What's New In
IDL 6.1

IDL Version 6.1

July, 2004 Edition
Copyright © Research Systems, Inc.
All Rights Reserved.

Research Systems Inc.

0704IDL6IWN

Restricted Rights Notice

TheIDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions,
and documentation described herein are sold under license agreement. Their use, duplication, and disclosure
are subject to the restrictions stated in the license agreement. Research Systems, Inc., reserves theright to
make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, asto any matter not expressly set forth
in the license agreement, including without limitation the condition of the software, merchantability, or fitness
for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered by the Lic-
ensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransferable license
to reproduce this particular document provided such copies are for your use only and are not sold or distrib-
uted to third parties. All such copies must contain the title page and this notice pagein their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were devel oped using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

Overview of New Features in IDL 6.1ccoooiiiiiiiiiiiiiiieiee e 9
New iTooISaNd ITOOI FEAIUIESccceieiirieeiee et e e 10
New File Format Import/Export Accessibility iniTOOISccccovvveceeceiiceceee 11
LY T\ =T o I oo SO 12
Macros and TOOI HiSLOIYceceeieiiiiicieie sttt e 12
S =SSR 13
Enhancements to the ilmage TOOIcccocceeiiiieiecce e 13
OperatioNS 0N ROISociicice et eeste et re e te et e e s assaeesraesreesneens 16
Enhancements to the iTool DataManagercceceveveieeeesie s 17
New Drag QUAIILY FEAIUIEcceeie et ee st st e e sreesree 19
iTOOl BaCKground COlOrcccveieeeiisiieicie ettt 19
Changesto Legend Creationccocoeeerenenieenesiesee e sne s 19
NEW 1V OIUME PrOPEIMIESccveeieecie ettt e st s e s e sreesreennee s 20
File and Edit Menu Keyboard ACCEIEIatorscoevrerireneneninesenieeeesee e 20

What's New in IDL 6.1 3

Enhancements to Command Line Control of iTOOIScccccevvevineinienereeeene 20
Enhanced Handling of AXeSin EMPLY iTOOISccoeveiiieneeenese e 21
Expanded Support of FOrmat COUEScccoveverieiiieiere et 21
Visualization ENNANCEMENLSccoiiiieeie et 23
Lighting and Color Enhancementsto ObJECEScecvevvvieeeerese e 23
Alpha Channel Support for Object GraphiCscccoooviieeerinereee e 23
Enhancements to Mapping ROULINEScccociiieiieie s 24
CMYK Support in Direct and Object GraphiCscccceeeeereerenenienereseeee e 24
Additional Support for Vector GraphicCscccceeveiieiieieeiisese e e 25
ANalySIS ENNANCEMENESo.vieieieeieeee ettt 26
New Unsharp-mask FIILErccvoieiiiicieeece et 27
Hierarchical ClUuSter Tree SUPPOITcc.oivieeeeresieeeeeree et ens 28
New Integer Arithmetic for PRODUCT and TOTAL ...coeveviviecececceevece e, 28
Enhancements to WATERSHEDooo oo 29
Double-Precision Support for Spline Interpolationc.ccccoevvvieeceevieneseesese e 29
Double-Precision Support for Median Smoothingccooerveiineeienieneneeeeeee 29
Absolute Valuesfor MIN and MAX FUNCLIONScccooeeeireneneeeesesiesee s 29
MISSING Keyword t0 BILINEARccooeieeeesere et 29
Complex Data Support for NORM and CONDcccceeevereiineese e 30
BESEL Functions and Negative INPULccooiiirieneieseeeee e 30
Language ENNANCEMENEScociiieieeiecieeeesee sttt st st resne e 31
Ability to Query and Selectively Restore SAVE File Contentsccocceceeeeneieenens 31
Accessto Non-local Scope Variablesocevvveiecece e 32
New DESCRIPTION Keyword to SAVE and RESTOREccocovevnevenerieennnn 32
ENhancementSto SIZE ..o s 32
Default Thread Pool CONfigUIationcc.ccecerrrereerene e 33
Easy Restoration of |CPU System Variable VAlUESccccevevvveeceecese e 33
Enhancements to FOrmatted [/Ooooii e 33
Enhancementsto FILE_SEARCH ... 36
Enhancement to0 CREATE _STRUCT ..ottt 36
Runtime/ Virtual Machine ENhanCementscoeoeirenineineseseeecsese s 37
Widget Event Blocking in Runtime and
Virtual Machine MOOESooviiiieiee e 37
Additional Virtual Machine ENhanCementsccooooviieeerinenenie e 37
File ACCESS ENNANCEMENTScvoiiiiieeesesieeie ettt st ee e eseeneesrennens 38
New IDL JPEG2000 File FOrmat SUPPOITcccccvrierierreesieeseeseeseesieeseeesseeseeeseeeees 38

Contents What's New in IDL 6.1

New XML DOM ODbJECt ClaSSESccccierireeirieriesiiienesesie st see e 39
Expanded DICOM SUPPOITcceieeeeresrereeesesre e sse e sse s e ssennenens 39
Revised Language Catal0g SYSLEMcceceeiiiieiieeiesie e seeeese e 40
CDF Library UPGradeccoceieeeeieresie et see e sneeae e e 40
HDF5 Library UPGradeccoovceeeeeesececeese sttt s 40
New Application USer Dir@CLOry ACCESScccoeieeeererieeieeeene e sieeeenee e snesseeeeseens 40
Enhancementsto READ _TIFF ...t e 41
EnhancementSto WRITE _TIFF ..ot see e e 41
New QUERY _TIFF Info Structure FIEldSccovecveveiececece e 41
GEOTIFF Support for QUERY _TIFF ..o s 41
IDLDE ENNANCEMENLSoiviriiiiieisiesiesie ettt st sttt et snenneneas 42
Intelligent FIle NaMINGcoooeeeeee e 42
Maintaining Cursor POSITIONccoiiiiiiiiesisie et 42
Enabling Alt Key Accelerators on Macintoshcccooveeeeneneseeeere e 42
User Interface ToolKit ENNANCEMENESccovreriiiiniriseeeesese e 44
Tabbing in Widget APPIICAtIONScccoiiiiiieeeeeee e 44
Keyboard Accelerators for Button WIdgELSccceevieieeeeie e 47
DIALOG_PICKFILE Routine ENhanCeMENtScccceeeeerrieesiesie e ses e seesseesneens 48
Table Widget ENhanCemMENSccccveiiiiiieie e 49
Property Sheet Widget ENhanCementscooeveeeerene e 50
WIDGET_CONTROL and WIDGET_INFO Routine Enhancements 52
Documentation ENNANCEMENEScoeeieiiieiiee e 53
New PDF Help System INdeX ULHILYcccevviieieeece e 53
Note on Macintosh ONlNE HEIPooviieieeee e 53
Enhanced Acrobat Plug-in CONtrolcceviiiiiiieece e 54
New Working with Mapsin iTools Chaptercccoovieiieeene e 54
New Working with Macrosin iTools Chapterccovveeeevie v s 54
New Working with StylesiniTooIS Chapterccoooviiieeeene e 54
Revised iTools Data |mport/EXport Chaptercccccvvvieeceeie v 55
Additional iTool Developer’s Guide Chaptersccoovieeeeerenieninere e 55
New Using the XML DOM Object Classes Chaptercccccevvvveeeieeveveseeeeeesnnn 55
New Using Language Catal0gSs Chapterccoeeeerrieneeee e 56
New Library Authoring Chapter ... 56
New Medical Imaging in IDL Manualcocooeeeerrieieeee e 56
NEW [DL ROULINES ..ottt sttt s st sn e 57
IDL Routing ENNGNCEMENTScoeeiieieeeeieese et 59

What's New in IDL 6.1 Contents

NEW IDL ObJECE CIASSEScuveiviitiiieeieesiesteeteesee sttt e steste e sreetestesresaeeneesesresneeneeeessesnens 70
New IDL ObjECt PrOPEITIEScocveieie ettt see st e eee e 71
New IDL ObjECt MELNOMSccuvieieeeiesieeese sttt 73
IDL Object Property ENNGNCEMENLScccovveeieiise et 76
IDL Object Method ENhanCemENtScccoceeeeieii i 77
[ON 6.1 ENNBNCEMENLSoviieieieiieeieeiee ettt e e s eeesbesaesneeneeseesneens 80
Support for SeCUre HTTP (HTTPS) ..ot 80
Features ObSOleted IN TDL 6.1c.oooieieeie e 81
ODSOIELE ROULINEScoviiirieeriieie sttt sttt sttt 81
Obsolete Arguments OF KEYWOITScooerrieeieiese e see e seeens 81
Avoiding Backward Compatibility ISSUESccceveiirieeieiseiieee e 82
Requirements for thiSREIEASEoooiiieee e 83
IDL 6.1 REQUITEMENTSecueeiiiiitieiesie st eteeieste st eaeete e v ee et sre e saesreeneenaesesrenreas 83
[ON 6.1 REQUITEMENLScoeeviiiieieiesieeieeeeesiesiesteeeeeestesee e eeeseesseeeeseeseesseenseneeseeenens 85
T = Y= U T T (o= RSOSSN 87
Chapter 2:
Library AUTNOTING oo 89
Overview of Library AUNOIINGcccooeieiiiiiieeereseeeeee e 20
Recognizing Potential Naming CONfIICESccccovvvvvieiiie e 91
Choosing Routine Names to Avoid CONFIICEScooeieiriiinenceere e 91
Advice for Library AULNOISc..cooeeiie et 93
Prefixing ROULINE NAIMEScccocviiiiiieieese e 93
Converting EXiSting LIDIArESc.vcceeieeieciecie ettt ee et e s snee e 94
Chapter 3:
Using Language Catalogsueeeeeeeiiiiiiiiiiiaeaeeeeee e 97
What [saLanguage CatalOg?ccceceieeieiesieseeiese s eeese et see et tesre e ae e sne e 98
Creating aLanguage CatalOg Filecooeeiiiieeee e 99
Storing and Loading Language Catalog Fil€Scoovecevviicecece e, 100
Using the IDLTILaNgCEAE ClaSSovviirieeiere e enes 101
Creating a Language Catalog ODJECLccvvveveeiiieseee s 101
Adding APPlICatioN KEYScceieieiieere ettt 101
Getting and Setting LanQUABOEScceeeerierieeeeeerieseseeseesse e sresseseestesseessessessesseas 102
Performing QUENTESooiiiieeeee ettt e s re e e e e neeneens 102
Destroying a Language Catal0g ODJECEcccveeviieieiiii e 103
LAY (o= = T o] = R 104

Contents What's New in IDL 6.1

Chapter 4:

Using the XML DOM Object ClaSSeS ...ccccovvviiiieieiieieeeeeiiiviiieee e 107
About the Document ObJECt MOElcooieieieiicece e 108
When t0 USEthE DOM oiiiieee ettt sae e 108
ADOUL the DOM SETUCKUIE ...ttt st 108
HOW IDL USeSthe DOM SEHTUCLUMooueereeieieieeicesie st 110
About the XML DOM ODbjECt CIASSEScceeeereiiieiiieiesie e seeiesiesteseese e sreseesse e sneens 111
IDLFfXMLDOMNode Class Hierarchyccooeoerenieienene e 111
IDLfEXMLDOM Object HEIPEr CIESSEScccveeriiriiieirieniesiesie e 113
IDL NOGE OWNEISNIP ...t 114
Saving and Restoring IDLfEXMLDOM ODJECLSccccevvvvieeieececeeeeie e 116
Using the XML DOM ODbjJECt ClIESSEScceeeeeieierireeeienee e e see e see e seesee e eneeseeseesneas 117
Loading an XML DOCUMENLcceviiiiiere ettt 117
REAAING XML DELAcoveeveieieeeeciesieee ettt st sne e neens 118
Modifying EXIiSiNG DaaAcccceviiieiieie et 119
Creating NEW Dalaloc.eeeere et ee et sae e e e e 119
Destroying IDLFEXMLDOM ODJECEScccvvereeieiesieeese et 120
WoOrking With WhItESPECEceoereiiieeese et 121
OFPhan NOUESooviiiice e s sre e s re e 122
Tree-Walking EXAMPIEooooieeee et 123
N EX ittt a e 125

What's New in IDL 6.1 Contents

Chapter 1:

Overview of New

Features In

This chapter contains the following topics:

IDL 6.1

New iToolsand iTool Features 10
Visualization Enhancements 23
AnaysisEnhancements 26
Language Enhancements 31
Runtime / Virtual Machine Enhancements . 37
File AccessEnhancements 38
IDLDE Enhancements 42
User Interface Toolkit Enhancements 44
Documentation Enhancements 53
New IDL Routines 57

What's New in IDL 6.1

IDL Routine Enhancements 59
New IDL ObjectClasses 70
New IDL Object Properties 71
IDL Object Property Enhancements 76
IDL Object Method Enhancements 77
ION 6.1 Enhancements 80
Features Obsoleted inIDL 6.1 81
Avoiding Backward Compatibility Issues . 82
Requirementsfor thisRelease 83

9

10 Chapter 1: Overview of New Features in IDL 6.1

New iTools and iTool Features

The Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Introduced in IDL 6.0, theiTools are designed to help you get the most out of your
data with minimal effort. They allow you to continue to benefit from the control of a
programming language, while accelerating your data analysis through the use of
interactive utilities. In IDL 6.1, we continue building on this foundation by:

e Formalizing additional framework components and documentation of these
components

e Providing additional tools, rounding out the tool set
¢ Improving support for publication quality graphics
* Enabling batch processing

For details on these additions and other enhancements that have been made to the
IDL iTools system for the 6.1 release, see the following topics..

¢ “New File Format Import/Export Accessibility iniTools’ on page 11
* “NewiMap Tool” on page 12

e “Macrosand Tool History” on page 12

e “Styles’ on page 13

e “Enhancements to the ilmage Tool” on page 13

e “Operations on ROIS’ on page 16

e “Enhancementsto theiTool Data Manager” on page 17

¢ “New Drag Quality Feature” on page 19

e “iTool Background Color” on page 19

* “Changesto Legend Creation” on page 19

* “New iVolume Properties’ on page 20

e “File and Edit Menu Keyboard Accelerators’ on page 20

e “Enhancements to Command Line Control of iTools” on page 20
¢ “Enhanced Handling of Axesin Empty iTools’ on page 21

e “Expanded Support of Format Codes’ on page 21

New iTools and iTool Features What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 11

New File Format Import/Export Accessibility in iTools

The IDL iTools can now export visualizations in Encapsulated Postscript and
Windows Enhanced Metafile formats. Thisletsyou output visualizations such as
figures and plots in scalable, publication-quality formats.

» Encapsulated Postscript (. eps) Exporting capability. From any iTool,
select File — Export... and select
Encapsulated Postscript (eps). Output
will bein vector format (if you wish to
have raster output, an image format such
as TIFF should be used).

» Windows Enhanced Metédfile (. enf) | Exporting capability. From any iTool,
select File — Export... and select
Windows Enhanced M etafile (emf).
Output will be in vector format (if you
wish to have raster output, an image
format such as TIFF should be used).

Table 1-1: New Export Formats in iTools

Vector graphic support has also been enhanced in this release. Vector graphics are
described by simple graphic primitives. In avector file, IDLgrText objects are now
rendered as text primitives. These text primitives as well as the other graphic
primitive making up the figure or plot can be edited in vector graphic files.

The main advantages of vector graphics are excellent scalability, and the ahility to
easily edit text and graphic features of the abjects in the display. The graphic quality
is maintained regardless of whether the graphic size isincreased or decreased. The
capabilities of the graphic editor determines what can be successfully edited. Simple
lines and horizontal text can be easily edited in an EMF file inserted into a Microsoft
Word document. In addition to the iTools export format enhancements, changesto
IDLgrClipboard and IDLgrPrinter support vector graphic enhancements. See
“IDLgrClipboard::Draw” and “IDLgrPrinter::Draw” in the IDL Reference Guide for
more information.

Note
How to choose the appropriate output format based on scene contents is
documented in “Bitmap and Vector Graphic Output” in Chapter 34 of the Using
IDL manual.

What's New in IDL 6.1 New iTools and iTool Features

12 Chapter 1: Overview of New Features in IDL 6.1

The IDL iTools can now import the following file types:

» ESRI Shapefiles (. shp) Importing capabilities. From any iTool,
select either File — Open or File »
Import for ESRI Shapefiles, (these are
assumed to have the . shp file
extension).

* JPEG2000 (. j px or.jp2) Importing capabilities. From any iTool,
select either File — Open or File »
Import for JIPEG2000 files having the
.jp2or.jpx fileextensions, or raw
codestreams of any file extension.

Table 1-2: New Import Formats in iTools
New iMap Tool

The new iMap tool alows you to easily display georeferenced image and contour
data along with polyline, polygon and point dataimported from ESRI Shapefiles.
Several predefined shapefiles are provided, including continents, countries, rivers,
lakes, US states and Canadian provinces. TheiMap tool allowsyou to quickly display
visualizations by defining the data to be warped to the desired map projection, and
mani pul ate visualizations by customizing map projection parameters. See Chapter
15, “Working with Maps’ in the iTool User’s Guide manual.

Macros and Tool History

TheiTools now provide a macro mechanism that lets you record and playback a
sequence of interactive operations. You can record a series of actionsin one or more
iTools, save the series as amacro, and apply it to anew set of data to save you from
having to repeat the actions manually. IDL keeps a history of the iTool actions that
you perform in a session. You can use the new Macro Editor to create macros from
these history items, as well as from other iTool and macro operations, and you can
edit previously recorded macros. For more information on macros, see “Working with
Macros’ in Chapter 8 of the iTool User’s Guide manual.

A MACRO_NAMES keyword has also been added to each iTool routine. For more
information, see “IDL Routine Enhancements’ on page 59.

New iTools and iTool Features What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 13

Styles

TheiTools now provide a style mechanism, which gives you a convenient way to
store and apply a set of properties to selected itemsin aniTool. A new chapter in the
iTool User’s Guide describes the style capabilities and helps you get started using
styles. For more information on styles, see Chapter 9, “Working with Styles’.

A STYLE_NAME keyword has also been added to each iTool routine. For more
information, see “IDL Routine Enhancements’ on page 59.

Enhancements to the ilmage Tool

Theilmage tool has been enhanced for greater usability. The enhancements include:

Default pixel scale— By default, when an image isfirst displayed in ilmage,
it appears at 100% pixel scale (oneimage pixel maps to one display pixel).

Pixel scale labels— The current pixel scaleis now reported in the ilmage
panel (on theright side of theiTool). The pixel scale displays, as a percentage,
the number of screen pixels used to display each pixel in the selected image.

Axes— Axesare no longer created automatically when animage is displayed,
but can be inserted by the user.

Edit Palette button — An Edit Palette button has been added to the ilmage
panel. Thisbutton provides quick accessto the palette editor (also availablevia
the property sheet for an image). The palette editor now allows you to
immediately see the results of a palette change. The new Palette Editor is
fully documented in the iTool User’s Guide manual.

I mage cropping functionality — A new operation and interactive
manipulator allow you to crop an image to a specified size. The new
functionality is described below, and is fully documented in the iTool User’s
Guide manual.

New Cropping Functionality

New featuresin the ilmage tool alow you to crop an image to a specified size. There
are two ways to specify the region to be cropped:

1. By numerically specifying the position and size using the crop operation

2. By interactively clicking and dragging a bounding box using the new crop

manipul ator

What's New in IDL 6.1 New iTools and iTool Features

14 Chapter 1: Overview of New Features in IDL 6.1

When you crop an image, the original image dataiis replaced by the new, cropped
image data. You can retrieve your original data by selecting Edit — Undo Crop, or
by reloading the original image data as a separate visualization.

Note
If your original image contains regions of interest (ROIs) that do not lie compl etely
within the crop box, they will be removed from the cropped image.

Using the Crop Operation

The Crop operation allows you to crop the selected image to a specified size at a
specified location. To activate the crop operation, select Operations — Crop. The
Crop manipulator is automatically activated and the Crop dialog appears.

il Crop... =] E3
Crop

op the selected image

ue

Cre
Tn
o
' ul
il
il
D,

ata

Cancel

Figure 1-1: The Crop Operation Dialog

The X and Y properties of the crop operation represent the location (in the units
specified by the Units property) of the lower-left corner of the crop box, relative to
the lower-left corner of the image.

The Width and Height properties of the crop operation represent the dimensions (in
the units specified by the Units property) of the crop box.

If the X, Y, Width, and Height values have not been set previously, either viathe Crop
dialog or viathe crop manipulator, they are initialized to match the full size of the
selected image. If the crop operation has been applied to an image in the current
iTool, the values are saved as the operation’s new default properties. This alowsyou
to apply the same crop to multiple images within the same tool ssimply by selecting
each image in turn and reselecting the crop operation.

New iTools and iTool Features What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 15

The Units property specifies the units of measure to be used for reporting crop box
coordinates. The default is data units. This property will automatically reset to data
units (and become de-sensitized) if multiple images are selected and their pixel
origins or pixel sizes differ.

Note
You can change the size and location of the crop box either by modifying the values
in the Crop dialog or using the crop manipulator and your mouse.

When the crop box is sized and positioned as you desire, crop the image either by

clicking the Crop button on the Crop dialog, or by double-clicking anywhere within
the crop box itself.

Using the Crop Manipulator

The crop manipulator allows you to interactively specify the location and size of the
crop box by clicking and dragging a bounding box on the selected image with your
mouse. Using the manipulator to create and position acrop box automatically setsthe
X, 'Y, Width, and Height properties of the crop operation. Activate the crop
manipulator by clicking on the crop button on the manipulator toolbar.

% |||

Figure 1-2: The Crop Manipulator Button on the Toolbar (Second from Right)

Note

The crop manipulator is activated automatically if you select Crop from the
Operations menu.

When the crop manipulator is activated, if the crop box size and position properties of
the crop operation apply for thefirst currently selected image, then the crop box
visual will automatically appear in the primary visualization window. If the crop box
information has never been set for the crop operation, or does not fit within the
image, then no crop box automatically appears.

If no crop box visual is present, you can click using the mouse anywhere on an image
and drag to create a crop box.

What's New in IDL 6.1 New iTools and iTool Features

16 Chapter 1: Overview of New Features in IDL 6.1

Note
All portions of the image that fall outside of the crop box are grayed out.

Once a crop box is present, you can reposition it by clicking and dragging anywhere
within the crop box, or along its edges. You can aso use the keyboard arrow keysto
reposition the crop box.

You can change the size of the crop box by clicking and dragging on one of the scale
handles. You can remove the current crop box and create a new one by clicking
anywhere within the gray area outside of the current crop box.

When the crop box is sized and positioned as you desire, crop the image by:
* Double-clicking anywhere within the defined crop box
* Right-clicking to invoke the context menu, and then selecting Crop

e Selecting Operations — Crop from the ilmage tool
Operations on ROls

Several operations have been expanded to modify a selected ROI drawn on an image.
Previously these operations could only be applied to the entire image. These
operations can now modify the data within the ROI, or the vertices of the ROI.

Operations Modifying ROI Data

The following operations act on the data within the ROI:
« Filter operationsincluding Convolution, Median, Smooth, Roberts, and Sobel
« Morphological operations

« Transform operations including scaling and inverting the data
Operations Modifying ROI Vertices

The following operations act on the ROI vertices, but not data within the ROI:
« Rotateright, left, or by a specified angle
e Hip horizontal or vertical
¢ Region grow

See “Operations on Regions of Interest” in Chapter 7 of the iTool User’s Guide
manual for additional information.

New iTools and iTool Features What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 17

Enhancements to the iTool Data Manager

The iTool Data Manager (Figure 1-3) has been significantly redesigned for greater
ease of use. Information about the selected data item, including the iTool
visualization in which it isused (if any), is now displayed in a property sheet to the
right of the Data Manager tree view.

@il Data Manager Browser

=44 Data Manager Image Planes

+- | Plot Data Marme Image Flanes -

+- s Plot 1 Data :‘
-8 nze jpg

", Image Planes

B Charinel 0

OB Charinel 1

OB Charinel 2

Description
Fiead only Falze

Data uszed by DL ilmage : Image [.-"TDDLS.-"IM.‘j

Help | Import Y ariable. .. | Import File... | Dizmizs

Figure 1-3: The Redesigned iTool Data Manager

What's New in IDL 6.1 New iTools and iTool Features

18

@l Insert Yisualization

Chapter 1: Overview of New Features in IDL 6.1

TheiTool Parameter Editor and the Insert Visualization dialog (Figure 1-4), both of
which incorporate the Data Manager, have also been redesigned. Parameters for the
selected visualization are now shown in a property sheet directly beneath the Data
Manager tree view, and the data types allowed for the selected visualization
parameter are now displayed to the right of the parameter list.

=44 Data Manager
+- | Plot Data
+- s Plot 1 Data
+-#8 nze pg
LB SERVED

4

Parameters

Select a visualization | Flot
o OBSERVED

b

' ERROR
ERROR

YERTEX_COLORS

* indicates a required parameter

Help | Import Y ariable. .. | Import File... |

M ame
Description
Fiead only

OBSERVED
FLOAT[200]

False

[rata types accepted by v

OBSERVED

Ingert Dismizs

Figure 1-4: The Redesigned iTool Insert Visualization Dialog

New iTools and iTool Features

The features of the redesigned iTool Data Manager are described in detail in Chapter
2, “Importing and Exporting Data’. The features of the redesigned Parameter Editor
and Insert Visualization dialog are described in Chapter 3, “Visualizations'.

What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 19

New Drag Quality Feature

Drag quality defines the level of detail shown in your tool window when a
visualization is translated, scaled, zoomed, or otherwise moved via the mouse. There
are three levels of drag quality: Low, Medium, and High. The higher the quality the
better the visualizations appear during movement, but at a potential speed decrease
(depending on the size of the visualization involved). The default setting is High

quality.
You can alter the drag quality in two ways:

e Drag Quality General Preference — The General Settings category in the
Preferences dialog contains the Default drag quality property. Changing this
property means that all new iTools use the value specified as the default drag
quality, but the behavior of the current iTool will not change.

* Drag Quality Property — Each iTool Window object has a Drag quality
property, which can be changed viathe Visualization Browser. Changing the
value of the drag quality for the Window immediately effects visualizationsin
the current iTool, but it does not apply to other iTools or to future iTools.

iTool Background Color

A new BACKGROUND_COLOR keyword has been added to the iTool launch
routines (ICONTOUR, IIMAGE, etc.) to alow you to set an initial background color
for aview from the command line.

Changes to Legend Creation

Thelnsert — Legend menu item has been renamed Insert — New L egend. The
Add to L egend toolbar manipulator has been removed and replaced by the
Insert - Legend Item menu item.

Note
Thelnsert — Legend Item operation requires that a visualization be selected.

Thereisno longer any need to manually select the legend itself.

What's New in IDL 6.1 New iTools and iTool Features

20

Chapter 1: Overview of New Features in IDL 6.1

New iVolume Properties

TheiVolumetool has the following new properties available in the visualization
property sheet:

Auto render — Whether to automatically render the volume each time the
window is redrawn

Quality — Quality of the volume (low or high)
Boundary — Boundary around the volume (off, wire frame, or solid walls)

Boundary transparency — Percent transparency of the boundary around the
volume

Render step X — Stepping factor through the voxel matrix in the x direction
Render step Y — Stepping factor through the voxel matrix in the y direction
Render step Z — Stepping factor through the voxel matrix in the z direction

File and Edit Menu Keyboard Accelerators

TheiTools now feature keyboard accel erators for the following operations:

File menu — New, Open, Save, Print, Exit
Edit menu — Undo, Redo, Cut, Copy, Paste, Delete

Operations menu, M acros submenu — Run Macro, Start Recording,
Stop Recording, Macro Editor

Help menu — Help oniTools

Enhancements to Command Line Control of iTools

The new ITRESOLVE procedureis a convenience routine that resolves (compiles) al
of the files used by the iTools system. Thisis useful when constructing SAVE files
containing user code that requires the iTools framework. See“I TRESOLVE” in the
IDL Reference Guide manual for details.

The new TOOL keyword to the ITGETCURRENT function allows you to retrieve an
object reference to the currently selected iTool. See“ I TGETCURRENT” inthe IDL
Reference Guide manual for details. Also see Appendix A, “Controlling iTools from
the IDL Command Line" in theiTool Developer’s Guide manual, which describes
how to programmatically control elements of an iTool.

New iTools and iTool Features What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 21

The new ANNOTATION, FILE_READER, FILE_WRITER, and
USER_INTERFACE keywords to the ITREGISTER procedure allow you to register
additional iTool components with aniTool. See“ITREGISTER” in the IDL
Reference Guide manual for details.

New MACRO_NAMES, STYLE_NAME, and BACKGROUND_COLOR keywords
have also been added to each i Tool routine. For more information, see “IDL Routine
Enhancements’ on page 59.

Enhanced Handling of Axes in Empty iTools

When al visualizations have been removed from atool, axes are no longer displayed.
This functionality has been programmatically exposed through new
IDLitVisualization methods. See “IDLitVisualization” in the IDL Reference Guide
manual for details.

Expanded Support of Format Codes

Plot axislabels, colorbar labels, contour level l1abels and contour legend captions now
allow you to choose from an expanded list of predefined format codes or define a
custom format code. The following enhancements have been made:

Axis Visualizations — additional predefined format optionsare availablein the Tick
format property.

Colorbar Visualization — additional predefined format options are available in the
Tick format property.

Contour Levels — thenew Tick format code and Tick format properties allow
you to choose from alist of predefined format codes or create a custom format code.
These properties are available when the L abel property is set to Value or Text.

Contour Level Legend — three new properties have been added:
« Usetext from — specifies the source of the text used for the contour legend

* Text format code — offersanumber of predefined format code options or the
ability to use a custom format code by selecting Use Text Format Code

e Text format — allows you to specify a custom format code

What's New in IDL 6.1 New iTools and iTool Features

22

Chapter 1: Overview of New Features in IDL 6.1

Additionally, examples of the predefined format codes are now shown in the Text
format code drop-down list. A subset of the dropdown list items are shown in the

following figure.

Tick farmat
Title
Text color

Tick format code [(13.3)

Jse Tick Farmat Code

ilze Tick Format Code

Text font

Teut stulm

| Float with 2 decimal places [0.00)

MHone -

Free form Integer (0

Filled fixed width Integer (000)
Free form Float (0.000000)
Float with 1 decimal place (0.0

Float with 4 decimal places [0.0000]
Exponential, 1 decimal place (0.0E-+000)
Exponential, 2 decimal places (0.00E+00
Exponential, 4 decimal places (0.0000E+
T (2004)

MM [B/2004]

Figure 1-5: Subset of Available Predefined Format Codes

See Appendix D, “Visualization Properties’ in theiTool User’s Guide manual for
details on all available properties.

New iTools and iTool Features

What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 23

Visualization Enhancements

The following enhancements have been made to IDL’s visualization functionality for
the 6.1 release:

e “Lighting and Color Enhancements to Objects’ below

e “AlphaChannel Support for Object Graphics’ below

¢ “Enhancements to Mapping Routines’ on page 24

e “CMYK Support in Direct and Object Graphics’ on page 24
e “Additional Support for Vector Graphics’ on page 25

Note
New cluster analysis and dendrite plotting functionality has also been added in this
release. See “Hierarchical Cluster Tree Support” on page 28 for details.

Lighting and Color Enhancements to Objects

New properties have been added to IDLgrPolygon and IDLgrSurface to give more
control over the lighting and coloring of polygons and surfaces, enabling them to
simulate the appearance of materials such as shiny metals, rubber, and so on. For
more information about these new properties, see “IDLgrPolygon” and
“IDLgrSurface” in the IDL Reference Guide manual.

Alpha Channel Support for Object Graphics

A new ALPHA_CHANNEL property has been added to IDLgrAXxis, IDLgrContour,
IDLgrPlot, IDLgrPolygon, IDLgrPolyline, IDLgrROI, IDLgrSurface, IDLgrSymbol,
and IDLgrVolumeto allow you to specify the transparency of an object. Specifying
transparency allows you to “see through” an object in order to see another object that
was drawn beforeit. M odifications have a so been made to various existing keywords
and properties to these objects to support this functionality. Alpha channel support
information has also been added in “Alpha Channel and Objects’ in Chapter 23 of the
Using IDL manual. Also see “New IDL Object Properties’ on page 71.

What's New in IDL 6.1 Visualization Enhancements

24 Chapter 1: Overview of New Features in IDL 6.1

Enhancements to Mapping Routines

The MAP_CONTINENTS and MAP_GRID procedures have been enhanced to allow
display of continents and grid linesusing UV (Cartesian) coordinates without the
need to set up the IMAP system variable using the MAP_SET routine. See
“MAP_CONTINENTS’ and “MAP_GRID” in the IDL Reference Guide manual for
details.

The new MAP_STRUCTURE keyword to the MAP_IMAGE function alows
warping of an imageto UV (Cartesian) coordinates without the need to set up the
IMAP system variable using the MAP_SET routine. Additionally, the MASK
keyword allows you to create amask of “missing” values. See*MAP_IMAGE” inthe
IDL Reference Guide manual for details.

The new FILL keyword to the MAP_PROJ_FORWARD function allows you to
perform atessellation on polygons returned by the POLY LINES keyword after any
clipping or splitting has been completed. The use of the FILL keyword avoids having
to first pass your data through MAP_PROJ FORWARD, and then again through the
IDLgrTessellator object. See“MAP_PROJ FORWARD?” inthe IDL Reference Guide
manual for details.

CMYK Support in Direct and Object Graphics

IDL 6.1 now features CMYK (cyan, magenta, yellow, and black) color model support
for PostScript output in addition to the default RGB (red, green, blue) color model.
CMYK graphics are sometimes required for printing or publication. IDL’s support of
CMYK PostScript output ensures that you can easily create publication-quality
graphics. The direct graphics DEVICE procedure and the object graphics
IDLgrClipboard::Draw method now support PostScript output using the CMY K
color model viathe CMYK keyword. See the following in the IDL Reference Guide
for details:

« “DEVICE"
e “IDLgrClipboard::Draw”

Visualization Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 25

Additional Support for Vector Graphics

The IDLgrClipboard and IDLgrPrinter destination objects allow objects in a scene,
viewgroup, or view to be output as vector or bitmap graphics. Several new keywords,
discussed in the following sections, provide additional control over the vector graphic
output. See “IDLgrClipboard::Draw” and “IDLgrPrinter::Draw” inthe IDL
Reference Guide manual for complete reference information.

Note
When considering whether to choose bitmap or vector graphic output, see

“Guidelines for Choosing Bitmap or Vector Graphics’ in Chapter 34 of the Using
IDL manual.

Smooth Shading

The IDLgrClipboard::Draw method VECT_SHADING keyword affects the
appearance of surfaces and polygons when the VECTOR and POSTSCRIPT
keywords have also been set. When SHADING=1 (Gouraud shading) for
IDLgrSurface or IDLgrPolygon, use this keyword to enable or disable smooth

shading. See “Smooth Shading in Vector Graphics’ in Chapter 34 of the Using IDL
manual for details.

Text Rendering

The IDLgrClipboard or IDLgrPrinter VECT_TEXT_RENDER_METHOD keyword
controls whether text appears asfilled triangles or text primitives when the VECTOR
keyword is also set. When text is rendered as text primitives, it can be edited by
object-based graphics programs. See “ Text Rendering in Vector Graphics” in Chapter
34 of the Using IDL manual for details.

Primitive Object Sorting

The IDLgrPrinter and IDLgrClipboard Draw methods support the VECT_SORTING
keyword, which affects the appearance of the output when the VECTOR keyword has
also been set. Use this keyword to simulate the depth buffer in Object Graphicsin the
output vector graphics file. See “ Primitive Object Sorting in Vector Graphics’ in
Chapter 34 of the Using IDL manual for details.

What's New in IDL 6.1 Visualization Enhancements

26

Chapter 1: Overview of New Features in IDL 6.1

Analysis Enhancements

The following enhancements have been made to IDL’s data analysis functionality for
the 6.1 release:

“New Unsharp-mask Filter” on page 27

“Hierarchical Cluster Tree Support” on page 28

“New Integer Arithmetic for PRODUCT and TOTAL” on page 28
“Enhancements to WATERSHED” on page 29

“Double-Precision Support for Spline Interpolation” on page 29
“Double-Precision Support for Median Smoothing” on page 29
“Absolute Values for MIN and MAX Functions’ on page 29
“MISSING Keyword to BILINEAR” on page 29

“Complex Data Support for NORM and COND” on page 30
“BESEL Functions and Negative Input” on page 30

In addition to the previous additions, in IDL 6.1 several wavelet routines that were
part of the Wavelet Toolkit have been integrated into the core IDL product. The
Wavelet Toolkit is still available, but now provides only a GUI for wavelet analysis.
The wavelet functions that are now part of the IDL library are:

WV_CWT — Compute the continuous wavelet transform of an array
WV_DENOISE — Denoise an array using the discrete wavel et transform
WV_DWT — Compute the discrete wavelet transform of an array
WV_PWT — Compute the partial wavelet transform of a vector
WV_FN_COIFLET — Construct coiflet wavelet coefficients
WV_FN_DAUBECHIES — Construct Daubechies wavel et coefficients
WV_FN_GAUSSIAN — Construct the Gaussian wavelet function
WV_FN_HAAR — Construct Haar wavelet coefficients
WV_FN_MORLET — Construct the Morlet wavelet function
WV_FN_PAUL — Construct the Paul wavelet function
WV_FN_SYMLET — Construct symlet wavelet coefficients

Analysis Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 27

Note
See Chapter 4, “IDL Wavelet Toolkit Reference” in the IDL Wavelet Toolkit manual

for complete reference information.

New Unsharp-mask Filter

Thenew UNSHARP_MASK function letsyou apply unsharp-mask sharpening filters
to two-dimensional arrays or TrueColor images. Digital Unsharp Masking isadigital
image processing technique that increases the contrast where subtle, fine details are
set against a bright, diffuse background. The digital process works by subtracting
from the original image an “unsharp mask” created by digitally blurring or smoothing
acopy of the original image. This operation suppresses features which are smooth
(those with structures on large scales) in favor of sharp features (those with structure
on small scale), resulting in a net enhancement of the contrast of fine structure in the
image. Thefollowing figure showsthe original image (left) and filtered image (right).

Figure 1-6: Enhancing Contrast with Unsharp Mask Filtering (Right)

See “UNSHARP_MASK” in the IDL Reference Guide manual for more information.

What's New in IDL 6.1 Analysis Enhancements

28 Chapter 1: Overview of New Features in IDL 6.1

Hierarchical Cluster Tree Support

New functionality has been added to IDL 6.1 to support hierarchical cluster analysis
and dendrite plotting (dendrograms). Hierarchical clustering joins together data
points into successively larger clusters, using a distance (similarity) measure and
linkage rules. Thistechniqueis of great importance in data exploration, asit alows
researchersin awide variety of fieldsto distill large anounts of multi-dimensional
data down into more manageable and meaningful segments.

The following figure shows a sample dendrogram created using the new cluster
analysis functionality.

I:I -':rl."!--—Nw—'na’;—rh:-mcpq_:r-mm-]jg;'ﬁm
-— ~— —.— —-— — —— —

Figure 1-7: Dendrogram

The new CLUSTER_TREE, DENDRO_PLOT, DENDROGRAM, and
DISTANCE_MEASURE routines all support this new functionality. For more
information, see“CLUSTER_TREE”, “DENDRO_PLOT”, “DENDROGRAM”, and
“DISTANCE_MEASURE” inthe IDL Reference Guide manual.

New Integer Arithmetic for PRODUCT and TOTAL

The new INTEGER and PRESERVE_TY PE keywords to the PRODUCT and
TOTAL routines allow you to use integer arithmetic and generate an integer result.
See “PRODUCT” and “TOTAL” in the IDL Reference Guide manual for more
information.

Analysis Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 29

Enhancements to WATERSHED

In very “noisy” images (images with a very high number of watersheds), the number
of regions may exceed the default short integer maximum return value of 32766
regions. Two new keywords have been added to gracefully deal with such cases:

¢ The LONG keyword causes the routine to return an array of long integers
rather than an array of short integers.

* The NREGIONS keyword causes the routine to return the number of
watershed regions detected.

See “WATERSHED” in the IDL Reference Guide manualfor more information.
Double-Precision Support for Spline Interpolation

A new DOUBLE keyword adds double-precision support to the SPLINE and
SPLINE_P routines, allowing you to carry additional significant digits when needed.
Additionally, enhancements have been made to the Xr and Yr arguments for
SPLINE_P. For more information on this new support, see “SPLINE” and
“SPLINE_P” inthe IDL Reference Guide manual.

Double-Precision Support for Median Smoothing

A new DOUBLE keyword adds double-precision support to the MEDIAN function.
This provides support when passing very large integer inputs. Additionally,
enhancements have been made to the Array argument. For more information, see
“MEDIAN” in the IDL Reference Guide manual.

Absolute Values for MIN and MAX Functions

A new ABSOLUTE keyword to the MIN and MAX functions allows you to use
absolute values when comparing data el ements for both real and complex inputs. For
more information, see “MAX” and “MIN” in the IDL Reference Guide manual.

MISSING Keyword to BILINEAR

A new MISSING keyword to the BILINEAR function lets you specify what value to
return for data elements which are outside the bounds of an input array. For more
information, see “BILINEAR” in the IDL Reference Guide manual.

What's New in IDL 6.1 Analysis Enhancements

30 Chapter 1: Overview of New Features in IDL 6.1

Complex Data Support for NORM and COND

The NORM and COND functions now support complex datainput. For more
information on this functionality, see the entries for “COND” and “NORM” in the
IDL Reference Guide manual.

BESEL Functions and Negative Input

The Besel functions can now handle negative inputs. The existing documentation has
been updated in the IDL Reference Guide under the individual BESEL functions.

Analysis Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 31

Language Enhancements

The following enhancements have been made to the core language for the 6.1 release:

“Ability to Query and Selectively Restore SAVE File Contents’ below
“Access to Non-local Scope Variables’ on page 32

“New DESCRIPTION Keyword to SAVE and RESTORE” on page 32
“Enhancementsto SIZE” on page 32

“Default Thread Pool Configuration” on page 33

“Easy Restoration of ! CPU System Variable Values’ on page 33
“Enhancements to Formatted 1/0O” on page 33

“Enhancementsto FILE_SEARCH” on page 36

“Enhancement to CREATE_STRUCT” on page 36

Ability to Query and Selectively Restore SAVE File
Contents

The new IDL_Savefile object provides complete query and restore capabilities for
IDL SAVE files (created with the SAVE procedure). Using IDL_Savefile, you can
retrieve information about the number and size of the various items contained in a
SAVE file (variables, common blocks, routines, etc). Individual items can be
selectively restored from the SAVE file.

Use IDL_Savefileinstead of the RESTORE procedure when you need to obtain
detailed information on the items contained within a SAV E file without first restoring
it, or when you wish to restore only selected items. Use RESTORE when you want to
restore everything from the SAVE file using a simple interface.

For more information, see“IDL_Savefile” in the IDL Reference Guide manual.

What's New in IDL 6.1 Language Enhancements

32 Chapter 1: Overview of New Features in IDL 6.1

Access to Non-local Scope Variables

Three new functions allow you to examine or alter variables |ocated outside the local
scope of the currently executing function or procedure. Programs, usually those with
graphical user interfaces that import and export data from the caller’s scope need to
be able to access the user’s data variables directly, without requiring them to
explicitly pass those variables to the application as parameters. The new
SCOPE_VARFETCH function is used to access those variables, while
SCOPE_VARNAME is used to obtain the correct names with which to refer to the
variables. The iTools are examples of programs that need to be able to perform such
operations. Using these new functions also alows you to retrieve variable valuesin
IDL Virtual Machine applications, removing the need to use the EXECUTE function.
See“SCOPE_LEVEL”, “SCOPE_VARFETCH”, and “SCOPE_VARNAME” inthe
IDL Reference Guide manual for additional information.

In addition, you can retrieve information about variables in a particular scope using
the LEVEL keyword to the HEL P procedure. See “HELP” in the IDL Reference
Guide manual for additional information.

New DESCRIPTION Keyword to SAVE and RESTORE

The new DESCRIPTION keyword to the SAVE procedure allows you to associate a
descriptive string value with a SAVE file. The value of the DESCRIPTION string can
be used by IDL programs to identify data; it can also be used as an aid in managing
large collections of data or routines. See “RESTORE” or “SAVE” in the IDL
Reference Guide manual for additional information.

Enhancements to SIZE

Thenew FILE_OFFSET keyword to the SIZE function alows you to retrieve the
ASSOC file offset for the specified expression. The SNAME keyword allows you to
retrieve the name of the structure definition for the specified expression, if itisa
named structure. See“SIZE” in the IDL Reference Guide manual for additional
information.

Language Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 33

Default Thread Pool Configuration

Thenew IDL_CPU_TPOOL_NTHREADS environment variable allows you to set
the default number of threads used by IDL in thread pool computations at startup. Set
this environment variable to a value greater than 0 to specify the number of threads
IDL should use. On systems shared by multiple users, you may wish to set this
environment variable so that IDL uses the specified number of threads instead of
defaulting to the number of CPUs present in the underlying hardware.

Easy Restoration of !|CPU System Variable Values

Two new keywords to the CPU procedure provide the ability to set the 'CPU system
variable to previously defined sets of values. The RESET keyword loads the ! CPU
system variable with the values loaded when IDL starts up. The RESTORE keyword
loads the values contained in a structure of type ! CPU into the ! CPU system variable.
See“CPU” in the IDL Reference Guide manual for additional information.

Enhancements to Formatted 1/O

IDL’s explicitly formatted input/output subsystem has been enhanced with the
following new features:

New B Format Code

A new integer format code, B, has been added to IDL’s formatting engine. The B
format codeis used to read and write binary values. The syntax for the B format code
is similar to the other integer format codes (I, O, and Z):

[n]B[-][wW[.n
where:

n is an optional repeat count (1 < n) specifying the number of
times the format code should be processed. If nis not
specified, arepeat count of oneis used.

What's New in IDL 6.1 Language Enhancements

34

Chapter 1: Overview of New Features in IDL 6.1

- isan optional flag that specifies that string or numeric values
should be output with the text left-justified. Normally, output
isright-justified.

w is an optional width specification (0 < w < 256). The variable
w specifies the number of digits to be transferred.

m is an optional minimum number (1 < m< 256) of nonblank
digitsto be shown on output. The field is zero-filled on the | eft
if necessary. If misomitted or zero, the output is padded with
blanks to achieve the specified width.

Note - The m parameter isignored if wis zero.

See“B, I, O, and Z Format Codes’ in Chapter 11 of the Building IDL Applications
manual for complete details.

The B format code can also be used in C prii nt f -style quoted strings, using the
syntax “%b”.

For example, the following IDL statements:

PRI NT, FORMAT=' (B)', 3000

PRI NT, FORMAT=' (B15)', 3000

PRI NT, FORMAT=' (B14.14)', 3000
PRI NT, FORMAT=' (B0)', 3000

PRI NT, FORMAT=' (9% 9%i5b")', 3000

Produce the following outpuit:

101110111000
101110111000
00101110111000
101110111000
101110111000

Width Flags

+ Flag

The"+" character can be included before the width value of a numeric format code
(B,D,E,F, G, 1,0, Zor any of the numeric calendar formatting codes) to specify that
positive numbers should be output with a“+" prefix. Normally, negative numbers are
output with a“-" prefix and positive numbers have no sign prefix. Non-decimal
numeric codes (B, O, and Z) allow the specification of the“+” flag, but ignore it.

See “ Syntax of Format Codes” in Chapter 11 of the Building IDL Applications
manual for complete details.

Language Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 35

For example, the following the following IDL statements:

PRI NT, FORMAT=' (1O, ", ", 10)', -200, 200
PRI NT, FORMAT='(I+0, ", ", 1+0)', -200, 200

Produce the following output:

-200, 200
-200, +200

- Flag

The*"-" character can be included before the width value of astring or numeric format
code(A,B,D, E, F, G, I, O, Z or any of the calendar formatting codes) to specify that
the output text should be left-justified rather than right-justified.

See “ Syntax of Format Codes’ in Chapter 11 of the Building IDL Applications
manual for complete details.

For example, the following the following IDL statements:

PRI NT, FORMAT='(I1)', 234
PRI NT, FORMAT='(I-)', 234

Produce the following output:

234
234

Zero Padding

If the width specification of anumeric format code (B, D, E, F, G, I, O, Z or any of
the numeric calendar formatting codes) begins with the numeral zero, IDL will pad
the value with zeroes rather than blanks. For example:

PRI NT, FORVAT='(108)', 300
produces the following output:
00000300
When padding values with zeroes, note the following:

1. If you specify the”-" flag to | eft-justify the output, specifying aleading zeroin
the width parameter has no effect, since there are no unused spaces to the left
of the output value.

2. If you specify an explicit minimum width value (viathe m width parameter)
for an integer format code, specifying aleading zero in the width parameter has
no effect, since the output value is already padded with zeroes on the | ft to
create an output value of the specified minimum width.

What's New in IDL 6.1 Language Enhancements

36 Chapter 1: Overview of New Features in IDL 6.1

See “ Syntax of Format Codes” in Chapter 11 of the Building IDL Applications
manual for complete details.

Natural-Width Output of Floating-Point Values

The floating-point format codes (F, D, E, G, and CSF) all accept width specifications
of theform [w.d] where w is an optional width specification (0 < w < 256) specifying
the number of digits to be transferred and d is an optional width specification

(1 <d<w) specifying either the number of positions after the decimal point (F, D, E,
and CSF format codes) or the number of significant digits displayed (G format code).

Setting w to O (zero) means that you are requesting “natural width” output, meaning
that the output contains no leading or trailing whitespace. In previous releases, if w
was 0, IDL would ignore the value of d for the F, D, E, and CSF format codes. Now,
if wisOand dissupplied for these codes, IDL will generate natural width output with
the specified number of digits after the decimal point.

The behavior of the G format code has not changed. The d field specifies the number
of significant digits of output, and asin previous releases, the value of d is used even
when a natural width output is specified.

Enhancements to FILE_ SEARCH

The new WINDOWS_SHORT_NAMES keyword to the FILE_SEARCH function
provides greater control over how FILE_SEARCH matches Microsoft Windows
“8.3 short names’. See “FILE_SEARCH” in the IDL Reference Guide manual for
additional information.

Enhancement to CREATE_STRUCT

The new NAME keyword to the CREATE_STRUCT function allows you to create a
named structure. This can be especially useful inan IDL Virtual Machine application.
You can instantiate a structure defined in a SAVE file by passing in a string
containing the structure name, avoiding the need to use the EXECUTE function. See
“CREATE_STRUCT” inthe IDL Reference Guide manual for additional
information.

Language Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 37

Runtime / Virtual Machine Enhancements

Widget Event Blocking in Runtime and
Virtual Machine Modes

Beginning with IDL 6.1, the XMANAGER procedure honors the value of the
NO_BLOCK keyword in Runtime and Virtual Machine modes. This makesit easier
to develop IDL widget applications for distribution.

Because XMANAGER did not honor the NO_BLOCK keyword in previous rel eases,
widget applications that worked properly (not blocking) when runin alicensed full
version of IDL behaved differently when run in Runtime or Virtual Machine mode.
This difference in behavior has been removed; widget applications should behave
identically (with regard to blocking behavior) in al IDL licensing modes.

Note
Other differences between IDL’s Virtua Machine mode and full licensed mode,
such as the fact that programs that call the IDL EXECUTE function will not runin
the IDL Virtual Machine, are still in effect.

If you have modified your widget application to work around the old blocking
behavior by removing the NO_BLOCK keyword from callsto XMANAGER or by
substituting the JUST_REG keyword, you may need to reinsert the NO_BLOCK
keyword to achieve the desired behavior.

Additional Virtual Machine Enhancements

Other Virtual Machine enhancements include;

¢ When no SAVE file is supplied, the default browse directory for the Virtual
Machineisnow !DIR.

¢ When aSAVE fileis supplied, the working directory is set to the location of
the SAVE file. (Thisistruefor IDL Runtime aswell.)

e ThelDL Virtual Machine can now be run directly from the Windows CD.

e The CREATE_STRUCT function NAME keyword and new SCOPE routines
alleviate the need to use the EXECUTE function.

¢ Under Microsoft Windows, you can create a CD-ROM that contains al the
files necessary to run a Virtual Machine application directly from the CD. See
“Distributing Your Application on a CD” in Chapter 22 of the Building IDL
Applications manual for details.

What's New in IDL 6.1 Runtime / Virtual Machine Enhancements

38 Chapter 1: Overview of New Features in IDL 6.1

File Access Enhancements

The following enhancements have been made to IDL’s file access capabilitiesin the
IDL 6.1 release:

¢ “New IDL JPEG2000 File Format Support” on page 38
¢ “New XML DOM Object Classes’ on page 39

e “Expanded DICOM Support” on page 39

¢ “Revised Language Catalog System” on page 40

e “CDF Library Upgrade’ on page 40

e “HDF5 Library Upgrade” on page 40

e “New Application User Directory Access’ on page 40
¢ “Enhancementsto READ_TIFF" on page 41

* “Enhancementsto WRITE_TIFF’ on page 41

* “New QUERY _TIFF Info Structure Fields’ on page 41
e “GEOTIFF Support for QUERY _TIFF" on page 41

Note
Also see “New File Format Import/Export Accessibility iniTools” on page 11 for
information on exporting to .eps or .enf , and importing .shp filesiniTools.

New IDL JPEG2000 File Format Support

IDL 6.1 includes support for the popular JPEG 2000 compression format, enabling
researchers and software devel opers to achieve more efficient storage and handling of
large images. JPEG 2000 is an open, international transmission standard and image
compression format based on powerful wavel et technology. The format supports both
lossless and lossy image compression, allowing you to store higher quality imagesin
smaller files. JPEG 2000 support in IDL also provides unprecedented memory
efficiency by letting you access, manipulate, and edit image datawhile theimages are
still in compressed form.

The new IDLffJPEG2000 object class provides access to the features of the JPEG
2000 file format for both input and output. For more information, see
“IDLffJPEG2000” in the IDL Reference Guide manual. Additionally, three new
JPEG 2000 routines have been added to provide read, write and query functionality.

File Access Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 39

For more information on these new routines, see “QUERY _JPEG2000”",
“READ_JPEG2000", and “WRITE_JPEG2000" in the IDL Reference Guide manual.

New XML DOM Object Classes

IDL 6.1 supports reading, querying and writing XML files through a DOM
(Document Object Model) interface. XML is eXtensible Markup Language, a
popular storage standard used in sharing data across networks and the web. Support
for reading XML through a SAX (Simple API for XML) interface was added in IDL
5.6. SAX can be preferable when parsing largefiles, while DOM allows completefile
browsing and writing capabilities.

For more information on the new IDL object classes that provide accessto an XML
document viaits document object model (DOM) see “IDLfFXMLDOM Classes’ in
the IDL Reference Guide manual.

Expanded DICOM Support

The new IDLffDicomEXx object, available as an optional, add-on module to IDL,
greatly expands IDL's DICOM capabilities. Previously, DICOM support was
provided through the IDLffDICOM object. (See “IDLffDICOM” inthe IDL
Reference Guide for details.) For reference information, see the Medical Imaging in
IDL manual. The IDLffDicomEx object offers the following enhancements over the
IDLffDICOM abject:

e Ability to read from and write to DICOM files. Using the IDLffDicomEXx
object, you can read, clone, or create anew DICOM file. The IDLffDICOM
object only supports reading DICOM files.

« Ability to read and write both public and private attributes including sequences
and sets of repeating tags within sequences (groups).

e Ability to read and write compressed DICOM files on Windows and UNIX
platforms.

« Additional SOP class support.

e Ability to copy DICOM attributes from on file to another, and output al tagsin
aDICOM fileto an ASCII file or to an IDL structure.

Note
The IDLffDicomEXx object requires an additional-cost license key to access the
functionality.

What's New in IDL 6.1 File Access Enhancements

40 Chapter 1: Overview of New Features in IDL 6.1

Revised Language Catalog System

The language catal og for widget labeling and message content has been revised to
allow easier internationalization of IDL applications. The XM L-based language
catalogs are accessed using the new IDLffLangCat object. For more information, see
“|IDLffLangCat” in the IDL Reference Guide manual.

CDF Library Upgrade
IDL now uses the Common Data Format (CDF) library version 2.7r1.

HDF5 Library Upgrade

IDL now usesthe Hierarchical Data Format version 5 (HDF5) library version 5-1.6.1.
New Application User Directory Access

The new APP_USER_DIR function provides access to the IDL application user
directory. The application user directory is alocation where IDL, and applications
written in IDL, can store user-specific data that will persist between IDL sessions.
For example, the IDL iTools store user-specified preferences, styles, and macrosin
the application user directory.

The application user directory is created automatically by IDL as a subdirectory
(named . i dI) of the user’s home directory. To prevent unrelated applications from
encountering each other’sfiles, the . i dl directory is organized into subdirectories
with names specified by the application author. APP_USER_DIR simplifies cross-
platform application development by providing awell-defined location for IDL
applicationsto store their resource files, regardless of the platform or version of IDL.
The uniform organization it enforcesis also a benefit for IDL users, since it makesit
easier for them to understand the meaning and importance of the files found in their
.idl directory.

A related function, APP_USER_DIR_QUERY, alows you to locate application user
directories that match a specified set of search criteria. This can be useful when
migrating user data created for one version of an IDL application to a new version of
the application.

For more information, see “APP_USER _DIR” and “APP_USER DIR_QUERY” in
the IDL Reference Guide manual.

File Access Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 41

Enhancements to READ_TIFF

Three new keywords have been added to the READ_TIFF routine. The keywords are:
DOT_RANGE, ICC_PROFILE, and PHOTOSHOP. See“READ_TIFF" inthe IDL
Reference Guide manual for more details.

Enhancements to WRITE_TIFF

New keywordsto the WRITE_TIFF routine include: CMY K, DESCRIPTION,
DOCUMENT_NAME, DOT_RANGE, ICC_PROFILE, PHOTOSHOR,
XPOSITION and YPOSITION. WRITE_TIFF now aso includesin every TIFFfilea
DateTime tag, containing the file creation time. More notably, the new CMYK
keyword supports publication-quality graphics using the cyan, magenta, yellow and
black (CMYK) color model. Also, the XPOSITION and Y POSITION keywords have
been added to match the TIFF 6.0 standard, specifying the location of datato be
specified in raster or device space. See “WRITE_TIFF" in the IDL Reference Guide
manual for more details.

New QUERY_TIFF Info Structure Fields

Four new fields have been added to the Info structure returned by QUERY _TIFF. The
fields are: DESCRIPTION, DOCUMENT_NAME, DATE_TIME and POSITION.
See"QUERY_TIFF" in the IDL Reference Guide manual for more details.

GEOTIFF Support for QUERY_TIFF

The new GEOTIFF keyword to QUERY _TIFF allows you to retrieve an anonymous
structure containing the GeoTIFF tags and keys found in the file. GEOTIFF returns
the same information as the GEOTIFF keyword to READ_TIFF, but avoids the
overhead of reading in the entire image. For more information, see “QUERY _TIFF”
in the IDL Reference Guide manual.

What's New in IDL 6.1 File Access Enhancements

42 Chapter 1: Overview of New Features in IDL 6.1

IDLDE Enhancements

The following enhancements have been made to the Windows IDL Development
Environment in the IDL 6.1 release:

« Intelligent File Naming
e Maintaining Cursor Position
* Enabling Alt Key Accelerators on Macintosh

Intelligent File Naming

Under Microsoft Windows, when the File —» Save As... option is selected for a new
or existing file, the default file nameis now the name of the last procedure or function
inthefile. Thisisalso true when you select the File — Save option for anew file. On
UNIX, the default file name remains * . pr o. For portability between platforms, the
default filename uses lowercase | etters.

Maintaining Cursor Position

In prior releases, using the Alt+Tab keys to switch application focus to the IDLDE,
or resetting the IDL session caused the cursor to be positioned in the Editor window
regardless of its previous location. Now, the cursor position is maintained when the
Command Line, Output Log, or Editor window has focus prior to resetting the IDL
session, or bringing the IDLDE into focus using the Alt+Tab keys.

Enabling Alt Key Accelerators on Macintosh

The following new documentation has been added to the “Introducing IDL” chapter
of the Using IDL manual, and to the “Widget Application Techniques’ chapter of the
Building IDL Applications manual:

If you are using IDL on a Macintosh and wish to use keyboard accel erators that use
the Alt key, you will need to perform the following steps to make the Apple
(Command) key to function as the Alt key:

1. Createa. Xnmodmap filein your home folder and add the following three lines
toit:

clear nodl
cl ear nod2
add nodl = Meta_L

IDLDE Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 43

When Apple's X11 program starts, thisfile will automatically be read, and the
Applekey will be mapped to the left metakey 3, which for IDL’s purposesis
the Alt key. (Windows Alt key accelerators are mapped to the Macintosh
Apple key, not the Option (alt) key.)

2. Run Apple's X11 program and changeits preferences. Under I nput in the X11
Preferences dialog, make sure that the following two items are unchecked:

e Follow system keyboard layout
e Enable key equivalents under X11

Note
You must relaunch Apple's X11 program for these changes to take effect.

Once you have performed these steps, keyboard shortcuts will operate in the normal
Macintosh fashion — namely, pressing the Apple key in conjunction with X, C, and
V will perform cut, copy and paste. The IDLDE’s other shortcuts and any widget
accelerators defined to use the Alt key will also work.

What's New in IDL 6.1 IDLDE Enhancements

44

Chapter 1: Overview of New Features in IDL 6.1

User Interface Toolkit Enhancements

The following enhancements have been made to the IDL’s graphical user interface
toolkit inthe IDL 6.1 release:

e “Tabbing in Widget Applications’ below

« “Keyboard Accelerators for Button Widgets’ on page 47

* “DIALOG_PICKFILE Routine Enhancements’ on page 438
» “Table Widget Enhancements” on page 49

e “Property Sheet Widget Enhancements” on page 50
e “WIDGET_CONTROL and WIDGET_INFO Routine Enhancements’ on

page 52

Tabbing in Widget Applications

New support for tabbing among widgets enables widget navigation using the Tab
key. This allows users to quickly move between user interface elements of your
widget application. Base, button, combobox, droplist, list, dider, tab, table, text, and
tree widgets support the new TAB_MODE keyword. Set this keyword to avalue
indicating one of the following levels of tabbing support:

Value

Description

0

Disable navigation onto or off of the widget. Thisis the default
unlessthe TAB_MODE has been set on aparent base. Child widgets
automatically inherit the tab mode of the parent base.

Enable navigation onto and off of the widget.

Navigate only onto the widget.

Navigate only off of the widget.

Table 1-3: TAB_MODE Keyword Options

User Interface Toolkit Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 45

Note
In widget applications run on the UNIX platform, the Matif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform.

See the following itemsin the IDL Reference Guide for details:
 “WIDGET_BASE"
e “WIDGET_BUTTON"
e “WIDGET_COMBOBOX”
e “WIDGET_DROPLIST”
 “WIDGET_LIST”
e “WIDGET_SLIDER”
e “WIDGET_TAB”
e “WIDGET_TABLFE”
e “WIDGET _TEXT"
 “WIDGET_TREE"

Note
Several compound widgets also feature the TAB_ MODE keyword. See“IDL
Routine Enhancements’ on page 59 for more information.

What's New in IDL 6.1 User Interface Toolkit Enhancements

46

Chapter 1: Overview of New Features in IDL 6.1

IDL GUIBuilder and Tab Mode

The IDL GUIBUuilder also features a new Tab Mode attribute that defines to what
degree tabbing can be used to navigate the widget hierarchy in awidget application.
By default, thisvalueis set to None for atop level base, and to Inherit for subsequent
bases and widgets. Like the TAB_MODE keyword, the Tab Mode attribute applies to
base, button, combobox, droplist, list, slider, tab, table, text, and tree widgets.

Allowable values are:

Value Description

Inherit Upon creation, the subsequent base inherits the tabbing
support of the parent base. Thisis the default for child
widgets.

None Disalow tabbing into or out of the base. Thisisthe default for
top level bases.

In and Out Allow tabbing into and out of the base.

In Only Allow tabbing into the base only.

Out Only Allow tabbing off of the base only.

Table 1-4: Allowable Tab Mode Values in IDL GUIBuilder

Note
The default Tab Mode of lower level bases and widgetsis Inherit. The tabbing
support defined for atop level or parent base is inherited by widget children unless
otherwise specified. When the value is Inherit, look at the tabbing support of the
parent base to determine what support the individual widget has for tabbing.

In the generated * . pr o file, this value is specified with the TAB_MODE keyword to
the widget creation routine.

User Interface Toolkit Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 47

Keyboard Accelerators for Button Widgets

Button widgets now support the ACCELERATOR keyword. Accelerators alow you
to activate button widget events using keyboard key combinations instead of
requiring mouse clicks. These can enhance the usability of your IDL application.

Support for accelerators varies dightly by platform and usage:

* Under Microsoft Windows, accelerators can be defined for menu items and
various types of WIDGET_BUTTON widgets.

¢ Under UNIX, accelerators can only be applied to menu items.
e Context menu items do not support accelerators on any platform.

See"WIDGET_BUTTON?” in the IDL Reference Guide manual for more
information.

Note
Special steps are required to enable accelerators that use the Alt key on Macintosh
platforms. See “Enabling Alt Key Accelerators on Macintosh” in Chapter 30 of the
Building IDL Applications manual for details.

Disabling Accelerators

Ordinarily, accelerators are processed before keyboard events reach widgets that have
keyboard focus. Setting IGNORE_ACCELERATORS alows WIDGET_DRAW and
widgets with an editable text area (WIDGET_COMBOBOX,
WIDGET_PROPERTY SHEET, WIDGET_TABLE and WIDGET_TEXT) to receive
keyboard events instead of the accelerator key combinations being captured by the
accelerator. See “ Disabling Button Widget Accelerators’ in Chapter 30 of the
Building IDL Applications manual for usage details and examples.

What's New in IDL 6.1 User Interface Toolkit Enhancements

48 Chapter 1: Overview of New Features in IDL 6.1

DIALOG_PICKFILE Routine Enhancements

A new Browse for Folder dialog is available under Microsoft Windows when the
DIRECTORY keyword is set. You can select, or create and select, a directory using
the new dialog. Other improvements include the availability of horizontal scrolling
(when needed) to easily see entire filenames regardless of their length.

The following figure shows the new Browse for Folder dialog.

Browse For Folder . 2xl

Choose directory containing DICOM patient data,

B 1) IoLst |
[bin
= 1) examples
\=) COMBridge
) data
|20 data_access
|- demo
I3 doc
I3 guibuilder
5 HP_TIFF
I3 imsl
=0 misc
|20 project
I=) tstorm
) wisual LI

Make Mew Folder |

Figure 1-8: DIALOG_PICKFILE with DIRECTORY Keyword Set

User Interface Toolkit Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 49

Table Widget Enhancements

The WIDGET_TABLE function features severa new keywords. The
NO_COLUMN_HEADERS and NO_ROW_HEADERS keywords allow you to
customize the display of atable. The CONTEXT_EVENTS keyword causes context
menu events to be initiated when you right-click over atable widget. The
IGNORE_ACCELERATORS keyword allows editable table cellsto receive keyboard
combinations mapped to an accelerator. For more information on the new table

widget keywords and context menu event structure, see “WIDGET_TABLE” inthe
IDL Reference Guide manual.

Warning
The WIDGET_CONTEXT event structure associated with base, list, property sheet,
table, text and tree widgets has been updated with new ROW and COL fields. This

may require code changes as described in “Avoiding Backward Compatibility
Issues’ on page 82.

What's New in IDL 6.1 User Interface Toolkit Enhancements

50

Chapter 1: Overview of New Features in IDL 6.1

Property Sheet Widget Enhancements

Thefollowing enhancements to the WIDGET_PROPERTY SHEET function improve
the usability and appearance of property sheets. Natural sizing and the ability to
select multiple properties are internal changes that automatically improve property
sheet usability. Other improvements allow you to programmatically control the
selection and editability of properties. Enhancements include:

Property sheets without an explicit size definition (lacking a specified
SCR_XSIZE or XSIZE keyword value) are now naturally sized. Column
widths depend on the contents of the components. Naturally sized property
sheets allow the full contents of the longest cell to be visible in acolumn, as
shown in the left-hand image in the following figure. When a size definition is
provided, selecting the cell displaysthelist contentsin a drop-down box that is
wide enough for the longest item as shown in the right-hand image in the
following figure.

M £ Diamond

M arnmals Tazmanian dewil

Symbal <> Diamond

b arnmalz Tazmaniat devil
wiorbat

wombat

prgmy possUm —_— Pamy poEIm
bandicoot bandicaoot

T azmanian deswil | T asmarian dewil
echidna echidna
platypuz 1 platypusz
Bennetts red-necked) wallaby Bennetts [red-necked)] wallaby

Figure 1-9: Property Sheet Column Sizing

See " Property Sheet Sizing” in Chapter 30 of the Building IDL Applications
manual for more information.

Setting the MULTIPLE_PROPERTIES keyword alows multiple properties to
be selected at a single time by depressing the Shift key and left-clicking (to
make adjacent selections), or by depressing the Ctrl key and left-clicking (to
make nonadjacent selections). Properties can also be programmatically
selected using the PROPERTY SHEET_SETSELECTED keyword as
described in “WIDGET_CONTROL” in the IDL Reference Guide manual.

To support multiple selection, the WIDGET_PROPSHEET_SELECT event
structure IDENTIFIER field has been expanded, and there is a new
NSELECTED field. Seethe “ Select Event” section of
“WIDGET_PROPERTY SHEET” in the IDL Reference Guide manual for
details. Programs accessing this event structure may reguire code changes. See
“Avoiding Backward Compatibility Issues’ on page 82 for details.

User Interface Toolkit Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 51

e Thenew EDITABLE keyword allows you to mark a property sheet as read-
only. You can select properties in aread-only property sheet, but cannot
modify property values.

¢ ThelGNORE_ACCELERATORS keyword alows editable text cellsin a
property sheet to receive keyboard combinations mapped to an accelerator.

* A property sheet can be surrounded by aborder of a specified width using the
FRAME keyword, or can appear to be inset by setting the SUNKEN_FRAME
keyword.

Note
See“"WIDGET_PROPERTY SHEET” in the IDL Reference Guide manual

for details on the new keywords.

e Thenew spinner control associated with a selected number cell allowsyou to
click, or click and hold the up or down arrows to change the numerical value.
The appearance of a number cell on a property sheet is controlled by the
VALID_RANGE keyword to IDLitComponent::RegisterProperty method. See
“IDLitComponent::RegisterProperty” in the IDL Reference Guide manual for
details.

What's New in IDL 6.1 User Interface Toolkit Enhancements

52

Chapter 1: Overview of New Features in IDL 6.1

WIDGET_CONTROL and WIDGET _INFO Routine
Enhancements

The following sections describe enhancements that have been made to the
WIDGET_INFO and WIDGET_CONTROL routinesin IDL 6.1. Major areas of
functionality added to widgetsin this release, including tabbing and programmeatic
selection within property sheets, can be enabled and disabled using
WIDGET_CONTROL or returned using WIDGET _INFO.

WIDGET_CONTROL Routine Enhancements
WIDGET_CONTROL routine enhancements include;

TAB_MODE keyword — provides the ability to control tabbing support for
widgets that support tabbing. See “ Tabbing in Widget Applications’” on
page 44 for more information.

PROPERTYSHEET SETSELECTED keyword — allows programmatic
selection of properties on property sheet widgets.

EDITABLE keyword — defines a property sheet widget as read-only, allowing
the user to select, but not modify properties.

MULTIPLE_PROPERTIES keyword — enables or disables multiple property
selection in a property sheet widget.

See “WIDGET_CONTROL" in the IDL Reference Guide manual for details.
WIDGET _INFO Routine Enhancements

WIDGET _INFO routine enhancements include:

TAB_MODE keyword — provides the ability to determine the tabbing support
of any widget.

PROPERTY SHEET NSELECTED keyword — returns the number of
selected propertiesin a property sheet widget.
PROPERTYSHEET_SELECTED keyword — returns the name (identifier) of
each selected property in a property sheet widget.

MULTIPLE_PROPERTIES keyword — returns a value indicating the support
for multiple property selection in a property sheet widget.

See “WIDGET_INFO” inthe IDL Reference Guide manual for details.

User Interface Toolkit Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 53

Documentation Enhancements

In addition to documentation for new and enhanced IDL features, the following
enhancements to the IDL documentation set are included in the 6.1 release:

¢ “New PDF Help System Index Utility” below

¢ “Note on Macintosh Online Help” below

e “Enhanced Acrobat Plug-in Control” on page 54

* “New Working with Mapsin iTools Chapter” on page 54

* “New Working with Macrosin iTools Chapter” on page 54
¢ “New Working with Stylesin iTools Chapter” on page 54

¢ “Revised iTools Data Import/Export Chapter” on page 55

e “Additional iTool Developer’s Guide Chapters’ on page 55
¢ “New Using the XML DOM Object Classes Chapter” on page 55
¢ “New Using Language Catalogs Chapter” on page 56

e “New Library Authoring Chapter” on page 56

« “New Medical Imaging in IDL Manual” on page 56

New PDF Help System Index Utility

A new IDL widget-based index displays a searchable index of IDL's PDF help system
on UNIX platforms that support the IDL-Acrobat plug-in. The utility is launched
automatically when using either IDL's“?" facility or the ONLINE_HELP procedure.

Note
IDL for Macintosh does not support the IDL-Acrobat plug-in.

Note on Macintosh Online Help

RSI’s choice of Adobe Acrobat Reader as the IDL online help viewer on the
Macintosh platform was based on the belief that Acrobat Reader would support the
technologies (available on other UNIX platforms) necessary to create a full-featured
help system. This assumption turns out not to have been correct.

What's New in IDL 6.1 Documentation Enhancements

54

Chapter 1: Overview of New Features in IDL 6.1

Asaresult, RSl is actively searching for online help technology to replace our use of
Adobe Acrabat, both on the Macintosh and on other UNIX platforms. We realize that
the lack of afull-featured online help system on the Macintosh is a significant
inconvenience for our users, we hope to be able to provide a robust replacement for
the Acrobat help system in the very near future.

Enhanced Acrobat Plug-in Control

The new SUPPRESS PLUGIN_ERRORS keyword to the ONLINE_HELP routine
allows you to prevent warnings from being issued when the IDL-Acrobat plug-inis
not available. See “ONLINE_HELP’ in the IDL Reference Guide manual for
additional information.

New Working with Maps in iTools Chapter

The new iMap tool allows you to easily display georeferenced image and contour
data along with polyline, polygon and point dataimported from ESRI Shapefiles.
Several predefined shapefiles are provided, including continents, countries, rivers,
lakes, states & provinces, and cities. The iMap tool alows you to quickly display
visualizations by defining the data to be warped to the desired map projection, and
mani pul ate visualizations by customizing map projection parameters. For more
information, see Chapter 15, “Working with Maps’ in theiTool User’s Guide manual.

New Working with Macros in iTools Chapter

TheiTools now provide amacro mechanism, which allows you to record and replay a
sequence of interactive operations. You can record a series of actionsin oneiTool or
several iTools, savethe series asamacro, and then apply it to anew set of datato save
you from having to repeat the actions manually. A new chapter in the iTool User’s
Guide guides you through the i Tool macro capabilities and helps you get started using
macros. For more information, see Chapter 8, “Working with Macros”.

New Working with Styles in iTools Chapter

TheiTools now provide a style mechanism, which gives you a convenient way to
store and apply a set of properties to selected itemsin aniTool. A new chapter in the
iTool User’s Guide describes the style capabilities and helps you get started using
styles. For more information on styles, see Chapter 9, “Working with Styles’.

Documentation Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 55

Revised iTools Data Import/Export Chapter

In addition to the above-mentioned additions to the iTool User’s Guide, the
“Importing and Exporting Data’ chapter has been significantly revised and expanded
to reflect changes to the iTools Data Manager. See Chapter 2, “Importing and
Exporting Data’ and Chapter 3, “Visualizations’ for details.

Additional iTool Developer’s Guide Chapters

TheiTool Developer’'s Guide manual has been expanded to include how-to material
for the following topics:

e Chapter 8, “Creating a Manipulator” describes creating a custom manipulator
that can beregistered with aniTool. A manipulator isan iTool component class
that defines away the user can interact with visualizationsin theiTool window
using the mouse or keyboard.

e Chapter 15, “Creating a Custom i Tool Widget Interface” describes creating a
new IDL widget-based user interface that includes iTool components. This
includes using a number of special compound widgets designed to work with
theiTool system.

* Appendix A, “Controlling iToolsfrom the IDL Command Line” describes how
to programmatically control elements of an iTool. Topicsinclude accessing the
tool, retrieving identifiers of visualizations, selecting visualizations, setting
properties on those visualizations, and executing operations.

e Appendix B, “iTool Compound Widgets’ describes compound widgets that
provide the base functionality needed to create an iTool user interface using
IDL widgets as described in Chapter 15, “ Creating a Custom iTool Widget
Interface”.

New Using the XML DOM Object Classes Chapter

IDL now allows access to an XML document viaits document object model (DOM),
using a set of object classes. A new chapter in Building IDL Applications guides you
through the DOM capability and helps you get started using the DOM object classes.
For more information, see Chapter 4, “Using the XML DOM Object Classes’.

What's New in IDL 6.1 Documentation Enhancements

56 Chapter 1: Overview of New Features in IDL 6.1

New Using Language Catalogs Chapter

IDL’s new XM L-based language catal og feature allows you to create alocalized
interface with text strings displayed in alanguage you select, using string translations
you provide. For more information, see Chapter 3, “Using Language Catalogs’.

New Library Authoring Chapter

To enhance the visibility of the importance of developing a consistent naming scheme
for your library of routines, a new chapter provides information on naming conflicts
and guidelines for library authors including how to convert existing libraries. See
Chapter 2, “Library Authoring” for details.

New Medical Imaging in IDL Manual

The new IDLffDicomEXx object expands IDL’'s DICOM capabilities, allowing you to
read and write public and private attributes (including sequences and nested
sequences) and compressed datain DICOM files. Thisnew “ Medical Imaging in
IDL” manual provides complete reference information aswell as details on supported
platforms. The IDL{fDicomEx object, available as an optional, add-on module to
IDL, requires an additional-cost license.

Documentation Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 57

New IDL Routines

The following new functions and procedures were added to IDL in thisrelease. See
the following topics in the IDL Reference Guide for complete reference information.

“APP_USER_DIR” — The APP_USER_DIR function provides accessto the IDL
application user directory.

“APP_USER_DIR_QUERY” — The APP_USER DIR_QUERY function alowsyou
to search for application user directories.

“CLUSTER_TREE” — The CLUSTER_TREE function computes the hierarchical
clustering for a set of mitemsin an n-dimensional space.

“CREATE_CURSOR” — Thisfunction creates an image array from a string array
that represents a 16 by 16 window cursor. The returned image array can be passed
to the REGISTER_CURSOR procedure Image argument. This allows you to
quickly design acursor using asimple string array.

“DENDRO_PLOT" — Given ahierarchical tree cluster, as created by
CLUSTER_TREE, the DENDRO_PLOT procedure draws a two-dimensional
dendrite plot on the current direct graphics device.

“DENDROGRAM” — Given a hierarchical tree cluster, as created by
CLUSTER_TREE, the DENDROGRAM procedure constructs a dendrogram and
returns a set of vertices and connectivity that can be used to visualize the dendrite
plot.

“DISTANCE_MEASURE” — The DISTANCE_MEA SURE function computes the
pairwise distance between a set of items or observations.

“IMAP” — The IMAP procedure creates an i Tool and associated user interface
configured to display and manipulate image and contour datathat is
georeferenced.

“ITRESOLVE” — The ITRESOLVE procedure resolves all IDL code within the
iTools directory, aswell as al other IDL code required for the iTools framework.
This procedure is useful for constructing SAV E files containing user code that
requires the i Tools framework.

“MAP_PROJ_IMAGE” — The MAP_PROJ IMAGE function warps an image (or
other dataset) from geographic coordinates (longitude and latitude) to a specified
map projection. (Usethe MAP_SET or MAP_PROJ _INIT procedure to set up the
desired map projection.) Optionally, the MAP_PROJ_IMAGE function can be
used to warp an image in Cartesian (UV) coordinates from one map projection to
another.

What's New in IDL 6.1 New IDL Routines

58 Chapter 1: Overview of New Features in IDL 6.1

“QUERY_JPEG2000" — The QUERY _JPEG2000 function alows you to obtain
information about a JPEG2000 image file without having to read thefile.

“READ_JPEG2000” — The READ_JPEG2000 function extracts and returns image
data from a JPEG2000 file.

“SCOPE_LEVEL” — The SCOPE_LEVEL function returns the scope level of the
currently running procedure or function.

“SCOPE_VARFETCH” — The SCOPE_VARFETCH function returns variables
outside the local scope of the currently running procedure or function.

“SCOPE_VARNAME" — The SCOPE_VARNAME function returns the names of
variables outside of the local scope of the currently running procedure or function.

“UNSHARP_MASK” — The UNSHARP_MASK function performs an unsharp-
mask sharpening filter on atwo-dimensional array or a TrueColor image. For
TrueColor images the unsharp mask is applied to each channel.

“WRITE_JPEG2000" — The WRITE_JPEG2000 procedure writesimage datainto a
JPEG2000 file.

New IDL Routines What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 59

IDL Routine Enhancements

The following IDL routines have updated keywords, arguments, or return valuesin
this release. See the following topicsin the IDL Reference Guide for complete
reference information unless otherwise noted.

“BESELI", “BESELJ", “BESELK”, and “BESELY” — BESSEL* functions can
now handle negative inputs and return complex results.

“BILINEAR” — The BILINEAR function includes a new keyword:

*« MISSING assigns avalueto return for elements outside the bounds of a
specified data array, P.

“COND” — The COND function now supports complex data.
“CPU” — The CPU function includes the following new keywords:
* RESET dlowsyou to reset the values contained in the | CPU system variable.

¢ RESTORE alows you to populate the ! CPU system variable with values
contained in a specified structure.

“CREATE_STRUCT” — The CREATE_STRUCT function includes a new keyword:
« NAME alowsyou to create a named structure.
“CW_ANIMATE” — The CW_ANIMATE function includes the following new

keyword:
< TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.
“CW_ARCBALL"” — The CW_ARCBALL function includes the following new
keyword:
e TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.
“CW_BGROUP” — The CW_BGROUP function includes the following new
keyword:
e TAB_MODE alows you to define tabbing behavior among widgetsin an
application.
“CW_CLR_INDEX” — The CW_CLR_INDEX function includes the following new
keyword:
< TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

What's New in IDL 6.1 IDL Routine Enhancements

60

Chapter 1: Overview of New Features in IDL 6.1

“CW_COLORSEL" — The CW_COLORSEL function includes the following new

keyword:

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_DEFROI"” — The CW_DEFROI function includes the following new keyword:

e TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.

“CW_FIELD” — The CW_FIELD function includes the following new keyword:

e TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_FILESEL” — The CW_FILESEL function includes the following new

keyword:

e TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_FORM” — The CW_FORM function includes the following new keyword:

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_FSLIDER” — The CW_FSLIDER function includes the following new

keyword:

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_LIGHT_EDITOR” — The CW_LIGHT_EDITOR function includes the

following new keyword:

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_ORIENT” — The CW_ORIENT function includes the following new keyword:

« TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.

“CW_PALETTE_EDITOR” — The CW_PALETTE_EDITOR function includes the

following new keyword:

e TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

IDL Routine Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 61

“CW_PDMENU" — The CW_PDMENU function includes the following new
keyword:

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_RGBSLIDER” — The CW_RGBSLIDER function includes the following new
keyword:

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“CW_TMPL” — The CW_TMPL function includes the following new keyword:

« TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.

“CW_ZOOM" — The CW_ZOOM function includes the following new keyword:

e TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“DEVICE” — The DEVICE procedure includes the following new keyword:

¢ CMYK alowsyou to generate PostScript output using the CMYK (cyan,
magenta, yellow, and black) color model.

“EXECUTE” — The EXECUTE procedure includes the new argument:
¢ QuietExecution suppresses reporting of execution errors.

“FILE_SEARCH" — The FILE_SEARCH function includes the following new
keyword:

« WINDOWS SHORT_NAMES searches 8.3 short namesaswell astheredl file
names for a match.

“GETENV” — The GETENV functions features the following modified keyword:
« ENVIRONMENT isnow available on all platforms
“HELP” — The HELP procedure includes the following new keyword:

¢ LEVEL dlowsyou to return variables for routines other than the currently
executing routine.

What's New in IDL 6.1 IDL Routine Enhancements

62

Chapter 1: Overview of New Features in IDL 6.1

“ICONTOUR” — The ICONTOUR procedure includes the following new keywords:

BACKGROUND_COLOR alows you to set the tool’s background color.

GRID_UNITS alows you to specify the contour grid’s units when a map
projection isinserted.

MACRO_NAMES alows you to specify one or more macros to be applied to
the created visualizations.

STYLE _NAME dlows you to specify the name of a user-defined or system
style to be applied to the created visualizations.

“IDLITSYS_CREATETOOL” — ThelDLITSYS CREATETOOL function includes
the following new keyword:

MACRO_NAMES allows you to specify one or more macros to be applied to
the created visualizations.

STYLE_NAME alows you to specify the name of a user-defined or system
style to be applied to the created visualizations.

“IIMAGE” — The IIMAGE procedure includes the following new keywords:

BACKGROUND_COLOR alowsyou to set the tool’s background color.

GRID_UNITS allows you to specify the image grid’s units when a map
projection isinserted.

MACRO_NAMES alows you to specify one or more macros to be applied to
the created visualizations.

STYLE_NAME allows you to specify the name of a user-defined or system
styleto be applied to the created visualizations.

“IPLOT” — The IPLOT procedure includes the following new keywords:

BACKGROUND_COLOR alows you to set the tool’s background color.

MACRO_NAMES alows you to specify one or more macros to be applied to
the created visualizations.

STYLE _NAME dlows you to specify the name of a user-defined or system
style to be applied to the created visualizations.

IDL Routine Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 63

“ISURFACE" — The ISURFACE procedure includes the following new keywords:
¢ BACKGROUND_COLOR alowsyou to set the tool’s background color.

« MACRO_NAMES allows you to specify one or more macrosto be applied to
the created visualizations.

e STYLE_NAME allows you to specify the name of a user-defined or system
style to be applied to the created visualizations.

“ITGETCURRENT” — The ITGETCURRENT function includes the following new
keyword:

e TOOL alowsyou to return an object reference to the current tool.

“ITREGISTER” — The ITREGISTER procedure features the following new
keywords:

* ANNOTATION, FILE_READER, FILE_WRITER and USER_INTERFACE
allow you to register annotations, file readers and writers, and user interfaces.

« DEFAULT dlowsyou to specify that the registered item is the default for its
type.
“IVOLUME” — The IVOLUME procedure includes the following new keywords:
¢ BACKGROUND_COLOR alowsyou to set the tool’s background color.

e EXTENTS _TRANSPARENCY allowsyou to specify the percent transparency
of avolume's boundary.

« MACRO_NAMES allows you to specify one or more macros to be applied to
the created visualizations.

e« STYLE_NAME allowsyou to specify the name of a user-defined or system
style to be applied to the created visualizations.

“LSODE” — The LSODE function includes the following new keyword:
e QUIET allows you to suppress error messages.

“MAP_CONTINENTS” — The MAP_CONTINENTS procedure features the
following new keyword:

e MAP_STRUCTURE alows you to draw using UV (Cartesian) coordinates,
bypassing the value stored in the 'MAP system variable.

“MAP_GRID” — The MAP_GRID procedure features the following new keyword:

¢ MAP_STRUCTURE alows you to draw using UV (Cartesian) coordinates,
bypassing the value stored in the 'MAP system variable.

What's New in IDL 6.1 IDL Routine Enhancements

64 Chapter 1: Overview of New Features in IDL 6.1

“MAP_IMAGE” — The MAP_IMAGE function features the following new
keywords:

« MAP_STRUCTURE alows you to warp an image using UV (Cartesian)
coordinates, bypassing the value stored in the IMAP system variable.

¢ MASK alowsyou to create a mask of “missing” values.

“MAP_PROJ_FORWARD” — The MAP_PROJ FORWARD function includes the
following new keyword:

e FILL alowsyou to perform atessellation on the returned polygons.
“MAX" — The MAX function includes the following new keyword:

e ABSOLUTE alows you to determine the maximum value from the absolute
value of each element.

“MEDIAN" — The MEDIAN function includes the following new keyword:

« DOUBLE dlowsyou to force the use of double-precision arithmetic in
computations.

“MIN” — The MIN function includes the following new keyword:

* ABSOLUTE alows you to determine the minimum value from the absolute
value of each element.

“NORM” — The NORM function now supports complex data.

“ONLINE_HELP” — The ONLINE_HEL P procedure features the following new
keyword:

e SUPPRESS PLUGIN_ERRORSallowsyou to prevent warnings regarding the
unavailability of the IDL-Acrobat plug-in under Unix.

“PRODUCT” — The PRODUCT function includes the following new keywords:

« INTEGER alows you to perform the product operation using integer
arithmetic

« PRESERVE_TYPE alows you to perform the product operation and return a
result of the same type as the input.

IDL Routine Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 65

“QUERY_TIFF" — The QUERY _TIFF function includes new Info structure fields
and a new keyword:

« DESCRIPTION field allows you to return ImageDescription tag contents.

« DOCUMENT_NAME field alows you to return DocumentName tag contents.
« DATE_TIME field allows you to return the DateTime tag contents.

e POSITION field contains x and y offsets.

¢ GEOTIFF keyword allows you to return the GeoTIFF information present in a
file.

“READ_TIFF" — The READ_TIFF function includes the following new keywords:
« DOT_RANGE alowsyou to return the TIFF DotRange tag value.
¢ |CC_PROFILE alowsyou to return the TIFF ICC_PROFILE tag value.
e PHOTOSHORP alows you to return the TIFF PHOTOSHORP tag value.

“REGION_GROW” — The REGION_GROW function includes the following new
keyword:

* NAN alowsyou to treat the special floating-point values NaN and Infinity as
missing values.

“RESTORE” — The RESTORE procedure includes the following new keyword:
* DESCRIPTION alowsyou to return a save file description.

“SAVE” — The SAVE procedure includes the following new keyword:
« DESCRIPTION allows you to specify a save file description.

“SIZE” — The SIZE function includes the following new keywords, with related field
additions in the STRUCTURE keyword:

e FILE _OFFSET alowsyou to return the ASSOC file offset.
« SNAME alowsyou to return the structure definition of the given expression.
“SPLINE” — The SPLINE function includes the following new keyword:

« DOUBLE alowsyou to force the use of double-precision arithmetic in
computations.

What's New in IDL 6.1 IDL Routine Enhancements

66

Chapter 1: Overview of New Features in IDL 6.1

“SPLINE_P” — The SPLINE_P function includes the following new keyword and

modified arguments:

« DOUBLE keyword allows you to force the use of double-precision arithmetic
in computations.

e Xr and Yr arguments provide support for double-precision arithmetic.

“TOTAL” — The TOTAL function includes the following new keywords:

¢ INTEGER alowsyou to perform the total operation using integer arithmetic.

¢« PRESERVE_TYPE alowsyou to perform the total operation and return a
result of the same type as the input.

“WATERSHED"” — The WATERSHED function features the following new

keywords:
¢ LONG alowsyou to return an array of long integers.
* NREGIONS alows you to return the total number of regions within the given

image.
“WIDGET_BASE” — The WIDGET_BA SE function includes the following new
keyword:
¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.
“WIDGET_BUTTON” — The WIDGET_BUTTON function includes the following
new keywords:
¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.
¢« ACCELERATOR alowsyou to activate a button widget using a keyboard
combination.

“WIDGET_COMBOBOX” — The WIDGET_COMBOBOX function includes the

following new keyword:

¢ TAB_MODE dlows you to define tabbing behavior among widgetsin an
application.

* IGNORE_ACCELERATORS keyword allows the editable text area to receive
keyboard combinations mapped to aWIDGET_BUTTON accelerator.

IDL Routine Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 67

“WIDGET_CONTROL” — The WIDGET_CONTROL function includes the
following new keywords:

« EDITABLE alowsyou to specify whether or not property sheet properties can

be edited.
e PROPERTYSHEET SETSELECTED allows you programmatically select
property sheet properties.
< TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.
“WIDGET_DRAW" — The WIDGET_DRAW function includes the following new
keyword:

« |GNORE_ACCELERATORS allows the draw widget to receive keyboard
combinations mapped to aWIDGET_BUTTON accelerator.

“WIDGET_DROPLIST" — The WIDGET_DROPLIST function includes the
following new keyword:

e TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“WIDGET_INFO" — The WIDGET _INFO function includes the following new
keywords:

e PROPERTYSHEET _NSELECTED allows you to return the number of
selected propertiesin a property sheet.

e PROPERTYSHEET SELECTED alowsyou to return alist of selected
propertiesin a property sheet.

« TAB_MODE alows you to return the defined tabbing support of a widget.

“WIDGET_LIST” — The WIDGET _LIST function includes the following new
keyword:

« TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.

“WIDGET_PROPERTYSHEET” — The WIDGET_PROPERTY SHEET function
includes the following new keywords and event structure enhancements:

« EDITABLE keyword alows you to mark a property sheet as read-only or
editable.

« FRAME keyword alows you to place aborder around a property sheet.

¢ IGNORE_ACCELERATORS keyword alows the editable text areato receive
keyboard combinations mapped to aWIDGET_BUTTON accel erator.

What's New in IDL 6.1 IDL Routine Enhancements

68 Chapter 1: Overview of New Features in IDL 6.1

e MULTIPLE_PROPERTIES keyword enables the selection of multiple
propertiesin a property sheet.

¢ SUNKEN_FRAME keyword alows the property sheet to appear indented.

e WIDGET_PROPSHEET SELECT event structure includes new
NSELECTED field and amodified IDENTIFIER field.

“WIDGET_SLIDER” — The WIDGET_SLIDER function includesthe following new
keyword:

« TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“WIDGET_TAB” — The WIDGET_TAB function includes the following new
keyword:

e TAB_MODE alowsyou to define tabbing behavior among widgetsin an
application.

“WIDGET_TABLE” — The WIDGET_TABLE function includes the following new
keywords:

e CONTEXT_EVENTS provides support for firing context events when right-
clicking over atable widget.

¢ IGNORE_ACCELERATORS allows the editable cellsto receive keyboard
combinations mapped to aWIDGET_BUTTON accelerator.

e NO_COLUMN_HEADER alows you to design atable without column
headers.

¢ NO_ROW_HEADER alows you to design atable without row headers.

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

“WIDGET_TEXT" — The WIDGET_TEXT function includes the following new
keywords:

 |GNORE_ACCELERATORS keyword allows the editable text areato receive
keyboard combinations mapped to aWIDGET_BUTTON accel erator.

¢ TAB_MODE alows you to define tabbing behavior among widgetsin an

application.
“WIDGET_TREE” — The WIDGET _TREE function includes the following new
keyword:
¢ TAB_MODE alows you to define tabbing behavior among widgetsin an
application.

IDL Routine Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 69

“WRITE_TIFF" — The WRITE_TIFF routine includes the following new keywords:

¢ CMYK alowsyou to specify a TIFF file as one using the CMYK (cyan,
magenta, yellow and black) color model.

DESCRIPTION allows you to specify the ImageDescription tag value.
DOCUMENT_NAME allows you to specify the DocumentName tag value.

DOT_RANGE alows you to specify the DotRange tag value.
ICC_PROFILE alows you to specify the ICC_PROFILE byte array.
PHOTOSHOP allows you to specify the PHOTOSHORP byte array.
XPOSITION allows you to specify the offset along the left side of the image.

* YPOSITION alowsyou to specify the offset along the top of the image.
“WV_DWT” — The WV_DWT function includes the following new keyword:

e N_LEVELSaAdlowsyou to set the number of wavelet levelsto computein
pyramid algorithm

Note
See Chapter 4, “IDL Wavelet Toolkit Reference” in the IDL Wavel et Toolkit
manual for more information.

What's New in IDL 6.1 IDL Routine Enhancements

70 Chapter 1: Overview of New Features in IDL 6.1

New IDL Object Classes

Thefollowing new object classeswere added to IDL in thisrelease. See the following
topicsinthe IDL Reference Guide for complete reference information unless
otherwise noted.

“IDL_Savefile” — A classthat provides complete query and restore capabilities for
IDL SAVE files (created with the SAVE procedure).

“IDLffJPEG2000" — A class that contains the data for one or more images
embedded in a JPEG-2000 file as well as functionality for reading and writing
JPEG-2000 files.

“IDLffLangCat” — A classthat finds and loads an XML language catal og.

“IDLffXMLDOM Classes” — A set of IDL classesthat alow you to create a
representation of an XML Document Object Model.

IDLffDicomEx — The new IDLffDicomEx object class provides the ability to read
and write DICOM files including compressed data, and public and private
attributes. See “ Expanded DICOM Support” on page 39 for more information.

New IDL Object Classes What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 71

New IDL Object Properties

The following IDL object classes have new propertiesin this release. See the
following topicsin the IDL Reference Guide for complete reference information.

“IDLgrAxis” — The IDLgrAxis object includes the following new property:
¢ ALPHA_CHANNEL definesthe transparency of the entire axis.
“IDLgrContour” — The IDLgrContour object features the following new property:
e ALPHA_ CHANNEL defines the transparency of the contour.
“IDLgrPlot” — The IDLgrPlot object includes the following new propety:
¢ ALPHA_CHANNEL definesthe transparency of the plot.
“IDLgrPolygon” — The IDLgrPolygon object includes the following new properties:
e ALPHA_CHANNEL defines the transparency of the polygon.

e AMBIENT, DIFFUSE, EMISSION, SHININESS, and SPECULAR properties
provide material definition capabilities.

“IDLgrPolyline” — The IDLgrPolyline object includes the following new property:
e ALPHA_ CHANNEL defines the transparency of the polyline.

“IDLgrROI” — The IDLgrROI object includes the following new property:
e ALPHA_CHANNEL definesthe transparency of the ROI.

“IDLgrSurface” — The IDLgrSurface object includes the following new properties:
¢ ALPHA_CHANNEL defines the transparency of the surface.

« AMBIENT, DIFFUSE, EMISSION, SHININESS, and SPECULAR properties
provide material definition capabilities.

“IDLgrSymbol” — The IDLgrSymbol object includes the following new property:
e ALPHA_ CHANNEL defines the transparency of the symbol.

“IDLgrVolume” — The IDLgrVolume object features the following new property:
e ALPHA_CHANNEL defines the transparency of the volume.

What's New in IDL 6.1 New IDL Object Properties

72 Chapter 1: Overview of New Features in IDL 6.1

“IDLgrwWindow” — The IDLgrwWindow object features the following new properties.

* MINIMUM_VIRTUAL_ DIMENSIONS identifies the minimum window
canvas size.

« ZOOM_BASE defines the value by which the current zoom of the window is
multiplied.

e ZOOM_NSTEP returns the number of times awindow has been zoomed to
reach the current zoom level.

“IDLitComponent” — The IDLitComponent object features the following new
property:

e COMPONENT_VERSION identifies the version of the IDLitComponent
object.

New IDL Object Properties What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 73

New IDL Object Methods

Thefollowing IDL object classes have new methods in thisrelease. See the following
topicsin the IDL Reference Guide for complete reference information.

“IDLgrWindow::GetDimensions” — This new method returns the visible
dimensions of the IDLgrWindow object.

“IDLgrWindow::SetCurrentZoom” — This new method enlarges, shrinks ,or resets
the IDLgrWindow object.

“IDLgrwindow::ZoomIn” — This new method increases the size of the
IDLgrWindow by a set amount.

“IDLgrwindow::ZoomOut” — This new method decreases the size of the
IDLgrwindow by a set amount.

“IDLitComponent::Restore” — This new method performs any transitional work
required after an object of this class has been restored from a SAVE file.

“IDLitComponent::UpdateComponentVersion” — This new method updates the
value of the COMPONENT_VERSION property for the specified object to match
the version assocated with the current release of IDL.

“IDLitContainer::Findldentifiers” — The new method allows you to retrieve the
full identifiers for items within an iTool container.

“IDLitDataContainer::Add” — This new method adds items to the data container
object, and sends out OnDataChange and OnDataComplete messagesto all
observers of the data container.

“IDLitManipulator::RegisterCursor” — This new method defines the appearance
and name of a cursor associated with a custom manipulator.

“IDLitManipulatorManager::GetDefaultManipulator” — This new method returns
areference to the manipulator that was most recently added as the default
manipulator.

“IDLitParameter::GetParameterAttribute” — This new method allows you to
retrieve the value of an iTool visualization parameter attribute.

“IDLitParameter::QueryParameter” — This new method alows you to retrieve the
names of registered parameters of an iTool visualization.

“IDLitParameter::SetParameterAttribute” — This hew method allows you to set
the value of an iTool visualization parameter attribute.

“IDLitTool::ActivateManipulator” — This new method activates a manipulator that
has been registered with this tool.

What's New in IDL 6.1 New IDL Object Methods

74

Chapter 1: Overview of New Features in IDL 6.1

“IDLitTool::Findldentifiers” — The new method allows you to retrieve the full

identifiers for items within the tool container.

“IDLitTool::RegisterCustomization” — This new method registers an operation

class that represents the graphics customization operation to be associated with
thistool.

“IDLitTool::RegisterStatusBarSegment” — This new method registers a status bar

segment with this tool.

“IDLitTool::UnRegisterCustomization” — This new method unregisters an

operation class (that was previously registered as the graphics customization
operation associated with this tool).

“IDLitTool::UnRegisterStatusBarSegment” — This new method unregisters a

status bar segment (that was previously registered with this tool).

“|IDLitVisualization::BeginManipulation” — This new method handles

notifications that a manipulator is about to act on the visualization.

“IDLitVisualization::EndManipulation” — This new method handles notifications

that a manipulator has finished acting on the visualization.

“IDLitVisualization::GetRequestedAxesStyle” — This new method returns the

axes style requested by the visualization, if any.

“IDLitVisualization::Move” — Thisnew method repositions an object, identified by

its index number, within the container.

“IDLitVisualization::On2DRotate” — This methods handles notifications regarding

changes to the rotation of the parent dataspace.

“|IDLitVisualization::OnAxesRequestChange” — This method handles

notifications when the axes of the contained object are changed.

“IDLitVisualization::OnAxesStyleRequestChange” — This method handles

notifications when the axes style of the contained object is changed.

“IDLitVisualization::OnDimensionChange” — This method handles notifications

when the dimensionality of the visualization's data changes.

“IDLitVisualization::OnWorldDimensionChange” — This method handles

notifications when the dimensionality of the visualization’'s parent dataspace
changes.

“IDLitVisualization::RequestsAxes” — This method indicates whether or not the

visualization requests axes.

“IDLitVisualization::Restore” — This new method performs any transitional work

required after an object of this class has been restored from a SAVE file.

New IDL Object Methods What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 75

“IDLitVisualization::Rotate” — This method rotates the visualization about a given
axis by agiven angle.

“IDLitVisualization::SetAxesRequest” — This method defines whether or not the
current visualization regquests axes.

“IDLitVisualization::SetAxesStyleRequest” — This method defines the style of
axes requested by the visualization.

What's New in IDL 6.1 New IDL Object Methods

76 Chapter 1: Overview of New Features in IDL 6.1

IDL Object Property Enhancements

The following IDL object classes have enhanced propertiesin this release. See the
following topicsin the IDL Reference Guide for complete reference information.

“IDLgrContour” — The C_COLOR property has been enhanced to support RGBA
color definitions for object transparency.

“IDLgrPlot” — The VERT _COLORS property has been enhanced to support RGBA
color definitions for object transparency.

“IDLgrPolygon” — The VERT_COLORS property has been enhanced to support
RGBA color definitions for object transparency.

“IDLgrPolyline” — The VERT _COLORS property has been enhanced to support
RGBA color definitions for object transparency.

“IDLgrSurface” — The VERT_COLORS property has been enhanced to support
RGBA color definitions for object transparency.

IDL Object Property Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 77

IDL Object Method Enhancements

The following IDL object classes have enhanced methods in this release. See the
following topicsin the IDL Reference Guide for complete reference information.

“IDLgrBuffer::Select” — This method features the following new keyword:

e« SUB_SELECTION returns objects contained in the selected object, select
targets, and objects displayed at given coordinates.

“IDLgrClipboard::Draw” — This method features the following new keywords:
* CMYK gpecifiesCMYK (cyan, magenta, yellow, and black) color mode.
« VECT_SHADING extends polygon shading capabilities in vector output.
« VECT_SORTING extends object sorting capabilitiesin vector output.

e VECT_TEXT_RENDER_METHOD extends text editing capabilities within
vector output.

“IDLgrPrinter::Draw” — This method features the following new keywords:
« VECT_SORTING extends object sorting capabilities within vector output.

e VECT_TEXT_RENDER_METHOD extends text editing capabilities within
vector output.

“IDLgrwindow::Select” — This method features the following new keyword:

e SUB_SELECTION returns objects contained in the selected object, select
targets, and objects displayed at given coordinates.

“IDLitIMessaging::ProgressBar” — This method features the following new
keyword:

¢ CANCEL dlowsyou to define the string used on the Cancel button of the
progress bar.

“IDLitIMessaging::StatusMessage” — This method features the following new
keyword:

e SEGMENT_IDENTIFIER allows you to specify which segment of the status
bar should be updated with the specified message.

“IDLitTool::DisableUpdates” — This method features the following new keyword:

e PREVIOUSLY_DISABLED returns1if thetool had previously been disabled,
or O otherwise.

What's New in IDL 6.1 IDL Object Method Enhancements

78 Chapter 1: Overview of New Features in IDL 6.1

“IDLitTool::Register” — This method features the following new keyword:
¢ DEFAULT alowsyou to specify that the registered item is the default for its

type.
“IDLitTool::RegisterFileReader” — This method features the following new
keyword:
« DEFAULT dlowsyou to specify that the registered item is the default for its
type.
“IDLitTool::RegisterFileWriter” — This method features the following new
keyword:
« DEFAULT dlowsyou to specify that the registered item is the default for its
type.
“IDLitTool::RegisterOperation” — This method features the following new
keywords:

* ACCELERATOR specifies a string giving the keyboard accel erator to be used
for the operation’s menu item.

¢ CHECKED indicatesthat a*“checked” menu item should be used.

* DISABLE indicates the operation’s associated menu item should appear
disabled (insensitive) when initially created.

« DROPLIST_EDIT specifies whether a droplist associated with an operation
should be editable.

e DROPLIST_INDEX specifiesthe index of theinitial selection for adroplist
associated with an operation.

* DROPLIST_ITEMS specifies the names of items on adroplist associated with
an operation.

e SEPARATOR indicates a menu separator should be placed before this
operation.

“IDLitVisualization::Remove” — This method features the following new keyword:

* NO_UPDATE can be set to keep the scene from being updated after objectsare
removed.

“IDLitWindow::DoHitTest” — This method features the following new keyword:

¢ ORDER controls the order in which objects are returned in the hit test list
when the objects exist at the same depth.

IDL Object Method Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 79

“IDLitWindow::GetSelectedltems” — This method features the following new

keyword:
e ALL canbeset to return all classes of selected items instead of just selected
visualizations.
“IDLitWindow::0OnKeyboard” — This method features several updated and new
arguments:

¢ IsAlphaNumeric is now named ISASCII.

¢ Character and KeySymbol argument descriptions have been updated and
expanded.

e XY, Press, Release, and Modifiers arguments are new in this release.

What's New in IDL 6.1 IDL Object Method Enhancements

80 Chapter 1: Overview of New Features in IDL 6.1

ION 6.1 Enhancements

ION (IDL On the Net) isafamily of add-on modulesfor IDL. ION Script and ION
Java are packages for publishing IDL-driven applications on the Web. They are
included onthe IDL CD as an optional feature. An extra-cost ION licenseisrequired
to use ION Script and ION Java. For more information on ION, see “Introduction to

ION” in the ION manual.
This section discusses the following new features and enhancementsin ION 6.1:

Support for Secure HTTP (HTTPS)

ION Script now supports the use of the secure HTTP protocol (HTTPS). Aside from
the need to modify URLsto use “https’ rather than “http,” no changes are necessary
to existing ION Script applications.

ION 6.1 Enhancements What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 81

Features Obsoleted in IDL 6.1

The following features were present in IDL Version 6.0 but became obsolete in
Version 6.1. These features have been replaced with anew keyword to an existing
routine or by a new routine that offers enhanced functionality. These obsol eted
features should not be used in new IDL code.

Obsolete Routines

The following routines have been replaced with new functionality:

Routine Replaced By
FINDFILE FILE_SEARCH
MSG_CAT _CLOSE IDLffLangCat
MSG_CAT_COMPILE IDLffLangCat
MSG_CAT_OPEN IDLffLangCat
IDLffLanguageCat IDLffLangCat

Obsolete Arguments or Keywords

The arguments or keywords to the following methods have been removed:

Routine Argument or Keyword
IDLITSYS CREATETOOL PANEL_LOCATION keyword
IDLitVisualization::Add GROUP keyword
IDLitVisualization::GetCenterRotation | DATA keyword
IDLitVisualization::GetProperty GROUP_PARENT keyword

What's New in IDL 6.1 Features Obsoleted in IDL 6.1

82 Chapter 1: Overview of New Features in IDL 6.1

Avoiding Backward Compatibility Issues

Although RSI strives to maintain backward compatibility with previous versions,
some enhancements can require changes to your code. In IDL 6.1, several event
structures have been enhanced with new fields. If you have a SAVE file accessing
instances of these structures created in a previous release, use the
RELAXED_STRUCTURE_ASSIGNMENT keyword to RESTORE to avoid errors
when restoring the SAVE file.

Specifically, the event structure fields have changed as follows:

e QUERY_TIFF info structure — see “New QUERY _TIFF Info Structure
Fields’ on page 41

WIDGET_CONTEXT event structure — The WIDGET_CONTEXT event
structure associated with base, list, property sheet, table, text and tree widgets
has been updated with new ROW and COL fields.

e WIDGET_PROPSHEET_SELECT event structure— The
WIDGET_PROPSHEET_SELECT event structure hasanew NSELECTED
field so support multiple property selection in a property sheet.

Avoiding Backward Compatibility Issues What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1 83

Requirements for this Release

IDL 6.1 Requirements

Hardware Requirements for IDL 6.1

The following table describes the supported platforms and operating systems for

IDL 6.1:

Platform Vendor Hardware ngsr?:r:g Supported Versions
Windows Microsoft | Intel x86° Windows 2000, XP
Macintosh®® | Apple PowerMac G4, 0S X 10.3

G5°
UNIXC HP PA-RISC 32-bit HP-UX 11.0
HP PA-RISC 64-bit? HP-UX 11.0
IBM RS/6000 32-bit AlIX 51
IBM RS/6000 64-bit? AlX 51
Intel Intel x86° Linuxd Red Hat 7.1, 9,
Enterprise 3.x2f
SGI Mips 32-bit IRIX 6.5.1
SGI Mips 64-bit? IRIX 6.5.1
SUN SPARC 32-hit® Solaris 8,9
SUN SPARC 64-bit? Solaris 89

Table 1-5: Hardware Requirements for IDL 6.1

On platforms that provide 64-bit support, IDL can be run as either a 32-bit or a 64-bit
application. When both versions are installed, the 64-bit version is the default. The 32-bit
version can be run by specifying the - 32 switch at the command line, as follows:

% idl -32
8The DXF file format and IDL DataMiner are not supported on 64-bit IDL platforms.
b|DL DataMiner is not supported on Mac OS X or Red Hat Enterprise 3.x.

What's New in IDL 6.1 Requirements for this Release

84

Chapter 1: Overview of New Features in IDL 6.1

¢ For UNIX and Mac OS X, the supported versions indicate that DL was either built on (the
lowest version listed) or tested on that version. You can install and run IDL on other versions
that are binary compatible with those listed.

d DL 6.1 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux. If your
version of Linux is compatible with these, it is possible that you can install and run IDL on
your version.

€ |DLffDicomEX is supported on Windows, Mac OS X, Linux, and SPARC 32-bit Solaris.

f For Red Hat Enterprise users: Some functionality in this IDL release requires the
| i bst dc++ compatibility librariesto be installed. To check if the libraries are already
installed, issue the following command:

rpm-qga | grep conpat
and look for conpat - | i bst dc++- <ver si on_nunber >. If thisisnot listed, install the
appropriate RPM for your distribution (from your installation CD-ROMS).

Software Requirements for IDL 6.1

The following table describes the software requirements for IDL 6.1:

Platform Software Requirements
Windows Internet Explorer 5.0 or higher.
Macintosh Apple X11 X-Windows manager

Table 1-6: Software Requirements for IDL 6.1

Requirements for this Release What's New in IDL 6.1

Chapter 1: Overview of New Features in IDL 6.1

ION 6.1 Requirements

Hardware Requirements for ION 6.1

85

The following table describes the supported platforms and operating systems for

ION 6.1::
Platform Vendor Hardware Operating Suppprted
System Versions
Windows Microsoft | Intel x86 Windows 2000, XP
UNIX2 Intel Intel x86 Linux? Red Hat 7.1, 9,
Enterprise 3.x°
SGI Mips 32-bit IRIX 6.5.1
SUN SPARC 32-bit Solaris 8,9

Table 1-7: Hardware Requirements for ION 6.1

aFor UNIX, the supported versions indicate that ION was either built on the lowest version
listed or tested on that version. You can install and run ION on other versions that are binary
compatible with those listed.

b |ON 6.1 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux. If your
version of Linux is compatible with these, it is possible that you can install and run ION 6.1
on your version.

€ For Red Hat Enterprise users. Some functionality in this IDL release requires the
I i bst dc++ compatibility libraries to be installed. To check if the libraries are already
installed, issue the following command:

rpm-ga | grep conpat
and look for conpat - | i bst dc++- <ver si on_nunber >. If thisisnot listed, install the
appropriate RPM for your distribution (from your installation CD-ROMS).
Web Server Requirements for ION 6.1
In order to use ION, you must install an HTTP Web server. ION has been tested with the
following Web server software:
e Apache Web Server version 2.0 for Windows, Linux, and Solaris.

¢ Apache Web Server version 1.3.14 for IRIX. Thisversion isincluded with the IRIX
operating system.

¢ Microsoft Internet Information Server (11S) version 5.0 for Windows 2000 Server and
version 5.1 for Windows XP Professional .

What's New in IDL 6.1 Requirements for this Release

86 Chapter 1: Overview of New Features in IDL 6.1

If you do not already have Web server software, the IDL 6.1 CD-ROM contains the
following Apache Web Server software:

¢ Windows— Version 2.0.45
e Linux — Version 2.0.43

e Solaris— Version 2.0.43

e |RIX — Version1.3.14

Note

For more information on A pache software for your platform, see
http://www.apache.org.

Web Browser Requirements for ION 6.1

ION 6.1 supports the HTTP 1.0 protocol. The following are provided as examples of popular
Web browsers that support HTTP 1.0:

* Netscape Navigator versions 4.7 and 6.0
¢ Microsoft Internet Explorer versions 5.5 and 6.0

Browsers differ in their support of HTML features. As with any Web application, you should
test your ION Script or Java application using Web browsers that anyone accessing your
application islikely to be using.

Java Virtual Machine Requirements for ION 6.1

The following are provided as examples of popular Web browsers that are shipped with the
required VMs;

* Netscape Navigator versions 4.7 and 6.0
¢ Microsoft Internet Explorer versions 5.5 and 6.0

Browsers differ in their support of Javafeatures. Aswith any Web application, you should test

your ION Java application using Web browsers that anyone accessing your application is
likely to be using.

Requirements for this Release What's New in IDL 6.1

http://www.apache.org

Chapter 1: Overview of New Features in IDL 6.1 87

IDL-Java Bridge

IDL now supports the use of Java objects. You can access Java objects within your IDL code
using the IDL-Java bridge, abuilt-in feature of IDL 6.1. The IDL-Java bridge enables you to

take advantage of special Java l/O, networking, and third party functionality.

The IDL-Javabridgeisinstalled by default in a standard IDL installation. See
Chapter 8, “Using Java Objectsin IDL” in the External Development Guide manual

for details.

Hardware Requirements for the IDL-Java Bridge

The following table describes the platforms and operating systems for the IDL -Java bridge:

Platform Vendor Hardware O Supported Versions
System

Windows Microsoft | Intel x86 Windows 2000, XP

Macintosh® | Apple PowerMac G4 0S X 10.3

UNIX? Intel Intel x86 Linux? Red Hat 7.1, 9,

Enterprise 3.x°

SGI Mips 32-bit IRIX 6.5.1
SUN SPARC 32-bit Solaris 8,9
SUN SPARC 64-hit Solaris 8,9

Table 1-8: Hardware Requirements for the IDL-Java Bridge

On platforms that provide 64-bit support, IDL can be run as either a 32-bit or a 64-hit
application. When both versions are installed, the 64-bit version is the default. The 32-bit
version can be run by specifying the - 32 switch at the command line, as follows:

%idl -32

aFor UNIX and Mac OS X, the supported versions indicate that IDL was either built on (the
lowest version listed) or tested on that version. You can install and run IDL on other versions
that are binary compatible with those listed.

b1DL 6.1 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux. If your
version of Linux is compatible with these, it is possible that you can install and run IDL on
your version.

What's New in IDL 6.1 Requirements for this Release

88 Chapter 1: Overview of New Features in IDL 6.1

¢ For Red Hat Enterprise users. Some functionality in this IDL release requires the
| i bst dc++ compatibility librariesto beinstalled. To check if the libraries are already
installed, issue the following command:

rpm-ga | grep conpat
and look for conpat - | i bst dc++- <ver si on_nunber >. If thisisnot listed, install the
appropriate RPM for your distribution (from your installation CD-ROMS).

Java Virtual Machine Requirements for the IDL-Java Bridge

IDL supports version 1.3.1 and greater on all platformswith the following exceptions:
¢ The supported version on Macintosh is 1.3.x
e SUN SPARC 64-hit has only version 1.4.x and greater

Requirements for this Release What's New in IDL 6.1

Chapter 2:

Library Authoring

The following topics are covered in this chapter:

Overview of Library Authoring

Recognizing Potential Naming Conflicts

What's New in IDL 6.1

.. 90 Advicefor Library Authors
.. 91 Converting Existing Libraries

89

90 Chapter 2: Library Authoring

Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they

devel op domain-specific programs and applications that implement knowledge far
beyond RSI’slevel of expertise. User library codeis often freely available, supported,
and documented. However, asthe number of library authors and routines continues to
grow, it becomesincreasingly important for authors to adhere to a routine naming
convention within their libraries that avoids conflicts with core IDL functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because thisis often a gradual process, the importance of haming is
not obvious until thereis a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveal s
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by usersin the IDL community. (See “How IDL Resolves
Routines’ on page 91 for step-by-step routine resolution details.)

Thefact that IDL system routines always take precedence over user routines provides
the following benefits:

e ThelDL environment remains reliable and consistent — a call to FFT always
returnsthe IDL version of the FFT function.

e |teliminates agreat deal of path searching, which translates into faster
execution speed.

In contrast, if user routinestook precedence over system routines, agiven installation
could radically alter the meaning of common and basic IDL constructs ssimply by
creating user routines with the names of IDL system routines. Thiswould result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It isimportant
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

* “Recognizing Potential Naming Conflicts” on page 91
e “Advicefor Library Authors’ on page 93
e “Converting Existing Libraries’ on page 94

Overview of Library Authoring What's New in IDL 6.1

Chapter 2: Library Authoring 91

Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searchesfor routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes aroutine that is not part of the base release
of IDL, and placesitin aloca library. At some later date, a new version of IDL is
installed that contains anew IDL library routine with the same name as the user's
routine. Depending on the order of the directories in the user’s path, one of these two
routines is executed. If the user’sroutine is used, IDL library code that calls the
routine will get the wrong version and fail in strange and mysterious ways. If the IDL
routine is used, the IDL library will be satisfied, but the user'slibrary will get the
wrong version, also with bad results.

System Level Conflicts

The system level caseis similar, but harder to work around. In this case, the user
creates alocal routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaninglessin this case because the search path is not even
consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seemslike
atrivial issue, but names are very important. It is crucial to adopt and consistently
adhere to aroutine naming strategy to avoid conflict. The core idea of this convention
(described in detail in “Advice for Library Authors’ on page 93) isto prefix all
library routine names with a unique identifier, one indicative of your organization or
project. Research Systems reserves routine names that are generic, and those with an
“IDL” or “RSI” prefix on behalf of the entire IDL community. Prefixing your user
library routines significantly reduces the risk of namespace collisions with IDL
routines.

What's New in IDL 6.1 Recognizing Potential Naming Canflicts

92 Chapter 2: Library Authoring

Asalibrary author, your decision to follow aroutine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
allowing IDL system routines to always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note

For instructions on how to prefix an existing user library, see “ Converting Existing
Libraries’ on page 94.

Recognizing Potential Naming Conflicts WhatsNew inIDL 6.1

Chapter 2: Library Authoring 93

Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Lifeis more difficult for an author
of alibrary of IDL routines. In addition to the challenges facing any programmer,
library authors face additional challenges:

¢ The structure and organization of the library needs to encourage reuse and
generality.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

e Errors must be gracefully handled whenever possible. See Chapter 19,
“Controlling Errors’ for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their users to be aware of the details.

e Documentation must be provided, or the library will not find users.

e Libraries must be able to co-exist with other code over which they have no
control. Authors must not alter the global environment in ways that cause
conflicts, and they must also take care to prefix the names of al routines,
common blocks, systems variables, and any other global resources they use.
This prevents alibrary from conflicting with other libraries on the same
system, and protects the library from changesto IDL that may occur in newer
releases.

Prefixing Routine Names

The use of aproper prefix minimizestherisk of anamespace collision as described in
“Recognizing Potential Naming Conflicts’ on page 91. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” or “RS|” are reserved by RSI.
New names of these forms can and will appear without warning in new versions of
IDL, and should be avoided when naming new library routines.

What's New in IDL 6.1 Advice for Library Authors

94

Chapter 2: Library Authoring

Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advicefor Library Authors’ on page 93. Such libraries are bound to experience an
occasiona conflict with new versions of IDL. The best solution to avoid conflictsis
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library islikely to already have users. Assuming that non-prefixed
nameswere used in such libraries, it is not possible to smply change the names. Such
conversions require time to carry out, and once that has happened, it takes time for
users to adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1

Generate alist of al files containing routines to be renamed.
Using thislist, build an IDL batch file that uses .COMPILE on each file.

Start afresh IDL session, execute the batch file, and use HELP, /ROUTINES to
get acomplete list of all compiled routines. Only IDL user library routines
(those . pr o files shipped with the IDL distribution) should not contain a
prefix.

Asyou rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that callsthe new version. Such wrappers are easy to
writein IDL, using the_ REF EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 81 for details.

Use the COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See “ Setting Compilation
Options’” on page 96 and COMPILE_OPT in the IDL Reference Guide for
more information on COMPILE_OPT. These compatibility wrappers serve the
following purposes:

¢ You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to changeto calling the
new name. This enhances the stability of the library and gives you timeto
do acareful job.

¢ Onceyou are finished, you can provide them to your customers as a
bridge, so that their old code continues to work.

¢ Asyou change the names of routines, use grep (or asimilar file searching
tool) to locate uses of that name, and convert them to the new form aswell.

Converting Existing Libraries What's New in IDL 6.1

Chapter 2: Library Authoring 95

6. Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the
COMPILE_OPT OBSOLETE directive, you can set the 'WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveals no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappersin a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routines to your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. There is no backward
compatibility issue in this case, and they are not needed.

Although the onetime hit of prefixing an existing library can consume some time and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raises the profile
of the library to the end user, raising their level of understanding and appreciation for
the work it does.

What's New in IDL 6.1 Converting Existing Libraries

96 Chapter 2: Library Authoring

Converting Existing Libraries What's New in IDL 6.1

Chapter 3:
Using Language
Catalogs

The following topics are covered in this chapter:

What IsalLanguage Catalog? 98 UsingthelDLffLangCatClass.........
Creating aLanguage Catalog File 99 WidgetExample....................

What's New in IDL 6.1

97

98 Chapter 3: Using Language Catalogs

What Is a Language Catalog?

A language catalog is a set of text strings in a particular language, created as key
name/value pairs. Applications can use these catalogs to fill in the names of menu
items, buttons, and other elements of a user interface, for example. The use of
different language catal ogs, then, can support an application’s internationalization:
for example, letting a user decide what language to use for installing and running the
application.

There are two main advantages of using alanguage catalog in a separate file, rather
than having these strings embedded in the application:

e The strings do not consume memory until the application loads them

¢ You can edit the catal og to add new languages and new strings without directly
involving the application
In addition, because the language catalogs are in XML format, you can easily read
and edit the filesin any text editor.
Implementing language catal og functionality requires two parts:

* Thecreation of alanguage catalog (. cat) file, which contains the name/value
pairsin the desired languages. See “ Creating a Language Catalog File” on
page 99 for information on requirements for alanguage catal og file's structure.

e Thecreation of an IDLffLangCat object, which provides access and use of the
keysin the catalog file. See “Using the IDLffLangCat Class’ on page 101 for
information on creating and using a language catal og object.

What Is a Language Catalog? What's New in IDL 6.1

Chapter 3: Using Language Catalogs 99

Creating a Language Catalog File

A language catalog (. cat) file contains the XML that defines the text strings as key
name/value pairs within asingle <I DLf f LangCat > tag. The tag can contain four
optional attributes, as described in Table 3-1.

Attribute Description

APPL| CATI ON Name of the application that will use the
keysin thefile

VERSI ON Version of IDLffLangCat for which the
file was created

DATE Date of thefile's creation or last
modification, as desired

AUTHOR Author of thefile

Table 3-1: IDLffLangCat Tag Attributes

Note
You cannot perform queries on VERSI ON, DATE, and AUTHOR. These attributes are
more like XML comments on the tag; they are informational only.

The following XML snippet, extracted from the iTools menu catal og file that comes
with the IDL installation, illustrates the basic file structure:

<I DLf f LangCat APPLI CATI ON="i t ool s nenu" VERSI ON="1. 0"
AUTHOR="RSI " >
<LANGUAGE NAME="Engl i sh">
<KEY NAME="Menu: Fi | e" >Fi | e</ KEY>
<KEY NANME="Menu: Fi | e: New' >New</ KEY>
<KEY NAME="Menu: Fi | e: Open” >Qpen. . . </ KEY>
</ LANGUAGE>
</ | DLf f LangCat >

The<I DLf f LangCat > tag can contain any number of LANGUAGE tags. Each
LANGUAGE tag must have a NANME attribute denoting the language contained therein.

Each LANGUAGE tag can contain any number of KEY tags. Each KEY tag must have a
NANVE attribute denoting the name of the key.

What's New in IDL 6.1 Creating a Language Catalog File

100

Chapter 3: Using Language Catalogs

Note
All text between the open and close KEY tags will be part of the string returned by
the query, including any line feeds, carriage returns, and spaces.

The catalog file can contain keysfor one or more languages. Whether thereisasingle
catal og file containing multiple languages, or multiple catal og files, each containing a
single language, is personal preference.

By keeping each language separate in the tag definition, you can easily cut and paste
an entire block and then change the strings of one language to another language while
keeping all the keys intact. This technique also alows for the possibility of having
different languages in separate files. Note that the keysin any one language need not
match those of another language (although in most cases they will).

Note
IDL supports catalog files written in 8-bit Latin alphabet languages. Also, you must
have the corresponding fonts installed on your machine before you can use a
particular language.

Storing and Loading Language Catalog Files

The catalog filesincluded with IDL areinthe/ r esour ce/ | angcat directory of the
IDL installation andend ina. cat extension. Thesefiles contain the English keysfor
iTools menus, dialogs, and messages and are provided to support the use of
applications using i Tools functionality in other languages. All catalog files must end
withthe. cat extensionif APP_NAME is used to locate the files.

You can create custom catal og files and place them in alocation of your choice. You
typically use afull path to access these catal og files through the creation of an
IDLffLangCat object (see “Using the IDLffLangCat Class’ on page 101 for more
information).

You can specify a catalog either by giving the full path of the catalog file or files, or
by providing an application name or names and, optionally, an application path or
paths. If no path is specified, only the current directory is searched. For al
application paths, al . cat filesfound in any of the directorieslisted are searched for
all given applications.

Onasimilar note, if IDL finds a duplicate key name while loading keys, IDL will use
the string corresponding to the last key found with the given name.

Creating a Language Catalog File What's New in IDL 6.1

Chapter 3: Using Language Catalogs 101

Using the IDLffLangCat Class

You use the IDLffLangCat classto find and load an XML language catalog. The class
also provides methods for retrieving text strings by matching key names.

Creating a Language Catalog Object

The IDL installation comes with an English language catalog for the iTools menu,
caledi t ool smenu_eng. cat, inthe/resource/ | angcat directory of the IDL
installation. To load the keysin thisfile:
oLangCat = OBJ_NEW 'IDLffLangCat', 'ENGLISH, $
APP_NAME='itools nenu', $

APP_PATH=FI LEPATH(' ', $
SUBDI RECTORY=[' resource', 'l angcat','itools']), /VERBCOSE)

This command searches the given directory for language catalog keysin English that
match the application of ‘itools menu.’ Infact, if there are any other language catalog
files, besidesi t ool smenu_eng. cat , containing keys whose LANGUAGE valueis
‘ENGLISH’ and APPLI CATI ONvalueis ‘itools menu, the object adds those keys as
well. The matches must be exact in that ‘itools menu2, for example, is not a match;
however, the matching is not case-sensitive (i.e., ’"ENGLISH’ and ‘English’ are both
matches for LANGUAGE).

Note
Whenever the object encounters a key (or language) that already exists, the key (or
language) is overwritten with the new value.

The VERBOSE flag on the command sends all catal og-loading messagesto the IDLDE
output window. Thislist contains details resulting from the object’s initialization (the
names and numbers of keys loaded, keys overwritten, etc.).

Adding Application Keys
You might want to add keys for a different application to an existing language catalog

object. To do so:

retval = olLangCat - >AppendCat al og(APP_NAME='itools ui', $
APP_PATH=FI LEPATH(" ', $
SUBDI RECTORY=[' resource','langcat','itools']))

This command searches the given directory for keys matching an APPLI CATI ON
value of ‘itoolsui’ and appends them to oLangCat . The method returns avalue
indicating success or failure of the operation.

What's New in IDL 6.1 Using the IDLffLangCat Class

102 Chapter 3: Using Language Catalogs

Getting and Setting Languages

To return the available languages in a language catalog object:
oLangCat - >Get Property, AVAI LABLE_LANGUAGES=avai | Langs
This command storesthe list of available languages asastring array inavai | Langs.

To set the current language of alanguage catal og object (the language used for query
searches and matching):

oLangCat - >Set Property, LANGUAGE=' Engli sh’

You can use these two methods for getting and setting other properties of alanguage
catalog object. For the list of available object properties, see “IDLffLangCat
Properties’ in the IDL Reference Guide manual.

Comparisons such as those done with the Query method (see “Performing Queries’
on page 102) are case insensitive, but the values returned by the GetProperty method
are exactly asthe last encountered value. The exception isthat all key names are
returned in uppercase. For example, if File 1 has LANGUAGE=" Engl i sh' and File 2
has LANGUAGE=' engLl| Sh' , then' engLI Sh' will be returned, although only one
ENGLI SH language exists in the current catal og.

Performing Queries

To populate the text fields of awidget or other interface object, for example, you can
query alanguage catalog object for key values it contains. IDL performs the search
on the NAME attribute of the keys, matches are not case-sensitive.

keyVal = olLangCat->Query('Menu:File:New , $
DEFAULT_STRI NG=' Key not found')

Thiscommand searchesoLangCat for keyswith the NAVE value of ‘Menu:File:New’
and returnsthematchinkeyVal . If oLangCat findsamatch in the current language,
keyVal will hold that value string. If a given key does not exist in the current
language, the default language is queried (if one exists). If there are still no matches,
the default string is returned.

You can use more than one key in a query by passing an array of strings to the Query
method (e.g., [* Menu: Fi |l e: New , ' Menu: Fi | e: Open']). Similarly, you can
supply an array of strings for the DEFAULT_STRI NG keyword. In such a case, only
those valuesin the array whose indices match the missing keys will be returned. If
you do not specify DEFAULT_STRI NG, anull string will be returned instead.

Using the IDLffLangCat Class What's New in IDL 6.1

Chapter 3: Using Language Catalogs 103

Destroying a Language Catalog Object

You can destroy a catalog object as you would any other IDL object, as follows:
OBJ_DESTROY, olLangCat

Destroying alanguage catalog object does not affect any files from which the object
drew its keys.

What's New in IDL 6.1 Using the IDLffLangCat Class

104 Chapter 3: Using Language Catalogs

Widget Example

This example creates awidget with two buttons whose text strings change between
two languages, depending on the selection from a drop-down list.

The following language catal ogs are two separate files (as denoted by the
<| DLf f LangCat > tag for each) and should be placed on your system as such.

<?xm version="1.0"?>
<!-- $ld: nyButtonsText.eng.cat,v 1.1 2004 rsiDoc Exp $ -->
<I DLf f LangCat APPLI CATI ON="nyOpenButtons" VERSI ON="1. 0"
AUTHOR="RSI " >
<LANGUAGE NAME="Engl i sh">
<KEY NAME="Butt on: OpenFi | e">0Open Fi | e</ KEY>
<KEY NAME="Butt on: OpenFol der " >Cpen Fol der </ KEY>
</ LANGUAGE>
</ | DLf f LangCat >

<?xm version="1.0"7?>
<!-- $Id: nmyButtonsText.fr.cat,v 1.1 2004 rsiDoc Exp $ -->
<| DLf f LangCat APPLI CATI ON="nyCOpenButtons" VERSI ON="1. 0"
AUTHOR="RSI " >
<LANGUAGE NAME="French" >
<KEY NAME="Button: OpenFil e">Quvrir |e Fichier</KEY>
<KEY NAME="Button: OpenFol der">CQuvrir |e Dossier</KEY>
</ LANGUAGE>
</ | DLf f LangCat >

To use the following code, saveitina. pr o file. You do not haveto run it from the
same directory containing the language catal og files.

; Routine to change the | anguage of the button | abels.
PRO but ton_| anguage_change, pstate
vLangString = (*pstate).vlang

; Access the |anguage catalog to retrieve string val ues.
oLangCat = OBJ_NEW '|IDLfflLangCat', vLangString, $
APP_NAME=' nyOpenButtons' , APP_PATH=(*pstate).vpath)
; Access and store | anguage-specific strings in the structure.
strQpenFil e = oLangCat->Query('Button: OpenFile')
st r QpenFol der = olLangCat - >Query(' Button: OpenFol der')
W DGET_CONTROL, (*pstate).pbl, SET_VALUE=str CpenFil e
W DGET_CONTROL, (*pstate).pb2, SET_VALUE=str QpenFol der
END

Event handler for 'Open File' button.

PRO button_file, event
sFile = DI ALOG PI CKFI LE(TI TLE=" Sel ect inage file')

Widget Example What's New in IDL 6.1

Chapter 3: Using Language Catalogs 105

END

; Event handl er for ' Open Folder' button.
PRO button_fol der, event
sFol der = DI ALOG PI CKFI LE(/DI RECTORY, $
TI TLE=' Choose the directory in which to store the data')
END

; Event handl er for 'Language' droplist.
PRO button_| anguage_event, event
W DGET_CONTROL, event.top, GET_UWVALUE = pstate
; Access user's |language selection and store it in the pointer.
| F event.index EQ O THEN (*pstate).vlang = 'English’
| F event.index EQ 1 THEN (*pstate).vlang = 'French’
; Call the procedure to change the button text.
butt on_I anguage_change, pstate
END

; Wdget-creation procedure
PRO but t on_| anguage
; Prompt for path to catalog files
vpat h=di al og_pi ckfile(TITLE="Select directory that ' + $
‘contains *.cat files', /DI RECTORY)
IF vpath EQ'' THEN return

; Create a top level base. Not specifying tab node uses default
; value of zero (do not allow wi dgets to receive or |ose focus).
tlb = WDGET_BASE(/COLUWN, TITLE = "Language Change", $

XSl ZE=220, /BASE_AL|I GN_CENTER)
; Create the button wi dgets.
bbase = WDGET_BASE(tlb, /COLUW)
pbl = WDGET_BUTTON(bbase, VALUE=' Qpen File', $

UVALUE=" openFi | e', XSI ZE=105, EVENT_PRO=' button_file')
pb2 = WDGET_BUTTON(bbase, VALUE=' Open Folder', $

UVALUE=' openFol der', XSI ZE=105, EVENT_PRO=' button_fol der')
; Create a drop-down list indicating avail abl e catal ogs.
vLangList = ['English', 'French']
| angDrop = W DGET_DROPLI ST(tlb, VALUE=vLangList, $

Tl TLE=' Language')
; Draw the widgets and activate events.
W DGET_CONTROL, tlb, /REALIZE

; Create the state structure.
state = { $

pbl: pbl, $

pb2: pb2, $

viang:'', $

vpath:vpath $

What's New in IDL 6.1 Widget Example

106

Chapter 3: Using Language Catalogs

pstate = PTR_NEW state, /NO _COPY)
W DGET_CONTROL, tlb, SET_UVALUE=pstate
XMANAGER, 'button_l anguage', tlb

; Clean up pointers.
PTR _FREE, pstate

END

Widget Example

What's New in IDL 6.1

Chapter 4:

Using the XML DOM
Object Classes

The following topics are covered in this chapter:

About the Document Object Model 108 Usingthe XML DOM Object Classes ... 117
About the XML DOM Object Classes ... 111 TreeWakingExample............... 123

What's New in IDL 6.1 107

108 Chapter 4: Using the XML DOM Object Classes

About the Document Object Model

The Document Object Model (DOM) describes the content of XML datain the form
of adocument object, which contains other objects that describe the various data
elements of the XML document. The DOM also specifies an interface for interacting
with the objectsin the model. Thisis the interface exposed to the IDL user.

For more information on XML, see “About XML” on page 628.
When to Use the DOM

There are two basic types of parsersfor XML data: object-based and event-based.
The DOM is object-based and as such has advantages in certain situations over an
event-based parser such as SAX. In general, use the DOM:

e Toaccessan XML document in any order (SAX must parse in file order)
e Towriteto afile (SAX does not support modifying or creating XML data)

For more information on the difference between the two parsers, see “About XML
Parsers’ on page 628.

About the DOM Structure

Hereis an example of an XML file that is used in an application to define a weather-
monitoring plug-in component:

<?xm version="1.0" encodi ng="UTF-8"?>
<plugin type="tab-iframe">
<name>Weat her . com Radar | mage [DEN] </ nanme>
<descripti on>600 ni |l e Doppl er radar inmage for DEN</description>
<ver si on>1. 0</ ver si on>
<t ab>
<i con>weat her. gi f </i con>
<t ool ti p>DEN Doppl er radar inmage</tooltip>
</ tab>
</ pl ugi n>

The contents of thisfile constitute an XML document. When you want to work with
this data, you can use IDL to load thefile, parseit, and store it in memory in DOM
format. The samplefile listed above is stored in the DOM structure as shown in
Figure 4-1.

About the Document Object Model What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 109

Document
Element Attr
plugin | | type, tab-iframe
|
| | | |
Element Element Element Element
name description version tab
Text Text Text
Weather.com... 600 mile... 1.0

Element Element
icon tooltip
Text Text
wesather.gif DEN Doppler...

Figure 4-1: XML DOM Tree Structure: Plug-in Example

The DOM structureis atree of nodes, where each nodeis represented as a box in the
figure. The type of each node isin boldface. The contents of the node are in normal
type.

Note that whitespace and newline characters can appear in this tree as text nodes, but
are omitted in this picture for clarity. It isimportant to keep thisin mind when
exploring the DOM tree. There are parsing options available that can prevent the
creation of ignorable-whitespace nodes (see “ Working with Whitespace” on

page 121).

The attribute node (Attr) is not actually a child of the element node, but is till
associated with it, asindicated by the dotted line.

What's New in IDL 6.1 About the Document Object Model

110

Chapter 4: Using the XML DOM Object Classes

How IDL Uses the DOM Structure

To access the XML datain the structure, you need to create a set of IDL objects that
correspond to the portion of the DOM tree in which you are interested. You use the
following process to create the DOM tree and the corresponding IDL objects:

1. Create an IDLFffXMLDOM Document object.

2. Loadthe XML file. Thisstep parsesthe XML datafrom thefile and createsthe
DOM treein memory.

3. Usethe IDLffXMLDOMDocument object to create IDLffXMLDOM objects
that essentially mirror portions of the DOM tree, as shown in Figure 4-2.

You then usethe IDLFffXMLDOM objectsto access the actual XML datacontainedin

the DOM tree.

DOM object tree
(parsed from XML data
loaded into memory)

Document

Element |

Attr

——

Element

Element

Text

Comment

IDL object tree
(created from object classes
after loading XML data)

(Element)——(Attr)

(Element)(Element)

(Text > (Comment)

Figure 4-2: The DOM and IDL Trees

The creation and destruction of the IDL objects do not alter the DOM structure. There
are explicit methods for modifying the DOM structure. The IDL objects are merely
access objects that are used to manipulate the DOM tree nodes.

About the Document Object Model

What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 111

About the XML DOM Object Classes

The IDL XML DOM support is provided by a set of IDL object classes, al starting
with IDLffXMLDOM. These classes provide access to the XML document viathe
DOM. The IDLffXMLDOM objects do not in themsel ves maintain a copy of the
document data. Instead, they provide access to the data stored in the DOM document
structure.

IDLFfXMLDOMNode Class Hierarchy

One of the key object classesis IDLIfXMLDOMNode. Becauseit isan abstract class,
you will never create an instance of this class. The nodeisthe basic DOM data
structure used to map each DOM data element. The nodes are organized in aclassic
tree structure, according to the layout of the data in the document.

The following classes are derived from IDLffXMLDOMNode, where each classis
named IDLffXML<node type> (e.g., IDLffXMLDOMALtr):

What's New in IDL 6.1 About the XML DOM Object Classes

112 Chapter 4: Using the XML DOM Object Classes

—(CharacterData

—(DocumentFragment)

4(DocumentType)

Element

Text)—(CDATA Section)

(Node H

B

Entity

{ EntityReference >

{ Processingl nstruction >

Figure 4-3: The IDLFffXMLDOMNode Class Hierarchy

These classes represent the data that can be stored in an XML document. Except for
the IDLffXMLDOM Document class, you do not instantiate any of them directly. To
begin working with the IDL XML DOM interface, you use the OBJ_NEW function
to create an IDLffXMLDOM Document object. You then use this object to browse
and modify the document. This document object also creates objects using the
derived classes to give you access to the various parts of the document. For example:

oChild = oMyDOVDocunent - >Get Fi r st Chi | d()

creates an IDL object of one of the node types, depending on what the first child in
your document actually is. The newly created IDL object refersto thefirst child node
of the document and does not modify the document in any way.

About the XML DOM Object Classes What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 113

You then use the oChi | d object’s methods to get data from the node, modify the
node, or find another node.

Because of the class hierarchy, all the methods in a superclass are available to its
subclasses. For example, to determine which methods are available for use by an
object of the IDLffXMLDOMText class, you would have to look at the methods
belonging to the IDLff XMLDOMText, IDLffXMLDOM CharacterData, and
IDLffXMLDOMNOode classes.

Note
The IDLffXMLDOM CharacterData class is a special abstract class that provides
character-handling facilities for its subclasses. You will never create an instance of
this class.

IDLFffXMLDOM Object Helper Classes

IDL provides a set of other classesto assist you in navigating the DOM tree. These
classes are:

« |DLffXMLDOMNodelList— contains alist of children of anode. You can
create node lists using the GetElementsBy TagName and GetChildNodes
methods, for example.

¢ |IDLFfXMLDOMNamedNodeMap — contains alist of attributes from an
element node that are looked up by attribute name.

These classes contain nodes that are subclasses of IDLffXMLDOMNode. Node lists
and named node maps are active collections of nodes that are updated as the DOM
treeismodified. That is, they are not static snapshots of a DOM tree in agiven state;
the list contents are modified as the DOM tree is modified. While this dynamic
update is useful because you do not have to take specific action to update alist after
modifying the tree, it can be confusing in some situations.

Suppose you want to delete all the children of an element node. The following code
seems to make sense:
oLi st = oEl enent - >Get Chi | dNodes()
n = oLi st->CGet Lengt h()
FOR i=0, n-1 DO $
oDel eted = oEl enent - >RenoveChi | d(oLi st->Iten(i))

What's New in IDL 6.1 About the XML DOM Object Classes

114 Chapter 4: Using the XML DOM Object Classes

This approach does not work as expected because after the first child is deleted, the
listis updated so it contains one fewer object, and the indexes of all remaining objects
are decremented by one. As the loop continues, some items are not deleted, and
eventually an error occurs when the loop index i exceeds the length of the shortened
list.

The following code performs the intended deletion, by changing the parameter to the
Item method from i to O:

oLi st = oEl enent - >Get Chi | dNodes()
n = oLi st->CGet Lengt h()
FORi=0, n-1 DO $
oDel et ed = oEl enent - >RenoveChi | d(oLi st->Iten(0))
This code works because each time the first child is deleted, the list is automatically
updated to place another object in the first position.

The following approach might be more appealing:

oLi st = oEl enent - >Get Chi | dNodes()
n = oLi st->Cet Lengt h()
FORi=n-1, 0, -1 DO $
oDel et ed = oEl enent - >RenoveChi | d(oLi st->Iten(i))
This code works because it deletes items from the end of thelist, rather than from the
beginning.

IDL Node Ownership

Whenever you create an IDLFFXMLDOM node object with a method such as
IDLFfXMLDOMNode::GetFirstChild, you are also creating an ownership
relationship between the created node object and the node object that created it.

Working from the previous plug-in example (see “About the DOM Structure” on
page 108), suppose that you have an object reference, oNare, to an instance of the
IDLffXMLDOMEIlement class that refersto the first child of the plug-in node:

oNanme = oDocunent - >Cet First Chil d()
Using oNare, you can issue the following call:
oDescri pti on = oNane->Get Next Si bl i ng()

The description and name DOM nodes are siblings of each other in the DOM tree, as
shown in Figure 4-1. The IDL object oDescr i pti on refers to the description node
inthe DOM tree, and the IDL object oNane refersto the name node in the DOM tree.
However, the oDescri pti on object is owned by the oNane object because oNane
created oDescri pti on.

About the XML DOM Object Classes What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 115

You might understand this relationship better by realizing that the parent/sibling
relationshipsin the DOM tree reflect the DOM tree structure and that the ownership
relationships among the IDL access objects are due to the creation of the IDL access
objects. Because oNane created oDescri pti on, oNanme destroysoDescri pti on
when oNare is destroyed, even though they refer to siblingsin the DOM tree. Bear in
mind that destroying these access objects does not affect the DOM tree itself.

This parent relationship among IDLffXMLDOM objects is useful for cleaning them
up. Because all of the objectsthat might have been created during the exploration of a
DOM tree are dl ultimately descendants of an IDLffXMLDOM Document node,
simply destroying the document object is sufficient to clean up all the nodes. Unless
you are concerned with cleaning up some access objects at a particular time (to save
memory, for example), you can simply wait to clean them al up when you are
finished with the data by destroying the IDLffXMLDOM Document node.

To reduce memory regquirements, you can destroy node objects that are no longer
needed. For example, if you wanted to explore all the children of a given element,
you might use the following code:

oFirstChild = oEl ement ->Get Fi rst Child()
oChild = oFirstChild
VWHI LE OBJ_VALI D(oChi |l d) DO BEG N

PRI NT, oChi | d- >Get NodeVal ue()

oChild = oChil d->Get Next Si bl i ng()
ENDWHI LE
OBJ_DESTROY, oFirstChild

This approach works well because all the node objects created during the exploration
of the children by the GetNextSibling method are destroyed when oFi r st Chi | d is
destroyed. While it would seem that objects “lost” to the reassignment of oChi | d
would not be accessible for destruction, the chain of oChi | d objects keeps track of
them and destroys them all when the head of the chain, saved in oFi r st Chi | d, is
destroyed.

Trying to destroy node objects inside the loop as follows does not work as expected:

oChild = oEl enent->CGet Fi rst Child()

VWH LE OBJ_VALI D(oChild) DO BEG N
PRI NT, oChi | d- >Get NodeVal ue()
oNext = oChil d->Get Next Si bl i ng()
OBJ_DESTROY, oChild
CChi | d = oNext

ENDWHI LE

This code fails because when oChi | d isdestroyed for the first time, it aso destroys
oNext , causing the loop to exit after the first iteration.

What's New in IDL 6.1 About the XML DOM Object Classes

116

Chapter 4: Using the XML DOM Object Classes

If thereisavery large number of children, waiting until the end of the loop to destroy
the list might be too inefficient. Using anode list, asin the following code, isan
aternative:

oLi st = oEl enent - >Get Chi | dNodes()
n = oList->GetLength()
FOR i=0, n-1 DO BEG N
oChild = oList->Itemn(i)
PRI NT, oChi |l d- >Get NodeVal ue()
OBJ_DESTROY, oChild
ENDFOR
OBJ_DESTROY, oLi st

AlthougholLi st reguires some spaceto maintain thelist, thereisonly one valid node
connected to oChi | d in memory each time through the loop.

Saving and Restoring IDLIffXMLDOM Objects

IDL does not save IDLfEXMLDOM objectsin a SAVE file. If you restore a SAVE file
that contains object referencesto IDLFEXMLDOM objects, the object references are
restored, but are set to null object references.

The IDLffXMLDOM objects are not saved because they contain state information for
the external Xerceslibrary. This state information is not available to IDL and cannot
be restored. The contents of the XML file might also have changed, which would also
make any saved state invalid.

It is recommended that applications either complete any DOM operations before
saving their datain a SAVE file or reload the DOM document as part of restoring
their state.

About the XML DOM Object Classes What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 117

Using the XML DOM Object Classes

Continuing from the weather plug-in example (see “About the DOM Structure” on
page 108), this section describes how to use the IDL XLM DOM aobject classes,
namely how to do the following actions:

¢ Load an XML document

¢ Read XML datafrom a document
* Modify existing XML data

* Create new XML data

¢ Destroy IDLfEXMLDOM aobjects

Loading an XML Document

Although the DOM tree structure isin memory after the XML file isloaded, you
cannot directly access the datafrom IDL until you have created IDLffXMLDOM
objects to access them. The DOM loads and parses the XML datainto atree
structure, but you need to create a document object to access that data through a
mirroring IDL tree structure.

To prepare the interface, load the document:

oDocunent = OBJ_NEW' | DLf f XM_LDOVDocunent ')
oDocunent - >Load, FI LENAME=' sanpl e. xm"'

This code causes the DOM tree structure to be formed in memory. You could aso
perform the same action in one line:

oDocunent = OBJ_NEW' | DLf f XMLDOVDocunent ', FlI LENAME=' sanpl e. xm ')

Be aware that either of these examples will discard an existing DOM tree referenced
by oDocunent . You can load and reload an XML file as often as desired, but each
loading action will overwrite, not add to, the existing tree and remove its objects from
memory.

What's New in IDL 6.1 Using the XML DOM Object Classes

118 Chapter 4: Using the XML DOM Object Classes

Reading XML Data

Suppose that you want to print the name of the plug-in. The plug-in element node is
the first and only child of the document node. A document node can have only one
element child node, which represents the containing element for the entire document
(for comparison, consider that an HTML file has only one <HTML></ HTML> pair).
The name of the element node isthefirst element child of the plug-in element. There
may be several ways to locate a desired piece of datausing the IDL XML DOM
classes. The following example illustrates one way to find the plug-in name.

First, access the first child of the document, which is the plug-in element:
oPl ugi n = oDocunent - >Get Fi rst Chi | d()

The GetFirstChild method creates an IDLffXMLDOM Element node object and
returns its object reference, which is stored in oPl ugi n.

Next, ask the plug-in for alist of all of its child element nodes. The oPl ugi n object
creates an IDLfFXMLDOMNodeL st object and places all the child element nodes in
the list. You could have asked for only the name element, but by asking for them all,
you will have the other elementsin the list in case you need to look at them later.

oNodelLi st = oPl ugi n- >Get El enent sByTagNanme("' *')

You know from the design of the XML data, perhaps as defined in aDTD, that the
name element must always be the first child of aplug-in element. You can access the
name as follows:

oNanme = oNodelLi st->Iten(0)

You aso know that the name element can only contain atext node. Getting access to
the text node lets you print the data that you want.

oNanmeText = oNane->Cet Fi rst Chil d()
PRI NT, oNanmeText - >Get NodeVal ue()

This command prints out:
Weat her. com Radar | nmage [DEN|

Note that the oPl ugi n and the oNane objects are of type IDLIffXMLDOM Element,
and the oNarre Text object is of type IDLFfXMLDOMText. The oNarre and
oNaneText abjects are created by the GetFirstChild and Item methods, using the
object classthat is appropriate for the type of datain the DOM tree. You used the
GetElementsByTagName method to get the child elements of the plug-in, without
having to sort through the whitespace text nodes that are present.

Using the XML DOM Obiject Classes What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 119

At this point, you have four IDL objectsin addition to the root document object that
give you access to only the portion of the DOM tree to which these objects
correspond. You can create additional objects to explore other parts of the tree and
destroy objects for parts that you are no longer interested in.

Modifying Existing Data

You can aso modify XML data and write the result back out to afile.

oDocunent = OBJ_NEW' | DLf f XM_LDOVDocunent ')

oDocunent - >Load, FI LENAME=' sanpl e. xm'

oPl ugi n = oDocumnent - >Get Fi r st Chi | d()

oNodelLi st = oPl ugi n->Get El enent sByTagNanme("' *')

oNanme = oNodeli st->Iten(0)

oNanmeText = oNane->Cet Fi rst Chil d()

oNaneText - >Set NodeVal ue(' Weat her. com Radar | nage [PDX]"')
oDocunent - >Save, FI LENAME=' sanpl e2. xm '

OBJ_DESTROY, oDocunent

This code modifies the name node to change the airport to Portland, Oregon, and
writes the modified XML to anew file. Please note that if you save to an existing file
(e.g., using sanpl e. xn instead of sanpl e2. xm at the end of this example), the
current XML datawill replace thefile entirely.

Creating New Data

You can create an IDLffXMLDOM Document object and start adding nodesto it
without loading afile.

oDocunent = OBJ_NEW' | DLf f XM_LDOVDocunent ')

oEl emrent = oDocunent - >Cr eat eEl enent (' nyEl enent ')
oVoi d = oDocunent - >AppendChi | d(oEl enent)
oDocunent - >Save, FlI LENAMVE=' new. xml '

OBJ_DESTROY, oDocunent

This code creates the following XML file:

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<nyEl enent/ >

Note that <nyEl enent / > is XML shorthand for <ny El emrent ></ nyEl enent >.

What's New in IDL 6.1 Using the XML DOM Object Classes

120 Chapter 4: Using the XML DOM Object Classes

Destroying IDLffXMLDOM Objects

Suppose that you are done with the name node and want to look at the description.

OBJ_DESTROY, oNane

oDesc = oNodeList->Iten(1)
oDescText = oDesc->Cet Fi rstChild()
PRI NT, oDescText - >Get NodeVal ue()

This code destroys the oNane object and oNaneText with it because it was created
by oNarre’s GetFirstChild method. This automatic destruction cleans up al the
objects that you might have created from the oNane node. You can then fetch the
description element from the node list and print its name in the same manner. The
name node is still in the node list and can be fetched again from the node list with the
Item method, if needed.

Finally,
OBJ_DESTROY, oDocunent

destroys the top-level object that you originally created with the OBJ_NEW function
and also destroys any other objects that were created directly or indirectly from the
oDocurnent abject.

You can write the first code sample above more compactly because of the ability of
the IDLffXMLDOM Document object to clean up all the objectsit and its children
created:

oDocunent = OBJ_NEW' | DLf f XM_LDOVDocunent ')

oDocunent - >Load, FI LENAME=' sanpl e.xm'

PRI NT, ((((oDocument->GetFirstChild())-> $
Cet El enment sByTagName(' nane'))-> $
I[tem(0))->CetFirstChild())->Get NodeVal ue()

OBJ_DESTROY, oDocunent

Under normal circumstances, the three object references created by the calls to the
GetFirstChild and GetElementsBy TagName methods would be lost because the
object references to these three objects were not stored in IDL user variables.
However, these objects are cleaned up by the document object when it is destroyed.

For additional information, see “ Orphan Nodes’ on page 122.
Please note:

¢ Ingeneral, you should not use the OBJ_NEW function to create any
IDLFfXMLDOM objects except for the top-level document object. Use the
methods such as GetFirstChild to create the objects.

Using the XML DOM Obiject Classes What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 121

* You can destroy objects obtained from the various methods (e.g.,
GetFirstChild) at any time by the OBJ DESTROY procedure.

e Objects destroyed by the OBJ DESTROY procedure also destroy objects that
they created.

e Destroying objects does not modify the DOM structure. That is, destroying any
of the IDLFfFXMLDOM objects does not modify the datain the DOM tree.
There are explicit methods for modifying DOM tree data. Destroying
IDLfFXMLDOM objects only removes your ability to access the DOM tree
data.

Working with Whitespace

The XML parser isvery particular about whitespace because all charactersin an
XML document define the content of that document. Whitespace consists of spaces,
tabs, and newline characters, all of which are commonly used to format documentsto
make them easier to work with. In many cases, this whitespace is unimportant with
respect to the document content. It is there only for presentation and does not affect
the actual data stored in the XML document. However, in some cases, for example
with CDATA or text node information, the whitespace might be important.

When whitespace is not important, IDL can treat it asignorable. In many
circumstances, you might want the parser to skip over this ignorable whitespace and
not placeit in the DOM tree so that you do not need to deal with it when visiting
nodesin the DOM tree.

For example, the following two XML fragments produce different DOM trees when
parsed with the default parser settings:

<stateList>
<st at e>Col or ado</ st at e>
</stateList>

<st at eLi st ><st at e>Col or ado</ st at e></ st at eLi st >

In thefirst fragment, the st at eLi st element has two child nodes that the second
fragment does not. They are text nodes containing whitespace, a newline, and some
tabs or spaces.

For the parser to distinguish between non-ignorable and ignorable whitespace, there
must beaDTD or schema associated with the XML document, and it must be used to
validate the document during parsing. Thisimpliesthat aVALIDATION_MODE of 1
or 2 must be used when loading the XML document with the

IDLffXMLDOM Document::L oad method.

What's New in IDL 6.1 Using the XML DOM Object Classes

122 Chapter 4: Using the XML DOM Object Classes

Once validation is established, you can either:

e Tell the parser not to include ignorabl e text nodes in the DOM tree by
setting the EXCLUDE_IGNORABLE_WHITESPACE keyword in the
IDLffXMLDOM Document::Load method. If you select this option, the
DOM trees for each of the above two fragments are the same.

¢ Check each text node in the DOM tree with the
IDLfFXMLDOM Text::IslgnorableWhitespace method.

Orphan Nodes

You can remove nodes from the DOM tree by using the
IDLffXMLDOMNode::RemoveChild and IDLffXMLDOM Node::ReplaceChild
methods. When these nodes are removed from the tree, they are owned by the DOM
document directly and have no parent (since they are not in the tree anymore).
Similarly, when these methods are used, the IDLffXMLDOM objects ownership is
changed as well because the IDL tree (made by creating the document interface and
adding nodes) must mirror the underlying DOM tree.

If you issue the following command:
oMyRenovedChi | d = oMyEl enent - >RenpveChi | d(oMy Chi | d)

oMy Chi | d isno longer owned by oM/El enent and becomes owned by the
document object to which all these nodes belong. Here, oMyRenpovedChi | d and
oMy Chi | d are actually object references to the same object. The function method
syntax provides a convenient way to create a new object reference variable with a
new name that reflects the new status of the removed object, and you can use either
name to access the orphaned node.

After removal, the orphan node is loosely associated with the document viathe
ownership relationship and would not be included in the output if the DOM tree were
written to afile. You can insert the node back into the DOM tree with an InsertBefore
or AppendChild method.

If the document that contains orphan nodes is destroyed, the orphan nodes are lost.
More specifically, DOM tree orphan nodes are not written out to afileif they are
orphans at the time that the IDLffXMLDOM Document::Save method is used to save
the tree, and the IDL node objects referring to the orphans are destroyed when the
document object is destroyed.

Using the XML DOM Obiject Classes What's New in IDL 6.1

Chapter 4: Using the XML DOM Object Classes 123

Tree-Walking Example

The following code traverses a DOM tree using pre-order traversal.

PRO sanpl e_recurse, oNode, indent

; "Visit" the node by printing its nane and val ue
PRI NT, indent GI 0 ? STRJO N(REPLI CATE(" ', indent)) : "', &
oNode- >Get NodeNane(), ':', oNode->Get NodeVal ue()

: Visit children

0Si bl i ng = oNode- >CGet Fi rst Chi | d()

VWHI LE OBJ_VALI D(0Si bling) DO BEG N
SAMPLE_RECURSE, 0Sibling, indent+3
0Si bli ng = 0Si bl i ng->Get Next Si bl i ng()

ENDWHI LE

END

PRO sanpl e
oDoc = OBJ_NEW'' I DLf f XM_.DOVDocunent ')
oDoc- >Load, FILENAME="sanple.xm "
SAMPLE_RECURSE, oDoc, O
OBJ_DESTROY, oDoc

END

This program generates the following output for the plug-in file (see “About the
DOM Structure” on page 108):

#docunent :

pl ugi n:
#text:

nane:
#t ext : Weat her. com Radar | nage [DEN|
#text:

descri ption:
#text: 600 mile Doppler radar inage for DEN
#text:
ver sion:
#text: 1.0
#text:

t ab:
#t ext:

i con:

What's New in IDL 6.1 Tree-Walking Example

124 Chapter 4: Using the XML DOM Object Classes

#t ext : weat her. gi f
#text:

tool tip:
#t ext : DEN Doppl er radar inmage

#t ext:

#t ext:

The program above created an IDLfFXMLDOM object for every node it encountered
and did not destroy them until the document was destroyed. Another approach,
illustrated in the program below, cleans up the nodes as it proceeds:

PRO sanpl e_recurse2, oNode, indent
7, "Visit" the node by printing its nanme and val ue
PRI NT, indent gt O ? STRIO N(REPLI CATE(* ', indent)) : "', &

oNode- >Get NodeName(), ':', oNode->Get NodeVal ue()

;7 Visit children
oNodelLi st = oNode->Cet Chi | dNodes()
n = oNodeli st ->Get Lengt h()
for i=0, n-1 do $
SAVPLE_RECURSE2, oNodelist->Iten(i), indent+3
OBJ_DESTROY, oNodeli st
END

PRO sanpl e2
oDoc = OBJ_NEW'' I DLf f XM_.DOVDocunent ')

oDoc- >Load, FILENAME="sanpl e.xm "
SAMPLE_RECURSE2, oDoc, 0
OBJ_DESTROY, oDoc

END

Please note that document and text nodes do not have node names, so the
GetNodeName method always returns ‘#document’ and ‘#text,” respectively.

Tree-Walking Example What's New in IDL 6.1

Index

Symbols

sav file
description, 32
guery and restore, 31

A

accelerators

disabling, 47

enabling, 47

iTools, 20
ALPHA_CHANNEL property, 23
application user directory, 40

What's New in IDL 6.1

B

B format code, 33
backward compatibility, 82

C

CMYK color moddl, 24
creating XML data, 119
cropping

ilmage, 13

iTool manipulator, 15

iTool operation, 14

D

dendrograms, 28

125

126

destroying IDLffXMLDOM objects, 120
DIALOG_PICKFILE routine, directory selec-
tion, 48
DICOM, expanded support, 39
DOM object classes, 111
helper classes, 113
Node, 111
node ownership, 114
saving and restoring, 116
using, 117
drag quality, 19

E

exporting
Encapsulated Postscript, 11
Enhanced Metéfile, 11

F

format codes
- Flag, 35
+flag, 34
B, 33
zero padding, 35

H

help system
Macintosh, 53
UNIX, 53
hierarchical cluster analysis, 28

IDL GUIBuUIilder, tabbing, 46

IDL Virtual Machine
application creation, 37
widget blocking, 37

Index

IDL_Savefile object, 31
IDLffDicomEXx object, 39
IDLffXMLDOM
destroying objects, 120
orphan nodes, 122
tree-walking example, 123
IDLFffXMLDOM object classes, 111
helper classes, 113
IDLffXMLDOMNode, 111
node ownership, 114
saving and restoring, 116
using, 117
IDLgrText, vector graphics, 11
ilmage, enhancements, 13
ION
availability, 80
HTTPS support, 80
iTools
command line, 55
Data Manager, 17
Data Manager enhancements, 15
exporting
Encapsulated Postscript, 11
Enhanced Met&file, 11
importing
ESRI Shapefiles, 12
JPEG 2000, 12
macro mechanism, 12
manipulator, 55
style mechanism, 13
ITRESOLVE procedure, 20

J

JPEG 2000
iTools support, 12

What's New in IDL 6.1

L

language catalog
definition, 98
file, creating, 99
widget example, 104
language catalog file
loading, 100
storing, 100
language catal og object
adding keys, 101
creating, 101
destroying, 103
languages
getting, 102
setting, 102
performing queries, 102
libraries
converting to prefixed, 94
naming, 93
library authoring
benefits of, 90
conversion wrappers, 94
converting to prefixed, 94
naming conventions, 91, 93
prefixing routines, 91
library of routines
authoring, 89
authoring conventions, 93
converting existing, 94
prefixing, 91
loading an XML document, 117

M

Macintosh, Alt key accelerators, 42
macros, iTools history, 12
mapping

Cartesian coordinates, 24

iMap tool, 12
modifying XML data, 119

What's New in IDL 6.1

multi-threading, default number, 33

N

names, reserved, 93
namespace collisions, 91
naming conflicts, 91

O

object, transparency, 23
obsolete routines, 81

P

platforms
supported
IDL, 83
ION, 85
prefixing libraries, 94

R

reading XML data, 118
rendering volume, iVolume, 20
requirements

IDL, 83

ION, 85
reserved names, 93
resolving routine, 90
routines

conflicting names, 91

naming, 93

obsolete, 81

S

Shapefiles, iTools support, 12
styles, iTools, 13

127

Index

128

supported platforms
IDL, 83
ION, 85

T

tabbing
IDL GUIBuilder, 46
widget navigation, 44
transparency, 23

U

UNIX, PDF help system, 53
unsharp masking filter, 27

Vv

variables, accessing non-local, 32
vector graphics

inserting EMF file, 11

text rendering, 11

w

WIDGET_PROPERTY SHEET function
selection, 50
sizing, 50

widgets
accelerators, 47
iTools compound, 55
tabbing, 44
using iTools, 55

wrapper routines
compatibility wrappers, 95
library conversion, 94

Index

X

XML
DOM
creating data, 119
destroying objects, 120
loading a document, 117
modifying data, 119
object classes, 111
orphan nodes, 122
reading data, 118
tree-walking example, 123
whitespacein, 121
XML document
creating data, 119
destroying objects, 120
loading, 117
modifying data, 119
orphan nodes, 122
reading data, 118
whitespacein, 121
XML DOM classes, 39

What's New in IDL 6.1

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (4.2 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Medical Imaging in IDL
	Search Documentation

	What’s New in IDL 6.1
	Contents
	Overview of New Features in IDL 6.1
	New iTools and iTool Features
	New File Format Import/Export Accessibility in iTools
	New iMap Tool
	Macros and Tool History
	Styles
	Enhancements to the iImage Tool
	Operations on ROIs
	Enhancements to the iTool Data Manager
	New Drag Quality Feature
	iTool Background Color
	Changes to Legend Creation
	New iVolume Properties
	File and Edit Menu Keyboard Accelerators
	Enhancements to Command Line Control of iTools
	Enhanced Handling of Axes in Empty iTools
	Expanded Support of Format Codes

	Visualization Enhancements
	Lighting and Color Enhancements to Objects
	Alpha Channel Support for Object Graphics
	Enhancements to Mapping Routines
	CMYK Support in Direct and Object Graphics
	Additional Support for Vector Graphics

	Analysis Enhancements
	New Unsharp-mask Filter
	Hierarchical Cluster Tree Support
	New Integer Arithmetic for PRODUCT and TOTAL
	Enhancements to WATERSHED
	Double-Precision Support for Spline Interpolation
	Double-Precision Support for Median Smoothing
	Absolute Values for MIN and MAX Functions
	MISSING Keyword to BILINEAR
	Complex Data Support for NORM and COND
	BESEL Functions and Negative Input

	Language Enhancements
	Ability to Query and Selectively Restore SAVE File Contents
	Access to Non-local Scope Variables
	New DESCRIPTION Keyword to SAVE and RESTORE
	Enhancements to SIZE
	Default Thread Pool Configuration
	Easy Restoration of !CPU System Variable Values
	Enhancements to Formatted I/O
	Enhancements to FILE_SEARCH
	Enhancement to CREATE_STRUCT

	Runtime�/�Virtual Machine Enhancements
	Widget Event Blocking in Runtime and Virtual Machine Modes
	Additional Virtual Machine Enhancements

	File Access Enhancements
	New IDL JPEG2000 File Format Support
	New XML DOM Object Classes
	Expanded DICOM Support
	Revised Language Catalog System
	CDF Library Upgrade
	HDF5 Library Upgrade
	New Application User Directory Access
	Enhancements to READ_TIFF
	Enhancements to WRITE_TIFF
	New QUERY_TIFF Info Structure Fields
	GEOTIFF Support for QUERY_TIFF

	IDLDE Enhancements
	Intelligent File Naming
	Maintaining Cursor Position
	Enabling Alt Key Accelerators on Macintosh

	User Interface Toolkit Enhancements
	Tabbing in Widget Applications
	Keyboard Accelerators for Button Widgets
	DIALOG_PICKFILE Routine Enhancements
	Table Widget Enhancements
	Property Sheet Widget Enhancements
	WIDGET_CONTROL and WIDGET_INFO Routine Enhancements

	Documentation Enhancements
	New PDF Help System Index Utility
	Note on Macintosh Online Help
	Enhanced Acrobat Plug-in Control
	New Working with Maps in iTools Chapter
	New Working with Macros in iTools Chapter
	New Working with Styles in iTools Chapter
	Revised iTools Data Import/Export Chapter
	Additional iTool Developer’s Guide Chapters
	New Using the XML DOM Object Classes Chapter
	New Using Language Catalogs Chapter
	New Library Authoring Chapter
	New Medical Imaging in IDL Manual

	New IDL Routines
	IDL Routine Enhancements
	New IDL Object Classes
	New IDL Object Properties
	New IDL Object Methods
	IDL Object Property Enhancements
	IDL Object Method Enhancements
	ION 6.1 Enhancements
	Support for Secure HTTP (HTTPS)

	Features Obsoleted in IDL 6.1
	Obsolete Routines
	Obsolete Arguments or Keywords

	Avoiding Backward Compatibility Issues
	Requirements for this Release
	IDL 6.1 Requirements
	ION 6.1 Requirements
	IDL-Java Bridge

	Library Authoring
	Overview of Library Authoring
	Recognizing Potential Naming Conflicts
	User Level Conflicts
	System Level Conflicts
	Choosing Routine Names to Avoid Conflicts

	Advice for Library Authors
	Prefixing Routine Names

	Converting Existing Libraries

	Using Language Catalogs
	What Is a Language Catalog?
	Creating a Language Catalog File
	Storing and Loading Language Catalog Files

	Using the IDLffLangCat Class
	Creating a Language Catalog Object
	Adding Application Keys
	Getting and Setting Languages
	Performing Queries
	Destroying a Language Catalog Object

	Widget Example

	Using the XML DOM Object Classes
	About the Document Object Model
	When to Use the DOM
	About the DOM Structure
	How IDL Uses the DOM Structure

	About the XML DOM Object Classes
	IDLffXMLDOMNode Class Hierarchy
	IDLffXMLDOM Object Helper Classes
	IDL Node Ownership
	Saving and Restoring IDLffXMLDOM Objects

	Using the XML DOM Object Classes
	Loading an XML Document
	Reading XML Data
	Modifying Existing Data
	Creating New Data
	Destroying IDLffXMLDOM Objects
	Working with Whitespace
	Orphan Nodes

	Tree-Walking Example

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

