval,
[out, retval] BSTR* pVal) ;

¢ Methodsthat provide default values for optional arguments replace the
optional tokenwiththedefaultvalue () token, wherethe default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:

External Development Guide Method Calls on IDLcomIDispatch Objects

62 Chapter 4: Using COM Objects in IDL

HRESULT Msglor2InParams (
[in] BSTR str,
[in, defaultvalue(15)] int wval,
[out, retval] BSTR* pVal) ;

¢ While methods generally return an HRESULT value, thisis not a requirement.
Displaying Interface Information using the IDL HELP Procedure

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displaysalist of objects, along
with their methods, with function and procedure methods in separate groups for each
object class.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 63

Managing COM Object Properties

As aconvenience to the IDL programmer, COM object methods that have been
defined using the propget and propput attributes are accessible viathe
IDLcomlDispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM aobject’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If a COM object method's interface definition includes either the propget or the
propput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

Aswith all IDL objects, the IDLcoml Dispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword values represent either an IDL
variableinto which the property valueis placed or an IDL expression that isthe value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set a property value on a COM object, use the following syntax:
ObjRef->SetProperty, KEYWORD=Expression

where objRref isthe IDLcomlDispatch object that encapsul ates the COM object,
KEYWORD is the COM object property name, and Expression is an IDL expression
representing the property value to be set.

You can set multiple property values in a single statement by supplying multiple
KEYWORD=Expression pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property setting method. The partial keyword name functionality provided by IDL
is not valid with IDLcoml Dispatch objects.

IDL letsyou to set multiple properties at once in the same SetProperty call. For
example:

ObjRef->SetProperty, OPTION=1, INDEX=99L

External Development Guide Managing COM Object Properties

64 Chapter 4: Using COM Objects in IDL

This command is equivalent to the following lines:

ObjRef->SetProperty, OPTION=1
ObjRef->SetProperty, INDEX=99L

If you pass parameters when setting multiple properties, the parameter or parameters
are sent to each property being set. For example:

ObjRef->SetProperty, 'Parml', 24L, oRef, OPTION=1, INDEX=99L
This command is equivalent to the following lines:

ObjRef->SetProperty, 'Parml', 24L, oRef, OPTION=1
ObjRef->SetProperty, 'Parml', 24L, oRef, INDEX=99L

Thus, when you are setting multiple properties at the same time and passing
parameters, all the properties that are set at the same time must be defined as
receiving the same sets of parameters.

Getting Properties

To retrieve a property value from a COM object, use the following syntax:
ObjRef->GetProperty, KEYWORD=Variable

where objRef isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Variable is the name of an IDL
variable that will contain the retrieved property value.

You can get multiple property valuesin asingle statement by supplying multiple
KEYWORD=Variable pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property getting method. The partial keyword name functionality provided by IDL
isnot valid with IDLcoml Dispatch objects.

Because some of the underlying COM aobject’s propget methods may require
arguments, the IDL.coml Dispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

ObjRef->GetProperty, KEYWORD=Variable [, arg0, argl, ... argn]

Note, however, that if arguments are required, you can only specify one property to
retrieve.

Managing COM Object Properties External Development Guide

Chapter 4: Using COM Objects in IDL 65

References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an IDLcomlDispatch object
returns a reference to another COM object’s I Dispatch interface, IDL automatically
creates an |DLcoml Dispatch object to contain the object reference.

For example, suppose the Getotherobject method to the COM object
encapsulated by the IDL comlDispatch object ob5 1 returns areference to another
COM object.

Obj2 = Objl->GetOtherObject ()

Here, ob42 isan IDLcomlDispatch object that encapsulates some other COM object.
Obj 2 behavesin the same manner as any |DLcomlIDispatch object.

Note that IDL coml Dispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above example, this means that
destroying ob+ 1 does hot destroy ob+2. If the COM object you are using creates new
IDLcomlDispatch objectsin this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the

OBJ DESTROQY procedure.

External Development Guide References to Other COM Objects

66 Chapter 4: Using COM Objects in IDL

Destroying IDLcomIDispatch Objects

Use the OBJ DESTRQY procedure to destroy and |DLcoml Dispatch object.

When OBJ DESTROY is called with an IDLcoml Dispatch object as an argument,
the underlying reference to the COM object isreleased and IDL resources relating to
that object are freed.

Note
Destroying an |DLcoml Dispatch object does not automatically cause the

destruction of the underlying COM object. COM employs a reference-counting
methodol ogy and expects the COM object to destroy itself when there are no
remaining references. When an | DL coml Dispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM abject.

Destroying IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Obijects in IDL

COM-IDL Data Type Mapping

67

When data moves from IDL to a COM object and back, IDL handles conversion of

variable data types automatically. The data type mappings are shown in Table 4-1.

COM Type

IDL Type

BOOL (VT_BOOL)

Byte (true =1, false=0)

ERROR Long

(VT_ERROR)

CY (VT_CY) Double (see note below)
DATE (VT_DATE) Double

11(VT_I1) Byte

INT (VT_INT) Long

UINT (VT_UINT)

Unsigned Long

VT_USERDEFINED

The IDL typeis passed through.

VT _UIL Byte
VT I2 Integer

VT _UI2 Unsigned integer
VT_ERROR Long

VT_l14 Long

VT Ul4 Unsigned Long
VT_18 Long64

VT_UI8 Unsigned Long 64
VT R4 Float

VT_BSTR String

VT_R8 Double
VT_DISPATCH IDLcomlDispatch

Table 4-1: IDL-COM Data Type Mapping

External Development Guide

COM-IDL Data Type Mapping

68 Chapter 4: Using COM Objects in IDL

COM Type IDL Type

VT_UNKNOWN IDLcomlDispatch

Table 4-1: IDL-COM Data Type Mapping (Continued)
Note on the COM CY Data Type

The COM CY datatypeisascaled 64-bit integer, supporting exactly four digitsto the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, alowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234 . 56789 would be passed to the
COM object as234.5678.

COM-IDL Data Type Mapping External Development Guide

Chapter 4: Using COM Objects in IDL 69

Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent is included purely for demonstration purposes, and does not
perform any useful work beyond illustrating how DL comlDispatch objects are
created and used.

The RSIDemoComponent is contained in afile named RSTDemoComponent . d11
located in the examples\doc\bridges\com subdirectory of the IDL distribution.
Before attempting to execute this example, make sure the component is registered on
your system as described in “ Registering COM Components on a Windows
Machine” on page 49.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj1, which has the program ID:

RSIDemoComponent . RSIDemoObjl
and theclass ID:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52 }

Example Code
The following section develops an IDL procedure called | DispatchDemo that
illustrates use of the RSIDemoComponent. The complete . pro fileisincluded in
the examples\doc\bridges\com subdirectory of the IDL distribution as
IDispatchDemo.pro.

1. Begin by creating an IDLcoml Dispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

objl = OBJ NEW($
'IDLCOMIDispatch$PROGIDSRSIDemoComponent RSIDemoObjl')

or (with Class ID):

objl = OBJ NEW($
' TDLCOMIDi spatch$CLSTD$A77BC2B2 88EC_4D2A B2B3 F556ACB52E52 ')

2. The COM object implements the Get cL.sID method, which returns the class
ID for the component. You can retrieve thisvalue in and IDL variable and
print it. The string should be ' {A77BC2B2-88EC-4D2A-B2B3-
F556ACB52E52} .

External Development Guide Example: RSIDemoComponent

RSI_PROCODE/examples/doc/bridges/COM/IDispatchDemo.pro

70

Chapter 4: Using COM Objects in IDL

strCLSID = objl->GetCLSID()
PRINT, strCLSID
Note
The GetCL SID method returns the class identifier of the object using the
standard COM separators (-).

The COM object has a property named MessageStr. To retrieve the value of
the MessageStr property, enter:

objl -> GetProperty, MessageStr = outStr
PRINT, outStr

IDL should print 'RSIDemoObj1'.

You can also set the MessageStr property of the object and display it using
the object’'s Di splayMessageStr method, which displays the value of the
MessageStr property in a Windows dialog:

objl -> SetProperty, MessageStr = 'Hello, world'
objl -> DisplayMessageStr

TheMsg2InParams method takes two input parameters and concatenates
them into asingle string. Executing the following commands should cause IDL
toprint ' The value is: 25'.

instr = 'The value is: '

val = 25L

outStr = objl->Msg2InParams (instr, val)
PRINT, outStr

To view all known information about the IDL coml Dispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECT S keyword:

HELP, objl, /OBJECTS

The Get IndexObiject () method returns an object reference to one of the
following three possible objects:

¢ RSIDemoObjil (index =1)
* RSIDemoObj2 (index = 2)

* RSIDemoObj3 (index = 3)

Note
If theindex isnot 1, 2, or 3, the Get Index0Object method will return an
error.

Example: RSIDemoComponent External Development Guide

Chapter 4: Using COM Objects in IDL 71

To get areference to RSIDemoOb] 3, use the following command:
0bj3 = objl->GetIndexObject (3)

8. All three objects have the cet cL.sID method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be'{13AB135D-A361-4A14-B165-785B03AB5023} '.

obj3CLSID = obj3->GetCLSID ()
PRINT, obj3CLSID

9. Remember to destroy aretrieved object when you are finished with it:
OBJ DESTROY, obj3

10. Next, usethe COM object’'s GetArrayOfobjects () method to return a
vector of object referencesto RSIDemoObj 1, RSIDemoObs 2, and
RSIDemoObj 3, respectively. The number of elementsin the vector is returned
in the first parameter; the result should 3.

objs = objl->GetArrayOfObjects(cItems)
PRINT, cIlItems

11. Since each object implements the GetcLS1D method, you could loop through
all the object references and get its class ID:

FOR i = 0, cItems-1 do begin

objCLSID = objs[i] -> GetCLSID()

PRINT, 'Object[',i,'] CLSID: ', objCLSID
ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, objl

External Development Guide Example: RSIDemoComponent

72 Chapter 4: Using COM Objects in IDL

Example: RSIDemoComponent External Development Guide

Chapter 5

Using ActiveX Controls

In IDL

This chapter discusses the following topics:

About Using ActiveX ControlsinIDL 74
ActiveX Control Naming Scheme 76
Method Callson ActiveX Controls 79

Managing ActiveX Control Properties 80

External Development Guide

ActiveX Widget Events 81
Destroying ActiveX Controls 84
Example: Calendar Control 85
Example: Spreadsheet Control 88

73

74 Chapter 5: Using ActiveX Controls in IDL

About Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL’'s WIDGET_ACTIVEX routine
to place the control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls asit does for COM objects
incorporated using the IDL coml Dispatch object interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows 2000/XP (and later)
platforms.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. IDLcomActiveX
objects are a subclass of the IDLcomlDispatch object class, and share al of the
DL coml Dispatch methods and mechanisms discussed in Chapter 4, “Using COM
Objectsin IDL". You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controlsin your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActivexX
control, use the IDL coml Dispatch object class.

Warning: Modeless Dialogs

When displaying an ActiveX form or dialog box, it is the responsibility of the COM
object to pump messages. Modal dial ogs pump messages themselves, but modeless
dialogs do not. IDL's COM subsystem does not provide the ability to pump messages
explicitly, giving IDL no way to pump messages while amodeless dialog is
displayed. Asaresult, calling amodeless dialog from IDL will result in an error.

Registering COM Components on a Windows
Machine
Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the

program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the

About Using ActiveX Controls in IDL External Development Guide

Chapter 5: Using ActiveX Controls in IDL 75

component manually. For a description of the registration process, see “ Registering
COM Components on a Windows Machine” on page 49.

External Development Guide About Using ActiveX Controls in IDL

76 Chapter 5: Using ActiveX Controls in IDL

ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to instantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (whichis
itself a subclass of the IDLcomlDispatch class) to contain the ActiveX control. The
resulting class name looks like

IDLcomActiveX$ID type$ID
where ID_type is one of the following:
e cLsIDif the object isidentified by its COM class D, or
* PROGID if the object isidentified by its COM program ID,
and ID isthe COM object’s actual class or program identifier string.

For more on COM class and program I1Ds see “ Class |dentifiers’ on page 50 and
“Program Identifiers” on page 51.

While you will never need to use this dynamic class name directly, you may seeiit
reported by IDL viathe HELP routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen charactersin a
class ID and the dot charactersin a program ID with underscore characters. Thisis
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In general, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID — either because you created
the control yourself, or because the devel oper of the control provided you with the
information.

If you do now know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see “Finding COM Class and Program
IDS’ on page 52.

ActiveX Control Naming Scheme External Development Guide

Chapter 5: Using ActiveX Controls in IDL 77

Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control asthe
COM _ID argument.

Note
If the object you want to use in your IDL application is not an ActiveX control, use
the IDLcoml Dispatch object class as described in Chapter 4, “Using COM Objects
in IDL". Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may lead to unpredictable results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can call the control’s native methods as described in “Method Calls on ActiveX
Controls’ on page 79, and access or modify its properties as described in “Managing
ActiveX Control Properties” on page 80. IDL widget events generated by the control
are discussed in “ActiveX Widget Events’ on page 81.

For example, suppose you wished to include an ActiveX control with the class ID:
{OOO2E510—OOOO—OOOO-COOO—OOOOOOOOOO46}

and the program ID:
OWC. Spreadsheet .9

inan IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

wAx = WIDGET ACTIVEX (wBase, $
'"0002E510-0000-0000-C000-000000000046")

or
wAx = WIDGET ACTIVEX (wBase, 'OWC.Spreadsheet.9', ID TYPE=1)

where wBase isthe widget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDLcomliDispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from aclass ID or the dots from a program 1D with
underscore characters.

External Development Guide Creating ActiveX Controls

78 Chapter 5: Using ActiveX Controls in IDL

IDL’sinternal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class hames

IDLcomActiveX$CLSID$S0002E510_0000_0000_C000_000000000046
or
IDLcomActiveX$PROGIDSOWC Spreadsheet 9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See“WIDGET_ACTIVEX” inthe IDL Reference Guide manual for additional
details.

Creating ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 79

Method Calls on ActiveX Controls

IDL allowsyou to call the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX object that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL datatypes and
the data types used by the component, and any resultsare returned in IDL variables of
the appropriate type. Aswith all IDL objects, the genera syntax is:

result = ObjRef -> Method ([Arguments])

or
ObjRef -> Method [, Arguments]

where objRef isan object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, method calls on
IDLcomActiveX objects follow the same rules as calls on IDL coml Dispatch objects.
You should read and understand “Method Calls on IDLcomliDispatch Objects’ on
page 55 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcoml Dispatch objects, which you create explicitly with a call to the
OBJ_NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomActiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = WIDGET BASE()

wAx = WIDGET ACTIVEX (wBase, 'myProgram.myComponent.l', ID TYPE=1)
WIDGET CONTROL, wBase, /REALIZE

WIDGET CONTROL, wAx, GET_ VALUE=0AX

Thefirst line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. The third line realizes the base widget and the ActiveX
contral it contains — note that the ActiveX widget must be realized before you can
retrieve areference to the IDLcomActiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the
IDLcomActiveX object in the variable oax. You can use this object reference to call
the ActiveX control’s methods and set its properties.

External Development Guide Method Calls on ActiveX Controls

80 Chapter 5: Using ActiveX Controls in IDL

Managing ActiveX Control Properties

As a convenience to the IDL programmer, ActiveX control methods that have been
defined using the propget and propput attributes are accessible viathe
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the IDL coml Dispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, IDL’sfacilities for managing
the properties of ActiveX controlsfollow the same rules as for IDLcomiDispatch
objects. You should read and understand “Managing COM Object Properties’ on
page 63 before working with an ActiveX control’s properties.

Managing ActiveX Control Properties External Development Guide

Chapter 5: Using ActiveX Controls in IDL 81

ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard IDL
widget methodology. When an ActiveX event ispassed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure’s format:

{1ID : 0L,

TOP : 0L,

HANDLER : 0L,

DISPID : 0L, ; The DISPID of the callback method
EVENT NAME : "", ; The name of the callback method
<Paraml name> : <Paraml value>,

<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>

}

Aswith other IDL Widget event structures, the first three fields are standard. ID is
the widget id of the widget generating the event, TOP isthewidget 1D of thetop level
widget containing ID, and HANDLER contains the widget ID of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this 1D
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it isimportant to check the type of event before
processing valuesin IDL. Successfully parsing the event structure requires adetailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
data types of the values returned.

External Development Guide ActiveX Widget Events

82 Chapter 5: Using ActiveX Controls in IDL

For example, suppose the ActiveX control you are incorporating into your DL

application includes two methods named Met hod1 and Method2 in adispatch
interface that looks like this:

dispinterface MyDisplInterface ({
properties:
methods:
[1d(0x00000270)]
void Methodl ([in] EventInfo* EventInfo) ;
[1d(0x00000272)]
HRESULT Method2 ([out, retval] BSTR* EditData) ;

}i

A widget event generated by a call to Method1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, length=32, data length=32:

ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 624
EVENT_NAME STRING 'Methodl'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by a call to Method2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, length=32, data length=32:

ID LONG 13

TOP LONG 12

HANDLER LONG 12

DISPID LONG 626

EVENT NAME STRING 'Method2'
EDITDATA STRING 'some text value'

An DL event-handler routine could use the value of the DISPID field to check which

of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO myRoutine event, event
IF (event .DISPID eq 626) THEN BEGIN
PRINT, event.EDITDATA
ENDIF ELSE BEGIN
<do something else>
ENDELSE
END

ActiveX Widget Events External Development Guide

Chapter 5: Using ActiveX Controls in IDL 83

Dynamic Elements in the ActiveX Event Structure

Parameter data included in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, isincluded in the IDL event structure.
Similarly, an ActiveX control may return areference to another COM object, as
described in “References to Other COM Objects’ on page 65, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it is the
IDL programmer’s responsibility free them using aroutine such as PTR_FREE,
HEAP_FREE, or OBJ DESTROY.

If it is unclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. Thiswill ensure that all
dynamic portions of the structure are released.

External Development Guide ActiveX Widget Events

84 Chapter 5: Using ActiveX Controls in IDL

Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

* When the widget hierarchy to which the ActiveX widget belongs is destroyed.

* Whenacall to WIDGET_CONTROL, wAx, /DESTROY is made, where wAXx
isthe widget ID of the ActiveX widget.

¢ When the underlying IDLcomActiveX object is destroyed by acall to
OBJ DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, becauseit is
possible for an ActiveX control to return references to other COM objectsto IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “ References to Other COM Objects’ on page 65 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elementsin the ActiveX Event Structure” on page 83 for more information.

Destroying ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 85

Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained inthe filemscal . ocx, isinstaled along with atypical installation of
Microsoft Office 97, and may also be present on your system if you have upgraded to
amorerecent version of Microsoft Office. If the control isnot present on your system
(you'll know the control is not present if the example code does not display a
calendar similar to the one shown in Figure 5-1 on page 87), you can download athe
control as part of a package of sample ActiveX controlsincluded in the file
actxsamp.exe, discussed in Microsoft Knowledge Base Article 165437.

If you download the control, place thefilemscal . exe in aknown location and
execute the file; you will be prompted for adirectory in which to place mscal. ocx.
Open a command prompt window in the directory you chose and register the control
as described in “ Registering COM Components on a Windows Machine” on page 49.

The calendar control has the program ID:
MSCAL.Calendar.7
and the class ID:

{8E27C92B-1264-101C-8A2F-040224009C02}

Example Code
The following section develops an IDL routine called ActiveX Cal that illustrates
use of the calendar ActiveX control within an IDL widget hierarchy. The complete
.pro fileisincluded in the examples\doc\bridges\com subdirectory of the
IDL distribution as ActivexCal .pro.

1. Createthe ActiveXCal procedure. (Remember that inthe ActiveXcal.pro
file, this procedure occurs last.)

PRO ActiveXCal
2. Create atop-level base widget to hold the ActiveX control.

wBase = WIDGET BASE(COLUMN = 1, SCR XSIZE = 400, $
TITLE='IDL ActiveX Widget Calendar Control!')

3. Create base widgets to hold labels for the selected month, day, and year. Set
theinitial values of the labels.

wSubBase = WIDGET BASE (wBase, /ROW)
wVoid = WIDGET LABEL (wSubBase, value = 'Month: ')
wMonth = WIDGET LABEL (wSubBase, value = 'October')

External Development Guide Example: Calendar Control

RSI_PROCODE/examples/doc/bridges/COM/ActiveXCal.pro

86

10.

11.

Chapter 5: Using ActiveX Controls in IDL

wSubBase = WIDGET BASE (wBase, /ROW)

wVoid = WIDGET LABEL (wSubBase, VALUE = 'Day: ')
wDay = WIDGET LABEL (wSubBase, VALUE = '22')
wSubBase = WIDGET BASE (wBase, /ROW)

wVoid = WIDGET_ LABEL (wSubBase, VALUE = 'Year: ')
wYear = WIDGET LABEL (wSubBase, VALUE = '1999')

Instantiate the ActiveX Control, using the control’s class ID.

wAx=WIDGET ACTIVEX (wBase, $
'{8E27C92B—1264—101C—8A2F—040224009CO2}')

Realize the top-level base widget.
WIDGET CONTROL, wBase, /REALIZE

Set the top-level base's user value to an anonymous structure containing
widget IDs of the month, day, and year |abel widgets.
WIDGET CONTROL, wBase, S
SET UVALUE = {month:wMonth, day:wDay, year:wYear}
Retrieve the object ID of the IDLcomActiveX object that encapsulates the
ActiveX control. Use the GetProperty method to retrieve the current values of
the month, day, and year from the control.

WIDGET CONTROL, wAx, GET_VALUE = o0OAx
oAx->GetProperty, month=month, day=day, year=year

Set the values of the label widgetsto reflect the current date, as reported by the
ActiveX control.

WIDGET CONTROL, wMonth, SET VALUE=STRTRIM (month, 2)
WIDGET CONTROL, wDay, SET VALUE=STRTRIM (day, 2)
WIDGET CONTROL, wYear, SET VALUE=STRTRIM (year, 2)

Cal XMANAGER to manage the widget events, and end the procedure.

XMANAGER, 'ActiveXCal', wBase

END

Now create an event-handling routine for the calendar control. (Remember that
inthe activexcal.pro filg, this procedure occurs before the ActiveX Cal
procedure.)

PRO ActiveXCal_event, ev

The ActiveX widget isthe only widget in this application that generates widget
events, so the ID field of the event structure is guaranteed to contain the widget
ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.

Example: Calendar Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 87

WIDGET CONTROL, ev.ID, GET VALUE = oCal

12. The user value of the top-level base widget is an anonymous structure that
holds the widget I Ds of the month, day, and year |abel widgets (see step 6
above). Retrieve the structure into avariable named state.

WIDGET CONTROL, ev.TOP, GET_UVALUE = state

13. Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar contral.

ocal->GetProperty, month=month, day=day, year=year

14. Use WIDGET_CONTROL to set the values of the month, day, and year label
widgets.

WIDGET CONTROL, state.month, SET VALUE = STRTRIM (month,2)
WIDGET CONTROL, state.day, SET VALUE = STRTRIM (day, 2)
WIDGET CONTROL, state.year, SET_VALUE = STRTRIM(year,2)

15. Cal HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP FREE, ev

END

Running the ActiveX Cal procedure displays awidget that looks like the following:

EJ/IDL ActiveX Widget Calendar Control I] 54
fonth: &
Day: 1
Year 2002
May 2002 May =] |2002 =l
Sun Mon Tue Wed Thu Fri Sat

28 28 a0 2 3 4

5 53 it g 9 10 11

12 13 14 15 16 17 15

19 20 21 22 23 24 25

26 7 28 28 30 1 1

2 i 4 & G [g

Figure 5-1: An IDL widget program using an ActiveX calendar control.

External Development Guide Example: Calendar Control

88 Chapter 5: Using ActiveX Controls in IDL

Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained inthefilemsowc . d11, isinstalled along with atypical installation
of Microsoft Office. If the control is not present on your system (you’ll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:
OWC.Spreadsheet .9

and the class ID:
{OOO2E510—OOOO—OOOO—COOO—OOOOOOOOOO46}

Information about the spreadsheet control’s properties and methods was gleaned
from Microsoft Excel 97 Visual Basic Sep by Step by Reed Jacobson (Microsoft
Press, 1997) and by inspection of the control’s interface using the OLE/COM Object
Viewer application provided by Microsoft. It is beyond the scope of this manual to
describe the spreadsheet control’s interface in detail.

Example Code
The following section develops an IDL routine called ActiveXExcel that illustrates
use of the spreadsheet ActiveX control within an IDL widget hierarchy. The
complete .pro fileisincluded in the examples\doc\bridges\coM subdirectory
of the IDL distribution as ActiveXExcel .pro.

1. Create afunction that will retrieve data from cells selected in the spreadsheet
control. The function takes two arguments: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and avariable
to contain the data from the selected cells.

FUNCTION excel getSelection, oExcel, aData

2. Retrieve an object that represents the selected cells. Note that when the
ActiveX control returnsthis object, IDL automatically creates an
IDLcomActiveX abject that makes it accessible within IDL.

oExcel->GetProperty, SELECTION=o0Sel
3. Retrieve the total number of cells selected.
0Sel->GetProperty, COUNT=nCells

4. If no cells are selected, destroy the selection object and return zero (the failure
code).

Example: Spreadsheet Control External Development Guide

RSI_PROCODE/examples/doc/bridges/COM/ActiveXExcel.pro

Chapter 5: Using ActiveX Controls in IDL 89

IF (nCells LT 1) THEN BEGIN
OBJ_DESTROY, oSel
RETURN, 0

ENDIF

5. Retrieve objects that represent the dimensions of the selection.
oSel->GetProperty, COLUMNS=0Cols, ROWS=oRoOwS
6. Get the dimensions of the selection, then destroy the column and row objects.

oCols->GetProperty, COUNT=nCols
OBJ_DESTROY, oCols
ORows->GetProperty, COUNT=nRows
OBJ_DESTROY, oORows

7. Create afloating point array with the same dimensions as the selection.
aData = FLTARR (nCols, nRows, /NOZERO) ;
8. Iterate through the cells, doing the following:

* Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

¢ Get the value contained in the cell.
e Set the appropriate element of the aData array to the cell's value.
¢ Destroy the object.

FOR i=1, nCells DO BEGIN
oSel->GetProperty, ITEM=oltem, i
oItem->GetProperty, VALUE=vValue

abDatal[i-1] = vValue
OBJ_DESTROY, oltem
ENDFOR

9. Destroy the selection object.
OBJ DESTROY, oSel
10. Return one (the success code) and end the function definition.

RETURN, 1

END

External Development Guide Example: Spreadsheet Control

90

Example: Spreadsheet Control

11.

12.

13.

14.

15.

16.

17.

18.

Chapter 5: Using ActiveX Controls in IDL

Next, create a procedure that sets the values of the cells in the spreadshest.
This procedure takes one argument: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control.

PRO excel setData, oExcel
Define the size of the data array.
nX = 20
Get an abject representing the active spreadsheet.
OoExcel->GetProperty, ActiveSheet=oSheet
Get an abject representing the cellsin the spreadsheet.
oSheet->GetProperty, CELLS=oCells
Generate some data.
im = BESELJ (DIST (nX))
Iterate through the elements of the data array, doing the following:

* Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

* Set the value of the cell.
e Destroy the object.

FOR 1=0, nX-1 DO BEGIN
FOR j=0, nX-1 DO BEGIN
oCells->GetProperty, ITEM=oItem, i+1, j+1
oltem->SetProperty, VALUE=im (i, j)
OBJ_DESTROY, oItem
ENDFOR
ENDFOR

Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END
Next, create a procedure to handle events generated by the widget application.

PRO ActiveXExcel event, ev

External Development Guide

Chapter 5: Using ActiveX Controls in IDL 91

19.

20.

21.

22.

23.

24.

25.

26.

27.

The user value of the top-level base widget is set equal to a structure that
contains the widget ID of the ActiveX widget. Retrieve the structure into the
variable sState.

WIDGET CONTROL, ev.TOP, GET UVALUE=sState, /NO_COPY

Use the value of the DISPID field of the event structure to sort out “ selection
changing” events.

IF (ev.DISPID EQ 1513) THEN BEGIN

Place data from selected cellsin variable aData, using the
excel getSelection function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

IF (excel getSelection(sState.oExcel, aData) NE 0) THEN BEGIN
Get the dimensions of the aData variable.
szData = SIZE (aData)
If aDataistwo-dimensional, display a surface, otherwise, plot the data.

IF (szDatal[0] GT 1 AND szDatal[l] GT 1 AND szDatal[2] GT 1) $
THEN SURFACE, aData $
ELSE $
PLOT, aData
ENDIF

ENDIF

Reset the state variable sState and end the procedure.

WIDGET CONTROL, ev.TOP, SET UVALUE=sState, /NO_COPY

END
Create the main widget creation routine.

PRO ActiveXExcel

I|EXCEPT=0 ; Ignore floating-point underflow errors.
Create atop-level base widget.

wBase = WIDGET_ BASE (COLUMN=1, $
TITLE="IDL ActiveX Spreadsheet Example")

Instantiate the ActiveX spreadsheet control in awidget.

wAx=WIDGET ACTIVEX (wBase, $
'{0002E510-0000-0000-C000-000000000046}"', $
SCR_XSIZE=600, SCR_YSIZE=400)

External Development Guide Example: Spreadsheet Control

92

28.

29.

30.

31.

32.

33.

Chapter 5: Using ActiveX Controls in IDL

Realize the widget hierarchy.
WIDGET CONTROL, wBase, /REALIZE

The value of an ActiveX widget is an object reference to the IDLcomA ctiveX
object that encapsulates the ActiveX control. Retrieve the object reference in
the variable oExcd.

WIDGET CONTROL, wAx, GET VALUE=oExcel
Turn off the TitleBar property on the spreadsheet control.
oExcel->SetProperty, DisplayTitleBar=0

Populate the spreadsheet control with data, using the excel setData
function defined above.

excel setData, oExcel

Set the user value of the top-level base widget to an anonymous structure that
contains the widget 1D of the spreadsheet ActiveX widget.

WIDGET CONTROL, wBase, SET UVALUE={oExcel:oExcel}
Cal XMANAGER to manage the widgets, and end the procedure.

XMANAGER, 'ActiveXExcel', wBase, /NO_BLOCK
END

Running the ActiveX Excel procedure display widgets that look like the following:

&l
Eal el s z [SEEY BB

i =101 x|

A B C D E
0785198 0.223891 -0.260052 -039715 -
0.765198 0.559134 0.080405 -0.310045 -0.386187 0.
0.2238591 0.090405 0196545 0352283 -0 326575
-0.260052 -0.310045 -0.392293 -0.370336 -0.177597
039715 -0 38R167 -0.326875 0177557 004563
0177597 0144665 -0.046336 0.101258 0.243877 0.29¢
0150645 0172848 0226344 0285837 029445
0.300079 0.299655 0.289804 0.249082 0156777
0171651 01586777 01102 0.029315 -0.076457 -
-0.080334 -0.103734 -0.140967 -0.191767 -0.236522 -0.24;
-0.245836 0 247752 024363 -0.240343 0207336 -0.13¢
-0.080334 -0.103734 -0.140967 0191767 -0.236522 -0.24;
0171651 0156777 01102 0.029915 -0.076487 -0.181
0.300079 0.299655 0.289804 0.249062 0.156777 0.017
0150645 0172848 0226344 0285837 029445 0.21:
0177597 0144665 -0.046336 0.101258 0.243877 0.29¢
039715 -0.386187 -0.326875 0177597 004583 0.24:
-0.260052 -0.310045 -0.392293 -0.370336 0177597 0.10°
0.223891 0.090405 -0.196548 0392293 -0.326875 -0.04k
0.765198 0.559134 0.080405 -0.310045 -0.3861687 -0.144665 0172849 0.299655 U.158_?,j
»

Figure 5-2: An IDL Widget Program Using an ActiveX Spreadsheet Control

Example: Spreadsheet Control External Development Guide

Chapter 6

The IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:

OVEIVIBW ..ot 94
Creating an Interface and Handling Events . 96
Working with IDL Procedures. 102
Advanced Examples 105
Copying and Printing IDL Graphics 106

XLoadCT Functionality Using Visual Basic . 110

External Development Guide

XPalette Functionality Using Visual Basic 112

Integrating Object GraphicsUsingVB .. 113
Sharing a Grid Control Array with IDL .. 114
Handling Events within Visual Basic 116
Distributing Your ActiveX Application .. 118

93

94

Chapter 6: The IDLDrawWidget ActiveX Control

Overview

Overview

The Microsoft Windows version of IDL includes an ActiveX control that provides a
powerful way to integrate all the data analysis and visualization features of IDL with
other programming languages that support ActiveX controls. ActiveX is aset of
technologies that enabl es software componentsto interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

The IDL ActiveX control makesit possibleto display IDL direct and object
graphics within an OLE container that supports ActiveX controls;

The DL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself;

The IDL ActiveX control greatly simplifies the process of moving datato and
from IDL and an external program;

And finaly, the interface to the IDL ActiveX control appears native to the
external application.

Other issues to note regarding the ActiveX control are:

The IDL ActiveX control isintended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visua Basic application and IDL. A
Visua C++ programmer will need to use OLE'S VARIANT and SAFEARRAY
types. A discussion of how to usethe IDL ActiveX control with these
languages is beyond the scope of this manual.

The IDL ActiveX control does not support any non-blocking IDL widgets.
When you call awidget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of awidget using the given functionality.
For an example, see “XLoadCT Functionality Using Visual Basic” on

page 110.

External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 95

The ActiveX interface to IDL consists of a single control called | DL DrawWidget.
When this control isincluded in a project, it exposes the features of IDL through its
properties and methods. The | DL DrawWidget can also trigger events. The
properties and methods of the IDL DrawWidget are listed in Chapter 7,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visua Basic. These technigues begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphicsin aVisual Basic
window.

A Note about Versions of the IDL ActiveX Control

Periodically, RSI releases a new version of the IDLDrawX ActiveX control. Older
versions of the control will continue to work as they always have, but the new
versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM isthat interfaces are immutable. That isto say that when
you create an interface, you “contractually” agree that the interface won’t change.
Changesto the way the control interacts with other components require that a new
interface — and thus a new version of the control — must be created. Since the IDL
ActiveX control isa COM object it is bound by this agreement. When RSI makes
improvements to the ActiveX control interface by adding new methods and
properties, we release a new ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you are a Visual Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6 and later,
you would add this control to your project and remove the “IDLDrawX ActiveX
Control Module” or “IDLDrawX?2 ActiveX Control Module” from your project. The
source code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

External Development Guide Overview

96 Chapter 6: The IDLDrawWidget ActiveX Control

Creating an Interface and Handling Events

The goal of thisfirst exampleisvery simple: to create a user interface in Microsoft
Visua Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

. IDL OCX Control: Simple Example [O] X]

40 4 1600

% Compiled module: DIST. =]
‘ 2 4

|

Figure 6-1: A simple example showing the IDLDrawWidget and
text returned by IDL

Asthe figure shows, our first example program consists of two buttons (“Plot Data’
and "Exit”), agraphics area, and atext box. All of these elements reside on top of
what iscalled aform in Visual Basic parlance. (A formin Visual Basicissimilar to a
top level basein IDL.) Clicking the “Plot Data” button causes IDL to produce the
surface plot shown. Clicking “Exit” causes IDL and the Visua Basic program to free
memory and exit.

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

97

1] Private Sub Form Load()
2 n = IDLDrawWidgetl.InitIDL (Forml.hWnd)
3 If n <= 0 Then
4 MsgBox ("IDL failed to initialize")
5 End
6 End If
7 IDLDrawWidgetl.CreateDrawWidget
8 IDLDrawWidgetl.SetOutputWnd (IDL Output_ Box.hWnd)
9§ End Sub
Visual °] ,
. 11| Private Sub Plot Button Click()
Basic 12 IDLDrawWidgetl.ExecuteStr ("Z = SHIFT(DIST(40), 20,
13 IDLDrawWidgetl.ExecuteStr ("Z = EXP(-(Z2/10)%2)™)
14 IDLDrawWidgetl.ExecuteStr ("SURFACE, Z")
15 IDLDrawWidgetl.ExecuteStr ("PRINT, SIZE(Z)")
16 End Sub
17
18] Private Sub Exit Button Click()
19 IDLDrawWidgetl.DoExit
20 End
21 End Sub

20) ||)

Table 6-1: Source code for a simple example

Drawing the Interface

Begin building the first example by creating a new Visual Basic project, adding the

IDL ActiveX control, and drawing the interface components.

Launch Microsoft Visual Basic and create a new project.

1. AddthelDL ActiveX component to the project. Visual Basic displays alist of
all available components when you select the Components from the Project

menu.

External Development Guide Creating an Interface and Handling Events

98 Chapter 6: The IDLDrawWidget ActiveX Control

Components E

Cantrols | Designers Insertable Objects |

[Index OLE Conkrol madule
[KeywardSearch ©OLE Control madule
[ILM Runtime Conkrol

[Media Clip

L N T T

mlemde A A

Figure 6-2: List of Available Components

Select the “IDLDrawX3 ActiveX Control module’ check box and close the
Components window. Visual Basic will display the IDLDrawWidget'siconin
the tool bar.

2. Begindrawing theinterface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display area was created with | DL DrawWidget.

Specifying the IDL Path and Graphics Level

Having added | DL DrawWidget to the Visual Basic project, we now have access to
IDL DrawWidget's properties and methods. Use the I dIPath and GraphicsL evel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capahilities. Refer to Chapter 7,
“IDLDrawWidget Control Reference” for acomplete list of the properties and
methods to | DL DrawWidget.

1. UseVisua Basic's Properties window to select the I DL DrawWidget. All of
the IDL DrawWidget’s properties can be set using the Properties window.
Many properties can a so be set within the source code. These distinctions are
noted in Chapter 7, “IDLDrawWidget Control Reference”.

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 99

| IDLDrawwidget1 IDLDrawwidget =
Alphabetic | Cateqgarized I
-
[IDLDrawWidget 1
EackColor] &H=000000F 2
Easelarne IDLCrawiwidget 1 Base
Eorderstyle 0- Mone
BuffFerId -1
Causesvalidation True
Draglcon {Mone)
Crraghiode 0 - wbManual
CiravwidgetMame IDLDrawiwidget 1
Enablz True
Enabled True
GetialueMarne
GraphicsLeyvel 1
Height 2415
HelpContextID |0
1diPath =l
{Name)
Returns the name used in code ko identify an
object.

Figure 6-3: Visual Basic Properties window
2. Locate the I dIPath property and enter the directory path to your DL
installation. If you installed IDL in its default location, this path will be:
c:\rsi\idlxx
where xx isthe current IDL version.

3. Locate the GraphicsL evel property and set it equal to 1. ThisselectsIDL's
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the I DL DrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form Load ()
End Sub

External Development Guide Creating an Interface and Handling Events

100

Chapter 6: The IDLDrawWidget ActiveX Control

Visual Basic's Form_L oad routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the | DL DrawWidget,
and direct output from IDL to atext box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needsto beinitialized before Visual Basic can interact with the
IDLDrawWidget. Thisis done with the I nitl DL method. InitIDL takesthe hWnd
of the form containing the I DL DrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the | DL DrawWidget were not changed, IDL
can beinitialized with the following statement.

n = IDLDrawWidgetl.InitIDL (Forml.hWnd)

A conditional statement isincluded to display an error message and exit the program
if IDL failed toinitialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX frame
is created. Thisisa container for the IDL DrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. Thisisaccomplished with the CreateDrawWidget method, as shown in the
following statement:

IDLDrawWidgetl.CreateDrawWidget

Directing IDL Output to a Text Box

The example program displays any output returned by IDL in atext box created in
Visual Basic. Thisis accomplished with the SetOutputWnd method of the

IDL DrawWidget. The SetOutputWnd method takes the hwnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named | DL_Output_Box, hence the following statement.

IDLDrawWidgetl.SetOutputWnd (IDL_ Output Box.hWnd)
Note

Although thisis the last statement within the Form_L oad() subroutine, it could be
placed before the call to Initl DL to get standard IDL version information printed.

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 101

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basic isto let Visual Basic manage the
events and passinstructions to IDL. Recall that our example program contains two
buttons. “Plot Data’ and “Exit”. When you double-click on “Plot Data’, Visual Basic
automatically creates the following subroutine:

Private Sub Plot Button Click()
End Sub

Visua Basic will execute any statements within this subroutine when the user clicks
“Plot Data’. Instructions are passed to IDL using the ExecuteStr method to the

DL DrawWidget. The ExecuteStr method takes a string as an argument. Thisstring
ispassed to IDL for execution asif it were entered at the IDL command line.

The five statements which follow instruct IDL to produce the surface plot shownin
the figure above.

IDLDrawWidgetl.ExecuteStr ("Z SHIFT (DIST(40), 20, 20)")
IDLDrawWidgetl.ExecuteStr ("Z = EXP(-(Z/10)"2)")
IDLDrawWidgetl.ExecuteStr ("SURFACE, Z")
IDLDrawWidgetl.ExecuteStr ("PRINT, SIZE(Z)")

Cleaning Up and EXxiting

This project exits when the user clicks “Exit”. Exiting is atwo step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.
Private Sub Exit Button Click()
IDLDrawWidgetl.DoExit

End
End Sub

External Development Guide Creating an Interface and Handling Events

102 Chapter 6: The IDLDrawWidget ActiveX Control

Working with IDL Procedures

In this next example aproject is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It isimportant to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructionsto IDL isidentical to entering the sameinstructions at the IDL command
line. In this example Visual Basic isonly used to create the user interface and
dispatch events. The dataresides in memory controlled by IDL. IDL is used for al
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and resides in the
examples\doc\ActiveX\SecondExample directory.

. Second Example: Interacting with IDL Procedures [O] X]

Open

Scale Original |
IBIack #whhite VI

Roberts |
Exit |

Original Filtered

% Compiled module: SETCOLORS. ;I
% Compiled module: APPLYSOBEL.

*% Compiled module: APPLYROBERTS.

% Loaded DLM: JPEG.

% Compiled module: COMGRID.

% Compiled module: LOADCT.

% Compiled module: FILEPATH.

% LOADCT: Loading table B LINEAR LI

Figure 6-4: The User Interface with Two Draw Widgets

The user interface consists of two | DL DrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 103

Creating the Interface

Theinterfaceis created asit was in the first example, by drawing the interface
componentsin Visual Basic. Two | DL DrawWidgets are created. Set the path

(c:\rsi\idlxx wherexx isthe current IDL version) and graphicslevel properties
(type 1) of both.

Initializing IDL

Although there are two | DL DrawWidget objects, only one instance of the ActiveX

control needs to be initialized. Both of the | DL DrawWidget objects do need to be
created, however.

Thisis done with the two statements below:

IDLDrawWidgetl.CreateDrawWidget
IDLDrawWidget2.CreateDrawWidget

Compiling the IDL Code

This example uses IDL procedures containedin a . pro file named
SecondExample.pro. Thisfile contains IDL procedures. Before these procedures
can be called from Visua Basic, SecondExample . pro heeds to be compiled.
This assumes that the . pro file resides in the same directory asthe Visual Basic
project. The path method of the App object returns the directory from which the
Visua Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, ‘" + App.Path + "’"
IDLDrawWidgetl.ExecuteStr (WorkingDirectory)

The .pro can then be compiled. A conditional statement is used to exit the program
if IDL wasunableto locate the .pro file.

Dispatching Button Events to IDL
Because Visual Basic isused primarily for the user interface components of the

application, IDL’s procedures have been created for processing the button eventsin
the application. Thisis accomplished through the ExecuteStr method of the

External Development Guide Working with IDL Procedures

104 Chapter 6: The IDLDrawWidget ActiveX Control

IDL DrawWidget, as caled in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

) 1] Private Sub Open Button Click(Index As Integer)
Visual 2 IDLCommand = "OpenFile, " + Str (BaselID)
Basic 3 IDILDrawWidgetl.ExecuteStr (IDLCommand)

4] End Sub

Table 6-2: User Interface of Example Project

OpenFileisauser procedure that utilizes IDL’s DIALOG_PICKFILE function to
enabl e the user to select afile for display within the IDL DrawWidget.

Cleaning Up and EXxiting

Like the first example, this program exits when the user clicks “ Exit”. An additional
call has been made to DestroyDrawWidget. Thisisn’'t necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsL evel property of the | DL DrawWidget during program execution use this

method.

1] PRO OpenFile, TLB

2 WIDGET CONTROL, TLB, GET UVALUE = ptr

3 PathName = DIALOG PICKFILE (TITLE = $

4 'Select a JPEG file', FILTER = '*.jpg')
5 IF (PathName NE '') THEN BEGIN

6 DEVICE, DECOMPOSED = 0

7 READ_JPEG, PathName, Data, ColorTable

IDL 8 (* (*ptr) .OriginalArrayPTR) = Data

9 (* (*ptr) .OrigColorMapPTR) = ColorTable
10 TVLCT, (* (*ptr).OrigColorMapPTR)
11 TV, (*(*ptr).OriginalArrayPTR)
12 ENDIF ELSE BEGIN
13 Result = DIALOG MESSAGE('No JPEG file selected', /ERROR)
14 ENDELSE
15 END

Table 6-3: The Open File Procedure

Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 105

Advanced Examples

Each of the following examples builds on the concepts that you've already learned in
this chapter.

Example Code

The user interface and projects for each of the examples have been created and can
be found in the distribution in the examples\doc\ActiveX\project
directory where project is the name of the example.

These examples assume that you are already familiar with the following concepts:

Creating anew project in Visual Basic;

Adding the I DL DrawWidget control to the VB control toolbar;

Drawing the | DL DrawWidget on your form;

Initializing IDL with InitIDL;

Creating the draw widget with CreateDrawWidget;

Executing commands with ExecuteStr;

Using IDL . pro code to respond to auto-events within the | DL DrawWidget;
Setting properties for the | DL DrawWidget objects.

These examples demonstrate the following:

Copying and Printing IDL Graphics
XLoadCT Functionality Using Visual Basic
XPalette Functionality Using Visual Basic
Integrating Object Graphics Using VB
Sharing a Grid Control Array with IDL

Handling Events within Visual Basic

External Development Guide Advanced Examples

106 Chapter 6: The IDLDrawWidget ActiveX Control
Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an DL DrawWidget window.

This example illustrates the following concepts:
¢ Opening an existing project in Visual Basic;

e Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

e Executing IDL user routines;
e Printing an IDL graphic.
Opening the VBCopyPrint project
Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,

change to the examples\docs\ActiveX\VBCopyPrint directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

New Project HE

Mew Edisting | Recent|

Loak jn 2 VBCopyPrint j
Crsl =
VB CopyPr| 0 1453
(1 examples J
3 doc
0 Activex,
E=F /B CopyPrin
5= E_Diive E)
5= F_Drive [F] -
File name: I Open I
Files of pe: IF’lo\ect Files (*.vbp:" mak.".vba) j Cancel
Help

[~ Don't chow this diglog in the future

Figure 6-5: Opening the VBCopyPrint project

Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 107

Running the VBCopyPrint Example

Select “ Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Printing and Copying Direct Graphics

Copy

1DL Print

il

B Print

Figure 6-6: VBCopyPrint example

Copying IDL Graphic to the clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as showninline
6 of the following table.

Private Sub cmdCopy Click/()
'Copy the direct graphics window to the clipboard
Screen.MousePointer = vbHourglass
'Erase anything currently on the clipboard
Clipboard.Clear
'Copy the draw widget to the clipboard
IDLDrawWidgetl.CopyWindow
Screen.MousePointer = vbDefault
MsgBox "Window copied to clipboard."

End Sub

Visual
Basic

O WOV 00 J 0 Ul b WN K

=

Table 6-4: Copy button Source Code

External Development Guide Copying and Printing IDL Graphics

108 Chapter 6: The IDLDrawWidget ActiveX Control
Printing the IDL Graphic using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The “IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.
1§ PRO VBPrintWindow, DrawId
2
3
4 .
5 ;Get the window index of the drawable to be printed
6 WIDGET CONTROL, DrawId, Get Value=Index
7
8
9 .

10 ;Create a Printer object and draw the graphic to it

IDL 11 oPrinter = OBJ NEW ('IDLgrPrinter')

12

13 ;Display a print dialog box

14 Result = DIALOG PRINTERSETUP (oPrinter)

15

16

17 .

18 oPrinter->Draw, oView

19

20

21 .

22 END ;VBPrintWindow

Table 6-5: IDL VBPrintWindow Code

Executing IDL user routines with Visual Basic

The VBCopyPrint example executes a user routine, written in IDL, to support the
printing of the | DL DrawWidget window. This is done with the ExecuteStr method,

Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

109

as shown in line 4 below, by passing a string of the routine name along with the ID of

the IDL DrawWidget.

Visual
Basic

W 00 J 0 Ul i W N K

Private Sub cmdPrintIDL Click()
'Print the current drawable widget's window contents
'using IDL object graphics
Screen.MousePointer = vbHourglass
IDLDrawWidgetl.ExecuteStr "VBPrintWindow," &
Strs$ (IDLDrawWidgetl.DrawlId)
Screen.MousePointer = vbDefault
MsgBox "Window sent to printer."
End Sub

Table 6-6: Print Button Source Code

Printing the IDL Graphic Using Visual Basic

The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.

Visual
Basic

15

1] Private Sub cmdPrintVB_Click ()

2 CommonDialogl.CancelError = True

3 On Error GoTo ErrHandler

4 CommonDialogl.ShowPrinter

5§ '-- Copy the window's contents to the clipboard
6 'Erase anything currently on the clipboard
7 Clipboard.Clear

8 IDLDrawWidgetl.CopyWindow

9 '-- Send the picture located on the clipboard,
10 'to the printer
11 Printer.PaintPicture Clipboard.GetData, 0, 0
12 Printer.EndDoc 'Send it to the printer
13 Exit Sub
14] ErrHandler:
16 Exit Sub
17 End Sub

External Development Guide

Table 6-7: VBPrint Command

Copying and Printing IDL Graphics

110 Chapter 6: The IDLDrawWidget ActiveX Control

XLoadCT Functionality Using Visual Basic

The VBL0adCT example duplicates the XLOADCT functionality using aVB
interface. The VBLoadCT . pro source code (located in the
examples\docs\ActiveX\VBLoadcCt directory of the IDL installation directory)
isafunctional duplicate of XLOADCT with procedure calls replacing the
xloadct_event procedure aswell as IDL widgets being replaced by VB controls.
See the following figure for more information.

In addition, this example extends XLOADCT by adding the following features:
e Options menu by clicking the right mouse button on a color;
e Useof IDL syntax to create separate functions for red, blue and green;
e Ability to save user created color tables.

This example illustrates the following concepts:
* Modifying existing IDL library code for use with the | DL DrawWidget;
» IDL to Visual Basic color table conversion

XLoadCT Functionality Using Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 111

. VBLoadCT I[=] E3
Eile Edit
B LINEAR -
BLUE AWHITE
GRMN-RED-BLU-wHT
RED TEMPERATURE
BLUE/GREEM/REDAYELLOW
STD Gabdbda-
1} PRISH
RED-PURPLE
4 »
J—I J GREEMNAWHITE LINEAR
Stretch Bottomn GRAMAWHT EXPOMNEMTIAL
100 GREEN-PINK.
. » BLUE-RED
[l —IJ 16 LEVEL
Stretch Top RalMBOW
1 STEPS
STERM SPECIAL
4 3
J —I J Haze LI

Gamma Caomection

Figure 6-7: VBLoadCT example

External Development Guide XLoadCT Functionality Using Visual Basic

112 Chapter 6: The IDLDrawWidget ActiveX Control

XPalette Functionality Using Visual Basic

Like VBL 0adCT, VBPalette demonstrates how to duplicate IDL tool functionality
using aVisual Basic interface. The vBPalette.pro file (located in the
examples\docs\Activex\VBPalette directory of the DL installation
directory) isafunctional duplicate of the XPalette source with the event procedure
and IDL widgets replaced with auto-event procedures and VB controls.

This example illustrates the following concepts:
* Modifying existing IDL library code for use with the | DL DrawWidget;

e Converting an IDL event procedure to the | DL DrawWidget auto-event

procedures

. VBPalette
File Palette

Color Index | 115 B/ LINEAR
Eam GRN-AED-BLU-WHT
Fed el FED TEMPERATURE
BLUE /GREEN/RED/YELLOW
Green 55 57D GAMMA
PRISM
Blue 755 RED-PURPLE

1 colors].thl

50 100 150 200 250 300

50 100 150 200 250 300

50 100 150 200 250 300

[[Ofx]

Green

Blue

Create a Color Function
Start Index IDL Function

Red= | [0 [oytscl sin indgen (256F-10)

Green = | [0 [bytscl sin indgen (256F-05))

Blue= | [0 [bytscl fsin (indigen (256 025))

Reset Red
Reset Green
Reset Blue

Output Window

Figure 6-8: VBPalette Example

XPalette Functionality Using Visual Basic

External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 113

Integrating Object Graphics Using VB

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the | DL DrawWidget control. The I DL DrawWidget
can also use IDL’s object graphics sub-system by changing the
IDL DrawWidget.GraphicslL evel property as demonstrated with the VBObj Graph
example in the following figure. This example illustrates the following concepts:

e Setting the GraphicsL evel property to create an object graphics window;

e Trandating agraphics object using VB controls.

e Using IDLDrawWidget auto-events.

Dbject Graphics Example
File Edit

Left click and draq on surface to rotate.

l Auto Rotate

Figure 6-9: VBObjGraph example

Example Code
See thefileslocated in the examples\docs\Activex\VBObjGraph directory
of the IDL installation directory for example code.

External Development Guide Integrating Object Graphics Using VB

114 Chapter 6: The IDLDrawWidget ActiveX Control

Sharing a Grid Control Array with IDL

VBSharelD demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the | DL DrawWidget object. The datais
presented to the user in aVisual Basic grid control enabling the user to edit the data
and seetheresultsin real time. See the following figure.

This example illustrates the following concepts:

¢ Shows how to process mouse events within VB to get the data coordinates of
an IDL plot.

e Demonstrates how to convert (x,y) VB coordinates into IDL data coordinates,
to give the cursor location in data val ues rel ative to the current plot.

¢ Demonstrates how to use aVB grid control to edit data valuesthat are
reflected in the IDL plot after each keystroke

. VBShareld I[=] 3
Move the cursor over the plot. and type a number to edit the current
value. or click on the cell to edit.
1.0]
0.5 3
kel 2 E
—osf =
-1.0E =
[20 40 &0 a0 100
000 E] 909 14 - 757 -959 -279 E57 989 A2
- 544 -1.000 - 537 420 391 B5O -.288 - 961 - 751 150
13 a7 -009 - 545 -132 7E3 956 271 -BE4
-988 - 404 551 1.000 529 -428 -992 - E44 296 964
745 -159 -917 -|az 018 851 902 124 - 768 - 954
-262 E70 987 396 - 559 -1.000 -522 436 993 B37
-305 - 966 -739 167 1920 827 -027 - 856 -£98 -115
T4 851 254 -E77 -985 -,388 JBEE 1.000 514 - 444
- 994 -E30 13 968 73 -176 -923 -B22 035 850
894 106 - 779 -948 - 245 683 954 380 -573 -999
Reset | IblCaards

Figure 6-10: VBSharelD

Sharing a Grid Control Array with IDL External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 115

Example Code
Seethefileslocated inthe examples\docs\Activex\VBSharelD directory of
the IDL installation directory for example code.

External Development Guide Sharing a Grid Control Array with IDL

116 Chapter 6: The IDLDrawWidget ActiveX Control

Handling Events within Visual Basic

The VBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:.

This example illustrates the following concepts:
e Converting from aVB pixel coordinate system to the IDL coordinate system;

e Converting aVB color representation (long) into an IDL color representation
(RGB);

¢ Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

¢ Processing mouse events within VB to draw into an IDL window

&, Exampled !EE
Hold Left button to draw. Right button to erase

Color H

B asic colors:

LCustom colors:

|0 .
FEEEEE..

Define Custom Colors »» |

Cancel |

Figure 6-11: VBPaint example

Handling Events within Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 117

Example Code
See thefileslocated in the examples\docs\Activex\VBPaint directory of
the IDL installation directory for example code.

External Development Guide Handling Events within Visual Basic

118 Chapter 6: The IDLDrawWidget ActiveX Control

Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 27, “Distributing ActiveX Applications’ in the Building IDL
Applications manual.

Distributing Your ActiveX Application External Development Guide

Chapter 7

IDLDrawWidget
Control Reference

This chapter describes the following topics:

IDLDrawWidget 120
Methodst 121
Do Methods (RuntimeOnly) 131
Properties........... 133

External Development Guide

Read Only Properties 137
Auto Event Properties 139
Events 141

119

120 Chapter 7: IDLDrawWidget Control Reference

IDLDrawWidget

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visua
Basic, Fortran, Delphi, etc. Methods and properties of the I DL DrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the DL DrawWidget:

e Methods

* Do Methods (Runtime Only)
e Properties

¢ Read Only Properties

e Auto Event Properties

¢ Events

IDLDrawWidget External Development Guide

Chapter 7: IDLDrawWidget Control Reference 121

Methods

In ActiveX terminology, methods are special statements that execute on behalf of an
object in a program. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of a method statement is:

object .method value
where

¢ Object isthe name of an object you want to control, for example an
IDL DrawWidget.

¢ Method is the name of the method you want to execute.

¢ Valueisan optional parameter used by the method. The various methodsto the
IDL DrawWidget may require zero, one, or multiple parameters.

Note
When a method returnsaBOOL, the value TRUE isequal to 1 and FALSE is equal

to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.
Parameters

BSTR: The name of the array variable that you wish to copy.
Returns

VARIANT: Reference to the array.
Remarks

This function returns an array reference that islocal to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

External Development Guide Methods

122 Chapter 7: IDLDrawWidget Control Reference

CopyWindow

This method copies the contents of the | DL DrawWidget window to the Windows
clipboard.

Parameters
None.
Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an | DL DrawWidget in an ActiveX control frame. When you
drag and drop the | DL DrawWidget, you are creating the frame that will contain the
actual draw widget. Drawing operations to the control cannot be made until this

method is called.
Parameters
None.
Returns
LONG: The widget ID of the created draw widget or -1 in the event of an error.

DestroyDrawWidget

This method destroys the | DL DrawWidget, but not the ActiveX control frame.
Parameters

None.
Returns

None.
DoEXxit

This method exits the ActiveX control and frees any resourcesin use by IDL.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 123

After all IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoExit to alow the ActiveX control to shutdown IDL gracefully and

free any resourcesin use.
Parameters

None.
Returns

None.

Remarks

In spite of the name, DoEXxit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoEXxit is called, you are not allowed to call methods or set properties within

the IDL ActiveX control from the currently running EDE application, regardless of
which | DL DrawWidget the method was called on. Attempting to do so will result
in aruntime error subsequently causing the EDE application to crash.

ExecuteStr
This method passes a string to IDL which IDL then executes.

Parameters
BSTR: A string containing the command that IDL will execute.

Returns
LONG: 0 if successful or the IDL error codeif it fails.

Remarks
Most IDL commands that are executed with ExecuteStr run in the main level.
GetNamedData

This method returns the IDL data val ue associated with the named variable.

External Development Guide Methods

124 Chapter 7: IDLDrawWidget Control Reference

Parameters
BSTR: A string containing the name of an IDL variable.
Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT datatypes.

IDL Type Variant Type

IDL_TYP BYTE VT Ull
IDL_TYP_INT VT 12
IDL_ TYP_ LONG | VT I4
IDL_TYP_FLOAT |VT R4
IDL_TYP_DOUBLE | VT _R8
IDL_TYP_STRING |VT_BSTR

Table 7-1: Supported IDL data types and the corresponding
VARIANT data types

InitIDL

Thismethod initializes IDL. IDL only needs to be initialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL iscdled with the hwnd of the main window for the container
application. If thisvalue is null, the ActiveX control uses the hwnd of the ActiveX
control frame.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 125

Returns

LONG: Long value indicating status of IDL

Value Meaning
1 Successful
0 Failure
-1 IDL ActiveX control is
not licensed
-2 IDL isunlicensed (demo)

Table 7-2: Status of IDL

If your application contains more than asingle I DL DrawWidget (e.g.
IDL DrawWidget1 and | DL DrawWidget2) the Initl DL method should only be
called on one of the objects, not both.

The IDL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The I dIPath property can be set so the
control can find avalid IDL distribution (the id132.411). If avalid distribution is
not found in either the path as set in the I dIPath property or the current directory, a
dialog will be displayed giving the user the opportunity to specify the location of his
IDL distribution. This behavior may be overridden at runtime by locating and
specifying the path to the IDL distribution prior to calling either the I nitIDL or
SetOutputWnd methods.

InitIDLEX

This method initializes IDL. It isidentical to the InitiIDL method except that it has an
additional parameter, Flags, allowing initialization flagsto be passed on to IDL. See
the description of the “InitiIDL” on page 124 for details on the return value.

Parameters

LONG: InitIDL iscaled with the hWnd of the main window for the container
application. If thisvalue is null, the ActiveX control usesthe hwnd of the ActiveX
control frame.

External Development Guide Methods

126 Chapter 7: IDLDrawWidget Control Reference

LONG: Flags. A bitmask used to specify initiaization options. The allowed bit
values are:

Flag Meaning

IDL_INIT_RUNTIME | Setting thisbit causes IDL to check out aruntime
license instead of the normal license. In Visual C++
applications, the #define IDL INIT RUNTIME
value exported in export . h can be used. For Visual
Basic applications use the actual value of this
constant, IDL._INIT RUNTIME=4, since the defined
constant is not available.

IDL_INIT_STUDENT | Setting this bit causes IDL to check out a student
license instead of the normal license. In Visual C++
applications, the #define IDL_ INIT STUDENT
value exported in export . h can be used. For Visua
Basic applications use the actual value of this
constant, IDL._INIT STUDENT=128, Sincethe
defined constant is not available.

Table 7-3: InitIDLEx Flags
Returns

LONG: Long value indicating status of IDL. See the description of the return value
under “InitIDL” on page 124 for details.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, see the
Bufferld property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphicstree (an IDLgrView object) with the IDLgrWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

;Retrieve the window object associated with the draw widget.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 127

IDLDrawWidget: :ExecuteStr ("Widget Control, IDLDrawWidget, $
Get Value =oWindow") ;
;Set the Graphics Tree property to the view object.
IDLDrawWidget: :ExecuteStr ("oWindow->SetProperty, $
Graphics Tree = oView");

Parameters

XOffset: The X offset to print the graphic in 0.01 of amillimeter.

Y Offset: The Y offset to print the graphic in 0.01 of a millimeter.
Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of a single page.
TheY offset plus the height should be less than or equal to the height of asingle
page. The origin of the offset 0,0 isin the upper left corner of a page. If these values
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.
RegisterForEvents

This method causes | DL DrawWidget to pass the specified events to the application.
These events only apply if the user hasn't set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning
0 Stop forwarding all events
1 Forward mouse move events
2 Forward mouse button events

Table 7-4: Forwarding Events

External Development Guide Methods

128 Chapter 7: IDLDrawWidget Control Reference

Value Meaning
4 Forward view scrolled events
8 Forward expose events

Table 7-4: Forwarding Events (Continued)

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you forward mouse move events, your event handler should
check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.
SetNamedArray

This method creates anamed IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changesin either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variableto create in IDL.
VARIANT: Array data to be shared with IDL.

BOOL: Trueif IDL should free a shared array when IDL releasesits reference, false
if not.

Returns
WORD: 1 if successful, O if set failed.

Remarks

Because SetNamedArray creates an array whose datais shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 129

The array parameter of SetNamedArray must have alifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note
In order to alow datato be shared between IDL and the external environment, the
lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not allow array locking to extend beyond a
single method call and will signal an error when SetNamedArray() returns. If this
occurs, the data cannot be shared between IDL and the external environment using
SetNamedArray(). Use the SetNamedData() method to insert a copy of the array
into IDL.

The following table lists the accepted variant types and the corresponding IDL types.

Variant Types IDL Types
VT _UI1 - unsigned char IDL_TYP BYTE
VT _I1- signed char IDL_TYP BYTE
VT |2 - signed short IDL_TYP_INT
VT _14 - signed long IDL_TYP LONG
VT R4 - float IDL_TYP_FLOAT
VT _R8 - double IDL_TYP DOUBLE

Table 7-5: Accepted Variant Types and the Corresponding IDL Types
SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can a so be used
to change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to createin IDL.
VARIANT: Datato be copied in IDL.

External Development Guide Methods

130 Chapter 7: IDLDrawWidget Control Reference

Returns
WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.
Parameters

HWND: The hwnd of the edit control that will receive the output.
Returns

None.

Note
SetOutputWnd isthe only method that can be called prior to acall to I nitIDL.

VariableExists

This method determines if a specified variable is defined in IDL.
Parameters

BSTR: Name of variable to check.
Returns

BOOL:TRUE if variableisdefined in IDL at the main level. Falseif the variableis
not defined.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 131

Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress
This method callsthe IDL procedure specified in the OnButtonPress property.
Parameters
None.

Returns
None.
DoButtonRelease
This method callsthe IDL procedure specified in the OnButtonRelease property.
Parameters
None.
Returns
None.
DoExpose
This method calls the IDL procedure specified in the OnExpose property.
Parameters
None.
Returns

None.

External Development Guide Do Methods (Runtime Only)

132 Chapter 7: IDLDrawWidget Control Reference

DoMotion

This method callsthe IDL procedure specified in the OnM otion property.
Parameters

None.
Returns

None.

Do Methods (Runtime Only) External Development Guide

Chapter 7: IDLDrawWidget Control Reference 133

Properties

Properties are used to specify the various attributes of an | DL DrawWidget, such as
its color, width and height. Most properties may be set at design time by configuring
the properties sheet in Visual Basic, or a runtime by executing statements in the
program code.

The syntax for setting a property in the codeis:
object .property = value
where

* Object isthe name of the object you want to change, e.g. |DL DrawWidgetn
where nisthe number Visual Basic assigned to the I DL DrawWidget.

e Property isthe characteristic you want to change.
¢ Valueisthe new property setting.

Note
All properties relating to window size and/or position arein pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names a variable that IDL will use for the pseudo base. If this property
isset, the IDL DrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not

destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

Default=1DL DrawWidgetBase
Bufferld

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

External Development Guide Properties

134 Chapter 7: IDLDrawWidget Control Reference

1. A valueof -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

A value of O will cause the graphicsto print at roughly two times the screen

resolution. Thisformat is suitable for shaded surfaces or vertex colored mesh
surfaces. Thisis the default.

3. A vaue greater then O will be construed a s an IDLgrBuffer object reference

whose datawill be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” in the IDL Reference Guide manual.
Note

You must set the GRAPHICS_TREE property of the IDLgrwWindow object for
these print options to work.

DrawWidgetName

Returns or setsavariable that IDL will use for the draw widget. If this property is set,
the IDL DrawWidget will create an IDL variable with this name that containsthe ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to acall to CreateDrawWidget.

Default=1DL DrawWidget
Enabled

Returns or sets a value that determines whether aform or control can respond to user-
generated events such as mouse events.

Default=TRUE
GraphicsLevel (Runtime/Design time)

This property specifies the graphicslevel of the draw widget. Legal valuesare 1 or 2.
If you set the GraphicsL evel = 1 and call the CreateDrawWidget method, the
procedure will create an IDL direct graphics window. GraphicsL evel = 2 resultsin
an IDL object graphics window. The GraphicsL evel property can be set at design
time or at runtime prior to acall to CreateDrawWidget.

Default=1

Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 135

|dIPath

This property specifies the fully qualified path to the IDL32.DLL. The IdIPath
property can be set at design time or at runtime prior to acall to InitIDL or
SetOutputWnd.

Default=NULL
Renderer

This property specifies either the software or hardware renderer for object graphics
windows isto be used. It has no effect if the GraphicsLevel property isset to 1. Valid
values are:

¢ 0= Platform native OpenGL
e 1=IDL’s software implementation

By default, the setting in your IDL preferencesis used.
Retain (Runtime/Design time)

This property setsthe retain mode of the IDL DrawWidget: O, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifies that IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to acall to
CreateDrawWidget.

Default=1
Visible (Runtime/Design time)
Shows or hides the IDL DrawWidget. When Visibleis TRUE the IDLDrawWidget is

shown, when FAL SE the IDL DrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended

for display.
Default=TRUE

Xsize (Design time)

Virtual width of | DL DrawWidget. If this value is greater than the Xviewport value,
scroll barswill be added.

External Development Guide Properties

136 Chapter 7: IDLDrawWidget Control Reference

Ysize (Design time)

Virtual height of IDL DrawWidget. If thisvalueis greater than the Yviewport value,
scroll barswill be added.

Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 137

Read Only Properties

Baseld (Runtime)

Widget ID of the pseudo base. The Basel d property is not valid until acall to
CreateDrawWidget has been made.

Drawld (Runtime)

Widget ID of the created draw widget. The Drawld property isnot vaid until acall
to CreateDrawWidget has been made.

hWnd (Runtime)

Window handle of the ActiveX control. The hwWnd property isnot valid until acall to
CreateDrawWidget has been made.

LastldIError (Runtime)

A string that containsthe last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

True if the widget will contain scroll bars.
Default=FALSE

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present Xviewport will include the width of the
scroll bars.

External Development Guide Read Only Properties

138 Chapter 7: IDLDrawWidget Control Reference

Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

Yviewport
Set at design time when the control is dropped or moved. Represents the visible

height of the draw widget. If scroll bars are present Yviewport will include the height
of the scroll bars.

Read Only Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 139

Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The procedure
must bein the form:

pro button press, drawId, button, xPos, yPos

Default=NULL
OnButtonRelease

AnIDL procedure that will be called when a mouse button isreleased. The procedure
must be in the form:

pro button release, drawId, button, xPos, yPos

Default=NULL
OnDDbIClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

» 1 — Left mouse button.
o 2 — Middle mouse button.
* 4 — Right mouse button.

xPos The horizontal position of the mouse when the button was clicked.

Table 7-6: OnDblClick Parameters

External Development Guide Auto Event Properties

140 Chapter 7: IDLDrawWidget Control Reference

Parameter Description

yPos The vertical position of the mouse when the button was clicked.

Table 7-6: OnDbIClick Parameters (Continued)
Default=NULL

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, drawlId

Default=NULL
Onlnit

An IDL procedure that will be called when adraw widget isinitially created. The
procedure must be in the form:

pro init, drawId, baseld

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

Default=NULL
OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawId, button, xPos, yPos

Default=NULL

Note
Motion events may be generated continuously in response to certain operations in
IDL. Asaresult, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it hasin fact moved before doing extensive processing.

Auto Event Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 141

Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, | DL DrawWidget can respond to the following standard Visual Basic

events:
* MouseDown
* MouseMove
e MouseUp

OnViewScrolled

OnViewScrolled isan I DL DrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call Register For Events passing the flags to indicate the events you want

to process. Neglecting this step will send the eventsto IDL for processing.

External Development Guide Events

142 Chapter 7: IDLDrawWidget Control Reference

Events External Development Guide

Chapter 8

Using Java Objects In

IDL

The following topics are covered in this chapter:

Overview of Using JavaObjects 144
Initializing the IDL-JavaBridge 147
IDL-Java Bridge Data Type Mapping 150
Creating IDL-JavaObjects 156

Method Callson IDL-JavaObjects 158
Managing |DL-Java Object Properties ... 160

External Development Guide

Destroying IDL-JavaObjects 162
Showing IDL-JavaOutput in IDL 163
The IDLJavaBridgeSession Object 164
JavaExceptions 166
IDL-JavaBridge Examples 169
Troubleshooting Your Bridge Session ... 187

143

144 Chapter 8: Using Java Objects in IDL

Overview of Using Java Objects

Javais an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Javain detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

The IDL-Java bridge allows you to access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. See “ Creating |DL-Java Objects’
on page 156 for more information. The IDL-Java bridge allows the arrow operator
(->) to be used to call the methods of these Java objects just as with other IDL
objects, see “Method Calls on IDL-Java Objects’ on page 158 for more information.
The public data members of a Java object are accessed through GetProperty and
SetProperty methods, see “Managing |DL-Java Object Properties’ on page 160 for
more information. These objects can also be destroyed with the OBJ DESTROY
routine, see “Destroying IDL-Java Objects’ on page 162 for more information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. Thisaccessis provided by the IDL JavaBridgeSession object, whichisa
Java object that maintains exceptions (errors) during a Java session, see “ The

IDL JavaBridgeSession Object” on page 164 for more information.

Note
Visua Java objects cannot be embedded into IDL widgets.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, IRIX
(32-bit), and Macintosh platforms supported in IDL. See “Requirements for This
Release” in Chapter 4 of the What's New in IDL 6.2 manual for more information.

Note
On Solaris, there are potential problems creating graphical windows from the IDL-
Java bridge using Java versions before 1.5. We recommend using the X Toolkit
option, which the IDL-Java bridge will use by default.

Overview of Using Java Objects External Development Guide

http://java.sun.com

Chapter 8: Using Java Objects in IDL 145

Java Terminology

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Mirtual Machine (JVM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.

Java Native Interface (INI) - Standard programming interface for accessing Java
native methods and embedding the JVM into native applications. For example, NI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one may embed the Java Virtual Machine
into your native application by linking the native application with the JVM shared
library.

Java Reflection API - Provides asmall, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

e construct new class instances and new arrays
e access and modify fields of objects and classes
¢ invoke methods on objects and classes

¢ access and modify elements of arrays.
IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (INI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ _NEW function can be used to create a Java abject. A Java-specific
classtoken identifies the Java class used to create a Java proxy object. IDL parsesthis
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Javaclassis aso
provided because Javaitself is case-sensitive while IDL isnot. IDL usesthe case-
insensitive form to create the object definition while Java uses the case-sensitive
form.

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL abject, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

External Development Guide Overview of Using Java Objects

146 Chapter 8: Using Java Objects in IDL

The OBJ_ DESTROY procedurein IDL isused to destroy the object. This process
releases the internal Java object and frees any resources associated with it.

Overview of Using Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 147

Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtua
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal | DL JavaBridgeSession object. See “ The IDL JavaBridgeSession Object” on
page 164 for more information on the session object.

Configuring the Bridge

The .idljavabrce fileon UNIX or id1javabrc on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create a valid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable IDLJAVAB_CONFIG is set, thefileit indicatesis
used.

Note
This environment variable must include both the path and the file name of

the configuration file.

2. If the environment variable IDLJAVAB_CONFIG is not set or thefile
indicated by that variableis not found in that location, the path specified in the
HOME environment variable is used to try to locate the configuration file.

3. If thefileisnot found in the path indicated by the HOME environment
variable, the<IDL_DEFAULT>/external/objbridge/java pathis used
to try to locate the configuration file.

The configuration file contains the following settings. With atext editor, open your
configuration file to verify these settings are correct for your system.

e ThegvM Classpath setting specifiesadditional locationsfor user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying '-classpath’ when running java or

External Development Guide Initializing the IDL-Java Bridge

148 Chapter 8: Using Java Objects in IDL

javac. You can also include the CLASSPATH environment variablein the
JVM Classpath!

JVM Classpath = $CLASSPATH:/home/johnd/myClasses.jar

which alows any class defined in the CLASSPATH environment variable to
be used in the IDL-Java bridge.

On Windows, an example of atypical JvM Classpath Settingis:
JVM Classpath = E:\myClasses.jar; SCLASSPATH

On UNIX, an example of atypical JvM Classpath Settingis:
JVM Classpath = /home/johnd/myClasses.jar:S$SCLASSPATH

* ThegvM LibLocation setting tellsthe Windows IDL-Java bridge which
JVM shared library within a given Java version to use. Various versions of
Java ship with different types of VM libraries. For example, Java 1.3 on
Windows shipswith a“classic” VM, a“hotspot” JVM, and a“server” VM.
Other versions and platforms have different VM types.

On Windows, an example of atypical JvM LibLocation Settingis:
JVM LibLocation = E:\jdkl.3.1 02\jre\bin\hotspot

On UNIX, you should not set JvM LibLocation in the configuration file.
Instead, set the IDLJAVAB_LIB_LOCATION environment variable for the
session that will use the IDL-Java bridge. The following is atypical command
to set the environment variable:

SETENV IDLJAVAB LIB LOCATION
/usr/java/j2rel.4.0_02/1lib/sparc/client

Note
You can also set the IDLJAVAB _LIB_LOCATION environment variable on
Windows platforms, rather than specifying the value in the configuration file.

Note
On Macintosh platforms, IDL is hard-coded to use the JavaVM 1.3.1, and so
the system ignores any value you placein IDLJAVAB_LIB_LOCATION.

* ThegvM Option# (Where # isany whole number) setting allows you to send
additional parametersto the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in theinitialization, the options are added to the end of the options
that the bridge sets by default.

Initializing the IDL-Java Bridge External Development Guide

Chapter 8: Using Java Objects in IDL 149

e TheLog Location setting indicates the directory where IDL-Java bridgelog
fileswill be created. The default location provided by the IDL installer is /tmp
on Unix and ¢ : \ temp on Windows.

* TheBridge Logging Setting indicates the type of bridge debug logging to be
sentto afilecalled jb_log<pids>.txt (Where <pid>isaprocess|D
number) located in the directory specified by the .og Location setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFIG,
CONFIGFINE. The default valueis SEVERE, which specifies that bridge errors
are logged. The conri1c value indicates the configuration settings are also
logged. The coNFIGFINE valueisthe same as CONFIG, but provides more
detail.

No log fileis created if this setting is set to OFF.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. Thefile is used when the first instance of the IDLjavaObject classis created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made
to thefile.

External Development Guide Initializing the IDL-Java Bridge

150

Chapter 8: Using Java Objects in IDL

IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts

variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Javalang.String String Java has the notion
of aNULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both areidentically
converted.

Arrays of the above types IDL array of the same

dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 8-1: Java to IDL Data Type Conversion

IDL-Java Bridge Data Type Mapping

External Development Guide

Chapter 8: Using Java Objects in IDL

151

Java Type (# bytes)

IDL Type

Notes

Java.lang.Object (or array of
javalang.Object) and any
subclass of java.lang.Object

IDL array of
primitives or IDL
array of
IDLjavaObjects

In Java, everythingis
asubclass of Object.
If the Java object is
an array of
primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
iscreated. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objectsto an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL createsan object
reference of the
IDLjavaObject class.

Null object

IDL Null object

Table 8-1: Java to IDL Data Type Conversion (Continued)

External Development Guide

IDL-Java Bridge Data Type Mapping

152 Chapter 8: Using Java Objects in IDL

The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes
Byte byte (1) IDL bytes range from 0 to 255,
Java bytes are-128 to 127. IDL
bytes converted to Java bytes

will retain their binary
representation but values greater
than 127 will change. For
example, BY TE(255) becomesa
Javabyteof -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from O to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
aJavashort of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 8-2: IDL to Java Data Type Conversion

IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL

153

IDL Type

Java Type (# bytes)

Notes

Unsigned long

int (4)

IDL unsigned longs range from
0to 4294967295, Javaints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Javaints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
aJavaint of -1. If ULONG is
converted to wider Javavalue,
the sign and value is preserved.

Long64

long (8)

Unsigned Long64

long (8)

IDL unsigned long64 range from
0 to 18446744073709551615,
Javaints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Javalongs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,

UL ONG64(1844674407370955
1615) becomes a Javalong of -1.

Float

float (4)

Double

double (8)

String

Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

Table 8-2: IDL to Java Data Type Conversion (Continued)

External Development Guide

IDL-Java Bridge Data Type Mapping

154 Chapter 8: Using Java Objects in IDL

IDL Type Java Type (# bytes) Notes
IDLjavaObject Object of corresponding
Javaclass

Arrays of objects Javaarray of the same Only objects of type
dimensions, consisting of | IDLjavaObject are converted.
corresponding Java proxy
objects

Null object Javanull

Table 8-2: IDL to Java Data Type Conversion (Continued)

When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Javarelative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be time intensive. Care
should be taken to minimize array copying.

Java Type (to order of

ke desired promotion) MO
Byte byte, char, short, int, long,
float, double, boolean
Integer short, int, long, float, double,
boolean
Unsigned integer short, int, long, float, double,
boolean
Long int, long, float, double, boolean
Unsigned Long int, long, float, double, boolean
Long64 long, float, double, boolean

Table 8-3: Java Data Type Promotion Relative to IDL

IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL 155

Java Type (to order of

desired promotion) NS

IDL Type

Unsigned Long64 | long, float, double, boolean

Float float, double
Double double
String Java.lang.String

IDLjavaObject Java.lang.Object

Table 8-3: Java Data Type Promotion Relative to IDL (Continued)

External Development Guide IDL-Java Bridge Data Type Mapping

156 Chapter 8: Using Java Objects in IDL

Creating IDL-Java Objects

Aswith all IDL objects, a Java object is created using the IDL OBJ_NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ_NEW to create a Java
object within IDL:

oJava = OBJ _NEW(IDLjavaObject$JAVACLASSNAME, JavaClassName, $
[Argl, Arg2, ..., ArgN])

where JavacLASSNAME is the class name token used by IDL to create the object,
JavaClassName isthe class name used by Javato initialize the object, and Argl
through ArgN are any data parameters required by the constructor. See “ Java Class
Namesin IDL” for more information.

Example Code
Seethehellojava.pro fileinthe external/objbridge/java/examples
directory of the IDL distribution for a simple example of an IDL-Java object
creation.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge a so provides the ability to access static Java methods and data
members. See “ Java Static Access’ on page 157 for more information.

Java Class Names in IDL

The underlying Javainterpreter recognizes the Java class nameincluding all objects
contained within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referredto asjava.lang.String.

Inthe IDL class name, the Java class separator (*.') should be replaced with an
underscore (). If aJava class of type String were created, the following IDL
OBJ NEW call would be used:

oJString = OBJ_ NEW ('IDLJavaObject$JAVA LANG STRING',$
'java.lang.String', 'My String')

Creating IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 157

The class name is provided twice because IDL is case-insensitive whereas Javais
case-sensitive, see “1DL-Java Bridge Architecture” on page 145 for more
information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUR,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This DL
object wrapper references the underlying Java class, allowing the object to call static
methods on the class or allowing the object to use the Get/Set Property callsto access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ NEW(IDLjavaObjects$Static$JAVACLASSNAME, JavaClassName)

where JAvAcLASNAME is the class name token used by IDL to create the object and
JavaClassName isthe class name used by Javato initialize the object. See“ Java
ClassNamesin IDL” on page 156 for more information.

A special static object would not need to be created to call an instantiated
IDLJavaObject With static methods:

oNotStatic = OBJ_NEW('IDLjavaObject$JAVACLASSNAME', $
'JavaClassName')
oNotStatic -> aStaticMethod ; this is OK
Example Code
Seethe javaprops.pro fileinthe external /objbridge/java/examples
directory of the IDL distribution for an example of working with static data
members.

Note
All restrictions on creating Java objects apply to this static object.

External Development Guide Creating IDL-Java Objects

158 Chapter 8: Using Java Objects in IDL

Method Calls on IDL-Java Objects

When amethod is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Javadatatypes. Any resultsarereturnedin
IDL variables of the appropriate type.

Aswith all IDL objects, the general syntax in IDL for an underlying Java method that
returns avalue (known as afunction method in IDL) is:

result = ObjRef -> Method ([Arguments])

and the general syntax in IDL for an underlying Java method that does not return a
value, avoid method, (known as a procedure method in IDL) is:

ObjRef -> Method [, Arguments]

where objRef isan object reference to an instance of a dynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call Is Made?

When amethod is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java's ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an agorithm to match the IDL method name and parameters to the
corresponding Java object method.

Method Calls on IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 159

Beforethe algorithm starts, IDL provides a case-insensitive <METHODNAME> and
areference to the Java object. For a given object and its parent classes, the Java
bridge obtains alist of al the public method names, including static methods. This
algorithm performs the following steps:

1. If the Javaclass has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Java class has several method names that differ only in case and oneis
all uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge
issues an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion agorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Javais preferred and only
widening promotion is allowed. If no match isfound, an error is issued.

Data Type Conversions

IDL and Java use different datatypes. IDL’s dynamic type conversion facilities
handle al conversion of datatypes between IDL and the Java system. The datatype
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 150.

For example, if the Java object has a method that requires a value of type int asan
input argument, IDL would supply the value as an IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal datatype
conversion mechanism before passing the value to the Java object asan int.

External Development Guide Method Calls on IDL-Java Objects

160 Chapter 8: Using Java Objects in IDL

Managing IDL-Java Object Properties

Property names and arguments are al so passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection APl to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) areidentified through arguments to the GetProperty and SetProperty
methods. See “ Getting and Setting Properties” on page 161 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the agorithm starts, IDL provides a case-insensitive <PROPERTY NAME>
and areference to the Java object. For the given object and its parent classes, the Java
bridge obtains alist of al the public data membersincluding static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTY NAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Javaclass has severa member names that differ only in case, the data
member name that exactly matches the IDL < PROPERTYNAME > (i.e. the
onethat isall caps) is caled. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTY NAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error isissued.

When retrieving a property with the GetProperty method, this step is skipped
and the valueisreturned to IDL.

Example Code
Seethe allprops.pro and publicmembers.pro filesinthe
external/objbridge/java/examples directory of the IDL distribution for
IDL routines that provide information about data members associated with given
Java classes.

Managing IDL-Java Object Properties External Development Guide

Chapter 8: Using Java Objects in IDL 161

Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:
ObjRef -> GetProperty, PROPERTY=variable

where objRref isan instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variable is
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:
ObjRef -> SetProperty, Property=value

where objRef isan instance of IDLjavaObject that encapsulates the Java abject,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property valuesin a single statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routinesis assumed to be afully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See“IDL-Java Bridge Data
Type Mapping” on page 150 for more information.

Note
Besides other Java-based objects, no complex types (structures, pointers, etc.) are
supported as parameters to property calls.

External Development Guide Managing IDL-Java Object Properties

162 Chapter 8: Using Java Objects in IDL

Destroying IDL-Java Objects

The OBJ_DESTROY routine is used to destroy instances of |DLjavaObject. When
OBJ DESTROY is called with a Java-based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine's garbage
collector runs.

Destroying IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 163

Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the system.out and System.err
output streams).

For example, given the following Java code:

public class helloWorld

{

// ctor

public helloWorld() {
System.out.println("helloWorld ctor") ;

}

public void sayHello() {
System.out.println("Hello! (from the helloWorld object)");

}

}
The following output occursin IDL:

IDL> oJHello = OBJ NEW('IDLjavaObject$HelloWorld', 'helloWorld')

% helloWorld ctor

IDL> oJHello -> SayHello

% Hello! (from the helloWorld object)

IDL> OBJ DESTROY, oJHello

Example Code

This example code is also provided in thehelloJava.java and
hellojava2.pro files, which areinthe
external/objbridge/java/examples directory of the IDL distribution.

Note
Dueto restrictionsin IDL concerning receiving standard output from non-main
threads, the bridge will only send system.out and System.err information to
IDL from the main thread. Other threads' output will be ignored.

Note
A print () inJavawill not have a carriage return at the end of the line (as opposed
toprintiln (), which does). However, when outputting to Java both print () and
println () will print to IDL followed by a carriage return. You can change this
result by having the Java-side application buffer its data up into the lines you wish
to seeon the IDL-side.

External Development Guide Showing IDL-Java Output in IDL

164 Chapter 8: Using Java Objects in IDL

The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,
IDLJavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is aproxy to aninternal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an |DL JavaObject to this
object using OBJ NEW:

oJSession = OBJ_NEW('IDLjavaObject$IDLJAVABRIDGESESSION’)
Note

Only one Java session object needsto be created during an DL session. Subsequent
callsto this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession -> GetException()

where oJSession isareferenceto the session object and oJException iSaproxy
object to ajava.lang.Throwable object, which isthe class used in Javato
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDL JavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDL JavaVersion object:

oJVersion = oJdSession -> GetVersionObject ()

where oJSession isareference to the session object and oJversion isaproxy
object to an IDL JavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.

The IDLJavaBridgeSession Object External Development Guide

Chapter 8: Using Java Objects in IDL 165

The IDLJavaVersion abject provides the following function methods, which do not
require any arguments.

e GetBuildDate() - ajavalang.String object specifying the build date. For
example, apr 1 2003.

* GetJavaVersion() - ajavalang.String object specifying the Java version. For
example, 1.3.1_02.

e GetBridgeVersion() - ajava.lang.String object specifying the IDL-Java bridge
version.

Example Code
An example of the version object isprovided inthebridge version.profile,
whichisin IDL’'sexternal/objbridge/java/examples directory.

External Development Guide The IDLJavaBridgeSession Object

166 Chapter 8: Using Java Objects in IDL

Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an IDLjavaObject, caling methods, setting properties, or getting
properties. Typically, these errors will be fixed by changing your IDL or Java code
(or by changing the bridge configuration). Java bridge errors operate like other IDL
errorsin that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create ajava.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
javalang.Throwable) via the session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handleit, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetExpection method to the
IDL JavaBridgeSession abject. See “ The | DL JavaBridgeSession Object” on page 164
for more information about this object.

Uncaught Exceptions

If aJavaexception isnot caught, IDL will stop execution and display an Exception
thrown error message. For example, when the following program is saved as
ExceptIssued.pro, compiled, and raninIDL:

PRO ExceptIssued

; This will throw a Java exception

oJStrBuffer = OBJ NEW($
'IDLJavaObject$java_lang StringBuffer', $
'java.lang.StringBuffer’, -2)

END

Java Exceptions External Development Guide

Chapter 8: Using Java Objects in IDL 167

IDL issues the following output:

IDL> ExceptIssued

Exception thrown

Execution halted at: EXCEPTISSUED 4 ExceptIssues.pro
SMAINS

o o

o°

From the IDL command line, you can then use the session object to help debug the
problem:

IDL> oJSession = OBJ NEW ('IDLJavaObject$IDLJAVABRIDGESESSION')
IDL> oJExc = oJSession -> GetException ()

IDL> oJExc -> PrintStackTrace

% java.lang.NegativeArraySizeException:

o

% at java.lang.StringBuffer.<inits (StringBuffer.java:116)

Example Code
A similar example is also provided in the exception.pro file, which isin the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept . pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept .pro fileis
also provided in the external /objbridge/java/examples directory of the
IDL distribution.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classes that you are using to ensure IDL is catching any expected exceptions.
For example:

PRO ExceptCaught

; Grab the special IDLJavaBridgeSession object
oJBridgeSession = OBJ_NEW ('IDLJavaObject$IDLJAVABRIDGESESSION')

bufferSize = -2
; Our Java constructor might throw an exception, so let’s catch it
CATCH, error_ status
IF (error status NE 0) THEN BEGIN
; Use session object to get our Exception
oJExc = oJBridgeSession -> GetException()
; should be of type
; IDLJAVAOBJECTS$JAVA LANG NEGATIVEARRAYSIZEEXCEPTION
HELP, oJExc
; Now we can access the members java.lang.Throwable
PRINT, 'Exception thrown:', oJExc -> ToString()
oJExc -> PrintStackTrace

External Development Guide Java Exceptions

168

Example Code

Chapter 8: Using Java Objects in IDL

; Cleanup
OBJ_DESTROY, oJExc
; Increase the buffer size to avoid the exception.
bufferSize = bufferSize + 100
ENDIF

; This throws a Java exception the 1st time, but pass the 2nd time.

oJStrBuffer = OBJ NEW('IDLJavaObject$java lang StringBuffer',6 $
'java.lang.StringBuffer', bufferSize)

OBJ_DESTROY, oJStrBuffer
OBJ_DESTROY, oJBridgeSession

END

A similar exampleisalso provided in the exception.pro file, which isin the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept .pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept .pro fileis
also provided inthe external/objbridge/java/examples directory of the
IDL distribution.

Java Exceptions

External Development Guide

Chapter 8: Using Java Objects in IDL 169

IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

e “Accessing Arrays Example”

e “Accessing URLs Example’ on page 172

e “Accessing Grayscale Images Example’ on page 174
e “Accessing RGB Images Example” on page 177

Note
If IDL isnot able to find any Java class associated with these examples, make sure
your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 147 for more information.

Accessing Arrays Example

This exampl e creates atwo-dimensional array within a Java class, which is contained
inafilenamed array2d.java. IDL then accesses this data through the ArrayDemo
routing, which isin afile named arraydemo . pro.

Example Code
Thesefilesarelocated in the external/objbridge/java/examples directory
of the IDL distribution.

The array2d. java file contains the following text for creating atwo-dimensional
array in Java:

public class array2d

{

short [] [] m as;
long[] [1] m aj;
// ctor

public array2d() ({
int SIZEl = 3;
int SIZE2 = 4;

// default ctor creates a fixed number of elements

m_as = new short [SIZEl] [SIZE2];
m _aj = new long[SIZE1l] [SIZE2];

External Development Guide IDL-Java Bridge Examples

170 Chapter 8: Using Java Objects in IDL

for (int i=0; i<SIZE1l; i++)
for (int j=0; j<SIZE2; j++) {
m_as[i] [j] = (short) (i*10+7j);
m_aj[i] []] (long) (i*10+7) ;

}

}

public void setShorts (short([][] _as) {
m as = _as;
}
public short[] [] getShorts() {return m as;}

public short getShortByIndex(int i, int j) {return m as[i] [§];}

public void setLongs (longl[] [] _aj) {
m_aj = _aj;
}
public longl[] [] getLongs() {return m_aj;}

public long getLongByIndex (int i, int j) {return m_aj[i] [j];}

}

The arraydemo . pro file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDemo

; The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. We can interrogate and
; change this array.

oJArr = OBJ_NEW('IDLJavaObject$ARRAY2D', 'array2d')

; First, let’s see what is in the short array at index
;o (2,3).
PRINT, 'array2d short(2, 3) ="', $

oJArr -> GetShortByIndex(2, 3), $

! (should be 23)’

; Now, let’s copy the entire array from Java to IDL.

shortArrIDL = oJArr -> GetShorts()

HELP, shortArrIDL

PRINT, 'shortArrIDLI[2, 3] = ', shortArrIDL[2, 3], S
! (should be 23)'!

; Let’s change this value...

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 171

shortArrIDL[2, 3] = 999
; ...and copy it back to Java...
oJArr -> SetShorts, shortArrIDL
; ...now its value should be different.
PRINT, 'array2d short(2, 3) ="', 8
oJArr -> GetShortByIndex(2, 3), ' (should be 999)'

; Let’s set our array to something different.
oJArr -> SetShorts, INDGEN (10, 8)

PRINT, 'array2d short(0, 0) = ', $

oJArr -> GetShortByIndex (0, 0), ' (should be 0)'
PRINT, 'array2d short(i, 0) = ', 8

oJArr -> GetShortByIndex(l, 0), ' (should be 1)
PRINT, 'array2d short(2, 0) = ', $

oJArr -> GetShortByIndex(2, 0), ' (should be 2)'
PRINT, 'array2d short(0, 1) ="', $

oJArr -> GetShortByIndex (0, 1), ' (should be 10)'

; Array2d has a setlLongs method, but b/c arrays do not
; (currently) promote, the first call to setLongs works
; but the second fails.

oJArr -> SetLongs, L64INDGEN (10, 8)

PRINT, 'array2d long(0, 1) = ', $
oJArr -> GetLongByIndex(0, 1), ' (should be 10)'
;PRINT, '(expecting an error on the next line...)'

;oJArr -> SetLongs, INDGEN (10, 8)

; Cleanup our object.
OBJ_DESTROY, oJArr

END

After saving and compiling the above files (array2d.java in Javaand
ArrayDemo.pro in IDL), update the jbexamples.jar filein the
external/objbridge/java directory with the new compiled class and run the
ArrayDemo routinein IDL. The routine should produce the following results:

array2d short (2, 3) = 23 (should be 23)
SHORTARRIDL INT = Array[3, 4]
shortArrIDL[2, 3] = 23 (should be 23)
array2d short (2, 3) = 999 (should be 999)
array2d short (0, 0) = 0 (should be 0)
array2d short (1, 0) = 1 (should be 1)
array2d short (2, 0) = 2 (should be 2)
array2d short (0, 1) = 10 (should be 10)
array2d long(0, 1) = 10 (should be 10)

External Development Guide IDL-Java Bridge Examples

172 Chapter 8: Using Java Objects in IDL

Accessing URLs Example

This example finds and reads a given URL, which is contained in afile named
URLReader . java. IDL then accessesthis data through the URL Read routine, which
isinafilenamed urlread.pro

Example Code
Thesefilesarelocated in the external/objbridge/java/examples directory
of the IDL distribution.

The URLReader . java file contains the following text for reading a given URL in
Java

import java.io.*;
import java.net.*;

public class URLReader

{

private ByteArrayOutputStream m buffer;

// LR R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEE SRS

!/

// Constructor. Create the reader

!/

// LR R RS SRS RS SRR SRR EEE SRS SRS RS SRS SRR SRR EEEEEEEESS

public URLReader ()
m_buffer = new ByteArrayOutputStream() ;
}

// LR R RS R S RS R RS R R SRR SR R R RS SR SRR RS E RS SRS SRR EEEEEE RS S

//
// readURL: read the data from the URL into our buffer

// returns: number of bytes read (0 if invalid URL)

// NOTE: reading a new URL clears out the previous data

//

// LR R R SRS S SRS SRS R SRR EEEEEEEE S EE SR SRR SRS EREEEEEEEEEEEE S

public int readURL(String sURL) {
URL url;
InputStream in = null;
m _buffer.reset(); // reset our holding buffer to 0 bytes
int total bytes = 0;

byte[] tempBuffer = new byte[4096];

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 173

try {
url = new URL (sURL) ;
in = url.openStream() ;

int bytes_read;

while ((bytes_read = in.read(tempBuffer)) !=
m_buffer.write (tempBuffer, 0, bytes read);
total bytes += bytes read;

-1) {

}

} catch (Exception e) ({
System.err.println ("Error reading URL: "+sURL) ;
total_bytes = 0;

} finally {
try {
in.close() ;

m _buffer.close() ;
} catch (Exception e) {}

return total bytes;

}

// LR R R R R SRR EEESE RS

//
// getData: return the array of bytes

//

// LR R R RS R R R R R R R R R R R R R RS SR SRR R SRR SRS SRR SRR EEEEEE RS S

public byte[] getData() {
return m buffer.toByteArray() ;

}

// LR R R S RS S R S R R R R R R R R R R R R RS SR SRR R SRR SRS SRR SRR EEEEEE RS S

//

// main: reads URL and reports # of byts reads
//

// Usage: java URLReader <URL>

//

// LR R R SRS R R RS R R R R SRR R R R RS SR SRS E SR SRS SRR SRR EREEEE RS S

public static void main(String[] args) {

if (args.length != 1)
System.err.println("Usage: URLReader <URL>") ;
else {

URLReader o = new URLReader () ;
int b = o.readURL(args[0]) ;
System.out.println ("bytes="+b) ;

External Development Guide IDL-Java Bridge Examples

174 Chapter 8: Using Java Objects in IDL

}

Theurlread.pro file contains the following text for inputting an URL asan IDL
string and then accessing its data within IDL:

FUNCTION URLRead, sURLName

; Create an URLReader.
oJURLReader = OBJ NEW('IDLjavaObject$URLReader', 'URLReader')

; Read the URL data into our Java-side buffer.
nBytes = oJURLReader -> ReadURL (sURLName)

;PRINT, 'Read ', nBytes, ' bytes'

; Pull the data into IDL.
byteArr = oJURLReader -> GetData()

; Cleanup Java object.
OBJ DESTROY, oJURLReader

; Return the data.
RETURN, byteArr

END

After saving and compiling the above files (URLReader . java in Javaand
urlread.pro inIDL), you can run the URLRead routinein IDL. Thisroutineis a
function with one input argument, which should be aIDL string containing an URL.
For example:

address = 'http://www.RSInc.com'
data = URLRead (address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in afile named GreyBandsImage. java. IDL then accesses this data
through the ShowGreylmage routine, which isin the showgreyimage . pro file.

Example Code
Thesefiles arelocated inthe external/ocbjbridge/java/examples directory
of the IDL distribution.

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 175

ThecreyBandsImage . java file containsthe following text for creating agrayscale
image in Java:

import java.awt.*;
import java.awt.image.*;

public class GreyBandsImage extends BufferedImage
{

// Members

private int m_height;

private int m width;

//
// ctor
//
public GreyBandsImage () {
super (100, 100, BufferedImage.TYPE INT ARGB) ;
generateImage () ;
m_height = 100;
m width = 100;

}
//

// private method to generate the image
//
private void generateImage () {
Color c;
int width = getWidth();
int height = getHeight () ;
WritableRaster raster = getRaster();
ColorModel model = getColorModel () ;

int BAND PIXEL WIDTH = 5;

int nBands = width/BAND PIXEL WIDTH;

int greyDelta = 255 / nBands;

for (int i=0 ; i < nBands; i++) {
¢ = new Color (i*greyDelta, i*greyDelta, i*greyDelta) ;
int argb = c.getRGB() ;
Object colorData = model.getDataElements (argb, null);

for (int j=0; j < height; j++)

for (int k=0; k < BAND PIXEL WIDTH; k++)
raster.setDataElements (j, (i*5)+k, colorData);

External Development Guide IDL-Java Bridge Examples

176 Chapter 8: Using Java Objects in IDL

//

// mutators

//

public int[] getRawData() {
Raster oRaster = getRaster();
Rectangle oBounds = oRaster.getBounds() ;
int [] data = new int[m height * m width * 4];

data = oRaster.getPixels(0,0,100,100, data);
return data;

}
public int getH() {return m height; }
public int getW() {return m width; }

}
The showgreyimage . pro file contains the following text for accessing the
grayscale image within IDL:

PRO ShowGreyImage

; Construct the GreyBandImage in Java. This is a sub-class of

; BufferedImage. It is actually a 4 band image that happens to
display bands in greyscale. It is 100x100 pixels.

oGrey = OBJ NEW('IDLjavaObject$GreyBandsImage', 'GreyBandsImage')

; Get the 4 byte pixel wvalues.
data = oGrey -> GetRawData ()

; Get the height and width.
h = oGrey -> GetH()

w = oGrey -> GetW()

; Display the graphic in an IDL window
WINDOW, 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; Cleanup
OBJ_DESTROY, oGrey

END

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 177

After saving and compiling the abovefiles (GreyBandsImage.java in Javaand
showgreyimage.pro in IDL), you can run the ShowGreylmage routinein IDL.
The routine should produce the following image:

Figure 8-1: Java Grayscale Image Example

Accessing RGB Images Example

This example imports an RGB (red, green, and blue) image from the IDL distribution
into aJavaclass. Theimageisintheglowing gas.jpg file, whichisin the
examples/data directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, theimageis accessed into IDL and
displayed with the new ilmage tool.

Example Code
The Javaand IDL code for this example is provided in the
external/objbridge/java/examples directory, but the Java code has not
been built as part of the jbexamples.jar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note
Dueto a Javabug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

External Development Guide IDL-Java Bridge Examples

178

Chapter 8: Using Java Objects in IDL

Thefirst and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the glowing gas. jpg file. Copy and paste the
following text into afile, then save it as FrameTest . java:

import java.awt.*;

import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.File;

public class FrameTest extends JFrame {

RSIImageArea c_imgArea;
int m xsize;
int m_ysize;

IDL-Java Bridge Examples

Box c_controlBox;
public FrameTest ()

super ("This is a JAVA Swing Program called from IDL") ;
// Dispose the frame when the sys close is hit
setDefaultCloseOperation (DISPOSE ON CLOSE) ;

m xsize = 350;

m ysize = 371;

buildGUI () ;

}
public void buildGUI ()
c_controlBox = Box.createVerticalBox() ;

JLabel 11 = new JLabel ("Example Java/IDL Interaction") ;
JButton bLoadFile = new JButton("Load new file");
bLoadFile.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
JFileChooser chooser = new JFileChooser (new
File ("c:\\RSI\\IDL62\\EXAMPLES\\DATA")) ;
chooser.setDialogTitle ("Enter a JPEG file");
if (chooser.showOpenDialog (FrameTest.this) ==
JFileChooser.APPROVE_OPTION)

java.io.File fname = chooser.getSelectedFile() ;
String filename = fname.getPath() ;
System.out.println(filename) ;
c_imgArea.setImageFile(filename) ;

}
}

External Development Guide

Chapter 8: Using Java Objects in IDL 179

s

JButton bl = new JButton("Close this example");

bl.addActionListener (new ActionListener () {

public void actionPerformed (ActionEvent e) {
dispose() ;

P

c_imgArea = new
RSIImageArea ("c:\\rsi\\idle2\\examples\\data\\glowing gas.jpg",
new Dimension(m xsize,m ysize));

Box mainBox = Box.createVerticalBox () ;
Box rowBox = Box.createHorizontalBox() ;
rowBox.add (bl) ;

rowBox.add (bLoadFile) ;

c_controlBox.add (11) ;
c_controlBox.add (rowBox) ;
mainBox.add (c_controlBox) ;
mainBox.add (c_imgArea) ;

getContentPane () .add (mainBox) ;

pack() ;
setVisible (true) ;
c_imgArea.displayImage () ;
c_imgArea.addResizelistener (new RSIImageAreaResizeListener () {
public void areaResized(int newx, int newy) {
Dimension cdim = c_controlBox.getSize (null) ;
Insets 1 = getInsets();
newx = i.left + i.right + newx;
newy = i.top + cdim.height + newy + i.bottom;
setSize (new Dimension (newx, newy)) ;

)
}

public void setImageData(int [] imgData, int xsize, int ysize) ({
MemoryImageSource ims = new MemoryImageSource (xsize, ysize,
imgData, 0, ysize);
Image imgtmp = createImage (ims) ;
Graphics g = c_imgArea.getGraphics() ;
g.drawImage (imgtmp, 0, 0, null);

External Development Guide IDL-Java Bridge Examples

180 Chapter 8: Using Java Objects in IDL

public void setImageData (byte [][][] imgData, int xsize,
int ysize) ({

System.out.println("SIZE = "+xsize+"x"+ysize);
int newArray [] = new int [xsize*ysize];

int pixi = 0;

int curpix = 0;

short [] currgb = new short[3];
for (int i=0;i<m xsize;i++) {
for (int j=0;j<m ysize;j++) {
for (int k=0;k<3;k++) {
currgb[k] = (short) imgDatal[k] [1] []j];
currgb[k] = (currgblk] < 128) ? (short) currgblk] : (short)
(currgb [k] -256) ;
}

curpix = (int) currgb[0] * +
((int) currgb[l] * (int) Math.pow(2,8)) +
((int) currgb([2] * (int) Math.pow(2,16));

if (pixi % 1000 == 0)
System.out.println("PIXI = "+pixi+" "+curpix) ;
newArray [pixi++] = curpix;

}
}

MemoryImageSource ims = new MemoryImageSource (xsize, ysize,
newArray, 0, ysize);
c_imgArea.setImageObj (c_imgArea.createImage (ims)) ;

}

public bytel] []1[] getImageData ()
{

int width = 1;

int height = 1;

PixelGrabber pGrab;

width = m xsize;
height = m_ysize;

// pixarray for the grab - 3D bytearray for display

int [] pixarray = new int[width*height];
byte []1[][] bytearray = new byte[3] [width] [height];

// create a pixel grabber
pGrab = new PixelGrabber (c_imgArea.getImageObj(),0,0,

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 181

width,height, pixarray, 0, width);

// grab the pixels from the image

try {

boolean b = pGrab.grabPixels() ;

} catch (InterruptedException e)
System.err.println("pixel grab interrupted");
return bytearray;

}

// break down the 32-bit integers from the grab into 8-bit bytes
// and fill the return 3D array
int pixi = 0;
int curpix = 0;
for (int j=0;j<m _ysize;j++) {
for (int i=0;i<m xsize;i++) {
curpix = pixarrayl[pixi++];

bytearray[0] [i] [J] = (byte) ((curpix >> 16) & O0xff);
bytearray[1] [i] [J] = (byte) ((curpix >> 8) & O0xff);
bytearray[2] [i] [J] = (byte) ((curpix) & Oxff);

}
}

return bytearray;

}

public static void main(String [] args) {
FrameTest f = new FrameTest () ;

}
}

Note
The above text isfor the FrameTest class that accessesthe glowing gas.jpg file
inthe examples/data directory of adefault installation of IDL on a Windows
system. Thefile'slocation is specified as ¢: \\RSI\\IDL62\ \EXAMPLES\ \DATA
in the abovetext. If theglowing gas.jpg fileisnot in the same location on
system, edit the text to change the location of thisfile to match your system.

External Development Guide IDL-Java Bridge Examples

182 Chapter 8: Using Java Objects in IDL

The FrameTest class uses two other user-defined classes, RSlImageArea and
RSIImageAreaResi zeL istener. These classes help to define the viewing area and
display theimagein Java. Copy and paste the following text into afile, then saveit as
RSIImageArea.java.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.io.File;

public class RSIImageArea extends JComponent implements
MouseMotionListener, MouselListener {

Image c_img;

int m _boxw = 100;

int m _boxh = 100;

Dimension c_dim;

boolean m _pressed = false;

int m_button = 0;

Vector c_resizelisteners = null;

public RSIImageArea (String imgFile, Dimension dim) {

c_img = getToolkit () .getImage (imgFile) ;
c_dim = dim;

setPreferredSize (dim) ;

setSize (dim) ;
addMouseMotionListener (this) ;
addMouseListener (this) ;

}

public void addResizelListener (RSIImageAreaResizeListener 1) {
if (c_resizelisteners == null) c resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);
}
public void removeResizeListener (RSIImageAreaResizeListener 1)
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.remove(l) ;

}

public void displayImage () {
repaint () ;

}

public void paint (Graphics g) {

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 183

int xsize = c¢_img.getWidth(null) ;
int ysize = c¢_img.getHeight (null) ;
if (xsize != -1 && ysize != -1) {
if (xsize != c_dim.width || ysize != c_dim.height) ({
c_dim.width = xsize;
c_dim.height = ysize;
setPreferredSize (c_dim) ;
setSize(c_dim) ;
if (c_resizelisteners != null) {
RSIImageAreaResizelListener 1 = null;
for (int j=0;j<c_resizelisteners.size();j++) {
1 = (RSIImageAreaResizeListener)
c_resizelisteners.elementAt (j) ;
1l.areaResized(xsize, ysize);
}
}
}
}
g.drawImage (c_img, 0, 0, null);

}

public void setImageFile (String fileName)
c_img = null;
c_img = getToolkit () .getImage (fileName) ;
repaint () ;

}

public Image getImageObj () {
return c_img;

}

public void setImageObj (Image img) {
c_img = img;
repaint () ;

}

public void drawZoomBox (MouseEvent e)

int bx = e.getX() - m _boxw/2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - m boxh/2;

by = (by >=0) ? by :0;
int ex = bx + m_boxw;

if (ex > c_dim.width)
ex = c_dim.width;

bx = ¢ _dim.width-m boxw;
}

int ey = by + m_boxh;

if (ey > c_dim.height) {

External Development Guide IDL-Java Bridge Examples

184 Chapter 8: Using Java Objects in IDL

ey = c_dim.height;
by = c¢_dim.height-m boxh;

}

repaint () ;

Graphics g = getGraphics() ;

g.drawImage (c_img, bx, by, ex, ey, bx+(m boxw/4), by+(m boxh/4),
ex- (m_boxw/4) ,ey- (m boxh/4), null);

g.setColor (Color.white) ;

g.drawRect (bx, by, m boxw, m boxh) ;

}

public void mouseDragged (MouseEvent e) {
drawZoomBox (e) ;

}

public void mouseMoved (MouseEvent e) {

Graphics g = getGraphics() ;

if (m_pressed && (m button == 1)) {
drawZoomBox (e) ;

g.setColor (Color.white) ;
g.drawString ("DRAG", 10,10) ;

} else {

g.setColor (Color.white) ;

String s = "("+e.getX()+","+e.getY()+")";
repaint () ;
g.drawString (s, e.getX(), e.getY());

}
}

public void mouseClicked (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}

public void mousePressed (MouseEvent e) {
m pressed = true;

m _button = e.getButton() ;

repaint () ;

if (m_button == 1) drawZoomBox(e) ;

}

public void mouseReleased (MouseEvent e)
m_pressed = false;
m _button = 0;

}

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 185

}

And copy and paste the following text into afile, then saveit as
RSIImageAreaResizelListener.java:

public interface RSIImageAreaResizeListener ({
public void areaResized (int newx, int newy) ;

}

Compile these classes in Java. Then either update the jbexamples.jar filein the
external/objbridge/java directory with the new compiled class, place the
resulting compiled classesin your Java class path, or edit the VM Classpath setting
in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See “ Configuring the Bridge” on page 147 for more information.

With the Java classes compiled, you can now accessthemin IDL. Copy and paste the
following text into the IDL Editor window, then save it as ImageFromJava. pro:
PRO ImageFromJava

; Create a Swing Java object and have it load image data
; into IDL.

; Create the Java object first.
oJSwing = OBJ NEW('IDLjavaObject$FrameTest', 'FrameTest')

; Get the image from the Java object.
image = oJSwing -> GetImageData ()
PRINT, 'Loaded Image Information:'
HELP, image

; Delete the Java object.
OBJ_DESTROY, oJSwing

; Interactively display the image.
IIMAGE, image

END

External Development Guide IDL-Java Bridge Examples

186 Chapter 8: Using Java Objects in IDL

After compiling the above routine, you can run it in IDL. This routine produces the
following Java Swing application.

Figure 8-2: Java Swing Application Example

Then, the routine produces the following ilmage tool.

E P
Dl@E@] o+ |=|e fo=s W lal o] AlNslolsle|

300

200 |7

ek 10 et . ek and kgt

Figure 8-3: ilmage Tool from Java Swing Example

Note

After IDL starts the Java Swing application, the two displays are independent of
each other. If anew image isloaded into the Java application, the IDL ilmage tool

is not updated. If the ilmage tool modifies the existing image or opens a new image,
the Java Swing application is not updated.

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 187

Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

e “Cadling System.exit”

e “Errors When Initializing the Bridge’

e “Errors When Creating Objects’ on page 188

e “Errors When Calling Methods’ on page 189

e “Errors When Accessing Data Members’ on page 190

Calling System.exit

The Javamethod System. exit terminates the process in which the Java Virtual
Machineis running. When the Java Virtual Machineisinitialized by IDL,
terminating its process also terminates I DL.

Errors When Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridgeis not configured correctly, an error message isissued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the IDLJAVAB_LIB_L OCATION
environment variable, and on Windows, check the IDLJAVAB_LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
create it and set it equal to the location of the Java Virtual Machine on your system.
See " Configuring the Bridge” on page 147 for details:

* Bad JVM Home value: 'path', where path isthelocation of Java Virtual
Machine on your system.

e JVMsharedlib not found in path 'JVM LibLocation', where JVM
shared lib isthe location of the Java Virtual Machine shared library and JVM
LibLocation is the value of the IDLJAVAB_LIB_LOCATION environment
variable.

e No valid JVM shared library exists at location pointed to
by $ IDLJAVAB LIB LOCATION

External Development Guide Troubleshooting Your Bridge Session

188

Chapter 8: Using Java Objects in IDL

idljavab.jar not found in path 'path', where pathisthelocation of
the external/objbridge/java directory inthe IDL distribution.

Bridge cannot determine which JVM to run
Java virtual machine failed to start

Failure loading JVM: path/JvM shared 1ib name, Where pathisthe
location of the Java Virtual Machine and JVM shared lib name is the name of
the main Java shared library, which isusually 1ibjvm.so on UNIX and
jvm.d11 on Windows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

IDL-Java bridge is not running

If this message occurs, fix the error and restart IDL.

Errors When Creating Objects

Thefollowing error messages can occur while creating a Javaobject in IDL. Possible
solutions for these errors are al so provided:

Wrong number of parameters - occursif OBJ NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; oncein
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “Java Class Namesin IDL” on page 156 for details.

Second parameter must be the Java class name - occursif 2nd
parameter isnot an IDL string. When using OBJ_NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See“ Java Class Namesin IDL” on
page 156 for details.

Class classname not found, Where classname isthe class name you
specified in the first two parameters to OBJ NEW - occursif the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL isreferring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “ Configuring the Bridge” on page 147 for details.

Class classname is not a public class, whereclassnameisthe class
name you specified in the first two parametersto OBJ NEW - occursif

Troubleshooting Your Bridge Session External Development Guide

Chapter 8: Using Java Objects in IDL 189

specified classisnot apublic class. Edit your Java code to make sure the class
you want to accessis public.

Constructor class: :class(signature) not found, whereclassistheclass
name - occursif the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and look in
your Java code to seeif you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the data typesin the Java signature. See “ Java Class Namesin IDL” on
page 156 for details.

Illegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an IDLjavaObject.

Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the

I DL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 164 for details.

Errors When Calling Methods

Thefollowing error messages can occur while calling methodsto Javaobjectsin IDL.
Possible solutions for these errors are a so provided:

Illegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structure are not allowed as a parameter to an IDLjavaObject.

Class class has no method named method, where classisthe class name
and method is the method name specified when trying to call the Java method -
occursif the method of given name does not exist. Check the spelling of the
method name. Also compare the method name in the Java class source file with
the method name provided when calling the method in IDL. See “What
Happens When aMethod Call Is Made?’ on page 158 for details.

class: : method (signature) is a void method. Must be called as a
procedure, Where classis the class name and method is the method name
specified when avoid Java method is called as an IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects’ on

page 158 for details.

Method class: : method (signature) not found, where classisthe class
name and method is the method name specified when trying to call the Java
method - occursif the IDL-Java bridge cannot find the method with a matching

External Development Guide Troubleshooting Your Bridge Session

190 Chapter 8: Using Java Objects in IDL

signature. Check the spelling of the method name. Also compare the method
name in the Java class source file with the method name provided when calling
the method in IDL. Also check to ensure your IDL data can be promoted to the
Java signature. See “What Happens When a Method Call Is Made?’ on

page 158 for details.

e Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 164 for details.

Errors When Accessing Data Members

The following error messages can occur while accessing data membersto Java
objectsin IDL. Possible solutions for these errors are al so provided:

e TIllegal IDL value in parameter N, wheren isthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an IDLjavaObject.

e Class Class has no data member named property, whereclassisthe
class name and property is the data member name specified when trying to
access the Java data member - occurs if the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing itin IDL. See “Managing | DL-Java Object Properties’ on
page 160 for details.

e Property class::property of type type not found, whereclassisthe
class name, property is the data member name specified, and typeis property’s
data type when trying to access the Java data member - occursif the IDL-Java
bridge cannot find the Java data member of the given type. Check the data type
of Java datamember and make sure you are trying to use asimilar typein IDL.
See “Getting and Setting Properties’ on page 161 for details.

e Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 164 for details.

Troubleshooting Your Bridge Session External Development Guide

Chapter 9

Using

CALL_EXTERNAL

This chapter discusses the following topics:

The CALL_EXTERNAL Function 192
Passing Parameters 202
Using AutoGlue 204
BasicCExamples 206
Wrapper Routines 210

External Development Guide

Passing StringData 212
Passing ArrayData.................. 216
Passing Structures 218
FortranExamples 220

191

192 Chapter 9: Using CALL_EXTERNAL

The CALL _EXTERNAL Function

IDL allows you to integrate programs written in other languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL’s internal system routine table:

¢ TheCALL_EXTERNAL function allowsyou to call external functions
(written in C/C++ or Fortran, for example) from your IDL programs. You
should be comfortable writing and building programs in the external language
being used, but significant knowledge of IDL’s internals beyond basic type
mapping between the languages is generally not necessary.

¢ Anadternativeto CALL_EXTERNAL isto write an IDL system routine and
merge it with IDL at runtime. Routines merged in this fashion are added to
IDL’'sinternal system routine table and are available in the same manner as
IDL built-in routines. This technique is discussed in Chapter 21, “Adding
System Routines’. To write a system routine, you will need to understand the
IDL internals discussed in later sections of this book.

This chapter covers the basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX and Windows versions of IDL. It
can be helpful to refer to the documentation for “CALL_EXTERNAL” inthe IDL
Reference Guide manual when reading this material.

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. Arguments passed to IDL are passed to this external code, and
returned data from the external code is automatically presented as the result from
CALL_EXTERNAL asan IDL variable. IDL and the called routine share the same
process address space. Because of this, CALL_EXTERNAL avoids the overhead of
process creation of the SPAWN routine. In addition, the shareable object library is
only loaded the first time it is referenced, saving overhead on subsequent calls.

CALL_EXTERNAL is much easier to use than writing a system routine. Unlike a
system routine, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errors in the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash. See
“Common CALL_EXTERNAL Pitfalls” on page 199 for help in avoiding some of
the more common mistakes.

Example Code in the IDL Distribution

This chapter contains examples of CALL_EXTERNAL use. All of the code for these
examples, along with additional examples, can befoundinthe call external

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 193

subdirectory of the external directory of the IDL distribution. The C language
examples use the MAKE_DLL procedure, and can therefore be easily run on any
platform supported by IDL. To build the sharable library containing the external C
code and then run all of the provided examples, execute the following IDL

statements:
PUSHD, FILEPATH('’, SUBDIRECTORY=['external’,’call external’,’'C’'])
ALL CALLEXT EXAMPLES
POPD

Additional information on these examples, including details on running the
individual examples, can be found in the README file located in that directory.

CALL_EXTERNAL Compared to UNIX Child Process

In many situations, a UNIX IDL user has a choice of using the SPAWN procedure to
start a child process that executes external code and communicates with IDL viaa
pipe connecting the two processes. The advantages of this approach are:

* Simplicity.

e The processes do not share address space, and are therefore protected from
each other’s mistakes.

The advantages of CALL_EXTERNAL are;

« IDL and the called routine share the same memory and data space. Although
this can be a disadvantage (as noted above) there are times where sharing
address space is advantageous. For example, large data can be easily and
cheaply shared in this manner.

e CALL_EXTERNAL avoids the overhead of process creation and parameter
passing.

¢ The shareable object library containing the called routine is only loaded the
first timeit is referenced, whereas a SPAWNed process must be created for
each use of the external code.

Compilation and Linking of External Code

Each operating system requires different compilation and link statements for
producing a shareable object suitable for usage with CALL_EXTERNAL. Thisis
even true between different implementations of a common operating system family.
For example, most UNIX systems require unigue options despite their shared
heritage. You must consult your system and compiler documentation to find the
appropriate options for your system.

External Development Guide The CALL_EXTERNAL Function

194

Chapter 9: Using CALL_EXTERNAL

The DL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
a portable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can completely
handle the task of building sharable libraries to be used with CALL_EXTERNAL.
MAKE_DLL requiresthat you have a C compiler installed on your system that is
compatible with the compiler described by the IDL MAKE_DLL system variable.

The DL 'MAKE_DLL system variable is used by the MAKE_DLL procedure to
construct C compiler and linker commands appropriate for the target platform. If you
do not use MAKE_DLL to compile and link your code, you may find the contents of
IMAKE_DLL.CC and 'MAKE_DLL.LD helpful in determining which options to
specify to your compiler and linker, in conjunction with your system and compiler
documentation. For the C language, the optionsin IMAKE_DLL should be very
close to what you need. For other languages, the 'MAKE_DL L options should be
helpful in determining which options to use, as on most systems, all the language
compilers accept similar options.

AUTO_GLUE

As described in “Passing Parameters’ on page 202, CALL_EXTERNAL usesthe
IDL Portable Calling Convention to call external code. This convention uses an
(argc, argv) styleinterface to allow CALL_EXTERNAL to call routines with
arbitrary numbers and types of arguments. Such an interface is necessary, because
IDL, like any compiled program, cannot generate arbitrary function calls at runtime.

Of course, most C functions are not written to the IDL portable convention. Rather,
they are written using the natural form of argument passing used in compiled
programs. It is therefore common for IDL programmersto write so-called glue
functionsto match the IDL calling interface to that of the target function. On systems
that have a C compiler installed that is compatible with the one described by the IDL
IMAKE_DLL system variable, the AUTO_GLUE keyword to CALL_EXTERNAL
can be used to instruct IDL to automatically write, compile, and load this glue code
on demand, and using a cache to preserve this glue code for future invocations of
functions with the same interface.

AUTO_GLUE thusalows CALL_EXTERNAL to call functions with a natural
interface, without requiring the user to write or compile additional code.
AUTO_GLUE isdescribed in the documentation for “CALL_EXTERNAL” in the
IDL Reference Guide manual, aswell asin “Using Auto Glue” on page 204. The
examples given in “Basic C Examples’ on page 206 show CALL_EXTERNAL used
with and without AUTO_GLUE.

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 195

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL_M essage(). Performing input/output from
code external to IDL, especially to the user console or tty (e.g. stdin Or stdout),
may generate unexpected results.

Memory Cleanup

IDL hasastrict internal policy that it never performs memory cleanup on memory
that it did not allocate. This policy is necessary so that external code which alocates
memory can use any memory allocation package it desires, and so that thereis no
confusion about which code is responsible for releasing allocated memory.

Note
The code that allocates memory is always responsible for freeing it. IDL allocates
and frees memory for itsinternal needs, and external codeis not allowed to release
such memory except through a proper IDL function documented for that purpose.
Similarly, IDL will never intentionally free memory that it did not allocate.

Assuch, IDL does not perform any memory cleanup calls on the values returned
from external code called viathe CALL_EXTERNAL routine. Because of this, any
dynamic memory returned to IDL will not be returned to the system, which will result
in amemory leak. Users should be aware of this behavior and design their
CALL_EXTERNAL routinesin such amanner as not to return dynamically allocated
memory to IDL. The discussion in “Passing String Data’ on page 212 contains an
example of doing this with strings.

Memory Access

IDL and your external code share the same address space within the same running
program. This means that mistakes common in compiled languages, such as awild
pointer altering memory that it does not own, can cause problems elsewhere. In
particular, external code can easily corrupt IDL’s data structures and otherwise cause
IDL to fail. Authors of such code must be especially careful to guard against such
errors.

Argument Data Types

When using CALL_EXTERNAL to call external code, IDL passes its argumentsto
the called code using the data types that were passed to it. It has no way to verify

External Development Guide The CALL_EXTERNAL Function

196 Chapter 9: Using CALL_EXTERNAL

independently that these types are the actual types expected by the external routine. If
the data types passed are not of the types expected by the external code, the results
are undefined, and can easily include memory corruption or even crashing of the IDL
program.

Warning
You must ensure that the arguments passed to external code are of the exact type
expected by that routine. Failure to do so will result in undefined behavior.

Mapping IDL Data Types to External Language Types

When writing external code for use with CALL_EXTERNAL, your code must use
data types that are compatible with the C data types used internaly by IDL to
represent the IDL datatypes. Thismapping isthetopic of Chapter 11, “IDL Internals:
Types'.

By-Value and By-Reference Arguments

There are two basic forms in which arguments can be passed between functionsin
compiled languages such as C/C++ and Fortran. To use CALL_EXTERNAL
successfully, you should be comfortable with these terms and their meanings. In
particular, Fortran programmers are often unaware that Fortran code passes
everything by reference, and that C code defaults to passing everything by value. By
default, CALL_EXTERNAL passes arguments by reference (unless this behavior is
explicitly altered by the use of the ALL_VALUE or VALUE keywords), so ho special
action istypically required to call Fortran code viaCALL_EXTERNAL.

Warning
You must ensure that the arguments passed to external code are passed using the
correct method — by value, or by reference. Failure to do so will result in undefined
behavior.

Arguments Passed by Value

A copy of the value of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are local to that routine, and do not change
the original value of the variable in the calling routine. C/C++ pass everything by
value, but have an explicit address-of operator (&) that is used to pass addresses of
variables and get by-reference behavior.

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 197

Arguments Passed by Reference

The machine address of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are immediately visible to the caller,
because both routines are actually modifying the same memory addresses. Fortran
passes everything by reference, but most Fortran implementations support intrinsic
operators that allow the programmer control over this (sometimes called %L OC and
%VAL, or just LOC and VAL). Consult your compiler documentation for details.

Microsoft Windows Calling Conventions

All operating system/hardware combinations define an inter-routine calling
convention. A calling convention defines the rules used for passing arguments
between routines, and specifies such details as how arguments of different types are
passed (i.e. in registers or on the system stack) and how and when such arguments are
cleaned up.

A stable and efficient calling convention is critical to the stability of an operating
system, and can affect most aspects of the system:

« Theefficiency of the entire system depends on the efficiency of the core
calling convention.

e Backwards compatibility, and thus the longevity of binary software written for
the platform depends on the stability of the calling convention.

e Cadlling routines from different languages within a single program depends on
all the language compilers adhering to the same calling convention. Even
within the same language, the ability to mix code compiled by different
compilers requires those compilers to adhere to the same conventions. For
example, at the time of thiswriting, the C++ language standard lacks an
Application Binary Interface (ABI) that can be targeted by all C++ compilers.
This can lead to situationsin which the same compiler must be used to build all
of the code within a given program.

Microsoft Windows is unique among the platforms supported by IDL in that it has
two distinct calling conventions in common use, whereas other systems define a
single convention. On single-convention systems, the calling conventionis
unimportant to application programmers, and of concern only to hardware designers
and the authors of compilers, and operating systems. On a multiple convention
system, application programmers sometimes need to be aware of the issue, and
ensure that their code is compiled to use the proper convention and that callsto that
code use the same convention. The Microsoft Calling Conventions are:

External Development Guide The CALL_EXTERNAL Function

198 Chapter 9: Using CALL_EXTERNAL

STDCALL

STDCALL isthe caling convention used by the magjority of the Windows
operating system API. InaSTDCALL cal, the calling routine places the
arguments in the proper registers and/or stack locations, and the called routine
isresponsible for cleaning them up and unwinding the stack.

CDECL

CDECL isthe calling convention used by C/C++ code by default. This default
can be changed via compiler switches, declspec declarations, or #pragmas.
With CDECL, the caller isresponsible for both setup and cleanup of the
arguments. CDECL is able to call functions with variable numbers of
arguments (varargs functions) because the caller knows the actual number of
arguments passed at runtime, whereas STDCALL cannot call such functions.
Thisis because the STDARGS routine cannot know efficiently at compiletime
how many arguments it will be passed at runtime in these situations.

The inconvenience of having two distinct and incompatible calling conventionsis
usually minor, because the header files that define functions for C/C++ programs
include the necessary definitions such that the compiler knows to generate the proper
code to call them and the programmer is not required to be aware of the issue.
However, CALL_EXTERNAL does have a problem: Unlike a C/C++ program, IDL
determines how to call afunction solely by the arguments passed to
CALL_EXTERNAL, and not from a header file.

IDL therefore has no way to know how your external code was compiled. It uses the
STDARG convention by default, and the CDECL keyword can be used to change the
default. CALL_EXTERNAL therefore relies on the IDL user to tell it which
convention to use. If IDL calls your code using the correct convention, it will work
correctly. If it calls using the wrong convention, the results are undefined, including
memory corruption and possible crashing of the IDL program.

Warning
The default calling convention for CALL_EXTERNAL is STDCALL, whereas the
default convention for the Microsoft C compiler is CDECL. Hence, Windows users
must usually specify the CDECL keyword when calling such code from IDL. Non-
Windows versions of IDL ignore the CDECL keyword, so it is safe to always
include it in cross platform code.

Here iswhat happens when external codeis called via the wrong calling convention:

« If aSTDARG call ismadeto a CDECL function, the caller placesthe
arguments in the proper registers/stack locations, and relies on the called

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 199

routine to cleanup and unwind the stack. The called routine, however, does not
do these things because it isa CDECL routine. Hence, cleanup does not

happen.
If aCDECL call is made to a STDARG function, the caller places the

arguments in the proper register/stack locations. The called routine cleans up
on exit, and then the caller cleans up again.

Either combination is bad, and can corrupt or kill the program. Sometimes this
happens, and sometimes it doesn’t, so the results can be random and mysterious to
programmers who are not aware of the issue.

Note

When the wrong calling convention is used, it is common for the process stack to
become confused. A “smashed stack” visible from the C debugger following a
CALL_EXTERNAL isusualy indicative of having used the wrong calling
convention.

Common CALL_EXTERNAL Pitfalls

Following are alist of common errors and mistakes commonly seen when using
CALL_EXTERNAL.

The number of arguments and their types, as passed to CALL_EXTERNAL,
must be the exact types expected by the external routine. In particular, it is
common for programmersto forget that the default IDL integer is a 16-hit
value and that most C compilers define the int type as being a 32-bit value.
You should be careful to use IDL LONG integers, which are 32-bit, in such
cases. See “Argument Data Types’ on page 195 for additional details.

Passing data using the wrong form: Using by-value to pass an argument to a
function expecting it by-reference, or the reverse. See" By-Value and By-
Reference Arguments’ on page 196 for additional details.

Under Microsoft Windows, using the incorrect calling convention for agiven
external function. See “Microsoft Windows Calling Conventions’ on page 197
for additional details.

Failure to understand that IDL uses IDL_STRING descriptors to represent
strings, and not just a C style NULL terminated string. Passing a string value
by reference passes the address of the IDL_STRING descriptor to the external
code. See Chapter 14, “IDL Internals: String Processing” for additional details.

Attempting to make IDL data structures use memory allocated by external
code rather than using the proper IDL API for creating such data structures.

External Development Guide The CALL_EXTERNAL Function

200

Chapter 9: Using CALL_EXTERNAL

For instance, attempting to give an IDL _STRING descriptor a different value
by using C malloc() to allocate memory for the string and then storing the
address of that memory inthe | DL_STRING descriptor is not supported, and
can easily crash or corrupt IDL. Although IDL uses malloc()/free() internally
on most platforms, you should be aware that thisis not part of IDL’s public
interface, and that RSl can change this at any time and without notice. Even on
platforms where IDL does use these functions, its use of them is not directly
compatible with similar calls made by external code because IDL allocates
additional memory for bookkeeping that is generally not present in memory
allocations from other sources. See Chapter 14, “IDL Internals: String
Processing” for information on changing the value of an IDL_STRING
descriptor using supported IDL interfaces. See Chapter 9, “Memory Cleanup”
for more on memory alocation and cleanup.

IDL iswritten in the C language, and when IDL starts, any necessary runtime
initialization code required by C programsis automatically executed by the
system before the IDL main() function is called. Hence, calling C code from
IDL usually does not require additional runtime initialization. However, when
calling external code written in languages other than C, you may find that your
code does not run properly unless you arrange for the necessary runtime
support for that language to run first. Such details are highly system specific,
and you must refer to your system and compiler documentation for details.
Codethat islargely computational rarely encounters thisissue. It is more
common for code that performs Input/Output directly.

Programming errorsin the external code. It is easy to make mistakesin
compiled languages that have bad global consequences for unrelated code
within the same program. For example, awild memory pointer can lead to the
corruption of unrelated data. If you are lucky, such an error will immediately
kill your program, making it easy to locate and fix. Less fortunateisthe
situation in which the program dies much later in aseemingly unrelated part of
the program. Finding such problems can be difficult and time consuming.
When IDL crashes following a call to external code, an error in the external
code or inthecall to CALL_EXTERNAL isthe cause in the vast majority of
Cases.

Some compilers and operating systems have a convention of adding leading or
trailing underscore characters to the names of functions they compile. These
conventions are platform specific, and as they are of interest only to system
linker and compiler authors, not generally well documented. Thisis usually
transparent to the user, but can sometimes be an issue with inter language
function calls. If you find that a function you expect to call from alibrary isnot
being found by CALL_EXTERNAL, and the obvious checks do not uncover

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 201

the error (usually a simple misspelling), this might be the cause. Under UNIX,
the nm command can be helpful in diagnosing such problems.

e C++ compilers use a technique commonly called name munging to encode the
types of method arguments and return values into the name of the routine as
written to their binary object files. Such names often have only a passing
resemblance to the name seen by the C++ programmer in their source code.
IDL can only call C++ code that has C linkage, as discussed in “ C++” on
page 25. C linkage code does not use name munging.

¢ When calling external code written in other languages, there are sometimes
platform and language specific hidden arguments that must be explicitly
supplied. Such arguments are usually provided by the compiler when you work
strictly within the target language, but become visible in inter-language calls.
An example of this can be found in “Hidden Arguments’ on page 221. In this
example, the Fortran compiler provides an extra hidden length argument when
aNULL terminated string is passed to a function.

External Development Guide The CALL_EXTERNAL Function

202 Chapter 9: Using CALL_EXTERNAL

Passing Parameters

IDL callsroutines within a shareable library using the IDL portable calling
convention, in which the routine is passed two arguments:

argc
A count of the number of arguments being passed to the routine
argv

An array of argc memory pointers, which are the addresses of the arguments
(by reference) or the actual value of the argument (by value) depending on the
types of arguments passed to CALL_EXTERNAL and the setting of the
VALUE keyword to that function. You should note that while all types of data
can be passed by reference, there are limitations on data types that can be
passed by value, as described in the documentation for “CALL_EXTERNAL”
in the IDL Reference Guide manual.

The CALL_EXTERNAL portable convention is necessary because IDL, like any
program written in a compiled language, cannot generate arbitrary function calls at
runtime. Only calls to interfaces that were known to it when it was compiled are
possible. Naturally, most existing C functions are not written to use thisinterface.
Calling such functions typically requires IDL usersto write glue functions, the sole
purpose of which isto be called by CALL_EXTERNAL with the portable
convention, and then to take the arguments and pass them to the real target function
using the natural interface for that function. The AUTO_GLUE keyword to
CALL_EXTERNAL can be used to generate, compile, and load such glue routines
automatically and on demand, without requiring user intervention. Auto Glueis
described in “Using Auto Glue” on page 204. AUTO_GLUE does not eliminate the
need for, or use of, the portable convention, but it can relieve the IDL user of the
requirement to handle it explicitly. The end result is that calling existing function
interfacesis easier to do, and less error prone.

Routines called by CALL_EXTERNAL with the portable convention are defined
with a prototype similar to the following:

return type example (int argc; void *argv([])

where return_type isone of the datatypeswhich CALL_EXTERNAL can return. If
this return typeisnot IDL_LONG, akeyword must be used in the
CALL_EXTERNAL call to indicate the actual type of the result.

Passing Parameters External Development Guide

Chapter 9: Using CALL_EXTERNAL 203

The parameter argc gives the number of arguments passed to the external routine by
CALL_EXTERNAL inthe argv array, while argv is an array containing the
arguments. Arguments are passed either by value or by reference. Those passed by
value are copied directly into the argv array, with the exception of scalar strings,
which place a pointer to anull-terminated string in argv [1]1. All arrays are passed
by reference. Scalar items passed by reference (the default) place a pointer to the
datuminargv[i]. Stringsand string arrays passed by reference place a pointer to an
IDL_STRING structurein argv [1]. This structure is defined as follows:

typedef struct ({

IDL STRING SLEN T slen; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamic */
char *s; /* Addr of string, invalid if slen == 0. */

} IDL STRING;

See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additiona details
about passing parameters by value.

It isimportant to note that DL integer variables correspond to a 16-bit integer (aC
signed short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A =5 ;default type of integer, not LONG

The variable could then be passed by referencein a CALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[0];

or

IDL _INT *a;
a = (IDL_INT *) argv[O0];

IDL_INT corresponds to a C short (16-bit integer), so either form is correct. The
corresponding type in Fortran would be INTEGER* 2.

External Development Guide Passing Parameters

204 Chapter 9: Using CALL_EXTERNAL

Using Auto Glue

Usersof CALL_EXTERNAL freguently write small functions with the sole purpose
of matching the CALL_EXTERNAL portable calling convention with its (argc,
argv) interface to the actual interface presented by some existing function that they
wish to call. Such functions are often called glue functions.

It quickly becomes obvious to anyone who has written afew glue functions that there
isn't much to them, and that producing such functionsis a purely mechanical
operation. As you read the examples in this chapter, you will see many such
functions, and will notice that they are all essentially the same. Further examination
should serve to convince you that IDL already has al of the information, in the form
of the arguments and keywords specified to the CALL_EXTERNAL function, to
generate such functions without requiring human intervention. Examining the
CALL_EXTERNAL routine's interface, we see that:

e the number and types of arguments to the CALL_EXTERNAL function
provide the same information about the arguments for the target external
function;

¢ the VALUE keyword, and CALL_EXTERNAL's built in rules for deciding
whether or not to pass arguments by value or by reference determine how the
arguments should be passed;

e inthe case of Microsoft Windows, the CDECL keyword tells it which system
calling convention to employ;

¢ keywordsto CALL_EXTERNAL determine the result type.

Furthermore, other than the actual name of the user function being called, these glue
functions are generic in the sense that they could be used to call any function that
accepted arguments of the same types and produce a result of the same type.

The AUTO_GLUE keyword to CALL_EXTERNAL exploitsthese factsto allow you
to call functions with natural interfaces, without the need to write, compile, and load
aglue function to do the job. The sole requirement is that your system must havea C
compiler installed that is compatible with the compiler described by the IDL
IMAKE_DLL system variable. Thisisalmost awaysthe caseif you areinterested in
calling external code, since acompiler is necessary to compile such code.

Using Auto Glue External Development Guide

Chapter 9: Using CALL_EXTERNAL 205

AUTO_GLUE automatically writes the C code for the glue function, uses the
MAKE_DLL procedure to build a sharable library containing it, loads that library,
and then callsthe glue function, passing it apointer to the target function and al of its
arguments. It maintains a cache of glue functions that have been built previously, and
never builds the same glue function more than once. From the user perspective, there
isasdlight pause the first time a given glue function is used. In that brief moment,
AUTO_GLUE performs the steps described above, and then makes the call to the
user function. All of this happens transparently to the IDL user — no user interaction
isrequired, and no output is produced by the process. Subsequent calls to the same
glue function happen instantaneously, as IDL loads the existing glue function from
the MAKE_DLL cachewithout rebuilding it. In principle, it is similar to the way IDL
automatically compiles IDL language programs on demand, only with C code instead
of IDL code.

See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additiona details
about how AUTO_GLUE works, and the options for controlling its use.

Generating Glue Without Executing It

AUTO_GLUE isthe preferred option for most calls to functions with natural
interfaces, due to it's simplicity and ease of use. However, you might find yourself in
a situation where you would like your glue functions to be automatically generated,
but wish to ssmply get the resulting C code so that you can modify it or incorporate it
into alarger library. For example, you might have alarge library of IDL specific
code, and wishto giveit al IDL callable interfaces without requiring the overhead of
AUTO_GLUE for al of them.

The WRITE_WRAPPER keyword to CALL_EXTERNAL can be used to produce
such code without compiling or using the results. See “CALL_EXTERNAL” inthe
IDL Reference Guide manual for additional information on this keyword.

External Development Guide Using Auto Glue

206 Chapter 9: Using CALL_EXTERNAL

Basic C Examples

All of the code for the examplesin this section can be found in the

/external/call external/cC subdirectory of the IDL distribution. Please read
the README filein that directory for details on how to run the examples. In many
cases, the filesin that directory go into more detail, and are more fully commented
than the versions shown here. Also, the examples provide IDL wrapper routines that
perform the necessary CALL_EXTERNAL calls, while the examples shown here use
CALL_EXTERNAL directly in order to explain how it isused. It isworth reading the
contents of the . c and IDL . pro filesin that directory in addition to reading the code
shown here.

Example: Passing Parameters by Reference to IDL

Thefollowing routine, found in simple vars.c, accepts severa of IDL'sbasic
data types as arguments. The parameters are passed in by reference and the new
squared values of the numbers are passed back to IDL. Thisisimplemented as a
function with anatural C interface, and a second glue routine that implements the

Basic C Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 207

IDL portable convention, using the one with the natural interface to do the actual
work.

W J o0 Ul b WDN

[
NP O W

@]
=
w

14
15
16
17
18
19
20
21
22
23
24
25
26

#include <stdio.h>
#include "idl_export.h" /* IDL external definitions */

int simple vars_natural (char *byte var, short *short var,
IDL LONG *long var, float *float var,

double *double var)

/* Square each variable. */

*byte var *= *byte var;
*short_var *= *ghort_var;
*long_ var *= *long var;
*float var *= *float var;
*double var *= *double var;
return 1;

}

int simple vars(int argc, void* argvl[])
/* Insure that the correct number of arguments were passed in */
if (argc != 5) return 0;

return simple vars natural ((char *) argv[0], (short *) argv[1l],
(IDL_LONG *) argv[2], (float *) argv[3],
(double *) argv([4]);

}

Table 9-1: Passing Parameters by Reference to IDL — simple_vars.c

The IDL statements necessary to call the simple vars () function from IDL can be
written:

B=2B & T=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL (GET CALLEXT EXLIB(), ’‘simple vars’, $
b,i,1,f,d, /CDECL)

Note
GET_CALLEXT EXLIB () isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Using the AUTO_GLUE keyword to CALL_EXTERNAL, you can call the function
with the natural C interface directly:

External Development Guide Basic C Examples

208 Chapter 9: Using CALL_EXTERNAL

B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL EXTERNAL (GET_ CALLEXT EXLIB(), ‘simple vars_natural’, $
b,i,1,f,d, /CDECL, /AUTO GLUE)

Example: Calling a C Routine to Perform
Computation

The following example demonstrates an external function that returns the sum of a
floating point array. It issimilar in function to the TOTAL functionin IDL. The code
for thisexampleisfound in thefile sum_array.c inthelDL distribution. Aswith
the previous example, this function isimplemented by a function that has anatural C
interface, and a second glue function is provided that matches the IDL portable
calling convention to the natural interface:

#include <stdio.h>
#include "idl_ export.h"

float sum_array natural (float *fp, IDL LONG n)

{

float s = 0.0;

W J O Ul b WDN

while (n--) s += *fp++;
return(s) ;

}

bR R
NP O W

float sum array(int argc, void *argv([])

{

14 return sum array natural((float *) argv[0], (IDL LONG) argv[1l]);

}

=
w

=
(O3]

Table 9-2: Calling a C routine — example.c

The IDL statements necessary to call the sum_array () function from IDL can be

written:
X = FINDGEN(10)
S = CALL_EXTERNAL (GET CALLEXT EXLIB(), ’'sum array’$
X, N_ELEMENTS (X),VALUE=[0,1], /F _VALUE, /CDECL)
Note

GET CALLEXT EXLIB () isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Basic C Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 209

Using the AUTO_GLUE keyword, you can call the function with the natural C
interface directly:

X = FINDGEN(10)

S = CALL EXTERNAL (GET CALLEXT EXLIB(), ’sum array natural’s
X, N_ELEMENTS (X),VALUE=[0,1], /F_VALUE,/CDECL,$
/AUTO_GLUE)

In thisexample, sum_array and sum_array natural arethe names of the entry
points for the external functions, and x and N_ELEMENTS (X) are passed to the called
routine as parameters. The ¥ vALUE keyword specifies that the returned valueis a
floating-point number rather than an IDL_LONG.

External Development Guide Basic C Examples

210

Chapter 9: Using CALL_EXTERNAL

Wrapper Routines

CALL_EXTERNAL routines are very sensitive to the number and type of the
arguments they receive. Calling a CALL_EXTERNAL routine with the wrong
number of arguments or with arguments of the wrong type can cause IDL to crash.
For this reason, it isagood practice to provide an IDL wrapper routine that is used to
make the actual CALL_EXTERNAL call. The job of thiswrapper, which iswritten
inthe IDL language, is to ensure that the arguments that are passed to the external
code are always of the correct number and type. The following IDL procedure isthe
wrapper used in the simple_vars() example of the previous section (“ Example:
Passing Parameters by Referenceto IDL” on page 206).

Example Code
Thisfile, simple vars.pro,islocated intheexternal/call external/C
subdirectory of the IDL installation directory.

W J o0 U1 WwN

bR R R
wN oW

IDL

NN NNNRRPRRP R PR
B W NR O WO U

25

N
()}

PRO SIMPLE VARS, b, i, 1, £, 4, AUTO GLUE=auto glue, DEBUG=debug, S
VERBOSE=verbose
if ~ (KEYWORD_ SET (debug)) THEN ON_ERROR, 2

; Type checking: Any missing (undefined) arguments will be set
; to a default value. All arguments will be forced to a scalar
; of the appropriate type, which may cause errors to be thrown
; 1f structures are passed in. Local variables are used so that
the values and types of the user supplied arguments don’t change.

1 = (SIZE(b,/TYPE) EQ 0) ? 2b : byte(b[0])
i 1 = (SIZE(i,/TYPE) EQ 0) ? 3 : fix(i[0])
11 = (SIZE(1,/TYPE) EQ 0) ? 4L : long(1[0])
£ 1 = (SIZE(f,/TYPE) EQ 0) ? 5.0 : float(£[0])
d 1 = (SIZE(d,/TYPE) EQ 0) ? 6.0D : double(d[0])

PRINT, ’‘Calling simple vars with the following arguments:’
HELP, b 1, 1 1, 1.1, £1, 41
func = keyword_ set (auto _glue) ? ’simple vars natural’ : ‘simple vars’
IF (CALL EXTERNAL (GET CALLEXT EXLIB(VERBOSE=verbose), func, $
b1, i1, 11, £1, 4 1, /CDECL, $
AUTO_GLUE=auto_glue, VERBOSE=verbose, $
SHOW ALL OUTPUT=verbose) EQ 1) then BEGIN
PRINT, 'After calling simple vars:’
HELP, b 1, 11, 11, £1, 41
ENDIF ELSE MESSAGE, 'External call to simple vars failed’
END

Table 9-3: Wrapper Routine — simple_vars.pro

Wrapper Routines External Development Guide

Chapter 9: Using CALL_EXTERNAL 211

Theroutine simple vars.pro usesthe system routine SIZE() to examine the
arguments that are passed in by the user to the simple vars routine. If one of the
arguments is undefined, a default value will be used in the call to the externa routine.
Otherwise, the argument will be converted to a scalar of the appropriate type.

Note
GET_CALLEXT_ EXLIB () isafunction provided with the CALL_EXTERNAL

examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

External Development Guide Wrapper Routines

212

Chapter 9: Using CALL_EXTERNAL

Passing String Data

IDL represents strings internally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 13, “IDL Internals: Variables’ and Chapter 14,
“IDL Internals. String Processing”. These descriptors are defined in the C language

as

typedef struct ({

IDL_STRING SLEN T slen;
unsigned short stype;
char *s;

} IDL STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

The s1en field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

The stype fieldisused internally by IDL to keep track of how the memory for
the string was abtained, and should be ignored by CALL_EXTERNAL users.

s isthe pointer to the actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0O) pointer, not as apointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

You must use the functions discussed in Chapter 14, “IDL Internals: String
Processing” to allocate the memory for an IDL_STRING. Attempting to do
this directly by alocating dynamic memory and assigning it to the
IDL_STRING descriptor isacommon pitfall, as discussed in “ Common
CALL_EXTERNAL Pitfalls’ on page 199.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold it.
Onreturn, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.

Passing String Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 213

Note
IDL will not free dynamically-allocated memory for this use.

Example

Thefollowing routine, found in string array.c, demonstrates how to handle
string variablesin external code. Thisroutinetakesastring or array of strings asinput
and returns a copy of thelongest string that it received. It isimportant to note that this
routine uses a static char array asits return value, which avoids the possibility of a
memory leak, but which must be long enough to handle the longest string required by
the application. Thisisimplemented as afunction with anatural C interface, and a
second glue routine that implements the IDL portable convention, using the one with
the natural interface to do the actual work:

External Development Guide Passing String Data

214 Chapter 9: Using CALL_EXTERNAL
1] #include <stdio.h>
2 #include <string.h>
3] #include "idl export.h"
af /*
5 * IDL_STRING is declared in idl_export.h like this:
6 ~* typedef struct ({
7 * IDL _STRING SLEN T slen; Length of string, 0 for null
8 * short stype; Type of string, static or dynamic
9 * char *s; Address of string
10 * } IDL_STRING;
11 * However, you should rely on the definition in idl export.h instead
12 * of declaring your own string structure.
13 */
14
15Q char* string array natural (IDL_STRING *str descr, IDL LONG n)
16 {
17 /*
18 * IDL will make a copy of the string that is returned (if it is
19 * not NULL). One way to avoid a memory leak is therefore to return
20 * a pointer to a static buffer containing a null terminated string.
C 21 * IDL will copy the contents of the buffer and drop the reference
22 * to our buffer immediately on return.
23 */
24f #define MAX OUT_LEN 511 /* truncate any string
25 longer than this */
26 static char result [MAX OUT_LEN+1]; /* leave a space for a ’\0’
27 on the longest string */
28 int max_index; /* index of longest string */
29 int max_sofar; /* length of longest string*/
30 int 1i;
31
32 /* Check the size of the array passed in. n should be > 0.%/
33 if (n < 1) return (char *) 0;
34 max_ index = 0;
35 max sofar = 0;
36 for(i=0; i < n; i++) {
37 if (str descr[i] .slen > max_sofar) {
38 max_index = ij;
39 max_sofar = str descr[i].slen;
40 }
a1 }
Figure 9-1: Handling String Variables in External Code — string_array.c

Passing String Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 215
42 /*
43 * If all strings in the array are empty, the longest
44 * will still be a NULL string.
45 */
46 if (str_descr[max_index].s == NULL) return (char *) 0;
47
48 /*
49 * Copy the longest string into the buffer, up to MAX OUT LEN
50 * characters.
51 * Explicitly store a NULL byte in the last byte of the buffer,
52 * because strncpy () does not NULL terminate if the string copied
53 * is truncated.
54 */

C 55 strncpy (result, str_descr([max_index].s, MAX OUT_LEN) ;

56 result [sizeof (result)-1] = '\0';
57 return (result) ;
58] #undef MAX OUT_ LEN
59 }
60
61 char* string array(int argc, void* argvl[])
62 {
63 /*
64 * Make sure there are the correct # of arguments.
65 * IDL will convert the NULL into an empty string (’’).
66 */
67 if (argc != 2) return (char *) NULL;
68 return string array natural ((IDL STRING *) argv[0], (IDL LONG) argv[1l]);
69 }

Figure 9-1. Handling String Variables in External Code — string_array.c (Continued)

External Development Guide

Passing String Data

216

Chapter 9: Using CALL_EXTERNAL

Passing Array Data

When you passan IDL array into a CALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such as the array’s size
and number of dimensions. With CALL_EXTERNAL, you will need to pass this
information explicitly as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needs to know the size of the array at
compile time. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensional arrays. However, you can still build
your own indices to access an array asif it had more than one dimension in C. For
example, the IDL array index:

array [x,V]
could be represented in a CALL_EXTERNAL routine as:
array ptr[x + x size*y];

Thefollowing routine, found in sum_2d_array.c, caculates the sum of a
subsection of atwo dimensional array. Thisisimplemented as a function with a
natural C interface, and a second glue routine that implements the IDL portable
convention, using the one with the natural interface to do the actual work:

Passing Array Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 217

1f #include <stdio.h>
2f #include "idl_export.h"
3 double sum 2d array natural (double *arr, IDL LONG x_start, IDL LONG x_end,
4 IDL_LONG x size, IDL_LONG y start,
5 IDL_LONG y_end, IDL_LONG y_size)
6 /* Since we didn’t know the dimensions of the array at compile time, we
7 * must treat the input array as if it were a one dimensional vector. */
8 IDL_LONG X,Y;
9 double result = 0.0;

10

11 /* Make sure that we don’t go outside the array.strictly speaking, this
12 *is redundant since identical checks are performed in the IDL wrapper
13 * routine.IDL_MIN() and IDL_MAX() are macros from idl_export.h */

14 x_start = IDL_MAX(x_ start,0);

15 y_start = IDL_MAX(y start,0);

16 x_end = IDL_MIN(x_end,x_size-1);

C 17 y_end = IDL MIN(y end,y size-1);

18

19 /* loop through the subsection */

20 for (y = y start;y <= y end;y++)

21 for (x = x start;x <= x_end;x++)

22 result += arr[x + y*x sizel; /* build the 2d index: arr[x,y] */

23 return result;

24 }

25

26 double sum 2d_array(int argc,void* argv[])

27f {

28 if (argc != 7) return 0.0;

29 return sum_2d_array natural ((double *) argv([0], (IDL_LONG) argv[1l],

30 (IDL_LONG) argv[2], (IDL_LONG) argv[3],

31 (IDL_LONG) argv[4], (IDL_LONG) argvI[5],

32 (IDL_LONG) argv([6]);

33 }

Table 9-4: Adding the Elements of a 2D IDL Array — sum_2d_array.c

External Development Guide

The IDL system routine interface provides much more support for the manipulation
of IDL array variables. See Chapter 21, “Adding System Routines’ for more
information.

Passing Array Data

218 Chapter 9: Using CALL_EXTERNAL

Passing Structures

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variablesinto CALL_EXTERNAL routines,
aslong as the layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:
s = {ASTRUCTURE, zero:0B,one:0L,two:0.0,three:0D, four: intarr(2)}
the corresponding C structure would look like the following:

typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four([2];

} ASTRUCTURE;

Then, cast the pointer from argv to the structure type, as follows:

ASTRUCTURE* mystructure;
mystructure = (ASTRUCTURE*) argv[0];

Thefollowing routing, found in incr struct.c, increments each field of an IDL
structure of type ASTRUCTURE. Thisisimplemented as afunction with anatural C
interface, and a second glue routine that implements the IDL portable convention,
using the one with the natural interface to do the actual work:

Passing Structures External Development Guide

Chapter 9: Using CALL_EXTERNAL 219

W J o0 Ul b WDN

[
= o w

12
13
14
15
16
17
18
C 19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <stdio.h>
#include "idl export.h"

/*
* C definition for the structure that this routine accepts.The
* corresponding IDL structure definition would look like this:
* s = {zero:0B,one:0L,two:0.,three:0D, four: intarr(2)}
*/
typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four([2];
} ASTRUCTURE;

int incr struct natural (ASTRUCTURE *mystructure, IDL LONG n)
{
/* for each structure in the array, increment every field */
for (; n--; mystructure++)
mystructure->zero++;
mystructure->one++;
mystructure->two++;
mystructure->three++;
mystructure->four [0] ++;
mystructure->four [1]++;

}

return 1;

}

int incr struct (int argc, void *argv([])

{

if (argc != 2) return 0;
return incr struct natural ((ASTRUCTURE*) argv[0], (IDL_LONG)
argv([1l]);

}

Table 9-5: Accessing an IDL Structure from a C Routine — incr_struct.c

It is not possible to access structures with arbitrary definitions using the
CALL_EXTERNAL interface. The system routine interface, discussed in Chapter
21, “Adding System Routines’, does provide support for determining the layout of a
structure at runtime.

External Development Guide Passing Structures

220 Chapter 9: Using CALL_EXTERNAL

Fortran Examples

Example: Calling a Fortran Routine Using a C
Interface Routine

Cdlling Fortran is similar to calling C, with the significant difference that Fortran
code expects all argumentsto be passed by reference and not by value (the C default).
This means that the address of the argument is passed rather than the argument
itself. Thisissueis discussed in “By-Vaue and By-Reference Arguments’ on

page 196.

A Cinterface routine can easily extract the addresses of the arguments from the argv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointers that are being passed by value. Fortran expects al argumentsto
be passed by reference — that is, it expectsall argumentsto be addresses. If C passes
apointer (an address) by value, Fortran will interpret it correctly as the address of an
argument. The following code segmentsiillustrate this. The example c2f.c file
contains the C interface routine, which would be compiled asillustrated above. The
example. f file contains the Fortran routine that actually sums the array.

In these exampl es, we assume that the routines are being compiled under Sun Solaris.
The object name of the Fortran subroutinewill be sum_array1 to match the output
of the Solaris Fortran compiler. The following are the contents of example c2f.c
and example. f:

1] #include <stdio.h>

2

3] void sum array(int argc, void *argv[])

af {

5 extern void sum_arrayl ();/* Fortran routine */

6 int *n;

C 7 float *g, *f;

8

9 f = (float *) argv[O0]; /* Array pntr */
10 n = (int *) argv([1]; /* Get # of elements */
11 s = (float *) argv[2]; /* Pass back result a parameter */
12
13 sum_arrayl (f, n, s); /* Compute sum */
14 }

Table 9-6: C Wrapper Used to Call Fortran Code (example_c2f.c)

Fortran Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 221

1] ¢ This subroutine is called by SUM_ARRAY and has no IDL-specific code.
2 c
3} SUBROUTINE sumarrayl (array, n, sum)
4 INTEGER*4 n
5 REAL*4 array(n), sum
6
78 sum=0.0
fr7 8 DO i=1,n

9f sum = sum + array (i)

10§ PRINT *, sum, array (i)

11§ ENDDO

12

13 RETURN

14y END

Table 9-7: Fortran Code Called from IDL via C Wrapper (example.f)

This example is compiled and linked in a manner similar to that used in the C
example above. For moreinformation on compiling and linking on your platform, see
the README file contained inthe external/call external/Fortran
subdirectory of the IDL distribution. This directory also contains a makefile, which
builds this example on UNIX platforms. To call the example program from within
IDL:

;Make an array.

X = FINDGEN(10)

;A floating result

SUM = 0.0

S = CALL EXTERNAL('example.so',6 $
'sum_array', X, N _ELEMENTS (X), sum)

In this example, example. so iSthe name of the sharable imagefile, sum_array is
the name of the entry point, and x and v_Er.emenTS (x) are passed to the called routine
as parameters. The returned value is contained in the variable sum.

Hidden Arguments

When passing C null-terminated character strings into a Fortran routine, the C
function should also passin the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not explicitly appear in the
Fortran routine.

For example, in C:

char * strl= 'IDL';
char * str2= 'RSI';

External Development Guide Fortran Examples

222

Chapter 9: Using CALL_EXTERNAL

int lenl=3;

int len2=3;

double data, info;

/* Call a Fortran sub-routine named examplel */
examplel (strl, data, str2, info, lenl, len2)

In Fortran:

SUBROUTINE EXAMPLEL (STR1, DATA, STR2, INFO)
CHARACTER* (*) STR1, STR2
DOUBLE PRECISIONDATA, INFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortran is similar to calling C, with the significant difference that Fortran
expects al arguments to be passed by reference. This means that the address of the
argument is passed rather than the argument itself. See “ By-Va ue and By-Reference
Arguments’ on page 196 for more on this subject.

A Fortran interface routine can be written to extract the addresses of the arguments
from the argv array and pass them to the actual routine which will compute the sum.
Passing the contents of each argv element by value has the same effect as converting
the parameter to anormal Fortran parameter.

This method uses the OpenVMS Extensions to Fortran, %L OC and %VAL. On IBM
AlX, the LOC function is an intrinsic operator. The syntax of the call, which differs
from that used on other platforms, is:

y=1loc (x)

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the file examplel. £ are shown in the following figure. This
example is compiled, linked, and called in amanner similar to that used in the C
example above. For moreinformation on compiling and linking on your platform, see
the README file contained in the external/fortran subdirectory of the IDL
distribution. This directory also contains a makefile, which builds this example on
UNIX platforms.

Fortran Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 223

Note
This example is written to run under a 32-bit operating system. To run the example
under a 64-bit operating system would require modifications; most notably, to
declare argv as INTEGER* 8 rather than INTEGER*4.

f77

W J 0 Ul b WDN

NNMNNNMNNNMNNRRRPR BRPR B PR Rp R
AUl WNROWVWOOWNUOU A WNR O W

SUBROUTINE SUM_ARRAY (argc, argv) !Called by IDL
INTEGER*4 argc, argv(*) |Argc and Argv are integers
j = LOC(argc) 10btains the number of arguments (argc)

I|Because argc is passed by VALUE.

¢ Call subroutine SUM ARRAY1l, converting the IDL parameters
¢ to standard Fortran, passed by reference arguments:

CALL SUM_ARRAY1 (%VAL(argv(l)), $%VAL(argv(2)), $%VAL(argv(3)))
RETURN

END

¢ This subroutine is called by SUM _ARRAY and has no

c IDL specific code.

c

SUBROUTINE SUM ARRAY1 (array, n, sum)
INTEGER*4 n

REAL*4 array(n), sum

sum=0.0

DO i=1,n

sum = sum + array (i)
ENDDO

RETURN

END

Table 9-8: Fortran Code Called Directly From IDL

To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.

sum = 0.0

S = CALL_EXTERNAL ('examplel.so', $
'sum_array ', X, N_ELEMENTS(X), sum)

In thisexample, examplel . so isthe name of the sharable imagefile, sum_array
is the name of the entry point, and x and N_ ELEMENTS (X) are passed to the called
routine as parameters. The returned value is contained in the variable sum.

External Development Guide Fortran Examples

224 Chapter 9: Using CALL_EXTERNAL

Note
The entry point name generated by the Fortran compiler may be different than that
produced by the C compiler. One of the best ways to find out what name was
generated is to use the UNIX nm utility on the object file. See your system’s man
page for nm for details.

Fortran Examples External Development Guide

Chapter 10

Remote Procedure

Calls

This chapter discusses the following topics:

IDL and Remote Procedure Calls 226
UsingIDL asanRPC Server 227
ClientVariables 228
LinkingtotheClient Library 229

External Development Guide

Compatibility with Older IDL Code 231
ThelDL RPCLibrary 233
RPCExamples 258

225

226 Chapter 10: Remote Procedure Calls

IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caler
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of Clanguage routinesisincluded to handle communication between client programs
and the IDL server.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to be run asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL's RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the API used by
callable IDL. See “Compatibility with Older IDL Code” on page 231 for details.

IDL and Remote Procedure Calls External Development Guide

Chapter 10: Remote Procedure Calls 227

Using IDL as an RPC Server

The IDL RPC Directory

All of thefiles related to using IDL’s RPC capabilities are found in the rpc
subdirectory of the external subdirectory of the main IDL directory. Themain IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

To use IDL asan RPC server, run IDL in server mode by using the id1rpc
command. The RPC server can be invoked one of two ways:

idlrpc
or
idlrpc -server=server number

where server_number is the hexadecimal server 1D number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If aserver ID number is not supplied, IDL uses the default,
IDL_RPC_DEFAULT_ID, defined in thefileidldir /external /rpc/idl_rpc.h.
Thisvalueisoriginaly set to 0xX2010CAFE.

External Development Guide Using IDL as an RPC Server

228 Chapter 10: Remote Procedure Calls

Client Variables

The IDL RPC client API uses the same data structure as IDL to represent a variable,
namely an IDL_VARIABLE structure. By not using a unique data structure to
represent avariable, the IDL RPC client API can follow aformat that is similar to the
API of Callable IDL.

When avariable s created by the IDL RPC client API (when avariableis returned
from the IDL_RPCGetM ainVariable function, for example) dynamic memory is
allocated for the variable and for its value. These dynamic variables are similar to
temporary variableswhich are used in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dynamic
or IDL RPC client temporary variables. These API routines follow the same format
asthe Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, usethe IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could result
amemory “leak” in the client program.

Client Variables External Development Guide

Chapter 10: Remote

Procedure Calls 229

Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

Includethefile id1l rpc.h inyour application.

Haveacopy of id1 export .h in theinclude path when you compile the
client application.

Link your client application to the IDL client shared object library
(1ibidl rpc).

If the client library is linked as a shared object, you must set the shared
object search path environment variable so that it includes the directory
that containsthe IDL client library.

The name of thisvariableisnormally LD_LIBRARY_PATH, except on HP
and IBM systems, where the variable names are:

HP: SHLIB_PATH
IBM: LIBPATH

If thisvariable is not set correctly, an error message will be issued by the
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -o example $(PRE_FLAGS) example.o -1idl rpc

$ (POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flags for
each UNIX operating system supported by IDL are contained in the file
rpc_link.txt, located inthein the rpc subdirectory of the external
subdirectory of the main IDL directory.

Example of IDL RPC Client API

To use the IDL client side API, execute the following sequence of steps:
1. Cdl IDL_RPCInit() to connect to the server
2. Perform actions on the server—get and set variables, run IDL commands, etc.
3. Cdl IDL_RPCCleanup() to disconnect from the server.

External Development Guide Linking to the Client Library

230

Chapter 10: Remote Procedure Calls

The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to
be linked against the supplied shared library 1ibidl rpc. Thiscodeisincluded in
theidldir/external/rpc directory asexample.c.

W J o0 U1 W N

NNMNNNRRRERER BRPR B PR R
WN R OW®TIOU B WNKFH O W

24
25
26
27
28

#include "idl rpc.h"

int main()

{
CLIENT *pClient;
char cmdBuffer [512] ;
int result;

/* Connect to the server */

if ((pClient = IDL RPCInit (0, (char*)NULL)) == (CLIENT*)NULL) {
fprintf (stderr, "Can't register with IDL server\n") ;
exit (1) ;

}

/* Start a loop that will read commands and then send them to idl */
for (; ;) {
printf ("RMTIDL> ") ;
cmdBuffer [0]="\0";
gets (cmdBuffer) ;
if (emdBuffer([0] == '\n' || cmdBuffer[0] == '\0')
break;
result = IDL RPCExecuteStr(pClient, cmdBuffer);

}

/* Now disconnect from the server and kill it. */
if (!IDL_RPCCleanup (pClient, 1))
fprintf (stderr, "IDL RPCCleanup: failed\n");
exit (0) ;

Table 10-1: Remote Execution of IDL via RPC

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library” on page 229. Once this example is compiled, execute
it using the following commands:

o

% idlrpc
Then, in another process:

o

% example

Linking to the Client Library External Development Guide

Chapter 10: Remote Procedure Calls 231

Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’'s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages:

« Thenew API mirrorsthe Callable IDL API.

e TheRPC client-sidelibrary is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

e TheRPC server-side executable, id1rpc, ishbuilt using Callable IDL,
providing an example of how Callable IDL can be used.

e Sourcecodeis provided for both the Server and Client side programs, allowing
you to enhance IDL’s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. This layer is contained in thefiles
idl rpc_obsolete.c and idl rpc obsolete.h

To use the compatibility routines, includethefile 1ib rpc obsolete.hinyour
application and use the following link statement as a template:

% cc -o old example $(PRE_FLAGS) old _example.o \
idl_rpc_obsolete.o -1idl_rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 229.

External Development Guide Compatibility with Older IDL Code

232 Chapter 10: Remote Procedure Calls

While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

e idl_server_interactive: Thisfunction isno longer supported.

» get_idl_variable: Thefollowing return values are no longer supported:

Value Description
-2 Illegal variable name (for example, “213xyz”, “#a’,
“IDEVICE")
-3 Variable not transportable (for example, the variable
isastructure or associated variable)

Table 10-2: get_idl_variable Unsupported Values

e set_idl_timeout: thetv_usec field of the timeval struct isignored.
e idl_set_verbosity(): Thisfunction isno longer supported.

All other functionality is supported.

Compatibility with Older IDL Code External Development Guide

Chapter 10: Remote Procedure Calls 233

The IDL RPC Library

The IDL RPC library contains severa C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are:

» IDL_RPCCleanup * IDL_RPCSetMainVariable
» IDL_RPCDeltmp » IDL_RPCSetVariable

» |IDL_RPCExecuteStr » IDL_RPCStoreScalar

¢ IDL_RPCGetMainVariable ¢ IDL_RPCStrDelete

¢ |DL_RPCGettmp ¢ IDL_RPCStrDup

* IDL_RPCGetVariable e IDL_RPCStrEnsurel ength
e |DL_RPCImportArray e |DL_RPCStrStore

» IDL_RPCInit » IDL_RPCTimeout

¢ IDL_RPCMakeArray e |IDL_RPCVarCopy

* IDL_RPCOutputCapture * IDL_RPCVarGetData

e IDL_RPCOutputGetStr e Variable Accessor Macros

External Development Guide The IDL RPC Library

234 Chapter 10: Remote Procedure Calls

IDL_RPCCleanup

Calling Sequence

int IDL RPCCleanup(CLIENT *pClient, int 1Kill)

Description

Use this function to rel ease the resources associated with the given CLIENT structure
or tokill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill
Set iKill to anon-zero value to kill the server when the connection is broken.
Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCCleanup External Development Guide

Chapter 10: Remote Procedure Calls 235

IDL_RPCDeltmp

Calling Sequence

void IDL RPCDeltmp(IDL VPTR vTmp)

Description

Use thisfunction to de-allocate all dynamic memory associated withtheIDL_VPTR
that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters

vimp
The variable that will be de-allocated.
Return Value

None.

External Development Guide IDL_RPCDeltmp

236

Chapter 10: Remote Procedure Calls

IDL_RPCEXxecuteStr

Calling Sequence

int IDL_ RPCExecuteStr (CLIENT *pClient, char * pCommand)

Description
Use this function to send IDL commands to the IDL RPC server. The command is
executed just asif it had been entered from the IDL command line.

This function cannot be used to send multiple line commands and will return an error
if a“$” is detected at the end of the command string. It will also return an error if “$”
isthe first character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
pCommand

A null-terminated IDL command string.
Return Value

This function returns the following values:
1 — Success.
0 — Invalid command string.

For al other errors, the value of 'ERROR_STATE.CODE isreturned. This number
could be passed as an argument to the IDL function STRM ESSAGE() to determine
the exact cause of the error.

IDL_RPCExecuteStr External Development Guide

Chapter 10: Remote Procedure Calls 237

IDL_RPCGetMainVariable

Calling Sequence

IDL_VPTR IDL RPCGetMainVariable (CLIENT *pClient, char *Name)

Description

Cadll thisfunction to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetM ainVariable will then
return apointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable, On failure this
function returns NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 228.

External Development Guide IDL_RPCGetMainVariable

238 Chapter 10: Remote Procedure Calls

IDL_RPCGettmp

Calling Sequence

IDL,_VPTR IDL_RPCGettmp (void)

Description
Use thisfunction to create an IDL_VPTR to adynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, passit to
IDL_RPCDetmp() to free any memory allocated by the variable.
Parameters
None.

Return Value

On success, this function returnsan IDL_VPTR. On failure, it returns NULL.

IDL_RPCGettmp External Development Guide

Chapter 10: Remote Procedure Calls 239

IDL_RPCGetVariable

Calling Sequence

IDL_VPTR IDL RPCGetVariable (CLIENT *pClient, char *Name)

Description

Use this function to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 228.

External Development Guide IDL_RPCGetVariable

240 Chapter 10: Remote Procedure Calls

IDL_RPCIimportArray

Calling Sequence

IDL_VPTR IDL RPCImportArray (int n dim, IDL MEMINT diml],
int type, UCHAR *data, IDL_ARRAY FREE CB free cb)

Description

Use this function to create an IDL array variable whose data the server supplies,
rather than having the client API allocate the data space.

Parameters

n_dim
The number of dimensionsin the array.

dim
Anarray of IDL_MAX_ARRAY_DIM eements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “ Type
Codes’ on page 262.

data
A pointer to your array data.
free_cb

If non-NULL, free _cb isapointer to afunction that will be called whenthe IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the datais no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

AnIDL_VPTR that pointsto an IDL_VARIABLE structure containing a reference
to the imported array. This function returns NULL if the operation was unsuccessful.

IDL_RPCImportArray External Development Guide

Chapter 10: Remote Procedure Calls 241

IDL_RPCInit

Calling Sequence

Client *IDL RPCInit (long ServerId, char* pHostname)

Description

Use this function to initialize an IDL RPC client session.

Theclient program is registered as aclient of the IDL RPC server. The server that the
client is registered with depends on the values of the parameters passed to the
function.

Parameters

Serverld

The ID number of the IDL server that the program isto be registered with. If this
valueis 0, the default server ID (0x2010CAFE) is used.

pHostname

Thisis the name of the machine where the IDL server isrunning. If thisvalueis
NULL or “”, the default, “localhost”, is used.

Return Value
A pointer to the new CLIENT structure is returned upon successful completion. This

opaque data structure is then later used by the client program to perform operations
with the server. This function returns NULL if the operation was unsuccessful.

External Development Guide IDL_RPCInit

242

Chapter 10: Remote Procedure Calls

IDL_RPCMakeArray

Calling Sequence

char * IDL RPCMakeArray(int type, int n dim, IDL MEMINT dim[],
int init, IDL VPTR *var)

Description

This function creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “ Type
Codes’ on page 262.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

 IDL_ARR_INI_NOP— Noinitialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.

¢ IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

Theaddressof an IDL_VPTR containing the address of the resulting IDL RPC client
temporary variable.

IDL_RPCMakeArray External Development Guide

Chapter 10: Remote Procedure Calls 243

Return Value

On success, this function returns a pointer to the data area of the alocated array. The
value returned is the same as is contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

Aswith variables returned from IDL_RPCGettmp(), the variable allocated viathis
function must be de-allocated using IDL_RPCDeltmp() when the variableis no
longer needed.

External Development Guide IDL_RPCMakeArray

244 Chapter 10: Remote Procedure Calls

IDL_RPCOutputCapture

Calling Sequence

int IDL_RPCOutputCapture(CLIENT *pClient, int n lines)

Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save thisinformation so that the client program
can request the lines sent to the output buffer.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
n_lines

If thisvalueislessthan or equal to zero, no output lineswill be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. If the value of this parameter is greater than zero, the specified number of
lineswill be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCOutputCapture External Development Guide

Chapter 10: Remote Procedure Calls 245

IDL_RPCOutputGetStr

Calling Sequence

int IDL_RPCOutputGetStr(CLIENT *pClient, IDL_RPC LINE S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before this routine is called.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pLine

A pointer toavalid IDL_RPC_LINE_Sstructure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flagsfield will be
set to one of thefollowing (from 1d1_export . h):

e« IDL_TOUT_F STDERR — Send the text to stderr rather than stdout, if that
distinction means anything to your output device.

e |DL_TOUT_F NLPOST — After outputting the text, start a new output line.
On atty, thisis equivalent to sending anew line (‘ \n) character.

first

If first is set equal to anon-zero value, thefirst line is popped from the output buffer
on the IDL RPC server (the output buffer istreated like astack). If first is set equal to
zero, thelast line is de-queued from the output buffer (the output buffer istreated like
aqueue).

Return value

A true value (1) isreturned upon success. A false value (0) isreturned when there are
no more lines available in the output buffer or when an RPC error is detected.

External Development Guide IDL_RPCOutputGetStr

246 Chapter 10: Remote Procedure Calls

IDL_RPCSetMainVariable

Calling Sequence

int IDL_RPCSetMainVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Usethisroutine to assign avalue to amain level IDL variablein the IDL RPC server
session referred to by pClient. If the variable does not already exist, a new variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “Client Variables’ on page 228.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCSetMainVariable External Development Guide

Chapter 10: Remote Procedure Calls 247

IDL_RPCSetVariable

Calling Sequence

int IDL_RPCSetVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Use thisroutine to assign avalueto an IDL variable in the IDL RPC server session
referred to by pClient. If the variable does not already exist, a new variable will be
created. Unlike IDL_RPCSetM ainVariable(), this routine sets the variable in the
current IDL program scope.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see“Client Variables’ on page 228.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCSetVariable

248 Chapter 10: Remote Procedure Calls

IDL_RPCStoreScalar

Calling Sequence

void IDL_RPCStoreScalar (IDL _VPTR dest, int type,
IDL ALLTYPES *value)

Description

Use this function to store a scalar value into an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE isde-
allocated.

Parameters
dest
AnIDL_VPTR tothe DL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. IDL type codes are discussed in “ Type Codes’ on
page 262.

value

The address of an IDL_ALLTYPES union that contains the value to store.
Return Value

None.

IDL_RPCStoreScalar External Development Guide

Chapter 10: Remote Procedure Calls 249

IDL_RPCStrDelete

Calling Sequence

void IDL_RPCStrDelete (IDL STRING *str, IDL MEMINT n)

Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings” on page 335.

External Development Guide IDL_RPCStrDelete

250 Chapter 10: Remote Procedure Calls

IDL_RPCStrDup

Calling Sequence

void IDL_RPCStrDup (IDL_STRING *str, IDL MEMINT n)

Description

Use this function to duplicate a string. See the description of IDL_StrDup() in
“Copying Strings’ on page 334.

IDL_RPCStrDup External Development Guide

Chapter 10: Remote Procedure Calls 251

IDL_RPCStrEnsurelLength

Calling Sequence

void IDL_RPCStrEnsureLength (IDL_STRING *s, int n)
Description

Use this function to check the length of a string. See the description of
IDL_StrEnsurel ength() in “Obtaining a String of a Given Length” on page 337.

External Development Guide IDL_RPCStrEnsureLength

252 Chapter 10: Remote Procedure Calls

IDL_RPCStrStore

Calling Sequence

void IDL RPCStrStore(IDL STRING *s, char *fs)
Description

Use this function to store a string. See description of IDL_StrStorein “ Setting an
IDL_STRING Value’ on page 336.

IDL_RPCStrStore External Development Guide

Chapter 10: Remote Procedure Calls 253

IDL_RPCTimeout

Calling Sequence

int IDL RPCTimeout (long ITimeOut)

Description

Usethis function to set the timeout value used when the RPC client makes requests of
the server.

Parameters

I TimeOut

A integer value, in seconds, specifying the timeout value that will be used in RPC
operations.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCTimeout

254 Chapter 10: Remote Procedure Calls

IDL_RPCVarCopy

Calling Sequence

void IDL_RPCVarCopy (IDL VPTR src, IDL VPTR dst)

Description

Use this function to copy the contents of the src variable to the dst variable. Any
dynamic memory associated with dst is de-allocated before the source datais copied.
This function emulates the callable IDL function IDL_Var Copy().

Parameters

Src

The source variable to be copied. If this variable is marked as temporary (returned
from IDL_RPCGettmp(), for example) the dynamic data will be moved rather than
copied to the destination variable.

dst

The destination variable that src is copied to.
Return Value

None.

IDL_RPCVarCopy External Development Guide

Chapter 10: Remote Procedure Calls 255

IDL_RPCVarGetData

Calling Sequence

void IDL RPCVarGetData (IDL_VPTR v, IDL MEMINT *n, char **pd,
int ensure simple)

Description

Use this function to obtain a pointer to a variable's data, and to determine how many
data elements the variable contains.

Parameters

\Y

The variable for which datais desired.

The address of avariable that will contain the number of elementsin v.

pd

The address of avariable that will contain a pointer to v's data, cast to be a pointer to
pointer to char (e.g. (char **) & myptr).

ensure_simple

If TRUE, thisroutine calls the ENSURE_SIMPL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, EXCLUDE_FILE iscalled,
because file variables have no data area to return.

Return Value

On exit, IDL_RPCVar GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

External Development Guide IDL_RPCVarGetData

256 Chapter 10: Remote Procedure Calls

Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. These
macros are defined in id1l_rpc. h.

All of these macros accept a single argument, v, of type IDL_VPTR.
IDL_RPCGetArrayData(v)

This macro returns a pointer (char*) to the data area of an array block.
IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.
IDL_RPCGetArrayNumDims(v)

This macro returns the number of dimensions of the array.
IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.
IDL_RPCGetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of acomplex variable.
IDL_RPCGetVarComplexR(v)

This macro returns the real field of a complex variable.
IDL_RPCGetVarComplexl(v)

This macro returns the imaginary field of a complex variable.
IDL_RPCGetVarDComplex(v)

This macro returns the value (as astruct, not apointer) of adouble precision, complex
variable.

IDL_RPCGetVarDComplexR(v)
This macro returns the real field of a double-precision complex variable.

IDL_RPCGetVarDComplexl(v)

This macro returns the imaginary field of a double-precision complex variable.

Variable Accessor Macros External Development Guide

Chapter 10: Remote Procedure Calls 257

IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.
IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.
IDL_RPCGetVarint(v)

This macro returns the value of a 2-byte integer variable.
IDL_RPCGetVarLong(v)

This macro returns the value of a4-byte integer variable.
IDL_RPCGetVarLong64(v)

This macro returns the value of a 8-byte integer variable.
IDL_RPCVarlsArray(v)

This macro returns non-zero if visan array variable.
IDL_RPCGetVarString(v)

This macro returns the value of a string variable (as a char*).
IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed in
“Type Codes’ on page 262.

IDL_RPCGetVarUint(v)

This macro returns the value of an unsigned 2-byte integer variable.
IDLRPCGetVarULong(v)

This macro returns the value of an unsigned 4-byte integer variable.
IDL_RPCGetVarULong64(v)

This macro returns the value of an unsigned 8-byte integer value.

External Development Guide Variable Accessor Macros

258 Chapter 10: Remote Procedure Calls

RPC Examples

A number of examplefilesareincluded inthe RSI Directory/external/rpc

directory. A Makefile for these examplesis also included. These short C programs
demonstrate the use of the IDL RPC library.

Source filesfor the id1rpc server program are located in the

RSI Directory/external/rpc directory. Note that you do not need to build the
idlrpc server; itispre-built and included in the IDL distribution. The id1rpc
server source files are provided as examples only.

RPC Examples External Development Guide

Part Il: IDL’s Internal
API

Chapter 11
IDL Internals:
Types

This chapter describes the following topics:

TypeCodesccovviiinn.n. 262 IDL_MEMINT and IDL_FILEINT Types 267
Mapping of Basic Types 264

External Development Guide 261

262

Chapter 11: IDL Internals: Types

Type Codes

Type Codes

Every IDL variable has a data type. The possible type codes and their mapping to C
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will always have the value zero.

Although it israre, the number of types could change someday. Therefore, you
should aways use the symbolic names when referring to any type except
IDL_TYP_UNDEF. Eveninthe caseof IDL_TYP_UNDEF, using the symbolic
name will add clarity to your code. Note that all IDL structures are considered to be
of asingletype (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinctions
aremade at a different level. There are afew constants that can be used to make your
code easier to read and less likely to break if/when the idl_export .h file changes.
These are:

e« IDL_MAX_TYPE—The value of the largest type.

e |IDL_NUM_TYPES—The number of types. Since the types are numbered
starting at zero, IDL_NUM _TYPESisone greater than IDL_MAX_TYPE.

Name Type C Type
IDL_TYP_UNDEF Undefined <None>
IDL_TYP BYTE Unsigned byte UCHAR
IDL_TYP_INT 16-bit integer IDL_INT
IDL_TYP_LONG 32-bit integer IDL_LONG
IDL_TYP FLOAT Single precision floating | float
IDL_TYP_DOUBLE Double precision floating | double
IDL_TYP_COMPLEX Single precision complex | IDL_COMPLEX
IDL_TYP_STRING String IDL_STRING
IDL_TYP_STRUCT Structure See “ Structure Variables”

on page 307

IDL_TYP_DCOMPLEX

Double precision
complex

IDL_DCOMPLEX

Table 11-1: IDL Types and Mapping to C

External Development Guide

Chapter 11: IDL Internals: Types

263

Name Type C Type
IDL_TYP_PTR 32-hit integer IDL_ULONG
IDL_TYP _OBJREF 32-hit integer IDL_ULONG
IDL_TYP_UINT Unsigned 16-bit integer IDL_UINT
IDL_TYP_ULONG Unsigned 32-bit integer IDL_ULONG
IDL_TYP_LONG64 64-bit integer IDL_LONG64
IDL_TYP_ULONG64 Unsigned 64-bit integer IDL_ULONG64

Table 11-1: IDL Types and Mapping to C (Continued)

Type Masks

There are some situationsin which it is necessary to specify typesin the form of abit
mask rather than the usual type codes, for example when a single argument to a
function can represent more than asingle type. For any given type, the bit mask value

can be computed as: Mask =

2TypeCode

ThelDL_TYP_MASK preprocessor macro is provided to calcul ate these masks.
Given atype code, it returns the bit mask. For example, to specify a bit mask for all

the integer types:

IDL TYP_MASK(IDL_TYP BYTE) |IDL_TYP MASK(IDL_TYP_ INT) |
IDL,_TYP_MASK (IDI, TYP_ LONG)

Specifying all the possible types would require along statement similar to the one
above. To avoid having to type so much for this common case, the
IDL_TYP_B_ALL constant is provided.

External Development Guide

Type Codes

264 Chapter 11: IDL Internals: Types
Mapping of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX,IDL_TYP_DCOMPLEX, and IDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structures are
built out of the basic types by laying them out in memory in the specified order using
the same alignment rules used by the C compiler for the target machine.

Unsigned Byte Data

UCHAR is defined to be unsigned char in id1_export . h.
Integer Data

IDL_INT represents the signed 16-bit datatype and isdefined in id1_export.h.
Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined in
idl export.h.

Long Integer Data
IDL long integers are defined to be 32-bitsin size. The C long datatypeis not correct
on all systems because C compilers for 64-bit architectures usually define long as 64-
bits. Hence, the IDL_L ONG typedef, declared in id1_export . h isused instead.
Unsigned Long Integer Data

IDL_ULONG represents the unsigned 32-hit data type and is defined in
idl export.h.

64-bit Integer Data

IDL_L ONG64 represents the 64-bit datatype and isdefined in id1l_export.h.

Mapping of Basic Types External Development Guide

Chapter 11: IDL Internals: Types 265

Unsigned 64-bit Integer Data

IDL_UL ONG64 represents the unsigned 64-bit datatype and is defined in
idl export.h.

Complex Data

ThelDL_TYP_COMPLEX and IDL_TYP_DCOMPLEX datatypes are defined
by the following C declarations:

typedef struct { float r, i; } IDL_COMPLEX;
typedef struct { double r, i; } IDL DCOMPLEX;

Thisisthe same mapping used by Fortran compilers to implement their complex data
types, which alows sharing binary data with such programs.

String Data

The|DL_TYP_STRING datatype isimplemented by a string descriptor:

typedef struct ({
IDL_STRING SLEN T slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */

} IDL STRING;

Thefields of the IDL_STRING struct are defined as follows:
slen

The length of the string, not counting the null termination. For example, the
string “Hello” has 5 characters.

stype

If stypeiszero, the string pointed at by s (if any) was not allocated from
dynamic memory, and should not be freed. If non-zero, s points at astring
allocated from dynamic memory, and should be freed before being replaced.
For information on dynamic memory, see “Dynamic Memory” on page 400
and “ Getting Dynamic Memory” on page 322.

If den isnon-zero, sisapointer to a null-terminated string of slen characters.
If den iszero, s should not be used. The use of a string pointer to memory

External Development Guide Mapping of Basic Types

266 Chapter 11: IDL Internals: Types

located outside the IDL_STRING structure itself allows IDL strings to have
dynamically-variable lengths.

Note
Strings are the most complicated basic data type, and as such, are at the root of
more coding errors than the other types. See“IDL Internals. String Processing” on
page 331.

Mapping of Basic Types External Development Guide

Chapter 11: IDL Internals: Types 267

IDL_MEMINT and IDL_FILEINT Types

Some of the IDL-supported operating systems limit memory and file lengths to a
signed 32-hit integer (approximately 2.3 GB). Some systems have 64-bit memory
capabilities and others allow files longer than 231-1 bytes despite being 32-bit
memory limited. To gracefully handle these differences without using conditional
code, IDL internals use two special types, IDL_TYP_MEMINT (datatype
IDL_MEMINT) and IDL_TYP_FILEINT (datatype IDL_FILEINT) to represent
memory and file length limits.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappings to the IDL types discussed in “Mapping of Basic Types’ on
page 264. Specifically, they will be IDL_LONG for 32-bit quantities, and
IDL_LONGS64 for 64-bit quantities.

Asan IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your code
runs properly on al systems, use IDL_MEMINT and IDL_FILEINT in place of more
specific types. These types can be used anywhere that anormal IDL type can be used,
such asin keyword processing. Their systematic use for these purposes will ensure
that your code is correct on any IDL platform.

Programmers should be aware of the IDL_MEMINTScalar() and
IDL_FILEINTScalar() functions, described in “ Converting Argumentsto C Scalars’
on page 354.

External Development Guide IDL_MEMINT and IDL_FILEINT Types

268 Chapter 11: IDL Internals: Types

IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 12

IDL Internals:
Keyword Processing

This chapter discusses the following topics:

IDL and Keyword Processing
Creating Routines that Accept Keywords . 271
Overview Of IDL Keyword Processing . .. 272
TheDL_KW_ARR _DESC R Structure . 277

External Development Guide

Keyword Processing Options 278
The KW_RESULT Structure 280
CleaningUp, 284
Keyword Examples 285

269

270 Chapter 12: IDL Internals: Keyword Processing

IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They alow a multitude
of options to be specified to aroutine in a straightforward, easily understood way.
The price of this added power isthat it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effort is

well worth it.

IDL and Keyword Processing External Development Guide

Chapter 12: IDL Internals: Keyword Processing 271

Creating Routines that Accept Keywords

Asdescribed in “Adding System Routines’” on page 417, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword arguments in one of the following ways.

¢ Specifying the KEYWORDS option for the routine in the module definition
file of a Dynamically Loadable Module (DLM)

* Setting the KEYWORDS keyword in acall to LINKIMAGE.

¢ OR-ingtheconstant IDL_SYSFUN_DEF_F _KEYWORDS into the flags
field of the IDL_SY SFUN_DEF2 struct passed to IDL_SysRtnAdd()

Routines that accept keywords must perform keyword processing. A routine that does
not allow keyword processing knows that its argc argument gives the number of
positional arguments, and argv contains only those positional arguments. In contrast,
aroutine that accepts keywords receives an ar gc that gives the total number of
positional and keyword arguments, and these arguments are delivered in argv mixed
together in an undefined order.

The function I DL_K W ProcessByOffset() is used to process keywords and separate
the positional and keyword arguments. It is passed an array of IDL_KW_PAR
structures that give information about the allowed keywords and their attributes. The
keyword data resulting from this processis stored in a user defined KW_RESULT
structure. Finaly, the IDL_KW_FREE macro is used to clean up.

More information about these routines and structures can be found in the following
sections.

External Development Guide Creating Routines that Accept Keywords

272 Chapter 12: IDL Internals: Keyword Processing

Overview Of IDL Keyword Processing

IDL keyword processing can seem confusing at first glance, due to the interrelated
data structures involved. However, as the examples that follow in this chapter will
show, the concepts involved are relatively straightforward once you have seen and
understood a concrete example such as “Keyword Examples’ on page 285.

Following is a skeleton of a system routine that accepts keyword arguments. These
elements must be present in any such system routine:

void keyword sysrtn skeleton(int argc, IDL VPTR *argv, char *argk)

{

typedef struct ({

IDL_ KW _RESULT FIRST FIELD; /* Must be first entry in struct */
... /* Variables specific to your keywords go here */
} KW_RESULT;
static IDL KW PAR kw pars[] = {

/*

* Keyword definitions for the keywords you accept go here,
* one definition per keyword. The keyword definitions refer
* to fields within the KW_RESULT type defined above.

*/

{ NnULL } /* List must be NULL terminated */

bi

KW_RESULT kw; /* Variable which will hold the keyword values */

(void) IDL_KWProcessByOffset (argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

/* The body of your routine */

IDL KW _FREE;

}
IDL keyword processing is made up of the following data structures and steps:
e A NULL terminated array of IDL_KW _PAR structures must be present. Each

entry in this array describes the keyword processing required for asingle
keyword.

e If akeyword represents an input-only, by-value array, the IDL_KW_PAR
structure that describes it points at an auxiliary IDL_KW_ARR_DESC R
structure that supplies the additional array specific information.

e Thesystem routine must declare alocal type definition named KW_RESULT,
and avariable of thistype named kw. The KW_RESULT type contains all of

Overview Of IDL Keyword Processing External Development Guide

Chapter 12: IDL Internals: Keyword Processing 273

the data fields that will be set as aresult of processing the keywords described
by theIDL_KW_PAR and IDL_KW_ARR_DESC_R structures described
above. TheIDL_KW_PAR and IDL_KW_ARR_DESC R structures refer
to thefields of the KW_RESULT structure by their offset from the beginning
of the structure. The IDL_KW_OFFSETOF() macro is used to compute this
offset.

e Thesystem routine callsthe IDL_KWProcessByOffset() function, passing it
the address of the IDL_KW _PAR array, and the KW_RESULT variable
(kw).

e After IDL_KWProcessByOffset() iscaled, the KW_RESULT structure
(kw) contains the results, which can be accessed freely by the system routine.

e Beforereturning, the system routine must invoke the IDL_KW_FREE macro.
This macro ensures that any dynamic memory used by
IDL_KWProcessByOffset() is properly released.

e System routines are not required to, and generally do not, call
IDL_KW_FREE before throwing errorsusing | DL_M essage() with the
IDL_MSG_LONGJIMPor IDL_MSG_|O_LONGJIMP action codes. In
these cases, the IDL interpreter automatically knows to release the resources
used by keyword processing on your behalf.

All of these data structures and routines are discussed in detail in the sections that
follow.

External Development Guide Overview Of IDL Keyword Processing

274 Chapter 12: IDL Internals: Keyword Processing
The IDL_KW_PAR Structure

ThelDL_KW_PAR struct provides the basic specification for keyword processing.

The IDL_KWProcessByOffset() function is passed a null-terminated array of these
structures. IDL_KW _PAR structures specify which keywords a routine accepts, the
attributes required of them, and the kinds of processing that should be done to them.

IDL_KW_PAR structures must be defined in lexical order according to the value of
the keyword field.

The definition of IDL_KW_PAR is:

typedef struct ({
char *keyword;
UCHAR type;
unsigned short mask;
unsigned short flags;
int *specified;
char *value;

} IDL KW PAR;

where:

keyword

A pointer to a null-terminated string. Thisis the name of the keyword, and must be
entirely upper case. The array of IDL_KW_PAR structures passed to
IDL_KWProcessByOffset() must be lexically sorted by the strings pointed to by
thisfield. The final element in the array is signified by setting the keyword field to
NULL ((char *) 0).

type

IDL_KWProcessByOffset() automatically converts the keywords to the IDL type
specified by the typefield. Specify O (IDL_TYPE_UNDEF) in cases where
ID_KW_VINor IDL_KW_OUT are specified in the flags field.

mask

The enable mask. Thisfield is ANDed with the mask argument to
IDL_KWProcessByOffset() and if the result is non-zero, the keyword is accepted. If
the result is 0, the keyword isignored. This ability allows you to share an array of
IDL_KW_PAR structures between several routines, and enable or disable the
keywords used by each one.

The IDL_KW_PAR Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 275

As an example of this, the IDL graphics and plotting routines have alarge number of
keywordsin common. In addition, each routine has afew keywords that are unigue to
it. Keywords are implemented using asingle shared array of IDL_KW_PAR with
appropriate values of the mask field. Thistechnique dramatically reduces the amount
of datathat would otherwise be required by graphics keyword processing, and makes
IDL easier to maintain.

flags

Thisfield specifies specia processing instructions. It is abit mask made by ORing
the following values:

e IDL_KW_ARRAY — Set this bit to specify that the keyword must be an
array. Otherwise, ascalar isrequired. If IDL_KW_ARRAY is specified, the
value field must point at an associated IDL_KW_ARR_DESC_R structure.

e |IDL_KW_OUT — Set thishit to indicate that the keyword specifies an output
parameter, passed by reference. Expressions and constants are excluded. In
other words, the routine is going to change the value of the keyword argument,
as opposed to the more usual case of simply reading it. The address of the
IDL_VARIABLE will be placed in auser supplied field of typeIDL_VPTR
inthe KW_RESULT structure (kw). The offset of thisfield in the
KW_RESULT structureis specified by the value field (discussed below).
IDL_KW_OUT implies that no type checking or processing will be
performed on the keyword—it is up to the routine to perform the same sort of
type checking normally carried out for plain positional arguments.

A standard approachto find out if an IDL_KW_OUT parameter ispresentina
call to asystem routineisto specify IDL_TYP_UNDEF (0) for the type field
and IDL_KW_OUT |IDL_KW_ZERO for flags. The IDL_VPTR
referenced by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE.

e« IDL_KW_VIN — Set thishit to indicate that the keyword parameter isan
input parameter (expressions and/or constants are valid) passed by reference.
The address of the IDL_VARIABLE or expression is stored in a user-
supplied field of the KW_RESULT structure (kw) referenced by the value
field, aswith IDL_KW_OUT. IDL_KW_VIN impliesthat no type checking
or processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for plain
positional arguments.

e IDL_KW_ZERO — Set thishit in order to zero the C variable pointed to by
the value field before parsing the keywords. This means that the object pointed

External Development Guide The IDL_KW_PAR Structure

276

Chapter 12: IDL Internals: Keyword Processing

to by value will always be zero unless it was specified by the user. Use this
technique to create keywords that have Boolean (on or off) meanings.

e |IDL_KW_VALUE — If thishit is set and the specified keyword is present
and non-zero, the low 12 hits of thisfield (flags) will be bitwise ORed with the
IDL_L ONG field of the KW_RESULT structure referenced by the value
field. Note that thisimpliesthe IDL_TYP_L ONG type code, and is
incompatiblewiththe IDL_KW_ARRAY, IDL_KW_VIN, and
IDL_KW_OUT flags.

specified

NULL, or the offset of the user supplied field within the KW_RESULT structure
(kw) of aC int variable that will be set to TRUE (non-zero) or FAL SE (0) based on
whether the routine was called with the keyword present. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset. Setting this
field to NULL (0) indicates that thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield isthe offset of the user supplied field in
the KW_RESULT dtructure (kw) into which the keyword value will be copied. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset.

In the case of aread-only array, value isthe memory address of an
IDL_KW_ARR_DESC R, structure, whichisdiscussedin“The
IDL_KW_ARR_DESC R Structure” on page 277.

Inthe case of aninput (IDL_KW_VIN) or output (IDL_KW_OUT) variable, this
field should contain the offset to the IDL_VPTR field within the user supplied
KW_RESULT that will befilled by IDL_KW ProcessByOffset() with the address
of the keyword argument. The IDL_KW_OFFSETOF() macro should be used to
calculate the offset.

The IDL_KW_PAR Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 277

The IDL_KW_ARR _DESC R Structure

When a keyword is specified to be aread-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC R structure. This structure is defined as:

typedef struct ({
char *data;
IDL_MEMINT nmin;
IDL MEMINT nmax;
IDL MEMINT n offset;
} IDL_KW ARR DESC R;

where:
data

The offset of the field within the user supplied KW_RESULT structure, of the C
array to receive the data. This offset is computed using the IDL_KW_OFSETOF()
macro. This array must be of the C type specified by the type field of the
IDL_KW_PAR struct. For example, IDL_TYP_LONG mapsintoaC

IDL_L ONG. There must be nmax elementsin the array.

nmin

The minimum number of elements allowed.
nmax

The maximum number of elements allowed.
n_offset

The offset of the field within the user defined KW_RESULT structure into which
IDL_KWProcessByOffset() will store the number of elements actually stored into
the array field. This offset is computed using the IDL_KW_OFSETOF() macro.

External Development Guide The IDL_KW_ARR_DESC_R Structure

278 Chapter 12: IDL Internals: Keyword Processing

Keyword Processing Options

The following cases occur in keyword processing:
Scalar Input-Only

For scalar, input-only keywords, the user never seesthe IDL_VARIABLE passed as
the keyword argument. Instead, the value of the IDL_VARIABLE is converted to
the type specified by the typefield of the IDL_KW_PAR struct and is placed into
the field of the user specified KW_RESULT structure, the offset of which is given
by the valuefield. Thisoffset is calculated using the IDL_KW_OFFSETOF()
macro.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that the value
field contains the address of an IDL_KW_ARR_DESC_R struct that suppliesthe
added information required to convert the passed array elements to the specified type
and place them into a C array for easy access. The array datais copied into a array
within the user supplied KW_RESULT structure. The data field of the
IDL_KW_ARR_DESC_R struct suppliesthe offset of the array field within the
KW_RESULT structure. This offset is calculated using the
IDL_KW_OFFSETOF() macro.

As part of this process, the number of array elements passed is checked to be within
the range specified inthe IDL_KW_ARR_DESC_R struct, and if no error results,
the number is stored into afield of the user supplied KW_RESULT struct. The
n_offset field of theIDL_KW_ARR_DESC_R struct supplies the offset of this
“number of elements’ field within the KW_RESULT structure. This offset is
calculated using the IDL_KW_OFFSETOF() macro.

It isworth noting that input-only array keywords don’t pass information about the
number of dimensions or their sizes, only the total number of elements. Therefore,
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Output
keyword instead.

Input/Output

Thiscase occursif theIDL_KW_VIN or IDL_KW_OUT flagissetinthe
IDL_KW_PAR struct. In this case, the value field contains the offset of the
IDL_VPTR field (computed with the IDL_KW_OFFSETOF() macro) in the user
defined KW_RESULT struct into which the actual keyword argument is copied. In
this case, you must do al error checking and type conversion yoursdlf, just like with

Keyword Processing Options External Development Guide

Chapter 12: IDL Internals: Keyword Processing 279

positional arguments. Thisis certainly the most flexible method. However, the other
two cases are much easier to use, and are suitable for the vast majority of keywords.

External Development Guide Keyword Processing Options

280 Chapter 12: IDL Internals: Keyword Processing

The KW_RESULT Structure

Each system routine that processes keywords is required to define a structure variable
into which IDL_KWProcessByOffset() will store all the results of keyword
processing. This variable must follow the following rules:

¢ The name of the structure type must be defined as KW_RESULT. This
requirement exists so that the IDL_KW_OFFSETOF() macro can properly
do its work.

e Thefirst field within any KW_RESULT structure must be defined using the
IDL_KW_RESULT_FIRST_FIELD macro. The contents of thisfirst field
are private, and should not be examined. It contains the information required
by IDL to properly track its resource use.

e Thename of the KW_RESULT variable must be kw. This requirement exists
so that the IDL_KW_FREE macro can properly do its work.

Hence, all system routines that process keywords will contain statements similar to
the following:

typedef struct ({

IDL_KW_RESULT_FIRST_FIELD;/* Must be first entry in struct */
/* Additional user specified fields */
} KW_RESULT;

KW _RESULT kw;

All fields within the KW_RESULT structure after the required first field can have
arbitrary user selected names. The types of these fields are dictated by the
IDL_KW_PAR and IDL_KW_ARR_DESC_R structuresthat refer to them.

The KW_RESULT Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 281

Processing Keywords

The IDL_KWProcessByOffset() function is used to process keywords.
IDL_KWProcessByOffset() performs the following actions on behalf of the calling
system routine;

¢ Verify that the keywords passed to the routine are al allowed by the routine.
e Carry out the type checking and conversions required for each keyword.

¢ Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in argv and copy them in order into the plain_args array.

¢ Return the number of plain arguments copied into plain_args.
IDL_KWProcessByOffset() has the form:

int IDL_ KWProcessByOffset (int argc, IDL VPTR *argv, char *argk,
IDL_KW_PAR *kw_list,
IDL_VPTR plain_args[], int mask,
void * base)

where:
argc

The number of arguments passed to the caller. Thisisthe first parameter to al system
routines.

argv

Thearray of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to al system routines that accept keyword arguments.

kw_list

Anarray of IDL_KW_PAR structures (see* Overview Of IDL Keyword Processing”
on page 272) that specifies the acceptable keywords for thisroutine. Thisarray is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).

External Development Guide Processing Keywords

282 Chapter 12: IDL Internals: Keyword Processing

plain_args

NULL, or an array of IDL_VPTR into which the IDL_VPTRs of the positional
arguments will be copied. This array must have enough elements to hold the
maximum possible number of positional arguments, as defined in
IDL_SYSFUN_DEF2. See “Registering Routines’ on page 443.

Note
IDL_KWProcessByOffset() sorts the plain argumentsinto the front of the input
argv argument. Hence, plain_argsis often not necessary, and can be set to NULL.

mask

Mask enable. Thisvariableis ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

base

Address of the user supplied KW_RESULT structure, which must be named kw.
Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_K W ProcessByOffset() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and valuefields
with IDL_KW_ZERO set), can become significant, especially when more than a
few keyword array elements (e.g., 5to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN asthefirst keyword array
element. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_KWProcessByOffset() into amore efficient form the first
timeit isused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL KW PAR kw pars[] = {
{ "DOUBLE", IDL TYP DOUBLE, 1, O,
IDL_KW_OFFSETOF (d_there), IDL_KW OFFSET OF(d) },
{ "FLOAT", IDL TYP FLOAT, 1,IDL KW ZERO,O0,IDL KW OFFSET OF (f) },
{ NnULL }

}i

Processing Keywords External Development Guide

Chapter 12: IDL Internals: Keyword Processing 283

To use fast scanning, it would be written as:

static IDL KW PAR kw pars[] = {
IDL_KW_FAST SCAN,
{ "DOUBLE", IDL TYP DOUBLE, 1, O,
IDL_KW_OFFSET OF (d_there), IDL_KW OFFSETOF (d) },
{"FLOAT", IDL_ TYP FLOAT, 1, IDL KW ZERO, 0,IDL KW OFFSETOF(f) },
{ NnULL }

}i

External Development Guide Processing Keywords

284 Chapter 12: IDL Internals: Keyword Processing

Cleaning Up

All normal exit paths from your system routine are required to call the
IDL_KW_FREE macro prior to returning. This macro must be called exactly once
for every call to IDL_KWProcessByOffset(). You must therefore structure your
code so that IDL_KW _FREE executes before any return statement. Many functions
to not use an explicit return statement, relying on the implicit return that occurs when
execution comesto the end of the function. Insuchacase, IDL_KW_FREE must be
the last statement in the function.

Cleaning Up External Development Guide

Chapter 12: IDL Internals: Keyword Processing 285

Keyword Examples

The following C function implements KEY WORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for aroutine. It
prints the values of its keywords, changes the value of READWRITEto 42 if it is
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Note

The following code is designed to demonstrate keyword processing in asimple,

uncluttered example. In actual code, you would not use the printf mechanism used
on lines 42-53.

External Development Guide Keyword Examples

286 Chapter 12: IDL Internals: Keyword Processing
1] void keyword demo (int argc, IDL _VPTR *argv, char *argk)
2] {
3 typedef struct {
4 IDL KW RESULT FIRST FIELD; /* Must be first entry in structure */
5 IDL LONG 1;
6 float f;
7 double 4d;
8 int d_there;
9 IDL STRING s;
10 int s_there;
11 IDL LONG arr_ data[10];
12 int arr_ there;
13 IDL_MEMINT arr_n;
14 IDL_VPTR var;
15 } KW _RESULT;
16 static IDL KW ARR DESC R arr d = { IDL KW OFFSETOF (arr data), 3, 10,
C 17 IDL KW OFFSETOF (arr_n) };
18
19 static IDL_KW PAR kw pars[] = {
20 IDL_KW_FAST SCAN,
21 { "ARRAY", IDL TYP LONG, 1, IDL KW ARRAY,
22 IDL KW OFFSETOF (arr_ there), CHARA(arr d) },
23 { "DOUBLE", IDL TYP DOUBLE, 1, O,
24 IDL_KW_OFFSETOF (d_there), IDL_KW_OFFSETOF (d) },
25 { "FLOAT", IDL TYP FLOAT, 1, IDL KW ZERO, 0, IDL KW OFFSETOF(f) },
26 { "LonNG", IDL TYP LONG, 1, IDL KW ZERO|IDL KW VALUE|15, O,
27 IDL_KW OFFSETOF (1) 1},
28 { "READWRITE", IDL TYP UNDEF, 1, IDL KW OUT|IDL KW ZERO,
29 0, IDL KW OFFSETOF (var) },
30 { "STRING", TYP STRING, 1, O,
31 IDL_ KW _OFFSETOF (s_there), IDL_ KW OFFSETOF (s) },
32 { NnULL }
33 }i

Figure 12-1: Keyword processing example.

Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing

287

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
C 50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

KW _RESULT kw;
int 1i;
IDL_ALLTYPES newval ;

(void) IDL_KWProcessByOffset (argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw);

printf ("LONG: <%spresent>\n", kw.l ? "": "not ");

printf ("FLOAT: $f\n", kw.f);

printf ("DOUBLE: <%spresent>\n", kw.d there ? "": "not ");
(

printf ("STRING: %$s\n",

kw.s there ? IDL STRING STR(&kw.s) : "<not present>");

printf ("ARRAY: ");
if (kw.arr_ there)

for (i = 0; 1 < kw.arr n; i++)
printf (" %d", kw.arr datalil);
else

printf ("<not presents>") ;
printf ("\n") ;

printf("READWRITE: ") ;
if (kw.var)
IDL Print (1, &kw.var, (char *) 0);

newval.l = 42;
IDL StoreScalar (kw.var, TYP LONG, &newval);
} else {

printf ("<not presents>") ;

}

printf ("\n") ;

IDL_KW_FREE;

External Development Guide

Figure 12-1: Keyword processing example. (Continued)

Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the outpuit:

LONG: <not present>
FLOAT: 0.000000

DOUBLE: <not present>
STRING: <not presents>
ARRAY: <not presents>
READWRITE: <not presents>

Executing it again with keywords specified:

Keyword Examples

288 Chapter 12: IDL Internals: Keyword Processing

A = 56

KEYWORD_DEMO, /LONG, FLOAT=2, DOUBLE=34,$
STRING="hello", ARRAY=FINDGEN(10), READWRITE=A

PRINT, 'Final Value of A: ', A

gives the output:

LONG: <present>

FLOAT: 2.000000

DOUBLE: <presents>

STRING: hello

ARRAY: 01 2 3 456 7829
READWRITE: 56

Final Value of A: 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

3-15

Every system routine that processes keywords must defineaKW_RESULT
structure type. All output from keyword processing is stored in the fields of this
structure.Thefirst field in the KW_RESULT structure must always be
IDL_KW_RESULT_FIRST_FIELD. Theremaining fields are dictated by the
keywords defined in kw_par s below, starting on line 19. The fields with named
ending in _there are used for the specified field of the IDL_KW _PAR structs, and
must be typeint. The types of the other fields must match their definitionsin the
relevant IDL_KW_PAR and IDL_KW_ARR_DESC_R structs.

16-17

The ARRAY keyword, defined on line 21, isaread-only array, and requiresthis
array description. Note that the data field specifies the location of thearr_data array
within KW_RESULT where the array contents should be copied, and the n_offset
field specifies the location of the arr_n field where the number of elements actually
seen isto be written. Both of these are specified as offsetsinto KW_RESULT, using
the | DL_KW_OFFSET () macro to compute this. The minimum number of elements
alowed is 3, the maximum is 10.

19

The start of the keyword definition array. Notice that al of the keywords are ordered
lexically (ASCII) and that thereisaNULL entry at theend (line 32). Also, all of the
mask fields are set to 1, asis the mask argument to |DL_ KW ProcessByOffset() on
line 39. This meansthat al of the keywordsin the list are to be considered valid in
this routine.

Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 289

20

Thisroutine is requesting fast keyword processing. You can learn more about this
option in “ Speeding Keyword Processing” on page 282.

21-22

ARRAY isaread-only array. Itsvaluefield is therefore the actual address (and not an
offset into KW_RESULT) of the I DL_KW_ARR_DESC_R struct that completes

the array definition. This program wants to know explicitly if ARRAY was specified,
s0 the specified field is set to the offset within KW_RESULT of thearr_therefield.

23-24

DOUBLE isascaar keyword of IDL_TYP_DOUBLE. It usesthe variable
kw.d_thereto know if the keyword is present. Both the specified and valuefields are
specified as offsetsinto KW_RESULT.

25

FLOAT isanIDL_TYP_FL OAT scalar keyword. It does not use the specified field
of theIDL_KW _PAR struct to get notification of whether the keyword is present, so
that field isset to 0. Instead, it usesthe IDL_KW_ZERO flag to make sure that the
variable kw.f is always zeroed. If the keyword is present, the value will be written
into kw.f, otherwise it will remain 0. The important point isthat the routine can't tell
the difference between the keyword being absent, or being present with a user-
supplied value of zero. If this distinction doesn’t matter, such as when the keyword is
to serve as an on/off toggle, use this method. If it does matter, use the specified field
as demonstrated with the DOUBLE keyword, above.

26-27

LONG isascaar keyword of IDL_TYP_LONG. It setstheIDL_KW_ZERO flag
to get the variable kw.l zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable kw.I.

28-29

ThelDL_KW_OUT flag indicates that the routine wantsthe IDL_VPTR for
READWRITE if itis present. Since IDL_KW_ZERO isalso set, the variable
kw.var will be zero unless the keyword is present. The specification of
IDL_TYP_UNDEF here indicates that there is no type conversion or processing
appliedto IDL_KW_OUT keywords.

External Development Guide Keyword Examples

290

Chapter 12: IDL Internals: Keyword Processing

30-31

The STRING keyword demonstrates scalar string keywords.
32

All IDL_KW _PAR arrays must be terminated with aNULL entry.
35

Every system routine that processes keywords must declare a variable named kw, of
type KW_RESULT. Thisvariable should be a C stack based local variable (C auto
class).

37

The DL _StoreScalar () function used on line 59 requires the scalar value to be
providedinan IDL_ALLTYPES struct.

39-40

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_ KW ProcessByOffset() is
discarded. Thefinal argument isthe address of the KW_RESULT variable (kw) into
which the results will be written.

42
The kw.| variable will be 0if LONG is not present, and 1if itis.
43

The kw.f variable will always have some usable value, but if it is zero there is no way
to know if the keyword was actually specified or not.

44-46

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Values’ on page 333.

Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 291

47-53

Accessing the ARRAY keyword issimple. The kw.arr_there variableindicates if
the keyword is present, and kw.arr_n gives the number of elements.

55-63

Since the READWRITE keyword is accessed viathe argument’'s IDL_VPTR, we
usethe IDL_Print() function to print its value. This has the same effect as using the
user-level PRINT procedure when running IDL. See “Output of IDL Variables’ on
page 396. Then, we change its valueto 42 using DL _StoreScalar ().

Again, please note that we use this mechanism in order to create a ssimple example.
You will probably want to avoid the use of this type of output (printf and
IDL_Print()) in your own code.

65

Normal exit from any routine that callsIDL_KWProcessByOffset() must be
preceded by acall to IDL_KW_FREE. This macro releases any dynamic resources
that were allocated by keyword processing.

External Development Guide Keyword Examples

292 Chapter 12: IDL Internals: Keyword Processing

The Pre-IDL 5.5 Keyword API

Versions of IDL prior to IDL 5.5 used a different, but similar, keyword processing
API to that found in the current versions. The remainder of this chapter provides
information of interest to programmers maintaining older system routines that were
written to that API.

Note
Research System recommends that all new code be written using the new keyword
processing API. The older API continues to be supported for backwards
compatibility, and there is no urgent reason to convert code that uses it. However,
the effort of converting old code to the new API is minimal, and can be beneficial.

Background

If you have system routines that were written for use with versions of IDL older than
IDL 5.5, your code uses an older keyword processing API, described in “Processing
Keywords With IDL_KWGetParams()” on page 528, that including the following
obsol ete elements:

e« IDL_KWGetParams()
e |IDL_KW_ARR_DESC
* |IDL_KWCleanup(), IDL_KW_MARK, IDL_KW_CLEAN

Thisold API served for many years, but it had some unfortunate features that made it
hard to use correctly:

e Therulesfor when and how to use IDL_KWCleanup() were difficult to
remember. The programmer had to decide whether or not to call it based on the
types of the keywords being processed. If you didn’t call it when you should,
memory would be leaked.

* Inorder to ensure correctness, many programmers would resort to always
caling IDL_KWCleanup() whether it was is needed or not. Thisis
inefficient, but otherwise fine.

e« Theuseof IDL_KWCleanup() is based on aworst case assumption that the
keywords that require cleaning will actually be invoked by the IDL user. This
is often not the case, and is therefore inefficient.

¢ Imagine an existing system routine that does not need to use
IDL_KWCleanup(), and therefore is coded not to useit. If anew keyword

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 293

should later be added to that routine, and that new keyword should require the
use of IDL_KW(Cleanup(), itisvery likely that the programmer adding this
new keyword will fail to recognize that issue. This leads to memory leaking
from aformerly correct routine.

If afuture version of IDL should get a new data type that requires cleaning,
that will change the rules for when IDL_KW Cleanup() needs to be called.
Existing code may need to be examined to fix this situation.

The old keyword API is not reentrant, because it requires static variable
addresses to be embedded in the keyword list. This has always been a problem
for recursively callable routines (e.g. WIDGET_CONTROL, which can cause
an IDL procedure callback to execute, which can in turn call
WIDGET_CONTROL again). In the past, we have carefully coded these
complex routines to avoid problems, but the large amount of code required is
difficult to write and verify. The proper solution is a reentrant keyword API
that uses offsets to variables within a structure, instead of actual statically
scoped variable addresses. Thisiswhat the current API provides.

Advantages Of The IDL 5.5 API

In contrast, keyword processing, in IDL 5.5 and later is built around the
IDL_KWProcessByOffset() function, has the following advantages:

The old API remainsin place with full functionality. Hence, you are not
required to update your old code (There are benefits to such updating,
however).

A transitional API, build around the IDL_ KW ProcessByAddr () function,
exists to help ease updating your code. See “The Transitional API” on

page 295 for details. The transitional API is a halfway measure designed to
solve the worst problems of the old API while requiring the minimum amount
of change.

The new API, and the transitional API both eliminate the confusing
IDL_KWCleanup() routine and its requirement to KW_MARK before, and
KW_CLEAN after keyword processing based on the types of the keywords.
Instead, the keyword processing API keeps track of the need to cleanup itself,
and handles this efficiently. The user is freed from guesswork about how and
when to do the required cleanup.

Keyword cleanup will only happen if the keyword module determinesthat it is
necessary as it processes the actual keywords used. Thisis more efficient, and

External Development Guide The Pre-IDL 5.5 Keyword API

294

Chapter 12: IDL Internals: Keyword Processing

it can be easily extended within IDL if anew datatypeis added tothe IDL
system, without requiring any change to your code.

Theinternal data structures used to maintaining keyword state are now
dynamically allocated, and do not have the static limits that the old
implementation did.

The new API is able to process keywords using a re-entrant keyword
description. Results are written to stack based (C auto) variables rather than
stetically defined variables. This can be used to greatly ssimplify the
implementation of recursive system routines, and has been used extensively
for that purpose within IDL.

Differences And Similarities Between APIs

The current IDL keyword processing APl was designed to minimize the changes
necessary to convert existing older code. The differences and similarities between
these APIs are summarized below:

Thebasic IDL_KW_PAR data structure is unchanged between the two.
However, in the old API, the specified, and value fields are addresses to
statically allocated C variablesor IDL_KW_ARR_DESC structures. In the
new API, specified is always an offset into a user defined KW_RESULT
structure. The value field is an offset into KW_RESULT when it isused to
refer to data. It is an address when used to refer to an
IDL_KW_ARR_DESC_R structure.

Theold APl usesthe IDL_KW_ARR_DESC structure to define
IDL_KW_ARRAY read-only arrays. The new APl usesthe very similar
IDL_KW_ARR_DESC R structure. Thisis necessary because
IDL_KW_ARR_DESC is not reentrant (the number of array elementsusedis
written into the struct), while IDL_KW_ARR_DESC_R causes them to be
written into afield inthe KW _RESULT variable instead.

The new API requires all keyword variables to be contained in asingle
KW_RESULT structure, while the old API alowed them to be independent
variables. Thisisimportant to the offset-based scheme used in the new API, as
well as having the nice side effect of improving the organization and
readability of most code.

The old APl uses IDL_KWGetParams() to process keywords. The new AP
uses IDL_KWProcessByOffset().

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 295

Theold API uses IDL_KWCleanup() to free resources. The rules for using it
are complicated and lead to latent coding errors. The new APl uses the
IDL_KW_FREE macro, and has asimple consistent rule for use.

Converting Existing Code To The New API

To convert code that uses the old API to the new version:

Define atypedef for a struct named KW_RESULT, containing the keyword
variables. Make the first field be the predefined
IDL_KW_RESULT_FIRST_FIELD.

Modify your keyword definition list so that the specified and value fields of
each IDL_KW_PAR struct contain offsets instead of addressesin all cases
except when the value field referencesan IDL_KW_ARR_DESC struct. To
do this, usethe IDL_KW_OFFSETOF() macro.

Any referencetoan IDL_KW_ARR_DESC structure for an
IDL_KW_ARRAY keyword must be converted to an
IDL_KW_ARR_DESC R struct.

Replace the call to IDL_KWGetParams() with acall to
IDL_KWProcessByOffset().

Remove any IDL_KWCleanup(IDL_KW_MARK) calls.

Replace any IDL_KWCleanup(IDL_KW_CL EAN) callswith the
IDL_KW_FREE macro. Check to ensure that all exit paths from your
function other than vial DL _M essage() include a call to this macro.

The Transitional API

RSI recommends that your convert your code to the reentrant keyword API based
around the IDL_KWProcessByOffset() and IDL_KWFreg() functions. Thisis
almost always a straightforward operation, and the resulting code has all of the
advantages discussed in “Advantages Of The IDL 5.5 API” on page 293. However,
there is another aternative that may be useful is some situations. A third keyword
API, built around the IDL_ KWProcessByAddr () function exists that provides the
benefits of eliminating the confusing IDL_K W Cleanup() function, while not
requiring the use of static non-reentrant separate variables to change. The transitional
API isahafway measure designed to solve the worst problems of the old APl while
requiring the minimum amount of change to your code:

int IDL_ KWProcessByAddr (int argc, IDL VPTR *argv, char *argk,

IDL KW PAR *kw list, IDL VPTR *plain args,

External Development Guide The Pre-IDL 5.5 Keyword API

296 Chapter 12: IDL Internals: Keyword Processing

int mask, int *free required)

void IDL_ KWFree (void)

where:
argc, argv, argk, plain_args, mask

These arguments are the same as those required by IDL_ KW ProcessByOffset()
kw_list

Anarray of IDL_KW_PAR structures, in the absolute address form required by the
old IDL_KWGetParams() keyword API (the specified and value fields use address
to static C variables).

free_required

The address of an integer to befilled in by IDL_KWProcessByAddr (). If set to
TRUE, the caller must call IDL_KWFreg() prior to exit from the routine.

Example: Converting From The Old Keyword API

To illustrate the use of the old keyword API, the transitional API, and the new
reentrant AP, this section provides an extremely simple example, written three
times, once with each API.

Another useful comparison isto compare the example “Keyword Examples’ on
page 285 with its original version written with the old API which can be found in
“Keyword Examples’ on page 532.

Old API

IDL _VPTR IDL_ someroutine (int argc, IDL VPTR *argv, char *argk)
{
static IDL_VPTR count_var;
static IDL_LONG debug;
static IDL_STRING name;
static IDL KW PAR kw pars[] = {
{ "couNT", 0,1,IDL_KW OUT|IDL_KW ZERO,0,IDL_CHARA (count var)},
{ "DEBUG", IDL_TYP LONG, 1, IDL_KW ZERO, 0,IDL CHARA (debug) },
{ "NAME", IDL TYP STRING, 1, IDL KW _ZERO, 0,IDL_CHARA(name) },
{ nuLL }
}i

IDL VPTR result;

IDL_KWCleanup (IDL_KW_MARK) ;

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 297

argc = IDL KWGetParams (argc,argv,argk,kw pars, (IDL VPTR *)0,1);

/* Your code goes here. Keyword values are available in the
* static variables.*/

/* Cleanup keywords before leaving */
IDL_KWCleanup (IDI,_KW_CLEAN) ;
return (result) ;

}
Transitional API

Thetransitional API provides the benefits of simplified and straightforward cleanup,
but does not require you to alter your IDL_KW_PAR array or gather the keyword
variables into a common structure. The resulting code is very similar to the old API.

IDL VPTR IDL_someroutine (int argc, IDL_VPTR *argv, char *argk)
{
static IDL_VPTR count_var;
static IDL LONG debug;
static IDL_STRING name;
static IDL KW PAR kw pars[] = {
{"counT", 0, 1, IDL_KW OUT|IDL_KW_ZERO,
0, IDL_KW_ADDROF (count_var) },
{ "DEBUG", IDL_TYP LONG,1,IDL KW ZERO,0,IDL KW ADDROF (debug) },
{ "NAME", IDL_TYP_ STRING,1,IDL KW ZERO,0,IDL KW ADDROF (name) },
{ NnULL }

}i

int kw_free;
IDL_VPTR result;

argc = IDL KWProcessByAddr (argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw free);

/* Your code goes here. Keyword values are available in the
* gtatic variables.*/

/* Cleanup keywords before leaving */
if (kw_free) IDL KWFree();

return (result) ;

}
New Reentrant API

IDL VPTR IDL_someroutine (int argc, IDL_VPTR *argv, char *argk)

{

typedef struct {

External Development Guide The Pre-IDL 5.5 Keyword API

298 Chapter 12: IDL Internals: Keyword Processing

IDL KW _RESULT_ FIRST FIELD; /* Must be first entry in struct */
IDL_VPTR count_var;
IDL LONG debug;
IDL_STRING name;
} KW_RESULT;
static IDL KW_PAR kw_pars[] = {
{ ncounT", 0, 1, IDL KW OUT | IDL KW ZERO,
0, IDL_ KW OFFSETOF (count var) },
{ "DEBUG", IDL TYP LONG, 1, IDL KW ZERO,
0, IDL_KW OFFSETOF (debug) },
{ "NAME", IDL TYP STRING, 1, IDL_KW ZERO,
0, IDL_KW_OFFSETOF (name) },
{ nULL }

bi

KW_RESULT kw;
IDL_VPTR result;

argc = IDL KWProcessByOffset (argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw);

/* Your code goes here. Keyword values are available in the
* kw struct.*/

/* Cleanup keywords before leaving if necessary */
IDL_KW_FREE;

return (result) ;

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 13

IDL Internals:

Variables

This chapter discusses the following topics:

IDL and Internal Variables 300
ThelDL_VARIABLE Structure 301
Scalar Variables 304
Array Variables 305
Structure Variables. 307
Heap Variables 312
Temporary Variables 313

Creating an Array from Existing Data. . . . 320

External Development Guide

Getting Dynamic Memory 322
Accessing VariableData. 324
Copying Variables 325
Storing Scalar Values 326
Obtaining the Name of aVariable 328
Looking Up Main Program Variables ... 329
Looking Up Variablesin Current Scope . 330

299

300 Chapter 13: IDL Internals: Variables

IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. While
reading this chapter, you should refer to the following figure to see how each part fits
into the overall structure of an IDL variable.

32-bit Assoc offset

IDL_MEMINT et_len
IDL_MEMINT ar_len
IDL_MEMINT n_ets
Imported Data g UCHAR *data
UCHAR n_dim
UCHAR type Normal UCHAR flags
UCHAR flagy case short file_unit
IDL_ARRAY_DIM dim
IDL_ALLTYPESvaug <union> IDL_ARRAY_FREE CB free cb
IDL_FILEINT offset
UCHAR c IDL_LONG data_guard
IDL_INT i v—»
UINT Ui Usually, datafollowed by a
IDL_LONG | trailing data guard.
IDL_ULONG ul
IDL_LONG64 164 A
IDL_ULONG ul64
float f
double d
IDL_COMPLEX <struct>
cmp float r
float i
IDL_DCOMPLEX <struct>
dcmp double r
double i
IDL_STRING <struct>
str IDL_STRING_SLEN|T den
short stypel
char *s
IDL_ARRAY *ar |
IDL_HVID hvid
IDL_ SREF s <dtruct>
IDL_ARRAY *arr —p-
IDL_STRUCTURE *sdef —»
Structures and object

definitions (opague)

Figure 13-1: Structure of an IDL variable

IDL and Internal Variables External Development Guide

Chapter 13: IDL Internals: Variables 301

The IDL_VARIABLE Structure

IDL variables are represented by IDL_VARIABLE structures. The definition of
IDL_VARIABLE isasfollows:

typedef struct ({
UCHAR type;
UCHAR flags;
IDL_ALLTYPES value;
} IDL VARIABLE;

AnIDL_VPTR isapointer to an IDL_VARIABLE structure:
typedef IDL VARIABLE *IDL VPTR;

ThelDL_ALLTYPESunionisdefined as:

typedef union {

UCHAR c; /* Scalar IDL_TYP BYTE */

IDL_INT 1i; /* Scalar IDL_TYP_ INT */

IDL_UINT ui; /* Unsigned short integer value */
IDL LONG 1; /* Scalar IDL_TYP LONG */

IDL ULONG ul; /* Unsigned long value */

IDL LONG64 164; /* 64-bit integer value */

IDL ULONG64 ulé64; /* Unsigned 64-bit integer value */
float f; /* Scalar IDL_TYP FLOAT */

double d; /* Scalar IDL_TYP_DOUBLE */

IDL COMPLEX cmp; /* Scalar IDL_TYP COMPLEX */
IDL_DCOMPLEX dcmp; /* Scalar IDL_TYP DCOMPLEX */

IDL STRING str; /* Scalar IDL_TYP STRING */

IDL ARRAY *arr; /* Pointer to array descriptor */
IDL_SREF s; /* Structure descriptor */
IDL_HVID hvid; /* Heap variable identifier */

}IDL ALLTYPES;

The basic scalar types are contained directly in this union, while arrays and structures
arerepresented by the IDL_ARRAY and IDL_SREF structures that are discussed
later in this chapter. The typefield of the IDL_VARIABL E structure contains one of
the type codes discussed in “ Type Codes’ on page 262. When avariableisinitially
created, it is given the type code IDL_TY P_UNDEF, indicating that the variable
contains no value.

Theflagsfield is abit mask that specifies information about the variable. Asa
programmer adding code to the IDL system, you will rarely need to set bitsin this
mask. These bits are set by whatever portion of IDL created the variable. You can
check them to make sure the characteristics of the variable fit the requirements of
your routine (see “Checking Arguments’ on page 349).

External Development Guide The IDL_VARIABLE Structure

302 Chapter 13: IDL Internals: Variables

The defined bitsin the mask are:

IDL_V_CONST

If thisflag is set, the variable is actually a constant. This means that storage for the
IDL_VARIABLE residesinside the code section of the user procedure or function
that used it. The IDL compiler generates such IDL_VARIABL Eswhen an
expression involving a constant occurs. For example, the IDL statement:

PRINT, 23 * A

causes the compiler to generate a constant for the “23”. You must not change the
value of thistype of “variable”.

IDL_V_TEMP

If thisflag is set, the variable is atemporary variable. IDL maintains a pool of
nameless IDL_VARIABL Esthat can be checked out and returned as needed. Such
variables are used by the interpreter to temporarily store the results of expressions on
the stack. For example, the statement:

PRINT, 2 * 3
will cause the interpreter to go through a sequence of events similar to:
1. Push aconstant variable for the 2 on the stack.
2. Push aconstant variable for the 3 on the stack.

3. Allocate atemporary variable, pop the two constants from the stack, perform
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.
Call the PRINT system procedure specifying one argument.

6. Remove the argument to PRINT from the stack, and return the temporary
variable.

Temporary variables are also used inside user procedures and functions. See
“Temporary Variables” on page 313.

IDL_V_ARR

If thisflag is set, the variable is an array, and the value field of the IDL_VARIABLE
pointsto an array descriptor.

IDL_V FILE
If thisflag is set, the variable is afile variable, as created by IDL's ASSOC function.

The IDL_VARIABLE Structure External Development Guide

Chapter 13: IDL Internals: Variables 303

IDL_V_DYNAMIC

If thisflag is set, the memory used by thisIDL_VARIABLE is dynamically
allocated. Thishit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced viathe string pointer is
dynamic).

IDL_V_STRUCT

If thisflag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons, all
structure variables are also arrays, so IDL_V_STRUCT dsoimpliesIDL_V_ARR.
Therefore, it isimpossible to have a scalar structure. However, single-element
structure arrays are gquite common.

Because structure variables have their typefield set to IDL_TYP_STRUCT, the
IDL_V_STRUCT bit isredundant. It exists for efficiency reasons.

External Development Guide The IDL_VARIABLE Structure

Scalar Variables

Chapter 13: IDL Internals: Variables

A scalar IDL_VARIABLE isdistinguished by not having theIDL_V_ARR bit set
initsflagsfield. A scalar variable must have one of the basic data types (IDL
structures are never scalar) shown in Table 13-1. The datafor ascalar variableis
storedinthe IDL_VARIABLE itself, usingthe IDL_ALLTYPESunion. The
following table gives the relationship between the data type and the field used.

Scalar Data Type

Field that Stores

Data

IDL_TYP_UNDEF None.
IDL_TYP BYTE vauec
IDL_TYP_INT vauei
IDL_TYP_UINT value.ui
IDL_TYP_LONG valuel
IDL_TYP_ULONG vaue.ul
IDL_TYP_LONG64 value64
IDL_TYP_ULONG64 value.ul64
IDL_TYP_FLOAT valuef
IDL_TYP _DOUBLE valued
IDL_TYP_COMPLEX value.cmp
IDL_TYP_DCOMPLEX value.dcmp
IDL_TYP_STRING value.str
IDL_TYP_PTR valuehvid
IDL_TYP_OBJ value.hvid

Table 13-1: Scalar Variable Data Locations

Scalar Variables

External Development Guide

Chapter 13: IDL Internals: Variables 305

Array Variables

Array variables have the IDL_V_ARR bit of their flags field set, and the value.arr
field pointsto an array descriptor defined by the IDL_ ARRAY structure:

typedef IDL_MEMINT IDL ARRAY DIM[IDL MAX ARRAY DIM] ;

typedef struct {
IDL,_MEMINT elt len;
IDL_ MEMINT arr len;
IDL_MEMINT n_elts;
UCHAR *data;
UCHAR n_dim;
UCHAR flags;
short file unit;
IDL_ARRAY DIM dim;
} IDL ARRAY;

The meaning of the fields of an array descriptor are:
elt_len

The length of each array element in bytes (chars). The array descriptor does not keep
track of the types of the array elements, only their lengths. Single elements can get
guite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align the
data along required boundaries. On a given platform, IDL creates structures the same
way a C compiler does on that platform. As aresult, you should not assume that the
size of astructure isthe sum of the sizes of the structurefields, or that the field offsets
arein specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts
The number of elementsin the array.
data

A pointer to the data area for the array. Thisisaregion of dynamically allocated
memory arr_len byteslong. This pointer should be cast to be a pointer of the correct

External Development Guide Array Variables

306 Chapter 13: IDL Internals: Variables

type for the data being manipulated. For example, if the array variable being
processed ispointed at by an IDL_VPTR named v and contains IDL_TYP_INT

data:
IDL_INT *data; /* Declare a pointer variable */
data = (IDL_INT *) v->value.arr->data;
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

flags

A bit mask that specifies characteristics of the array. Allowed values are:

IDL_A_FILE — Thisflag indicates that the array is afile variable, as created
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The datafield of the
IDL_ARRAY structure does not contain useful information, and should not be
used.

IDL_A_PACKED — If array isan IDL_A_FILE variable and the datatypeis
IDL_TYP_STRUCT, then Input/Output to this struct should use a packed data
layout compatible with WRITEU instead of being a direct mapping onto the
struct (which reflects the C compiler layout of the structure including its
alignment holes).

file_unit

WhentheDL_A_FILE bitisset in the flagsfield, file_unit contains the IDL
Logical Unit Number associated with the variable.

dim

An array that contains the dimensions of the IDL variable. There can be up to
IDL_MAX_ARRAY_DIM dimensions. The number of dimensionsin the current
array isgiven by then_dim field.

Array Variables External Development Guide

Chapter 13: IDL Internals: Variables 307

Structure Variables

Structure variables have the type code IDL_TYP_STRUCT. They aso have the
IDL_V_STRUCT bhit set in their flags field. The value.sfield of such avariable
contains a structure descriptor defined by the IDL _SREF structure:

typedef struct ({

IDL_ARRAY *arr; /* ~ to IDL_ARRAY containing data */
void *sdef; /* * to structure definition */
} IDL SREF;

Thearr field points at an array block, as described in “Array Variables’ on page 305.
It isworth noting that in the definition of the IDL_ALLTYPES union (described in
“The IDL_VARIABLE Structure” on page 301), the arr field is a pointer to
IDL_ARRAY, whilethe sfield isan IDL_SREF, a structure that contains a pointer
to IDL_ARRAY asitsfirst member.

The resulting definition looks like:

union
IDL ARRAY arr;
struct {
IDL_ARRAY arr;
void *sdef;
} s
} value;
Dueto theway C lays out fields in structs and unions, value.arr will have the same
offset and size within the value union as value.s.arr. Therefore, it is possible to
access the array block of a structure variable as var->value.arr rather than the more
correct var->value.s.arr. You should avoid use of this shorthand, however, because
itisnot strictly correct usage and because RSI reserves the right to change the
IDL_SREF definition in away that could cause the memory layout of the
ALLTY PES union to change.

Creating Structures

The actual structure definition is accessed through the sdef field, which isapointer to
an opaque IDL structure definition. Although the implementation of structure
definitionsis not public information, they can be created using the
IDL_MakeStruct() function from a structure name and alist of tags:

void *IDL_MakeStruct (char *name, IDL STRUCT TAG DEF *tags)

External Development Guide Structure Variables

308 Chapter 13: IDL Internals: Variables

name

The name of the structure definition, or NULL for anonymous structures.
tags

Anarray of IDL_STRUCT_TAG_DEF elements, one for each tag.

The result from this function can be passed to IDL_ImportArray() or
IDL_ImportNamedArray(), as described in “Creating an Array from Existing
Data’ on page 320.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct ({
char *name;
IDL_MEMINT *dims;
void *type;
UCHAR flags;

} IDL_STRUCT TAG DEF;

name
Null-terminated uppercase name of the tag.
dims

An array that contains information about the dimensions of the structure. The first
element of thisarray isthe number of dimensions. Following elements contain the
size of each dimension.

type
Either a pointer to another structure definition, or asimple IDL type code cast to void
(e.g., (void *) IDL_TYP_BYTE).

flags

A bit mask that specifies additional characteristics of the tag. Allowed values are:

IDL_STD_INHERIT — Type must be IDL_TYP_STRUCT. Thisflag
indicates that the structure is inherited (inlined) instead of making it a sub-
structure as usual .

The following example shows how to define an anonymous structure. Suppose that
you want to create a structure whose definition in the IDL languageis:

{TAG1: 0L, TAG2: FLTARR(2,3,4), TAG3: STRARR(10)}

Structure Variables External Development Guide

Chapter 13: IDL Internals: Variables 309

It can be created with IDL_M akeStruct() asfollows:

static IDL_MEMINT one = 1;

static IDL MEMINT tag2 dims([] = { 3, 2, 3, 4};
static IDL MEMINT tag3 dims[] = { 1, 10 };
static IDL_STRUCT TAG DEF s tags[] = {

{ "TAG1", 0, (void *) IDL_TYP LONG},
{ "TAG2", tag2 dims, (void *) IDL_TYP FLOAT},
{ "TAG3", tag3_dims, (void *) IDL TYP STRING},
{o}

}i

typedef struct data struct {
IDL_LONG tagl data;
float tag2 _data [4] [3] I[2];
IDL _STRING tag 3 data [10];

} DATA STRUCT;

static DATA STRUCT s_data;

void *s;

IDL VPTR v;

/* Create the structure definition */
s = IDL MakeStruct (0, s_tags);
/* Import the data area s_data into an IDL structure,
note that no data are moved. */
v = IDL_ImportArray(l, &one, IDL TYP_STRUCT,
(UCHAR *) &s_data, 0, s);

Accessing Structure Tags

Given an opaque IDL structure definition, you can determine the offset of the data
and a description of its size and form (scalar, array, etc) for a given tag.
IDL_StructTaglnfoByName() returns this information given the name of the tag.
IDL_StructTagl nfoByl ndex() does the same thing, given the numeric index of the
tag. They are essentially the same routine, although IDL _StructTagl nfoByl ndex()
is dightly more efficient:

IDL_MEMINT IDL StructTagInfoByName (IDL_ StructDefPtr sdef,
char *name, int msg action,
IDL_VPTR *var)
IDL_MEMINT IDL StructTagInfoByIndex (IDL_StructDefPtr sdef,
int index,int msg action,
IDL_VPTR *var)

where:
sdef

Structure definition for which offset is needed.

External Development Guide Structure Variables

310 Chapter 13: IDL Internals: Variables

name (IDL_StructTaginfoByName)

Name of tag for which information is required.
index (IDL_StructTagInfoBylndex)

Zero based index of tag for which information is required.
msg_action

The parameter that will be passed directly to IDL_M essage() if the specified tag
cannot be found in the supplied structure definition.

var

NULL, or the address of an IDL_VPTR to befilled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the resulting
call to IDL_Message() returnsto the caller, a-1 isreturned. The data offset can be
added to the data pointer of an IDL variable of this structure type to obtain a pointer
to the actual datafor that tag.

If thetag is successfully located and the var argument isnon-NULL, theIDL_VPTR
it pointsat isfilled in with apointer to an IDL_VARIABLE structure that describes
the type and organization of the tag. It isimportant to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array tag, a
valid data pointer). Hence, the data part of the IDL_VARIABL E description should
beignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition hasin order to make
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int IDL_ StructNumTags (IDL StructDefPtr sdef)

where:
sdef

Structure definition for which offset is needed.

Structure Variables External Development Guide

Chapter 13: IDL Internals: Variables 311

Determining the Names Of Structures and their Tags

The DL _StructTagNameBylI ndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *IDL_StructTagNameByIndex (IDL StructDefPtr sdef, int index,
int msg_action, char **struct_name)

where:
sdef

Structure definition for which name information is needed.
index

Zero based index of tag within the structure.
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to be filled in with a pointer to
the name of the structure. If the structure is anonymous, the string “<Anonymous>”
is returned.

On success, a pointer to the tag name is returned. On error, if the resulting call to
IDL_Message() returnsto the caller, aNULL pointer is returned.

All strings returned by this function must be considered read-only, and must not be
modified by the caller.

External Development Guide Structure Variables

312 Chapter 13: IDL Internals: Variables

Heap Variables

Direct accessto pointer and object reference heap variables (typesIDL_TYP_PTR
and IDL_TYP_OBJREF, respectively) is not allowed. Rather than accessing the heap
variable directly, store the value of the heap variable (an IDL pointer or object
reference) inaregular IDL variable at the IDL user level. Accessthe datain the regular
variable, then store the results back in the heap variable (via the pointer or object
reference) when done.

Note
You can use IDL’'s TEMPORARY function to avoid making copies of the data.

Heap Variables External Development Guide

Chapter 13: IDL Internals: Variables 313

Temporary Variables

Asdiscussed previously, IDL maintains a pool of nameless variables known as
temporary variables. These variables are used by the interpreter to hold temporary
results from evaluating expressions, and are aso used within system procedures and
functions that need temporary workspace. In addition, system functions often obtain
atemporary variable to return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

e All temporaries, when initially allocated, are of type IDL_TYP_UNDEF.
e Temporary variables do not have a name associated with them.

« Routines that check out temporaries must either check them back in or return
them as the result of the function. Once you return atemporary variable, you
cannot access it again.

e Temporary variables are reclaimed by the interpreter when it is about to exit
after executing a program, so it is not possible to lose them and leak dynamic
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If your routine exits by issuing an
IDL_MSG _LONGIMPor IDL_MSG_I0_LONGJIMP error via
IDL_Message() however, allocated temporaries are expected, and are
reclaimed quietly. Hence, your routines need only return temporaries on
normal return, and not before issuing errors. See “IDL Internals: Error
Handling” on page 339.

The interpreter uses temporary variables to hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack where
they are often passed as arguments to other routines. For example, the IDL statement:

PRINT, MAX (FINDGEN(100))
causes the interpreter to perform the following steps:
1. Push aconstant variable with the value 100 onto the stack.
Call the system function FINDGEN, passing it one argument.

FINDGEN returns atemporary variable which is a 100-element vector with
each element set to the value of its index.

4. Theinterpreter removes the arguments to FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack.

External Development Guide Temporary Variables

314

Chapter 13: IDL Internals: Variables

5. The MAX system function is called with a single argument—the temporary
result from FINDGEN.

6. MAX findsthe largest element in its argument (99), places that valueinto a
temporary scalar variable, and returns that temporary variable asits result.

7. Theinterpreter removes the argument to MAX from the stack. This was the
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX isthen pushed onto the

stack.

8. ThePRINT system procedure is called with a single argument, which is the
temporary scalar variable from MAX. It prints the value of the variable and

returns.

9. Theinterpreter removes the argument to PRINT from the stack, and returnsiit
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained viathe IDL _Gettmp() function:

IDL VPTR

IDL_Gettmp (void) ;

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to atemporary
variable. This variable must be returned to the pool of temporary variables (with a
call toIDL_Deltmp()) or bereturned as the value of a system function before control
returns to the interpreter, or an error will occur.

A number of variantson IDL_Gettmp() exist, as convenience routines for creating
temporary scalar variables of a given type and value. In all cases, the valueis
supplied as the sole argument, and the resulting type is indicated by the name of the

routine:

IDL _VPTR
IDL VPTR
IDL _VPTR
IDL _VPTR
IDL_VPTR
IDL_VPTR

IDL GettmpInt (IDL INT value) ;

IDL GettmpUInt (IDL UINT value);

IDL GettmpLong (IDL LONG value) ;

IDL GettmpULong (IDL_ULONG value) ;
IDL_GettmpFILEINT (IDL_FILEINT value) ;
IDL_GettmpMEMINT (IDL_MEMINT value) ;

Creating a Temporary Array

Temporary array variables can be obtained viathe IDL_MakeTempArray()

function:

char *IDL MakeTempArray (int type, int n dim, IDL MEMINT dim[],

Temporary Variables

External Development Guide

Chapter 13: IDL Internals: Variables 315

int init, IDL VPTR *var)

where:
type

The type code for the resulting array. See “ Type Codes’ on page 262.
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

dim

Anarray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init

Specifies the sort of initialization that should be applied to the resulting array. The
init argument must be one of the following:

e IDL_ARR_INI_INDEX — Each element of the array is set to the value of its
index. The INDGEN family of built-in system functions isimplemented using
this feature.

e IDL_ARR_INI_NOP — Noinitiaization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.
Experience has shown that IDL_TYP_STRING data should never be | eft
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore, IDL_TYP_STRING datais zeroed when
IDL_ARR_INI_NOP is specified.

e IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

The dataareaof an array IDL_VARIABLE isaccessiblefromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_MakeTempArray() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated vial DL_MakeTempArray()
must be returned to the pool of temporary variables or be returned as the value of a
system function before control returns to the interpreter, or an error will occur.

External Development Guide Temporary Variables

316 Chapter 13: IDL Internals: Variables

Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempVector () function:

char *IDL MakeTempVector (int type, IDL MEMINT dim, int init,
IDL_VPTR *var) where:

type, init, var

These arguments are the same asfor IDL_M akeTempArray().
dim

The number of elements in the resulting vector.

Creating a Temporary Structure

TheIDL_MakeTempStruct() allows you to create an IDL structure variable using
memory alocated by IDL, in much the same way that IDL_MakeStruct() and
IDL_ImportArray() allow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained viathe
IDL_MakeTempStruct() function:

char *IDL MakeTempStruct (IDL_StructDefPtr sdef, int n dim,
IDL_MEMINT dim[], IDL_VPTR *var, int zero)

where:
sdef

A pointer to the structure definition.
n_dim

The number of structure dimensions. The constant IDL_MAX_ARRAY_DIM
defines the upper limit of this value.

dim

A Carray of IDL_MAX_ARRAY_DIM elements containing the structure
dimensions. The number of dimensionsin the array is given by the n_dim argument.

Temporary Variables External Development Guide

Chapter 13: IDL Internals: Variables 317

var
The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

Thedataareaof an array IDL_VARIABLE isaccessiblefromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_MakeTempStruct() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable alocated vial DL _MakeTempStr uct()
must be returned to the pool of temporary variables (with acall to IDL_Deltmp()) or
be returned as the value of a system function before control returns to the interpreter,
or an error will occur.

Zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FALSE
otherwise. Unless the caller intends to immediately copy avalid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempStructVector () function:

char *IDL_MakeTempStructVector (IDL_StructDefPtr sdef, IDL_MEMINT
dim,
IDL VPTR *var, int zero)

where:
sdef, var, zero

These arguments are the same asfor IDL _M akeTempStruct().
dim

The number of elements in the resulting vector.

Creating A Temporary Variable Using Another
Variable As A Template

It is common to want to create atemporary variable with aform that mimics that of a
variable you already have access to. Often, such atemporary variable has the same
number of elements and dimensions, but may vary in type. It is possible to do this by

External Development Guide Temporary Variables

318

Chapter 13: IDL Internals: Variables

using the basic temporary variable creation routines discussed earlier in this chapter,
but the resulting code will be complex, and this sort of code occurs frequently. The
best way to create such avariable is using the
IDL_VarMakeTempFromTemplate() function.

IDL_VarMakeTempFromTemplate() creates atemporary variable of the desired
type, using the template_var argument to specify its dimensionality. The address of
thistemporary variable is stored at the address specified by theresult_addr
argument. The address of the start of this variable’'s data area is returned as the value
of the function.

char *IDL VarMakeTempFromTemplate (IDL_VPTR template var,int type,
IDL_StructDefPtr sdef,
IDL _VPTR *result_addr, int zero) ;

where:

template_var

Source variable to take dimensionality from. This can be ascalar or array of any type.

type

The IDL type code for the desired temporary variable.

sdef

NULL, or apointer to a structure definition. This argument isignored if typeis not
IDL_TYP_STRUCT. If typeisIDL_TYP_STRUCT, sdef suppliesthe structure
definition for the result. It isan error to specify aresult typeof IDL_TYP_STRUCT
without providing avalue for sdef, with one exception: If typeis
IDL_TYP_STRUCT andtemplate var isavariableof IDL_TYP_STRUCT, and
sdef isNULL, then IDL_Var M akeTempFromTemplate() will use structure
definition of template var.

result_addr

Address of IDL_VPTR to receive a pointer to the newly allocated temporary
variable.

Zero

TRUE if the resulting variable should be zeroed, and FAL SE to not do this. Variables
of IDL_TYP_STRING, and structure types that contain strings, are always zeroed.

Temporary Variables External Development Guide

Chapter 13: IDL Internals: Variables 319

Freeing A Temporary Variable

UseIDL_Detmp() to free atemporary variable:
void IDL Deltmp (IDL_VPTR p)

wherep isan IDL_VPTR to the temporary variable to be returned. IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deallocated atemporary
variable, you may not accessit again. Thereisaso amacro named IDL_DELTMP
which checksits argument to make sure it’s atemporary, and if so, calls
IDL_Deltmp() to return it.

External Development Guide Temporary Variables

320 Chapter 13: IDL Internals: Variables

Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose data
points at data you supply rather than having IDL allocate the data space. The routine
IDL_ImportArray() returns atemporary variable, while
IDL_ImportNamedArray() returns anamed variablein the current execution scope,
creating the new variable if necessary. Your data must already exist in memory. The
data area, which can be quite large, is not copied. These functions simply create
variable and array descriptors that point to the data you supply and return the pointer
to the resulting variable. Their definitions are:

IDL VPTR IDL_ImportArray(int n_dim, IDL_MEMINT dim[], int type,
UCHAR *data, IDL ARRAY FREE CB free cb, void *s)

IDL _VPTR IDL_ ImportNamedArray (char *name, int n dim,
IDL, MEMINT dim[], int type, UCHAR *data,
IDL ARRAY FREE CB free cb, void *s)

typedef void (* IDL ARRAY FREE CB) (UCHAR *);

where:
name
The name of the variable to be created or modified.
n_dim
The number of dimensionsin the array.
dim
Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type
The IDL type code describing the data. See “ Type Codes’ on page 262.
data

A pointer to your array data. Your datawill not be modified unless the user explicitly
modifies elements of the array using subscripts.

Creating an Array from Existing Data External Development Guide

Chapter 13: IDL Internals: Variables 321

Thetemporary variablereturned by IDL_ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can also be
assigned to alonger-lived variable using I DL _Var Copy().

Note
IDL frees only the memory that it allocates for the descriptors, not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using the free_cb argument, described below.

free_cb

If non-NULL, free_cb isapointer to afunction that will be called when IDL freesthe
array. This feature gives the caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such as
freeing dynamic memory or releasing shared or mapped memory. The called function
should have no return value and should accept asits argument a (uchar *), whichisa
pointer to the memory to be freed.

If the type of thevariableisIDL_TYP_STRUCT, s points to the opaque structure
definition, as returned by IDL_MakeStruct().

External Development Guide Creating an Array from Existing Data

322 Chapter 13: IDL Internals: Variables

Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In the
C language, the functions malloc() and free() are used for this purpose, while other
languages have their own facilities. IDL providesits own memory allocation routines
(see “Dynamic Memory” on page 400). Use of such facilities within the IDL
interpreter and the system routines can lead to the loss of usable dynamic memory.
The following code fragment demonstrates how this can happen.

For example, assume that there isaneed for 100 IDL_L ONG integers:

char *c;

¢ = (char *) IDL MemAlloc((unsigned) (sizeof (IDL LONG) * 100)
(char *) 0, IDL_MSG RET);

if (some error condition) IDL Message(.., IDL MSG LONGJMP,..) ;

IDL_MemFree((void *) ¢, (char *) 0, IDL_MSG_RET) ;

In the normal case, the allocated memory isreleased exactly asit should be.
However, if an error causesthe IDL_M essage() function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean up.
The dynamic memory allocated will therefore leak, and athough it will continue to
occupy space in the IDL processes, will not be used again.

The IDL_GetScratch Function

To solve this problem, use atemporary variable to obtain dynamic memory. Then, if
an error should cause execution to return to the interpreter, the interpreter will
reclaim the temporary variable and no dynamic memory will be lost. This frequently-
needed operation is provided by the IDL_GetScratch() function:

char *IDL_GetScratch(IDL_VPTR *p, IDL_MEMINT n_elts,
IDL_MEMINT elt size)

where:

The address of an IDL_VPTR that should be set to the address of the temporary
variable all ocated.

Getting Dynamic Memory External Development Guide

Chapter 13: IDL Internals: Variables 323

n_elts
The number of elements for which memory should be allocated.
elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned using the
IDL_Deltmp() function. Using these functions, the above example becomes:

char *c;
IDL VPTR v;

¢ = IDL GetScratch(&v, 100L, (IDL_LONG) sizeof (IDL LONG)) ;

if (some error condition) IDL Message(...,MSG LONGJMP, ...);

IDL Deltmp (V) ;

Using the IDL_GetScratch() and IDL_Deltmp() functionsis similar to using
IDLMemAlloc() directly. Infact, IDL usesIDL_MemAlloc() and IDL_MemFreg()
internally to implement array variables. The important difference is that dynamic
memory doesn’t leak when error conditions occur.

To avoid losing dynamic memory, aways use the IDL_GetScratch() functionin
preference to other ways of alocating dynamic memory, and use IDL_Deltmp() to
return it.

External Development Guide Getting Dynamic Memory

324 Chapter 13: IDL Internals: Variables

Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elements
there are. IDL_Var GetData() can be used to obtain thisinformation:

void IDL VarGetData (IDL VPTR v, IDL MEMINT *n, char **pd,
int ensure_simple)

where:
The variable for which datais desired.

The address of avariable that will hold the number of e ements.

pd

The address of variable that will hold apointer to data, cast to be apointer to a pointer
to acharacter (for example (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe|IDL_ENSURE_SIM PL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

On exit, IDL_Var GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

Accessing Variable Data External Development Guide

Chapter 13: IDL Internals: Variables 325

Copying Variables

To copy the contents of one variable to another, use the IDL_Var Copy() function:
void IDL VarCopy (IDL VPTR src, IDL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_VarCopy() uses the following rules when copying variables:

e |f the destination variable already has a dynamic part, this dynamic part is
released.

¢ The destination becomes a copy of the source.

« If the sourceisatemporary variable, IDL_Var Copy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic part of
the source is given to the destination, and the source variable itself is returned
to the pool of free temporary variables. Thisis the equivalent of freeing the
temporary variable. Therefore, the variable must not be used any further and
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
specia case occurs frequently.

External Development Guide Copying Variables

326 Chapter 13: IDL Internals: Variables
Storing Scalar Values

The DL _StoreScalar () function setsan IDL_VARIABLE to ascalar value:

void IDL_ StoreScalar (IDL_VPTR dest, int type,
IDL ALLTYPES *value)

where:

dest

AnIDL_VPTR tothelDL_VARIABLE in which the scalar should be stored.
type

The type code for the scalar value. See “ Type Codes’ on page 262.
value

The address of the IDL_ALLTY PES union that contains the value to store.

If dest isalocation that cannot be stored into (for example, atemporary variable,
constant, and so on), an error is issued and control returnsto the interpreter.
Otherwise, any dynamic part of dest isfreed and valueis stored into it.

The DL _StoreScalar Zero() function is a specialized variation of

IDL_StoreScalar(). It stores a zero scalar value of any specified type into the
specified variable:

void IDL_ StoreScalarZero (IDL VPTR dest, int type)

where;

dest

AnIDL_VPTRtotheIDL_VARIABLE in which the scalar zero should be stored.
type

The type code for the scalar zero value. See “ Type Codes’ on page 262.

Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function, IDL_StoreScalar () and
IDL_StoreScalarZero() have two very useful side effects:

Storing Scalar Values External Development Guide

Chapter 13: IDL Internals: Variables 327

1. Storing ascalar valuein avariable causes IDL to free any dynamic memory
currently used by that variable.

2. Theseroutines do the required error checking to make sure the variable alows
anew value to be stored into it before performing the actual storage operation.

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returns to its caller, and the initial value of that
argument is of no interest to the routine. Storing a scalar value into such an argument
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memory. In one easy operation, the required error checking is
done, and you've improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

IDL StoreScalarZero(&v, IDL_TYP LONG) ;

Error handling is discussed further in “IDL Internals: Error Handling” on page 339.

External Development Guide Storing Scalar Values

328 Chapter 13: IDL Internals: Variables

Obtaining the Name of a Variable

ThelDL_VarName() function returns the name of avariable, constant, or expression
given its address. If theitem isanamed variable, it must be in the currently active
program unit:

char *IDL VarName (IDL_ VPTR V)

Obtaining the Name of a Variable External Development Guide

Chapter 13: IDL Internals: Variables 329

Looking Up Main Program Variables

The IDL_GetVar Addr () function returns the address of a main program variable,
given its name;

IDL VPTR IDL_GetVarAddr (char *name)
name

Points to the null terminated name of the variable, which must be in upper case.

Thereturn valueis NULL if the variable does not exist, otherwise the pointer to the
variableis returned.

Alternatively, IDL_GetVar Addr 1() will enter a new variable into the symbol table
of the main program if called with the parameter ienter set to TRUE, and the
specified variable name does not already exist. Otherwise, its operation isthe same as
IDL_GetVar Addr(). Note that new variables cannot be created if a user procedure
or function is active. IDL_GetVar Addr 1() is called as shown following:

IDL _VPTR IDL GetVarAddrl (char *name, int enter)
name
Points to the null-terminated name of the variable, which must be in upper case.
ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If ienter is TRUE and the specified variable name does not aready exist, it will be
added to the symbol table of the main program. If ienter is FALSE,
IDL_GetVar Addrl() isequivalent to IDL_GetVar Addr ().

External Development Guide Looking Up Main Program Variables

330 Chapter 13: IDL Internals: Variables

Looking Up Variables in Current Scope

The IDL_FindNamedVariable() function returns the address of avariable in the
current execution scope given its name:

IDL _VPTR IDL_FindNamedVariable (char *name, int ienter)
name

Name of the variable to find.

ienter
Set this parameter to TRUE to create the variable if it does not already exist.

If the variableisfound (or created if ienter isTRUE), itsIDL_VPTR isreturned.
Otherwise, NULL isreturned.

Note
Evenif ienter is TRUE, this routine can return NULL if creating the variableis not

possible due to memory constraints.

Looking Up Variables in Current Scope External Development Guide

Chapter 14

IDL Internals:
String Processing

This chapter discusses the following topics:

String Processingand IDL 332 DédetingStrings ... 335
Accessing IDL_STRING Values 333 SettinganIDL_STRING Value 336
CopyingStringsooovvein.s. 334 Obtaining a String of aGiven Length ... 337

External Development Guide 331

332 Chapter 14: IDL Internals: String Processing

String Processing and IDL

A number of functions exist to simplify the processing of IDL_STRING descriptors.
By using these functions instead of doing your own string management, you can
eliminate a common source of errors.

String Processing and IDL External Development Guide

Chapter 14: IDL Internals: String Processing 333

Accessing IDL_STRING Values

Itisimportant to realize that the sfield of an IDL_STRING struct does not contain a
valid string pointer in the case of anull string (i.e., when slen is zero). A common
error that can cause IDL to crashisillustrated by the following code fragment:

void print str (IDL STRING *s)

{

printf ("%s", s->s8);

}

The problem with this code isthat it fails to consider the case where the argument s
describes anull string. The proper way to write this codeis as follows:

void print str (IDL_STRING *s)

{

printf ("%s", IDL STRING STR(s)) ;

}

Themacro IDL_STRING_STR takesasitsargument apointer toan IDL_STRING
struct. If the string is null, it returns a pointer to a zero length null-terminated string,
otherwise it returns the string pointer from the struct. Consistent use of this macro
will avoid the most common sort of error involving strings.

It iscommon for IDL system routines to accept arguments that provide names. Such
arguments must be scalar strings, or string arrays that contain a single element. To
properly process such an argument, it is necessary to screen out non-string types or
multi-element arrays, locate the string descriptor, and usethe IDL_STRING_STR()
macro to extract ausable NULL terminated C string from it. The
IDL_VarGetString() is used for this purpose. It encapsulates all of the error
checking, and always returns a pointer to a NULL terminated C string, throwing the
proper IDL_MSG_L ONGJIMP error viathe IDL_M essage() function when thisis
not possible:

char *IDL VarGetString (IDL VPTR V)

where

Variable from which string value is desired.

External Development Guide Accessing IDL_STRING Values

334 Chapter 14: IDL Internals: String Processing

Copying Strings

It is often necessary to copy one string to another. Assume, for example, that there are
two string descriptors s src and s_dst, and that s_dst contains garbage. It would
almost suffice to simply copy the contents of s srcinto s dst. The reason thisis not
quite correct isthat both descriptors would then contain a pointer to the same string.
This aliasing can cause some strange effects, or even cause IDL to crash if one of the
two descriptorsis freed and the string from the other is accessed.

IDL_StrDup() takes care of this problem by allocating memory for a second copy of
the string, and replacing the string pointer in the descriptor with a pointer to the fresh
copy. Naturally, if the string descriptor isfor anull string, nothing is done.

void IDL_ StrDup (IDL_STRING *str, IDL MEMINT n)

where:
str

Pointer to one or more IDL_STRING descriptors which need their strings
duplicated.

The number of descriptors.
The proper way to copy astring is:

s_dst = s_src; /* Copy the descriptor */
IDL StrDup(&s_dst, 1L); /* Duplicate the string */

Copying Strings External Development Guide

Chapter 14: IDL Internals: String Processing 335

Deleting Strings

Beforean IDL_STRING can be discarded or re-used, it isimportant to release any
dynamic memory it might be using. The IDL_Str Delete() function should be used to
delete strings:

void IDL_ StrDelete (IDL_ STRING *str, IDL MEMINT n)

where:
str

Pointer to one or more IDL_STRING descriptors which need their contents freed.

The number of descriptors.

IDL_StrDelete() deletes all dynamic memory used by the IDL_STRINGs. The
descriptors contain garbage once this has been done, and their contents should not be
used.

The IDL_Deltmp() function automatically calls IDL_Str Delete() when returning
temporary variables of type IDL_TYP_STRING, s0 it is not necessary or desirable
tocal IDL_StrDelete() explicitly in this case.

External Development Guide Deleting Strings

336 Chapter 14: IDL Internals: String Processing

Setting an IDL_STRING Value

The IDL_StrStore() function should be used to store a null-terminated C string into
an IDL_STRING descriptor:

void IDL_ StrStore (IDL_STRING *s, char *fs)

where:

Pointer to an IDL_STRING descriptor. This descriptor is assumed to contain
garbage, so call IDL_StrDelete() onit first if thisis not the case.

fs

Pointer to the null-terminated string to be copied into s.

IDL_StrStore() isuseful for placing astring value into an IDL_STRING. This
IDL_STRING does not need to be acomponent of aVARIABLE, which makes this
function very flexible.

One often needs atemporary, scalar VARIABLE of type IDL_TYP_STRING with
agiven value. Thefunction IDL_StrToSTRING() fills this need:

IDL_VPTR IDL_StrToSTRING (char *s)

where:

Pointer to the null-terminated string to be copied into the resulting temporary
variable.

Setting an IDL_STRING Value External Development Guide

Chapter 14: IDL Internals: String Processing 337

Obtaining a String of a Given Length

Sometimes you need to make sure that the string in an IDL_STRING descriptor has
aspecific length. The IDL _StrEnsurel ength() function can be used in this case:

void IDL_StrEnsureLength (IDL_STRING *s, int n)

where:
A pointer to the IDL_STRING that will haveits length checked.

The number of characters the string must be able to contain, not including the
terminating null character.

If the IDL_STRING passed aready has enough room for the specified number of
characters, it is not re-allocated. Otherwise, the existing string is freed and a new
string of sufficient length is allocated. In either case, the den field of the
IDL_STRING will be set to the requested length.

If anew dynamic string is alocated, it will contain garbage values because
IDL_StrEnsurel ength() only alocates memory of the specified size, it does not
copy avalueinto it. Therefore, the calling routine must copy a null-terminated string
into the new dynamic string.

External Development Guide Obtaining a String of a Given Length

338 Chapter 14: IDL Internals: String Processing

Obtaining a String of a Given Length External Development Guide

Chapter 15

IDL Internals:
Error Handling

This chapter discusses the following topics:

MessageBlocks 340 Looking Up A Message Code by Name .. 348
Issuing Error Messages 342 Checking Arguments 349
Looking Up A Message Code by Name .. 348

External Development Guide 339

340 Chapter 15: IDL Internals: Error Handling

Message Blocks

IDL maintains messages in opaque data structures known as Message Blocks. A
message block contains all the messages for alogically related area.

When IDL starts, there is only one defined block named IDL_MBLK _CORE,
containing all messages defined by the core IDL product. Typically, dynamically
loadable modules (DLMs) each define amessage block for their error messages when
they are loaded (See “ Dynamically Loadable Modules’” on page 456 for adescription
of DLMs).

There are often two versions of IDL message module functions. Those with names
that end in FromBlock require an explicit message block. The versions that do not
end in FromBlock usethe IDL_MBLK_CORE message block.

To define amessage block, you must supply an array of IDL_MSG_DEF structures:

typedef struct ({
char *name;
char *format;
} IDL_MSG_DEF;

where:
name

A string giving the name of the message. We suggest that you adopt a consistent
unique prefix for al your error codes. All message codes defined by RSI start with
the prefix IDL_M _. You should not use this prefix when naming your blocksin order
to avoid unnecessary name collisions.

format

A format string, in printf(3) format. Thereis one extension to the printf formatting
codes: If the first two letters of the format are “%N”, then IDL will substitute the
name of the currently executing IDL procedure or function (if any) followed by a
colon and a space when this message is issued. For example:

IDL> print, undefined var
% PRINT: Variable is undefined: UNDEFINED VAR.

The IDL _M essageDefineBlock() function is used to define a new message block:

IDL _MSG_BLOCK IDL_MessageDefineBlock
(char *block name, int n, IDL_MSG DEF *defs)

The argumentsto IDL_M essageDefineBlock() are as follows:

Message Blocks External Development Guide

Chapter 15: IDL Internals: Error Handling 341

block_name

Name of the message block. This can be any string, but it will be case folded to upper
case. We suggest a single word be used. It isimportant to pick names that are
unlikely to be used by any other application. All blocks defined by RSI start with the
prefix IDL_MBLK _. You should not use this prefix when naming your blocksin
order to avoid unnecessary confusion.

of message definitions pointed at by defs.
defs

An array of message definition structs, each one supplying the name and format
string for a message in printf(3) format. The memory used for this array, including
the strings it points at, must be in permanently allocated read-only storage. IDL does
not copy this memory, but simply usesit in place.

If possible, the new message block is defined and an opague pointer to it is returned.
This pointer must be supplied to subsequent calls to the “FromBlock” message
module functions to identify the message block a given error is being issued from. If
it is not possible to define the message block, this function returns NULL.

The message functions require a message block pointer and the negative index of the
specific message to be issued. Hence, message codes start and zero and grow
negatively. For mnemonic convenience, it is standard practice to define preprocessor
macros to represent the error codes.

Example: Defining A Message Block

The following code defines a message block named TESTMODULE that contains
two messages:

static IDL MSG DEF msg arr[] =

{

#define M_TM_INPRO 0

{ "M _TM INPRO", "$NThis is from a loadable module procedure."
b,
#define M_TM INFUN -1

{ "M _TM INFUN", "$NThis is from a loadable module function."
b,
i

msg block = IDL MessageDefineBlock ("Testmodule",

sizeof (msg_arr) /sizeof (msg arr[0]),
msg_arr) ;

External Development Guide Message Blocks

342 Chapter 15: IDL Internals: Error Handling

Issuing Error Messages

Errors are reported using one of the following functions:
e |DL_Message()
e |DL_MessageFromBlock()
¢ |IDL_MessageSyscode()
e |IDL_MessageSyscodeFromBlock()

These functions are patterned after the standard C library printf() function. They are
really the same function, differing in which message block the error isissued from
(the FromBlock versions alow you to specify the block) and their reporting of
system errors that might accompany IDL errors (the Syscode versions allow you to
specify asystem error). IDL documentation often refersto IDL_Message(). This
should be understood to be a generic reference to any of these four functions.

void IDL Message (int code, int action, ...)
void IDL MessageFromBlock (IDL MSG BLOCK block,int code,
int action, ...)
void IDL MessageSyscode (int code, IDL MSG SYSCODE T syscode_ type,
int syscode, int action, ...)

void IDL_MessageSyscodeFromBlock (IDL_MSG BLOCK block, int code,
IDL MSG SYSCODE T syscode_ type,
int syscode, int action, ...)

The arguments to are as follows:
block

Pointer to the IDL message block from which the error should beissued. If block isa
NULL pointer, the default IDL core block (IDL_MBLK_CORE) is used.

code

Thisisthe error code associated with the error message to be issued. There are two
error codesin the default IDL coreblock (IDL_MBLK_CORE) that are available to
programmers adding system routinesto IDL. The use of these codesis described
below. See“IDL_M_GENERIC” on page 346 and “IDL_M_NAMED_GENERIC”
on page 346.

Issuing Error Messages External Development Guide

Chapter 15: IDL Internals: Error Handling 343

Note
For any significant development involving an IDL system routine, RSI
recommends your code be packaged as a Dynamically Loadable Module (DLM),
and that your DLM define a message block to contain its errors instead of using the
GENERIC core block messages.

syscode_type

IDL_Message() aways issues a single-line error message that describes the
problem from IDL’s point of view. Often, however, thereis an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file,” while the underlying system reason
for the error is “no such directory.” The IDL_M essageSyscode() functions
allow you to include the relevant system error code, and have it incorporated
into the IDL message on a second line of output. There are several different
types of system error code that can be specified. The syscode_type argument
isused to tell IDL_M essageSyscode() which type of system error is present:

IDL_MSG_SYSCODE_NONE — Indicates that there is no system error. In this case,
the syscode argument isignored, and | DL _M essageSyscode() is functionally
equivalent to IDL_M essage().

IDL_MSG_SYSCODE_ERRNO — The UNIX operating system uses a system
provided global variable named errno for communicating system level errors.
Whenever acall to a system function fails, it returns avalue of -1, and puts an
error code into errno that specifies the reason for the failure. Other functions,
such as those provided by the standard C library, do not set errno. The system
documentation (man pages) describes which functions do and do not set errno,
and the rules for interpreting its value.

The C programming language and UNIX operating system share a common
heritage, as C was originally created by its authors as an implementation
language for UNIX. Since then, C has found broad acceptance on non-UNIX
platforms, bringing along with standard POSI X libraries that provide
functionality commonly expected by C programs. Hence, although errnoisa
UNIX concept, non-UNIX C implementations generally provide it asa
convenience. Hence, IDL supports IDL_MSG_SYSCODE_ERRNO on dl
platforms.

You should specify IDL_MSG_SY SCODE_ERRNO only if you are calling
IDL_M essageSyscode() astheresult of afailed function that is documented to
set errno on your target platform. Otherwise, errno might contain an

External Development Guide Issuing Error Messages

344 Chapter 15: IDL Internals: Error Handling

unrelated garbage value resulting in an incorrect error message. When
specifying IDL_M SG_SYSCODE_ERRNO, you should supply the current
value of errno asthe syscode argument to IDL_ M essageSyscode().

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically does not set it. On this operating
system, specifying IDL_MSG_SY SCODE_ERRNO may have no effect.

IDL_MSG_SYSCODE_WIN (Microsoft Windows Only) — Microsoft Windows
system error codes. The value suppled to the syscode argument to
IDL _M essageSyscode() should be a system error code, as returned by the
Windows GetL astError () system function.

IDL_MSG_SYSCODE_WINSOCK (Microsoft Windows Only) — Microsoft
Windows winsock error codes. The value suppled to the syscode argument to
IDL _M essageSyscode() should be a system error code, as returned by the
Windows WSAGetL astError () system function

syscode

Value of the system error code that should be reported. This argument isignored if its
valueis zero (0), or if syscode typeisIDL_MSG_SYSCODE_NONE. Otherwise,
itisinterpreted as an error code of the type given by syscode_type, and the text of the
specified system error will be output along with the IDL message on a separate
second line.

action

IDL_Message() can take a number of different actions after issuing the error
message. The action to take is specified by the action argument:

IDL_MSG_RET

Use this argument to make IDL_M essage() return to the caller after issuing
the error message. In this case, the calling routine can either continue or return
to theinterpreter asit seesfit.

IDL_MSG_INFO

Use this argument to issue a message that is not an error, but is simply
informational in nature. The message is output and IDL_M essage() returns to
the caller. Normally, IDL_M essage() setsthe values of IDL’s
IERROR_STATE system variables, but not in this case.

Issuing Error Messages External Development Guide

Chapter 15: IDL Internals: Error Handling 345

IDL_MSG_EXIT

Use this argument to cause the IDL process to exit after the message is issued.
This code should never be used in a system function or procedure—it is
intended for use in other sections of the system.

IDL_MSG_LONGJIMP

Use this argument to cause IDL_M essage() to exit directly back to the
interpreter after issuing the message. In this case, IDL _M essage() does not
return toitscaller. It isan error to use this action code in code not called by the
IDL interpreter since the resulting call to longjmp() will beinvalid.

IDL_MSG_IO_LONGJMP

This action code is exactly likeIDL_MSG_LONGJIMP, except that it is
issued in response to an input/output error. This codeis only used by the 110
module. User written system routines should use the existing 1/0 routines, so
they do not need to use this action.

In addition, the following modifier codes can be ORed into the action code.
They modify the normal behavior of IDL_M essage():

IDL_MSG_ATTR_NOPRINT

Suppress the printing of the error message, but do everything elsein the
normal way.

IDL_MSG_ATTR_MORE

Use paging in the style of the UNIX more command to display the output.
This option exists primarily for use by the IDL compiler, and is unlikely to be
of interest to authors of system routines.

IDL_MSG_ATTR_NOPREFIX

Normally, IDL M essage() prefixes the output message with the string
contained in IDL's M SG_PREFI X system variable.
IDL_MSG_ATTR_NOPREFI X suppressesthis prefix string.

IDL_MSG_ATTR_QUIET

If theIDL_MSG_INFO action has been specified and this bit mask has been
included, and the IDL user has IDL’'s |QUIET system variable,
IDL_Message() returns without issuing a message.

IDL_MSG_ATTR_NOTRACE
Set this code to inhibit the traceback portion of the error message.

External Development Guide Issuing Error Messages

346 Chapter 15: IDL Internals: Error Handling

IDL_MSG_ATTR_BELL
Set this code to ring the bell when the message is output.

The message format string (specified by the code argument) specifies aformat
string to be used for the error message. Thisformat string is exactly like those
used by the standard C library printf() function. Any arguments following
action are taken to be arguments for this format string.

Error Codes

As mentioned above, RSI has reserved two error codes for use by writers of system
routines. They are:

IDL_M_GENERIC

This message code simply specifies aformat string of “%s". The first argument after
action istaken to be a null-terminated string that is substituted into the format string.
For example, the C statement:

IDL Message (IDL_M GENERIC, IDL_MSG_LONGJMP, "Error! Help!")
causes IDL to abort the current routine and issue the message:

% Error! Help!
IDL_M_NAMED_GENERIC

This message code is exactly like the one above, except that it prints the name of the
system routinein front of the error string. For example, assuming that the name of the
routineisMY_PROC, the C statement:

IDL_Message (IDL_M_NAMED GENERIC, IDL_MSG_LONGJMP,
"Error! Help!")

causes IDL to interrupt the current routine and issue the message:

% MY PROC: Error! Help!
Choosing an Error Code

Note
For any significant development involving an IDL system routine, RSI
recommends your code be packaged as a Dynamically Loadable Module (DLM),

Issuing Error Messages External Development Guide

Chapter 15: IDL Internals: Error Handling 347

and that your DLM define a message block to contain its errors instead of using the
GENERIC messages described here.

The choice of which code to use depends on the context in which the messageis
issued, but IDL_M_NAMED_GENERIC isusualy preferred.

If you wish to include arguments into your message string, you should use the
sprintf() function from the C standard library to format a string into atemporary
buffer, and then supply the buffer as the argument to IDL M essage(). For example,
executing the code:

char buf[128];
int unit = 23;

sprintf (buf, "Help! Error number %d.", unit);
IDL_Message (IDL_M_GENERIC, IDI,_MSG LONGJMP, buf);

interrupts the current routine and issues the message:

% Help! Error number 23.

External Development Guide Issuing Error Messages

348 Chapter 15: IDL Internals: Error Handling

Looking Up A Message Code by Name

Given amessage block pointer and the name of a message from that block, the
IDL_M essageNameToCode() function returns the message code that corresponds to
it. Thisis especially useful for dynamically |oadable modules that need to throw
errorsfrom the IDL core block. The actual error codes are subject to change between
IDL releases, so looking them up this way at run-time alows agiven DLM to work
with different IDL versions.

int IDL_MessageNameToCode (IDL_MSG BLOCK block, char *name)

where:
block

Message block name should be translated against, or NULL to use the default core
IDL block.

name

The message name for which the code is desired. Name is case sensitive, and should
usually be specified as uppercase.

IDL_M essageNameToCode () returns the message code, or O if it is not found.

Looking Up A Message Code by Name External Development Guide

Chapter 15: IDL Internals: Error Handling 349

Checking Arguments

IDL allows a user to provide any number of arguments, of any type, to system
functions and procedures. IDL checks for avalid number of arguments, but the
routine itself must check the validity of types. Thistask consists of examining the
argv argument to the routine checking the type and flags field of each argument for
suitability. The IDL_StoreScalar () function (see “ Storing Scalar Values’ on

page 326) can be very useful in checking write-only arguments.

A number of macros exist in order to simplify testing of variable attributes. All of
these macros accept a single argument—the VPTR to the argument in question. The
macros check for adesired condition and use the IDL_M essage() function with the
IDL_MSG_L ONGJIMP action to return to the interpreter if an argument type
doesn’'t agree. Some of these macros overlap, and some are contradictory. You
should select the smallest set that covers your requirements for each argument. For an
exampl e that uses one of these macros, see “Example: A Complete Numerical
Routine Example (FZ_ROQOTS2)” on page 424.

IDL_EXCLUDE_UNDEF

The argument must not be of type IDL_TYP_UNDEF. This condition is usually
imposed if the argument is intended to provide some input information to the routine.

IDL_EXCLUDE_CONST

The argument must not be a constant. This condition should be specified if your
routine intends to change the value of the argument.

IDL_EXCLUDE_EXPR

The argument must not be a constant or atemporary variable (i.e., the argument must
be a named variable). Specify this condition if you intend to return avalue in the
argument. Returning avalue in atemporary variable is pointless because the
interpreter will remove it from the stack as soon as the routine completes, causing it
to be freed for re-use.

ThelDL_VarCopy() and IDL_StoreScalar () functions automatically check their
destination and issue an error if it is an expression. Therefore, if you are using one of
these functions to write the new value into the argument variable, you do not need to
perform this check first.

External Development Guide Checking Arguments

350

Chapter 15: IDL Internals: Error Handling

IDL_EXCLUDE_FILE

The argument cannot be afile variable (as returned by the IDL ASSOC) function.
Most system routines exclude file variables—they are handled by a small set of
existing routines. This check isalso handled by the I DL_ENSURE_SIMPLE
macro, which also excludes structure variabl es.

IDL_EXCLUDE_STRUCT

The argument cannot be a structure.
IDL_EXCLUDE_COMPLEX

The argument cannot be IDL_TYP_COMPLEX.
IDL_EXCLUDE_STRING

The argument cannot be IDL_TYP_STRING.
IDL_EXCLUDE_SCALAR

The argument cannot be a scalar.
IDL_ENSURE_ARRAY

The argument must be an array.
IDL_ENSURE_OBJREF

The argument must be an object reference heap variable.
IDL_ENSURE_PTR

The argument must be a pointer heap variable.
IDL_ENSURE_SCALAR

The argument must be a scalar.
IDL_ENSURE_STRING

The argument must be IDL_TYP_STRING.
IDL_ENSURE_SIMPLE

The argument cannot be afile variable, a structure variable, a pointer heap variable,
or an object reference heap variable.

Checking Arguments External Development Guide

Chapter 15: IDL Internals: Error Handling 351

IDL_ENSURE_STRUCTURE
The argument must be IDL_TYP_STRUCT.

External Development Guide Checking Arguments

352 Chapter 15: IDL Internals: Error Handling

Checking Arguments External Development Guide

Chapter 16

IDL Internals:
Type Conversion

This chapter discusses the following topics:

Converting Argumentsto C Scalars 354 Converting to Specific Types 356
General Type Conversion 355

External Development Guide 353

354 Chapter 16: IDL Internals: Type Conversion

Converting Arguments to C Scalars

The routines described in this section convert the value of their IDL_VARIABLE
argument to the C scalar typeindicated by their name. IDL_MEMINT Scalar () and
IDL_FILEINT Scalar () exist for processing memory and file sizes without the need
to know their actual types, asdiscussed in“IDL_MEMINT and IDL_FILEINT
Types’ on page 267.The converted value is returned as the function value. The
functions are defined as:

IDL LONG IDL LongScalar (IDL VPTR p)

IDL ULONG IDL ULongScalar (IDL_VPTR V)

IDL LONG64 IDL Longé64Scalar (IDL_VPTR V)
IDL ULONG64 IDL ULongé64Scalar (IDL VPTR V)
double IDL DoubleScalar (IDL_VPTR p)

IDL MEMINT IDL_MEMINTScalar(IDL_VPTR p)
IDL FILEINT IDL FILEINTScalar (IDL_ VPTR D)

If these functions are unable to perform the conversion (e.g., the argument is afile
variable, an array, etc.), they issue a descriptive error and jump back to the
interpreter. By using these functions, you avoid having to do any of the type checking
described in “Checking Arguments’ on page 349.

For example, the following IDL system function (named PRINT_L ONG) prints the
value of itsfirst argument, converted to an IDL_L ONG 32-bit integer:

IDL_VPTR print long(int argc, IDL VPTR argv[], char *argk)

{

printf ("$d\n", IDL LongScalar (argv[0]));

}
Executing it as.
PRINT_LONG, 23D
gives the output:
23
as expected, while the statement:
PRINT_LONG, FINDGEN (10)
causesthe error:

% PRINT_LONG: Expression must be a scalar in this context:
<FLOAT Array (10) >
% Execution halted at S$MAINS .

becauseit is not possible to convert an array (the result of FINDGEN) to a scalar.

Converting Arguments to C Scalars External Development Guide

Chapter 16: IDL Internals: Type Conversion 355

General Type Conversion

The DL _BasicTypeConversion() function provides general purpose type

conversion:
IDL_VPTR IDL_ BasicTypeConversion(int argc, IDL_VPTR argv([]
int type)
where:
argc

The number of IDL_VPTRs contained in ar gv.
argv
An array of pointersto VARIABLE arguments.

type
The desired type code of the result. See “ Type Codes’ on page 262.

If argcisl, thisfunction returns a pointer to atemporary VARIABL E containing the
value of argv[0] converted to the type specified by the type argument. If the variable
is aready of the correct type, the variable itself is returned.

If argv isgreater than 1, argv[1] istaken to be an offset into the variable specified by
argv[0], and following arguments are taken as the dimensions to be used for the
result. In this case, enough bytes are copied (starting from the offset) to satisfy the
reguirements of the dimensions given. This second form does not work for variables
of type string, so an error isissued in that case. RSl recommends ensuring that
variables of appropriate type are used with this function.

The IDL BYTE and STRING system routines (implemented by the IDL_CvtByte()
and IDL_CvtString() functions, described below) treat conversions between
variables of type byte and string in aspecial way. IDL_BasicTypeConversion()
does not handle this specia case. Instead, it simply performs a straightforward type
conversion between those types.

External Development Guide General Type Conversion

356

Chapter 16: IDL Internals: Type Conversion

Converting to Specific Types

A series of functions exist to convert VARIABL Es to specific types:

IDL_VPTR IDL_CvtByte (int argc, IDL_VPTR argv([])

IDL _VPTR IDL CvtBytscl (int argc, IDL VPTR argv[], char *argk)
IDL_VPTR IDL CvtFix(int argc, IDL_VPTR argv[])

IDL_VPTR IDL CvtUInt (int argc, IDL _VPTR argv[])

IDL_VPTR IDL CvtLng(int argc, IDL VPTR argv[])

IDL_VPTR IDL_CvtULng (int argc, IDL_VPTR argv([])

IDL_VPTR IDL_CvtLngé64 (int argc, IDL _VPTR argvl[])

IDL _VPTR IDL CvtULngé64 (int argc, IDL VPTR argv[])

IDL_VPTR IDL CvtFlt (int argc, IDL_VPTR argv[])

IDL_VPTR IDL CvtDbl (int argc, IDL_VPTR argv[])

IDL VPTR IDL CvtComplex(int argc, IDL VPTR argv([])

IDL_VPTR IDL_CvtDComplex(int argc, IDL_VPTR argv(])

IDL_VPTR IDL_CvtString(int argc, IDL_VPTR argv[], char *argk)

When calling these functions, you should set the argk argument to NULL.

These functions are the direct implementations of the IDL commands BY TE,
BYTSCL, FIX, UINT, LONG, ULONG, LONG64, ULONG64, FLOAT, DOUBLE,
COMPLEX, DCOMPLEX, and STRING. See the description of these functionsin
the IDL Reference Guide for details on their arguments and calling sequences.

The behavior of these functionsis the same as | DL_BasicTypeConver sion() except
when converting between bytes and strings. Calling IDL_CvtByte() with asingle
argument of string type causes each string to be converted to a byte vector of the
same length as the string. Each array element is the character code of the
corresponding character in the string. Calling IDL_CvtString() with asingle
argument of IDL_TYP_BY TE has the opposite effect.

Converting to Specific Types External Development Guide

Chapter 17

IDL Internals:
UNIX Signals

This chapter discusses the following topics:

IDLandSignals.....................
SignaHandlers
EstablishingaSignal Handler

External Development Guide

358 RemovingaSignal Handler

361 UNIX Signal Masks

357

358 Chapter 17: IDL Internals: UNIX Signals

IDL and Signals

Signals pose one of the more difficult challenges faced by the UNIX programmer.
Although seemingly simple, they are atough portability problem because there are
several variants, and their semantics are subtle, inconvenient, and easily confused.
These issues are only magnified when signals are used in a program like IDL that
employs multiple threads. IDL has always done whatever is necessary with signalsin
order to get itsjob done, but its signal assumptions can also affect user written code
linked to it.

Note
This discussion refers primarily to UNIX IDL. Microsoft Windows uses different
mechanisms to solve the problems solved by signals under UNIX.

Thefollowingisabrief list of problems and contradictionsinherent in UNIX signals.
For a more complete description, see Chapter 10 of External Programming in the
UNIX Environment by W. Richard Stevens.

* POSIX signals (sigaction) promise to unify and simplify signals, but not all
platforms support them fully.

e You can only have one signal handler function registered for each signal. This
means that if one part of a program uses asignal, the rest of the program must
leave that signal alone.

¢ Inorder to meet the needs of programs originally developed under different
UNIX systems (AT& T System V, BSD, Posix), most UNIX implementations
provide more than one package of signal functions. Typically, agiven program
isrestricted to one of these libraries. If a programmer links code into IDL that
chooses alibrary or signa options different from that used by IDL itself,
unexpected results may occur.

¢ The number and exact semantics of some signals differ in different versions.
e Detailsof signal blocking differ.

e Some System V implementations of signals are unreliable, meaning that
signals can occur in a process and be missed.

* Someolder System V systemsreset the handling action to SIG_DFL before
calling the handler. This opens awindow in time where two signalsin arow
can cause the process to be killed. Also, the signal handler must re-establish
itself every timeitis called.

IDL and Signals External Development Guide

Chapter 17: IDL Internals: UNIX Signals 359

On most platforms, if asignal is generated more than once whileiit is blocked,
the second and subsequent occurrences are lost. In other words, most UNIX
implementations do not queue signals.

These are among the reasons that most libraries avoid signals, and leave their use to
the end programmer. DL, however, must use signals to function properly. In order to
allow usersto link their codeinto IDL whileusing signals, IDL providesasignal API
built on top of the signal mechanism supported by the target platform. The IDL signal
API has the following attributes:

It disallows use of SIGTRAP and SIGFPE. These signals are reserved to
IDL.

It disallows use of SIGALRM. Most usesfor SIGALRM are provided by the
IDL timer API.

It works with al other signals, including those IDL doesn’t currently use, so
the interface won’t change over time.

It allows multiple signal handlers for each signal, so IDL and other code can
use the same signal simultaneously.

It unifies the signal interface by supplying a stable consistent interface with
known behavior to the underlying system signal mechanism.

It keeps IDL in charge of which signal package is used and how.

Thisis not a perfect solution, it is a compromise between the needs of IDL and
programmers wishing to link code with it. Usually, the IDL signal abstractionis
sufficient, but it does have the following limitations:

The calling program must not attempt to catch SIGTRAP or SIGFPE, either
directly or through library routines that use these signals to achieve their ends.
Furthermore, the IDL signal abstraction does not allow the caller to catch these
signals, so your program must leave exception handling to IDL.

The caller loses control over signal package choice and some minor signa
abilities.

Having multiple signal handler routines for agiven signal opens the possibility
that one handler might do something that causes problems for the others (like
change the signal mask, or longjmp()). To minimize such problems, user code
linked into IDL must not call the actual system signal routines, and must not
longjmp() out of signal handlers—atactic that is usually allowed, but which
would seriously damage IDL's signal state.

Since there may be more than one signal handler registered for agiven signal,
the signal dispositionsof SIG_IGN and SIG_DFL are not directly availableto

External Development Guide IDL and Signals

360 Chapter 17: IDL Internals: UNIX Signals
the caller as they would be if you were allowed to use the system signal
facilities directly.

If you find that these restrictions are too limiting for your application, chances are

your code is not compatible with IDL and should be executed in a separate process.

We then encourage you to consider running IDL in a separate process and to use an

interprocess communication mechanism such as RPC.

IDL and Signals External Development Guide

Chapter 17: IDL Internals: UNIX Signals 361

Signal Handlers

IDL signal handler functions are defined as:
typedef void (* IDL SignalHandler t) (int signo) ;

When asignal is delivered to the process, all registered signal handlers are called.
signo istheinteger number of the signal delivered, as defined by the C language
header file signal.h (foundin /usr/include/signal.h on most UNIX

systems). signo can be used by asignal handler registered for more than one signal
to tell which signal called it.

External Development Guide Signal Handlers

362 Chapter 17: IDL Internals: UNIX Signals

Establishing a Signal Handler

To register asignal handler, usethe IDL_SignalRegister () function:

int IDL_SignalRegister (int signo, IDL SignalHandler t func,
int msg_action)

where:
signo

The numeric value of the signal to register for, asdefined in signal.h.
func

The signal handler to be called when the signal specified by signo israised.
msg_action

Oneof theIDL_MSG_* action codesfor IDL_Message(). If thereisan error in
registering the signal handler, this action code is passed to DL _M essage() to direct
itsrecovery action. Notethat it isincorrect to use any of the message codes that cause
IDL_Message() to longjmp() back to the IDL interpreter if your codeisrunningin a
context where the IDL interpreter is not active—specifically as part of using Callable
IDL.

If func issuccessfully registered for signo, this routine returns TRUE. Otherwise,
FALSE isreturned and IDL_Message() is called with msg_action to control its
behavior. Note that there are values of msg_action that result in this routine not
returning on error. Multiple registration of the same function is allowed, but has no
additional effect—the handler will only be called once.

Establishing a Signal Handler External Development Guide

Chapter 17: IDL Internals: UNIX Signals 363

Removing a Signal Handler

To remove asignal handler, usethe IDL_SignalUnregister () function:

export int IDL_ SignalUnregister (int signo,
IDL_SignalHandler t func, int msg_action)

where:
signo

The signal to unregister.
func

The handler to be unregistered.
msg_action

Oneof theIDL_MSG_* action codesfor IDL_Message(). If thereisan error in
removing the signal handler, thisaction codeis passedto IDL_M essage() to direct its
recovery action.

Once IDL_SignalUnregister () has been called, func is unregistered and will no
longer be called if the signal israised. IDL_SignalUnregister () returns TRUE for
success, FALSE for failure. Requests to unregister a function that has not been
previously registered are ignored.

External Development Guide Removing a Signal Handler

364 Chapter 17: IDL Internals: UNIX Signals

UNIX Signal Masks

UNIX processes contain asignal mask that defines which signals can be delivered
and which are blocked from delivery at any given time. When a signal arrives, the
UNIX kernel checksthe signal mask: If the signal isin the process mask, it is
delivered, otherwise it is noted as undeliverable and nothing further is done until the
signal mask changes. Sets of signals are represented within IDL with the opague type
IDL_SignalSet_t. UNIX IDL provides severa functions that manipulate signal sets
to change the process mask and allow/disallow delivery of signals.

IDL_SignalSetinit()

IDL_SignalSetlnit() initializes asignal set to be empty, and optionally setsit to
contain one signal.

void IDL_SignalSetInit (IDL_SignalSet t *set, int signo)

where:
set

The signal set to be emptied/initialized.
signo

If non-zero, asignal to be added to the new set. Thisis provided as a convenience for
the large number of cases where a set contains only one signal. Use
IDL_SignalSetAdd() to add additional signalsto a set.

IDL_SignalSetAdd()

IDL_SignalSetAdd() adds the specified signal to the specified signal set:

void IDL_SignalSetAdd(IDL_SignalSet t *set, int signo)

where:
set

The signal set to be added to. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be added to the signal set.

UNIX Signal Masks External Development Guide

Chapter 17: IDL Internals: UNIX Signals 365

IDL_SignalSetDel()

IDL_SignalSetDel() deletes the specified signal from asignal set:
void IDL_SignalSetDel (IDL_SignalSet t *set, int signo)

where:
set

The signal set to delete from. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be removed from the signal set.

IDL_SignalSetlsMember()

IDL_SignalSetl sM ember () tests asignal set for the presence of a specified signal,
returning TRUE if the signal is present and FAL SE otherwise:

int IDL_SignalSetIsMember (IDL_SignalSet_ t *set, int signo)

where:
set

The signal set to test. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be removed from the signal set.

IDL_SignalMaskGet()

IDL_SignalMaskGet() setsasignal set to contain the signals from the current
process signal mask:

void IDL_SignalMaskGet (IDL_SignalSet t *set)

where:
set

The signal set in which the current process signal mask will be stored.

External Development Guide UNIX Signal Masks

366 Chapter 17: IDL Internals: UNIX Signals

IDL_SignalMaskSet()
IDL_SignalMask Set() sets the current process signal mask to contain the signals
specified in asignal mask:

void IDL_SignalMaskSet (IDL_SignalSet t *set,
IDL_SignalSet_t *omask)

where:

set
The signal set from which the current process signal mask will be set.

omask

If omask isnon-NULL, the unmodified process signal mask isstored init. Thisis
useful for restoring the mask later using IDL_SignalM ask Set ().

There are some signals that cannot be blocked. Thislimitation is silently enforced by
the operating system.

IDL_SignalMaskBlock()

IDL_SignalM askBlock() adds signals to the current process signal mask:

void IDL_SignalMaskBlock (IDL_SignalSet t *set,
IDL_SignalSet_t *oset)

where:

set
The signal set containing the signals that will be added to the current process signal
mask.

oset

If oset isnon-NULL, the unmodified process signal mask isstored iniit. Thisisuseful
for restoring the mask later using IDL_SignalM ask Set().

There are some signals that cannot be blocked. Thislimitation is silently enforced by
the operating system.

UNIX Signal Masks External Development Guide

Chapter 17: IDL Internals: UNIX Signals 367

IDL_SignalBlock()

IDL_SignalBlock() doesthe same thing as IDL_SignalM askBlock () except it
accepts asingle signal number instead of requiring a mask to be built:

void IDL_SignalBlock (int signo, IDL SignalSet t *oset)

where:
signo

The signal to be blocked.

There are some signals that cannot be blocked. Thislimitation is silently enforced by
the operating system.

IDL_SignalSuspend|()

IDL_SignalSuspend() replaces the process signal mask with the onesin set and then
suspends the process until asignal is delivered. On return, the original process signal

maskK is restored:

void IDL_SignalSuspend (IDL_SignalSet t *set)

where:

set

The signal set containing the signals that will be added to the current process signal
mask.

External Development Guide UNIX Signal Masks

368 Chapter 17: IDL Internals: UNIX Signals

UNIX Signal Masks External Development Guide

Chapter 18

IDL Internals:
Timers

This chapter discusses the following topics:

IDLand Timerscovvnn. 370 Canceling Asynchronous Timer Requests 373
Making Timer Requests. 371 Blocking UNIX Timers 374

External Development Guide 369

370 Chapter 18: IDL Internals: Timers

IDL and Timers

The details of how timers work varies widely between operating systems and
between variants of the same operating system (different “flavors’ of UNIX, for
example). IDL’s timer module is intended to provide a stable interface to the rest of
IDL, and to isolate the non-portable code in one place.

Under UNIX, IDL’stimer module performs a more important function. UNIX
processes contain asingle timer that must be shared by the code in the process. When
the timer fires, it raises the SIGALRM signal which must be caught and handled by
the process. The IDL timer routines transparently multiplex this single timer to
provide multiple virtual timers.

Under UNIX, IDL provides both blocking and non-blocking timers. Blocking timers
put the calling process to sleep until they go off. Non-blocking timers are delivered
asynchronously when they fire.

Under Microsoft Windows, only the blocking form of timer requests are supported.

IDL and Timers External Development Guide

Chapter 18: IDL Internals: Timers 371

Making Timer Requests

The DL _Timer Set() function registers atimer request. IDL timer requests are one-
shot timers. If you wish to have atimer go off repeatedly, your callback function
must make a new request each timeit is called to set up the next timer.

void IDL TimerSet (length, callback, from callback, context)

where:

length

The length of time to delay before issuing the alarm, in microseconds. You
should be aware that other activity on the system, overhead incurred in
managing the timers, and non-realtime attributes of the operating system can
cause the actual duration of the timer to be longer than requested.

callback

Under UNIX, if callback isnon-NULL, the timer request is queued and
IDL_Timer Set() returnsimmediately. When the alarm is due, the function
pointed at by callback is called. If callback isNULL (and not

from_callback), the request is queued and | DL _Timer Set() blocks until the
requested time expires.

Warning
When called, the callback function will be running in signal scope, meaning that it
has been called from a signal handler running asynchronously from the rest of the
program. There are significant restrictions on what code running in signal scopeis
allowed to do. Most common C library functions (such as printf()) are disallowed.
Consult abook on UNIX programming or your system documentation for details.

Under Windows, callback should always be NULL. IDL_Timer Set() does not
support non-blocking timers on these platforms.

from_callback

Set this argument to TRUE if thisinvocation is from a callback function
previously set up viaacall to IDL_Timer Set(). Set thisargument to FALSE if
thisisthefirst invocation. In other words, this argument should only be TRUE
if youcal IDL_Timer Set() from within atimer callback.

External Development Guide Making Timer Requests

372 Chapter 18: IDL Internals: Timers

context

Thisargument isapointer to avariable of type IDL_TIMER_CONTEXT, an
opaque IDL datatype that uniquely identifies atimer request. If thisisatop
level request (if from_callback is FALSE), the context pointed at will be
assigned a unique value that identifies the request.

If this request is coming from within atimer callback in order to make another
reguest on the same timer, the context pointed at should contain the value from
the previous request.

If context isNULL, no context value is returned.

Note
It isan error to queue more than one request using the same callback. The results
are undefined.

For the timer modul e to perform adequately, the time request must be large compared
to the run-time of the called function. Re-queuing an extremely short request
repeatedly will cause any other requests to starve.

Making Timer Requests External Development Guide

Chapter 18: IDL Internals: Timers 373

Canceling Asynchronous Timer Requests

Under UNIX, IDL_Timer Cancel() can be used to cancel atimer request that has not
yet been delivered:

void IDL_TimerCancel (context)

where:
context

A timer request context returned by a previous call to IDL_Timer Set().

External Development Guide Canceling Asynchronous Timer Requests

374 Chapter 18: IDL Internals: Timers

Blocking UNIX Timers

Under UNIX operating systems, the delivery of signals such as SIGALRM (used to
manage timers) can cause system callsto be interrupted. In such cases, the system
call returnsastatus of -1 and the global errnovariableis set tothevalue EINTR. Itis
the caller’s responsibility to check for this result and restart the system call when it
OCCUrs.

It is easy enough to handle this case when you make system calls directly, but
sometimes the problem surfacesin libraries (even those provided by the system, such
as libc) that are not properly coded against this possibility because the author
assumed that no interrupts would occur. There is very little that the end user can do
about such libraries except take steps that prevent signals from being raised during
these critical sections.

If the IDL timer module is being used to deliver asynchronous events, it isinevitable
that the delivery of SIGALRM will interfere with this sort of library code. The
IDL_TimerBlock() function is available under UNIX to suspend the delivery of the
timer signal. This can be used to provide awindow in which no timer will fire. This
routine should always be called in pairs, so the timer doesn’t get turned off
permanently. It isimportant to be sure a 1ongjmp () (such as caused by calling
IDL_Message() withthe IDL_M SG_LONGJIM P action code) doesn't happen in
the critical region. In addition, this function is not re-entrant.

The effect of blocking timer delivery isthat the UNIX SIGALRM signal is masked
to prevent delivery. If the timer fires during this window of time, the signal will not
be delivered until timers are unblocked. At that time, the timer modul e resumes
managing the single real UNIX timer. In the meantime, timer requests are arbitrarily
delayed from being queued and processed. Clearly, excessive blocking of the timer
can lead to poor timer performance and should only be performed when necessary
and on the smallest possible critical section of code. Of course, the act of blocking
and unblocking signals requires a context switch into the UNIX kernel and back,
making them relatively computationally expensive operations. It istherefore better to
block alonger section of code rather than block and unblock around every critical
library call.

Blocking UNIX Timers External Development Guide

Chapter 18: IDL Internals: Timers 375

It has been our experience that some UNIX platforms have more problem with this
issue than others. You should let experience guide you in deciding when to block
signals and when to let them go. Input/Output to device special files under HP-UX
and SGI IRIX are known to be especially vulnerable.

void IDL TimerBlock (stop)

where;

stop
TRUE if the timer should be suspended, FALSE to restart it.

External Development Guide Blocking UNIX Timers

376 Chapter 18: IDL Internals: Timers

Blocking UNIX Timers External Development Guide

Chapter 19

IDL Internals: Files and

Input/Output

This chapter discusses the following topics:

IDL and Input/Output Files 378
Filelnformation 380
OpeningFiles....................... 384
ClosingFiles 387
Preventing FileClosing 388
CheckingFileStatus 389

External Development Guide

Allocating and Freeing FileUnits 391
DetectingEndof File 393
Flushing Buffered Data 394
Reading aSingle Character 395
Output of IDL Variables 396
Adding tothe Journal File 397

377

378 Chapter 19: IDL Internals: Files and Input/Output

IDL and Input/Output Files

IDL provides extensive Input/Output facilities at the user level. Internally, it uses
native Input/Output facilities (UNIX system calls or Win32 system API) in addition
to the standard C library stream package (stdio). The choice of which facilitiesto use
are made based on the target platform and the requested features for thefile.

Most external code linked with IDL (CALL_EXTERNAL, system routines, etc.)
should not do Input/Output directly, for the following reasons:

e Part of the IDL philosophy is that Input/Output is handled by dedicated I/0O
facilities provided by IDL, and that computational code should accept data
from IDL variables and return results in the same way. This gives the user of
your code the freedom and flexibility to save their datain any of the many
forms supported by IDL’s core 1/O facilities, and frees you from writing
complex and error prone input/output code.

e Using IDL’s Input/Output facilities frees you from having to code around
platform specific differencesin I/O behavior.

* Input/Output from languages other than C often require runtime library
support code to run at program startup before your code and successfully
perform 1/0O. For example, Fortran Input/Output may depend on a Fortran
runtime subsystem having been initialized. IDL, asa C program, does not
perform initialization of such libraries for other languages. If you know
enough about your Fortran system, you can often supply the missing
initialization call, but such workarounds are usually not well documented, and
are inherently platform specific.

For the reasons above, only minimal 1/0 abilities are available from IDL's internals,
and only for files that explicitly use the standard C stdio library. Therefore, if your
application must directly perform 1/O to afile managed by IDL, it is necessary to use
the standard C library streampackage (stdio) by specifyingthe IDL_F _STDIO flag to
IDL_FileOpen(). Most of the routines associated with the standard C library 1/0
package can be used in the normal manner.

IDL and Input/Output Files External Development Guide

Chapter 19: IDL Internals: Files and Input/Output

379

Note, however, that the C library routines listed in the following table should not be
used; use the IDL-specific functionsinstead:

C Library Function IDL Function
fclose() IDL_FileClose()
fdopen() IDL_FileOpen()
feof() IDL_FileEOF()
fflush() IDL_FileFlushUnit()
fopen() IDL_FileOpen()
freopen() IDL_FileOpen()

Table 19-1: Disallowed C Library Routines and Their IDL Counterparts

Note

In order to access afile opened using IDL_FileOpen() in this manner, you must
ensurethat it is stdio compatible by specifying IDL_F _STDIO as part of the
extra flags argument to IDL_FileOpen(). Failure to do thiswill cause your code to

fail to execute as expected.

External Development Guide

IDL and Input/Output Files

380 Chapter 19: IDL Internals: Files and Input/Output

File Information

IDL maintains afile table in which it keeps a file descriptor for each file opened with
IDL_FileOpen(). Thistable isindexed by the file Logical Unit Number, or LUN.
These are the same LUNS IDL users use.

The IDL_FileStat() function is used to get information about afile.

IDL_FileStat()

void IDL FileStat (int unit, IDL FILE STAT *stat_blk)
unit

Thelogica unit number (LUN) of the file unit to be checked. This function should
only be called on file units that are known to be open.

stat_blk

A pointer toan IDL_FILE STAT struct to befilled in with information about thefile.
The information returned is valid only as long as the file remains open. You must not
accessthefieldsof an IDL_FILE_STAT oncethefileit refersto has been closed.
This struct has the definition:

typedef struct ({
char *name;
short access;
IDL_SFILE FLAGS_T flags;
FILE *fptr;
} IDL FILE STAT;

The fields of this struct are listed below:

name

A pointer to a null-terminated string containing the name the file was opened with.

File Information External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 381

access

A bit mask describing the access allowed to the file. The allowed bit values are listed
in the following table:

Bit Value Description
IDL_OPEN_R Thefileis open for input.
IDL_OPEN_W Thefileis open for output.

IDL_OPEN_TRUNC | Thefile was truncated when it was opened. Thisimplies
that IDL_OPEN_W isalso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain thefile (thefile is open for appending).

Table 19-2: Bit values for the access field
flags

A bit mask that gives specia information about the file. The defined bitsarelisted in
the following table:

Bit Value Description
IDL_F ISATTY Thefileisaterminal.
IDL_F ISAGUI ThefileisaGraphical User Interface.
IDL_F_NOCLOSE The CLOSE command will refuseto closethe
file.
IDL_F MORE If thefileisaterminal, output is sent through a

pager similar to the UNIX more command.
Details on this pager are not included in this
document, and it is therefore not available for

general use.

IDL_F XDR Thefileis read/written using XDR (eXternal
Data Representation).

IDL_F DEL_ON_CLOSE Thefile will be deleted when it is closed.

Table 19-3: Bit values for the flags field

External Development Guide File Information

382

Chapter 19: IDL Internals: Files and Input/Output

Bit Value

Description

IDL_F SR

Thefileis a SAVE/RESTORE file.

IDL_F_SWAP_ENDIAN

The file has opposite byte order than that of
the current system.

IDL_F VAX_FLOAT

Binary float and double arein VAX F and D
format.

IDL_F_COMPRESS

Thefileisin compressed gzip format. If
IDL_F SRisset (thefileisa
SAVE/RESTORE file), the file contains zlib
compressed data.

IDL_F_UNIX_F77

Thefileis read/written in the format used by
the UNIX Fortran (f77) compiler for
unformatted binary data.

IDL_F_UNIX_PIPE

Thefileis abi-directional data path
connecting IDL to a child process created by
the SPAWN procedure.

IDL_F_UNIX_RAWIO

(formerly called
IDL_F_UNIX_NOSTDIO)

No application level buffering will be
performed for the file and all data transfers
will go directly to the operating system for
processing (e.g. read() and write() system
callsunder UNIX, Win32 API for MS
Windows). Note that setting this bit does not
guarantee that data will be written to thefile
immediately, because the operating system
may buffer the data. This bit value was
formerly called IDL_F _UNIX_NOSTDIO.
IDL_F _UNIX_RAWIO isthe preferred form,
but both names are supported.

IDL_F_UNIX_SPECIAL

ThefileisaUNIX device special file, most
likely a pipe. This differsfrom

IDL_F _UNIX_PIPE because it applies to any
file, not only those opened with the SPAWN
procedure.

Table 19-3: Bit values for the flags field (Continued)

File Information

External Development Guide

Chapter 19: IDL Internals: Files and Input/Output

383

Bit Value

Description

IDL_F_STDIO

Use the C standard 1/0 library (stdio) to
perform 1/O on thisfile instead of any other
native OS API that might be otherwise used.
People intending to access IDL filesviatheir
own code should specify thisflag if they
intend to access the file from their external
code as a stdio stream.

IDL_F_SOCKET

Fileisan internet TCP/IP socket.

Table 19-3: Bit values for the flags field (Continued)

fptr

The stdio stream file pointer to the file. Thisfield can be used with standard library
functions to perform 1/O. Thisfield is always valid, although you shouldn’t use it if
thefileisan XDR file. You can check for this by looking for the IDL_F_XDR bit in

the flagsfield.

If thefileis not opened with the IDL_F_STDIO flag, fptr may be returned as an
unusable NULL pointer, reflecting the fact that IDL is not using stdio to perform 1/0
onthefile. If accessto avalid fptr isimportant to your application, you should be
sureto specify IDL_F_STDI O to the extra_flags argument to IDL_FileOpen, or
use the STDIO keyword to OPEN if opening the file from the IDL user level.

In addition to the requirement to set the IDL_F_STDI O flag, you should be aware
that IDL buffers1/O at alayer above the stdio package. If your code does 1/0 directly
to afilethat is also being written to from the IDL user level, the IDL buffer may
cause data to be written to the file in a different order than you expect. There are
several approaches you can take to prevent this:

e Tel IDL not to buffer, by opening the file from the IDL user level and
specifying avalue of -1 to the BUFSIZE keyword.

« Disable stdio buffering by calling the stdio setbuf() function.

« Ensurethat you flush IDL’s buffer before you do any Input/Output, as
discussed in “Flushing Buffered Data’ on page 394.

External Development Guide

File Information

384 Chapter 19: IDL Internals: Files and Input/Output
Opening Files
Files are opened using the IDL_FileOpen() function.

IDL_FileOpen()

int IDL FileOpen(int argc, IDL VPTR *argv, char *argk,
int access mode, IDL SFILE FLAGS T extra flags,
int longjmp_safe, int msg attr)

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise.

Note
If longjmp_safeis TRUE, the usual courseisto jump back to the IDL interpreter, in
which case the routine won't return.

argc
The number of argumentsin argv. This value should always be 2.
argv

The argumentsto IDL_File Open(). argv[0] should be a scalar integer value giving
the file unit number (LUN) to be opened. argv[1] isascalar string giving thefile
name.

argk
Keywords. Set this argument to NULL.
access_mode

A bit mask that specifies the access to be allowed to the file being opened. The
allowed bit values are listed in the following table:

Bit Value Description
IDL_OPEN_R Thefileis open for input.
IDL_OPEN_W Thefileis open for output.

Table 19-4: Bit Values for the access_mode Argument

Opening Files External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 385

Bit Value Description

IDL_OPEN_TRUNC | Thefile was truncated when it was opened. Thisimplies
that IDL_OPEN_W isalso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain thefile (thefile is open for appending).

Table 19-4: Bit Values for the access_mode Argument (Continued)

It isimportant that conflicting bits not be set together (for example, do not specify
IDL_OPEN_TRUNC | IDL_OPEN_APND). Also, one or both of IDL_OPEN_R and
IDL_OPEN_W must always be specified.

extra_flags

Used to specify additional file attributes using the flags defined in the description of
the flags field of the IDL_FILE_STAT struct (see “File Information” on page 380).
Note that some flags are set by IDL based on the actual attributes of the opened file
(e.g. IDL_F_ISTTY) and that it makes no sense to set such flagsin this mask.

If you intend to use the opened file as a C standard /O (stdio) stream file, you must
specify theIDL_F_STDIO flagwhen calling IDL_FileOpen(). Otherwise, IDL may
choose not to use stdio.

longjmp_safe

If set to TRUE, IDL_FileOpen() isbeing called in a context where an
IDL_MSG _LONGJIMP IDL_Message action code is okay. If set to FALSE, the
routinewon’t Longjmp () .

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise. Of course, if longjmp_safe is TRUE, the usual courseisto jump back to
the IDL interpreter, in which case the routine won’t return.

msg_attr

A zero (0), or any combination of the IDL_MSG_ATTR _ flags, used to fine tune the
error handling specified by the longjmp safe argument. Note that you must not
specify any of thebase IDL_MSG_ codes, but only the attributes. The base code (e.g.
IDL_MSG_LONGJIMP) is determined by the value of longjmp_safe. For a
discussion of the IDL_MSG_ATTR _flags, see “Issuing Error Messages’ on

page 342.

External Development Guide Opening Files

386 Chapter 19: IDL Internals: Files and Input/Output

Special File Units

There are three files that are always open. The three units are:
e« |IDL_STDIN_UNIT — Unit 0 (zero) is the standard input for the IDL process.
e |DL_STDOUT_UNIT — Unit -1 isthe standard output.
e |IDL_STDERR_UNIT — Unit -2 isthe standard error.

Note
The constant IDL_NON_UNIT aways has avalue that is not avalid file unit.

Opening Files External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 387

Closing Files

Files are closed using the IDL_FileClose() function.
IDL_FileClose()

void IDL FileClose(int argc, IDL VPTR *argv, char *argk)
argc
The number of argumentsin argv.
argv

The arguments to the close function. These should be scalar integer values giving the
Logical Unit Numbers of the file units to close.

argk
Keywords. Set this argument to NULL.

External Development Guide Closing Files

388 Chapter 19: IDL Internals: Files and Input/Output

Preventing File Closing

Usethe IDL_FileSetClose() function to prevent files from closing. It does this by
setting or clearing the IDL_F _NOCLOSE hit in the flags field of the internal file
descriptor maintained by IDL for the file (see “File Information” on page 380). This
feature is used primarily in graphics driversfor printers. For example, the PostScript
driver uses this feature to prevent the user from closing the plot data file prematurely.

When IDL exits, it only closes open files that do not have the IDL_F_NOCLOSE bit
set. Fileswith close inhibited are simply |eft alone. Often, you will want to declare an
exit handler which takes care of closing such files.

IDL_FileSetClose()

void IDL FileSetClose(int unit, int allow)
unit

The Logical Unit Number (LUN) of the filein question. The file must be open for
this function to have effect.

allow

Set thisfield to TRUE if users are allowed to close thefile. Set to FALSE if users
should be prevented from closing thefile.

Preventing File Closing External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 389

Checking File Status

System routines that deal with files must verify that the files have the proper
attributes for the intended operation. Use the function IDL_FileEnsureStatus() for
this.

IDL_FileEnsureStatus()

int IDL FileEnsureStatus (int action, int unit, int flags)
action

If the file unit does not satisfy the requirements of the flags argument,
IDL_FileEnsureStatus() will issue an error using the IDL_Message() function (see
“lssuing Error Messages’ on page 342). This action is the action argument to
IDL_Message() and should be IDL_MSG_RET, IDL_MSG_LONGJIMP, or
IDL_MSG_IO_LONGIMP.

unit
The Logical Unit Number of the file to be checked.
flags

IDL_FileEnsureStatus() always checks to make sure unitisavalid logical fileunit. In
addition, flagsis a bit mask specifying the file attributes that should be checked. The
possible bit values are listed in the following table:

Bit Value Description

IDL_EFS USER Thefile must be a user unit. This meansthat thefile
is not one of the three special files, stdin, stdout, or
stderr.

IDL_EFS IDL_OPEN The file unit must be open.

IDL_EFS CLOSED The file unit must be closed.

IDL_EFS READ The file unit must be open for input.

IDL_EFS WRITE The file unit must be open for output.

IDL_EFS NOTTY The file unit cannot be atty.

Table 19-5: Bit Values for the flags Argument

External Development Guide Checking File Status

390 Chapter 19: IDL Internals: Files and Input/Output

Bit Value Description
IDL_EFS NOGUI The file unit cannot be a Graphical User Interface.
IDL_EFS NOPIPE The file unit cannot be a pipe.
IDL_EFS NOXDR The file unit cannot be a XDR file.
IDL_EFS ASSOC The file unit can be ASSOC’ ed. Thisimplies

IDL_EFS_USER, IDL_EFS_OPEN,
IDL_EFS _NOTTY, IDL_EFS NOPIPE,
IDL_EFS NOXDR, IDL_EFS NOCOMPRESS,
and IDL_EFS NOSOCKET.

IDL_EFS NOT_RAWIO The file was not opened with the

(formerly called IDL_F UNIX_RAWIO attribute. This bit was
IDL_EFS NOT_NOSTDIO | formerly called IDL_F_NOTSTDIO.
) IDL_EFS NOT_RAWIO isthe preferred form, but

both names are accepted.

IDL_EFS NOCOMPRESS | Thefile unit cannot have been opened for
compressed input/output (IDL_F COMPRESS).

IDL_EFS STDIO The file must be using the C stdio package
(IDL_F_STDIO).

IDL_EFS NOSOCKET The file unit cannot be asocket (IDL_F_SOCKET).

Table 19-5: Bit Values for the flags Argument (Continued)

Note
Some of these values are contradictory. The caller must select a consistent set.

If thefile unit meetsthe desired conditions, IDL_FileEnsureStatus() returns TRUE. If
it does not meet the conditions, and action was IDL_MSG_RET, then it returns
FALSE.

Checking File Status External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 391

Allocating and Freeing File Units

System routines must allocate and deallocate file unitsin order to avoid conflicts.
When writing IDL procedures, the GET_LUN and FREE_LUN procedures are used.
When writing system-level routines, you can access the same routines by calling
IDL_FileGetUnit() and IDL_FileFreeUnit().

Use IDL_FileGetUnit() to allocate file units:

IDL_FileGetUnit()

void IDL FileGetUnit (int argc, IDL_VPTR *argv)
argc
argc should always be 1.
argv

argv[Q] containsan IDL_VPTR tothe IDL_VARIABLE that will befilled in with the
resulting unit number.

Use IDL_FileFreeUnit() to free file units:
IDL_FileFreeUnit()

void IDL FileFreeUnit (int argc, IDL_VPTR *argv)
argc
ar gc gives the number of elementsin argv.
argv
argv should contain scalar integer values giving the Logica Unit Numbers of thefile
units to be returned.

Read the description of GET_LUN and FREE _LUN in the IDL Reference Guide for

additional details about these functions. The following code fragment demonstrates

how these functions might be used to open and close afile named junk . dat:
IDL_VPTR argv[2];

IDL_VARIABLE unit;
IDL _VARIABLE name;

External Development Guide Allocating and Freeing File Units

Allocating and Freeing File Units

Chapter 19: IDL Internals: Files and Input/Output

/* Allocate a file unit. */
argv[0] = &unit;

unit.type = IDL_TYP_LONG;
unit.flags = 0;

IDL FileGetUnit (1, argv);

/* Set up the file name */
name.type = IDL TYP_ STRING;
name.flags = IDL_V CONST;

name.value.str.s = "junk.dat";
name.value.str.slen = sizeof ("junk.dat") - 1;
name.value.str.stype = 0;

argv[l] = &name;

IDL _FileOpen(2, argv, (char *) 0, IDL OPEN R, 0, 1, 0);

/* Perform any required actions. */

/* Free the file unit. This will also close the file. */

IDL FileFreeUnit (1, argv);

External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 393
Detecting End of File
IDL_FileEOF()

The IDL_FileEOF() function returns TRUE if the file specified by the Logical Unit
Number unit is at EOF, and FAL SE otherwise:

int IDL_FileEOF (int unit)
unit

The Logical Unit Number (LUN) of thefile in question.

External Development Guide Detecting End of File

394 Chapter 19: IDL Internals: Files and Input/Output
Flushing Buffered Data

IDL_FileFlushUnit()

File data might be buffered in system memory in order to boost input/output
performance. The IDL_FileFlushUnit() function forces any buffered datafor thefile
specified by the Logical Unit Number unit to be written out:

int IDL_FileFlushUnit (int unit)
unit

The Logical Unit Number (LUN) of the filein question.

Flushing Buffered Data External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 395
Reading a Single Character

IDL_GetKbrd()

The IDL_GetKbrd() function returns the character code of the next available
character from IDL_STDIN_UNIT:

int IDL_GetKbrd(int should_wait)
should_wait

Set this argument to TRUE if IDL_GetKbrd() should wait for akey to be struck,
FAL SE otherwise.

If should_wait is FALSE and no input characters are waiting in the input stream,
IDL_GetKbrd() returns NULL. Otherwise, it waits until akey is struck (if necessary)
and then returnsits ASCII value. Thisfunction will generate an error and return to the
interpreter if IDL_STDIN_UNIT isnot aterminal.

External Development Guide Reading a Single Character

396 Chapter 19: IDL Internals: Files and Input/Output

Output of IDL Variables
IDL_Print() and IDL_PrintF()

TheIDL_Print() and IDL_PrintF() functions output the value of IDL_VARIABLES.
IDL_Print() smply outputsto IDL_STDOUT_UNIT, while IDL_PrintF() outputsto

a specified unit:

void IDL_ Print (int argc, IDL VPTR *argv, char *argk)
void IDL_ PrintF (int argc, IDL_VPTR *argv, char *argk)

argc
The number of argumentsto argv.
argv
IDL_VPTRsof the IDL_VARIABLESto be output.
argk

Keywords. Set thisargument to NULL ((char *) 0).

These functions are the implementation of the built-in IDL system procedures PRINT
and PRINTF. See “PRINT/PRINTF” in the IDL Reference Guide manual for
information on the available arguments and the order in which you must specify
them.

Output of IDL Variables External Development Guide

Chapter 19: IDL Internals: Files and Input/Output 397

Adding to the Journal File
IDL_Logit()

The IDL_Logit() function can be used to add lines of output to the journa log file:

void IDL_Logit (char *s)

A pointer to aNULL terminated string to be added to the journal log file.

If ajournal log fileis currently open, thisfunction writesthe specified stringtoit ona
new line. If no journal fileisopen, IDL_L ogit() returns quietly. The only way to open
or closethejournad fileis viathe user-system-level JOURNAL procedure.

External Development Guide Adding to the Journal File

398 Chapter 19: IDL Internals: Files and Input/Output

Adding to the Journal File External Development Guide

Chapter 20

IDL Internals:
Miscellaneous

This chapter discusses the following topics:

DynamicMemory 400
ExitHandlers 403
Userinterrupts 404
Functions for Returning System Variables 405
Terminal Information................. 406

External Development Guide

Ensuring UNIX TTY State............ 408
Typelnformation 409
User Information 411
Constantsccovun... 412
Macros ... 413

399

400 Chapter 20: IDL Internals: Miscellaneous

Dynamic Memory

IDL provides access to the dynamic memory allocation routines it uses internally.
Use these routines rather than system-provided routines such as malloc()/free() when
possible.

Warning
The memory pointers returned by the IDL memory allocation routines discussed in
this chapter do not necessarily correspond directly to malloc()/free() cals, or to any
other system memory allocation package. You must be careful not to mix memory
allocation packages. Memory alocated viaagiven API can only be freed by the
corresponding free call provided by that API. For example, memory allocated by an
IDL memory allocation routine can only be freed by the IDL IDL_MemFree()
function. Memory allocated by malloc() can only be freed by free().

Failureto follow this rule can lead to memory corruption, including possible
crashing of the IDL program.

Please note that code called via CALL_EXTERNAL, or as a system routine
(LINKIMAGE, Dynamically L oadable Modules) should not use the IDL dynamic
memory routines. Instead, use IDL_GetScratch() (see “ Getting Dynamic Memory”
on page 322) which prevents memory from being lost under error conditions.

Warning
Our experience showsthat in situations where IDL_GetScratch() is appropriate,
use of any other memory allocation mechanism should raise awarning flag to the
programmer that something iswrong in their code. Rarely if ever isadirect cal to
malloc()/free() reasonable in such a situation — even if it appears to work
correctly, you will have to work harder to provide the error handling functionality
that IDL_GetScratch() provides automatically, or your code will leak memory in
such situations.

IDL_MemAlloc()

IDL_MemAlloc() is used to allocate dynamic memory.
void *IDL MemAlloc (IDL MEMINT n, char *err str, int action)

where:

Dynamic Memory External Development Guide

Chapter 20: IDL Internals: Miscellaneous 401

n

The number of bytesto allocate.

err_str

NULL, or anull terminated text string describing the memory being allocated.
action

An action parameter to be passed to IDL_Message() if IDL_MemAlloc() is unable
to allocate the desired memory and err_str isnon-NULL.

IDL_MemAlloc() attempts to allocate the desired amount of memory. If the
requested amount is allocated, a pointer to the memory is returned. The memory is
aligned strictly enough to be suitable for any object.

If the attempt to allocate memory failsand err_str isnon-NULL, IDL_Message() is
caled as.

IDL Message (IDL_M CNTGETMEM, action, err_str)

If IDL_Message() returns, or if err_str isNULL and IDL_Message() is hot called,
IDL_MemAlloc() returnsa NULL pointer indicating its failure.

IDL_MemFree()

Memory allocated vial DL_MemAlloc() should only be returned via
IDL_MemFree():

void IDL_MemFree (REGISTER void *m, char *err_str, int action)

m

A pointer to memory previously alocated vialDL_MemAlloc().
err_str

NULL, or anull terminated text string describing the memory being freed.
action

An action parameter to be passed to IDL_M essage() if unable to free memory and
err_str isnon-NULL.

IDL_MemFree() attemptsto free the specified memory. If the attempt to free
memory failsand err_str isnon-NULL, IDL_Message() iscalled as:

External Development Guide Dynamic Memory

402 Chapter 20: IDL Internals: Miscellaneous

IDL Message (IDL_M CNTFREMEM, action, err str)
The following actions have undefined conseguences, and should not be done:
¢ Returning memory allocated from a source other than IDL_MemAlloc().
¢ Freeing the same allocation more than once.

e Dereferencing memory once it has been freed.
IDL_MemAllocPerm()

Another memory allocation routine, IDL_MemAllocPerm(), exists to allocate
dynamic memory that will not be returned for reuse. IDL_MemAllocPer m()
allocates memory in moderately large units and carves out pieces of these blocks to
satisfy its requests. Use of this routine can help minimize the effects of memory
fragmentation.

void *IDL MemAllocPerm (IDL MEMINT n, char *err str, int action)

IDL_MemAllocPerm() takes the same arguments as I DL_MemAlloc(), differing
only in that the memory allocated will not be freed until the process exits. Do not
attempt to free memory allocated by IDL_MemAllocPer m(). The results of such an
action are undefined.

Dynamic Memory External Development Guide

Chapter 20: IDL Internals: Miscellaneous 403

Exit Handlers

IDL maintains alist of exit handler functions that it calls as part of its shutdown
operations. These handlers perform actions such as closing files, wrapping up
graphics output, and restoring the user environment to itsinitial state. Exit handlers

accept no arguments and return no value.

A typical declaration would be:

void my exit handler (void)

{

/* Cleanup Code Here */

)
IDL_EXxitRegister()

To register an exit handler, use the IDL_ExitRegister () function:
void IDL_ExitRegister (IDL_EXIT_HANDLER_FUNC)
where IDL_EXIT_HANDLER_FUNC is defined as:

typedef void(* IDL_EXIT HANDLER FUNC) (void) ;
proc

IDL will call proc just beforeiit exits.

The order in which exit handlers are called is undefined, and you should not depend
on any particular ordering. If you have several exit handlers and the order in which
they are called isimportant, you should register a single handler that calls all the
othersin the required order.

Note
Under some operating systems, it is possible that the IDL process will diein an

abnormal way that prevents the calling of the exit handlers. For example, under
UNIX, receiving some signals (possibly via the kill(1) command) will cause the
processto dieimmediately. IDL always calls exit handlers when possible, so thisis
rarely asignificant problem.

External Development Guide Exit Handlers

404 Chapter 20: IDL Internals: Miscellaneous

User Interrupts

IDL catches certain operating system signalsincluding SIGINT, which occurs when
the user types the interrupt character (usually Control-C). When the interpreter
detects the interrupt character, it sets an internal flag which causes execution of the
program to stop at the next sequence statement. The interpreter clearsthis variable
every timeit isinvoked, and checks to seeiif it has been set before it executes each
statement. This means that when the user presses the interrupt character, the current
statement must complete before the interpreter checks the value of the variable and
halts execution.

Typical statements do not take long to complete, so this delay is not noticeable.
However, some system routines take a long time to complete, and the user can be
fooled by the long delay into thinking that IDL isignoring the interrupt. While the
occasional long delay can be annoying, this method of handling interruptsisthe only
way to maintain acceptable performance in the usual case where no interrupt is
pending. Therefore, it isthe responsibility of system routines that take along time to
complete to check the value of thisinternal variable and to clean up and return if
SIGINT isseen. IDL’s Input/Output and FFT routines, among others, do this.

IDL_BailOut()

The DL _BailOut() function is used to sense or set the state of IDL’s internal
interrupt flag. It returns TRUE if the keyboard interrupt character has been typed,
otherwise FALSE.

int IDL BailOut (int stop)

where;
stop

Set to FAL SE to sense the state of the keyboard interrupt flag without changing its
value. Set to TRUE to set the keyboard interrupt flag.

User Interrupts External Development Guide

Chapter 20: IDL Internals: Miscellaneous 405

Functions for Returning System Variables

The following functions return the values of certain system variables. Note that these
values should be considered READ-ONLY.

IDL_STRING *IDL_SysvVersionArch(void)

This function returns a pointer to the 'VERSION.ARCH system variable.
IDL_STRING *IDL_SysvVersionOS(void)

This function returns a pointer to the 'VERSION.OS system variable.
IDL_STRING *IDL_SysvVersionOSFamily(void)

This function returns a pointer to the 'VERSION.OS_FAMILY system variable.
IDL_STRING *IDL_SysvVersionRelease(void)

This function returns a pointer to the 'VERSION.REL EA SE system variable.
IDL_STRING *IDL_SysvDirFunc(void)

This function returns a pointer to the !DIR system variable.
IDL_STRING *IDL_SysvErrStringFunc(void)

This function returns a pointer to the 'ERROR_STATE.MSG system variable.
IDL_STRING *IDL_SysvSyserrStringFunc(void)

This function returns a pointer to 'ERROR_STATE.SYS MSG system variable.
IDL_LONG IDL_SysvErrorCodeValue(void)

This function returns the value of the ' ERROR_STATE system variable.
IDL_LONG IDL_SysvOrderValue(void)

This function returns the value of the |ORDER system variable.

For more information on IDL system variables, see Appendix D, “ System Variables’
in the IDL Reference Guide manual.

External Development Guide Functions for Returning System Variables

406 Chapter 20: IDL Internals: Miscellaneous

Terminal Information

The global variable IDL_FileTerm isastructure of type IDL_TERMINFO:

typedef struct ({

char *name; /* Name Of Terminal Type */

char is_tty; /* True if stdin is a terminal */
int lines; /* Lines on screen */

int columns; /* Width of output */

} IDL_TERMINFO;

Note

Under operating systems that do not support the concept of aterminal (Microsoft
Windows) the name and is_tty fields are not present.

IDL_FileTerm isinitialized when IDL is started. Few, if any, user routines will need
this information, because user routines should not do their own 1/0O. User routines
that must do their own 1/0O should use this variable instead of making assumptions
about the output device.

Note
Under Microsoft Windows, the IDL_FileTerm is not accessible outside of the IDL
sharable library, and cannot be directly accessed by user code. Instead, use the
functions described in the following section.

Functions for Returning IDL_FileTerm Variable
Values

The following functions can be used to return values from the IDL_FileTerm
variable. They return the same information contained in the global variable, but in a
functional form. Thisisthe preferred way to accessthe IDL_FileTer m information,
asit will work on any platform.

char *IDL_FileTermName(void)

Thisfunction returns the value of IDL_FileTerm.name. This function isonly
available under UNIX.

int IDL_FileTermlIsTty(void)
This function returns the value of IDL_FileTerm.is_tty. Thisfunction isonly

available under UNIX.

Terminal Information External Development Guide

Chapter 20: IDL Internals: Miscellaneous

int IDL_FileTermLines(void)
This function returns the value of IDL_FileTerm.lines.

int IDL_FileTermColumns(void)

This function returns the value of IDL_FileTerm.columns.

External Development Guide

407

Terminal Information

408

Chapter 20: IDL Internals: Miscellaneous

Ensuring UNIX TTY State

Under some UNIX operating systems, IDL keeps the users terminal in a raw mode,
required to implement command line editing. On these platforms, externally linked
code that performs output to the terminal will find that the output does not appear as
expected. A usual symptom of thisisthat newline characters ('\n") do not move the
cursor to the left margin of the screen, and commands such as more(1) (perhaps
started viathe C runtime library system() function) do not control the screen

properly.

Thisisnot anissue for IDL routines such as SPAWN that start sub-programs,
because they are written to be aware of thisissue and to ensurethe TTY isin the
correct state before they do their work. Externally linked code can call the
IDL_TTYReset() function to do the same thing:

void IDL_ TTYReset (void)

Thisfunction is available under all operating systems. On systems where such an
operation is not needed, it isastub. On platforms that requirethe TTY to be managed
in this way, this operation ensures that the terminal is returned to its standard
configuration.

Ensuring UNIX TTY State External Development Guide

Chapter 20: IDL Internals: Miscellaneous 409

Type Information

The following read-only global variables provide information about IDL data.

Note
Under Microsoft Windows, these global variables are not available; use the
functions listed below to retrieve the values contained in the global variables.

IDL_OutputFormat

An array of pointersto character strings. IDL_OutputFor mat isindexed by type
code, and specifies the default output formats for the different data types (see “ Type
Codes’ on page 262). The default formats are used by the PRINT and STRING built-
in routines as well asfor type conversions.

IDL_OutputFormatLen

An array of integers. IDL_OutputFormatL en gives the length in characters of the
corresponding elements of IDL_OutputFor mat.

IDL_TypeSize

An array of longintegers. IDL_TypeSize isindexed by type code, and gives the size
of the data object used to represent each type.

IDL_TypeName

An array of pointersto character strings. IDL_TypeName is indexed by type code,
and gives a descriptive string for each type.

Functions for Returning Data Type Variable Values

The following functions can be used to return the values contained in the global
variables described above, but in afunctional form.

char *IDL_OutputFormatFunc(int type)

Given an IDL type code, this function returns the default output format for that type.
Thisis equivalent to accessing the IDL_OutputFormat array.

External Development Guide Type Information

410 Chapter 20: IDL Internals: Miscellaneous

int IDL_OutputFormatLenFunc(int type)

Given an IDL type code, thisfunction returns the default output format length for that
type. Thisis equivalent to accessing the IDL _OutputFormatL en array.

int IDL_TypeSizeFunc(int type)

Given an IDL type code, this function returns the size of the data object used to
represent that type. Thisis eguivalent to accessing the IDL_TypeSize array.

char *IDL_TypeNameFunc(int type)

Given an IDL type code, this function returns the name of the type as a null
terminated character string. Thisis equivalent to accessing the IDL_TypeName

array.

Type Information External Development Guide

Chapter 20: IDL Internals: Miscellaneous

User Information

411

Usethe IDL_GetUserInfo() function to get information about the current session.
Thisisthe sort of information that can be used in the header of files produced by
graphics drivers. It is used, for example, by the PostScript driver:

void IDL GetUserInfo (IDL USER INFO *user info)

wherethe IDL_USER_INFO struct is defined as:

typedef struct ({

char *logname; /*
char *homedir; /*
char *pid; /*
char host[64]; /*
char wd[IDL_MAXPATH+1] ; /*
char date[25]; /*

} IDL_USER_INFO;

External Development Guide

User’s login name */
User’s home directory */
The process ID */
Machine name */

Working Directory */
Current System Time */

User Information

412 Chapter 20: IDL Internals: Miscellaneous

Constants

Preprocessor constants defined inthe id1_export . h file should be used in
preference to hardwired values. To accommodate the needs of various operating
systems, some of these constants have different values in different versions of IDL.
Those constants that are not discussed el sewhere in this book are listed below.

IDL_TRUE

A more readable alternative to the constant 1.
IDL_FALSE

A more readable alternative to the constant 0.
IDL_REGISTER

Some C compilers are good at allocating registers, and using the C register
declaration can cause efficiency to suffer. On the other hand, some C compilers
won'’t put any variables into registers unless register definitions are used. Our
solutionistouse IDL_REGISTER to declare variables we feel should be placed
into registers. For machines that we feel have a good register allocation scheme, we
define IDL_REGI STER to be anull macro. For lesser compilers, it is defined to be
the C register keyword.

IDL_MAX_ARRAY_DIM
The maximum number of dimensions an array can have.
IDL_MAXIDLEN

The maximum number of characters IDL alowsin an identifier (variable names,
program names, and so on).

IDL_MAXPATH

The maximum number of characters allowed in afilepath.

Constants External Development Guide

Chapter 20: IDL Internals: Miscellaneous 413

Macros

The macros defined in 1d1_export . h handle recurring small jobs. Those macros
not discussed elsewhere in this book are covered here.

IDL_ABS(x)

IDL_ABY() accepts asingle argument of any numeric C type, and returnsits absolute
value. IDL_ABY() evaluates its argument more than once, so be careful to avoid
unwanted side effects, and for efficiency do not call it with acomplex expression.

IDL_CARRAY_ELTS(arr)

This macro encapsul ates acommon C language idiom for determining the number of
elementsin a statically defined array without requiring the programmer to provide a
constant or otherwise hardwire the length. It's use improves the robustness of code
that usesit by automatically adapting to any change in the definition of the array
without requiring additional programmer effort. This macro corresponds directly to
the C expression:

sizeof (arr) /sizeof (arr[0])

The C compiler evaluates this expression at compile time, so there is no additional
runtime cost for using this macro instead of a hardwired constant.

IDL_CHAR(ptr)

IDL_CHAR() castsits argument to be a pointer to char. It is used to convert an
existing pointer into a generic pointer to a memory location.

IDL_CHARA (addr)

IDL_CHARA() takes the address of its argument and castsit to be a pointer to char.
It is used to get a generic pointer to a memory location.

IDL_MIN(x,y) and IDL_MAX(X,y)

The arguments can be of any numeric C type aslong as they are compatible with each
other. IDL_MIN() and IDL_MAX() return the smaller and larger of their two
arguments, respectively. These macros evaluate their arguments more than once, so
be careful to avoid unwanted side effects, and for efficiency do not call them with a
complex expression.

External Development Guide Macros

414 Chapter 20: IDL Internals: Miscellaneous

IDL_ROUND_UP(X, m)

IDL_ROUND_UP() returns the value of x rounded up modulo m. m must be a

power of 2. Thismacro is useful for extending data regions out to a specified
alignment.

IDL_TRUE and IDL_FALSE

When performing logical expression evaluation the C programming language, in
which IDL iswritten, treats zero (0) as False, and non-zero as True, and when
returning the result of such an expression, uses 1 for True and O for False.

IDL_TRUE isdefined asthe constant 1, and IDL_FAL SE is defined as the constant
0. These constants are used internally by IDL.

Macros External Development Guide

Part lll: Technigues
That Use IDL’s Internal
API

Chapter 21

Adding System

Routines

This chapter discusses the following topics:

IDL and System Routines 418
The System Routine Interface 419
Example: HelloWorld 420

Example: Doing aLittle More (MULT?2) . 421

Example: A Complete Numerical Routine
Example (FZ_ROOTS2)

External Development Guide

Example: An Example Using Routine Design
lteration (RSUM) 433

Registering Routines 443
Enabling and Disabling System Routines 446

LINKIMAGE 454
Dynamically Loadable Modules 456
417

418 Chapter 21: Adding System Routines

IDL and System Routines

An DL system routineis an IDL procedure or function that iswritten in a compiled
language with an IDL specific interface, and linked into IDL, instead of being written
inthe IDL language itself.The best way to create an IDL system routine isto compile
and link the routine into a sharable library and then to add the routine to IDL at
runtime using either the LINKIMAGE procedure or by making your routines part of
aDynamically Loadable Module (DLM).

Note
RSl recommends the use of Dynamically Loadable Modules rather than
LINKIMAGE whenever possible. The small additional effort is more than
compensated for by the superior integration into IDL.

This chapter explains how to write a system routine, including several examples, and
discusses the various options for adding such routinesto IDL.

IDL and System Routines External Development Guide

Chapter 21: Adding System Routines 419

The System Routine Interface

All IDL system routines must supply the same calling interface to the system,
differing only in that system functions must returnan IDL_VPTR to the
IDL_VARIABLE that contains the result while system procedures do not return
anything. Typical system routine definitions are:

IDL _VPTR my function(int argc, IDL VPTR argv[], char *argk)
void my_ procedure (int argc, IDL_VPTR argv[], char *argk)

System routines that do not accept keywords are called with two arguments:
argc

The number of elementsin argv.
argv

Anarray of IDL_VPTRSs. These point to the IDL _VARIABL Eswhich comprise the
arguments to the function.

System routines that accept keywords are called with an additional third argument:
argk

The keywords which were present when the routine was called. argk is an opague

object—the called routine is not intended to understand its contents. ar gk is provided

to the function IDL_K W ProcessByOffset(), which processes the keywordsin a

standard way. For more information on keywords, see “IDL Internals: Keyword
Processing” on page 269.

External Development Guide The System Routine Interface

420 Chapter 21: Adding System Routines

Example: Hello World

Thanks to the definitive text on the C language (Kernighan and Ritchie, The C
Programming Language, Prentice Hall, NJ, Second Edition, 1988), the “Hello
World” program is often used as an example of atrivial program. Our version of this
program is a system function that returns a scalar string containing the text “Hello
World!”:

#include <stdio.h>
#include "idl export.h"

IDL_VPTR hello world(int argc, IDL_VPTR argv([])

{

return (IDL_StrToSTRING ("Hello World!")) ;

}

Thisis about as smple as an IDL system routine can be. The function
IDL_StrToSTRING(), returns atemporary variable which contains a scalar string.
Since thisis exactly what iswanted, hello_world() ssmply returns the variable.

After compiling this function into a sharable object (named, for example, hello_exe),
we can link it into IDL with the following LINKIMAGE call:

LINKIMAGE, 'HELLO WORLD', 'hello exe', 1, 'hello world', $
MAX ARGS=0, MIN_ARGS=0

We can now issue the IDL command:
PRINT, HELLO_WORLD()
In response, IDL writes to the screen:

Hello World!

Example: Hello World External Development Guide

Chapter 21: Adding System Routines

Example: Doing a Little More (MULT?2)

The system function shown in the following figure does alittle more than the

421

previous one, though not by much. It expects a single argument, which must be an
array. It returns a single-precision, floating-point array that contains the values from

the argument multiplied by two.

1] #include <stdio.h>
2 #include "idl export.h"
3
4f IDL VPTR mult2 (int argc, IDL_VPTR argv([])
50 1
6 IDL VPTR dst, src;
7 float *src d, *dst _d;
8 int n;
9 src = dst = argv|[0];
10
11 IDL _ENSURE_SIMPLE (src) ;
12 IDL_ENSURE_ARRAY (src) ;
13
14 if (src->type != IDL TYP FLOAT)
C 15 src = dst = IDL CvtFlt(l, argv);
16
17 src_d = dst_d = (float *) src->value.arr->data;
18
19 if (! (src->flags & IDL_V_TEMP))
20 dst_d = (float *)
21 IDL MakeTempArray (IDL TYP FLOAT, src->value.arr->n dim,
22 src->value.arr->dim,
23 IDL_ARR INI NOP, &dst);
24
25 for (n = src->value.arr->n _elts; n--;)
26 *dst _d++ = 2.0 * *src d++;
27
28 return(dst) ;
291 }

Table 21-1: mult2.c

Each line is numbered to make discussion easier. These numbers are not part of the

actual program. Each line of this routine is discussed below:
1-2
Include the required header files.

External Development Guide Example: Doing a Little More (MULT2)

422

Chapter 21: Adding System Routines

Every system routine takes the same two or three arguments. ar gc is the number of
arguments, argv is an array of arguments. This routine does not accept keywords, so
argk isnot present.

dst will become a pointer to the resulting variable's descriptor. src points at the input
variable whichisfound in argv[0].

src_d and dst_d will point to the source and destination data areas.

n will contain the number of elementsin src.
10

Assume, for now, that the input variable will serve as both the source and destination.
Thiswill only be trueif the parameter is atemporary floating-point array.

11-12

Screen out any input that is not of abasic type, and only alow arrays. A better
version of this routine would handle scalar input also, but we want to keep the
example simple.

14

If theinputisnot of IDL_TYP_FLOAT, wecall theDL_CvtFIt() function to
create a floating-point copy of the argument (see “ Converting to Specific Types’ on
page 356 for information about converting types).

Note that the routine could also be written, more efficiently, with a C switch
statement which would handle each of the eight possible data types, eliminating
conversion of the input parameter. This would be more in the spirit of the IDL
language, where system routines work with all possible datatypes and sizes, but is
outside the scope of this example.

17

Here, we initialize the pointersto the source and destination data areas from the array
block structure pointed to by the input variable descriptor.

Example: Doing a Little More (MULT?2) External Development Guide

Chapter 21: Adding System Routines 423

19-23

If the input variable is not atemporary variable, we cannot change its value and
return it as the function result. Instead, we allocate a new temporary floating point
array into which the result will be placed. Notice how the number of dimensions and
their sizes are taken from the source variable array block. See “Array Variables’ on
page 305 and “ Temporary Variables’ on page 313.

25

Loop over each element of the arrays.
26

Do the multiplication for each element.

28

Return the temporary variable containing the result.

Testing the Example

Once we have compiled the function and linked it into IDL (possibly using
LINKIMAGE), we can use the built-in IDL function INDGEN to test the new
function, which we name MULT?2. INDGEN returns an array of values with each
element set to the value of its array index. Therefore, the statement:

PRINT, INDGEN (5)

prints the following on the screen:
01234

To test our new function we use INDGEN to provide an input argument:
PRINT, MULT2 (INDGEN (5))

Theresult, as expected, is:

0.00000 2.00000 4.00000 6.00000 8.00000

External Development Guide Example: Doing a Little More (MULT2)

424 Chapter 21: Adding System Routines

Example: A Complete Numerical Routine
Example (FZ_ROOTS2)

Thefollowing is acomplete implementation of the IDL system function FZ_ROQTS,
used to find the roots of an m-degree complex polynomial, using Laguerre’s method.
Theresult is an m-element complex vector. We call this version FZ_ROOTS2 to
avoid a name clash with the real routine. FZ_ROOTS2 has an additional keyword,
TC_INPUT, that is not present in the real routine.

FZ_ROQOTS2 uses the routine zroots(), described in section 9.5 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press:

void zroots (fcomplex al[l, int m, fcomplex roots[], int polish)
Quoting from the referenced book:

Given the degree m and the m+1 complex coefficients /0..m] of the polynomial ,

ST a0

this routine successively calls 1aguer and finds all m complex roots in rootg 1..m].
The boolean variable polish should be input as true (1) if polishing (also by
Laguerre’'s method) is desired, false (0) if the roots will be subsequently polished by
other means.

FZ_ROOQOTS2 will support both single and double precision complex values as well
as give the caller control over the error tolerance, which is hard wired into the
Numerical Recipes code as a C preprocessor constant named EPS. In order to support
these requirements, we have copied the zroots() function given in the book and
altered it to support both data types and make EPS a user specified parameter, giving
two functions:

void zroots f (fcomplex al[], int m, fcomplex roots[], int polish,
float eps);

void zroots_d(dcomplex al[], int m, dcomplex roots[], int polish,
double eps) ;

Note that fcomplex and dcomplex are Numerical Recipes defined types that happen
to have the same definition asthe IDL types IDL_COMPLEX and
IDL_DCOMPLEX, aconvenient fact that eliminates some type conversion issues.

The definition of FZ_ROOTS2 from the IDL user perspectiveis:

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 425

Calling Sequence
Result = FZ_ROOTS2(C)
Arguments
C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order.

Keywords

DOUBLE

FZ_ROQOTS2 normally usesthetype of C to determine the type of the computation. If
DOUBLE is specified, it overrides this default. Setting DOUBLE to a non-zero value
causes the computation type and the result to be double precision complex. Setting it
to zero forces single precision complex.

EPS
The desired fractional accuracy. The default valueis 2.0 ¥ 10°6.

NO_POLISH
Set this keyword to suppress the usual polishing of the roots by Laguerre’s method.

TC_INPUT

If present, TC_INPUT specifies anamed variable that will be assigned the input
value C, with its type converted to the type of the result.

Example
The following figure gives the code for fzroots2.c,. Thisis ANSI C code that

implements FZ_ROQOTS2. The line numbers are not part of the code and are present
to make the discussion easier to follow. Each line of thisroutine is discussed below.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

426 Chapter 21: Adding System Routines

1] #include <stdio.h>

2 #include <stdarg.hs>

3] #include "idl_export.h"

4} #include <nr/nr.h>

5

6] IDL VPTR fzroots2 (int argc, IDL_VPTR *argv, char *argk)

d B

8 typedef struct ({

9 IDL KW RESULT FIRST FIELD; /* Must be first entry in this
10f structure */

11 int force type;

12 IDL LONG do_double;

13 double eps;

14 IDL_LONG no_polish;

15 IDL_VPTR tc_input;

16 } KW _RESULT;

17 static IDL KW PAR kw pars[] = {

18 {"DOUBLE", IDL_TYP LONG, 1, O,

19 IDL_ KW OFFSETOF (force type), IDL_KW OFFSETOF (do _double) },
20 { "EpPs", IDL TYP DOUBLE, 1, 0, 0, IDL KW OFFSETOF (eps) },
21 { "NO_POLISH", IDL TYP LONG, 1, IDL KW ZERO,
22 0, IDL KW OFFSETOF (no polish) },
23 { »Tc_INPUT", 0, 1, IDL_KW OUT|IDL_KW_ ZERO,
24 0, IDL KW OFFSETOF (tc_input) },

c 25 { NnULL }

26 Vi
27
28 KW _RESULT kw;
29 IDL VPTR result;
30 IDL _VPTR c_raw;
31 IDL_VPTR c_tc;
32 IDL _MEMINT m;
33 void *outdata;
34 IDL ARRAY DIM dim;
35 int rtype;

36 static IDL_ALLTYPES zero;

37

38 kw.eps = 2.0e-6;

39 (void) IDL_KWProcessByOffset (argc, argv, argk,
40Q kw_pars, &c_raw, 1, &kw) ;
41
42 IDL_ENSURE_ARRAY (c_raw) ;
43 IDL_ENSURE_SIMPLE (c_raw) ;
44 if (c_raw->value.arr->n dim != 1)
45 IDL Message (IDL_M NAMED GENERIC, IDL MSG LONGJMP,
46 "Input argument must be a column vector.");
47 m = c_raw->value.arr->dim[0];
48 if (--m <= 0)

IDL Message (IDL_M NAMED GENERIC, IDL MSG LONGJMP,
"Input array does not have enough elements") ;

Example: A Complete Numerical Routine Example (FZ_ROOTS2)

External Development Guide

Chapter 21: Adding System Routines 427

49 if (kw.tc_input)

50 IDL_StoreScalar (kw.tc_input, IDL TYP_LONG, &zero);
51
52 if (kw.force type) {
53 rtype = kw.do double ? IDL TYP DCOMPLEX : IDL TYP COMPLEX;
54 } else {
55 rtype = ((c_raw->type == IDL TYP DOUBLE)
56 || (c_raw->type == IDL_TYP DCOMPLEX))
57 ? IDL TYP DCOMPLEX : IDL_ TYP COMPLEX;
58 }
59 dim[0] = m;
60 outdata = (void *)
61 IDL MakeTempArray (rtype,1l,dim,IDL ARR INI NOP, &result) ;
62
63 if (c_raw->type == rtype) {
64 c_tc = c_raw;
c 65 } else {
66 c_tc = IDL BasicTypeConversion(l, &c_raw, rtype);
67 }
68
69 if (rtype == IDL_TYP COMPLEX) ({
70 zroots f ((fcomplex *) c tc->value.arr->data, m,
71 ((fcomplex *)outdata)-1,!kw.no polish, (float) kw.eps);
72 } else {
73 zroots_d((dcomplex *) c tc->value.arr->data, m,
74 ((dcomplex *) outdata) - 1, !kw.no polish, kw.eps);
75 }
76
77 if (kw.tc_input) IDL VarCopy(c_tc, kw.tc input);
78 else if (c_raw != c_tc) IDL Deltmp(c_tc);
79
80 IDL_KW_FREE;
81 return result;
g2 }
Table 21-2: fzroots2.c (Continued)
4

nr.h isthe header file provided with Numerical Recipesin C code.

FZROQOT S2 has the usual three standard arguments.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

428

Chapter 21: Adding System Routines

10

kw.force_typewill be TRUE if the user specifies the DOUBLE keyword. In this
case, the value of the DOUBLE keyword will determine the result type without
regard for the type of the input argument.

If the user specifies DOUBLE, a zero value forces a single precision complex result
and non-zero forces double precision complex.

12
The value of the EPS keyword.
13
The value of the NO_POLISH keyword.
14
Thevalue of the TC_INPUT keyword.
16
This array defines the keywords accepted by FZ_ROOTS2.
17

Since setting DOUBLE to 0 has a different meaning than not specifying the keyword
at al, kw.force_typeisused to detect the fact that the keyword is set independent of
itsvalue.

19

The EPS keyword allows the user to specify the kw.eps tolerance parameter. kw.eps
is specified as double precision to avoid losing accuracy for double precision
computations—it will be converted to single precision if necessary. The default value
for this keyword is non-zero, so no zeroing is specified here. If the user includes the
EPS keyword, the value will be placed in kw.eps, otherwise kw.epswill not be
changed.

20

This keyword lets the user suppress the usual polishing performed by zroots(). Since
specifying avalue of 0 is equivalent to not specifying the keyword at all,
IDL_KW_ZERO isusedtoinitialize the variable.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 429

22

If present, TC_INPUT is an output keyword that will have the type converted value
of the input argument stored in it. By specifying IDL_KW_OUT and
IDL_KW_ZERO, we ensurethat TC_INPUT is either zero or a pointer to avalid
IDL variable.

27

The results of keyword processing will all be written to this variable by
IDL_KWProcessByOffset().

28
This variable will receive the function result.
29
The input argument prior to any type conversion.

30

The type converted input variable. If the input variable is aready of the correct type,
thiswill be the same as ¢_raw, otherwise it will be different.

31
The value of mto be passed to zroots().
32

Pointer to the data area of the result variable. We declare it as (void *) sothat it
can point to data of any type.

33

Used to specify dimensions of the result. This will always be a vector of m elements.
34

IDL type code for result variable.
35

Used by IDL _StoreScalar () to type check the TC_INPUT keyword. It is declared as
static to ensure it isinitialized to zero.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

430

Chapter 21: Adding System Routines

37

Set the default EPS val ue before doing keyword processing. If the user specifies EPS,
the supplied value will override this. Otherwise, this value will still be in kw.eps and
will be passed to zroots() unaltered.

38
Perform keyword processing.
40-41

Ensure that the input argument is an array, and is one of the basic types (not afile
variable or structure).

42-44

Theinput variable must be a vector, and therefore should have only asingle
dimension.

45-48

Ensure that the input variable islong enough for mto be non-zero. mis one lessthan
the number of elementsin the input vector, so thisis equivalent to saying that the
input must have at least 2 elements.

49

If the TC_INPUT keyword was present, use | DL _StoreScalar () to make sure the
named variable specified can receive the converted input value. A nice side effect of
this operation is that any dynamic memory currently being used by this variable will
be freed now instead of later after we have allocated other dynamic memory. This
freed memory might be immediately reusableif it is large enough, which would
reduce memory fragmentation and lower overall memory regquirements.

52

If the user specified the DOUBLE keyword, it is used to control the resulting type,
otherwise the input argument type is used to decide.

53

The DOUBLE keyword was specified. If it is non-zero, use
IDL_TYP_DCOMPLEX, otherwise IDL_TYP_COMPLEX.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 431

55-57

Use the input type to decide the result type. If theinputisIDL_TYP_DOUBLE or
IDL_TYP_DCOMPLEX, useIDL_TYP_DCOMPLEX, otherwise
IDL_TYP_COMPLEX.

59-61
Create the output variable that will be passed back as the result of FZ_ROOTS2.
63-67

If necessary, convert the input argument to the result type. Thisis done after creation
of the output variable becauseit islikely to have ashort lifetime. If it does get freed at
the end of thisroutine, it won't cause memory fragmentation by leaving aholein the
process virtual memory.

69
The version of zroots() to call depends on the data type of the result.
70-71

Single precision complex. Note that the outdata pointer is decremented by one
element. This compensates for the fact that the Numerical Reciperoutinewill index it
from [1..m] rather than [0..m-1] asisthe usual C convention. Also, kw.epsis cast to
single precision.

73-74
Double precision complex case.

77

If the user specified the TC_INPUT keyword, copy the type converted input into the
keyword variable. Since Var Copy() freesits source variableiif it is atemporary
variable, we are relieved of the usual responsibility to call IDL_Deltmp() if c_tc
contains atemporary variable created on line 66.

78

The user didn't specify the TC_INPUT keyword. In this case, if we allocated c_tc on
line 66, we must free it before returning.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

432 Chapter 21: Adding System Routines

80
Free any resources allocated by keyword processing.
81

Return the result.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 21: Adding System Routines 433

Example: An Example Using Routine Design
Iteration (RSUM)

We now show how a simple routine can be developed in stages. RSUM is afunction
that returns the running sum of the valuesin its single input argument. We will
present three versions of this routine, each one of which represents an improvement
in functionality and flexibility.

All three versions use the function IDL_MakeTempFromTemplate(), described in
“Creating A Temporary Variable Using Another Variable As A Template” on

page 317. The result of RSUM aways has the same general shape and dimensions as
the input argument. IDL_MakeTempFromTemplate() encapsulates the task of
creating atemporary variable of the desired type and shape using the input argument
asatemplate.

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

434 Chapter 21: Adding System Routines

Running Sum (Example 1)

Thefirst example of RSUM isvery simple. Here is asimple “ Reference Manual”
style description of it:

RSUM1

Compute arunning sum on the array input. The result is afloating point array of the
same dimensions.

Calling Sequence
Result = RSUM 1(Array)
Arguments

Array
Array for which arunning sum will be computed.

Thisisaminimal design that lacks some important characteristics that IDL
system routines usually embody:

* It doesnot handle scalar input.

e Thetype of theinput isinflexible. IDL routines usualy try to handle any
input type and do whatever type conversions are necessary.

e Theresult typeis aways single precision floating point. IDL routines
usualy perform computationsin the type of the input arguments and return
avalue of the same type.

Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines

435

We will improve on this design in our subsequent attempts. The code to implement
RSUM1 is shown in the following figure. The line numbers are not part of the code
and are present to make the discussion easier to follow. Each line of thisroutineis

discussed below:
1] IDL_VPTR IDL rsuml (int argc, IDL_VPTR argv/[])
2 {
3 IDL VPIR v;
4 IDL VPIR r;
5 float *f src;
6 float *f dst;
7 IDL_MEMINT n;
8
9
10 v = argv[0];
11 if (v->type != IDL TYP FLOAT)
12 IDL Message (IDL_M NAMED GENERIC, IDL MSG LONGJMP,
C 13 "argument must be float");
14 IDL_ENSURE_ARRAY (V) ;
15 IDL_EXCLUDE FILE (V) ;
16
17 f dst = (float *)
18 IDL VarMakeTempFromTemplate (v, IDL_TYP_ FLOAT,
19 (IDL_StructDefPtr) 0, &r, FALSE);
20 f src = (float *) v->value.arr->data;
21 n = v->value.arr->n _elts - 1;
22 *f dst++ = *f src++;/* First element */
23 for (; n--; £ dst++) *f dst = *(f_dst - 1) + *f src++;
24
25 return r;
26 }
Table 21-3: Code for IDL_rsum1()
1
The standard signature for an IDL system function that does not accept keywords.
3
This variable is used to access the input argument in a convenient way.
4

ThisIDL_VPTR will be used to return the result.

External Development Guide

Running Sum (Example 1)

436

Chapter 21: Adding System Routines

5-6

Asthe running sum is computed, f_src will point at the input dataand f_dst will
point at the output data.

The number of elementsin the input.
10
Obtain the input variable pointer from argv[0].

11

If the input is not single precision floating point, throw an error and quit. Thisis
overly rigid. Real IDL routines would attempt to either type convert the input or do
the computation in the input type.

14
Thisversion can only handle arrays. If the user passes a scalar, it throws an error.

15

This routine cannot handle ASSOC file variables. Most IDL routines exclude such
variables as they do not contain any data to work with. ASSOC variable data usually
comes into aroutine as the result of an expression that yields atemporary variable
(e.9. TMP = RSUM (MY ASSOC VAR (2))).

17

Create asingle precision floating point temporary variable of the same size asthe
input variable and get a pointer to its data area.

20

Get apointer to the data area of the input variable. At this point we know thisvariable
is aways afloating point array.

21

The number of data elementsin the input.

Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 437

22-23
The running sum computation.
25

Return the resullt.
Running Sum (Example 2)

In our second example of RSUM, we improve on version 1 in several ways.
e RSUMZ2 accepts scalar input.

« If theinput is not of floating type, we type convert it instead of throwing an
error.

e If theinput isatemporary variable of the correct type, we will do the running
sum computation in place and return the input as our result variabl e rather than
creating an extratemporary. This optimization reduces memory use, and can
have positive effects on dynamic memory fragmentation.

Asalways, thefirst step in writing a system routine is to write a simple description of
its interface and intended behavior:

RSUM2

Compute a running sum on the input. The result is afloating point variable with the
same structure.

Calling Sequence
Result = RSUM2(Input)
Arguments

Input

Scalar or array data of any numeric type for which arunning sum will be
computed.

External Development Guide Running Sum (Example 1)

438 Chapter 21: Adding System Routines
Thefollowing is the code for RSUM2:

1] IDL_VPTR IDL_rsum2 (int argc, IDL_VPTR argv/[])

2] ¢

3 IDL _VPTR v;

4 IDL _VPIR r;

5 float *f src;

6 float *f dst;

7 IDL _MEMINT n;

8

9

10 v = IDL BasicTypeConversion(l, argv, IDL TYP FLOAT) ;
11 /* IDL BasicTypeConversion calls IDL ENSURE_SIMPLE, so
12 skip it here. */

13 IDL VarGetData(v, &n, (char **) &f src, FALSE);

14

C 15 /* Get a result var, reusing the input if possible */

16 if (v->flags & V_TEMP) {

17 r = Vv;

18 f dst = £ src;

19 } else {
20 f dst = (float *)
21 IDL VarMakeTempFromTemplate (v, IDL_TYP_ FLOAT,
22 (IDL_StructDefPtr) 0, &r, FALSE);
23 }
24
25 *f dst++ = *f src++;/* First element */
26 n--;

27 for (; n--; £ dst++) *f dst = *(f dst - 1) + *f src++;
28

29 return r;

30 }

Table 21-4: Code for IDL_rsum2().
Discussion of the code for the improvements introduced in this version follow:

10

If the input has the wrong type, obtain one of the right type. If it was already of the
correct type, IDL_BasicTypeConver sion() will simply return the input value
without allocating atemporary variable. Hence, no explicit check for that is required.
Also, if the input argument cannot be converted to the desired type (e.g. itisa
structure or file variable) IDL _BasicTypeConversion() will throw an error. Hence,
we know that the result from this function will be what we want without requiring
any further checking.

Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 439

13

IDL_VarGetData() isamore elegant way to obtain a pointer to variable data along
with a count of elements. A further benefit isthat it automatically handles scalar
variables which removes the restriction from RSUM 1.

15-23

If the input variable is atemporary, we will do the computation in place and return
the input. Otherwise, we create atemporary variable of the desired type to be the
result.

Notethat if IDL_BasicTypeConversion() returned a pointer to anything other than
the passed in value of argv[0], that value will be atemporary variable which will then
be turned into the function result by this code. Hence, we never free the value from
IDL_BasicTypeConversion().

Running Sum (Example 3)

RSUM2 is a big improvement over RSUM1, but it still suffers from the fact that al
computation is done in asingle datatype. A real IDL system routine alwaystries to
perform computations in the most significant type presented by its arguments. In a
single argument case like RSUM, that would mean doing computations in the input
data type whatever that might be. Our final version, RSUM3, resolves this
shortcoming.

RSUM3

Compute arunning sum on the input. The result is a variable with the same type and
structure as the input.

Calling Sequence
Result = RSUM3(Input)
Arguments

Input

Scalar or array data of any numeric type for which arunning sum will be
computed.

The code for RSUM 3 is given in the following figure. Discussion of the code for the
improvements introduced in this version follow:

External Development Guide Running Sum (Example 1)

440 Chapter 21: Adding System Routines
1] cx public IDL VPTR IDL rsum3 (int argc, IDL VPTR argv[])
2] {
3 IDL_VPTR v, r;
4 union {
5 char *sc; /* Standard char */
6 UCHAR *c; /* IDL_TYP BYTE */
7 IDL_INT *i; /* IDL_TYP_ INT */
8 IDL UINT *ui; /* IDL _TYP UINT */
9 IDL _LONG *1; /* IDL_TYP LONG */
10 IDL ULONG *ul; /* IDL_TYP ULONG */
11 IDL_LONG64 *164; /* IDL_TYP LONG64 */
12 IDL_ULONG64 *ulé64; /* IDL_TYP ULONG64 */
13 float *f; /* IDL _TYP FLOAT */
14 double *d; /* IDL_TYP DOUBLE */
15 IDL_COMPLEX *cmp; /* IDL_TYP COMPLEX */
16 IDL_DCOMPLEX *dcmp; /* IDL_TYP DCOMPLEX */
170 } src, dst;
18 IDL_LONG n;
19
C 20
21 v = argv[0];
22 if (v->type == IDL_TYP STRING)
23 v = IDL BasicTypeConversion(l, argv, IDL TYP FLOAT) ;
24 IDL VarGetData(v, &n, &(src.sc), TRUE);
25 n--; /* First is a special case */
26
27 /* Get a result var, reusing the input if possible */
28f if (v->flags & IDL V_TEMP) ({
29 r = v,
30 dst = src;
31 } else {
32 dst.sc = IDL VarMakeTempFromTemplate (v, v->type,
33 (IDL_StructDefPre) 0, &r, FALSE);
34 }
35
36 #define DOCASE (type, field) \
37Q case type: for (*dst.field++ = *src.field++; n--;dst.field++)\
38 *dst.field = *(dst.field - 1) + *src.field++; break

Running Sum (Example 1)

Table 21-5: Code for IDL_rsum3

External Development Guide

Chapter 21: Adding System Routines 441

39 #define DOCASE_CMP (type, field) case type: \
40 for (*dst.field++ = *src.field++; n--; \
41 dst.field++, src.field++) { \
42 dst.field->r = (dst.field - 1)->r + src.field->r; \
43 dst.field->i = (dst.field - 1)->i + src.field->i; } \
44Q break
45
46 switch (v->type) {
47 DOCASE(IDL_TYP_BYTE, c);
48 DOCASE (IDL_TYP_ INT, i);
49 DOCASE(IDL_TYP_LONG, 1);
50 DOCASE(IDL_TYP_FLOAT, £);
51 DOCASE(IDL_TYP_DOUBLE, d) ;
52 DOCASE CMP (IDL TYP COMPLEX, cmp) ;
53 DOCASE CMP (IDL_TYP DCOMPLEX, dcmp) ;
54 DOCASE(IDL_TYP_UINT, ui) ;
55 DOCASE(IDL_TYP_ULONG, ul) ;
56 DOCASE(IDL_TYP_LONG64, 164) ;
57 DOCASE(IDL_TYP_ULONG64, ulé4) ;
58 default: IDL Message (IDL M NAMED GENERIC, IDL MSG_LONGJMP,
59 "unexpected type") ;
60 }
61 #undef DOCASE
62 #undef DOCASE CMP
63
64 return r;
65 }
Table 21-5: Code for IDL_rsum3 (Continued)
17

f srcand f_dst are no longer pointersto float. They are now the IDL_ALLPTR
type, which can point to data of any IDL type. To reflect this change in scope, the
leading f_ prefix has been dropped.

22-23

Strings are the only input type that now require conversion. The other types can either
support the computation, or are not convertable to atype that can.

36-38

The code for the running sum computation islogically the same for all non-complex
data types, differing only inthe IDL_ALLPTR field that is used for each type.

External Development Guide Running Sum (Example 1)

442 Chapter 21: Adding System Routines

Using a macro for this means that the expression is only typed in once, and the C
compiler automatically fillsin the different parts for each datatype. Thisisless error
prone than entering the expression manually for each type, and leads to more
readable code. Thisis one of the rare cases where a macro makes things more reliable

and readable.
39-44

A macro for the 2 complex types.
46-60

A switch statement that uses the macros defined above to perform the running sum on
all possible types. Note the default case, which traps attempts to compute a running
sum on structures.

61-62

Don't allow the macros used in the above switch statement to remain defined beyond
the scope of this function.

Running Sum (Example 1) External Development Guide

Chapter 21: Adding System Routines 443

Registering Routines

The IDL_SysRtnAdd() function adds system routinesto IDL's internal tables of
system functions and procedures. As a programmer, you will need to call this
function directly if you arelinking aversion of IDL to which you are adding routines,
although thisis very rare and not considered to be a good practice for maintainability
reasons. More commonly, you use IDL_SysRtnAdd() inthe IDL_L oad() function
of a Dynamically Loadable Module (DLM). DLMs are discussed in “Dynamically

L oadable Modules’ on page 456.

Note
LINKIMAGE or DLMs are the preferred way to add system routines to IDL
because they do not require building a separate IDL program. Of the two, RS
recommends the use of DLMs whenever possible. These mechanisms are discussed
in the following sections of this chapter.

Syntax

int IDL_SysRtnAdd(IDL_SYSFUN DEF2 *defs, int is_ function, int cnt)

It returns Trueif it succeeds in adding the routine or False in the event of an error.

Arguments
defs

An array of IDL_SY SFUN_DEF?2 structures, one per routine to be declared.
This array must be defined with the C language static storage class because
IDL keeps pointersto it. defs must be sorted by routine name in ascending
lexical order.

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SY SFUN_DEF?2 structures contained in the defs array.
The definition of IDL_SYSFUN_DEF2is:

typedef IDL_VARIABLE * (* IDL_SYSTRN GENERIC) () ;

External Development Guide Registering Routines

444

Chapter 21: Adding System Routines

typedef struct ({
IDL_SYSRTN GENERIC funct addr;
char *name;
unsigned short arg min;
unsigned short arg max;
int flags
void *extra;

} IDL SYSFUN DEF2;

IDL_VARIABLE structures are described in “The IDL_VARIABLE
Structure” on page 301.

funct_addr

name

Address of the function implementing the system routine.

The name by which the routine is to be invoked from within IDL. This should
be a pointer to anull terminated string. The name should be capitalized. If the
routine is an object method, the name should be fully qualified, which means
that it should include the class name at the beginning followed by two
consecutive colons, followed by the method name (e.g. CLASS : : METHOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

flags

The maximum number of arguments allowed for the routine. If the routine
does not place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

A bitmask that provides additional information about the routine. Its value can
be any combination of the following values (bitwise OR-ed together to specify
more than one at atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

Registering Routines External Development Guide

Chapter 21: Adding System Routines 445

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

IDL_SYSFUN_DEF _F_METHOD
This routine is an object method.

extra
Reserved to Research Systems, Inc. The caller should set thisto 0.

Example

The following example shows how to register a system routine linked directly with
IDL. For simplicity, everything is placed in asingle file. Normally, you would
modularize things to allow easier code maintenance.

#include <stdio.h>
#include "idl export.h"

void proxl (int argc, IDL_VPTR argv([])
{

printf ("proxl %d\n", IDL LongScalar (argv[0]));

}

main (int argc, char *argv[])
{
static IDL SYSFUN DEF2 new pros[] = {
{ (IDL_SYSRTN_GENERIC) proxl, "PROX1", 1, 1, 0, 0}

}i

if (!IDL_SysRtnAdd(new_pros, IDL_FALSE, 1))
IDL_Message (IDL_M GENERIC, IDL MSG RET,
"Error adding system routine");
return IDL Main(0, argc, argv);

}

This adds a system procedure named PROX 1 which accepts a single argument. It
converts this argument to a scalar longword integer and printsit.

External Development Guide Registering Routines

446 Chapter 21: Adding System Routines

Enabling and Disabling System Routines

Thefollowing IDL internal functions allow the enabling and/or disabling of IDL
system routines. Disabled routines throw an error when called from IDL code instead
of performing their usual functions.

These routines are primarily of interest to authors of Runtime or Callable IDL
applications.

Enabling and Disabling System Routines External Development Guide

Chapter 21: Adding System Routines 447

Enabling Routines

The DL _SysRtnEnable() function is used to enable and/or disable system routines.

Syntax

void IDL_SysRtnEnable(int is function, IDL STRING *names,
IDL_MEMINT n, int option,
IDL_SYSRTN_ GENERIC disfcn)

Arguments

is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.
names

NULL, or an array of names of routines.

n
The number of namesin names.
option
One of the values from the following table which specify what this routine
should do.
Bit Description
IDL_SRE ENABLE Enable specified routines.
IDL_SRE ENABLE EXCLUSIVE Enable specified routines and disable all
others.
IDL_SRE DISABLE Disable specified routines.
IDL_SRE DISABLE EXCLUSIVE | Disable specified routines and enable all
others.

Table 21-6: Values for option Argument

External Development Guide Enabling Routines

448 Chapter 21: Adding System Routines

disfcn

NULL, or address of an IDL system routine to be called by the IDL interpreter
for these disabled routines. If thisargument is not provided, adefault routineis
used.

Result

All routines are enabled/disabled as specified. If anon-existent routineis specified, it
isquietly ignored. Attempts to enable routines disabled for licensing reasons are also
quietly ignored.

Note
Theroutines CALL_FUNCTION, CALL_METHOD (function and procedure),
CALL_PROCEDURE, and EXECUTE are not real system routines, but are
actually special casesthat result in different IDL pcode. For this reason, they cannot
be disabled. However, anything they can call can be disabled, so thisisnot aserious
drawback.

Enabling Routines External Development Guide

Chapter 21: Adding System Routines 449

Obtaining Enabled/Disabled Routine Names

The DL _SysRtnGetEnabledNames() function can be used to obtain the names of
all system routines which are currently enabled or disabled, either dueto licensing
reasons (i.e., some routines are disabled in IDL demo mode) or dueto acall to
IDL_SysRtnEnableg().

Syntax

void IDL_SysRtnGetEnabledNames (int is_function,
IDL STRING *str, int enabled)

Arguments

is_function

Set to TRUE if alist of functionsisdesired, FALSE for alist of procedures.

str
Points to a buffer of IDL_STRING descriptors to fill in. The caller must call
IDL_SysRtnNumEnabled() to determine how many such routines exist, and
this buffer must be large enough to hold that number.

enabled
Set to TRUE to receive names of enabled routines, FAL SE to receive names of
disabled ones.

Result

The memory supplied via str isfilled in with the desired names.

External Development Guide Obtaining Enabled/Disabled Routine Names

450 Chapter 21: Adding System Routines

Obtaining the Number of Enabled/Disabled Routines
ThelDL_SysRtnGetEnabledNames() function requires you to supply abuffer large
enough to hold al of the namesto be returned. IDL_SysRtnNumEnabled() can be
called to obtain the number of such routines, allowing you to properly size the buffer.

Syntax
IDL MEMINT IDL_ SysRtnNumEnabled(int is_ function, int enabled)

Arguments

is_function
Set to TRUE if the number of functionsis desired, FAL SE for procedures.
enabled

Set to TRUE to receive number of enabled routines, FAL SE to receive number
of disabled ones.

Result

Returns the requested count.

Obtaining the Number of Enabled/Disabled Routines External Development Guide

Chapter 21: Adding System Routines 451

Obtaining the Real Function Pointer
The IDL _SysRtnGetReal Ptr () routine returns the pointer to the actual internal DL
function that implements the system function or procedure of the specified name.

This routine can be used to interpose your own code in between IDL and the actual
routine. This process is sometimes called hooking in other systems. To implement
such ahook function, you must usethe DL _SysRtnEnable() function to register the
interposed routine, whichin turn uses IDL_SysRtnGetReal Ptr () to obtain the actual
IDLfunction pointer for the routine.

Syntax

IDL_SYSRTN GENERIC IDL_SySRtnGetRealPtr(int iS_funCtion,
char *name)

Arguments

is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.

name

The name of function or procedure for which the real function pointer is
required.

Result

If the specified routine...
e existsand isnot disabled, it's function pointer is returned.
e doesnot exist, aNULL pointer is returned.
* hasbeen disabled by the user, its actual function pointer is returned.

* hasbeen disabled for licensing reasons, the real function pointer does not exist,
and the pointer to its stub is returned.

Note
Thisroutine can cause an IDL_MSG_LONGJIMP message to beissued if the
function comes from aDLM and the DLM load fails due to memory allocation
errors. Therefore, it must not be called unlessthe IDL interpreter is active. The

External Development Guide Obtaining the Real Function Pointer

452 Chapter 21: Adding System Routines

primeintent for this routineisto call it from the stub routine of a disabled function
when the interpreter invokes the associated system routine.

Obtaining the Real Function Pointer External Development Guide

Chapter 21: Adding System Routines 453

Obtaining the IDL Name of the Current System
Routine

To get the IDL name for the currently executing system routine, use the
IDL_SysRtnGetCurrentName().

Syntax

char *IDL SysRtnGetCurrentName (void)
This function returns a pointer to the name of the currently executing system
routine. If there is no currently executing system routine, aNULL (0) pointer
is returned.
Thisroutine will never return NULL if called from within a system routine.

External Development Guide Obtaining the IDL Name of the Current System Routine

454

Chapter 21: Adding System Routines

LINKIMAGE

LINKIMAGE

The IDL user level LINKIMAGE procedure makes the functionality of the
IDL_SysRtnAdd() function available to IDL programs. It allows IDL programsto
merge routines written in other languages with IDL at run-time. Each call to
LINKIMAGE defines anew system procedure or function by specifying the routine's
name, the name of the file containing the code, and the entry point name. The name
of your routine is added to IDL’sinternal system routine table, making it available in
the same manner as any other IDL built-in routine.

LINKIMAGE isthe easiest way to add your system routinesto IDL. It does not
require linking a separate version of the IDL program with your code the way adirect
call to IDL_SysRtnAdd() does, and it does not require writing the extra code
required for a Dynamically Loadable Module (DLM). It is therefore commonly used
for simple applications, and for testing during the development of a system routine.

If you are developing alarger application, or if you intend to redistribute your work,
you should package your routines as Dynamically Loadable Modules, which are
much easier for end-usersto install and use than LINKIMAGE calls. You will find
that the small additional programming effort is more than repaid from the time saved
providing support for your code to your users.

If your IDL application relies on code written in languages other than IDL and linked
into IDL using the LINKIMAGE procedure, you must make sure that the routines
declared with LINKIMAGE arelinked into IDL before any code that callsthem is
restored. In practice, the best way to do thisisto make the callsto LINKIMAGE in
your MAIN procedure, and include the code that uses the linked routinesin a
secondary . sav file. In this case your MAIN procedure may look something like
this:

PRO main

;Link the external code.
LINKIMAGE, 'link function', 'new.dll'

;Restore code that uses linked code.
RESTORE, 'secondary.sav'

;Run your application.
myapp

END

External Development Guide

Chapter 21: Adding System Routines 455

In this scenario, the IDL code that callsthe LINK_FUNCTION routine (the routine
linked into IDL in the LINKIMAGE call) is contained in the secondary . sav file

'secondary.sav'.

Note
When creating your secondary . sav file, you will need to issue the LINKIMAGE
command before calling the SAVE procedure to link your routineinto IDL after
you have exited and restarted. The RESOLVE_ALL routine does not resolve
routines linked to IDL with the LINKIMAGE procedure.

Dynamically Loadable Modules do not have this issue, and are the best way to
avoid the problem.

External Development Guide LINKIMAGE

456 Chapter 21: Adding System Routines

Dynamically Loadable Modules

LINKIMAGE can be used to make IDL load your system routines in asimple and
efficient manner. However, it quickly becomes inconvenient if you are adding more
than a few routines. Furthermore, the limitation that the LINKIMAGE call must
happen before any code that callsit is compiled makesit difficult to use and
complicates the process of redistributing your routines to others. IDL offers an
alternative method of packaging your system routines, called Dynamically Loadable
Modules (DLMs), that address these and other problems.

ThelDL_SYSFUN_DERF2 structure, which is described in “ Registering Routines’ on
page 443, contains al the information required by IDL for it to be able to compile
callsto agiven system routine and call it:

« A routine signature (Name, minimum and maximum number of arguments, if
the routine accepts keywords).

e A pointer to acompiled language function (usually C) that supplies the
standard IDL system routine interface (argc, argv, argk) and which implements
the desired operation.

IDL does not require the actual code that implements the function until the routineis
called: It is able to compile other routines and statements that reference it based only
on its signature.

DLMs exploit this fact to load system routines on an “as needed” basis. The routines
inaDLM arenot loaded by IDL unlessthe user calls one of them. A DLM consists of
two files:

1. A module description file (human readable text) that IDL reads when it starts
running. Thisfiletells IDL the signature for all system routines contained in
the loadable module.

2. A sharablelibrary that implementsthe actual system routines. Thislibrary must
be coded to present a specific IDL mandated interface (described below) that
allows IDL to automatically load it when necessary without user intervention.

DLMs are apowerful way to extend IDL’s built in system routines. This form of
packaging offers many advantages:

e Unlike LINKIMAGE, IDL automatically discovers DLMswhen it starts up
without any user intervention. This makes them easy to install — you simply
copy the two filesinto adirectory on your system where IDL will look for
them.

Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 457

e DLM routines work exactly like standard built in routines, and are
indistinguishable from them. Thereis no need for the user to load them (for
example, using LINKIMAGE) before compiling code that references them.

¢ Astheamount of code added to IDL grows, using sharablelibrariesin thisway
prevents name collisions in unrelated compiled code from fooling the linker
into linking the wrong code together. DLMs thus act as a firewall between
unrelated code. For example, there are instances where unrelated routines both
use a common third party library, but they require different versions of this
library. A specific exampleisthat the HDF support in IDL requiresits own
version of the NetCDF library. The NetCDF support uses a different
incompatible version of thislibrary with the same names. Use of DLMsallows
each module to link with its own private copy of such code.

e Since DLMs are separate from the IDL program, they can be built and
distributed on their own schedule independent of IDL releases.

¢ System routines packaged as DL Ms are effectively indistinguishable from
routines built into IDL by RSI.

Use of sharable librariesin this manner has ample precedent in the computer
industry. Most modern operating systems use |oadable kernel modules to keep the
kernel small while the functionality grows. The same technique is used in user
programsin the form of sharable libraries, which allows unrelated programs to share
code and memory space (e.g. asingle copy of the C runtime library is used by all
running programs on a given system).

How DLMs Work

IDL manages DLMs in the following manner:

1. When IDL dtarts, it looksin the current working directory for module
definition (.dim) files. It reads any file found and adds the routines and
structure definitions thus defined to itsinternal routine and structure lookup
tables as “stubs’. In the system routine dispatch table, stubs are entries that
inform IDL of the routines existence, but which lack an actual compiled
function to call. They contain sufficient information for IDL to properly
compile callsto the routines, but not to actualy call them. Similarly, stub
entriesin the structure definition table allow IDL to know that the DLM
supplies the structure definition, but the actual definition is not present.

After the current working directory, IDL searches!'DLM_PATH for .dIm files
and adds them to the table in the same manner. The default value of
IDLM_PATH isthedirectory in the IDL distribution where the binary

External Development Guide Dynamically Loadable Modules

458

Chapter 21: Adding System Routines

executables are kept. This default can be changed by defining the
IDL_DLM_PATH preference (similarly to the way the IDL_PATH preference
works with 'PATH). This process happens once at startup, and never again.
This means that IDL’s knowledge of loadable modules is static and
unchangeabl e once the session is underway. Thisis very different from the
way PATH works, and reflects the static nature of built in routines. The
format of .dim filesis discussed in “ The Module Description File” on

page 458.

2. ThelDL session then continuesin the usual fashion until acall to aroutine
from aloadable module occurs. At that time, the IDL interpreter notices the
fact that the routine is a stub, and loads the sharable library for the loadable
modul e that supplies the routine. It then looks up and calls a function named
IDL_L oad(), whichisrequired to exist, from the library. It's job isto replace
the stubs from that module with real entries (by using IDL_SysRtnAdd()) and
otherwise prepare the module for use.

3. Oncethe module isloaded, the interpreter looks up the routine that caused the
load one moretime. If it is still a stub then the module has failed to |oad
properly and an error isissued. Normally, afull routine entry is found and the
interpreter successfully calls the routine.

4. At thispoint the moduleisfully loaded, and cannot be distinguished from a
compiled in part of IDL. A module isonly loaded once, and additional callsto
any routine, or access to any structure definition, from the module are made
immediately and without requiring any additional loading.

The Module Description File

The module description fileisasimpletext filethat isread by IDL when it starts. The
information in thisfile tellsIDL everything it needs to know about the routines
supplied by aloadable module. With thisinformation, IDL can compile callsto these
routines and otherwise behave asiif it contains the actual routine. The loadable
module itself remains unloaded until a call to one of its routines is made, or until the
user forces the module to load by calling the IDL DLM_LOAD procedure.

Empty lines are allowed in .dIm files. Comments are indicated using the # character.
All text from a# to the end of thelineisignored by IDL and isfor the user’s benefit
only.

All other lines start with a keyword indicating the type of information being
conveyed, possibly followed by arguments. The syntax of each line depends on the
keyword. Possible lines are:

Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 459

MODULE Name

Gives the name of the DLM. This should always be the first non-comment linein a
.dim file.There can only be one MODULE line.

MODULE JPEG
DESCRIPTION DescriptiveText

Supplies a short one line description of the purpose of the module. Thisinformation
isdisplayed by HELP/DLM. Thislineis optional.

DESCRIPTION IDL JPEG support
VERSION VersionString

Suppliesaversion string that can be used by the IDL user to determine which version
of the module will be used. IDL does not interpret this string, it only displaysit as
part of the HEL P/DLM output. Thislineis optional.

VERSION 6a
BUILD_DATE DateString

If present, IDL will display thisinformation as part of the output from HELP,/DLM.
IDL does not parse this string to determine the date, it is simply for the users benefit.
Thislineisoptional.

BUILD_DATE JAN 8 1998
SOURCE SourceString

A short one line description of the person or organization that is supplying the
module. Thislineis optional.

SOURCE Research Systems, Inc.
CHECKSUM CheckSumValue

Thisdirectiveis used by RSI to sign the authenticity of the DLMs supplied with IDL
releases. It is not required for user-written DLMs.

STRUCTURE StructureName

There should be one STRUCTURE linein the DLM file for every named structure
definition supplied by the loadable module. If you refer to such a structure before the

External Development Guide Dynamically Loadable Modules

460 Chapter 21: Adding System Routines

DLM isloaded, IDL usesthisinformation to cause the DLM to load. The IDL _Init()
function for the DLM will define the structure.

FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]

PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]

There should be one FUNCTION or PROCEDURE lineinthe DLM file for every
IDL routine supplied by the loadable module. These lines give IDL the information it
needs to compile callsto these routines before the module is loaded.

RtnName
The IDL user level name for the routine.
MinArgs

The minimum number of arguments accepted by thisroutine. If not supplied, Ois
assumed.

MaxArgs

The maximum number of arguments accepted by this routine. If not supplied, O is
assumed.

Options
Zero or more of the following:
OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

KEYWORDS

This routine accepts keywords as well as plain arguments.
PROCEDURE READ JPEG 1 3 KEYWORDS

The IDL_Load() function

Every loadable module sharable library must export a single symbol called
IDL_Load(). Thisfunction is caled when IDL loads the module, and is expected to
do all the work required to load real definitions for the routines supplied by the
function and prepare the module for use. This always requires at least one call to

Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 461

IDL_SysRtnAdd(). It usually aso requiresacall to IDL_M essageDefineBlock() if
the modul e defines any messages. Any other initialization needed would also go here:

int IDL_Load (void)

This function takes no arguments. It is expected to return True (non-zero) if it was
successful, and False (0) if someinitialization step failed.

DLM Example

This example creates aloadable module named TESTMODULE. TESTMODULE
provides 2 routines:

TESTFUN

A function that issues a message indicating that it was called, and then returns the
string “ TESTFUN" This function accepts between 0 and IDL_MAXPARAMS
arguments, but it does not use them for anything.

TESTPRO

A procedure that issues a message indicating that it was called. This procedure
accepts between 0 and IDL_MAX_ARRAY_DIM arguments, but it does not use
them for anything.

Theintent of this exampleisto show the support code required to write aDLM for a
completely trivial application. This framework can be easily adapted to real modules
by replacing TESTFUN and TESTPRO with other routines.

Thefirst step isto create the module definition file for TESTMODULE, named
testmodule.dim:

MODULE testmodule

DESCRIPTION Test code for loadable modules
VERSION 1.0

SOURCE Research Systems, Inc.

BUILD DATE JAN 8 1998

FUNCTION TESTFUN 0 IDL MAXPARAMS
PROCEDURE TESTPRO 0 IDL_ MAX ARRAY DIM

The next step is to write the code for the sharable library. The contents of
testmodule.c is shown in the following figure. Comments in the code explain what
each step is doing.

External Development Guide Dynamically Loadable Modules

462 Chapter 21: Adding System Routines

1 #include <stdio.h>

2l #include "idl_export.h"

3

48 /* Define message codes and their corresponding printf (3) format

5 * strings. Note that message codes start at zero and each one is

6 * one less that the previous one. Codes must be monotonic and

7 * contiguous. */

8] static IDL MSG DEF msg arr([] = {

9l #define M_TM_INPRO 0

10 { "M_TM_INPRO", "$NThis is from a loadable module procedure.” },
11} #define M_TM INFUN -1

12 { "M_TM_INFUN”, "$NThis is from a loadable module function.” },
134}

14

15 /* The load function fills in this message block handle with the
16 * opaque handle to the message block used for this module. The other

17 * routines can then use it to throw errors from this block. */
18 static IDL_MSG_BLOCK msg_block;
19

20 /* Implementation of the TESTPRO IDL procedure */
21 static void testpro(int argc, IDL_VPTR *argv)
22 { IDL_MessageFromBlock (msg block, M_TM INPRO, IDL MSG _RET); }

24 /* Implementation of the TESTFUN IDL function */
25 static IDL_VPTR testfun(int argc, IDL_VPTR *argv)

26 {
27 IDL_MessageFromBlock (msg_block, M_TM_INFUN, IDL_MSG_RET) ;
C 28 return IDL_StrToSTRING ("TESTFUN") ;
29 }
30
31 int IDL_Load (void)
32
33 /* These tables contain information on the functions and procedures
34 * that make up the TESTMODULE DLM. The information contained in these
35 * tables must be identical to that contained in testmodule.dlm.
36 */
37 static IDL_SYSFUN DEF2 function_addr[] = {
38 { testfun, "TESTFUN”, 0, IDL MAXPARAMS, 0, 0},
39 };
40 static IDL_SYSFUN_DEF2 procedure addr[] = {
41 { (IDL_SYSTRN GENERIC) testpro, "TESTPRO”, 0, IDL_ MAX ARRAY DIM, 0, 0},
42 I
43
44 /* Create a message block to hold our messages. Save its handle where
45 * the other routines can access it. */
46 if (! (msg_block = IDL_ MessageDefineBlock ("Testmodule”,
47 IDL_CARRAY_ELTS (msg_arr),
48 msg_arr))) return IDL_FALSE;
49
50 /* Register our routine. The routines must be specified exactly the same
51 * as in testmodule.dlm. */
52 return IDL_SysRtnAdd (function_addr, TRUE,
53 IDL_CARRAY_ELTS (function_addr))
54 && IDL_SysRtnAdd (procedure_addr, FALSE,
55 IDL_CARRAY_ELTS (procedure_addr)) ;
sefl }

Table 21-7: testmodule.c

Dynamically Loadable Modules External Development Guide

Chapter 21: Adding System Routines 463

If building aDLM for Microsoft Windows, alinker definition file (testmodule.def) is
also needed. All of thesefiles, along with the commands required to build the module
can be found in the dim subdirectory of the external directory of the IDL distribution.

Once the loadable moduleis built, you can cause IDL to find it by doing one of the
following:

« Moveto the directory containing the .dim and sharable library for the
module.

¢ DefinetheIDL_DLM_PATH preference to include the directory.
Running IDL to demonstrate the resulting module;

IDL> HELP, /DLM, ' testmodule’

** TESTMODULE - Test code for loadable modules (not loaded)
Version:1.0,Build Date:JAN 8 1998, Source:ResearchSystems, Inc.
Path: /home/user/testmodule/external/testmodule.so

IDL> testpro

% Loaded DLM: TESTMODULE.

% TESTPRO: This is from a loadable module procedure.

IDL> HELP, /DLM, ’' testmodule’

** TESTMODULE - Test code for loadable modules (loaded)
Version:1.0,Build Date:JAN 8 1998, Source:ResearchSystems, Inc.
Path: /home/user/testmodule/external/testmodule.so

IDL> print, testfun()

% TESTFUN: This is from a loadable module function.

TESTFUN

The initial HELP output shows that the modul e starts out unloaded. The call to
TESTPRO causes the module to be loaded. AsIDL loads the module, it prints an
announcement of the fact (similar to the way it announces the .pro files it
automatically compilesto satisfy calls to user routines). Once the module is loaded,
subsequent calls to HEL P show that it is present. Callsto routines from this module
do not cause the module to be reloaded (as evidenced by the fact that calling
TESTFUN did not cause an announcement message to be issued).

External Development Guide Dynamically Loadable Modules

464 Chapter 21: Adding System Routines

Dynamically Loadable Modules External Development Guide

Chapter 22

Callable IDL

This chapter discusses the following topics:

Calling IDL asaSubroutine 466
Whenis Callable IDL Appropriate? 467
Licensing Issues and CallableIDL 470
UsingCdlableIDL 471

Initiglization........................ 473
Diverting IDL Output

External Development Guide

Executing IDL Statements 479
Runtime IDL and Embedded IDL 480
Cleanup.........cooiiiiii .. 4381
Issues and Examples: UNIX 482

I ssues and Examples: Microsoft Windows 498

465

466 Chapter 22: Callable IDL

Calling IDL as a Subroutine

IDL can be called as a subroutine from other programs. This capability is referred to
as Callable IDL to distinguish it from the more common case of calling your code
from IDL (aswith CALL_EXTERNAL or as a system routine (LINKIMAGE,
Dynamically Loadable Module)).

How Callable IDL is Implemented

IDL ishbuilt in asharable form that allows other programsto call IDL as a subroutine.
The specific details of how IDL is packaged depend on the platform:

e IDL for UNIX hasasmall driver program linked to a sharable object library
that contains the actual IDL program.

e IDL for Windows consists of adriver program that implements the user
interface (known as the IDE) linked to adynamic-link library (DLL) that
contains the actual IDL program.

Inall cases, it is possible to link the sharable portion of IDL into your own programs.
Note that Callable IDL is not a separate copy of IDL that implements alibrary
version of IDL. It isin fact the same code, being used in a different context.

Calling IDL as a Subroutine External Development Guide

Chapter 22: Callable IDL 467

When is Callable IDL Appropriate?

Although Callable IDL isvery powerful and convenient, it is not always the best
method of communication between IDL and other programs. There are usually easier
approaches that will solve a given problem. See “ Supported Inter-Language
Communication Techniquesin IDL” on page 13 for alternatives.

IDL will not integrate with all programs. Understanding the issues described in this
section will help you decide when Callable IDL isand is not appropriate.

Technical Issues Relating to Callable IDL

IDL makes computing easier by raising the level at which IDL users interface with
the computer. It is natural to think that calling IDL from other programs will have the
same effect, and under the correct circumstances thisis true. However, using Callable
IDL isnot as easy as using IDL. Programmers who wish to use Callable IDL need to
possess the skills described in “ Skills Required to Combine External Code with IDL”
on page 23.

Be aware that the same things that make IDL powerful at the user level can make it
difficult to include in other programs. As an interactive, interpreted language, IDL is
adecidedly non-trivial object to add to a process. Unlike a simple mathematical
subroutine, IDL includes a compiler, alanguage interpreter, and related code that the
caller must work around. As an interactive program, IDL must control the processto
a high degree, which can conflict with the caller’s wishes. The following (certainly
incomplete) list summarizes some of the issues that must be dealt with.

UNIX IDL Signal API

IDL uses UNIX signals to manage many of its features, including exception
handling, user interrupts, and child processes. The exact signals used and the manner
inwhich they are used can change from IDL release to rel ease as necessary. Although
the IDL signal API (describedin “IDL Internals: UNIX Signals’ on page 357) allows
you to use signalsin an IDL-compatible way, the resulting constraints may require
changes to your code.

IDL Timer API

IDL’s use of the process timer requires you to use the IDL timer APl instead of the
standard system routines. This restriction may require changes to some programs.
Under UNIX, the timer module can interrupt system calls. Timers are discussed in
“IDL Internals: Timers’ on page 369.

External Development Guide When is Callable IDL Appropriate?

468 Chapter 22: Callable IDL

GUI Considerations

Most applicationswill call IDL and display IDL graphicsin an IDL window.
However, programmers may want to write applications in which they create the
graphical user interface (GUI) and then have IDL draw graphics into windows that
IDL did not create. It is not always possible for IDL to draw into windows that it did
not create for the reasons described below:

X Windows

The IDL X Windows graphics driver can draw in windowsit did not create aslong as
the window is compatible with the IDL display connection (see Appendix A, “IDL
Direct Graphics Devices’ in the IDL Reference Guide manual for details). However,
the design of IDL’s X Windows driver requires that it open its own display
connection and run its own event loop. If your program cannot support a separate
display connection, or if dividing time between two event loops is not acceptable,
consider the following options:

* RunIDL in aseparate process and use interprocess communication (possibly
Remote Procedure Calls, to control it.

* If you chooseto use Callable IDL, use the IDL Widget stub interface,
described in “Adding External Widgetsto IDL” on page 509, to obtain the IDL
display connection, and create your GUI using that connection rather than
creating your own. The IDL event loop will dispatch your events along with
IDL’s, creating awell-integrated system.

Microsoft Windows

At thistime, the IDL for Windows graphics driver does not have the ability to draw
into windows that were not created by IDL. However, the ActiveX control described
in Chapter 6, “The IDLDrawWidget ActiveX Control”, can do this.

Program Size Considerations

On systems that support preemptive multitasking, a single huge programis a poor use
of system capabilities. Such programsinevitably end up implementing primitive task-
scheduling mechanisms better |eft to the operating system.

Troubleshooting

Troubleshooting and debugging applications that call IDL can be very difficult. With
standard IDL, malfunctionsin the program are clearly the fault of RSI, and given a
reproducible bug report, we attempt to fix them promptly. A program that combines
IDL with other code makesit difficult to unambiguously determine where the

When is Callable IDL Appropriate? External Development Guide

Chapter 22: Callable IDL 469

problem lies. The level of support RSI can provide in such troubleshooting is
minimal. The programmer is responsible for locating the source of the difficulty. If
the problemisin IDL, asimple program demonstrating the problem must be provided
before we can address the issue.

Threading

IDL usesthreads to implement its thread pool functionality, which is used to speed
numerical computation on multi-CPU hardware. Despitethis, it is essentially asingle
threaded program, and is not designed to be called from different threads of a
threaded application. Attempting to use IDL from any thread other than the main
thread is unsupported, and may cause unpredictable results.

Inter-language Calling Conventions

IDL iswritten in standard ANSI C. Calling it from other languages is possible, but it
is the programmer’s responsibility to understand the inter-language calling
conventions of the target machine and compiler.

Appropriate Applications of Callable IDL

Callable IDL is most appropriate in the following situations:

Callable IDL isclearly the correct choice when the resulting programisto be a
front-end that creates a different interface for IDL. For example, you might
wish to turn IDL into an RPC server that uses an RPC protocol not directly
supported by IDL, or use IDL as amodulein adistributed system.

Callable IDL isappropriateif either the calling program or IDL handles all
graphics, including the Graphical User Interface, without the involvement of
the other. Intermediate situations are possible, but more difficult. In particular,
beware of attempts to have two event/message |oops.

Callable IDL is appropriate when the calling program makes little or no use of
signals, timers, or exception handling, or is able to operate within the
constraints imposed by IDL.

External Development Guide When is Callable IDL Appropriate?

470 Chapter 22: Callable IDL

Licensing Issues and Callable IDL

If you intend to distribute an application that calls IDL, note that each copy of your
application must have access to a properly licensed copy of the IDL library. For
availability of aruntime version of IDL, contact RSI or your IDL distributor.

Licensing Issues and Callable IDL External Development Guide

Chapter 22: Callable IDL 471

Using Callable IDL

The process of using Callable IDL has three stages: initialization, IDL use, and
cleanup. Between the initialization and the cleanup, your program contains a
complete active IDL session, just asif a user were typing commands at an 1DL>
prompt. In addition to the usual IDL abilities, you can import datafrom your program
and cause IDL to seeit asan IDL variable. IDL can use such datain computations as
if it had created the variable itself. In addition, you can obtain pointersto data
currently held by IDL variables and access the results of IDL computations from your
program.

Note
The functions documented in this chapter should only be used when calling IDL

from other programs—their usein code called by IDL viaCALL_EXTERNAL or a
system routine (LINKIMAGE, Dynamically Loadable Module) is not supported
and is certain to corrupt and/or crash the IDL process.

Before calling IDL to execute instructions, you must initialize it. Under UNIX, you
dothisby calling IDL _Init(). Under Microsoft Windows, you call IDL_Win32Init()
instead. Thisis aone-time operation, and must occur before calling any other IDL
function. see “Initialization” on page 473 for complete information on this topic.
Once IDL isinitialized, you can:

1. SendIDL commandsto IDL for execution. Commands are sent as strings,
using the same syntax as interactive IDL. Note that thereis not a separate C
language function for every IDL command—any valid IDL command can be
executed as IDL statements. This approach allows us to keep the callable IDL
APl small and simple while allowing full accessto IDL's abilities. Thisis
explained in “Executing IDL Statements’ on page 479.

2. Cadll any of the several routines that interact with IDL through other meansto
perform operations such as:

* Importing datainto IDL. (See“Creating an Array from Existing Data’ on
page 320.)

e Accessing datawithin IDL. (See“Looking Up Variablesin Current
Scope” on page 330.)

¢ Changing itemsin the process, such as signal handling or timers. (See
“IDL Internals: UNIX Signals’ on page 357, or “IDL Internas: Timers’
on page 369.)

External Development Guide Using Callable IDL

472 Chapter 22: Callable IDL

* Redirecting IDL output to your own function for processing. See
“Diverting IDL Output” on page 477.

The above list is not complete, but is representative of the possibilities afforded by
Callable IDL.
Cleanup

After al IDL useis complete, but before the program exits, you must call
IDL_Cleanup() to dlow IDL to shutdown gracefully and clean up after itself. Once
this has been done, you are not alowed to call IDL again from this process. See
“Cleanup” on page 481.

Using Callable IDL External Development Guide

Chapter 22: Callable IDL 473

Initialization

IDL for UNIX usesthe IDL_Init() function (described below) to prepare Callable
IDL for use. IDL for Microsoft Windows uses I|DL_Win32I nit(), described in
“Initialization: Microsoft Windows’ on page 475.

Note
IDL can only beinitialized once for a given process; calling IDL_Init() more than
once for aprocess will cause an error. If you need to reinitialize an IDL session that
is aready running, consider using

IDL ExecuteStr(".reset session");

Initialization: UNIX

IDL for UNIX usesthe DL _Init() function prepares Callable IDL for use. This must
be thefirst IDL routine called.

Note
Microsoft Windows applications should not call IDL_Init(). Instead, use
IDL_Win32Init(), described in “Initialization: Microsoft Windows’ on page 475.

int IDL Init (int options, int *argc, char *argvl(]);

where:
options
A bitmask used to specify initialization options. The allowed bit values are:

IDL_INIT_EMBEDDED

Setting this bit causes IDL toinitialize to run applications from a Save/Restore file
that contains an embedded license. IDL _RuntimeExec() is then used to run the
application(s).

IDL_INIT_GUI

Setting this bit causes IDL to use the IDL Development Environment (IDLDE) GUI
rather than using the standard tty based interface. This option isignored under
Microsoft Windows.

External Development Guide Initialization

474

Initialization

Chapter 22: Callable IDL

IDL_INIT_GUI_AUTO

Setting this bit causes IDL to try to use the IDL Development Environment (IDLDE)
GUI. If that fails, IDL usesthe standard tty interface. This option isignored under
Microsoft Windows.

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

IDL_INIT_NOLICALIAS

Our FLEXIm floating licence policy isto dliasal IDL sessionsthat share the same
user/system/display to the samelicense. If IDL_INIT_NOLICALIAS s set, thisIDL
session will force a unique license to be checked out. In this case, we allow the user
to change the DISPLAY environment variable. Thisis useful for RPC servers that
don’t know where their output will need to go before invocation.

IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)

Indicatesto IDL that it is going to be used in a background mode by some other
program, and that IDL will not be in control of the user’s input command processing.

One effect of thisis that XMANAGER will realize that the active command line
functionality for processing widget eventsis not available, and XMANAGER will
block to manage events when it is called rather than return immediately.

Normally under UNIX, if IDL seesthat stdin and stdout are ttys, it putsthe tty into
raw mode and uses termcap/terminfo to handle command line editing. When using
callable IDL in a background process that isn’t doing input/output to the tty, the
termcap initialization can cause the process to block (because of job control from the
shell) with amessage like “ Stopped (tty output) idl”. Setting this option prevents all
tty edit functions and disables the calls to termcap. 1/0 to the tty is then done with a
simple fgets()/printf(). If the IDL_INIT_GUI bit is set, this option isignored.

For historical reasons, this option used to be called IDL_INIT_NOTTYEDIT. Use
of that nameis still supported.

IDL_INIT_QUIET

Setting this bit suppresses the display of the startup announcement and message of
the day.

External Development Guide

Chapter 22: Callable IDL 475

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license. IDL_RuntimeExec() isthen used to run an IDL application restored from a
Save/Restorefile.

argc
As passed by the operating system to main().
argv

As passed by the operating system to main().

IDL_Init() returns TRUE if the initialization is successful, and FAL SE for failure.
Arguments not directly intended for IDL are removed from argv and argcis
decremented to match.

Initialization:; Microsoft Windows

Under Microsoft Windows, the IDL_Win32I nit() function preparesthe IDL DLL for
use. IDL_Win32I nit() must be called before any other function except
IDL_ToutPush().

Note
Windows applications should not call IDL _Init(), described in the previous section.
IDL_Win32Init() callsIDL_Init() on your behalf at the appropriate time.

int IDL_Win32Init (int iOpts, void *hinstExe, void *hwndExe,
void *hAccel) ;

where:

iOpts
A bitmask used to specify initialization options. The alowed bit values are:
IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license. IDL_RuntimeExec() isthen used to run an IDL application restored from a
Save/Restorefile.

External Development Guide Initialization

476 Chapter 22: Callable IDL

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

hinstExe

HINSTANCE from the application that will be calling IDL.
hwndExe

HWND for the application’s main window.

hAccel

Reserved. This argument should always be NULL.

IDL_Win32Init() returns TRUE if theinitialization is successful, and FALSE for
failure.

Initialization External Development Guide

Chapter 22: Callable IDL 477

Diverting IDL Output

When using a tty-based interface (available only on UNIX platforms), IDL sendsits
output to the screen for the user to see. When using a GUI-based interface (any
platform), the output goes to the IDL log window. The default output function is
automatically installed by IDL at startup. To divert IDL output to afunction of your
own design, use IDL_ToutPush() and IDL_ToutPop() to change the output
function called by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() and IDL_ToutPop()) to manage them. The most recently pushed
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL TOUT OUTF) (int flags, char *buf, int n);

The arguments to an output function are:
flags

A bitmask of flag values that specify how the text should be output. The allowed bit
values are:

IDL_TOUT_F_STDERR

Send the text to stderr rather than stdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start anew output line. On atty, thisis equivalent to sending
anewline (' \n') character.

buf

Thetext to be output. There may or may not be aNULL termination, so the character
count provided by n must be used to move only the specified number of characters.

The number of charactersin buf to be output.

External Development Guide Diverting IDL Output

478 Chapter 22: Callable IDL

IDL_ToutPush()

UseIDL_ToutPush() to push a new output function onto the stack. The most
recently pushed function is the one used by IDL for output.

void IDL_ToutPush (IDL_TOUT_OUTF outf) ;
IDL_ToutPop()

IDL_ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.

IDL_TOUT OUTF IDL_ ToutPop (void) ;

Warning

Do not pop an output function you did not push. It isan error to attempt to remove
the last remaining function.

Diverting IDL Output External Development Guide

Chapter 22: Callable IDL 479

Executing IDL Statements

There are two functions that allow you to execute IDL statements.

IDL_ExecuteStr () executes asingle command, while IDL _Execute() takes an array
of commands and executes them in order. In both cases, the commands are null
terminated strings—just as they would be typed by an IDL user at the 1DL> prompt.
It isimportant to realize that the full abilities of IDL are available at this point.
Typically, the commands you issue will run IDL programs of varying complexity,
including support routines written in IDL from the IDL Library (found viathe IDL
IPATH system variable). This ability to “download” complicated programsinto IDL
and then run them via a simple command can be very powerful.

IDL_Execute()

IDL_Execute() executes the command strings in the order given. It returns the value
of 'lERROR_STATE.CODE after the fina command has executed. If the value of
IERROR_STATE.CODE is needed for an intermediate command, you should use
IDL_ExecuteStr () instead of DL _Execute().

int IDL_Execute (int argc, char *argv[]);
argc
The number of commands contained in ar gv.
argv

An array of pointersto NULL-terminated strings containing IDL statements to
execute.

IDL_ExecuteStr()

IDL_ExecuteStr () returns the value of the 'lERROR_STATE.CODE system variable
after the command has executed.

int IDL_ExecuteStr (char *cmd) ;

cmd

A NULL-terminated string containing an IDL statement to execute.

External Development Guide Executing IDL Statements

480 Chapter 22: Callable IDL

Runtime IDL and Embedded IDL

If you distribute programsthat call IDL with aruntime license or an embedded
license, use IDL_RuntimeExec(). After initialization IDL_RuntimeExec() can be
used to run self-contained IDL applications from a Save/Restore file.
IDL_RuntimeExec() restores the file, then attemptsto call an IDL procedure named
MAIN. If no MAIN procedureisfound, the function attemptsto call a procedure with
the same name as the restored Savefile. (That is, if the Save fileis named
myprog.sav, |IDL_RuntimeExec() looks for a procedure named myprog.)

IDL_RuntimeExec() returns TRUE if the operation succeeded and the MAIN
procedure or the named procedure were called. Note that the returned status does not
indicate whether the actual IDL code ran successfully.

int IDL_ RuntimeExec (char *file);

where;
file

The compl ete path specification to the Save file to be restored, in the native syntax of
the platform in use.

Runtime IDL and Embedded IDL External Development Guide

Chapter 22: Callable IDL 481

Cleanup

After your programisfinished using IDL (typicaly just beforeit exits) it should call
IDL_Cleanup() to dlow IDL to shut down gracefully. IDL _Cleanup() returns a
status value that can be passed to Exit().

int IDL Cleanup (int just cleanup) ;

where:
just_cleanup

If TRUE, IDL_Cleanup() does dl the process shutdown tasks, but doesn’t actually
exit the process. If FALSE (the usual), the process exits.

Microsoft Windows applications should place this call in their Main WndPraoc to be
called as aresult of the WM _CL OSE message.

switch (msg) {
case WM_CLOSE:

IDL Cleanup (TRUE) ;
any additional processing

External Development Guide Cleanup

482 Chapter 22: Callable IDL

Issues and Examples: UNIX

Interactive IDL

Under UNIX, IDL_Main() implements IDL as seen by the interactive user. In the
interactive version of IDL as shipped by RSI, the actual main() function simply
decodes its arguments to determine which options to specify and then calls
IDL_Main() todotherest. IDL_Main() calls exit() and does not return to its caller.

int IDL Main(int init options, int argc, char *argvl[]);

where:
init_options

The options argument to be passed to IDL _I nit().
argc, argv

From main(). Arguments that correspond to options specified viathe init_options
argument should be removed and converted to init_optionsflags prior to calling this
routine.

Compiling Programs That Call IDL

A complete discussion of the issues that arise when compiling and linking C
programs is beyond the scope of this manual. The following isabrief list of basic
concepts to consider when building programs that call IDL.

e Compilersfor some languages add underscores at the beginning or end of user
defined names. To check the naming convention employed by your compiler,
usethe UNIX nm (1) command to list the symbols exported from an object
file.

If you use only one language, naming details are handled transparently by the
compiler, linker, and debugger. If you use more than one language, problems
can ariseif the different compilers use different naming conventions. For
example, the Fortran compiler might add an underscore to the end of each
name, while the C compiler does not. To call a Fortran routine from C, you
must then include this underscore in your code (to call the functionmy code,
you would refer to it asmy code). Note that you may also need to set a
compiler flag to make case significant.

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 483

To determine whether your compilers use compatible naming conventions,
consult your compiler documentation or experiment with small test programs
using the compilers and the nm command.

Every program starts execution at a known routine. In the C language, this
routine is explicitly named main(). In Fortran, execution begins with the
implicit main program. If you are using Callable IDL, you must provide a
main() function for your program.

When linking a C program, use the cc command instead of the 1d command.
cc cals1d to perform the link operation, and when necessary adds a directive
to 14 that causes the C runtime library to be used.

If you don’'t use cc to link your program (if you are using 1d directly or are
using a Fortran compiler, for example) and you get “ unsatisfied symbol” errors
for symbols that are in the standard C library, try including the runtime library
explicitly in your link command. Usually, adding the string -1 to the end of
the command is al that is necessary.

Under Hewlett-Packard’'s HP-UX operating system, if you use 14 directly you
may also need to include the pa1 . 1 math library in order to locate
mathematics routines at runtime. Addtheflag -1./1ib/pa1.1 priorto -1mon
thelink lineto link with the pa1 . 1 math libraries.

See “ Compilation and Linking Details’ on page 31 for advice on how to
compile and link programs with the IDL libraries under various operating
systems.

Example: Calling IDL From C

The program in the following figure(calltest.c, found inthe callable
subdirectory of the external subdirectory of the IDL distribution) demonstrates
how to import data from a C program into IDL, execute IDL statements, and obtain
datafrom IDL variables. It performs the following actions:

1

Create an array of 10 floating point values with each element set to the value of
itsindex. Thisis equivalent to the IDL command FINDGEN(10).

Initialize Callable IDL.
Import the floating point array into IDL as avariable named TMP.
Have IDL print the value of TMP.,

External Development Guide Issues and Examples: UNIX

484

Chapter 22: Callable IDL

Execute a short sequence of IDL statements from a string array:

tmp2 = total (tmp)
print, 'IDL total is ', tmp2
plot, tmp

Set TMP to zero, causing IDL to release the pointer to the floating point array.

Obtain a pointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TMP2 is a scalar floating point
value.

From our C program, print the value of the IDL TMP2 variable.

Execute a small widget program. Pressing the button allows the program to
end:

a
b

widget base()

widget button(a, value='Press When Done',xsize=300,
ysize=200)

widget_control, /realize, a

dummy = widget event (a)

widget control, /destroy, a

See “Compilation and Linking Statements’ on page 497 for details on
compiling and linking this program.

Each line is numbered to make discussion easier. The line numbers are not part
of the actual program.

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL

485

W J o0 Ul b WDN

NNNNRRPRRPRRRRRP R
WNROWO®NUOU KB WNR OV

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <stdio.h>
#include "idl export.h"

static void free callback (UCHAR *addr)

{
}

printf ("IDL released(%u)\n", addr);

int main(int argc, char **argv)
float £[10];
int 1i;
IDL VPIR v;
IDL_MEMINT dim[IDL MAX ARRAY DIM] ;

static char *cmds[] = { "tmp2 = total (tmp)",
"print,’IDL total is ’,tmp2", "plot,tmp" };
static char *cmds2[] = { "a = widget base()",
"b = widget button(a, value=’Press When Done’, xsize=300,
ysize=200)", "widget control,/realize, a",

"dummy = widget event(a)",
"widget control,/destroy, a" };

for (i=0; 1 < 10; i++) f[i] = (float) 1i;
if (IDL_Init (0, &argc, argv)) {
dim[0] = 10;

printf ("ARRAY ADDRESS (%u)\n", £);
if (v=IDL ImportNamedArray ("TMP", 1, dim, IDL_ TYP FLOAT,
(UCHAR *) £, free callback, (void *) 0)) {

(void) IDL_ExecuteStr ("print, tmp");

(void) IDL_Execute (sizeof (cmds)/sizeof (char *), cmds);

(void) IDL_ExecuteStr ("print, ’'Free the user memory’");

(void) IDL ExecuteStr("tmp = 0");

if (v = IDL FindNamedVariable ("tmp2", IDL_ FALSE))
printf ("Program total is %f\n", v->value.f);
(void) IDL_Execute (sizeof (cmds2) /sizeof (char *), cmds2);
IDL Cleanup (IDL_FALSE) ; /* Don’t return */

} }
return 1;

}

External Development Guide

Table 22-1: Calling IDL from C on UNIX

Following is commentary on this program, by line number:

Issues and Examples: UNIX

486

Chapter 22: Callable IDL

24

C equivalent to IDL command “F = FINDGEN(10)”
25

Initialize IDL
26-29

Import C array F into IDL as a FLTARR vector named TM P with 10 elements. Note
use of the callback argument free callback. Thisfunction will be called when IDL is
finished with the array F, giving us a chance to properly clean up at that time.

30
Have IDL print the value of TMP.
31

Execute the commands contained in the C string array cmds defined on lines 15-16.
These commands create a new IDL variable named TM P2 containing the sum of the
elements of TMP, print its value, and plot the vector.

32-33

Set TMP to anew value. Thiswill cause IDL to release the user supplied memory
from lines 26—29 and call free_callback.

34-35

From C, get areferenceto the IDL variable TM P2 and print its value. This should
agree with the value printed by IDL on line 31. It isimportant to realize that the
pointer to the variable or anything it points at can only be used until the next call to
execute an IDL statement. After that, the pointer and the contents of the referenced
IDL_VARIABLE may becomeinvalid as aresult of IDL’s execution.

36

Run the simple IDL widget program contained in the array C string array cmds2
defined on lines 17-21.

37

Shut down IDL. The IDL_FAL SE argument instructs | DL _Cleanup() to exit the
process, so this call should not return.

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 487

41

Thisline should never be reached. If it is, return the UNIX failing status.
Example: Calling an IDL Math Function

This example demonstrates how to write a simple C wrapper function that allows
calling IDL commands simply from another language. We implement a function
named call_idl_fft() that callsthe IDL FFT function operating on dataimported from
our C program. It returns TRUE on success, FAL SE for failure:

int call_idl fft (IDL COMPLEX *data, int n, int direction);

data

A pointer to alinear array of complex data to be processed.

The number of data points contained in the array data.
dir
The direction of the FFT transform to take. Specify -1 for aforward transform, 1 for

thereverse

The program is shown in the following figure. Each line is numbered to make
discussion easier. These numbers are not part of the actual program. Following is
commentary on the above program, by line number:

External Development Guide Issues and Examples: UNIX

488 Chapter 22: Callable IDL

1f #include <stdio.h>

2 #include "idl export.h"

3

4

5f int call idl fft (IDL_COMPLEX *data, IDL MEMINT n, int dir)
ef {

7 int r;

8 IDL_MEMINT dim[IDL_MAX ARRAY DIM] ;

9 char buf [64];

10

11 dim[0] = n;

12 if (IDL_ImportNamedArray ("TMP_FFT DATA", 1, dim,
13 IDL_TYP COMPLEX, (UCHAR *) data, 0, 0)) {
14 (void) IDL_ExeCuteStr("MESSAGE, /RESET") ;

15 Sprintf(buf,"TMP_FFT_DATA:FFT(TMP_FFT_DATA,/OVERWRITE)"
16 ,dir) ;

17 r = !IDL ExecuteStr (buf) ;

18 (void) IDL_ExecuteStr("TMP_FFT_DATA=O");

19 } else {
20 r = FALSE;
21 }

C 22

23 return r;
241 }
25
26 main(int argc, char **argv)
27] {
28] #define NUM_PNTS 10
29 IDL_COMPLEX data[NUM_PNTS];
30 int i;

31

32 for (i = 0; i < NUM_PNTS; i++) datali]l.r = datalil.i = i;
33 if (IDL Init (0, &argc, argv)) {

34 call_idl fft(data, NUM_PNTS, -1);

35 call_idl_ fft(data, NUM_PNTS, 1);

36 for (i = 0; i < NUM_PNTS; i++)

37 printf (" (%f, %$f)\n", datalil.r, datali].i);
38 IDL Cleanup (IDL_ FALSE) ;

39 }
40
41 return 1;
a2 }

Table 22-2: call_idl_fft()

Issues and Examples: UNIX

External Development Guide

Chapter 22: Callable IDL 489

7

Thevariabler holds the result from the function.

dim isused to import the datainto IDL as an array.

A temporary buffer to format the IDL FFT command.
11-13

Import datainto IDL asthe variable TMP_FFT_DATA. Wedon't set up a
free_callback because we will explicitly force IDL to release the pointer after the
call to FFT.

14

Set the 'ERROR_STATE system variable back to the “success’ state so previous
errors don’t confuse our results.

15-16

Format an FFT command to IDL into buf. Note the use of the OVERWRITE
keyword. Thistellsthe IDL FFT function to place the results into the input variable
rather than creating a separate output variable. Hence, the results end up in our data
array without the need to obtain a pointer to the results and copy them out.

17

Have IDL execute the FFT statement. DL _ExecuteStr () returns the value of
IERROR_STATE.CODE, which should be zero for success and non-zero in case of
error. Hence, negating the result of IDL_ExecuteStr() yields the status value we
require for the result of this function.

18

Set TMP_FFT_DATA to Owithin IDL. This causes IDL to release the data pointer
imported previously.

20

If the call to IDL_ImportNamedArray() fails, we must report failure.

External Development Guide Issues and Examples: UNIX

490 Chapter 22: Callable IDL

26

In order to test the call_idl_fft() function, this main program calls it twice. Taking
numerical error into account the end result should be equal to the original data.

32

Set the real and imaginary part of each element to the index value.
33

Initialize Callable IDL.
34

Cdll call_idl_fft() to perform aforward transform.
35

Cdl call_idl_fft() to perform areverse transform.
36-37

Print the results.
38

Shut down IDL and exit the process.
41

Thisline should never be reached. If it is, return the UNIX failing status.
Example: Calling IDL from Fortran

The program shown in the following figure (cALLTEST, found inthe callable
subdirectory of the external subdirectory of the IDL distribution) demonstrates
how to import data from a Fortran program into IDL, execute IDL statements, and
obtain datafrom IDL variables. See “ Compilation and Linking Statements’ on

page 497 for details on compiling and linking this program. The source code for this
filecan befound inthefilecalltest. £, located inthe callable subdirectory of
the external subdirectory of the IDL distribution.

Each lineis numbered to make discussion easier. The line numbers are not part of the
actual program:

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL

491

I Crmmmmmmm m o o o e e e - -
2 C Routine to print a floating point value from an IDL variable.
3

4 SUBROUTINE PRINT FLOAT (VPTR)

5

6 C Declare a Fortran Record type that has a compatible form with
74 C the IDL C struct IDL VARIABLE for a floating point value.
8 C Note this structure contains a union which is the size of
of C the largest data type. This structure has been padded to
10 C support the union. Fortran records are not part of

11§ C F77, but most compilers have this option.

12

13] STRUCTURE /IDL_VARIABLE/

f77 14 CHARACTER*1 TYPE

15 CHARACTER*1 FLAGS

16 INTEGER*4 PAD !Pad for largest data type

17 REAL*4 VALUE F

18 END STRUCTURE

19

20l RECORD /IDL VARIABLE/ VPTR

21

22 WRITE(*, 10) VPTR.VALUE F

23 10 FORMAT (’/Program total is: ', F6.2)

24

25 RETURN

26

27 END

28

29 Crmmmmmm i m oo e - -
30 C This function will be called when IDL is finished with the
31 C array F.

32

33 SUBROUTINE FREE CALLBACK (ADDR)

34

35 INTEGER*4 ADDR

36

37 WRITE(*,20) LOC (ADDR)

38 20 FORMAT ('IDL Released:’, I1l2)

39

40 RETURN

41

42 END

43

External Development Guide

Table 22-3: Calling IDL from Fortran On UNIX

Issues and Examples: UNIX

492

Chapter 22: Callable IDL

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
f77 ce
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

C This program demonstrates how to import data from a Fortran
C program into IDL, execute IDL statements and obtain data
C from IDL variables.

PROGRAM CALLTEST

C Some Fortran compilers require external defs. for IDL routines:
EXTERNAL IDL Init !S$pragma C(IDL Init)
EXTERNAL IDL Cleanup !$pragma C(IDL_ Cleanup)
EXTERNAL IDL Execute !$pragma C(IDL_Execute)
EXTERNAL IDL ExecuteStr !$pragma C(IDL ExecuteStr)
EXTERNAL IDL ImportNamedArray !$pragma C(IDL ImportNamedArray)
EXTERNAL IDL_FindNamedVariable !$pragma C(IDL_FindNamedVariable)

C Define arguments for IDL Init routine
INTEGER*4 ARGC
INTEGER*4 ARGV (1)
DATA ARGC, ARGV (1) /2 * 0/

C Define IDL Definitions for IDL_ImportNamedArray

PARAMETER (IDL_MAX ARRAY DIM = 8)
PARAMETER (IDL_TYP FLOAT = 4)

REAL*4 F(10)

INTEGER*4 DIM(IDL MAX ARRAY DIM)

DATA DIM /10, 7*0/

INTEGER*4 FUNC_PTR !|Address of function

INTEGER*4 VAR PTR !|Address of IDL variable

EXTERNAL FREE_CALLBACK !Declare ext routine for use as arg

PARAMETER (MAXLEN=80)
PARAMETER (N=10)

C Define commands to be executed by IDL

CHARACTER* (MAXLEN) CMDS (3)

DATA CMDS /"tmp2 = total (tmp)",
& "print, ‘IDL total is ’, tmp2",
& "plot, tmp"/

INTEGER*4 CMD_ARGV(lO)

Table 22-3: Calling IDL from Fortran On UNIX (Continued)

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 493

88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

f77 108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

C Define widget commands to be executed by IDL

CHARACTER* (MAXLEN) WIDGET_CMDS(S)

DATA WIDGET CMDS /"a = widget_base()",

"b = widget button(a,val='Press When Done’,xs=300,ys=200)",
"widget control, /realize, a",

"dummy = widget event (a)",

"widget control, /destroy, a"/

R R R R

INTEGER*4 ISTAT

C Null Terminate command strings and store the address
C for each command string in CMD_ ARGV

DO I =1, 3

CMDS (I) (MAXLEN:MAXLEN) = CHAR(O0)
CMD_ARGV (I) = LOC(CMDS(I))
ENDDO

C 1Initialize floating point array, equivalent to IDL FINDGEN (10)
DOI =1, N
F(I) = FLOAT(I-1)
ENDDO

C Print address of F

WRITE(*,30) LOC(F)
30 FORMAT ('ARRAY ADDRESS:’, I12)

C Initialize Callable IDL
ISTAT = IDL_Init(%VAL(O), ARGC, ARGV (1))
IF (ISTAT .EQ. 1) THEN
C Import the floating point array into IDL as a variable named TMP

CALL IDL ImportNamedArray ('TMP’//CHAR(0), %VAL(1l), DIM,
& %VAL(IDL_TYP_FLOAT), F, FREE CALLBACK, $VAL(0))

Table 22-3: Calling IDL from Fortran On UNIX (Continued)

External Development Guide Issues and Examples: UNIX

494 Chapter 22: Callable IDL
129 Have IDL print the value of tmp
130
131 CALL IDL ExecuteStr(’'print, tmp’//CHAR(0))
132
133 Execute a short sequence of IDL statements from a string array
134
135 CALL IDL Execute (%VAL(3), CMD_ARGV)
136
137 Set tmp to zero, causing IDL to release the pointer to the
138 floating point array.
139
140 CALL IDL ExecuteStr('tmp = 0’//CHAR(0))
141
142 Obtain the address of the IDL variable containing the
143 the floating point data
144
145 VAR _PTR = IDL FindNamedVariable (’tmp2’//CHAR(0), $VAL(0))
146
147 Call a Fortran routine to print the value of the IDL tmp2 variable
148 CALL PRINT FLOAT ($VAL (VAR PTR))
f77 - -
149
150 Null Terminate command strings and store the address
151 for each command string in CMD_ ARGV
152
153 DO I =1, 5
154 WIDGET_CMDS(I)(MAXLEN:MAXLEN) = CHAR (0)
155 CMD_ARGV(I) = LOC(WIDGET_CMDS(I))
156 ENDDO
157
158 Execute a small widget program. Pressing the button allows
159 the program to end
160
161 CALL IDL_ExeCute(%VAL(S), CMD_ARGV)
162
163 Shut down IDL
164 CALL IDL Cleanup (%VAL(0))
165
166 ENDIF
167
168 END
Table 22-3: Calling IDL from Fortran On UNIX (Continued)
1-27

In order to print variables returned from IDL, we must define a Fortran structure type
for IDL_VARIABLE. This subroutine createsthe IDL_VARIABLE structure and
defines away to print the floating-point value returned in the an IDL variable.

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 495

14-17

Define a Fortran structure equivalent to the floating-point portion of the C
IDL_VARIABLE structure. Since we know our value is a floating-point number,
only the floating-point portion of the structure isimplemented. The structureis
padded for the largest data type contained in the union. With some Fortran compilers,
the combination of UNION and M AP can be used to implement the ALLTYPES
union portion of the IDL_VARIABLE structure.

29-42

This subroutineis called when IDL releases the user-supplied memory.
44-164

Thisis the main Fortran program.
51-57

External definitionsfor IDL internal routines. These definitions may not be necessary
with some Fortran compilers.

59-62
Define the argc and argv arguments required by I DL _Init().
66-67

Define constants equivalent to C IDL constants for the maximum array dimensions
and type float.

69-77

Define parameters necessary for IDL_ImportNamedAr ray().
79-85

Define an array of IDL commands to be executed.
87-96

Define an array of IDL widget commands to be executed.

External Development Guide Issues and Examples: UNIX

496

Chapter 22: Callable IDL

98-104

Null-terminate each of the command strings and store the address of each command
topassto IDL.

106-110

Initialize the floating-point array. Thisis the Fortran equivalent to the IDL command
F=FINDGEN (10).

117-121
Initialize IDL.
125-126

Import the Fortran array F inthe IDL as a 10-element FLTARR vector named TMP.
Note the use of the callback argument FREE_CAL L BACK (), which will be called
when IDL isfinished with the array F, giving us a chance to clean up at that time.

134

Execute the commands contained in the character array CM DS defined on lines 71-
77. The address for each command is stored in the corresponding array element of
CMD_ARGV.

139

Set the TM P variable to a new value. This causes IDL to release the user-supplied
memory and call FREE_CAL L BACK().

144
Get areferenceto the IDL variable TM P2.
147

Call theroutine PRINT_FL OAT to print the value of TM P2. This should agree with
the value printed by line 130. Note that the address of the IDL variable TM P2, and its
contents, can only be used until the next call to execute an IDL statement, since IDL
may change the value of the referenced IDL_VARIABLE.

150-161

Execute the commands contained in the character array WIDGET_CM DS defined
on lines 79-88.

Issues and Examples: UNIX External Development Guide

Chapter 22: Callable IDL 497

163-168

Shut down IDL. The 0 argument instructs IDL_CL EANUP() to exit the process, so
this call should not return.

Compilation and Linking Statements

Compilation and linking procedures used when calling IDL on a UNIX system are
described inthefile calltest unix.txt inthecallable subdirectory of the
external subdirectory of the main IDL directory. Note that different UNIX systems
have different compilation and link statements. Note also that the name of the entry
point in the object may be different than that shown here, because compilers may add
leading or trailing underscores to the name of the source routine.

Note
TheMakefile inthe architecture-specific subdirectory of the bin subdirectory of
the IDL distribution contains a make rule for building the cal1test application.

External Development Guide Issues and Examples: UNIX

498

Chapter 22: Callable IDL

Issues and Examples: Microsoft Windows

Building an Application that Calls IDL

To build your 32-bit, Win32 application that calls IDL, you must take the following

steps:

1

Use a#include lineto include the declarationsfrom id1 export . h into your
source code. Thisinclude fileisfound in the external/include
subdirectory of the IDL distribution.

Compile your application.

Link your application with IDL32 . LIB.

Place 1p1.32 . DLL in adirectory with your application. See the readme . txt

filelocated inthe RSI-directory/external/callable for more
information.

Example: A Simple Application

The following program demonstrates how to display message text sent from IDL,
execute IDL statements entered by auser, and how to obtain datafrom IDL variables.
It performs the following actions:

1

3.
4.

Creates a Main window with four client controls; a scrolling edit control to
display text messages from IDL, asingle line edit control to allow a user to
enter an IDL command, a Send button to send the user command to IDL, and a
Quit button to exit the application.

Registers a callback function to handle text messages sent by IDL to the
application.

Initializes Callable IDL.
Call IDL_Cleanup() when we receive the WM _CL OSE message.

Each line is numbered to make discussion easier. These numbers are not part of the
actual program. The source code for this program can be found in thefile simple. c,
located inthe callable subdirectory of the external subdirectory of the IDL
distribution. See the source code for details of the program not printed here.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 499

1
2 * gimple.c Source code for sample IDL callable application
3 *

4

* Copyright (c) 1992-1995, Research Systems Inc.

10 #include <windows.h>

11 #include <windowsx.h>
12 #include <ctl3d.h>

13 #include <string.hs>

14 #include <stdio.h>

15 #include "simple.h"

16 #include "idl export.h"

17

18 /¥ oo o oo o
19 * WinMain

20 *

21 * This is the required entry point for all windows
applications.

22 *

23 * RETURNS: TRUE if successful

D i x/
25 int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE
hInstancePrev,

26 LPSTR lpszCmndline, int nCmdShow)

27 |

28 HWND hwnd;

29 MSG msg;

30

31 // Register the main window class.

32 if (!RegisterWinClass (hInstance)) {

33 return (0) ;

34 }

35

36

37

38 // Create and display the main window.

39 if ((hwnd = InitMainWindow (hInstance)) == NULL) {
40 return (0) ;

a1 }

42 MainhWnd = hwnd;

43

44 // Register our output function with IDL.

45 IDL ToutPush (OutFunc) ;

46

47 // Initialize IDL

48 if (!IDL Win32Init (0, hInstance, hwnd, NULL))
49 return (FALSE) ;

50

External Development Guide Issues and Examples: Microsoft Windows

500 Chapter 22: Callable IDL

51 // Main message loop.

52 while (GetMessage (&msg, NULL, 0, 0)) {

53 TranslateMessage (&msg) ;

54 DispatchMessage (&msg) ;

55 }

56

57 return (msg.wParam) ;

58 }

59

Y e i
61 * RegisterWinClass

62 *

63 * To create a Main window (TLB in IDL speak). You must first
64 * register the class for that window

65 *

66 * RETURNS: TRUE if successful

67 R e e oo o — oo */
68 BOOL RegisterWinClass (HINSTANCE hInst)

69 {

70 WNDCLASS weC;

71

72 wc.style = CS_HREDRAW | CS_VREDRAW;

73 wc.lpfnWndProc = MainWndProc;

74 wc.cbClsExtra = 0;

75 wc .cbWndExtra = 0;

76 wc.hInstance = hInst;

77 wc.hIcon = NULL;

78 wc . hCursor = LoadCursor (NULL, IDC_ARROW) ;

79 wc . hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1);

80 wc . lpszMenuName = NULL;

81 wc.lpszClassName = "Simple";

82

83 if (!RegisterClass(&wc))

84 return (FALSE) ;

85 }

86

87 return (TRUE) ;

88 }

89

I B e it e
91 * InitMainWindow

92 *

93 * This is where our Main window is created and displayed

94 *

95 * RETURNS: Handle to window

96 Ko mmmm e e e e e */
97 HWND InitMainWindow (HINSTANCE hInst)

98 {

99 HWND hwnd ;

Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 501

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

{

CREATESTRUCT cs;

hwnd = CreateWindow ("Simple",
"Callable IDL Sample Application",
WS_DLGFRAME | WS_SYSMENU | WS_MINIMIZEBOX | WS_VISIBLE,
CW_USEDEFAULT,
0,
600,
480,
NULL,
NULL,
hInst,
&cs) ;

if (hwnd) {

ShowWindow (hwnd, SW_SHOWNORMAL) ;
UpdateWindow (hwnd) ;

}

return (hwnd) ;

MainWndProc

The window procedure (event handler) for our main window.
All messages (events) sent to our app are routed through
here

RETURNS: Depends of message.

LRESULT WINAPI MainWndProc (HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM 1Param)

static int nDisplayable = 0;

switch (uMsg) ({
//When our app is first created, we are sent this message.
//We take this opportunity to create our child controls and
//place them in their desired locations on the window.
case WM_CREATE:
if (!CreateControls (((LPCREATESTRUCT)1Param) ->hInstance, hwnd)) {
return(0) ;
}

if (!LayoutControls (hwnd))
return(0) ;
}

nDisplayable = GetCharacterHeight (GetDlgTtem(lwnd, IDE COMMANDIOG)) ;
break;

External Development Guide Issues and Examples: Microsoft Windows

502

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Chapter 22: Callable IDL

case WM_DESTROY:
PostQuitMessage (1) ;
break;

//Each time a button or menu item is selected, we get this message
case WM_COMMAND:
OnCommand (hwnd, LOWORD (wParam), wParam, lParam) ;
return (FALSE) ;

//This is a message we send ourselves to indicate the need to
//display a text message in our log window.
case IDL OUTPUT:
OutputMessage (wParam, lParam, nDisplayable) ;
return (FALSE) ;

case WM_CLOSE:
IDL_Cleanup (TRUE) ;
return (FALSE) ;

default:
break;

}

return (DefWindowProc (hwnd, uMsg, wParam, lParam)) ;

* OnCommand

*

* This is the message handle for our WM _COMMAND messages
*

* RETURNS: FALSE

BOOL OnCommand (HWND hWnd, UINT uld, WPARAM wParam, LPARAM 1lParam)

{

switch (urd)
case IDB_SENDCOMMAND: {
LPSTR lpCommand;
LPSTR 1pOut ;

lpCommand = GlobalAllocPtr (GHND, 256) ;
lpOut = GlobalAllocPtr (GHND, 256) ;
if (!1pCommand)

return (FALSE) ;

Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL

198
199
255) ;
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220 }
221

}

503

/* First we get the string that is in the input window */
GetDlgItemText (hWnd, IDE COMMANDLINE, lpCommand,

/* and then clear the window */
SetDlgItemText (hWnd, IDE_COMMANDLINE, "");

lstrcpy (1pOut, "\r\nSent to IDL: ");
lstrcat (1pOut, lpCommand) ;

/* Send the string to our "log" window */
OutFunc (IDL_TOUT_F_NLPOST, 1lpOut, strlen(lpOut)) ;

/* then send the string to IDL */
IDL ExecuteStr (lpCommand) ;

/* Now clean up */
GlobalFreePtr (1pCommand) ;
GlobalFreePtr (1pOut) ;

break;

return (FALSE) ;

222 /*

223
224
225
226
227
228
229

L T R

OutFunc

This is the output function that receives messages from IDL
and displays them for the user

RETURNS : NONE

230 void OutFunc(long flags, char *buf, long n)

231 {
232
233
234
235
236
237
238
239
240
241
242
243
244
245

static fShowMain = FALSE;

/* If there is a message, post it to our MAIN window */
if (n) {

SendMessage (MainhWnd, IDL OUTPUT, 0, (LPARAM)buf);
}

/* If we need to post a new line message... */
if (flags & IDL TOUT F NLPOST) {

SendMessage (MainhwWnd, IDL OUTPUT, 0, (LPARAM) (LPSTR)"\r\n\o");
}

/* This message gets sent to the log window to have it scroll

and display the last message at the bottom of the window.

External Development Guide Issues and Examples: Microsoft Windows

504

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

Issues and Examples:

Chapter 22: Callable IDL

With this, the user will always see the last screen full of
messages sent
*/
SendMessage (MainhWnd, IDL OUTPUT, (WPARAM)TRUE,
(LPARAM) (LPSTR) ”\0”) ;

return;

/* __
* OutputMessage

*

* Here we do the actual display of the text to our log window
*

* RETURNS: nothing

*

K o o o e e mmmm e */

void OutputMessage (WPARAM wParam, LPARAM lParam, int nDisplayable)
LRESULT 1Ret;
LONG 1Bufflen, 1NumLines, 1lFirstView;

/* Turn off the READONLY bit and postpone redraw */
1Ret = SendMessage (hwndLog, EM_SETREADONLY, FALSE, OL);
1Ret = SendMessage (hwndLog, WM _SETREDRAW, FALSE, OL);

/* Get the length of the text in the log window*/

1Bufflen = SendMessage (hwndLog, WM GETTEXTLENGTH, 0, OL);
INumLines = SendMessage (hwndLog, EM GETLINECOUNT, 0, OL);
1FirstView = SendMessage (hwndLog, EM GETFIRSTVISIBLELINE, 0, OL);
1Ret = SendMessage (hwndLog, EM_ SETSEL, 1lBufflen, 1Bufflen);

/* If we are adding text, wParam will be 0 */
if (!wParam)
1Ret = SendMessage (hwndLog, EM REPLACESEL, 0, lParam);
else(
if (1NumLines > (lFirstView + nDisplayable)) {
int iLinelLen = 0;
int iChar;
int ilLines = 0;
1NumLines--;
while (!iLineLen)
iChar = SendMessage (hwndLog, EM LINEINDEX,
(WPARAM) 1NumLines, OL) ;
ilineLen = SendMessage (hwndLog, EM LINELENGTH,
iChar, OL);
if (!iLineLen)
1NumLines--;

Microsoft Windows External Development Guide

Chapter 22: Callable IDL 505

295 iLines = 1NumLines- (lFirstView + (nDisplayable - 1));
296 iLines = iLines >= 0 ? iLines : 0;

297 SendMessage (hwndLog, EM LINESCROLL, 0, (LPARAM)iLines);
298 }

299 |}

300

301 /* Set the window to redraw and reset the READONLY bit */
302 lRet = SendMessage (hwndLog, WM _SETREDRAW, TRUE, OL);

303 lRet = SendMessage (hwndLog, EM SETREADONLY, TRUE, OL);
304

305 return;

306 }

The following is a commentary on the program, by line number:
16

idl_export.h containsthe IDL_ function prototypes, IDL specific structures, and
IDL constants.

45

Call IDL_ToutPush() with the address of the output function (OutFunc) asit'sonly
argument. Thiswill register OutFunc as acallback for IDL. IDL will call OutFunc
when it needs to display text.

48

Initialize IDL with the handle to the main window and the HINSTANCE of the
application.

52
Start the windows message |oop.
131-176

Thisisthe Main window procedure. It will handle any messages that are sent to the
main window. ThisincludesWM_COM M AND messages that occur as aresult of
user interaction with the client controls. In addition, it handles a user defined message
caled IDL_OUTPUT (the name doesn’'t matter but thisis a clue asto its purpose).

158

When the user presses either the “Send” or “Quit” buttons, route the message to the
OnCommand function.

External Development Guide Issues and Examples: Microsoft Windows

506

Chapter 22: Callable IDL

164

When we receive an IDL_OUTPUT message, call the function that displaystext in
the scrolling window (OutputM essage. See line 263).

168

When we receive the WM _CL OSE message, call IDL_Cleanup() to unlink IDL
from our application.

185-220

OnCommand handlesthe WM _COM M AND messages generated when the user
clicks on the application’s buttons.

199

Get the IDL command that the user has entered in the single line edit control and
storeit in abuffer.

202
Clear the text in the edit control.

208

Cadll theIDL_TOUT _ function to display the command sent to IDL in the output
window.

211
Call IDL_ExecuteStr () with the IDL command retrieved in line 199.
230-253

OutFunc isthe callback registered with IDL to handle text messages IDL sends to
our application. In addition it will handle text from IDL routines that display
information, such as PRINT.

263-306

OutputM essage handles displaying the text to the output window. Since this window
isamulti-line edit control, we have created it as a read-only window. See the source
code for additional information on handling this situation.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 22: Callable IDL 507

280
OutputM essage appends new messages to the existing text in the control.
281-299

When the text has been displayed, OutputM essage scrolls the window to display the
last line of text in the bottom of the window.

External Development Guide Issues and Examples: Microsoft Windows

508 Chapter 22: Callable IDL

Issues and Examples: Microsoft Windows External Development Guide

Chapter 23
Adding External
Widgets to IDL

This chapter discusses the following topics:

IDL and External Widgets 510 Functionsfor Use with Stub Widgets. ... 514

WIDGET STUB 511 Internal Callback Functions 517

WIDGET_CONTROL/WIDGET_STUB . 512 UNIX WIDGET_STUB Example:
WIDGET_ ARROWB 519

External Development Guide 509

510

Chapter 23: Adding External Widgets to IDL

IDL and External Widgets

This chapter describes an IDL widget type not documented in the IDL Reference
Guide, called the stub widget. It also describes a small set of internal functionsto
manipulate stub widgets. Stub widgets allow CALL_EXTERNAL, LINKIMAGE,
DLM, and Callable IDL usersto add their own widgetsto IDL widget hierarchies.

This feature depends on your system providing the window system libraries used by
IDL (particularly the Motif libraries under UNIX) as sharable libraries. It will not
work with versions of IDL that statically link against the window system libraries.
This can be an issue under Linux, but one that we expect to eventually disappear as
Linux distributions start shipping Open Matif as a standard part of the systems.

The next two sections describe IDL’s WIDGET_STUB function and changes to
WIDGET_CONTROL when used with WIDGET_STUB. “Functions for Use with
Stub Widgets’ on page 514 describes support functions that can be called from your
external code to manipulate stub widgets. “ Internal Callback Functions’ on page 517
describes how to make stub widgets generate IDL widget events. Finally, “UNIX
WIDGET_STUB Example: WIDGET_ARROWB” on page 519 illustrates the use of
stub widgets with an external program.

Note
Although WIDGET_STUB can be used under Microsoft Windows, thisfeatureis
primarily of interest with UNIX IDL. Under Windows, RSI recommends the use of
the WIDGET_ACTIVEX functionality, which alows you to use ActiveX controls
with IDL without requiring external programming.

IDL and External Widgets External Development Guide

Chapter 23: Adding External Widgets to IDL 511

WIDGET_STUB

The WIDGET_STUB function creates a widget record that contains no actual
underlying widgets. Stub widgets are place holders for integrating external widget
typesinto IDL. Events from those widgets can then be processed in a manner
consistent with the rest of the IDL widget system.

First, the programmer calls WIDGET_STUB to create the widget, and then uses
CALL_EXTERNAL to call additiona custom code to handle the rest. A number of
internal functions are provided to manipulate widgets from this custom code. See
“Functions for Use with Stub Widgets’ on page 514.

The returned value of thisfunction isthe widget ID of the newly-created stub widget.
Calling Sequence

Result = WIDGET_STUB(Parent)
Arguments

Parent

The widget ID of the parent widget. Stub widgets can only have bases or other stub
widgets as their parents.

Keywords

The following keywords are accepted by WIDGET_STUB and work the same as for
other widget creation functions:

EVENT_FUNC SCR_XSIZE
EVENT_PRO SCR_YSIZE
FUNC_GET_VALUE UVALUE
GROUP_LEADER XOFFSET
KILL_NOTIFY XSIZE
NO_COPY YOFFSET
PRO_SET_VALUE YSIZE

External Development Guide WIDGET_STUB

512

Chapter 23: Adding External Widgets to IDL

WIDGET_CONTROL/WIDGET_STUB

The WIDGET_CONTROL procedure has some differences and limitations when
used with WIDGET_STUB that are not documented in the IDL Reference Guide.

These differences are described below.

Keywords

Only the most general keywords are allowed with WIDGET _CONTROL when used
with stub widgets. All other keywords are ignored. Hereis alist of those keywords
that behave identically with all widgets including stub widgets:

BAD_ID

CLEAR_EVENTS

EVENT_FUNC
EVENT_PRO

FUNC_GET_VALUE

GET_UVALUE

GROUP_LEADER

HOURGLASS
ICONIFY
KILL_NOTIFY
MANAGED
NO_COPY

PRO_SET_VALUE
RESET
SET_UVALUE
SHOW

TIMER
TLB_GET_OFFSET
TLB_GET_SIZE
TLB_SET TITLE
TLB_SET_XOFFSET
TLB_SET_YOFFSET
XOFFSET

YOFFSET

The following keywords also work with stub widgets, but require additional

commentary:

DESTROY

When awidget hierarchy containing stub widgets is destroyed, the following steps

are taken:

¢ Thelower-level code that deals with the system toolkit destroys any real
widgets currently used by the stub widgets.

e All IDL widget records are added to the freelist for re-use.

WIDGET_CONTROL/WIDGET_STUB

External Development Guide

Chapter 23: Adding External Widgets to IDL 513

e Anyrequested KILL_NOTIFY callbacks are called.

You should register KILL_NOTIFY callbacks on the topmost stub widget in each
widget subtree. Remember that the actual widgets are gone before the callbacks are
issued, so don’t attempt to access them. However, the callback provides an
opportunity to clean up any related resources used by the widget.

MAP, REALIZE, and SENSITIVE

These keywords cause the tool kit-specific, lower layer of the IDL widgets
implementation to be called. In the process of satisfying the specified request, any
real widgets used by the stub widgets will be processed, along with the ones created
by the non-stub widgets, in the usual way. Any additional processing must be
provided viaCALL_EXTERNAL.

XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

These keywords inform IDL how large the stub widget is expected to be. This
information is necessary for IDL to calculate sizes and offsets of the surrounding
widgets.

IDL triesto do something reasonable with these requests but, without knowledge of
the actual widget being manipulated, it is possible that the results will not be
satisfactory. In such cases, the IDL_Widget StubSet SizeFunc() function can be used
to specify aroutine that IDL can call to perform the necessary sizing for your stub
widget.

External Development Guide WIDGET_CONTROL/WIDGET_STUB

514 Chapter 23: Adding External Widgets to IDL

Functions for Use with Stub Widgets

The following functions present a highly simplified interface to the stub widget class
that gives the user enough access to IDL widget internals to make the stub widget
work while hiding the details of the actual implementation.

IDL_WidgetStubLock()

Syntax:
void IDL_WidgetStubLock (int set);

IDL event processing occurs asynchronously, so any code that mani pul ates widgets
must execute in a protected region. This function is used to create such aregion. Any
code that manipulates widgets must be surrounded by two callsto
IDL_WidgetStubL ock() asfollows:

IDL_WidgetStubLock (TRUE) ;
/* Do your widget stuff */
IDL_WidgetStubLock (FALSE) ;

IDL_WidgetStubLookup()
Syntax:

char *IDL WidgetStubLookup (IDL_ULONG id) ;
When IDL creates awidget, it returns an integer value to the caller of the widget
creation function. Internally, however, IDL widgets are represented by a pointer to
memory. The DL _WidgetStubL ookup() function is used to trand ate the user-level

integer value to this memory pointer. All the other internal routines use the memory
pointer to reference the widget.

Id isthe integer returned at the user level. Your call to CALL_EXTERNAL should
pass thisinteger to your C-level code for usewith IDL_WidgetStubL ookup() which
tranglates the integer to the pointer.

If the specified id does not represent avalid IDL widget, this function returns NULL.
This situation can occur if awidget was killed but its integer handle is still lingering
somewhere.

IDL_WidgetlssueStubEvent()

Syntax:

void IDL_WidgetIssueStubEvent (char *rec, LONG value) ;

Functions for Use with Stub Widgets External Development Guide

Chapter 23: Adding External Widgets to IDL 515

Given ahandleto the IDL widget, obtained vial DL_WidgetStubL ookup(), this
function queuesan IDL WIDGET_STUB_EVENT. Such an event isastructure that
contains the three standard fields (ID, TOP, and HANDLER) as well as an additional
field named VALUE that contains the specified value.

VALUE can provide away to access additional information about the widget,
possibly by providing amemory address to the information.

IDL_WidgetSetStublds()
Syntax:

void IDL WidgetSetStubIds(char *rec, unsigned long t_id,
unsigned long b_id);

IDL widgets are built out of one or more actual widgets. Every IDL widget carries
two pointers that are used to locate the top and bottom real widget for a given IDL

widget. This function alows you to set these top and bottom pointers in the stub
widget for later use.

Since the actual pointer type differsfrom toolkit to toolkit, this function declarest_id
(the top real widget) and b_id (the bottom real widget) as unsigned long, an integer
data type large enough to safely contain any pointer. Use a C cast operator to handle
the difference.

After caling WIDGET_STUB to create an IDL stub widget, you will need to use
CALL_EXTERNAL to call additiona code that creates the real widgets that
represent the stub. Having done that, use IDL_WidgetSetStubl ds() to save the top
and bottom widget pointers.

IDL_WidgetGetStublds()
Syntax:

void IDL WidgetGetStubIds (char *rec, unsigned long *t_ id,
unsigned long *b_id) ;

This function returns the top (t_id) and bottom (b_id) real widget pointers for any
specified widget (not just stub widgets). When using these values for non-stub
widgets, it isthe caller'sresponsibility to avoid damaging the IDL-created widgetsin
any way.

IDL_WidgetStubSetSizeFunc()
Syntax:

External Development Guide Functions for Use with Stub Widgets

516 Chapter 23: Adding External Widgets to IDL

void IDL WidgetStubSetSizeFunc (char *rec,
IDL_WIDGET STUB SET SIZE FUNC func)

typedef void (* IDL WIDGET STUB SET SIZE FUNC) ;
(IDL_ULONG id, int width, int height);

When IDL needs to set the size of a stub widget, it attempts to set the size of the
bottom real widget to the necessary dimensions. Often, thisis the desired behavior,
but cases can arise where it would be better to handle sizing differently. In such

cases, use I DL_Widget StubSet SizeFunc() to register afunction that IDL will call to
do the actual sizing.

Functions for Use with Stub Widgets External Development Guide

Chapter 23: Adding External Widgets to IDL 517

Internal Callback Functions

Real widget toolkits (upon which IDL widgets are built) are event driven. C language
programs register interest in specific events by providing callback functions that are
called when that event occurs. All but the most basic of widgets are capable of
generating events.

In order for IDL stub widgets to generate IDL events, you must use
CALL_EXTERNAL toinvoke code that sets up real widget event callbacks for the
events you are interested in. This setup can be done as part of creating the real
widgets after theinitial call to WIDGET_STUB. These callbacks then call
IDL_Widgetl ssueStubEvent() to issue the IDL event.

Your C-language widget toolkit callback functions should be patterned after the
following template. Note that the arguments and return type will depend on the
widget toolkit used, and so cannot be shown here:

stub_widget call()

{
char *idl widget;
IDL_WidgetStubLock (TRUE) ;
/* Get the IDL user-level identifier for this widget */
if (idl_widget = IDL_WidgetStubLookup (id)) {
/* Do whatever work is required */

/* Optionally, issue an IDL event */
IDL WidgetIssueStubEvent (idl widget, value)

}

IDL _WidgetStubLock (FALSE) ;

)
Commentary on the Example Shown Above

Note that IDL_WidgetStubL ock() is used to protect the critical section where
widgets are being manipul ated.

Somehow, the callback must be able to find the user-level integer returned by
WIDGET_STUB when the stub widget was created in IDL. Usually, thisisdonein
one of two ways:

* When registering the callback, it is sometimes possible to specify avaue that
will be passed to the callback without interpretation. For example, the X
windows XtAddCallback() function takes an argument named client_data.
Thisvalueis passed to the callback and can be used to supply the user-level
identifier.

External Development Guide Internal Callback Functions

518 Chapter 23: Adding External Widgets to IDL

* Some widget toolkits have a set of attributes that they carry along with each
widget. Under the X windows Xt toolkit, these attributes are called resources.
Xt widgets usually have aresource capable of holding asingle integer or
memory address. This resource can be used to supply the user level identifier.

IDL_WidgetStubL ookup() is used to trand ate the user level widget identifier into a
memory pointer. If this function returns NULL, no further event processing is done
since it would be afatal error to issue an IDL event for a non-existent widget.

Theevent isissued vial DL_Widgetl ssueStubEvent(). This step is not required.
Many of the IDL widget types process real widget events via callbacks that do not
alwaysresult in an IDL widget event being sent.

Internal Callback Functions External Development Guide

Chapter 23: Adding External Widgets to IDL 519

UNIX WIDGET_STUB Example:
WIDGET_ARROWB

Thefollowing example adds the Motif ArrowButton widget to UNIX IDL intheform
of an IDL program named widget arrowb.pro.

The primary user interface to our arrow button widget isthe WIDGET _ARROWB
function. It presents an interface much like any of the built in WIDGET _ functions
provided by IDL. WIDGET_ARROWB usesthe MAKE_DLL procedure, and the
AUTO_GLUE keyword to CALL_EXTERNAL to automatically build and load the
C code required for this widget. This building and loading process is transparent to
the IDL user, requiring only that you have a C compiler installed on your system. All
the user has to do to use an arrow button widget isto call WIDGET _ARROWB

The WIDGET_ARROWB widget acts like a normal pushbutton. Events are sent
when the button is pressed (VALUE=1) and released (VALUE=0). If the

USE OWN_SIZE keyword is set to zero, IDL performs its default sizing on the stub
widget. A non-zero value causes a special routine provided by the
WIDGET_ARROWB implementation to be registered to handle such sizing.

All of the code used in this example, including all code shown here, isavailablein the
external /widstub directory of the UNIX IDL distribution. To run it, execute the
following statements from IDL.:

PUSHD, FILEPATH(’’, SUBDIRECTORY=[’external’,’widstub’l])
WIDGET ARROWB_ TEST
POPD

When running WIDGET_ARROWAB_TEST, you can specify the VERBOSE
keyword, in which case, it will show you the compilation and linking stepsit takesto
build the sharable library from the C code. The use of pushd and popd are due to the
fact that your IDL search path (PATH) is unlikely to have the directory containing
these examplesinit. PUSHD changes your working directory to the location where
these files are found, and POPD restores it to its original location afterwards.

The IDL Program for WIDGET_ARROWB

Thefollowing text isthe IDL program for WIDGET_ARROWSAB. It isfound in the
file named WIDGET ARROWB.PRO:
function WIDGET ARROWB, parent, use_own_size, UVALUE=uvalue, $
VERBOSE=verbose, _EXTRA=extra

; Uses WIDGET STUB, and a sharable library containing
; the necessary C support code, to provide the IDL user

External Development Guide UNIX WIDGET_STUB Example: WIDGET_ARROWB

520

Chapter 23: Adding External Widgets to IDL

; with a Motif Arrow Button widget. The interface is consistent
; with that presented by the built in IDL widgets.

; If the sharable library does not exist, it is built using
; MAKE DLL.

common WIDGET_ARROWB_BLK, shlib

; Build sharable 1lib if first call or lib doesn’t exist
build 1lib = n_elements(shlib) eqg 0
if (not build 1lib) then build 1lib = not FILE TEST(shlib, /READ)
if (build 1lib) then begin
; Location of the widget arrowb files from IDL distribution
arrowb dir=FILEPATH(’’, SUBDIRECTORY=['external’, 'widstub’])

; Use MAKE DLL to build the widget arrowb sharable library
; in the !MAKE DLL.COMPILE DIRECTORY directory.

; Normally, you wouldn’t use VERBOSE, or SHOW ALL OUTPUT

; once your work is debugged, but as a learning exercize it

; can be useful to see all the underlying work that gets

; done. If the user specified VERBOSE, then use those

; keywords to show what MAKE DLL is doing.

MAKE_DLL, 'widget_arrowb’, ’‘widget_arrowb’, $
DLL_PATH=shlib, INPUT DIR=arrowb dir, $
VERBOSE=verbose, SHOW ALL OUTPUT=verbose

endif

; Use a stub widget along with the C code in the library to
; create an arrow button widget. The use of the AUTO_GLUE
; keyword simplifies the call to the sharable library by
; eliminating the need to use the CALL_ EXTERNAL portable
; calling convention.
1 parent=LONG (parent)
1 use own size = §
(n_elements (use_own size) eq 0) ? OL: LONG(use own size)
result = WIDGET STUB (parent, _extra=extra)
if (n_elements(uvalue) ne 0) then $
WIDGET CONTROL, result, set uvalue=uvalue
JUNK = CALL_EXTERNAL (shlib, ’‘widget arrowb’,l parent,result,s$
1 use own size, value=[1, 1, 1], /AUTO_GLUE)

RETURN, result

end

UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Chapter 23: Adding External Widgets to IDL 521

The C Program for widget_arrowb.c

The C language code invoked by the call to CALL_EXTERNAL in the above IDL
codeis contained in afile named widget arrowb.c Thisfile can befoundin the
widstub subdirectory of the external subdirectory of the IDL distribution. The
contents of thisfile are shown below:

/*
widget_arrowb.c - This file contains C code to be called from
UNIX IDL via CALL_EXTERNAL. It uses the IDL stub widget to add
a Motif ArrowButton to an IDL created widget hierarchy. The

button issues a WIDGET STUB_EVENT every time the button is
released.

L T R

* While this code is Motif-centric, the principles apply across *
platforms and could be adapted to Microsoft Windows.
*/
#include <stdio.h>
#include <X11l/keysym.h> /* Keysyms for text widget events */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Shell.h>
#include <Xm/ArrowB.h>
#include "idl export.h"

/*ARGSUSED* /
static void arrowb_ CB(Widget w, caddr_ t client data,
caddr_t call data)
char *rec;

XmArrowButtonCallbackStruct *abcs;

IDL_WidgetStubLock (TRUE) ;
if (rec = IDL_WidgetStubLookup ((unsigned long) client data)) {
abcs = (XmArrowButtonCallbackStruct *) call data;
IDL WidgetIssueStubEvent (rec, abcs->reason == XmCR_ARM) ;

}

IDL WidgetStubLock (FALSE) ;

}

static void arrowb size func(IDL ULONG stub, int width,
int height)

char *stub_rec;

unsigned long t_id, b _id;
char buf[128];

External Development Guide UNIX WIDGET_STUB Example: WIDGET_ARROWB

522 Chapter 23: Adding External Widgets to IDL

IDL WidgetStubLock (TRUE) ;

if (stub_rec = IDL WidgetStubLookup (stub)) {
IDL WidgetGetStubIds(stub rec, &t _id, &b_id);
sprintf (buf, "Setting WIDGET %d to width %d and height %d4d",

stub, width, height);
IDL_Message (IDL, M NAMED GENERIC, IDL_MSG INFO, buf);
XtVaSetValues ((Widget) b _id, XmNwidth, width, XmNheight,
height, NULL) ;
}

IDL_WidgetStubLock(FALSE);
}
int widget arrowb (IDL_LONG parent, IDL_LONG stub, IDL_LONG
use_own_size_ func)
{

Widget parent w;

Widget stub w;

char *parent rec;

char *stub_rec;

unsigned long t_id, b_id;

IDL_WidgetStubLock (TRUE) ;
if ((parent rec = IDL WidgetStubLookup (parent))
&& (stub_rec = IDL WidgetStubLookup (stub))) {
/* Bottom widget of parent is parent to arrow button */
IDL_WidgetGetStublIds (parent_rec, &t_id, &b_id);
parent w = (Widget) b_id;
stub_w = XtVaCreateManagedWidget ("arrowb",
xmArrowButtonWidgetClass,
parent_w, NULL);
IDL _WidgetSetStubIds(stub rec, (unsigned long) stub w,
(unsigned long) stub w);
XtAddCallback (stub w, XmNarmCallback,
(XtCallbackProc) arrowb CB, (XtPointer) stub);
XtAddCallback (stub w, XmNdisarmCallback,
(XtCallbackProc) arrowb CB, (XtPointer) stub);
if (use_own_size func)
IDL WidgetStubSetSizeFunc (stub rec, arrowb size func);
}

IDL_WidgetStubLock (FALSE) ;
return stub;

)
An IDL Program to Test the External Widget

Shown below isan IDL widget program to test the ARROWB widget. This program
isfound in thefile widget_arrowb test.prointhe IDL distribution:

pro widget arrowb test event, ev

UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Chapter 23: Adding External Widgets to IDL 523

widget control, get uvalue=val, ev.id
if (val eq 0) then begin
widget control, /destroy, ev.top
endif else begin
HELP, /STRUCT, ev
if (ev.value eq 1) then begin
widget control,val,set_value=’New label string’
tmp = widget info(ev.id, /GEOMETRY)
widget control, xsize=tmp.xsize+25, $
ysize=tmp.ysize+25, ev.id
endif
endelse
end

pro widget arrowb test, VERBOSE=verbose
a = widget base (/COLUMN)
b = widget_button(a, value='Done’, uvalue = 0)
label=widget label (a,value='A label’)
arrow w = widget arrowb(a, 0, xsize=100, ysize=100, $
uvalue=label, verbose=verbose)
arrow w = widget arrowb(a, 1, xsize=100, ysize=50, $
uvalue=label, verbose=verbose)
widget_control, /real,a
xmanager, 'WIDGET ARROWB_TEST’', a, /NO_BLOCK
end

External Development Guide UNIX WIDGET_STUB Example: WIDGET_ARROWB

524 Chapter 23: Adding External Widgets to IDL

UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Appendix A

Obsolete |
Interfaces

This chapter discusses the following topics:

nternal

Interfaces Obsoleted inIDL 55
Interfaces Obsoleted in IDL 5.2.1

External Development Guide

526 Simplified Routine Invocation
539 Obsolete Error Handling API

525

526 Appendix A: Obsolete Internal Interfaces

Interfaces Obsoleted in IDL 5.5

Thefollowing areas changed in IDL 5.5, requiring the introduction of new interfaces,
and causing some old interfaces to become obsolete. These old interfacesremainin
IDL and can be used by user code. However, new code should not use them, and old
code might benefit from migration as part of normal maintenance:

* ThelDL_Message() IDL_MSG_ATTR_SY S attribute has been retired,
in favor of the more general IDL_M essageSyscode() function.

e ThelDL_MessageErrno() and IDL_M essageEr rnoFromBlock()
functions have been retired in favor of the IDL_M essageSyscode() and
IDL_MessageSyscodeFromBlock() functions, which are more general.

* IDL'skeyword API has been redesigned to be easier to use and
understand, and to be reentrant.

IDL_MSG_ATTR_SYS

Note
IDL_MSG_ATTR_SY Sisone of the possible attribute values that can be included
in the action argument to the IDL _M essage() function. Its purpose was to cause
IDL_Message() to report the system error currently contained in the process errno
global variable. This functionality is now available in a more general and useful
formviathe IDL_M essageSyscode() and I DL _M essageSyscodeFromBlock()
functions, documented in “Issuing Error Messages’ on page 342

IDL_MSG_ATTR_SYS

I1DL_Message() alwaysissues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file”, while the underlying system reason
for the error is*no such directory”.

The UNIX system provides aglobal variable named errno for communicating
such system level errors. Whenever acall to asystem function fails, it returns a
1, and puts an error code into errno that specifies the reason for the failure.
Other functions, such asthose provided by the standard C library, do not set
errno. These functions do set errno.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 527

Specifying IDL_MSG_ATTR_SYStellsIDL_Message() to check errno,
and if it isnon-null, to issue a second line containing the text of the system
error message.

Specify IDL_MSG_ATTR_SYSonly if you arecalling IDL_M essage() as
theresult of afailed UNIX system call. Otherwise, errno might contain an
unrelated garbage value resulting in an incorrect error message.

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically do not set it. On these operating
systems, it is possible to specify IDL_MSG_ATTR_SYS, but it has no effect.

Specifying errno Explicitly: IDL_MessageErrno()

Note
ThelDL_MessageErrno() and IDL_M essageErrnoFromBlock() functions allow
you to throw an error message that includes the system error from the UNIX/POSIX
errno global variable. These functions have been replaced by
IDL_M essageSyscode() and | DL _M essageSyscodeFromBlock() which in
addition to being able to throw UNIX/Posix errors, can aso throw other types of
system error.

There are times when specifying the IDL_M SG_ATTR_SY S modifier code in the
action argument to | DL_M essage() isinadequate. This situation usually occurs when
your code attempts to perform some cleanup operation when an operating system call
fails before calling IDL_M essage() and this cleanup code might alter the value of
errno. In such cases, it is preferable to use the IDL _M essageErrno() or

IDL_M essageErrnoFromBlock() functions to issue the message:

void IDL MessageErrno (int code, int errno, int action, ..)
void IDL_MessageErrnoFromBlock (IDL_MSG_BLOCK block, int code, int
errno, int action, ...)

These function differs from IDL_M essage() in two ways:

1. Thereisan additional argument used to specify the value of errno. Seethe
discussion of errnoin“IDL_MSG_ATTR_SY S’ on page 526 for additional
information about errno and its use.

2. ThelDL_MSG_ATTR_SY S modifier code for the action argument is
ignored.-

External Development Guide Interfaces Obsoleted in IDL 5.5

528 Appendix A: Obsolete Internal Interfaces

Processing Keywords With IDL_KWGetParams|()

Note
Previous versions of IDL used a keyword APl based around the
IDL_KWGetParams() and IDL_KWCleanup() functions. This APl was
confusing to use (It was difficult to know when IDL_KW Cleanup() was supposed
to be called), and was not reentrant (requiring extensive and error prone codein
some IDL system routines). The new API, using | DL_KW ProcessByOffset() and
IDL_KW_FREE, solve these problems and result in easier to write and maintain
code.

To enable rapid conversion from the old API to the new, the new APl uses most of
the same data structures as the old (with the notable exception of
IDL_KW_ARR_DESC, whichisreplaced by IDL_KW_ARR_DESC_R).

This section reproduces those parts of the documentation of the original API that
differ from the current API, which is described in Chapter 12, “IDL Internals:
Keyword Processing”

The IDL_KW_PAR Structure

Note
IDL_KW_PAR isused with the old keyword API in largely the same manner as
the current API, as described in “Overview Of IDL Keyword Processing” on
page 272. The main difference is that the contents of the specified and value fields
are the addresses of static variables, rather than offsetsintoaKW_RESULT
structure as with the new API.

specified

The address of a C int variable that will be set to TRUE (non-zero) or FAL SE (0)
based on whether the routine was called with the keyword present. This field should
be set to NULL ((int *) 0) if thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield is a pointer to a C variable of the
correct type (IDL_LONG, IDL_ULONG, IDL_LONG64, IDL_ULONGH64, float,
double, or IDL_STRING).

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 529

In the case of aread-only array, valueisapointer toan IDL_KW_ARR_DESC,
which isdiscussed in “The IDL_KW_ARR_DESC Structure” on page 529. In the
case of an output variable (i.e., the IDL_KW_OUT flag is set), this field should
point to an IDL_VPTR that will befilled by IDL_KW GetParams() with the
address of the keyword argument.

The IDL_KW_ARR_DESC Structure

Note
ThelDL_KW_ARR_DESC structure was superseded by
IDL_KW_ARR_DESC_R inthe current API. The reason for this changeis that
then field of IDL_KW_ARR_DESC ismodified by the call to

IDL_KWGetParams(), requiring the IDL_KW_ARR_DESC structure to be
defined in static memory, and rendering it non-reentrant.

When akeyword is specified to be aread-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC structure. This structure is defined as:

typedef struct ({
char *data;
IDL_MEMINT nmin;
IDL MEMINT nmax;
IDL MEMINT n;

} IDL_KW_ARR DESC;

where:

data

The address of aC array to receive the data. This array must be of the C type mapped
into by thetypefield of theIDL_KW _PAR struct. For example, IDL_TYP_LONG
mapsinto aC IDL_L ONG. There must be nmax elementsin the array.

nmin
The minimum number of elements allowed.
nmax

The maximum number of elements allowed.

External Development Guide Interfaces Obsoleted in IDL 5.5

530 Appendix A: Obsolete Internal Interfaces

The number of elements actually present. Unlike the other fields, thisfield is set by
IDL_KWGetParams().

Processing Keywords

The I DL_KWGetParams() function is used to process keywords.
IDL_KWGetParams() performs the following actions on behalf of the calling
system routine:

« Verify that the keywords passed to the routine are al allowed by the routine.
« Carry out the type checking and conversions required for each keyword.

¢ Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in argv and copy them in order into the plain_args array.

¢ Return the number of plain arguments copied into plain_args.
IDL_KWGetParams() has the form:

int IDL_KWGetParams (int argc, IDL_VPTR *argv,char *argk,

IDL_KW _PAR *kw_list, IDL_VPTR plain_args[], int mask)
where:

argc
The number of arguments passed to the caller. Thisisthe first parameter to al system
routines.

argv

Thearray of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to al system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to al system routines that accept keyword arguments.

kw_list

Anarray of IDL_KW_PAR structures (see“ Overview Of IDL Keyword Processing”
on page 272, and “The IDL_KW_PAR Structure” on page 528) that specifies the
acceptable keywords for this routine. This array isterminated by setting the keyword
field of the final struct to NULL ((char *) 0).

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 531

plain_args

Anarray of IDL_VPTR into which the IDL_VPTRs of the positional arguments
will be copied. This array must have enough elements to hold the maximum possible
number of positional arguments, as defined in IDL_SYSFUN_DEF2. See
“Registering Routines’ on page 443.

mask

Mask enable. Thisvariableis ANDed with the mask field of each IDL_KW_PAR
struct inthe array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_KWGetParams() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and valuefields
with IDL_KW_ZERO set), can become significant, especially when more than afew
keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN asthefirst keyword array
element. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_KWGetParams() into amore efficient form the first time
it isused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL KW PAR kw pars[] = {
{ "DOUBLE", IDL TYP DOUBLE, 1, 0, &d_there, CHARA(d) },
{ "FLOAT", IDL_TYP FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f) },
{ NnULL }

}i
To use fast scanning, it would be written as:

static IDL KW PAR kw pars[] = {
IDL_KW_FAST SCAN,
{ "DOUBLE", IDL TYP DOUBLE, 1, 0, &d_there, CHARA(d) },
{"FLOAT", IDL TYP FLOAT, 1, IDL KW ZERO, 0, CHARA(f) },
{ NnULL }

}i

External Development Guide Interfaces Obsoleted in IDL 5.5

532 Appendix A: Obsolete Internal Interfaces

Cleaning Up

TheIDL_KWCleanup() function is necessary if the keywords allowed by a system
routine include any input-only keywords of type IDL_TYP_STRING, or if the
IDL_KW_VIN flag is used by any of the keyword IDL_KW _PAR structures. Such
keywords can cause keyword processing to allocate temporary variables that must be
cleaned up after they’ve outlived their usefulness. Call IDL_KWCleanup() as
follows:

void IDL_ KWCleanup (int fcn)
where fcn specifies the operation to be performed, and must be one of the following
values:

IDL_KW_MARK

Mark the stack by placing the statement:

IDL_KWCleanup (IDL_KW_MARK) ;
abovethecall to IDL_KWGetParams(). In addition, you will need to make a call
with IDL_KW_CLEAN at the end.

IDL_KW_CLEAN

Clean up from thelast call to IDL_ KW GetParams() by placing the line:
IDL_KWCleanup (IDL_KW_CLEAN) ;

just above thereturn statement.
Keyword Examples

The following C function implements KEY WORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for aroutine. It
prints the values of its keywords, changes the value of READWRITE to 42 if itis
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Note
The following code is designed to demonstrate keyword processing in asimple,
uncluttered example. In actual code, you would not use the printf mechanism used
on lines 35-39.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 533

1] #include <stdio.h>

2 #include <idl export.hs>

3

4 void keyword demo (int argc, IDL_VPTR *argv, char *argk)

5] {

6 int 1i;

7 IDL ALLTYPES newval;

8

9 static int d there, s _there, arr there;

10 static IDL_LONG 1;

11 static float f;

12 static double d4d;

13 static IDL_STRING s;

14 static IDL_LONG arr_data[10];

15 static IDL_KW ARRAY DESC arr d = {(char *) arr data,3,10,0};
16 static IDL_VPTR var;

17

18 static IDL_KW_PAR kw_pars[] = { IDL_KW_FAST SCAN,

19 { "ARRAY", IDL TYP LONG, 1, IDL KW ARRAY, &arr_ there,

C 20 IDL_CHARA (arr d) },

21 { "DOUBLE", IDL TYP DOUBLE, 1, 0, &d_there, IDL_CHARA (d)
22 { "FLOAT", IDL TYP FLOAT, 1, IDL KW _ZERO, 0, IDL_ CHARA(f)
23 { "LONG", IDL TYP LONG, 1, IDL KW ZERO|IDL KW VALUE|15, O,
24 IDL CHARA (1) },

25 { "READWRITE", IDL_TYP UNDEF, 1, IDL_KW OUT|IDL KW ZERO,
26 0, IDL CHARA(var) },

27 { "STRING",TYP STRING, 1, 0, &s_there, IDL CHARA(s) },
28 { NnULL }

29 Vi

30

31| IDL_KWCleanup (IDL_ KW MARK) ;

32

33 (void) IDL KWGetParams (argc, argv, argk, kw pars, NULL, 1);
34

35 printf ("LONG: <%spresent>\n", 1 ? "": "not ");

36 printf ("FLOAT: %$f\n", f);

37] printf ("DOUBLE: <%spresent>\n", d_there ? "": "not ");

38 printf ("STRING: %s\n", s there ? IDL STRING STR(&s) : "<not presents");
39 printf ("ARRAY: ") ;
40

External Development Guide Interfaces Obsoleted in IDL 5.5

534

Appendix A: Obsolete Internal Interfaces

41 if (arr_there)
42 for (i = 0; 1 < arr_d.n; i++)
43 printf (" %d", arr datalil);
44] else
45 printf ("<not presents>") ;
46 printf ("\n") ;
47
48[printf ("READWRITE: ") ;
a9 if (var) {
C 5o IDL_Print (1, &var, (char *) 0);
51 newval.l = 42;
52 IDL StoreScalar (var, TYP_LONG, &newval) ;
53 } else {
54 printf ("<not present>");
554 }
56 printf ("\n") ;
57
58] IDL_KWCleanup (IDL_KW_CLEAN) ;
59 }
Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the outpuit:
LONG: <not present>
FLOAT: 0.000000
DOUBLE: <not presents>
STRING: <not presents
ARRAY: <not presents>
READWRITE: <not presents>
Executing it again with keywords specified:
A = 56
KEYWORD DEMO, /LONG, FLOAT=2, DOUBLE=34,$
STRING="hello", ARRAY=FINDGEN(10), READWRITE=A
PRINT, 'Final Value of A: ', A
gives the output:

LONG: <present>

FLOAT: 2.000000

DOUBLE: <present>

STRING: hello

ARRAY: 01 2 3 456 7829
READWRITE: 56

Final Value of A: 42

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 535

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

ThelDL_StoreScalar () function used on line 51 requiresthe scalar to be provided in
anIDL_ALLTYPESstruct.

These variables are used to determine if a given keyword is present. Note that al the
keyword-related variables are declared static. Thisis necessary so that the C compiler
can buildthe IDL_KW _PAR structure at compile time.

10-13
C variables to receive the scalar read-only keyword values.

14

C array to be used for the ARRAY read-only array keyword.
15

The array descriptor used for ARRAY. arr_data is the address where the array
contents should be copied. The minimum number of elements allowed is 3, the
maximum is 10. The value set in the last field (0) is not important, because the
keyword processing routine never reads its value. Instead, it puts the number of
elements actually seen there.

16

The READWRITE keyword usesthe I DL_KW_OUT flag, so the routine receives an
IDL_VPTR instead of a processed value.

18

The keyword definition array. Notice that all of the keywords are ordered lexically
(ASCII) and that thereisa NULL entry at the end (line 28). Also, all of the mask
fieldsare set to 1, asisthe mask argument to IDL_KW GetParams() on line 33. This
meansthat all of the keywordsin the list are to be considered valid in this routine.

ThelDL_KW_FAST_SCAN macro is used to define the first keyword array element,
speeding the processing of along IDL_KW_PAR list.

External Development Guide Interfaces Obsoleted in IDL 5.5

536 Appendix A: Obsolete Internal Interfaces

19 - 20

ARRAY isdefined to be aread-only array keyword of IDL_TYP_LONG. The
arr_there variable will be set to non-zero if the keyword is present. In that case, the
array contents will be placed in the variable arr _data and the number of elements
will be placed into arr_d.n.

21

DOUBLE isascaar keyword of IDL_TYP_DOUBLE. It usesthevariabled_there
to know if the keyword is present.

22

FLOAT isanIDL_TYP_FL OAT scalar keyword. It does not use the specified field
of the IDL_KW_PAR struct to get notification of whether the keyword is present.
Instead, it usesthe IDL_KW_ZERO flag to make sure that the variable f is always
zeroed. If the keyword is present, the value will be written into f, otherwise it will
remain 0. The important point is that the routine can’t tell the difference between the
keyword being absent, or being present with a user-supplied value of zero. If this
distinction doesn’'t matter, such as when the keyword is to serve as an on/off toggle,
use this method. If it does matter, use the specified field as demonstrated with the
DOUBLE keyword, above.

23-24

LONG isascaar keyword of IDL_TYP_LONG. It setstheIDL_KW_ZERO flag
to get the variable | zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variablel.

25—-26

ThelDL_KW_OUT flag indicates that the routine wants getsthe IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO isaso set, the variable var
will be zero unless the keyword is present. The specification of IDL_TYP_UNDEF
here indicates that there is no type conversion or processing applied to
IDL_KW_OUT keywords.

27

This keyword isincluded here to force the need for IDL_KWCleanup() on line 58.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 537

28

Every array of IDL_KW_PAR structs must end with a NULL entry.
31

Mark the stack in preparation for the IDL_KW Cleanup() call on line 58.
33

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWGetParams() is discarded.

35
Thel variable will be 0 if LONG is not present, and 1 if itis.
36

Thef variable will always have some usable value, but if it is zero there is no way to
know if the keyword was actually specified or not.

37 —-38

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Values’ on page 333.

39-45

Accessing the ARRAY keywordissimple. Thearr_therevariable indicatesif the
keyword is present, and arr_d.n gives the number of elements.

47 —55

Since the READWRITE keyword is accessed viathe argument’'s IDL_VPTR, we
usethe IDL_Print() function to print its value. This has the same effect as using the
user-level PRINT procedure when running IDL. See “Output of IDL Variables’ on
page 396. Then, we change its valueto 42 using IDL_StoreScalar ().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_PRINT()) in your own code.

External Development Guide Interfaces Obsoleted in IDL 5.5

538 Appendix A: Obsolete Internal Interfaces

57

Theuse of IDL_KWCleanup() is necessitated by the existence of the STRING
keyword, whichisof IDL_TYP_STRING.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 539

Interfaces Obsoleted in IDL 5.2.1

Changes were required to implement the ability to enable and disable IDL system
routines from runtime and callable IDL. Rather than alter the IDL_SY SFUN_DEF
structure, and the IDL_ AddSystemRouting() function in an incompatible way, a new
structure (IDL_SY SFUN_DEF2) and new function (IDL_SysRtnAdd()) have been
created to accomplish the new tasks, and the old structure and function have been
obsol eted.

Note
The interfaces described in this section are considered functionally obsolete
although they continue to be supported by RSI. This section is supplied to help
those maintaining older code. New code should be written using the information
found in “Registering Routines” on page 443.

Registering Routines

The DL _AddSystemRouting() function adds system routines to IDL’s internal
tables of system functions and procedures. As a programmer, you will need to call
this function directly if you are linking a version of IDL to which you are adding
routines, although thisis very rare and not considered to be a good practice for
maintai nability reasons. More commonly, you use IDL_AddSystemRouting() in the
IDL_L oad() function of a Dynamically Loadable Module (DLM).

Note
LINKIMAGE or DLMs are the preferred way to add system routines to IDL
because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

int IDL_ AddSystemRoutine (IDL_SYSFUN DEF *defs, int is function,
int cnt) ;

It returns Trueif it succeeds in adding the routine or Falsein the event of an error:

defs
Anarray of IDL_SYSFUN_DEF structures, one per routine to be declared. This

array must be defined with the C language static storage class because IDL keeps
pointersto it. defs must be sorted by routine hame in ascending lexical order.

External Development Guide Interfaces Obsoleted in IDL 5.2.1

540 Appendix A: Obsolete Internal Interfaces

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SY SFUN_DEF structures contained in the defs array.
The definition of IDL_SYSFUN_DEF is:

typedef IDL VARIABLE * (* IDL FUN RET) () ;

typedef struct ({
IDL FUN_RET funct addr;
char *name;
UCHAR arg_min;
UCHAR arg_max;
UCHAR flags

} IDL SYSFUN DEF;

IDL_VARIABLE structures are described in “The IDL_VARIABLE Structure” on

page 301.
funct_addr

Address of the function implementing the system routine.
name

The name by which the routine is to be invoked from within IDL. This should be a
pointer to anull terminated string. The name should be capitalized. If the routineisan
object method, the name should be fully qualified, which meansthat it should include
the class name at the beginning followed by two consecutive colons, followed by the
method name (e.g. CLASS : : METHOD).

arg_min
The minimum number of arguments allowed for the routine.
arg_max

The maximum number of arguments allowed for the routine. If the routine does not
place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

Interfaces Obsoleted in IDL 5.2.1 External Development Guide

Appendix A: Obsolete Internal Interfaces 541

flags

A bitmask that provides additional information about the routine. Its value can be any

combination of the following values (bitwise OR'’d together to specify more than one
at atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

External Development Guide Interfaces Obsoleted in IDL 5.2.1

542 Appendix A: Obsolete Internal Interfaces

Simplified Routine Invocation

Note
The functions and techniques described in this section are no longer widely used,
and are considered functionally obsolete although they continue to be supported by
RSI. This section is supplied to help those maintaining older code. New code should
be written using the information found in Chapter 21, “Adding System Routines”.

A great deal of the work involved in writing IDL system routines involves checking
positional arguments, screening out illegal combinations of type and structure, and
converting them to desired type. The function IDL_EzCall() provides asimplified
way to handle thistask. It processes an array of IDL_EZ_ ARG structs which
describe the processing to be applied to each positional argument.

The DL _EzCall() function is similar to the facility provided for keyword arguments
by IDL_KWGetParams():

void IDL_ EzCall (int argc, IDL_VPTR argvl([],
IDL_EZ ARG arg_structl[]);

where:
argc

The number of positional arguments present.
argv

An array of pointersto the positional arguments.

arg_struct

Anarray of IDL_EZ_ ARG structures defining the desired characteristics for each
possible argument. Note that this array must have a definition for every possible
parameter whether that argument is present in the current call or not. The order of the
IDL_EZ ARG structuresisthe same as the order in which the arguments are
specifiedinthecall. (See“The IDL_EZ ARG struct” on page 543.)

There are some things you need to be aware of when using IDL_EzCall():

¢ |IDL_EzCall() automatically excludesfile variables (such as those created
by the ASSOC function) so you don’t have to take any specia action to
screen such variables out.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 543

Note

Every call to IDL_EzCall() must have a matching call to
IDL_EzCallCleanup() before execution returns to the interpreter.

IDL_EzCall() does not handle keyword arguments. If the calling routine
allows keyword arguments, it must do its own keyword processing using
IDL_KWGetParams() (see”IDL Internals: Keyword Processing” on
page 269) and pass an ar gv containing only positional arguments to
IDL_EzCall().

If you mark avariable as being write-only, you shouldn’t count on
anything useful being in the uargv or valuefields. Thisimpliesthat it is
not agood ideato settheIDL_EZ POST_WRITEBACK fieldinthe
post field. Instead, you will have to alocate a new temporary variable,
place the desired valueinto it, and use the IDL _Var Copy() function to
write its value back into the original argv entry yourself.

IDL_EZ POST_WRITEBACK isonly useful when the accessfield is set to
IDL_EZ ACCESS RW.

The IDL_EZ ARG struct

ThelDL_EZ_ARG struct has the following definition:

typedef struct ({
short allowed dims;
short allowed_ types;
short access;
short convert;
short pre;
short post;
IDL_VPTR to delete;
IDL_VPTR uargv;
IDL _ALLTYPES value;
} IDL EZ ARG;

where:

allowed _dims

A bit mask that specifies the allowed dimensions. Bit 0 means scalar, bit 1 means
one-dimensional, etc. TheIDL_EZ_DIM_MASK macro can be used to specify
certain bits. It accepts a single argument that specifies the number of dimensions that
are accepted, and returns the bit value that represents that number. For example, to
specify that the argument can be scalar or have 2 dimensions:

External Development Guide Simplified Routine Invocation

544 Appendix A: Obsolete Internal Interfaces

IDI, EZ DIM MASK(0) | IDI,_EZ DIM MASK(2)

In addition, the following constants are defined to simplify the writing of common
Cases:

IDL_EZ_DIM_ARRAY
Allow all but scalar.
IDL_EZ_DIM_ANY
Allow anything.
allowed _types

Thisis ahbit mask defining the allowed data types for the argument. To convert type
codes to the appropriate bits, use the formula BitMask = 27YPEC0U€ or yse the
IDL_TYP_MASK macro (see“Type Masks’ on page 263).

Note
If you specify avaue for the convert field, its a good ideato specify
IDL_TYP_B ALL orIDL_TYP_B_SIMPLE here. The type conversion will
catch any problems and your routine will be more flexible.

access

A bitmask that describes the type of access to be allowed to the argument. The
following constants should be OR'd together to set the proper value:

IDL_EZ_ACCESS_R

The value of the argument is used by the system routine.
IDL_EZ_ACCESS_W

The value of the argument is changed by the system routine. This means that it
must be a named variable (as opposed to a constant or expression).

IDL_EZ_ACCESS_RW
Thisisequivalent to IDL_EZ_ACCESS R |IDL_EZ_ACCESS W.
convert

The type code for the type to which the argument will be converted. A value of
IDL_TYP_UNDEF means that no conversion will be applied.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 545

pre
A bitmask that specifies special purpose processing that should be performed on the
variable by IDL_EzCall(). These bits are specified with the following constants:
IDL_EZ_PRE_SQMATRIX

The argument must be a square matrix.
IDL_EZ_PRE_TRANSPOSE
Transpose the argument.

Note

This processing occurs after any type conversions specified by convert, andisonly
doneif the accessfield hasthe IDL_EZ ACCESS R hit set.

post

A bit mask that specifies special purpose processing that should be performed on the

variable by IDL_EzCallCleanup(). These bits are specified with the following
constants:

IDL_EZ_POST_WRITEBACK

Transfer the contents of the uargv field back to the actual argument.
IDL_EZ POST_TRANSPOSE

Transpose uargv prior to transferring its contents back to the actual argument.

Note

This processing occurs only when the accessfield hasthe IDL_EZ ACCESS W
bitset. If IDL_EZ POST_WRITEBACK isnot present, none of the other actions
are considered, since that would imply wasted effort.

to_delete

Do not make use of thisfield. Thisfield isreserved for use by the EZ module. If
IDL_EzCall() allocated atemporary variable to satisfy the conversion requirements

given by the convert field, the IDL_VPTR to that temporary is saved here for use by
IDL_EzCallCleanup().

External Development Guide Simplified Routine Invocation

546 Appendix A: Obsolete Internal Interfaces

uargv

After caling IDL_EzCall(), uargv contains a pointer to the IDL_VARIABLE
which isthe argument. Thisisthe I DL_VPTR that your routine should use.
Depending on the required type conversions, it might be the actual argument, or a
temporary variable containing a converted version of the original. Thisfield won't
contain anything useful if theIDL_EZ_ACCESS R hit isnot set in the access field.

value

Thisisacopy of the value field of the I DL_VARIABLE pointed at by uargv. For
scalar variables, it containsthe value, for arraysit points at the array block. Thisfield
is here to make reading read-only variables faster. Note that thisis only a copy from
uargv, and changing it will not cause the actual value field in uargv to be updated.

Cleaning Up

Every call to IDL_EzCall() must be bracketed by acall to IDL_EzCallCleanup():

void IDL EzCallCleanup (int argc, IDL _VPTR argvl[],
IDL_EZ ARG arg_structl[]);

The arguments are exactly the same as those passed to IDL _EzCall().
Example— using IDL_EzCall()

The following function skeleton shows how to use the simplified interface to handle
argument processing for an older version of the built-in SVD (Singular Value
Decomposition) function. SV D accepts the following positional arguments (in order):

A
An mby n matrix (input, required).
W

An n-element vector (output, required).
)

An n by mmatrix (output, optional)
\Y

Ann by nmatrix (output, optional)

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 547

Each line is numbered to make discussion easier. These numbers are not part of the

actual program.

1] void nr svdcmp (int argc, IDL VPTR argv/[])

2] {

3

4

5 .

6 static IDL EZ ARG arg struct[] = {

7 { IDL EZ DIM MASK(2), IDL TYP B SIMPLE, IDL EZ ACCESS R,
8 IDL_TYP FLOAT, 0, 0 }, /* A */

9 { IDL EZ DIM ANY, IDL TYP B ALL,
10 IDL_EZ ACCESS W, 0, 0, 0 }, /* w %/
11 { IDL_EZ DIM ANY, IDL_TYP B ALL,
12 IDL_EZ ACCESS W, 0, 0, 0 }, /* U */
13 { IDL_EZ DIM ANY, IDL _TYP B ALL,

C 14 IDL_EZ ACCESS W, 0, 0, 0 } /* V %/

15 };

16

17 IDL EzCall (argc, argv, arg_struct);

18

19
20 .
21 /* Do the SVD calculation and prepare temporary
22 variables to be returned as w, U, and V */
23
24
25 .
26 IDL EzCallCleanup (argc, argv, arg_struct);
278 }

Table A-1: IDL_EzCall() Argument Processing Example

Those features of this procedure that are interesting in terms of plain argument
processing are, by line number:

7-8

The settings of the variousfields of the IDL_EZ ARG struct for the first positional
argument (A) specifies:

allowed_dims

The argument must be 2-dimensional .

External Development Guide Simplified Routine Invocation

548 Appendix A: Obsolete Internal Interfaces

allowed _types

It can have any simple type. Types and type codes are discussed in “IDL Internals:
Types’ on page 261.

access
The routine will examine the argument’s value, but will not attempt to change it.
convert
The argument should be convertedto IDL_TYP_FL OAT if necessary.
pre
No pre-processing is required.
post

No post-processing is required.

The remaining fields are all set by IDL_EzCall() in response to the above.
9-14

Arguments two through four are allowed to have any number of dimensions and are
allowed any type. Thisis because the routine does not intend to examine them, only
to change them. For the samereason, azero (IDL_TYP_UNDEF) is specified for the
convert field indicating that no type conversion is desired. No pre or post-processing
is specified.

17
Process the positional arguments.

26

Clean up.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces

Obsolete Error Handling API

549

The following variables can be accessed only on UNIX. These variables have been
superseded by the functions listed in “Functions for Returning System Variables’ on
page 405, which are available on al platforms. In al cases, these variables should be

considered READ-ONLY:.

IDL System Variable Internal Variable Type
IDIR IDL_SysvDir IDL_STRING
IVERSION.ARCH IDL_SysvVersion.arch IDL_STRING
IVERSION.OS IDL_SysvVersion.os IDL_STRING
IVERSION.OS FAMILY | IDL_SysvVersion.os family | IDL_STRING
IVERSION.RELEASE IDL_SysvVersion.release IDL_STRING
IERR IDL_SysvErrCode IDL_LONG
IERROR IDL_SysvErrorCode IDL_LONG
IORDER IDL_SysvOrder IDL_LONG

Table A-2: IDL System Variables Available to User Programs

In addition, the following function has been superseded by the

IDL_SysvErrorCodeVaue() function:
IDL_LONG IDL_SysvErrCodeValue(void)

This function returns the value of |ERR.

External Development Guide

Obsolete Error Handling API

550 Appendix A: Obsolete Internal Interfaces

Obsolete Error Handling API External Development Guide

Index

Symbols

IDIR system variable, 405
IDLM_PATH system variable
in managing DLMs, 457
IERROR_STATE system variable, 405, 405
setting, 405
IERROR_STATE.CODE system variable, 479
IORDER system variable, 405
IVERSION. ARCH system variable, 405
I'VERSION.OS system variable, 405
I'VERSION.OS FAMILY system variable,
405
I'VERSION.REL EASE system variable, 405

A

ActiveX controls

External Development Guide

See also IDLDrawWidget.
absolute value, 413
accessing structure tags, 309
accessing variable data, 324
action argument, 344
ActiveX controls
classID, 76
destroying, 84
example IDL code, 85, 88
IDLcomActiveX object references, 79

inserting into IDL widget hierarchy, 44, 77

method calls, 79
naming scheme, 76
overview, 42
program ID, 76
properties, 80
registering, 74
skillsrequired, 46

551

552

usinginIDL, 74

widget events, 81

WIDGET_ACTIVEX, 44
ActiveXCal.pro, 85
ActiveXExcel, 88
adding

journal file output, 397

system routines, 443
adding code to IDL

overview, 22

skillsrequired, 23

system routines, 418
allocating and freeing file units, 391
alprops.pro, 160
anonymous structures, 308, 308

Appropriate Applications of Callable IDL, 469

arguments
checking, 349
keywords. See keywords
argv argument, 349
array variables, 305
arraydemo.pro, 169
arrays
creating
from existing data (external development),
320
passing with CALL_EXTERNAL, 216
arrray2d.java, 169
ASSOC function (external development), 302,
306
associated 1/0O (external development), 302,
306
AUTO_GLUE, 204

B

BackColor property (ActiveX), 133
Baseld property (ActiveX), 137
BaseName property (ActiveX), 133
bell, ringing with error messages, 346
blocking timers, 370

Index

blocking UNIX timers, 374
bridge version.pro, 165
buffered data, flushing, 394

C

CALL_EXTERNAL function
AUTO_GLUE, 194, 204
C examples, 206
calling a C routine, 208
calling convention, 202
common errors, 199
compared to UNIX child process, 193
compilation and linking, 193
data types, 195
Fortran examples, 220
glue functions, 194, 204
input/output, 195
memory cleanup, 195
Microsoft calling conventions, 197
overview, 16, 192
passing array data, 216
passing structures, 218
portable calling convention, 202
string data, 212
wrapper routines, 210

calable IDL
about, 18
appropriate uses, 469
cleanup, 472, 481
compiling and linking C programs, 482
diverting IDL output, 477
example programs, 483, 487, 490
executing IDL statements, 479
implementation, 466
interactive IDL sessions, 482
inter-language calling conventions, 469
licensing issues, 470, 474
program size considerations, 468
threading, 469
troubleshooting, 468

External Development Guide

using, 471
using the Windows graphics driver, 468
when to use, 467
callable IDL applications
simple math function example, 487
callable IDL, platform-specific implementa-
tion, 466
callbacks
timer, 371
calltest program listing
C, 483
Fortran, 490
characters
reading from the keyboard, 395
checking arguments, 349
checking file status, 389
child processes, under UNIX, 37
classes
Java
data members, 160
methods, 158
names, 156
path, 147
properties, 160
static, 157
client process, 226
client variables, 228
Closing Files, 387
code argument, 342
COM objects
class|D, 50
creating | DLcoml Dispatch objects, 54
data type mapping, 67
datatypes, 56
definition, 42
destroying, 66
example IDL code, 69
exposing as |DLcoml Dispatch objects, 44
inIDL, 48
method calls, 55
Microsoft Object Viewer, 52

External Development Guide

553

optional method arguments, 56

overview, 42

program ID, 51

properties, 63

See also ActiveX

See also IDLcomlIDispatch objects

skillsrequired, 46
communicating with a child process, 37
Compatibility with older IDL code, 231
Compilation and Link Statements, 497
complex datatypes, 265
configuring the IDL-Java bridge, 147
connecting to Java objects, 144
constants

preprocessor, 412
copying

strings, 334

variables, 325
CopyNamedArray method (ActiveX), 121
CopyWindow method (ActiveX), 122
CreateDrawWidget method (ActiveX), 122
creating

JavaobjectinIDL, 156

structures, 307

D

datatypes
default output formats, 409
IDL and Java, 152
IDL-Java bridge conversion, 154
Javaand IDL, 150
datatypes. See types
default output formats for data types, 409
definitions
external, 29
deleting strings, 335
DestroyDrawWidget method (ActiveX), 122
Detecting End Of File, 393
device
special files, 382

Index

554

Diverting IDL Output, 477
DL_Load(), 460
DoButtonPress method (ActiveX), 131
DoButtonRelease method (ActiveX), 131
DoExit method (ActiveX), 122
DoExpose method (ActiveX), 131
DoMotion method (ActiveX), 132
Drawld property (ActiveX), 137
DrawWidgetName property (ActiveX), 134
dynamic memory, 322, 400
freed when deleting strings, 335
freeing, 327
IDL_MemAlloc(), 400
IDL_MemAllocPerm(), 402
IDL_MemFree(), 401

E

Enabled property (ActiveX), 134
ensuring length of, 337
errno global variable
system level errors, 343
errors
checking arguments, 349
handling
IDL-Java bridge, 166
issuing, 342
Java exceptions, 166
messages
format string, 346
ringing bell with error message, 346
suppressing
error messages, 345
message prefixes, 345
traceback portion of messages, 345
events
See also widget events
examples
ActiveX
IDLDrawWidget, 105
including controls, 88

Index

SecondExample.pro, 103
VBLoadCT.pro, 110
VBPaint, 117
VBPalette.pro, 112
VBSharelD, 115
ActiveX control, 85
bridges
ActiveXCal.pro, 85
ActiveXExcel, 88
I DispatchDemo.pro, 69
C examples for CALL_EXTERNAL, 206
calling a simple math function, 487
COM
I DispatchDemo.pro, 69
Fortran CALL_EXTERNAL, 220
hello world, 420
helloJava.java, 163
Java
alprops.pro, 160
array2d.java, 169
arraydemo.pro, 169
bridge_version.pro, 165
exception.pro, 167, 168
GreyBandslmage.java, 174
hellojava.pro, 156
hellojava2.pro, 163
javaprops.pro, 157
jbexamplesjar, 177
publicmembers.pro, 160
showexcept.pro, 167, 168
showgreyimage.pro, 174
urlread.pro, 172
URL Reader.java, 172
simple system routine, 421
simple_vars.pro, 210
using callable IDL
from C, 483
from Fortran, 490
using COM objects, 69
using WIDGET_STUB, 517, 519

exception.pro, 167, 168

External Development Guide

ExecuteStr, 101
ExecuteStr method (ActiveX), 123
exit handlers
IDL_EXxitRegister(), 403
export.h seeidl_export.h
externa
definitions, 29
programs, accessing (SPAWN), 13

F

file
attributes, verifying, 389
descriptor, 380
end of file detection, 393
IDL_FileOpen(), 384
IDL-Java, 147
prevent closure, 388
file access
IDL_FILE_STAT struct, 381
mode, 384
file information
IDL_FILE_STAT struct, 380
file units
always open, 386
files
checking
attributes, 389
status, 389
closing
IDL_FileClose, 387
FLEXIm floating licence policy, 474
flushing buffered data, 394
Form_Load, VisualBasic, 100
Fortran
binary data, unformatted, 382
calling, 222
child processes, 40
compiler, 482
complex datatypes, 265
external functions, calling, 192

External Development Guide

555

passing parameters, 24
free() function, 322
FZ_ROQOTS function

example, 424

G

GetNamedData method (ActiveX), 123
getting dynamic memory, 322

getting file information, 380
GraphicsLevel property (ActiveX), 134
GreyBandslmage.java, 174

H

handling Java exceptions, 166
heap variables, 312

Hello World example, 420
helloJava.java, 163
hellojava.pro, 156
hellojava2.pro, 163
HELP,/DLM, 459, 463

hwnd property (ActiveX), 137

IDispatchDemo.pro, 69, 69
IDL

about language, 27
IDL output, diverting, 477
IDL portable calling convention, 202
IDL RPC

Client APl Example, 229

variable accessor macros, 256
IDL signal API, 359
IDL statements, executing, 479
IDL_ABS() macro, 413
IDL_ALLTYPESunion, 301, 304
IDL_ARR_INI_INDEX bit value, 315
IDL_ARR_INI_NOP hit value, 315

Index

556

IDL_ARR_INI_ZERO bit value, 315
IDL_ARRAY structure, 301
IDL_BailOut() function, 404
IDL_BasicTypeConversion() function, 355
IDL_CHAR() macro, 413
IDL_CHARA() macro, 413
IDL_Cleanup, 481

IDL_Cleanup() function, 472, 481
IDL_CvtByte function, 356
IDL_CvtBytscl function, 356
IDL_CvtComplex function, 356
IDL_CvtDbl function, 356
IDL_CvtDComplex function, 356
IDL_CvtFix function, 356
IDL_CvtFIt function, 356
IDL_CvtLng function, 356
IDL_CvtString function, 356
IDL_Deltmp() function, 319, 323
IDL_DLM_PATH, 458, 463
IDL_EFS ASSOC hit value, 390
IDL_EFS CLOSED hit value, 389
IDL_EFS IDL_OPEN bit value, 389
IDL_EFS NOGUI bit value, 390
IDL_EFS NOPIPE bit value, 390
IDL_EFS NOT_NOSTDIO bit value, 390
IDL_EFS NOTTY bhit value, 389
IDL_EFS NOXDR hit value, 390
IDL_EFS READ bit value, 389
IDL_EFS USER hit value, 389
IDL_EFS WRITE bit value, 389
IDL_ENSURE_ARRAY macro, 350
IDL_ENSURE_OBJREF macro, 350
IDL_ENSURE_PTR macro, 350
IDL_ENSURE_SCALAR macro, 350
IDL_ENSURE_SIMPLE macro, 350
IDL_ENSURE_STRING macro, 350
IDL_ENSURE_STRUCTURE macro, 351
IDL_EXCLUDE_COMPLEX macro, 350
IDL_EXCLUDE_CONST macro, 349
IDL_EXCLUDE_EXPR macro, 349
IDL_EXCLUDE_FILE macro, 350

Index

IDL_EXCLUDE_SCALAR macro, 350
IDL_EXCLUDE_STRING macro, 350
IDL_EXCLUDE_STRUCT macro, 350
IDL_EXCLUDE_UNDEF macro, 349
IDL_Execute() function, 479
IDL_ExecuteStr() function, 479
IDL_ExitRegister() function, 403
idl_export.h file, 29
IDL_F_COMPRESS hit value, 382
IDL_F DEL_ON_CLOSE hit value, 381
IDL_F_ISAGUI bit value, 381

IDL_F _ISATTY bit value, 381
IDL_F_MORE bit value, 381
IDL_F_NOCLOSE bit value, 381
IDL_F_SR hit value, 382
IDL_F_STDIO bit value, 383

IDL_F _SWAP_ENDIAN bit value, 382
IDL_F_UNIX_F77 bit value, 382
IDL_F_UNIX_NOSTDIO hit value, 382
IDL_F_UNIX_PIPE bit value, 382
IDL_F_UNIX_SPECIAL bit value, 382
IDL_F VAX_FLOAT hit value, 382
IDL_F _XDR bit value, 381
IDL_FAL SE preprocessor constant, 412
IDL_FILE_STAT struct, 380
IDL_FileClose() function, 387
IDL_FileEnsureStatus() function, 389
IDL_FileEOF() function, 393
IDL_FileFlushUnit() function, 394
IDL_FileFreeUnit() function, 391
IDL_FileGetUnit() function, 391
IDL_FileOpen() function, 384
IDL_FileSetClose() function, 388
IDL_FileStat() function, 380
IDL_FileTerm global variable, 406
IDL_FileTermColumns function, 407
IDL_FileTermlsTty function, 406
IDL_FileTermLines function, 407
IDL_FileTermName function, 406
IDL_FindNamedV ariable() function, 330
IDL_GetKbrd() function, 395

External Development Guide

IDL_GetScratch function, 322
IDL_Gettmp() function, 314
IDL_GetUserInfo() function, 411
IDL_GetVarAddr() function, 329
IDL_GetVarAddrl() function, 329
IDL_ImportArray() function, 308, 320
IDL_ImportNamedArray() function, 308, 320
IDL_Init() function, 471, 473
IDL_INIT_BACKGROUND, 474
IDL_INIT_EMBEDDED bit value, 473
IDL_INIT_GUI bit value, 473
IDL_INIT_GUI_AUTO bit value, 474
IDL_INIT_NOLICALIASbit value, 474
IDL_INIT_NOTTYEDIT bit value, 474
IDL_KW_ARR_DESC structure, 277
IDL_KW_ARRAY bit value, 275
IDL_KW_FAST_SCAN macro, 282
IDL_KW_OUT bhit value, 275
IDL_KW_PAR structure, 271, 274
IDL_KW_VALUE bit value, 276
IDL_KW_VIN bit value, 275
IDL_KW_ZERO hit value, 275
IDL_KWCleanup() function, 271
IDL_KWGetParams() function, 271, 281
IDL_Load(), 443
IDL_Logit() function, 397
IDL_LONG type definition, 264
IDL_LONG64, 264
IDL_M_GENERIC message string, 346
IDL_M_NAMED_GENERIC message code,
346
IDL_Main() function, 482
IDL_MakeStruct() function, 307
IDL_MakeTempArray function, 314
IDL_MakeTempStruct() function, 316
IDL_MAX() macro, 413
IDL_MAX_ARRAY _DIM preprocessor con-
stant, 412
IDL_MAX_TYPE constant, 262
IDL_MAXIDLEN preprocessor constant, 412
IDL_MAXPATH preprocessor constant, 412

External Development Guide

557

IDL_MBLK_CORE, 340

IDL_MemAlloc() function, 400
IDL_MemAllocPerm() function, 402
IDL_MemkFreg() function, 401
IDL_Message() function, 342, 362
IDL_MessageDefineBlock(), 340, 461
IDL_MessageNameToCode(), 348
IDL_MIN() macro, 413
IDL_MSG_ATTR_BELL bit value, 346
IDL_MSG_ATTR_MORE bit value, 345
IDL_MSG_ATTR_NOPREFIX hit value, 345
IDL_MSG_ATTR_NOPRINT bit value, 345
IDL_MSG_ATTR_NOTRACE bit value, 345
IDL_MSG_ATTR_QUIET bit value, 345
IDL_MSG_ATTR_SYShit value, 346
IDL_MSG_DEF, 340

IDL_MSG_EXIT bit value, 345
IDL_MSG_INFO bit value, 344
IDL_MSG_IO_LONGJIMP hit value, 345
IDL_MSG_LONGJIMP bit value, 345
IDL_MSG_RET hit value, 344
IDL_NUM_TY PES constant, 262
IDL_OPEN_APND bit value, 381, 385
IDL_OPEN_R hit value, 381, 384
IDL_OPEN_TRUNC bit value, 381, 385
IDL_OPEN_W bit value, 381, 384
IDL_OutputFormat global variable, 409
IDL_OutputFormatFunc function, 409
IDL_OutputFormatL en global variable, 409
IDL_OutputFormatL enFunc function, 410
IDL_Print() function, 396

IDL_PrintF() function, 396
IDL_REGISTER preprocessor constant, 412
IDL_ROUND_URPR() macro, 414
IDL_RPCCleanup, 234

IDL_RPCDeltmp, 235
IDL_RPCEXxecuteStr, 236
IDL_RPCGetArrayData, 256
IDL_RPCGetArrayNumDims, 256
IDL_RPCGetArrrayDimensions, 256
IDL_RPCGetMainVariable, 237

Index

558

IDL_RPCGettmp, 238
IDL_RPCGetVarByte, 256
IDL_RPCGetVarComplex, 256
IDL_RPCGetVarComplex|, 256
IDL_RPCGetVarComplexR, 256
IDL_RPCGetVarDComplex, 256
IDL_RPCGetVarDComplexI, 256
IDL_RPCGetVarDComplexR, 256
IDL_RPCGetVarDouble, 257
IDL_RPCGetVarFloat, 257
IDL_RPCGetVariable, 239
IDL_RPCGetVarlnt, 257
IDL_RPCGetVarLong, 257
IDL_RPCGetVarLong64, 257
IDL_RPCGetVarString, 257
IDL_RPCGetVarType, 257
IDL_RPCGetVarUint, 257
IDL_RPCGetVarULong64, 257
IDL_RPCImportArray, 240
IDL_RPCInit, 241
IDL_RPCMakeArray, 242
IDL_RPCOutputCapture, 244
IDL_RPCOutputGetStr, 245
IDL_RPCSetMainVariable, 246
IDL_RPCSetVariable, 247
IDL_RPCStoreScalar, 248
IDL_RPCStrDelete, 249
IDL_RPCStrDup, 250
IDL_RPCStrEnsurelength, 251
IDL_RPCStrStore, 252
IDL_RPCTimeout, 253
IDL_RPCVarCopy, 254
IDL_RPCVarGetData, 255
IDL_RPCVarlsArray, 257
IDL_RuntimeExec() function, 480
IDL_SignaBlock() function, 367
IDL_SignalMaskBlock() function, 366
IDL_SignaMaskGet() function, 365
IDL_SignaMaskSet() function, 366
IDL_SignaRegister() function, 362
IDL_Signa SetAdd() function, 364

Index

IDL_Signal SetDel() function, 365
IDL_Signa SetInit() function, 364
IDL_Signal SetlsMember() function, 365
IDL_Signal Suspend() function, 367
IDL_SignalUnregister() function, 363
IDL_SREF structure, 301, 307
IDL_STDERR_UNIT file unit, 386
IDL_STDIN_UNIT file unit, 386
IDL_STDOUT _UNIT file unit, 386
IDL_StoreScalar() function, 326, 349
IDL_StoreScalarZero(), 326
IDL_StrDelete() function, 335
IDL_StrDup() function, 334
IDL_StrEnsurelength() function, 337
IDL_STRING struct, 265
IDL_STRING structure, 332
IDL_STRING_STR macro, 333
IDL_StrStore() function, 336
IDL_StrToSTRING() function, 336
IDL_STRUCT_TAG_DEF type definition,
308
IDL_StructNumTags(), 310
IDL_StructTaglinfoBylndex() function, 309
IDL_StructTaglnfoByName() function, 309
IDL_StructTagNameBylndex function, 311
IDL_SYSFUN_DEF, 443
IDL_SYSFUN_DEF F KEYWORDS, 271
IDL_SYSFUN_DEF?2 struct, 271, 443
IDL_SysRtnAdd function, 271, 443
IDL_SysvDirFunc function, 405
IDL_SysvErrorCodeVa ue function, 405
IDL_ SysvErrStringFunc function, 405
IDL_SysVersionArch function, 405
IDL_SysVersionOS function, 405
IDL_SysVersionOSFamily function, 405
IDL_SysVersionRelease function, 405
IDL_SysvOrderValue function, 405
IDL_SysvSyserrStringFunc function, 405
IDL_TERMINFO struct, 406
IDL_TIMER_CONTEXT variable, 372
IDL_TimerBlock() function, 374

External Development Guide

IDL_TimerCancel() function, 373
IDL_TimerSet() function, 371
IDL_TOUT_F_NLPOST bit value, 477
IDL_TOUT_F_STDERR hit value, 477
IDL_ToutPop() function, 478
IDL_ToutPush() function, 478
IDL_TRUE preprocessor constant, 412
IDL_TTY Reset function, 408
IDL_TYP_B_ALL constant, 263
IDL_TYP_BYTE type code, 262
IDL_TYP_COMPLEX type code, 262, 265
IDL_TYP_DCOMPLEX type code, 262, 265
IDL_TYP_DOUBLE type code, 262
IDL_TYP_FLOAT type code, 262
IDL_TYP_INT type code, 262
IDL_TYP_LONG type code, 262
IDL_TYP_LONG64 type code, 263
IDL_TYP_MASK preprocessor macro, 263
IDL_TYP_OBJREF type code, 263
IDL_TYP_PTR type code, 263
IDL_TYP_STRING type code, 262, 265
IDL_TYP_STRUCT type code, 262, 307
IDL_TYP_UINT type code, 263
IDL_TYP_ULONG type code, 263
IDL_TYP_ULONG64 type code, 263
IDL_TYP_UNDEF, 262
IDL_TYP_UNDEF type code, 262
IDL_TypeName global variable, 409
IDL_TypeNameFunc function, 410
IDL_TypeSize global variable, 409
IDL_TypeSizeFunc function, 410
IDL_ULONG, 264

IDL_ULONG64, 265
IDL_USER_INFO struct, 411
IDL_V_ARR bit value, 302
IDL_V_CONST bit value, 302
IDL_V_DYNAMIC hit value, 303
IDL_V_FILE bit value, 302
IDL_V_STRUCT bhit value, 303, 307
IDL_V_TEMP bit value, 302
IDL_VarCopy() function, 325

External Development Guide

559

IDL_VarGetData() function, 324
IDL_VARIABLE structure, 301
IDL_VarName() function, 328
IDL_VPTR, 28, 301
IDL_WidgetGetStublds() function, 515, 515
IDL_Widgetl ssueStubEvent() function, 514
IDL_WidgetSetStublds() function, 515, 515
IDL_WidgetStubL ock() function, 514
IDL_WidgetStubL ookup() function, 514
IDL_WidgetStubSetSizeFunc() function, 515,
516

IDL_Win32Init() function, 471, 475
IDLcomActiveX object

see ActiveX controls
IDLcomlDispatch objects

creating, 54

destroying, 66

method calls, 55

naming scheme, 50

overview, 44, 48
IDLDrawWidget ActiveX control

auto event properties, 139

compiling IDL code, 103

creating, 100

creating an interface and handling events, 96

do methods (runtime only), 131

drawing the interface, 97

events, 141

initializing IDL, 99, 103

integrating object graphics, 113

major features, 94

methods, 121

modifying IDL library code, 110

overview, 42

properties, 133

read only properties, 137

register for events, 127

sharing grid control array, 114

specifying IDL path, 98

using, 45
IDL-Javabridge. See Java

Index

560

|dIPath property, 99
IdIPath property (ActiveX), 135
IDLRPCGetVarULong, 257
information on open files
IDL_FILE_STAT struct, 380
InitiIDL method (ActiveX), 124
InitiDLEX method (ActiveX), 125
inter-language
calling conventions, 24
supported communication techniques, 13
internal callback functions (widget stub), 517
internal functions for stub widgets, 514
interpreted languages, 27
interpreter stack, 28
interrupt flag, internal, 404

J

Java
bridge
classnamein IDL, 156
configuration, 147
destroying objects, 162
IDL datatypes, 150
Java datatypes, 152
session object, 164
version, 164
classes
data members, 160
methods, 158
names, 156
path, 147
properties, 160
static, 157
converting data types with IDL, 154
creating IDL-Java bridge objects, 156
Native Interface (INI), 145
objects, 144
static
classes, 157
data members, 157

Index

methods, 157
Virtual Machine (JVM), 145
javaprops.pro, 157
jbexamplesjar, 177
journal file, adding to, 397

K

KEYWORD_DEMO procedure, 285
keywords

array, 275, 278

Boolean, 275

creating, 271

examples, 285

in external development, 270

input, 275

input/output, 278

output, 275

processing, 281

processing options, 278

read-only, 277

scalar, 278

speeding processing of, 282

L

language
about IDL, 27
libraries
IDL portable calling convention, 202
linking to, 229
licensing, 474
calable IDL issues, 470
linking
C programs with Callable IDL, 482
client library, 229
external codeinto IDL, 31
toIDL, 31
logical unit numbers, 306
long integer data type, 264

External Development Guide

longjmp() function, 345
LUNSs seelogica unit numbers

M

macros
defined inidl_export.h, 413
make file for IDL sharable libraries, 31
malloc() function, 322
mapping
IDL datatypesto C datatypes, 264
memory
alocating, 400
alocating permanent, 402
freeing, 401
messages
format string, 346
message blocks, 340
method calls
ActiveX controls, 79
COM objects, 55
Microsoft Object Viewer, 52

N

names
of variables (external code), 328

O

object properties (COM objects), 63
Object Viewer, 52
objects
IDL-Java bridge session
exceptions, 166
parameters, 164
Java classes
IDL-Java bridge, 144
path, 147
obtaining names of variables, 328

External Development Guide

561

OLE/COM Object Viewer, 52, 52, 59, 76
OnButtonPress autoevent (ActiveX), 139
OnButtonRelease autoevent (ActiveX), 139
OnDbl Click autoevent (ActiveX), 139
OnExpose autoevent (ActiveX), 140
Onlnit autoevent (ActiveX), 140
OnMation autoevent (ActiveX), 140
OnViewsScrolled event (ActiveX), 141
opening files

IDL_FileOpen(), 384

P

parameters

passing mechanism, 202
preprocessor constants, 412
Preventing File Closing, 388
Print method (ActiveX), 126
printf() function, 342
printing

IDL variables, 396

using VisualBasic, 109
procedure calls, remote, 226
program size considerations

calable IDL, 468
properties

ActiveX controls, 80

COM objects, 63
publicmembers.pro, 160

R

recommended reading, 32
RegisterForEvents method (ActiveX), 127
registering

routines using IDL_SysRtnAdd(), 434
registering exit handlers, 403
Remote Procedure Calls, 15, 226

example code, 258
Renderer property (ActiveX), 135

Index

562

Retain property (ActiveX), 135

returning address in current execution scope,
330

ringing bell with error messages, 346

rounding values, 414

RPC Examples, 258

RPC library, 233

RPC server, using IDL as, 227

RPCs see Remote Procedure Calls

Running IDL in Server Mode, 227

runtime

embedded licensing, 480

S

scalars

values

storing, 326

variables, 304
Scroll property (ActiveX), 137
SecondExample.pro, 103
server ID number, 227
Server process, 226
session object

IDL-Java bridge exceptions, 166

IDL-Java bridge parameters, 164
SetNamedArray method (ActiveX), 128
SetNamedData method (ActiveX), 129
SetOutputWnd

method, 100
SetOutputWnd method (ActiveX), 130
showexcept.pro, 167, 168
showgreyimage.pro, 174
shutting down

IDL, 403
SIG_DFL, 358, 359
SIG_IGN, 359
SIGALRM, 359, 374
SIGFPE, 359
SIGINT, 404
signal handlers

Index

establishing, 362
removing, 363

signal masks

IDL_SignaBlock(), 367
IDL_SignalMaskBlock(), 366
IDL_SignaMaskGet(), 365
IDL_SignaMaskSet(), 366
IDL_SignalSetAdd(), 364
IDL_Signa SetDel(), 365
IDL_Signa Setlnit(), 364
IDL_Signal SetlsMember(), 365
IDL_Signal Suspend(), 367
overview, 364

signals, 358

IDL API, 359
IDL limitations, 359
problems, 358

SIGTRAP, 359
simple_vars.pro, 210
Skills Required to Add Codeto IDL, 23
SPAWN, 37

Specia File Units, 386
stack, interpreter, 28
standard error, 386
standard input, 386
standard output, 386
stdio buffering, 382
storing

scalar values, 326

string data type, 265
strings, 337

accessing, 333

copying, 334

deleting, 335

passing with CALL_EXTERNAL, 212
processing, 332

setting value of, 336

structure

variables, 307

structures, 307

anonymous, 308, 308

External Development Guide

creating, 307
creating temporary, 316

passing with CALL_EXTERNAL, 218

stub widgets
internal functions, 514
overview, 510

WIDGET_STUB function, 511

symbol table, 329
system routines
adding, 443
examples, 420, 421
interface, 419
overview, 418
system variables
functions for returning, 405

T

Temporary array
getting, 314
Temporary variable
freeing, 319
getting, 314
temporary variables, 313
Terminal Information, 406
The IDL RPC directory, 227
timer modulesin IDL, 370
timers
blocking, 370, 374
calbacks, 371
cancelling requests, 373
IDL_TimerBlock(), 374
IDL_TimerCancel(), 373
IDL_TimerSet(), 371
troubleshooting
calable IDL, 468
type codes, 262
Type Information, 409
types
complex, 265
long integer, 264

External Development Guide

mapping of, 264
string, 265

type codes, 262
type masks, 263
unsigned byte, 264

U

UCHAR type definition, 264
UNIX Signal Masks, 364
unsigned byte data type, 264
urlread.pro, 172
URL Reader.java, 172
user information (IDL), 411
User Interrupts, 404
Using Callable IDL
overview, 471
using calable IDL
from C, 483
from Fortran, 490

Vv

Variable Name
obtaining, 328

VariableExists method (ActiveX), 130

variables, 330
array, 305
copying, 325

in current scope, looking up, 330

obtaining names of, 328

563

returning address in main-level program, 329

scalar, 304

setting to scalar values, 326

structure, 307

system, 405

temporary, 313
VBCopyPrint

copying and printing IDL graphics, 106

VBL0adCT .pro, 110

Index

564

VBPaint

handling events within VB, 116
VBPalette.pro, 112
VBSharelD, 114
Virtual Machine

Java (JVM), 145
Visible property (ActiveX), 135
VisuaBasic

printing, 109

W

When isit Appropriate to Add Codeto IDL?,
22
Whenisit Appropriate to use Callable IDL?,
467
widget events
ActiveX controls, 81
WIDGET_ACTIVEX, 44
WIDGET_STUB
examples, 517, 519
interface, 468, 510
WIDGET_CONTROL keywords, 512
WIDGET_STUB function

Index

reference, 511
widgets
adding custom to IDL, 510
internal functions, 514
WIDGET_ACTIVEX, 44
WIDGET_CONTROL, 512
WIDGET_STUB, 511
wrapper routines
CALL_EXTERNAL, 210

X

XLoadCT functionality using VB, 110
Xoffset property (ActiveX), 137
Xsize property (ActiveX), 135
Xviewport property (ActiveX), 137

Y

Y offset property (ActiveX), 138
Y size property (ActiveX), 136
Y viewport property (ActiveX), 138

External Development Guide

	Online Manuals
	IDL Documentation
	What's New in IDL 6.2
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	External Development Guide
	Contents
	External Development Overview
	About This Manual
	Supported Inter-Language Communication Techniques in IDL
	Translate into IDL
	SPAWN
	Microsoft COM and ActiveX
	Sun Java
	UNIX Remote Procedure Calls (RPCs)
	CALL_EXTERNAL
	IDL System Routine (LINKIMAGE, DLMs)
	Callable IDL

	Dynamic Linking Terminology and Concepts
	When Is It Appropriate to Combine External Code with IDL?
	Skills Required to Combine External Code with IDL
	IDL Organization
	The Interpreter Stack

	External Definitions
	Interpreting Logical Boolean Values
	Compilation and Linking Details
	Recommended Reading

	Part I: Techniques That Do Not Use IDL’s Internal API
	Using SPAWN and UNIX Pipes
	Example: Communicating with a Child Process Under UNIX

	Overview: COM and ActiveX in IDL
	COM Objects and IDL
	What are COM Objects?
	Why Use COM Objects with IDL?

	Using COM Objects with IDL
	Exposing a COM Object as an IDL Object
	Including an ActiveX Control in an IDL Widget Hierarchy
	Using the IDLDrawWidget ActiveX Control

	Skills Required to Use COM Objects
	If You Are Using COM Objects
	If You Are Using ActiveX Controls
	If You Are Using the IDLDrawWidget ActiveX Control
	If You Are Creating Your Own COM Object

	Using COM Objects in IDL
	About Using COM Objects in IDL
	Array Data Storage Format
	Object Creation
	Method Calls and Property Management
	Object Destruction
	Registering COM Components on a Windows Machine

	IDLcomIDispatch Object Naming Scheme
	Class Identifiers
	Program Identifiers
	Finding COM Class and Program IDs

	Creating IDLcomIDispatch Objects
	Method Calls on IDLcomIDispatch Objects
	Function vs. Procedure Methods
	What Happens When a Method Call is Made?
	Data Type Conversions
	Optional Arguments
	Finding Object Methods

	Managing COM Object Properties
	Setting Properties
	Getting Properties

	References to Other COM Objects
	Destroying IDLcomIDispatch Objects
	COM-IDL Data Type Mapping
	Example: RSIDemoComponent

	Using ActiveX Controls in IDL
	About Using ActiveX Controls in IDL
	Warning: Modeless Dialogs
	Registering COM Components on a Windows Machine

	ActiveX Control Naming Scheme
	Finding COM Class and Program IDs

	Creating ActiveX Controls
	Method Calls on ActiveX Controls
	Retrieving the Object Reference

	Managing ActiveX Control Properties
	ActiveX Widget Events
	Using the ActiveX Widget Event Structure
	Dynamic Elements in the ActiveX Event Structure

	Destroying ActiveX Controls
	Example: Calendar Control
	Example: Spreadsheet Control

	The IDLDrawWidget ActiveX Control
	Overview
	A Note about Versions of the IDL ActiveX Control

	Creating an Interface and Handling Events
	Drawing the Interface
	Specifying the IDL Path and Graphics Level
	Initializing IDL
	Creating the Draw Widget
	Directing IDL Output to a Text Box
	Responding to Events and Issuing IDL Commands
	Cleaning Up and Exiting

	Working with IDL Procedures
	Creating the Interface
	Initializing IDL
	Compiling the IDL Code
	Dispatching Button Events to IDL
	Cleaning Up and Exiting

	Advanced Examples
	Copying and Printing IDL Graphics
	Opening the VBCopyPrint project
	Running the VBCopyPrint Example
	Copying IDL Graphic to the clipboard
	Printing the IDL Graphic using IDL Object Graphics
	Executing IDL user routines with Visual Basic
	Printing the IDL Graphic Using Visual Basic

	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Object Graphics Using VB
	Sharing a Grid Control Array with IDL
	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDLDrawWidget Control Reference
	IDLDrawWidget
	Methods
	CopyNamedArray
	CopyWindow
	CreateDrawWidget
	DestroyDrawWidget
	DoExit
	ExecuteStr
	GetNamedData
	InitIDL
	InitIDLEx
	Print
	RegisterForEvents
	SetNamedArray
	SetNamedData
	SetOutputWnd
	VariableExists

	Do Methods (Runtime Only)
	DoButtonPress
	DoButtonRelease
	DoExpose
	DoMotion

	Properties
	BackColor
	BaseName
	BufferId
	DrawWidgetName
	Enabled
	GraphicsLevel (Runtime/Design time)
	IdlPath
	Renderer
	Retain (Runtime/Design time)
	Visible (Runtime/Design time)
	Xsize (Design time)
	Ysize (Design time)

	Read Only Properties
	BaseId (Runtime)
	DrawId (Runtime)
	hWnd (Runtime)
	LastIdlError (Runtime)
	Scroll
	Xoffset
	Xviewport
	Yoffset
	Yviewport

	Auto Event Properties
	OnButtonPress
	OnButtonRelease
	OnDblClick
	OnExpose
	OnInit
	OnMotion

	Events
	OnViewScrolled

	Using Java Objects in IDL
	Overview of Using Java Objects
	Java Terminology
	IDL-Java Bridge Architecture

	Initializing the IDL-Java Bridge
	Configuring the Bridge

	IDL-Java Bridge Data Type Mapping
	Creating IDL-Java Objects
	Java Class Names in IDL
	Java Static Access

	Method Calls on IDL-Java Objects
	What Happens When a Method Call Is Made?
	Data Type Conversions

	Managing IDL-Java Object Properties
	Getting and Setting Properties

	Destroying IDL-Java Objects
	Showing IDL-Java Output in IDL
	The IDLJavaBridgeSession Object
	Java Exceptions
	IDL-Java Bridge Examples
	Accessing Arrays Example
	Accessing URLs Example
	Accessing Grayscale Images Example
	Accessing RGB Images Example

	Troubleshooting Your Bridge Session
	Calling System.exit
	Errors When Initializing the Bridge
	Errors When Creating Objects
	Errors When Calling Methods
	Errors When Accessing Data Members

	Using CALL_EXTERNAL
	The CALL_EXTERNAL Function
	Example Code in the IDL Distribution
	CALL_EXTERNAL Compared to UNIX Child Process
	Compilation and Linking of External Code
	AUTO_GLUE
	Input and Output
	Memory Cleanup
	Memory Access
	Argument Data Types
	Mapping IDL Data Types to External Language Types
	By-Value and By-Reference Arguments
	Microsoft Windows Calling Conventions
	Common CALL_EXTERNAL Pitfalls

	Passing Parameters
	Using Auto Glue
	Generating Glue Without Executing It

	Basic C Examples
	Example: Passing Parameters by Reference to IDL
	Example: Calling a C Routine to Perform Computation

	Wrapper Routines
	Passing String Data
	Example

	Passing Array Data
	Passing Structures
	Fortran Examples
	Example: Calling a Fortran Routine Using a C Interface Routine
	Example: Calling a Fortran Routine Using a Fortran Interface Routine

	Remote Procedure Calls
	IDL and Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode

	Client Variables
	Linking to the Client Library
	Example of IDL RPC Client API

	Compatibility with Older IDL Code
	The IDL RPC Library
	IDL_RPCCleanup
	IDL_RPCDeltmp
	Description
	Parameters

	IDL_RPCExecuteStr
	IDL_RPCGetMainVariable
	IDL_RPCGettmp
	Parameters

	IDL_RPCGetVariable
	IDL_RPCImportArray
	IDL_RPCInit
	Description

	IDL_RPCMakeArray
	IDL_RPCOutputCapture
	IDL_RPCOutputGetStr
	IDL_RPCSetMainVariable
	IDL_RPCSetVariable
	IDL_RPCStoreScalar
	IDL_RPCStrDelete
	IDL_RPCStrDup
	IDL_RPCStrEnsureLength
	IDL_RPCStrStore
	IDL_RPCTimeout
	IDL_RPCVarCopy
	IDL_RPCVarGetData
	Variable Accessor Macros

	RPC Examples

	Part II: IDL’s Internal API
	IDL Internals: Types
	Type Codes
	Type Masks

	Mapping of Basic Types
	Unsigned Byte Data
	Integer Data
	Unsigned Integer Data
	Long Integer Data
	Unsigned Long Integer Data
	64-bit Integer Data
	Unsigned 64-bit Integer Data
	Complex Data
	String Data

	IDL_MEMINT and IDL_FILEINT Types

	IDL Internals: Keyword Processing
	IDL and Keyword Processing
	Creating Routines that Accept Keywords
	Overview Of IDL Keyword Processing
	The IDL_KW_PAR Structure
	The IDL_KW_ARR_DESC_R Structure
	Keyword Processing Options
	The KW_RESULT Structure
	Processing Keywords
	Speeding Keyword Processing

	Cleaning Up
	Keyword Examples
	The Pre-IDL 5.5 Keyword API
	Background
	Advantages Of The IDL 5.5 API
	Differences And Similarities Between APIs
	Converting Existing Code To The New API
	The Transitional API
	Example: Converting From The Old Keyword API

	IDL Internals: Variables
	IDL and Internal Variables
	The IDL_VARIABLE Structure
	Scalar Variables
	Array Variables
	Structure Variables
	Creating Structures
	Accessing Structure Tags
	Determining the Number Of Structure Tags
	Determining the Names Of Structures and their Tags

	Heap Variables
	Temporary Variables
	Getting a Temporary Variable
	Creating a Temporary Array
	Creating a Temporary Structure
	Creating a Temporary Vector
	Creating A Temporary Variable Using Another Variable As A Template
	Freeing A Temporary Variable

	Creating an Array from Existing Data
	Getting Dynamic Memory
	The IDL_GetScratch Function

	Accessing Variable Data
	Copying Variables
	Storing Scalar Values
	Using IDL_StoreScalar() to Free Dynamic Resources

	Obtaining the Name of a Variable
	Looking Up Main Program Variables
	Looking Up Variables in Current Scope

	IDL Internals: String Processing
	String Processing and IDL
	Accessing IDL_STRING Values
	Copying Strings
	Deleting Strings
	Setting an IDL_STRING Value
	Obtaining a String of a Given Length

	IDL Internals: Error Handling
	Message Blocks
	Issuing Error Messages
	Error Codes
	Choosing an Error Code

	Looking Up A Message Code by Name
	Checking Arguments

	IDL Internals: Type Conversion
	Converting Arguments to C Scalars
	General Type Conversion
	Converting to Specific Types

	IDL Internals: UNIX Signals
	IDL and Signals
	Signal Handlers
	Establishing a Signal Handler
	Removing a Signal Handler
	UNIX Signal Masks
	IDL_SignalSetInit()
	IDL_SignalSetAdd()
	IDL_SignalSetDel()
	IDL_SignalSetIsMember()
	IDL_SignalMaskGet()
	IDL_SignalMaskSet()
	IDL_SignalMaskBlock()
	IDL_SignalBlock()
	IDL_SignalSuspend()

	IDL Internals: Timers
	IDL and Timers
	Making Timer Requests
	Canceling Asynchronous Timer Requests
	Blocking UNIX Timers

	IDL Internals: Files and Input/Output
	IDL and Input/Output Files
	File Information
	IDL_FileStat()

	Opening Files
	IDL_FileOpen()
	Special File Units

	Closing Files
	IDL_FileClose()

	Preventing File Closing
	IDL_FileSetClose()

	Checking File Status
	IDL_FileEnsureStatus()

	Allocating and Freeing File Units
	IDL_FileGetUnit()
	IDL_FileFreeUnit()

	Detecting End of File
	IDL_FileEOF()

	Flushing Buffered Data
	IDL_FileFlushUnit()

	Reading a Single Character
	IDL_GetKbrd()

	Output of IDL Variables
	IDL_Print() and IDL_PrintF()

	Adding to the Journal File
	IDL_Logit()

	IDL Internals: Miscellaneous
	Dynamic Memory
	IDL_MemAlloc()
	IDL_MemFree()
	IDL_MemAllocPerm()

	Exit Handlers
	IDL_ExitRegister()

	User Interrupts
	IDL_BailOut()

	Functions for Returning System Variables
	Terminal Information
	Functions for Returning IDL_FileTerm Variable Values

	Ensuring UNIX TTY State
	Type Information
	Functions for Returning Data Type Variable Values

	User Information
	Constants
	Macros

	Part III: Techniques That Use IDL’s Internal API
	Adding System Routines
	IDL and System Routines
	The System Routine Interface
	Example: Hello World
	Example: Doing a Little More (MULT2)
	Testing the Example

	Example: A Complete Numerical Routine Example (FZ_ROOTS2)
	Calling Sequence
	Arguments
	Keywords
	Example

	Example: An Example Using Routine Design Iteration (RSUM)
	Running Sum (Example 1)
	RSUM1
	Running Sum (Example 2)
	Running Sum (Example 3)

	Registering Routines
	Example

	Enabling and Disabling System Routines
	Enabling Routines
	Obtaining Enabled/Disabled Routine Names
	Obtaining the Number of Enabled/Disabled Routines
	Obtaining the Real Function Pointer
	Obtaining the IDL Name of the Current System Routine

	LINKIMAGE
	Dynamically Loadable Modules
	How DLMs Work
	The Module Description File
	The IDL_Load() function
	DLM Example

	Callable IDL
	Calling IDL as a Subroutine
	When is Callable IDL Appropriate?
	Technical Issues Relating to Callable IDL
	Appropriate Applications of Callable IDL

	Licensing Issues and Callable IDL
	Using Callable IDL
	Cleanup

	Initialization
	Initialization: UNIX
	options
	argc
	argv
	Initialization: Microsoft Windows

	Diverting IDL Output
	flags
	buf
	n
	IDL_ToutPush()
	IDL_ToutPop()

	Executing IDL Statements
	IDL_Execute()

	Runtime IDL and Embedded IDL
	Cleanup
	Issues and Examples: UNIX
	Interactive IDL
	Compiling Programs That Call IDL
	Example: Calling IDL From C
	Example: Calling an IDL Math Function
	Example: Calling IDL from Fortran
	Compilation and Linking Statements

	Issues and Examples: Microsoft Windows
	Building an Application that Calls IDL
	Example: A Simple Application

	Adding External Widgets to IDL
	IDL and External Widgets
	WIDGET_STUB
	Calling Sequence
	Arguments
	Keywords

	WIDGET_CONTROL/WIDGET_STUB
	Keywords

	Functions for Use with Stub Widgets
	IDL_WidgetStubLock()
	IDL_WidgetStubLookup()
	IDL_WidgetIssueStubEvent()
	IDL_WidgetSetStubIds()
	IDL_WidgetGetStubIds()
	IDL_WidgetStubSetSizeFunc()

	Internal Callback Functions
	Commentary on the Example Shown Above

	UNIX WIDGET_STUB Example: WIDGET_ARROWB
	The IDL Program for WIDGET_ARROWB
	The C Program for widget_arrowb.c
	An IDL Program to Test the External Widget

	Obsolete Internal Interfaces
	Interfaces Obsoleted in IDL 5.5
	IDL_MSG_ATTR_SYS
	Specifying errno Explicitly: IDL_MessageErrno()
	Processing Keywords With IDL_KWGetParams()
	The IDL_KW_PAR Structure

	Interfaces Obsoleted in IDL 5.2.1
	Registering Routines

	Simplified Routine Invocation
	The IDL_EZ_ARG struct
	Cleaning Up
	Example— using IDL_EzCall()

	Obsolete Error Handling API

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

