ROSSBY RADIUS

TOGA — TAO SST

LLLLLLL \\‘\ LLLLLLLl \\‘ LLLLLLLl \\\‘ LILLLLLLL \\\‘ LILLLLLLL \\\‘ LILLLLLLL \\\‘ (NN NN ‘\\\ NN EENE ‘\\\ LLLLLLL] ‘\\\ LLLLLLL \‘\\ L1l
A

\HHH\\‘HHH\HH‘HHHHH\‘HH\HHH‘HHHH\H‘HHHHH\‘HHH\HH‘\HHHHH‘HHHHH'\
1990 1992 1994 1996 1998

2n,110w 2n,140w

NOAA / PMEL

F'ERRLET

An Analysis Tool for Gridded Data

. . . McBryde Flat Polar
Levitus Climatological SST projection

‘,

Perturbation Solution

! ! oo L1

(deg. €)

32

1100

Megaplume

1200

1300

1400

.

1500

1600

DEPTH (meters)

1700

1800

1900

2000

1

—oos 00 o004 008

—(B+1/2)*D, *eP /D?
y

Temperature Anomaly (Deg. C)

2 APPENDIX B

FERRET

USER'S GUIDE

Version 6.0

NOAA/PMEL/TMAP

Steve Hankin
Jon Callahan, Ansley Manke
Kevin O'Brien, Jing Li
August 7, 2006

About the Cover

The cover of this User's Guide was produced by Ferret. From the top down the plots are:
"TOGA-TAO SST," time series from the Tropical Pacific TAO array; "Levitus Climatological
SST," an equal area projection of level one of the annual Climatological Atlas of the World Oceans
by Sydney Levitus of NOAA/NODC:; "Perturbation Solution," a visualization of abstract functions
by Dr. Ping Chang; "Vents Megaplume Thermal Structure," vertical temperature profiles of under-
sea thermal vents from the NOAA Vents program.

Contents

CHAPTER 1: INTRODUCTION

ChlSecl. OVERVIEW i 1
Chl SeCl.l. Ferret User's Group 2
Chl Secl‘z. Ferret Home Page 2
ChlSec2. GETTINGSTARTED 2
Chl Secz.l. Concepts 3
Chl Sec2.1.1. Thinking likea Ferret:............. 4
Ch1 Sec2.2. Unix command line switches - -« 6
Chl SeC2.3. Sample SeSSiOI’IS 8
Chl Sec2.3.1. Accessing anetCDFdataset 8
Chl Sec2.3.2. Readingan ASCIl datafile 9
Chl Sec2.3.3. Using viewportscoooiiiiiiniinnn. .. 9
Chl Sec2.3.4. Using abstract variables 10
Chl Sec2.3.5. Using transformations 10
Ch1 Sec2.3.6. Using algebraic expressions 11
Chl Sec2.3.7. Finding the 20-degree isotherm. 12
Chl Sec3. COMMON COMMANDS 13
Chl Sec4. COMMAND SYNTAX 14
ChlSec5. GOFILES 16
Ch1 Sec5.1. Demonstration files =« -« oooooemee e 16
Chl SeC5.2. GO tools 18
Chl Sec53 ertlng GO tOOIS 23
Chl Sec5.3.1. Documenting GOtools 24
Chl Sec5.3.2. Preserving the Ferret state in GO tools 24
ChlSec5.3.3. SilentGOtools.......... ..., 24
Chl Sec5.3.4. ArgumentstoGOtools 25
Chl Sec5.3.5. Documentation and checking arguments to GO tools 26
Ch1 Sec5.3.6. Flow Controlin GO tools 27
Chl Sec5.3.7. Debugging GOtools 27
Chl Sec6. SAMPLE DATASETS. ... i 28
ChlSec7. UNIXTOOLS. 29
Ch1Sec8. HELP e 30
Ch1 Sec8.1. Examples and demonstrations -« -cccree e 30
Chl1 Sec8.2. Help from within Ferret -« rroereeee 31
Ch1 Sec8.3. Web-based information « -« -« === or o res s 31
CHAPTER 2: DATA SET BASICS
Ch2Secl. OVERVIEW e 33
Ch2Sec2. NETCDFDATA. e 34
Ch2 Sec2.1. NetCDF data and strides - - -+ -+ - - o ooeeeeeeeee e e 35
Ch2 Sec2.2. NetCDF data attributes - - -+ - - - oo ooeeeeeeee e 35
Ch2 Sec2.3. NetCDF Data with the bounds attribute - = === -+ -+ - -+ 36
Ch2 Sec2.4. Multi-file NetCDF datasets - -« ---roreeeeeees 37
Ch2 Sec2.5. Non-standard NetCDF datasets - -oveeeeen- 38

CONTENTS V

Ch2 Sec2.6. NetCDF and non-standard calendars - - - ==+« 39

Ch2 Sec3. TMAP-FORMATTED DATA. 40
Ch2Sec4. BINARY DATA e 41
Ch2 Sec4.1. FORTRAN-structured binary files - ==« --cvvvvee 41
Ch2Sec4.1.1. Records of uniformlength...................... 41

Ch2 Sec4.1.2. Records of non-uniform length 42

Ch2 Sec4.1.3. Fortran binary files, variables on different grids. . . . 42

Ch2 SeC4.2. Stream binary files 43

Ch2 Sec4.2.1. Simplestream files............. 43

Ch2 Sec4.2.2. Mixed streamfiles............. 44

Ch2 Sec4.2.3. Byte-swapped streamfiles...................... 45
Ch2Sec5. ASCIIDATA. ... 45
Ch2 SeC51 Readll’lg ASCII flles 45

Ch2 Sec5.2. Reading "DELIMITED" data files - - - === == o ovveee oo 49

Ch2 Sec6. TRICKS TO READING BINARY AND ASCIT FILES. 54
Ch2 Sec7. ACCESS TO REMOTE DATA SETSWITHDODS. 55
Ch2 SeC71 What iS DODS? 55

Ch2 Sec7.2. Accessing Remote Data Sets - -~ - -+~ 55

Ch2 Sec7.3. Debugging Access to Remote DODS Data Sets - - - - - - - 56

Ch2 Sec74 Security 56

Ch2 Sec7.5. Sharing Data Sets via DODS - -« -« coooeeeeee 57

Ch2 SeC7.6. DODS CaChing 57

Ch2 SeC7.7. Proxy SEYVEIS * * * * * * * * s s s st s 58

CHAPTER 3: VARIABLES AND EXPRESSIONS

Ch3Secl. Variables........... i 59
Ch3 SeC]_.l. Variable Syntax 59
Ch3 SeC1.2. Flle Variables 60
Ch3 SeC1.3. PseudO-VariableS 60

Ch3 Sec1.3.1. Grids and axes of pseudo-variables 61
Ch3 Secl.4. User-defined variables -« 62
Ch3 SeC]_.S. Abstract Variables 63
Ch3 SeC1.6. MlSSlng Value flags 64

Ch3 Secl.6.1. Missing values ininputfiles 64

Ch3 Secl.6.2. Missing values in user-defined variables.......... 64

Ch3 Sec1.6.3. Missingvalues in output NetCDF files............ 65

Ch3 Secl.6.4. Displaying the missing valueflag................ 65
Ch3 Secl.7. Returning properties of variables - - - === === vve oo 65
Ch3 Secl.8. Variable and dataset attributes - - - - - === == oo oo 65

Ch3 Sec1.8.1. SHOW ATTRIBUTE commands 67

Ch3 Sec1.8.2. Attribute keywords.................. 68

Ch3 Sec1.8.3. Programmatic access to attributes. 69

Ch3 Sec1.8.4. Editing attributes.............................. 69

Ch3 Sec1.8.5. Output attributes to NetCDF fies 71

Ch3 Sec1.8.6. Output Variables to NetCDF files................ 72

Ch3 Sec2. EXPRESSIONS.t 73
Ch3 Secz.l. Operators 74
Ch3 Sec2.2. Multi-dimensional expressions - -« ccccccee e 75

VI CONTENTS

86

Ch3 Sec2.3.1.
Ch3 Sec2.3.2.
Ch3 Sec2.3.3.
Ch3 Sec2.3.4.
Ch3 Sec2.3.5.
Ch3 Sec2.3.6.
Ch3 Sec2.3.7.
Ch3 Sec2.3.8.
Ch3 Sec2.3.9

Ch3 Sec2.3.10.
Ch3 Sec2.3.11.
Ch3 Sec2.3.12.
Ch3 Sec2.3.13.
Ch3 Sec2.3.14.
Ch3 Sec2.3.15.
Ch3 Sec2.3.16.
Ch3 Sec2.3.17.
Ch3 Sec2.3.18.
Ch3 Sec2.3.19.
Ch3 Sec2.3.20.
Ch3 Sec2.3.21.
Ch3 Sec2.3.22.
Ch3 Sec2.3.23.
Ch3 Sec2.3.24.
Ch3 Sec2.3.25.

Ch3 Sec2.3.26.
Ch3 Sec2.3.27.
Ch3 Sec2.3.28.
Ch3 Sec2.3.29.
Ch3 Sec2.3.30.
Ch3 Sec2.3.31.
Ch3 Sec2.3.32.
Ch3 Sec2.3.33.
Ch3 Sec2.3.34.
Ch3 Sec2.3.35.
Ch3 Sec2.3.36.
Ch3 Sec2.3.37.
Ch3 Sec2.3.38.
Ch3 Sec2.3.39.
Ch3 Sec2.3.40.
Ch3 Sec2.3.41.
Ch3 Sec2.3.42.
Ch3 Sec2.3.43.
Ch3 Sec2.3.44.
Ch3 Sec2.3.45.
Ch3 Sec2.3.46.
Ch3 Sec2.3.47.

Ch3 SeC2.3. FunCtiOIlS 76

MAX. . 78
MIN ..o 78
INT . .o 78
ABS. .. 79
EXP. .o 79
LN 79
LOG ... 79
SIN .. 79
COS . 79
TAN ... 79
ASIN Lo 80
ACOS. .. 80
ATAN ..o 80
ATAN2 .o 80
MOD ... 80
DAYS1900. o 80
MISSING 81
IGNOREOQ ... 81
RANDU.o 81
RANDN.o 81
RHO_UN.... ... 81
THETA FO. 82
RESHAPE 82
ZAXREPLACE. i 85
XSEQUENCE, YSEQUENCE, ZSEQUENCE, TSEQUENCE
FETA .. 86
FETP. ... oo 87
SAMPLEL 88
SAMPLE]. ... 89
SAMPLEK. 89
SAMPLEL 90
SAMPLEIJ 90
SAMPLET _DATE i 91
SAMPLEXY.o 92
SAMPLEXY CLOSEST....... 93
SAMPLEXY CURV. i 94
SCAT2GRIDGAUSS_XY.t 95
SCAT2GRIDGAUSS XZ.t 97
SCAT2GRIDGAUSS _YZ.t 98
SCAT2GRIDLAPLACE XYt 99
SCAT2GRIDLAPLACE XZ 101
SCAT2GRIDLAPLACE YZ 101
SORTI ... 102
SORTJ ..o 103
SORTK. ... 103
SORTLo 103
TAUTO_COR.o 104

CONTENTS VII

Ch3Sec2.3.48. XAUTO_COR.t 104

Ch3 SeC2.4. Transformations 105
Ch3 Sec2.4.1. General information about transformations 106
Ch3 Sec2.4.2. Transformations applied to irregular regions107
Ch3Sec2.4.3. General information about smoothing transformations 107
Ch3 Sec2.4.4. @DIN —definiteintegral 108
Ch3 Sec2.4.5. @IIN—indefinite integral 109
Ch3 Sec2.4.6. @AVE—averageciiviin... 110
Ch3 Sec2.4.7. VAR—weighted variance 111
Ch3Sec2.4.8. MIN—minimum 112
Ch3Sec2.4.9. @MAX—maximumc.coueeunmeunneenn.. 112
Ch3 Sec2.4.10. @SHF:n—shift 112
Ch3 Sec2.4.11. @SBX:n—boxcar smoother 112
Ch3 Sec2.4.12. @SBN:n—binomial smoother 113
Ch3 Sec2.4.13. @SHN:n—Hanning smoother 113
Ch3 Sec2.4.14. @SPZ:n—Parzen smoother 114
Ch3 Sec2.4.15. @SWL:n—Welch smoother 114
Ch3 Sec2.4.16. @DDC —centered derivative 114
Ch3 Sec2.4.17. @DDF —forward derivative 114
Ch3 Sec2.4.18. @DDB—backward derivative 115
Ch3 Sec2.4.19. @NGD —number of good points 115
Ch3 Sec2.4.20. @NBD —number of bad points 115
Ch3 Sec2.4.21. @SUM —unweightedsum 115
Ch3 Sec2.4.22. @RSUM —running unweighted sum 116
Ch3 Sec2.4.23. @FAV:n—averagingfiller 116
Ch3 Sec2.4.24. @FLN:n—linear interpolation filler 116
Ch3 Sec2.4.25. @FNR —nearest neighbor filler 117
Ch3 Sec2.4.26. @LOC—locationof 117
Ch3 Sec2.4.27. @WEQ —weighted equal; integration kernel 117
Ch3 Sec2.4.28. @ITP—interpolate 120
Ch3 Sec2.4.29. @CDA —closest distance above................. 121
Ch3 Sec2.4.30. @CDB—closest distance below 121
Ch3 Sec2.4.31. @CIA —closestindexabove 122
Ch3 Sec2.4.32. @CIB—closestindex below 123

Ch3 Sec2.5. IF-THEN logic ("masking") - - - -« 125

Ch3 Sec2.6. Lists of constants ("constant arrays'") -« -« --- - 125

Ch3 Sec3. EMBEDDED EXPRESSIONS., 127

Ch3 Sec3.1. Special calculations using embedded expressions - - - - - - 128

Ch3 Sec4. DEFINING NEW VARIABLES., 134
Ch3 Sec4.1. Global, local, and default variable definitions - - - - - - - - 135

Ch3 Sec5. DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS. . . 136

CHAPTER 4: GRIDS AND REGIONS

Ch4 Secl. OVERVIEW s 137
Ch4 Sec2. GRIDS.t 137
Ch4 Secz.l. Deflnlng grids 137
Ch4 Sec2.2. Timeaxesand calendars - - - ===+« - - oo v vee oo 138
Ch4 Sec2.3. Dynamic grids and axes ===« ccrrrrerss e 140

VIII CONTENTS

Ch4 Sec2.3.1. Dynamicgrids 140

Ch4 Sec2.3.2. Dynamicaxesc.c.ooveiuuneeenn.. 143

Ch4 Sec2.3.3. Dynamic pseudo-variables 144

Ch4 SeC24 Regrlddll’lg 145

Ch4 Sec2.4.1. Regridding transformations 146

Ch4 SeC2.5. Modulo regrlddll’lg 151

Ch4 Sec2.5.1. Modulo regridding statistics 154
Ch4Sec3. REGIONS. 154
Ch4 SeC31 Latltude 155

Ch4 SeC32 Longltude 156

Ch4 Sec33 Depth 156

Ch4 Sec34 Tlme 156

Ch4 SeC3.5. Delta 157

Ch4 Sec36 @ notation 157

Ch4 Sec37 Modulo AXOS * vttt eeioo oo e 159

Ch4 Sec3.7.1. Subspan Modulo Axes 160

Ch4 Sec38 Reglon COHﬂlCtS 163

Ch4 Sec4. Ferret Program Limits 163

CHAPTER 5: ANIMATIONS AND GIF IMAGES

Ch5Secl. OVERVIEW i, 167
Ch5 Secl.l. Anlmatlng on the fly 167

Ch5 Secl.2. Note on using whirlgif to make a movie - ---------- " 167
Ch5Sec2. CREATINGANHDFMOVIE, 168
Ch5Sec3. DISPLAYING ANHDFMOVIE. 169
Ch5 Sec4. ADVANCED MOVIE-MAKING ..., 169
Ch5 Sec4.1. REPEAT Command 169

Ch5 Sec4.1.1. Initializing the color table 171

Ch5 Sec4.1.2. Making movies in batchmode 171
Ch5Sec5. CREATINGGIFIMAGES...........o, 172
Ch5 Sec6. CREATING MPEG ANIMATIONS. 172

CHAPTER 6: CUSTOMIZING PLOTS

Ch6Secl. OVERVIEW i 175
Ch6 Sec2. GRAPHICALOUTPUT. 176
Ché6 Sec2.1. Ferret graphical output controls - - -« oooeeeeeee e 176
Ché6 Sec2.2. PPLUS graphical output commands - - -« --- 177
Ch6Sec3. AXES. 177
Ch6 Sec3.1. Ferret axis controls « - === - v v v vvrreee e 178
Ch6 Sec3.2. PPLUS axis commands === - - - - crrrrmmmee e 178
Ché6 Sec3.3. Overlaying symbols on a time axis « -« -- - 181
Ch6Secd. LABELS ... 183
Ch6 SeC4.1. Addlng labels 183
Ch6 SeC4.2. LlStlng labels 184
Ché6 Sec4.3. Removing movable labels - - -+« 185
Cho6 Sec4.4. Axis labels and title - - - - r v v 186
Cho6 Sec4.5. Ferretlabel controls - = === r v v vvrreeee e 187

CONTENTS IX

Ché6 Sec4.6. PPLUS label commands -« -« -« ccrvvmmemeee oo e 187

Ché6 Sec4.7. Positioning labels relative to other plot elements - - - - - - - 188

Ché6 Sec4.8. Positioning labels using the mouse pointer - -« - ------- 189

Ché6 Sec4.9. Labeling details with arrows and text - -« === - 191

Ch6Sec5. COLOR.o e 191

Ch6 Sec5.1. Textand linecolors: -« -« - - xrrreeeeeee e 191

Ch6 Sec5.1.1. Ferret color controls for lines 192

Ch6 Sec5.1.2. PPLUS text and line color commands 193

Ch6 Sec5.2. Shade and fill colors = = === - - v v v v 194

Ch6 Sec5.2.1. Ferret shade and fill color controls 197

Ch6 Sec5.2.2. PPLUS shade color commands 197

Ch6Sec6. FONTSo e 198

Ché6 Sec6.1. Ferret font and text color - - - - - - 198

Ché6 Sec6.2. PPLUS font and text color commands - -« -« ---- 199

Ch6 Sec7. PLOTLAYOUT.o e 200

Ché6 Sec7.1. Ferret layout controls - === - - - - v v 200

Ch6 Sec7.1.1. Viewportsouiiiiiniinnnnenn.. 200

Ché Sec7.1.2. Pre-defined viewports 201

Ch6 Sec7.1.3. Advanced usage of viewports 202

Ch6 Sec7.1.4. ViewportSymbols............................ 202

Ché6 Sec7.2. PPLUS layout commands ===+ - - - ccvreemmeeee e 203

Ché6 Sec7.3. Controlling the white space around plots - -« -------- 203

Ch6 Sec8. CONTOURING.ooii e 204

Cho6 Sec8.1. Ferret contour controls = === - - - c e 204

Ché6 Sec8.1.1. /LEVELS qualifier 204

Ché6 Sec8.1.2. /PEN, /SIZE, /SIGDIG, /SPACING qualifiers . . . 207

Ché6 Sec8.2. PPLUS contour commands = -+« - - cccemmeee e 208

Ch6 Sec9. Special symbols 210

Ch6 Sec10. Map Projections and Curvilinear Coordinates. 213
Ch6 Sec10.1. Three-argument (curvilinear) version of SHADE, FILL,

CONTOUR’ and VECTOR .. 213

Ch6 Sec10.2. Gridded data sets on curvilinear coordinates - - - - - - - - - - 214

Ch6 Sec10.3. Layered (sigma) coordinates = - - -« -« covveemee e 215

Ch6 SeC104 Map Projections 216

Ché6 Sec10.4.1. Using Map Projection scripts................... 216

Ché6 Sec10.4.2. Overlays with Map Projections 217

Ché6 Sec10.4.3. Map Projection scripts. 218

CHAPTER 7: HANDLING STRING DATA: STRING VARIABLES AND

"SYMBOLS"

Ch7 Secl. Stringvariables........... i 221

Ch7 SeC]_.l. Stl‘lng arrays 221

Ch7 Sec2. String functions. il 222

Ch7 Sec2.1. STRCMP(stringl, string2) = -« -« cccvvoemeeemeee e e 222

Ch7 SeC22 STRLEN(StrIngl) 222

Ch7 SeC23 UPCASE(Strlngl) 223

Ch7 SeC24 DNCASE(StI‘lngl) 223

Ch7 Sec2.5. STRINDEX(stringl, substring) =« -0 223

X CONTENTS

Ch7 Sec2.6. STRRINDEX(stringl, substring) « -« oooeeeeee 223

Ch7 Sec2.7. SUBSTRING(stringl, offset, len) -« -« ooeeee 223

Ch7 Sec2.8. STRCAT(stringl, str2) === --crrreeeeeeeee e 224

Ch7 SeC29 STRFLOAT(StI‘II’Igl) 224

Ch7 Sec2.10. LABWID(string, charsize) = - - - - -« ccoveeeeeeee oo 224

Ch7 SeC211 SPAWN Command 225

Ch7 Sec2.12. Algebraic operations with string variables. - ===+ ---- - - 225

Ch7 Sec2.12.1. Logical operators with strings.................. 225

Ch7 Sec2.12.2. Shift transformation of string arrays............. 226

Ch7 Sec2.12.3. Strings in IF-THEN-ELSE. 226

Ch7 Sec2.12.4. String concatenation with "+": 226

Ch7 Sec2.12.5. Strings as Function arguments 227

Ch7 Sec2.12.6. Regridding string arrays....................... 227

Ch7 Sec2.13. NetCDF input and output of string data - -+ -------- 228

Ch7 Sec3. SymbolcommanDS 228
Ch7 Sec4. AUTOMATICALLY GENERATED SYMBOLS................ 229
Ch7 Sec5. USE WITH EMBEDDED EXPRESSIONS 230
Ch7 Sec6. ORDER OF STRING SUBSTITUTIONS 230
Ch7 Sec7. CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS231
Ch7 Sec8. USING SYMBOLS IN COMMAND FILES. 231
Ch7 Sec9. PLOT+ STRING EDITINGTOOLS 232
Ch7Sec10. SYMBOLEDITING i .. 232
Ch7 Secl11. SPECIALSYMBOLS. i .. 233

CHAPTER 8: WORKING WITH SPECIAL DATA SETS

Ch8 Secl. WHAT ISNON-GRIDDED DATA? 235
Ch8Sec2. POINTDATA 235
Ch8 Sec2.1. Getting point data into Ferret - -« -« ooeeeee 236

Ch8 Sec2.2. How point data is structured in Ferret - - - - - - -+ -+ 236

Ch8 Sec2.2.1. Working withdates........................... 237
Ch8 Sec2.3. Subsampling gridded fields onto point locations and times237

Ch8 Sec2.4. Defining gridded variables from pointdata - - - - - -~ - - - - 238

Ch8 Sec2.5. Visualization techniques for pointdata -« -+ - - 238
Ch8Sec3. VERTICALPROFILES........... .. .o, 239
Ch8 Sec3.1. How collections of profiles are structured in Ferret - - - - - 239

Ch8 Sec3.2. Getting profile data into Ferret - - - -----------vvv 240

Ch8 Sec3.3. Defining vertical sections from profiles - - - - -~ 241

Ch8 Sec3.4. Visualization and analysis techniques for profile sections 242
Ch8 Sec3.5. Subsampling gridded fields onto profile coordinates - - - -242

Ch8 Sec4. COLLECTIONSOF TIMESERIES. 242
Ch8 Sec5. COLLECTIONS OF 2-DIMENSIONALGRIDS................ 243
Ch8 Sec6. LAGRANGIANDATA 243
Ch8 Sec6.1. Visualization techniques for Lagrangian data - - - - - - - - - 243
Ch8 Sec7. SIGMA COORDINATEDATAo, 243
Ch8 Sec7.1. Visualization techniques for sigma coordinate data - - - - - 244
Ch8 Sec7.2. Analysis techniques for sigma coordinate data - - - - - - - - 244
Ch8 Sec8. CURVILINEAR COORDINATEDATA 244

Ch8 Sec8.1. Visualization techniques for curvilinear coordinate data -246

CONTENTS XI

Ch8 Sec8.2. Analysis techniques for curvilinear coordinate data - - - - - 247

Ch8Sec9. POLYGONALDATA........ ... i 247
Ch8 Sec9.1. Visualization techniques for polygonal data - - -~ - -« - -~ 247
Ch8 Sec9.2. Analysis techniques for polygonal data - - - - - - ===+ -~ 247

CHAPTER 9: COMPUTING ENVIRONMENT

Ch9Secl. SETTINGUPTORUNFERRET. ...t 249
Ch9 Sec2. FILES AND ENVIRONMENT VARIABLES USED BY FERRET. . 250
Ch9Sec3. MEMORY USEot i, 251
Ch9 Sec4. HARD COPY AND METAFILE TRANSLATION. 252
Ch9 Sec4.1. Hard copy: postscript output =« -« ----ooeeeee e 252
Ch9 Sec4.2. Metafile translation = -« - =@« r oo 254
Ch9 Sec4.3. Hard Copy: glf files 255
Ch9Sec5. OUTPUT FILE NAMINGt 255
Ch9 Sec6. INPUT FILE NAMINGot et 256
Ch9 Sec6.1. Relative version numbers = =« - ==« xorr oo 256

CHAPTER 10: CONVERTING TO NETCDF

Ch10Secl. OVERVIEW i 259
Ch10 Sec2. SIMPLE CONVERSIONS USING FERRET 259
Ch10 Sec3. WRITING A CONVERSION PROGRAM. 261
Ch10 Sec3.1. Creating a CDL file with Ferret - - - oooovnv 262

Chlo SeC32 The CDL flle 262

Ch10 Sec3.2.1. Dimensions, 263
Ch10Sec3.2.2. Variables............... 263
Ch10Sec3.23. Data........... ..o 265

Ch10 Sec3.3. Standardized NetCDF attributes - - -« - ooove e 267

Ch10 Sec3.4. Directing data toa CDF file - - - -« -cvveeeeeeeee e 268

Ch10 Sec3.5. Advanced NetCDF procedures -« -« 270
Ch10Sec3.5.1. Staggeredgrid 271
Ch10Sec3.5.2. Hyperslabs 271

Ch10 Sec3.5.3. Unevenly spaced coordinates 272

Ch10 Sec3.5.4. Evenly spaced coordinates (long axes) 273

Ch10 Sec3.5.5. "Modulo"axes 273

Ch10 Sec3.5.6. Reversed-coordinateaxes...................... 274

Ch10 Sec3.5.7. Converting time word data to numerical data 274

Chlo Sec36 Example CDL flle 274

Ch10 Sec4. CREATING A MULTI-FILE NETCDF DATASET 281
Ch10 Sec4.1. Tools for making descriptor files - -« -« == v ooeeee oo e 283

Ch10 Sec4.2. Example descriptor file = = =+ » - - - oo 283

CHAPTER 11: WRITING EXTERNAL FUNCTIONS

Chl1Secl. OVERVIEW e 285
Ch11 Sec2. GETTINGSTARTEDo i 285

Ch11 Sec2.1. Getting example/development code - - - - === === oo o - 286
Ch11 Sec3. QUICKSTARTEXAMPLE 286

XII' CONTENTS

Ch11 Sec3.1. The times2bad20 function = = =+« « =« == v v v v e e oo oo e ee 286

Ch11 Sec4. ANATOMY OF AN EXTERNAL FUNCTION 287
Ch11 Sec4.1. The ~_init subroutine (required) - - -« 288
Ch11 Sec4.2. The ~_compute subroutine (required) = - - - -« - 289
Ch11 Sec4.3. The ~_work_size subroutine
(required when work arrays are defined) - == === - - - - 290
Ch11 Sec4.4. The ~_result_limits subroutine
(required if result has a custom or abstractaxis) = = - -« - -0 291
Ch11 Sec4.5. The ~_custom_axes subroutine
(required if result has a custom axis) - -« -« s s 201
Ch11 Sec5. NOTES AND SUGGESTIONSo, 293
Chll SeC5.1. Inherltlng AXES =t ottt eeee i 293
Chll SeC5.2. Loop indices 294
Chll SeC5.3. Reduced AXES * ¢ vttt reeeee e 296
Chll SeC5.4. Strll’lg Arguments 297
Ch11 Sec6. UTILITY FUNCTIONS 298
Chll SeC61 EF_UtlICI‘nn 298
Ch11 Sec6.2. Available utility functions = = = = === o oeee e 299
Ch11 Sec6.2.1. ef set_desc(id, desc) 300
Ch11 Sec6.2.2. ef_set_num_args(id, num) 300

Ch11 Sec6.2.3. ef set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc) . 300
Ch11 Sec6.2.4. ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn). 301

Ch11 Sec6.2.5. ef_set_arg name(id, arg, name)................. 301
Ch11 Sec6.2.6. ef_set_arg desc(id, arg,desc) 301
Ch11 Sec6.2.7. ef_set_arg unit(id, arg, unit) 301
Ch11 Sec6.2.8. ef_set_arg type(id, arg, type) 302

Ch11 Sec6.2.9. ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt) . . 302
Ch11 Sec6.2.10. ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn) 302
Ch11 Sec6.2.11. ef set_axis_reduction(id, Xred, Yred, Zred, Tred) . 303
Ch11 Sec6.2.12. ef set_axis_limits(id, axis, lo, hi)................ 303
Ch11 Sec6.2.13. ef _set_custom_axis(id, axis, lo, hi, delta, unit, modulo)303
Ch11 Sec6.2.14. ef_set_num_work_arrays(id, nwork) 304
Ch11 Sec6.2.15. ef_set_work_array_dims(id, iarray, xlo, ylo, zlo, tlo, xhi,
yhi, zhi, thi) 304
Ch11 Sec6.2.16. ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)304
Chll Sec6.2.17. ef_get_arg info(id, iarg, arg name, arg_title, arg_units)

305
Ch11 Sec6.2.18. ef_get_arg string(id, iarg, text) 305
Ch11 Sec6.2.19. ef_get_one_arg_string(id, iarg, text)............. 305
Chll Sec6.2.20. ef_get_axis_info(id, iarg, axname, ax_units, backward,
modulo, regular) 306

Ch11 Sec6.2.21. ef_get_axis_dates(id, iarg, taxis, numtimes, datebuf)306

Ch11 Sec6.2.22. ef_get axis_calendar(id, iarg, calname, yrdays, nmonths,
days_in_month) 306

Chll Sec6.2.23. ef_get_arg subscripts(id, arg lo_ss, arg hi_ss, arg incr)
307

Chll Sec6.2.24. ef get_arg ss_extremes(id, num_args, ss_min, ss_max)
308

Ch11 Sec6.2.25. ef_get_bad_flags(id, bad_flag, bad_flag result). .. 308

CONTENTS XIII

Ch11 Sec6.2.26. ef_get_coordinates(id, arg, axis, lo, hi, coords). ... 309

Ch11 Sec6.2.27. ef_get_box_size(id, arg, axis, lo, hi, size) 310
Ch11 Sec6.2.28. ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims)311
Ch11 Sec6.2.29. ef_get_one_val(id, arg, value) 311

Ch1l Sec6.2.30. ef_get string arg element(id, arg, ijk,1, str_arg, slen,
text) 312
Ch11Sec6.2.31. ef_get_string arg element_len (id, arg, str_arg, i,j, k1, slen)

312
Ch11 Sec6.2.32. ef_get_string_arg max_len (id, arg, str_arg, slen) . 312
Ch11 Sec6.2.33. ef version_test (version)....................... 313
Ch11 Sec6.2.34. ef bail out(id, text) 313

PART II: COMMANDS REFERENCE

RefSecl. ALLAS. ... 315
RefSec2. CANCEL 315
Ref Secz.l. CANCEL ALIAS 315
Ref Sec2.2. CANCEL ATTRIBUTE - - - - - - o oo e 315
Ref Secz.g. CANCEL AXIS 316
Ref SeC2.4:. CANCEL MEMORY 318
Ref SeC2.5. CANCEL MOVIE 320
Ref SeC2.6. CANCEL SYMBOL 320
Ref SeC2.7. CANCEL REGION 320
Ref Sec2.8. CANCEL VIEWPORT - 321
Ref SeC2.9. CANCEL WINDOW 322
Ref Sec3. CONTOUR e 322
RefSecd. DEFINE 329
Ref SeC4.1. DEFINE ALIAS 329
Ref Sec4.2. DEFINE ATTRIBUTE - - - - - - o oo 329
Ref SeC4.3. DEFINE AXIS 330
Ref SeC4.4:. DEFINE GRID 337
Ref SeC4.5. DEFINE REGION 338
Ref SeC4.6. DEFINE SYMBOL 340
Ref SeC4.7. DEFINE VARIABLE 340
Ref SeC4.8. DEFINE VIEWPORT 343
RefSec5. ELIF. o 346
RefSech. ELSEo 346
RefSec7. ENDIFE. 346
RefSec8. EXIT ... e 346
RefSecO. FILE. 347
Ref Secl0. FILL. oo e e 348
Ref Secll. FRAME. e 348
RefSecl2. GO .. 349
Ref Secl3. HELP ... e 349
Ref Secld. IF ... 350
Ref Sec14.1. IF-THEN-ELSE conditional execution - - -+« 350
Ref Sec14.2. IF-THEN-ELSE logic for masking - -« e e 352
Ref Secl5. LABEL 353
RefSecl6. LET o e 353

XIV CONTENTS

Ref Secl7. LIST. e e 354
Ref Secl18. LOAD 359
Ref Sec19. MESSAGE 360
Ref Sec20. PALETTE. e 361
Ref Sec21. PATTERN e 362
Ref Sec22. PAUSE 362
Ref Sec23. PLOT.o e 363
Ref Sec24. POLYGON. e e 369
Ref Sec25. PPLUS. 376
Ref Sec26. QUERY e 377
Ref Sec27. QUIT o e e 377
Ref Sec28. REPEAT e e 377
Ref Sec29. SAVE. 381
Ref Sec30. SAY ... 384
Ref Sec31. SET ... 384
Ref Sec311 SET ATTRIBUTE 384

Ref Sec312 SET AXIS 384

Ref Sec313 SET DATA_SET 386

Ref Sec314 SET EXPRESSION 394

Ref Sec315 SET GRID 394

Ref Sec316 SET LIST 395

Ref Sec317 SET MEMORY 397

Ref Sec318 SET MODE 398

Ref Sec31.8.1. SET MODE ASCII_FONT 399

Ref Sec31.8.2. SET MODE CALENDAR 399

Ref Sec31.8.3. SET MODE DEPTH_LABEL 400

Ref Sec31.8.4. SET MODE DESPERATE 401

Ref Sec31.8.5. SET MODE DIAGNOSTIC 401

Ref Sec31.8.6. SET MODE GRATICULE...................... 402

Ref Sec31.8.7. SET MODE IGNORE_ERROR 402

Ref Sec31.8.8. SET MODE INTERPOLATE 402

Ref Sec31.8.9. SETMODELABELS 403

Ref Sec31.8.10. SETMODELOGO. oo, 403

Ref Sec31.8.11. SET MODE JOURNAL 403

Ref Sec31.8.12. SET MODE LATIT _LABEL 404

Ref Sec31.8.13. SET MODE LONG_LABEL 404

Ref Sec31.8.14. SET MODE METAFILE 405

Ref Sec31.8.15. SET MODE PPLLIST 405

Ref Sec31.8.16. SETMODEREFRESH 406

Ref Sec31.8.17. SET MODE SEGMENTS 406

Ref Sec31.8.18. SET MODESTUPID 406

Ref Sec31.8.19. SET MODE VERIFY 407

Ref Sec31.8.20. SETMODEWAIT 407

Ref Sec319 SET MOVIE 408

Ref Sec31108ET REGION 409

Ref Sec31118ET VARIABLE 410

Ref Sec31.11.1. SET VARIABLE/BAD=....................... 410

Ref Sec31.11.2. SET VARIABLE/GRID=...................... 411

Ref Sec31.11.3. SET VARIABLE/TITLE=...................... 411

CONTENTS XV

Ref Sec31.11.4. SET VARIABLE/OFFSET=....................

Ref Sec31.11.5. SET VARIABLE/SCALE=.....................

Ref Sec31128ET VIEWPORT

Ref Sec3113SET WINDOW

Ref Sec32. SHADE.
Ref Sec33. SHOW. ... e
Ref Sec331 SHOW ALIAS

Ref Sec332 SHOW ATTRIBUTE

Ref Sec333 SHOW AXIS

Ref Sec334 SHOW COMMANDS

Ref Sec335 SHOW DATA_SET

Ref Sec336 SHOW EXPRESSION

Ref Sec337 SHOW FUNCTION

Ref Sec338 SHOW GRID

Ref Sec339 SHOW LIST

Ref Sec33108HOW MEMORY

Ref Sec33118HOW MODE

Ref Sec33128HOW MOVIE

Ref Sec3313SHOW QUERIES

Ref Sec3314SHOW REGION

Ref Sec3315SHOW SYMBOL

Ref Sec3316SHOW TRANSFORM

Ref Sec3317SHOW VARIABLES

Ref Sec33188HOW VIEWPORT

Ref Sec33198HOW WINDOWS

Ref Sec34. SPAWN . ..
Ref Sec35. STATISTICS. e
Ref Sec36. UNALIAS. e
Ref Sec37. USE
Ref Sec38. USER.
Ref Sec381 Objective analysis

Ref Sec382 Scattered Samphl’lg

Ref Sec39. VECTOR. e e
Ref Secd0. WHERE
Ref Secdl. WIRE.

GLOSSARY
APPENDIX A: EXTERNAL FUNCTIONS

Appendix A Secl.COMPRESSI i
Appendix A Sec2.COMPRESS]o i
Appendix A Sec3.COMPRESSK. i
Appendix A Sec4. COMPRESSL. i
Appendix A Sec5.COMPRESSI_BY o L.
Appendix A Sec6.COMPRESS]_BY......... i i
Appendix A Sec7Z.COMPRESSK_BYo L.
Appendix A Sec8. COMPRESSL_BYt
Appendix A Sec9.CONVOLVEL

XVI CONTENTS

Appendix A Secl0.curv_to_rect_map.............ccooiiiiiiiiiiii.. 451

Appendix A Secll.curv_to_rect............ i 453
Appendix A Secl2.rect_to_curv............. ... i 454
Appendix ASecl3. DATE1900
455

Appendix A Sec14. DAYS1900TOYMDHMS 456
Appendix A Sec15.EOF_SPACE i, 456
Appendix A Sec16.EOF_STAT. i, 457
Appendix A Sec17.EOF_TFUNC. i, 459
Appendix A Secl8.. FINDHI
460

Appendix ASecl9. FINDLO
460

Appendix A Sec20.. FFT_IM
461

Appendix A Sec2l.. FFT_RE
462

Appendix A Sec22. FFT_INVERSE. L. 462
Appendix ASec23. Lanczos
463

Appendix A Sec24. LSL_LOWPASS. i 464
Appendix A Sec25.MINUTES24 465
Appendix A Sec26. WRITEVSD i i 465
Appendix A Sec27. XCAT
466

Appendix A Sec28. YCAT
467

Appendix ASec29. ZCAT
467

Appendix A Sec30.. TCAT
468

Appendix A Sec31.ZAXREPLACE_AVG.......... 468
Appendix A Sec32.ZAXREPLACE BIN........... 469

APPENDIX B: PPLUS USERS GUIDE

Appendix BSecl Introduc-
tion 471
Appendix BSec2. GETTING
STARTED 472
Appendlx B SeCZlVAX/VMS 472
Appendlx B Secz.z Required
Definitions 472
Appendix B Sec22.1........... Optional Definitions
473
Appendix B SecBCOMMAND FORMAT 473
Appendlx B SeC3.1 THE
COMMANDS 473
Appendix B SecACOMMAND SYNOPSIS o .t 474

CONTENTS XVII

Appendlx B Sec4.1 FILES

474
Appendix B Sec4d.1.1 Data Files
474
Appendix B Secd.1.2 Other Data Entry
475
Appendix B Sec4.1.3....... PPLUS Output Files
475
Appendix B Sec4.14...................... PPLUS Command Files
475
Appendlx B Sec4.2 AXIS
475
Appendix B Secd.2.1 X- And Y-axis
475
Appendix B Secd.2.2..... Time Axis
476
Appendlx B Sec4'3 LABELS
477
Appendix B Sec4. 4COMMAND PROCEDURES -« -« ooomeeeeee e 477
Appendlx B Sec4'5 COLOR
AND FONTS 478
Appendlx B Sec4.6 PLOT
APPEARANCE 478
Appendlx B Sec4.7 PLOT
GENERATION 478
Appendlx B Sec4'8 DATA
MANIPULATION 479
Appendlx B Sec4.9 HELP
479
Appendix B SecS5BEGINNERSGUIDE 480
Appendlx B Sec5'1 FORMAT
480
Appendlx B Sec5.2 52 VARS
480
Appendlx B Sec5'3 SKP AND
RD 481
Appendlx B Sec5.4 PLOT
AND CONTOUR 482
Appendlx B SeCSSEXAMPLES 482
Appendix B Sec55.1................ ... Unformatted Data, X-Y Plot
482
Appendix B Sec5.52 Pre-gridded Data, Contour Plot
483
Appendix B Sec5.5.3 Ungridded Data, Contour Plot
484
Appendix B Sec5.5.4 i Time Series Plot
484
Appendix BSeco ROUTING
PLOT FILES. . . .o e e 485
Appendlx B SeC61VAX/VMS 485

XVIII CONTENTS

Appendix B Sec6.1.1 Plot Files And Mom

485
Appendix B Sec6.1.2 Plotting Devices
486
Appendix B Sec6.13.......... i Examples
487
Appendix BSec7 PPLUS
COMMANDFILES 487
Appendix B Sec7.1INTRODUCTION - - - - - crrreeeeeeeee e e 487
Appendlx B Sec7.2 SYMBOL
SUBSTITUTION 488
Appendix B Sec7.3GENERAL GLOBAL SYMBOLS - -« == === oo oo e - 489
Appendlx B Sec7.4 EPIC
GLOBAL SYMBOLS 490
Appendix B Sec7.5COMMAND FILE LOGIC - -« 491
Appel’ldlx B SeC76ARITHMETIC 492
Appendlx B Sec7.7 SYMBOL
ARRAYS 492
Appendlx B Sec7'8 SPECIAL
FUNCTIONS 493
Appendix B SecZ7.8.1...... ... $EDIT
493
Appendix B Sec7.82 $EXTRACT
494
Appendix B Sec7.8.3.. $INTEGER
495
Appendix B Sec7.8.4....... ... i $LENGTH
495
Appendix B Sec7.85 $LOCATE
496
Appendix B Sec7.8.6... $ELEMENT
496
Appendlx B Sec7.9 LABELS
497
Appendix B Sec7.9.1........ AXIS LABELING
497
Appendix B Sec79.2.......... EMBEDDED STRING COMMANDS
498
Appendix B Sec79.3 i Pen Selection
500
Appendix B Sec79.4 oL Character Slant
500
Appendix B Sec7.9.5. . Subscripting, Superscripting And Back Spacing
500
Appendlx B Sec710 DATA
FORMATS 500
Appendix B Sec7.10.1.................. SEQUENTIAL FORMATS
500

CONTENTS XIX

512

512

512

XX

Appendix B Sec7.102......... BIBO FORMAT

501
Appendix B Sec7.103 L EPIC FORMAT
501
Appendix B Sec7.104....... DSF FORMAT
502
Appendix B Sec7.11ADVANCED COMMANDS - - = ==« cvveeeee e 504
Appendix B Sec7.11.1..................... %OPNPLT/qualifier
504
Appendix B Sec7.11.2..................... %CLSPLT/qualifiers
504
Appendix B Sec7113.......... i %PLTLIN,n
505
05 Appendix B Sec7.11.4.. %LABEL/qualifier,x,y,ipos,ang,chsiz,label
Appendix B Sec7.115 %RANGE, min,max,ntic
506
Appendix B Sec7.11.6............... % XAXIS/quali-
tier,xlow,xhigh,xtic,y[,nmstc][lint][,xunit][,ipos][,csize][frmt] 506
Appendix B Sec7.11.7........... %YAXIS/quali-
tier,ylow,yhigh,ytic,x[,nmstc][lint] [,yunit][,ipos][,csize][frmt] 507
Appendix BSec8. PLOT5
PPLUSDIFFERENCES e 509
Appendix B Sec9COMMAND DESCRIPTION 509
Appendix B Sec9.1@file_name/qualifier argl arg2 arg3 ... - - - -+ - - 509
Appendlx B SngzAUT0,0N/OFF 510
Appendix B Sec9.3AUTOLAB,ON/OEFF - - -« 510
Appendix B Sec9.4AXATIC, ATICX,ATICY = = == ovvvveeeeeee e 511
Appendix B Sec9.5AXLABP,LABX,LABY - oo 511
Appendix B Sec9.6AXLEN,XLEN,YLEN - - = == c o vvveeeeeeeee oo 511
Appendix B Sec9.7AXLINT, LINTX,LINTY = - == covveeeeeeeee s 511
Appendix B Sec9.8AXLSZE HGTX, HGTY - = = === vvvveeeeeee oo 511
Appendix B Sec9. 9AXNMTC,NMTCX,NMTCY - - 511
Appendix B Sec9.10AXNSIG,NSIGX,NSIGY =« = ==« cvvveeeeeeee s 511
Appendix B Sec9.11AXSET, TOP,BOT,LEFT,RIGHT - - -" 512
Appendix B Sec9.12AXTYPE, TYPEX,TYPEY - - = =« v vvveeeee oo 512
Appel’ldlx B SeC913 BAUD,IB
Appendlx B SeC914BOX,ON/ OFF 512
Appel’ldlx B SeC915 C
Appel’ldlx B SeC916 CLSPLT
Appendix B Sec9.17CONPRE,prefix - - - - - - - 512
Appendix B Sec9.18CONPST,postfix -« « == v v vrrmmmseeee e e 513
Appendix B Sec9.19
CONSET, HGT,NSIG,NARC,DASHLN,SPACLN,CAY,NRNG,DSLAB - 513
Appendlx B SngzOCROSS,ICODE 514
Appendix B Sec9.21DATPT type,mark - - - - - 514
CONTENTS

on/ off
symbol

symbol

515

516

516

518

518

519

521

524

524

525

Appendlx B SeC922 DEBUG
515

Appel’ldlx B SeC923 DEC
515
Appel’ldlx B SeC924 DELETE
515
Appendix B Sec9.25DFLTFNT font - = - -« oo v v e e e ee 515
Appel’ldlx B SeC926 DIR,arg
Appel’ldlx B SeC927ECH010n/ Off 515
Appel’ldlx B SeC928 ENGLISH
Appel’ldlx B SeC929 ENTER
Appendix B Sec9.30EVAR/qualifier,x-var,y-var -« 516
Appendix B Sec9.31GET file_name - - - - -« == - - 518
Appendix B Sec9.32GRID[,LINEAR] - - - - -+« v v 518
Appel’ldlx B SeC933 HELP,arg
Appendix B Sec9.34HLABS,nheight - - - - - - - - - ooveeeeeeeee e 518
Appel’ldlx B SeC935 HLP’arg
Appel’ldlx B SeC936 F
expression THEN 519
Appel’ldlx B SeC937 INC Sym
Appendix B Sec9.38LABS/ qualifier,n,X,Y,JST label - - - - -« oo v 519
Appendix B Sec9.39LABSET,HLAB1,HXLAB,HYLAB,HLABS - - - - - - - 520
Appendix B Sec9.40LEV,arg,arg,arg ... == 520
Appendix B Sec9.41LIMITS,value,comparison,flag - -« --- 521
Appendix B Sec9.42LINE,n,MARK, TYPE, XOFF,YOFF,DN1,UP1,DN2,UP2
Appendix B Sec9.43LINFIT,n, XIMIN,XIMAX,XOMIN,XOMAX - - - - - - 522
Appendix B Sec9.44LIST,IMIN,IMAX,JMIN,JMAX,VCOMP,arg - - - - - 523
Appel’ldlx B SeC945 LISTSYM
Appendix B Sec9.46LLABSn, X, Y, TYPE - - - - - - - v 524
Appendix B Sec9.47MARKH,N,SIZE - - -+ - - v v vveee e 524
Appel’ldlx B SeC948 METRIC
Appel’ldlx B SeC949 NLINES
Appendix B Sec9.500RIGIN,XORG,YORG -« -« v vvvveeeeeeeee e 525
Appendix B Sec9. 51PEN,n,ipen 526
Appendix B Sec9.52PLOT/qualifiers,label - - -« rvveeeeeee e 526
Appendix B Sec9.53PLOTV /qualifiers, VANG,INC, label - - -« - 526
Appendix B Sec9.54PLOTUV /qualifiers, VANG,INC, label - - - - - - - - - - 527
Appendix B Sec9.55PLTNME fname = - -« === - - covemeeeeee e e e 527
Appendix B Sec9.56PLTYPEJICODE - - - -« o v vrveeeeeeeee e e e 527

CONTENTS XXI

Appendix B Sec9.57RD/ qualifier, NX,NY, TYPE,n file name - ----- - 528

Appendlx B SeC958 RESET
529
Appendlx B SeC959 RETURN
529
Appendlx B SeC960RLABS,D,ANG 529
Appendix B Sec9.61ROTATE,ON/OFF - - - - -+« v v e 529
Appendix B Sec9.62RWD, file_ name - - -« -rrcoi e 529
Appendix B Sec9.63SAVE,file name = - - - - -0 530
Appendlx B SeC964: SET Sym
arg 530
Appendlx B SeC965 SHOW
symbol 530
Appendix B Sec9.66SIZE,width height - - === == oo 530
Appendix B Sec9.67SKP,n file name = - - - - - c v 531
Appendlx B SeC9688MOOTH,n 531
Appendlx B SeC969 SPAWN
531
Appendix B Sec9.70TAXIS/qualifier,DT,arg - - - -« oooeeeeeee s 531
Appendix B Sec9.7ITEKNME[fname] - -« --orrreeee oo 532
Appendix B Sec9.72TICS,SMX,LGX,SMY,LGY,IX,IY - -« v 532
Appendix B Sec9.73TIME, TMIN, TMAX, TSTART -« -« vv - 532
Appendix B Sec9.74TITLE, HLAB,label - - -« --ooreeeeeeeees 532
Appendlx B SeC975TKTYPE,TYPE 533
Appendix B Sec9.76TRANSXY,n, XFACT, XOFF,YFACT,YOFF - - - - - - - 533
Appendlx B SeC977 TXLABP/H
533
Appendix B Sec9.78TXLINT low_int,hi_int - = - - -« - - v reeeee e ee e 533
Appendlx B SeC979TXLSZE,ht 534
Appendlx B SeC980TXNMTC,n 534
Appendix B Sec9.81TXTYPE, type,style - - - - -« - ee 534
Appendix B Sec9.82VARS,NGRP,A1,A2,A3,... Al - 534
Appendix B Sec9.83VECKEY / qualifier,x,y,ipos,format - === -------- 535
Appendix B Sec9.84VECSET length,scale - - - -« -ovoeeeeee e 535
Appendix B Sec9.85VECTOR/ qual,skipx,skipy,label - = = == === oo oo - 535
Appendix B Sec9.86VELVCT rlenfactinc - - --ooorreeeee oo e 536
Appendix B Sec9.87VIEW / qualifiers,ZSCALE,IC,ZMIN,ZMAX,VCOMP,label
537
Appendlx B SeC988 WHILE
expression THEN 537
Appendix B Sec9.89WINDOW,ON/OFF - - -+« «c v vvveeeeeeee e 538
Appendix B Sec9.90XAXIS,XLO,XHLXTIC - - - cvorereeeeeee e 538
Appendlx B SeC991XFOR,frmt 538
Appendlx B SeC992XLAB,1abe1 539
Appendix B Sec9.93YAXIS,YLO,YHLYTIC - - - -vooreeeeeeee e 539
Appendlx B SeC994YFOR,frmt 539
Appendlx B SeC995YLAB,1abe1 539
Appendix BSecl0 Font Ta-
bles 539

XXII CONTENTS

APPENDIX C: PLOTPLUS PLUS: FERRET ENHANCEMENTS TO PLOTPLUS

Appendix C Sec1PLOTPLUS HISTORY, EVOLUTION. 541
Appendix C Sec2ENHANCED COMMANDS DESCRIPTION 542
Appendix C Sec2.1ALINE/ qualifier line#, minx, miny, maxx, maxy, set542
Appendlx C SeC2.2 CLSPLT
543
Appendlx C SeC2.3 COLOR n,
red, green, blue 543
Appendlx C SeC2.4 CONSET
hgt, nsig, narc, dashln, spacln, cay, nrng, dslab, spline_tension, draftsman - - - - - 543
Appendlx C SeCZSFILL/quaIIerr 545
Appendlx C SeC2.6 LINE n,
mark, use 545
Appendlx C SeC2.7 LIST arg
545
Appendlx C SeC2.8 PEN n’
ndx 545
Appendlx C SeC2.9 PLTNME
metafile_name 546
Appendlx C SeC21O PLTYPE
icode META 546
Appendix C Sec2.11SHADE/qualifier - 546
Appendlx C SeC212 SHAKEY
do_key, orient, klab_siz, klab_inc, klab_dig, klab_len, kx_lo, kx_hi, ky_lo, ky_hi -547
Appendlx C SeC213 SHASET
547
Appendix CSec3 GKS LINE
BUNDLES 549
Appendix CSecd. HARD
COPY 550
Index 553

CONTENTS XXIII

Chapter 1: INTRODUCTION

Ch1 Secl. OVERVIEW

Ferret is an interactive computer visualization and analysis environment designed to meet the
needs of oceanographers and meteorologists analyzing large and complex gridded data sets.
"Gridded data sets" in the Ferret environment may be multi-dimensional model outputs,
gridded data products (e.g., climatologies), singly dimensioned arrays such as time series and
profiles, and for certain classes of analysis, scattered n-tuples (optionally, grid-able using Fer-
ret's objective analysis procedures). Ferret accepts data from ASCII and binary files, and from
two standardized, self-describing formats. Ferret's gridded variables can be one to four dimen-
sions—usually (but not necessarily) longitude, latitude, depth, and time. The coordinates
along each axis may be regularly or irregularly spaced

Ferret offers the ability to define new variables interactively as mathematical expressions in-
volving data set variables and abstract coordinates. Calculations may be applied over arbi-
trarily shaped regions. Ferret's "external functions" framework allows external code written in
FORTRAN, C, or C++ to merge seamlessly into Ferret at runtime. Using external functions,
users may easily add specialized model diagnostics, advanced mathematical capabilities, and
custom output formats to Ferret. A collection of general utility external functions is included
with Ferret.

Ferret provides fully documented graphics, data listings, or extractions of data to files with a
single command. Without leaving the Ferret environment, graphical output may be customized
to produce publication-ready graphics. Graphic representations include line plots, scatter
plots, line contours, filled contours, rasters, vector arrows, polygonal regions and 3D wire
frames. Graphics may be presented on a wide variety of map projections. Interfaces to integrate
with 3D and animation applications, such as Vis5D and XDataSlices are also provided.

Ferret has an optional point-and-click graphical user interface (GUI). The GUI is fully inte-
grated with Ferret's command line interface. The user may freely mix text-based commands
with mouse actions (push buttons, etc.). Ferret's journal file will log all of the actions per-
formed during a session such that the entire session, including GUI inputs, can be replayed and
edited at a later time. The GUI version is not currently supported, and is not available on all op-
erating systems.

This User's Guide describes only the command line interface to Ferret. Other documents de-
scribe the point and click interface.

Ferret was developed by the Thermal Modeling and Analysis Project (TMAP) at
NOAA/PMEL in Seattle to analyze the outputs of its numerical ocean models and compare
them with gridded, observational data. Model data sets are often multi-gigabyte in size with
mixed 3- and 4-dimensional variables defined on staggered grids.

INTRODUCTION 1

Ferret graphics calls are made using the Plot Plus (PPLUS) graphics package, which is con-
tained within Ferret. Plot Plus was written by Don Denbo. The Ferret version of PPLUS has di-
verged somewhat from the original, and the Ferret developers are responsible for these
changes and for all of Ferret's graphics. Additions to PPLUS, for Ferret only, are documented
in Appendix C of this manual (p. 541), which also has a brief history of the PPLUS graphics
package.

Ferret is supported on a variety of Unix workstations with a version also available for Windows
NT/9x/XP. Ferret is available at no charge from anonymous FTP [node ftp.ferret.noaa.gov] or
from the World Wide Web [URL http://www.ferret.noaa.gov/Ferret].

Ch1 Secl.1. Ferret User's Group

The Ferret User's Group provides a venue to ask experienced Ferret users for advice solving
problems and to keep abreast of the latest Ferret updates. To (un)join simply send an e-mail
message to

Majordomo@ferret.pmel.noaa.gov

and include a message which says simply

(un) subscribe ferret users

(Note this must be in the e-mail message BODY—not in the subject line.) To learn about the
user's list without joining send this message instead to the same address:

info ferret users

Ch1 Secl.2. Ferret Home Page

The Ferret Home Page contains source code distributions, on line documentation, Users'
Group archives, Frequently Asked Questions and more. It is available at

http://ferret.pmel.noaa.gov/Ferret/FAQ/ferret FAQ.html

Chl Sec2. GETTING STARTED

A quick way to get to know Ferret is to run the tutorial provided with the distribution.

% ferret
yes? GO tutorial

2 CHAPTER1

http://www.ferret.noaa.gov/Ferret
http://ferret.pmel.noaa.gov/Ferret/FAQ/ferret_FAQ.html

If Ferret is not yet installed consult the chapter "Computing Environment" (p. 249). (The tuto-
rial is also available through the World Wide Web through Ferret's on-line demonstrations
page.) The tutorial demonstrates many of Ferret's features, showing the user both the com-
mands given and Ferret's textual and graphical output. You may find the explanations, terms
and examples in this manual easier to understand after running the tutorial.

Ch1 Sec2.1. Concepts
Words in bold below are defined in the glossary of this manual.

In Ferret all variables are regarded as defined on grids. The grids tell Ferret how to locate the
data in space and time (or whatever the underlying units of the grid axes are). A collection of
variables stored together on disk is a data set.

To access a variable Ferret must know its name, data set and the region of its grid that is de-
sired. Regions may be specified as subscripts (indices) or in world coordinates. Data sets, after
they have been pointed to with the SET DATA command (alias "USE"), may be referred to by
data set number or name.

Using the LET command new variables may be created "from thin air" as abstract expressions
or created from combinations of known variables as arbitrary expressions. If component vari-
ables in an expression are on different grids, then regridding may be applied simply by naming
the desired grid.

The user need never explicitly tell Ferret to read data. From start to finish the sequence of oper-
ations needed to obtain results from Ferret is simply:

1) specify the data set

2) specify the region

3) define the desired variable or expression (optional)
4) request the output

For example (Figure 1 1),

yes? USE coads 'global sea surface data

INTRODUCTION 3

http://ferret.pmel.noaa.gov/Ferret/on_line_demonstrations.html
http://ferret.pmel.noaa.gov/Ferret/on_line_demonstrations.html

yes? SET REGION/Z=0/T="16-JAN-1982"/X=160E:160W/Y=20S:20N

yes? VECTOR uwnd,vwnd 'wind velocity vector plot
TIME : 16-JAN-1982 12:00 DATA SET: coads
COADS 2x2 Degree Monthly Average Surface Marine Observations
20N 1 I I I I L L
Dl e LS
r o <] ’// 70)T
) N e) X - [
X s N S
e /#%;/// /LT Tk
AG e Ry TN
L s s N NN
. WA ~ N~ TN~
S “ ~ PSRN
g] AT - - |
g | e T e e e e —
’ . ps - T Ve J T T /<
7 -/ e N/ ST s T
— ' — raraand —
e
) ~ o R Ay
ST \\i/’”~/\</
IN COLT NN Vs ST
- - Vs P A
S A L VAV A

T
160°€ 170°€ 180° 170°W 160°W
LONGITUDE

ZONAL WIND (M/S) , MERIDIONAL WIND (M/S)

—> 105

Figure 1 1

Ch1 Sec2.1.1. Thinking like a Ferret:

(A discussion on the Ferret outlook on the concepts of data, variables, grids and other basics of
Ferret.)

Plottable variables

For this discussion we will coin the term "plottable variables." There are no non-plottable vari-
ables that will come up in this discussion but "variables" is a bit too generic. Plottable variables
are of 3 types:

. file variables — read from disk files
* user-defined variables — defined by the LET command
* pseudo-variables — regions (LLJ,K,L,X,Y,...) used as variables

As much as possible Ferret tries to make all types of variables indistinguishable. All plottable
variables are defined on grids. No plottable variables exists in a vacuum for Ferret. The grid on
which a plottable variable exists tells how to locate the variable in space and time. In cases
where the variables are abstract in nature—disconnected from space and time—Ferret will as-
sociate those variables with grids that are abstract, too. Where a geographical grid will associ-
ate the Nth position along an axis with a location (like 20 degrees north latitude) an abstract
grid will simply associate the Nth position with the number N. Plottable variables may be
regridded to other grids than the one on which they are defined. (Done with "G=".)

All references to plottable variables must have a complete context. A complete context will be
described in detail later—briefly it means a region in space, an interval in time and the data

set(s) in which the variables will be found.

Grids

4 CHAPTER1

All Ferret grids are 4-dimensional. In most cases the axes have the obvious interpretation of 3
space coordinates and time but sometimes the axes are abstract.

A grid is composed of 4 axes, each describing the coordinates along one dimension. 3d, 2d, 1d
and 0d grids are regarded as special cases of the full 4 dimensions in which 1 or more axes are
set to "NORMAL".

Ferret tries to look at all axes equally—the same syntax of regions and transformations applies
to each. Calendar dates, east-west longitudes and north-south latitudes are merely convenient
ways to format positions along axes that have special interpretations to people—not to Ferret.
(The only exception to this is that if the Y axis has units of Latitude Ferret will insert co-
sine(Latitude) factors into some calculations.)

Axes and grids may be defined by "grid files" (which normally have .GRD filename exten-
sions). Axes may also be defined by the DEFINE AXIS command; grids by the DEFINE GRID
command.

Contexts

A context is a region or point in space and time and a data set(s). This is the information needed
by Ferret to make sense of a reference to a plottable variable. Suppose that "U" is a variable in a
data set (file) called U DATA. A command like "PLOT U" is meaningful only when Ferret
knows that it is supposed to be looking for U in data set U _DATA and knows where in 4-dimen-
sional space it is supposed to plot.

The context space-time region may be described by a mix of subscript and world coordinate
positions. Subscripts are specified by I=,J=K=,L= for axes | through 4, respectively. World
coordinates are specified by X=,Y=,Z=,T=. On the right of the equal sign a single point may be
given or a range specified by low:high may be given. Special formats are allowed for X= (lon-
gitude, e.g. 160W), Y=(latitude, e.g. 23.5S) and time (calendar dates like
"7-NOV-1989:12:35:00" in quotation marks).

The data set may be given by name or number. The commands SET DATA and CANCEL
DATA and the D= context descriptor all accept the name of the data set or its number. The data

sets are numbered by the order in which they are pointed to with SET DATA. This order may be
seen with SHOW DATA.

You can tell Ferret the context in 3 places:

1. The program context: Using the commands SET REGION and SET DATA you can describe
a context in which all commands and expressions will be interpreted. You can look at the
program context with SHOW REGION and SHOW DATA. (The command SET DATA is
used both to initialize new data sets and to make previously initialized sets the current pro-

gram context. When SET DATA initializes a new data set that set automatically becomes the
data set for the program context.) Example: SET REGION/Z=50

INTRODUCTION 5

6 CHAPTER1

-gui
start Ferret in point-and-click mode (may not be available on all platforms). This option is
not currently supported. Starting Ferret with ferret -gui will run the current version of Fer-
ret, but some features may not work. If you need such features, you will need to use the
command-line version of Ferret.

-help
obtain help on the Unix command line options

-nojnl
start Ferret without a journal file. Within the Ferret session, you can use SET MODE
JOURNAL:<filename> to turn on journaling and set the journal file name if desired.

--gif
Ferret can run in batch mode—without an X server (see also -server below). Graphical out-
put is buffered, and is stored in a GIF file by executing the FRAME command. For example:

> ferret -gif
yes? (commands that generate a plot...)
yes? FRAME/FILE=picture.gif

sends the stored graphical output from Ferret to the GIF file picture.gif.
Please note the following when using batch mode:

« Window resizing only works if the window is cleared before resizing the window. For
instance:
yes? set window/clear/size=0.25
will resize the window while
yes? set window/size=0.25/clear
will cause an error.
* Avoid metafile commands when running in batch mode. In particular,
yes? set mode meta
may cause problems.
* Don't create new Ferret windows when running without an X server. The following
command:
yes? set window/new
will cause Ferret to crash.

-batch
Ferret can generate PostScript files without an X server. If you wish to use this mode, start
Ferret with the -batch option:

ferret -batch <file>.ps

where <file> is the name of the output file. Note that the filename must end with ".ps".

INTRODUCTION 7

Please note the following when using PostScript mode:

 The PostScript output will not be fully written to the output file until you exit from Ferret.

* Window sizing commands do not have any effect on PostScript output. (If window sizing
is needed, can start Ferret with the -unmapped option, and create metafiles, using any
SET WINDOWY/SIZE or /ASPECT commands required. Then use gksm2ps to convert to
postscript, using gksm2ps options to control orientation and sizing if desired.)

* Avoid metafile commands when running in PostScript mode.

* Don't create new Ferret windows when running without an X server. The following
command:

yes? set window/new

will cause Ferret to crash.

-server
Run in server mode -- don't stop on message commands. This mode uses primitive (but
faster) command line reading, so it is generally preferred when setting up Ferret from a pipe
or batch process. See the notes above under -gif regarding window sizing commands.

-script
Run a script, with optional arguments, and exit. Ferret starts, the script runs, and Ferret ex-
its. If Ferret encounters an error, it will issue any error messages and exit to the command
line. The switch also sets the -nojnl, -server, and -noverifyswitches (MODE VERIFY and
MODE JOURNAL may be turned back on within the script). It supresses the banner lines.
So that the command line reader can read and process any arguments to the script, this op-
tion must be specified last, after any other command-line switches (e.g. -gif or -memsize).

ferret -script file.jnl [argl] [arg2] [arg3]

Ch1 Sec2.3. Sample sessions

This section presents a number of short Ferret sessions that demonstrate common uses. Data
sets used in these sessions and throughout this manual are included with the distribution. If
Ferret is installed on your system, you can duplicate the examples shown.

Ch1 Sec2.3.1. Accessing a netCDFdata set

In this sample session, the data set "monthly navy winds" is specified and certain aspects of it
are examined. The command SHOW DATA/VARIABLES displays the variables in
"monthly navy winds" and where on each axis they are defined. SET REGION specifies
where in the grid the user wishes to examine the data. VECTOR produces a vector plot of the
indicated variables over the specified region.

8 CHAPTER1

yes? USE monthly navy winds ! specify the data set
yes? SHOW DATA/VARIABLES ! what's in it?

currently SET data sets:

1> /opt/local/ferret/fer dsets/descr/monthly navy winds.des

(default)
FNOC 2.5 Degree 1 Month Average World-wide Wind Field

name title I J K L

UWND ZONAL WIND 1:144 1:73

1:132
M/S on grid FNOC251 with -99.9 for missing data
X=18.8E:18.8E(378.8) ¥=91.2S:91.2N

VWND MERIDIONAL WIND 1:144 1:73

1:132

M/S on grid FNOC251 with -99.9 for missing data
X=18.8E:18.8E(378.8) ¥=91.2S:91.2N
time range: 16-JAN-1982 20:00 to 17-DEC-1992 03:30

Ch1 Sec2.3.2. Reading an ASCII data file

Many examples of accessing ASCII data are available later in this manual. See the chapter,
"Data Sets" (p. 33) The simplest access, one variable with one value per record, looks like this:

% ferret

yes? FILE/VARIABLE=vl snoopy.dat
yes? PLOT vl

yes? QUIT

Ch1 Sec2.3.3. Using viewports

The command SET VIEWPORT allows the user to divide the output graphics "page" into
smaller display viewports.

In this sample session, we create two plots in two halves of a window (Figure 1_2):

TME : 16-MAY 2356 DATA SET: coads_climal
COADS Monthly Climatology (1946-1989)

LATITUDE

f%
\
%
A

sssssssssssssssssssssssss

85w
LONGITUDE

SEA SURFACE TEMPERATURE (Deg C)

TIME : 16-MAY 23:56 DATA

TA SET: coads_climatolos
COADS Monthly Climatology (1946-1989)

555555555555555
AIR TEMPERATURE (DEG C)

Figure 1 2

% ferret
yes? USE coads_climatology

INTRODUCTION 9

yes? SET REGION/X=160E:130W
yes? SET REGION/Y=-10:10/L=5
yes? SET VIEWPORT upper

yes? CONTOUR sst

yes? SET VIEWPORT lower

yes? CONTOUR airt

yes? QUIT

Ch1 Sec2.3.4. Using abstract variables

Abstract variables (expressions that contain no dependencies on disk-resident data) can be eas-
ily displayed with Ferret. See the chapter "Variables and Expressions", section "Abstract vari-
ables" (p. 63), for several examples and detailed information.

For example, a user wishing to examine the function SIN(X) on the interval [0,3.14] might use
(Figure 1 _3):

X
SIN(3.14*1/100)

Figure 1 3
% ferret
yes? PLOT/I=1:100 sin(3.14*I/100)
yes? QUIT

Ch1 Sec2.3.5. Using transformations
A transformation is an operation performed on a variable along a particular axis and is speci-
fied with the syntax "@trn" where "trn" is the name of a transformation. See the chapter "Vari-

ables and Expressions", section "Transformations" (p. 105), for detailed information.

A user may wish to look at ocean temperatures averaged over a range of depths. In this sample
session, we look at temperatures averaged from 0 to 100 meters of depth using a data set which

10 CHAPTER1

has detailed resolution in depth (Figure 1 _4). We plot the data along longitude 160 west from
latitude 30 south to 30 north.

FeRRET v, 522
L e

oy
LONGITUDE : 160.5W [Py gt
DEPTH (m) : 0 to 100 (overaged) i X

TIME : 02-0UL 14:54 DATA SET: levitus_climatology

Levitus onnual climatology (1x1 degree)

200 1 I 1 I 1 1 I 1 1

LATI?;UDE
TEMPERATURE (DEG C)
Figure 1 4

% ferret

yes? USE levitus_climatology
yes? SET REGION/Y=30s:30n/X=160W
yes? PLOT temp[Z=0:100QAVE]

yes? QUIT

Ch1 Sec2.3.6. Using algebraic expressions

See the chapter "Variables and Expressions", section "Expressions" (p. 73) for a description of
valid expressions.

In this example, the data set contains raw sea surface temperatures, air temperatures, and wind

INTRODUCTION 11

speed measurements. We wish to look at a shaded plot of sensible heat at its first timestep
(L=1) (Figure 1_5). We specify a latitude range and contour levels.

et v 822
NOAM/PUEL ThAP
Aug 25 2000 11:15:44

TIME : 16—JAN 06:00 DATA SET: coads_climatology
COADS Monthly Climatology (1946—1989)

LATITUDE

T
110°W 10w

T
50°E 150°E

LONGITUDE

SENSIBLE HEAT

Figure 1 5
% ferret
yes? USE coads_climatology 'monthly COADS climatology
yes? LET kappa =1 larbitrary

yes? LET/TITLE="SENSIBLE HEAT" sens_heat = kappa * (airt-sst) * wspd
yes? SHADE/L=1/LEV=(-20,20,5)/Y=-90:40 sens_heat
yes? QUIT

Ch1 Sec2.3.7. Finding the 20-degree isotherm

Isotherms can be located with the "@LOC" transform, which returns the axis location where
the value of the argument of @LOC first occurs. Thus, "TEMP[Z=0:200@LOC:20]" locates
the first occurrence of the temperature value 20 along the Z axis, scanning all the data between
0 and 200 meters.

12 CHAPTER1

A session examining the 20-degree isotherm in mid-Pacific ocean data (Figure 1_6):

DEPTH (m) : 0 to 200 (location of 20)
TIME : 02-JUL 14:54 DATA SET: levitus_climatology

Levitus onnual climatology (1x1 degree)

I
S
&0 e

— ——_
o e
/—\

 —
[
20N +—" ’—\
4 /_/::// L
— £
= I

LATITUDE
L

T T T T T T
150°% 170 1700 150°W
LONGITUDE

DEPTH (m) of 20 in TEMPERATURE (METERS)

Figure 1 6

% ferret

yes? USE levitus climatology

yes? SET REG/Y=10s:30n/X=140E:140W
yes? PPL CONSET .12 !'label size
yes? CONTOUR temp[Z=0:200Q@LOC:20]
yes? QUIT

Note that the transformation @ WEQ could have been used to display ANY variable on the sur-
face defined by the 20 degree isotherm.

Chl Sec3. COMMON COMMANDS

A quick reference to the most commonly used Ferret commands (typing "SHOW
COMMANDS" at the Ferret prompt lists all commands):

Command Description

USE names the data set to be analyzed (alias for "SET DATA")
SHOW DATA produces a summary of a variable
SHOW GRID examines the coordinates of a grid
SET REGION sets the region to be analyzed
LIST produces a listing of data

PLOT produces a plot

CONTOUR produces a line contour plot

FILL produces a color filled contour plot
SHADE produces a shaded-area plot
VECTOR produces a vector arrow plot
POLYGON plots polygonal regions

INTRODUCTION 13

Command Description

DEFINE define new axes, grids, and symbols

STATISTICS produces summary statistics about variables and expressions
LET defines a new variable

SAVE saves data in netCDFformat

GO executes Ferret commands contained in a file

Information on all Ferret commands is available in Part II, Commands Reference, of this man-
ual.

Chl Sec4. COMMAND SYNTAX

Commands in program Ferret conform to the following template:

COMM [/Q1/Q2...] [SUBCOM[/S1/S2...]] [ARGl ARG2 ...] [!comment]

where

COMM is a command name yes? LIST

Ql... are qualifiers of the command yes? CONTOUR/SET_UP

SUBCOM is a subcommand name yes? SHOW MODE

S1... are qualifiers of the subcommand yes? SET LIST/APPEND

ARGI... are arguments of commands yes? CANCEL MODE INTERPOLATE
notes...

* The length of the command line is limited to a maximum of 2048 characters.

* Command lines ending with back slash are regarded as incomplete -- a special prompt is
given to indicate that the next line is a continuation .

+ Items in square brackets are optional.

* One or more spaces or tabs must separate the command from the subcommand and from
each of the arguments. Spaces and tabs are optional preceding qualifiers.

* Multiple commands, separated by semi-colons, can be given on the same line.

* Command names, subcommand names, and qualifiers require at most 4 characters.
(e.g., yes? CANCEL LIST/PRECISION is equivalent to yes? CANC LIST/PREC)

* Some qualifiers take an argument following "=" (e.g., yes? LIST/Y=10S:10N).

* An exclamation mark normally signifies the end of a command and the start of (optional)
comment text.

» The backslash character (\), when placed directly before an exclamation point (!),
apostrophe ('), semicolon (;), or forward slash (/), will hide it ("escape it") from Ferret.

* See the Expressions section (p. 73) for information on algebraic expressions as
arguments to commands

» See the Symbols sections (p. 221) for information on symbol substitution in commands

14 CHAPTER1

Examples:

* A simple command and argument
yes? LIST sst

e A comment on the command line
yes? SET REGION/L=1/X=130:290/Y=-23:23 ! January in the
Tropical Pacific

* Commands with qualifiers and arguments
yes? VECTOR/L=30/COLOR=RED u,v
yes? LET/UNITS=M ht = z[GZ=temp] - z0

e Subcommands
yes? SET MODE METAFILE
yes? SET REGION/X=130E:120W/J=20:40/Z=0/T=1 -jan-1982:31-jan-1992

* Symbols used in a command(see p. 221) Note multiple commands on a line
yes? DEFINE SYMBOL lower = -2; DEFINE SYMBOL upper = 6
yes? SHADE/I=(Slower) : (Supper) temp

» Use Square brackets to specify a variable's dataset or grid, range and optionally a delta-
for the variable, or a transformation (see p.59)
yes? PLOT temp[X=180,L=1:50]
or
yes? LIST temp[X=130:200@AVE,L=1:50:5]
or
yes? LET/UNITS=M ht = z[GX=temp] - zO0

» Immediate mode expression: enclosed in grave accents. (see p. 127) (The expression
must evaluate to a scalar, and is evaluated before the command is parsed or executed.)
yes? CONTOUR/Z="temp [X=180,Y=0,Z=@LOC:15] " salt

» A list of values (constant array) may be formed by enclosing values in curly brackets. For
example in a function call:
yes? LET aday = DAYS1900(1989,{3,6,9},1)

» Text for labels is enclosed in double quotes
yes? VECTOR/TITLE="title string" x expr, y_expr
If the string is to contain a quote, the backslash preserves it:
yes? GO my go script "\"(-10,10,2)"\"
sends the string " (-10,10,2) " to the script (see p. 18) for more on go scripts

INTRODUCTION 15

Ch1 Sec5. GO FILES

GO files are files containing Ferret commands. They can be executed with the command "GO
filename". Throughout this manual, these files are referred to as GO scripts or journal files (the
file names end in *.jnl). There are two kinds of GO files provided with the distribution (differ-
ing in function, not form)—demos and tools. A list of the demonstrations and scripts can be
found in Ferret's on-line documentation in "on-line demonstrations".

Ch1 Sec5.1. Demonstration files

Demonstration GO files provide examples of various Ferret capabilities (the tutorial is such a
script) . The demonstration GO files may be executed simply by typing the Ferret command

yes? GO demo_name
example: yes? GO vector_demo

Below is a list of the demo files provided as of 4/99 (located in directory $SFER DIR/exam-
ples). The Unix command "Fgo demo" will list all GO scripts containing the string "demo".

Use Fgo '*' to see all the scripts that are currently available on your system.

Name

tutorial
bar_chart demo
binary read demo

coads _demo

constant_array demo
custom_contour demo
depth to density demo
dods_demo

edit data file demo

ef eof demo

ef fft demo

ef sort demo

ef wv5d demo
error_bars_demo

file reading_demo

16 CHAPTER1

Description

brief tour through Ferret capabilities
plotting bar charts
binary file reading (version 5.0 and after)

view of global climate using the Comprehensive Ocean-At-
mosphere Data Set

shows {3,5,6} constant-array syntax
customized contour plots

contour with a user-defined variable as an axis
using DODS to access remote datasets
"hand-editing" variables using netCDFdatasets and SAVE
EOF functions

FFT functions

using the SORT and SAMPLE functions
writing VisSD-formatted files

making error bars on plots

reading an ASCII file

http://www.ferret.noaa.gov/Ferret/on_line_demonstrations.html

Name

fnoc_demo

levitus_demo

log plot demo
mathematics demo
mercator demo
minmax_label demo
mp_demo
mp_stereo_demo
multi_line labels_demo
multi_variable demo
objective analysis demo
overlay on time axis_demo
palette_demo
pattern_demo
plot_swath _demo

plot vectors
poly vec demo
polymark demo
polytube demo
regridding_demo
sigma_coordinate_demo
spirograph _demo

splash demo
statistics_demo

symbol demo

taylor examplel
topographic_relief demo
trackplot_demo

vector demo
viewports_demo

wire frame demo

Description

Naval Fleet Numerical Oceanography Center data

T-S relationships using Sydney Levitus' climatological At-

las of the World Oceans

log plots using PPLUS in Ferret

abstract function calculation

mercator map projection

use FINDLO and FINDHI to label extrema on a plot
map projections

fancy map projection techniques

many-line titles and other labels

multiple variables with multiple dependent axes
interpolating scattered data to grids

PLOT/VS and POLYGON over a time axis
shows uses of various palettes

patterns on shade and fill plots

fill between line plots for "swaths" of color
draw vectors from u,v,lat,lon

use filled polygons to plot vector fields

show use of polymark script

"lagrangian" plots along a path using color fill
tutorial on regridding data

how to work with sigma coordinates

for-fun plots from abstract functions

for-fun mathematical color shaded plots
probability distributions

how to use symbols for plot layouts

using scripts to make Taylor diagrams

global topography

use of trackplot.jnl script

vector plots

output to viewports

3D wire frame representation

INTRODUCTION 17

Ch1 Sec5.2. GO tools

GO tools are scripts which contain Ferret commands and perform dataset-independent tasks.
For example, "GO land" overlays the outline of the continents on your plot. (Note: In order for
Ferret to locate the GO scripts, the environment variable FER GO must be properly defined.
See the chapter "Computing Environment," p. 249, for guidance.)

To run any GO tool, from the Ferret command line, type,

Yes? GO scriptname

Or if the script has arguments, they follow the script name with optional comma separators.
yes? GO script2 argl, arg2

To find out about the script, use the /HELP qualifier, which opens the script with the more
command to type the first 20 lines of the script and allow you to see the documentation at the
start of the script.

yes? GO/HELP scriptname

To omit arguments from a GO script,

yes? GO script argl, , arg3

Or double quotes with a space to indicate the missing item.

yes? GO script argl " " arg3

The Unix command Fgo has been provided to assist with locating tools within the Unix direc-
tory hierarchy. For example,

$ Fgo grid displays all tools with the substring "grid" in their names
% Fgo '*' displays all GO tools and demonstrations

When passing arguments to GO commands sometimes it is necessary to pass enclosing quota-
tion marks. An common example is the passing of the argument to the CONTOUR/LEVELS

qualifier in cases such as

CONTOUR/LEVELS="(-100) (-10,10,2) (100)" my var

18 CHAPTER1

where there may be blanks embeddd inside of the string. There are 3 methods to embed quota-
tions inside of strings

1. use "\" to protect the quotation marks in the GO command line
yes? go my go_script "\"(-100) (-10,10,2) (100)"\"
with the script containing the line

CONTOUR/LEVELS=S$1 my var
2. use "\" to define a symbol which contains the quotation marks

yes? DEFINE my quoted string \"$1\"
yes? CONTOUR/LEVELS=($my_quoted string) my var

3. use the symbol substitution syntax to add quotes to theGO argument
Yes? CONTOUR/LEVELS=S$1&| *>"*"§&
Of course, in the above examples one could also simply use

yes? CONTOUR/LEVELS="81" my var

Below is a table of the tools provided with your Ferret installation. Some tools accept optional
arguments to control details. Use Fgo -more script name for details on a script.

Tool name Description
OVERLAYS
basemap a geographical basemap of continents to overlay on
land overlays continental boundaries (color controls)
land detailed overlays detailed continents, national and state boundaries,
rivers
bold land overlays darker continental boundaries
fland overlays filled continents (color and resolution controls)
focean overlays ocean mask (for terrestrial plots)

INTRODUCTION 19

Tool name

multi_xaxis_overlay

multi_yaxis_overlay

graticule

tics

gridxy

gridxz
gridxt
gridyz
gridyt
gridzt
box

ellipse

MATHEMATICAL
frequency histogram

ts_frequency
polar

regressx
regressy
regressz
regresst
unit_square
variance
var n

dynamic_height

SAMPLE DISPLAYS

line_samples

20 CHAPTER1

Description

Overlay a line plot over an existing one, with a new horizontal
axis

Overlay a line plot over an existing one, with a new vertical axis

sets the plot axis style to use a graticule (rather than tics) (See
also the /GRATICULE qualifier on all plot commands, and
MODE GRATICULE)

resets the plot style to use axis tics (rather than a graticule)

overlays a "graticule" at the I,J grid locations (see also the
/GRAT qualifier for plot commands, and MODE GRATICULE)

overlays a "graticule" at the [LK grid locations
overlays a "graticule" at the I,L grid locations
overlays a "graticule" at the J,K grid locations
overlays a "graticule" at the J,L grid locations
overlays a "graticule" at the K,L grid locations
draws a box at the specified location on the plot

draws an ellipse at the specified location on the plot

makes a frequency distribution plot (histogram) of data

creates a 2-variable histogram (typically an oceanographer's TS
density diagram)

defines R and THETA from X and Y to perform (limited) polar
plots

defines variables for linear regression along X axis
defines variables for linear regression along Y axis
defines variables for linear regression along Z axis
defines variables for linear regression along T axis

sets unit square as default for abstract variables

defines variables to compute variances and covariances
refines TVARIANCE with corrected n/n+1 factors

defines Ferret variables for dynamic height calculations

draws specimens of the available line styles

Tool name

line thickness
fill_samples
show_symbols

show 88 syms

GRAPHICS

bar chart
bar_chart2
centered vectors
scattered vectors
stick vectors
extremum

split_z

taylor examplel

PLOT APPEARANCE

margins
magnify [factor]
unmagnify
black

white

bold

unbold

unlabel [label #]
remove_logo
box_plot
portrait
portrait1x2
portrait1x3
portrait] x4
portraitNxN

reminder

Description

draws examples of pen color/thickness styles in PPLUS
draws specimens of the available fill styles
draws specimens of the default symbols

draws specimens of all 88 PPLUS symbols

makes a color-filled bar chart from a line of data
makes a bar chart using hollow rectangles

makes a vector plot with coords at vector midpoints
makes a vector plot from an ASCII file: x,y,u,v
makes a stick vector plot of a line of U,V values
annotate contour extrema on a plot
oceanographic-style plot with 2 z-axis scalings

demonstrates tools for making Taylor diagrams

tweak the sizing of the plot on the page

increases the data plotting area (area inside the axes)
restores the plot origin and axis lengths to default values
sets video background to black, foreground to white

sets video background to white, foreground to black

sets up PLOT+ and Ferret to produce bolder-looking plots
resets plot environment to normal after "GO bold"
removes a specified (numbered) PPLUS movable label
removes labels 1-3 that form the Ferret logo

produces a plot with "bare" axes (no tics, no labels)

set window for 8.5 x 11 portrait page

set window for 8.5 x 11 portrait page and two viewports
set window for 8.5 x 11 portrait page and three viewports
set window for 8.5 x 11 portrait page and four viewports
set window for 8.5 x 11 portrait page and NxN viewports

place small annotations in upper left corner of plot

INTRODUCTION 21

Tool name

COLOR

try palette [pal]
try centered palette

exact_colors

squeeze colors

Description

displays palette appearance for various numbers of color levels

displays centered palette appearance for various numbers of lev-
els

sets up Ferret and PPLUS to modify individual colors in a color
palette

modifies a color palette by squeezing and stretching the color
scale

MULTIPLE X AND Y AXES (run demo: yes? GO multi_variable plots)

left axis_plot

right axis_plot
multi_xaxis_plotl
multi xaxis_overlay
multi_yaxis_plotl

multi_yaxis_overlay

plots a single variable preparing for a 2nd axis on the right
overlays a plot of a single variable using an axis on the right
draws a plot formatted for later overlays using multiple X axes
overlays a variable with a distinct X axis

draws a plot formatted for later overlays using multiple Y axes

overlays a variable with a distinct Y axis

MAP PROJECTIONS (run demo: yes? GO mp_demo)

mp_~name~

mp_aspect
mp_fland
mp_graticule
mp_grid.jnl
mp_label
mp_land

mp_land stripmap

mp_line

mp_ocean_stripmap

22 CHAPTER1

individual projections include

bonne, craster parabolic, eckert greifendorff, eckert iii,
eckert v, hammer, lambert cyl, mcbryde fpp, mercator, ortho-
graphic, plate caree, polyconic, sinusoidal, stereographic_eq,
stereographic_north, stereographic_south, vertical perspective,
wagner vii, winkel i

set the appropriate window aspect ratio for this map projection
overlays "map projected" filled continents (color controls)
overlays "map projected" graticule (color controls)

Associates a data grid with a predefined map projection.

plots a label using world coordinates

overlays "map projected" continental boundaries (color con-
trols)

creates a land-centric, interrupted "stripmap" using the current
map projection

overlays "map projected" plotted data

creates an ocean-centric, interrupted "stripmap" using the cur-
rent map projection

Tool name

mp_polymark
mp_polymark
mp_polytube
mp_trackplot

mp_viewport aspect

Description

overlays "map projected" polygons

Plot polygons using a predefined map projection.

Plot a colored tube using a predefined map projection.
Plot a trackplot using a predefined map projection

Define a viewport for plotting map projections

SAMPLING A GRIDDED FIELD

bullseye
digitize
vertical section

samplexy demo

UTILITY SCRIPTS
datestring.jnl

TESTS
test
ptest

squares

locate a bullseye in a 2-D field
obtain data values from a plot using the cursor
create 2-D vertical section from a 3-D field

create 2-D vertical section along any path

create date string from year, month, day, etc

tests proper functioning of FER_GO
produces a quick test plot

creates a filled-area test plot

Ch1 Sec5.3. Writing GO tools

A GO tool ("GO script," "journal file," ...) is simply a sequence of Ferret commands stored in a
file and executed with the GO command. Writing a simple GO tool requires nothing more than
typing normal commands into a file.

To write a robust GO tool that may be shared, however, certain guidelines should be followed:

1) the GO tool should be well documented
2) the GO tool should leave the Ferret context unmodified

INTRODUCTION 23

3) the GO tool may need to run "silently"
4) the GO tool may need to accept arguments (a maximum of 99 parameters)

Ch1 Sec5.3.1. Documenting GO tools

Documentation consists primarily of well-chosen comment lines (lines beginning with an ex-
clamation mark). In addition, a line of this form should be included:

! Description: [one-line summary of your GO tool]

This line is displayed by the Fgo tool.

Ch1 Sec5.3.2. Preserving the Ferret state in GO tools

Often a complex GO tool requires setting data sets, modifying the current region, etc. But to a
user executing this tool its behavior may seem erratic if the user's previous context is modified
by running the tool. A tool can restore the previous state of Ferret by these means:

region: Save the current default region with the command DEFINE REGION/DEFAULT
save. Restore it at the end of your GO tool with SET REGION save.

data set: Save the current default data set with SET DATA/SAVE. Restore it at the end of
your GO tool with SET DATA/RESTORE.

grid: Save the current default grid set with SET GRID/SAVE. Restore it at the end of
your GO tool with SET GRID/RESTORE.

modes: If you modify a mode inside your GO tool by issuing a SET MODE or a CANCEL
MODE command the original state of that mode can be restored using SET
MODE/LAST.

Ch1 Sec5.3.3. Silent GO tools

If a user has set mode "verify" then by default every line of your GO tool, including comment
lines, will be displayed at the screen as Ferret processes it. To make your GO tool run silently
include the command CANCEL MODE VERIFY at the beginning of the GO tool and SET
MODE/LAST VERIFY at the end. If the backslash character "\" is found at the beginning of
any line that single line will not be displayed regardless of the state of MODE VERIFY. Thus
the command "\CANCEL MODE VERIFY" is often the first line of a GO tool. Note also that
the command LET/SILENT is useful in GO tools which need to define variables.

24 CHAPTER1

Ch1 Sec5.3.4. Arguments to GO tools

Arguments (parameters) may be passed to GO tools on the command line. There is an upper
limit of 99 arguments allowed. For example,

yes? GO land red

passes the string "red" into the GO file named land.jnl. Inside the GO tool the argument string
"red" is substituted for the string "$1" wherever it occurs. The "1" signifies that this is the first
argument—similar logic can be applied to $1,... $99 or $0 where $0 is replaced by the name of
the GO tool itself. "$*" is replaced by all the arguments as a single string, separated by spaces.

If there are more than 9 arguments, the syntax $nn (nn may be 1 through 99) is equivalent to to
($nn), however the parentheses enclosed form is generally preferred as it avoids ambiguities.
Specifying $12.dat is equivalent to ($12).dat but is less clear.

As Ferret performs the substitution of $1 (or other) arguments it offers a number of string pro-
cessing and error processing options. For example, without these options, if a user failed to
supply an argument to "GO land" then Ferret would not know what to substitute for $1 and it
would have to issue an error message. A default value can be supplied by the GO tool writer us-
ing the syntax

$1%string$%

for example,

$1%black$%

inside land.jnl would default to "black" if no color were specified. Note that in the example
percent signs were used to delimit the default string but any of the characters ! # $ % or & also
work as delimiters.

If the argument is a 2-digit number, and we are making a substitution, the replacement text
goes inside the parentheses. For example, plot the variable passed as argument 1 with the
color given by argument 12, or green if no argument 12 is given:

PLOT/COLOR= ($12#igreen#) $1

In another case it might not be appropriate to supply a default string but instead it would be de-
sirable to issue an instructional error message. The "<" character indicates an error message
text:

$1"<you must supply an argument to this GO tool"
In still other cases there are a range of acceptable arguments but all other arguments are illegal.

The allowable arguments can be specified following "|" (vertical bar) characters as in this ex-
ample:

INTRODUCTION 25

$1" |black|red|<You must specify black or red"

or a default of "black" could be specified together with the options as

$1"black|black|red|"

In the interest of "friendliness" a GO file may want to allow the user to specify a string other
than the string actually needed by the GO tool. For example, in older Ferret versions red plot
line was actually obtained by the PLOT command qualifier /[LINE=2—the string "red" never
appeared in this command. To allow a user to specify "red" and yet have the string "2" substi-
tuted, Ferret has provided the replacement arrow ">". Thus

$1"1|red>2|"

specifies a default string of "1" if no argument is given but substitutes "2" if "red" is supplied.
In a typical GO tool line, defaults, options, substitutions, and an error message are combined
like this:

PLOT/LINE=$1"1|red>2|green>3|blue>4|<must be red, green, or blue"

Note that the error message will be issued only if some color other than "red," "green," or
"blue" is specified; if no argument is specified then "1" is substituted.

An asterisk (*) can be used to designate that any text whatsoever is acceptable as an option.

PLOT/LINE=$1"1|red>2|green>3|blue>4|*>7"

would never generate an error and would use line style 7 (thick black) if an unrecognized argu-
ment string such as "orange" were given.

An asterisk (*) can also be used on the right-hand side of a substitution, in which case it stands
for the entire original argument string. For example

SET VARIABLE/TITLE=$1%*>"*"%

will place double quotation marks around the string in argument 1.

Ch1 Sec5.3.5. Documentation and checking arguments to GO tools

A final style note to keep in mind when writing GO tools that use arguments: providing error
message feedback and appropriate documentation for the user is essential. In complex GO
tools, all arguments should be checked at the beginning of the GO tool using the no-op com-
mand (has no effect) "QUERY/IGNORE". Thus the GO tool land.jnl might contain these lines
at the beginning:

! check the argument
QUERY/IGNORE $1"1l|red|green|blue|<must be red, green, or blue"

26 CHAPTER1

Once argument errors have been trapped and reported, the lengthy error text would not be
needed again in the GO tool.

GO tools that use arguments should also be carefully documented. There are numerous exam-
ples provided with Ferret; try, for example, the Unix commands

% Fgo -more fland.jnl
% Fgo -more stick_vectors

or
% Fgo -more squeeze_colors

Ch1 Sec5.3.6. Flow Control in GO tools

There are several Ferret commands and techniques to assist with flow control in your GO
scripts.

GO (subroutines)

The GO command may be used inside of a GO script (tool) to execute another (nested) GO
script. If an error occurs inside of a nested GO script and SET MODE IGNORE ERROR has
not been issued then the GO script will be interrupted and control returns to the command line.

REPEAT (looping)

The REPEAT command may be used to execute loops within Ferret. The loop "counter" may
be an index (I,J,K, or L) or a world coordinate (longitude, latitude, depth, or time). The incre-
ment between loop iterations need not correspond to the spacing of points on a grid. When used
in conjunction with the "d" options of SET REGION, such as SET REGION/DI="-5:-5" the
loops may be used to zoom in or out of a region or to pan a limited-width window of view
across a larger region. See the Advanced Movie-Making section (p. 169) of this manual for fur-
ther details.

IF-THEN-ELSE (conditional execution)
An [F-THEN-ELSE syntax can be used to conditionally execute Ferret commands. It may be

used in two styles—single line and multi-line. See the IF command (p. 350) in the Commands
Reference section of this manual for further details.

Ch1 Sec5.3.7. Debugging GO tools

As the complexity of Ferret GO scripts increases it becomes more challenging to locate and
correct errors in GO scripts. This is especially true if, as so many GO scripts do, the scripts are

INTRODUCTION 27

made silent by containing the command CANCEL MODE VERIFY. In a silent script it can be
unclear from where within the script an error message is originating.

A special VERIFY mode has been provided to assist with locating the source of these error
messages

SET MODE VERIFY:ALWAYS

The ALWAYS argument to this command instructs Ferret to ignore CANCEL MODE VERIFY
commands inside of command files. All of the script commands that Ferret executes will be
echoed when this mode is set. Error messages will appear with the commands that generated
them. To restore normal non-debugging operations issue CANCEL MODE VERIFY or SET
MODE VERIFY (no argument) interactively from the yes ? prompt.

Complex webs of variable definitions (defined with LET or DEFINE VARIABLE) may also
create challenges for debugging scripts. See Debugging Complex Hierarchies of Expressions
(p. 136) for further discussion of this topic.

Ch1 Sec6. SAMPLE DATA SETS

A number of demonstration data sets are included with this distribution. Several of these data
sets are used by the demonstration "GO" files, above. The data sets should be accessible simply
by typing the Ferret command

yes? USE data_set name for example,
yes? USE coads_climatology

Data set Description
etopo120 relief of the earth's surface at 120-minute resolution
etopo60 relief of the earth's surface at 60-minute resolution

levitus_climatology subset of the Climatological Atlas of the World Oceans by Sydney
Levitus (Note: the updated World Ocean Atlas, 1994, is also avail-
able with Ferret)

coads_climatology 12-month climatology derived from 1946—1989 of the Comprehen-
sive Ocean/Atmosphere Data Set

monthly navy winds monthly-averaged Naval Fleet Numerical Oceanography Center
global marine winds (1982—-1990)

esku heat budget Esbensen-Kushnir 4x5 degree monthly climatology of the global
ocean heat budget (25 variables)

28 CHAPTER1

Ch1 Sec7. UNIX TOOLS

A number of tools are provided with Ferret to assist with Unix-level activities: on-line help,
converting data to Ferret's formats, locating files, etc. They are located in the Ferret installation
area—typically SFER_DIR/bin. See the chapter "Copmuting Environment", section "Setting
up to run Ferret" (p. 249), if the tools are not available on-line. They are described below.

Faddpath Usage: Faddpath new_path
Faddpath will add a new path name to the default lists of directories that Ferret searches a)
in response to the SET DATA command; b) when looking for grid definition files; ¢) when
looking for data files.

Fapropos Usage: Fapropos string (i.e. Fapropos regridding)
Fapropos searches the Ferret User's Guide for all occurrences of the given word or string.
The string is not case sensitive. If the string contains multiple words it must be enclosed in
quotation marks. Fapropos will list all lines of the User's Guide that contain the word or
string and report their line numbers. The line numbers may be used with Fhelp to enter the
User's Guide at the desired location.

Fdata Usage: Fdata data_file substring
Searches the list of directories contained in the environment variable FER _DATA to find
the data files whose names contain the indicated substring. For example,

% Fdata coads

locates the data files containing "coads" in their names. (Use this command to locate
netCDFdata sets by giving the string "cdf".)

Fdescr Usage: Fdescr des name_substring
Searches the list of directories contained in the environment variable FER_DESCR to find
the descriptor files whose names contain the indicated substring. For example,

% Fdescr coads

locates the descriptor files containing "coads" in their names. ("Fdescr .des" will list all ac-
cessible descriptors.)

Fenv Usage: Fenv
Prints the values of environment variables used by Ferret

Fgo Usage: Fgo name_substring
Searches the list of directories contained in the environment variable FER GO to find the
GO command files whose names contain the indicated substring. For example,

% Fgo grid

INTRODUCTION 29

locates the Ferret tools that contain "grid".

Fgrids Usage: Fgrids gridfile substring
Searches the list of directories contained in the environment variable FER_GRIDS to find
the grid definition files whose names contain the indicated substring. For example,

% Fgrids fnoc

locates the grid definition files containing "fnoc" in their names. ("Fgrids .grd" will list
all accessible grid files.)

Fpalette Usage: Fpalette name_substring
Searches the list of directories contained in the environment variable FER_ PALETTE to
find the palette files whose names contain the indicated substring. For example,

% Fpalette blue
locates the palette files containing "blue" in their names.

Fpurge Usage: Fpurge filename template
Fpurge is a support routine to manage multiple versions of files created by Ferret—particu-
larly journal files and graphic metafiles. Fpurge will remove all versions of a file except the
current version. For example, "Fpurge ferret.jnl" will eliminate all past versions of ferret.jnl
in the current directory.

Fsort Usage: Fsort filename template
Fsort is a support routine for sorting file versions. Fsort reorders the incorrect ordering of
emacs-style version numbers assigned by the Unix "Is" utility. For example, when sorting,
Is will place filename.~19~ before filename.~2~. "Fsort filename*" will take care of this
problem. Fsort may be used in Unix pipes.

Ch1 Sec8. HELP

Ch1 Sec8.1. Examples and demonstrations

30

As discussed earlier in this chapter (Getting Started, GO files), the demonstrations that come
with the Ferret distribution are a source of help. See the introductory chapter, section "Demon-
stration files," (p. 16) for a list of demonstrations, or look in $FER DIR/examples; you may
find something that addresses your problem.

CHAPTER 1

Ch1 Sec8.2. Help from within Ferret

Typing "help" while running Ferret will give you information on using the Unix tool Fhelp to
access the User's Guide.

The Ferret command SHOW COMMANDS will list all Ferret commands; SHOW
COMMAND "command" will display all qualifiers for the specified command.

The Ferret command SHOW FUNCTIONS lists all Ferret functions and their arguemnts.
SHOW FUNCTION *string* will show all functions containing the string "string". SHOW
FUNCTIONS EXTERNAL shows the names and arguments of external functions (see Exter-
nal Functions Chapter, page 285)

The Ferret command SHOW TRANSFORMS lists all Ferret transforms, including variable
transforms and regridding transforms.

If you want to get details on a script, type 'GO/HELP scriptname" to see the documentation at
the start of the script. For example:

GO/HELP land
When writing scripts, include documentation listing the purpose of the script and its arguments

in the first few lines of the script. Then this feature will let you and others who may use the
script get instant information about it.

Ch1 Sec8.3. Web-based information

From the Ferret web page, at http://www.ferret.noaa.gov/Ferret, see these sections:

1. Ferret support policy outlines the support available to users and sources of information

2. FAQ section discusses many topics where questions often arise.

3. Email archives, which are searchable and contain questions and solutions from the Ferret us-
ers group.

4. Documentation section, including release notes, this manual which is updated regularly on
the web, and on-line information on demonstration scripts, data formats, and the Plot Plus
graphics used by Ferret.

INTRODUCTION 31

http://www.ferret.noaa.gov/Ferret
http://www.ferret.noaa.gov/Ferret/ferret_support.html
http://www.ferret.noaa.gov/Ferret/FAQ/ferret_FAQ.html
http://www.ferret.noaa.gov/Ferret/Mail_Archives/ferret_mail_archives.html
http://www.ferret.noaa.gov/Ferret/Documentation/ferret_documentation.html

Chapter 2: DATA SET BASICS

Ch2 Secl. OVERVIEW

Ferret accepts input data from both ASCII and binary files and recognizes two standardized,
self-describing data formats—NetCDF, and TMAP. Network Common Data Format (NetCDF)
is the suggested method of data storage.

SET DATA_SET or just SET DATA specifies a data set for access. ASCII and binary files can
be read using SET DATA/EZ (also known as "FILE"). To unambiguously specify the format of
a data set, include the extension .cdf or .des in its name, or use the qualifier/ FORMAT=CDF.

To examine what each data set consists of (variables, grids, etc.) after specifying them with
SET DATA, use SHOW DATA. This command displays the variables in the data set and over
what geographical and time ranges they are defined.

Here is an example of Ferret's output:

yes? SET DATA coads_climatology
yes? SHOW DATA
currently SET data sets:
1> /home/el/tmap/fer dsets/descr/coads_climatology.des (default)

name title I J K L

SST SEA SURFACE TEMPERATURE 1:180 1:90 1:1 1:12
AIRT AIR TEMPERATURE 1:180 1:90 1:1 1:12
SPEH SPECIFIC HUMIDITY 1:180 1:90 1:1 1:12
WSPD WIND SPEED 1:180 1:90 1:1 1:12
UWND ZONAL WIND 1:180 1:90 1:1 1:12
VWND MERIDIONAL WIND 1:180 1:90 1:1 1:12
SLP SEA LEVEL PRESSURE 1:180 1:90 1:1 1:12

If multiple data sets have been requested in a single Ferret session, the last requested will be the
default data set. To specify other data sets, use the name of the data set or the number of the set
as given by the SHOW DATA statement. For example:

yes? LIST/D=2 temp

will list the data for the variable "temp" in data set number 2 as displayed by SHOW
DATA/BRIEF, while

yes? LIST temp[D=levitus_climatology] - temp[D=coads_climatology]

will list the differences between the variable "temp" in data set "levitus_climatology" and data
set "coads climatology."

Once a data set has been opened, you can find the data set name via the RETURN keyword (see
p. 130):

DATA SET BASICS 33

yes? say var,RETURN=dset’
yes? say var,RETURN=dsetnum’

If a filename begins with a number, Ferret does not recoginze it, but the file may be specified
using its unix pathname, e.g.

yes? use "./123"
or

yes? file/var=a "./45N_180W.dat"

Ch2 Sec2. NETCDF DATA

The Network Common Data Format (NetCDF) is an interface to a library of data access rou-
tines for storing and retrieving scientific data. netCDFallows the creation of data sets which are
self-describing and platform-independent. netCDFwas created under contract with the Divi-
sion of Atmospheric Sciences of the National Scientific Foundation and is available from the
Unidata Program Center in Boulder, Colorado (www.unidata.ucar.edu).

See the chapter "Converting Data to NetCDF" (p. 259), for a complete description of how to
create netCDFdata sets or how to convert existing data sets into NetCDF.

To output a variable in NetCDF, simply use:

yes? LIST/FORMAT=CDF variable name

LIST/FORMAT=CDF (alias SAVE) can also be used with abstract variables:
yes? SAVE/FILE=example.cdf/I=1:100 sin(I/100)

This will create a file named example.cdf.

The current region and data sets determine the variable names in the saved file and the range
over which they are saved. Saved data can then be accessed as follows:

yes? USE example
(USE is an alias for SET DATA/FORMAT=CDF, see)

To read a netCDFdataset that is on a DODS server, simply specify the DODS address in quotes:

yes? use
"http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc"

34 CHAPTER2

If a filename is not specified, Ferret will generate one. (See command SET LIST/FILE in the
Commands Reference section, p. 396). An example of converting TMAP-formatted data to
netCDFgoes as follows:

yes? SET DATA coads_climatology
yes? SAVE/L=1 sst,airt,uwnd,vwnd

These commands will save sst, airt, uwnd, and vwnd at the first time step over their entire re-
gions to a netCDF file named by Ferret.

One advantage to using netCDF is that users on a different system (i.e., VMS instead of Unix)
with different software (i.e., with an analysis tool other than Ferret) can share data easily with-
out substantial conversion work. netCDF files are self-describing; with a simple command the
size, shape and description of all variables, grids and axes can be seen.

Ch2 Sec2.1. NetCDF data and strides

With Ferret version 5.1 , the internal functioning of netCD Freads has been changed when
"strides" are involved. Suppose that CDFVAR represent a variable from netCDFfile. In ver-
sion 5.0 and earlier the command PLOT CDFVAR[L=1:1000:10] would have read the entire
array of 1000 points from the file; Ferret's internal logic would have subsampled every 10th
point from the resulting array in a manner that was consistent for netCDF variables, ASCII
variables, user defined variables, etc. In V5.1 strides applied to netCDF variables are given
special treatment -- subsampling is done by the netCDF library. The primary benefit of this is to
make network access to remote data sets via DODS more efficient. Beginning with Ferret
v5.4, strides can be applied across the "branch point" of a modulo variable without loss of effi-
ciency for netCDF data set, as long as the stride is an integer fraction of the modulo length
times the number of points on the axis. A remote satellite image of size, say, 1000x1000 points
x 8 bit depth (8 megabytes) can efficiently be previewed using

SHADE DODS_VAR[i=1:1000:10,3j=1:1000:10]

If a grid or axis from a netCDF file is used in the definition of a LET-defined variable (e.g. LET
my X = X[g=sst[D=coads_climatology]]) that variable definition will be invalidated when the
data set is canceled (CANCEL DATA coads_climtology, in the preceding example). There is a
single exception to this behavior: netCDF files such as climtological axes.cdf, which define
grids or axes that are not actually used by any variables. These grids and axes will remain de-
fined even after the data set, itself, has been canceled. They may be deleted with explicit use of
CANCEL GRID or CANCEL AXIS.

Ch2 Sec2.2. NetCDF data attributes

Beginning with Ferret V6.0, Ferret has access to attributes of netCDF variables, including co-
ordinate variables. In fact, attributes can be defined and used for user variables and variables

DATA SET BASICS 35

from any kind of dataset. See the section in the next chapter about dataset and variable attrib-
utes (p. 65)

Ch2 Sec2.3. NetCDF Data with the bounds attribute
The CF standard for netCDF files defines a bounds attribute for coordinate axes, where the up-
per and lower bounds of the grid cells along an axis are specified by a bounds variable which is

of size n*2 for an axis of length N. See Section 7.1 of the CF document

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-1.0.html

The coordinates on the axis may be anywhere within the cells defined by the upper and lower
cell bounds. Ferret uses these as the upper and lower bounds of of axis cells (also known as
boxes). They may be listed or otherwise accessed using the pseudo-variables XBOXLO,
XBHOXH, YBOXLO, etc.

For example, a simple netCDF file with bounds would have the following ncdump output:

netcdf irrx {

dimensions:
XAX = 4 ;
bnds = 2 ;
variables:
double XAX (XAX) ;
XAX:point_spacing = "uneven" ;
XAX:axis = "X" ;

XAX:bounds = "XAX bnds" ;
double XAX bnds (XAX, bnds) ;
float V(XAX) ;
V:missing value = -1l.e+34f ;
V:_Fillvalue = -1.e+34f ;
V:long name = "SEA SURFACE TEMPERATURE" ;

// global attributes:
thistory = "FERRET V5.60 4-Jun-04" ;

data:

28.36456, 28.35381,0

36 CHAPTER2

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-1.0.html

The CF standard allows for axes in a file that may have discontiguous bounds (the upper bound
of one cell is not the same as the lower bound of the next cell). Ferret does not allow such an
axis. When discontiguous bounds are encountered in a file, we arbitrarily choose to use the
lower bounds throughout, with the upper bound of the topmost cell to close the definition. This
way all axes have contiguous upper and lower bounds. A warning message is issued.

DEFINE AXIS/BOUNDS may be used to create an axis with cell bounds. All irregular axes
are saved with a bounds attribute (beginning with Ferret v5.70) and the user may request that
all axes be written with the bounds attribute with the SAVE/BOUNDS command

Note that if you have a dataset that has an irregular time axis and a bounds attribute on that axis
and you force Ferret to apply a regular time axis with

yes? USE/REGULART my_data.nc

then the bounds are ignored: the regular time axis is formed from the first and last coordinate
and the number of points.

Ch2 Sec2.4. Multi-file NetCDF data sets

Ferret supports collections of netCDF files that are regarded as a single netCDF data set. Such
data sets are referred to as "MC" (multi CDF) data sets. They are particularly useful to manage
the outputs of numerical models. MC data sets use a descriptor file, in the style of TMAP-for-
matted data sets. The data set is referred to inside Ferret by the name of this descriptor file.

A collection of netCDF files is suitable to form a multi-file data set if

1) The files are connected through their time axis—each file represents one or more time
snapshots of the variables it contains.

2) All non-time-dependent variables in the data set must be contained in the first file of the
data set (or those variables will not appear in the merged, MC, data set).

Note that previous to version 5.2, each file is self-documenting with respect to the time axis of
the variables—even if the time axis represents only a single point. (All of the time axes must be
identically encoded with respect to units and date of the time origin.) In version 5.3 and higher
these checks are not performed. This means that the MC descriptor mechanism can be used to
associate into time series groups of files that are not internally self-documenting with respect
to time. See Chapter 10, section 4 (p. 281)

Beginning with version 5.8 of Ferret the stepfiles may contain different scale and offset values

for the variables they contain. (p. 267). Ferret reads and applies the scale and offset values as
data from each stepfile is read. Note that the commands

DATA SET BASICS 37

yes? SAY ‘var, RETURN=nc_ offset’
yes? SAY ‘var, RETURN=nc_scale’

return the latest scale and offset value that were applied.

A typical MC descriptor file may be found in the chapter "Converting to netCDF", in the sec-
tion "Creating a multi-NetCDF data set." (p. 281)

Ch2 Sec2.5. Non-standard NetCDF data sets

As discussed in the Chapter, "Converting Data to NetCDFE," (p. 259) Ferret expects netCDF
files to adhere to the COARDS conventions (http://www.ferret.noaa.gov/noaa_coop/
coop_cdf profile.html). If the files do not adhere to the COARDS conventions, Ferret will still
attempt to access them. Often, the user can use Ferret controls for regridding, reshaping, and
otherwise transforming data to recover the intended file contents.

Here are a few common ways in which netCDF files may deviate from the COARDS standard
and how one may cope with those situations in Ferret.

» Files with disordered coordinates

In the COARDS conventions an axis (a.k.a. "coordinate variable") must have
monotonically-increasing coordinate values. If the coordinates are disordered or repeating
in a netCDF file, then Ferret will present the coordinates to the user (in SHOW DATA) as a
dependent variable, whose name is the axis name, and it will substitute an axis of the index
values 1, 2, 3, ... Note that Ferret will apply this same behavior when files have long irregu-
lar axis definitions that exceed Ferret's axis memory capacity.

e Files with reverse-ordered axes

If the coordinates of an axis are monotonically decreasing, instead of increasing, Ferret will
transparently reverse both the axis coordinates and the dependent variables that are defined
upon that axis. Note that if Ferret writes a reverse-ordered variable to a new netCDF file
(with the SAVE command), the coordinates and data in the output file will be in
monotonically increasing coordinate order—reversed from the input file.

If the values of a dependent variable are reversed, but there is no associated coordinate axis
then use attach a minus sign to the corresponding axis orientation in the USE/ORDER=
qualifier to designate that the variable(s) should be reversed along the corresponding axis.

* Files with "invalid" variable names
The COARDS standard specifies that variable names should begin with a letter and be com-

posed of letters, digits, and underscores. In files where the variable names contain other let-
ters, references to those variable names in Ferret must be enclosed in single quotes.

38 CHAPTER2

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

* Files with permuted axis ordering

The COARDS standard specifies that if any or all of the dimensions of a variable have the
interpretations of "date or time" (a.k.a. "T"), "height or depth" (a.k.a. "Z"), "latitude" (a.k.a.
"Y"), or "longitude" (a.k.a. "X") then those dimensions should appear in the relative order
T, then Z, then Y, then X in the CDL definition corresponding to the file. In files where the
axis ordering has been permuted the command qualifiers USE/ORDER= (Command Refer-
ence, p. 388) allow the user to inform Ferret of the correct permutation of coordinates. Note
that if Ferret writes a permuted variable to a new netCDF file (with the SAVE command),
the coordinates and data in the output file will be in standard X-Y-Z-T ordering (as indicated
in the user’s /ORDER specification)—permuted from the original file ordering. See the
Command Reference (p. 315) for a complete description of the ORDER qualifier.

* Files with more than four dimensions

The COARDS standard specifies that a netCDF file may be created with more than four di-
mensions. However the Ferret framework allows just four dimensions at this time.

Ch2 Sec2.6. NetCDF and non-standard calendars

The netCDF conventions document discusses and defines usage for different calendar axes.
hese conventions for calendars are implemented in Ferret version 5.3 See:

http://www.ced.ucar.edu/cms/eaton/cf-metadata/CF-current.html#cal The calendars allowed

are:

GREGORIAN or STANDARD (default) Ferret uses the proleptic Gregorian calendar,
which is the Gregorian calendar extended to
dates before 1582-10-15.

NOLEAP or 365 DAY All years are 365 days long.

NOLEAP or 365 DAY All years are 365 days long.

ALL LEAPor 366 DAYNL All years are 366 days long.

360 DAY All years are 360 days divided into 30 day
months.

JULIAN Julian calendar; leap years with no adjust-

ment at the turn of the century.

These calendars are compatible with the Udunits standard which has slightly different naming
conventions, except that the gregorian or standard calendar is a proleptic Gregorian calendar in
Ferret. If the mixed Julian/Gregorian calendar is desired, use a time origin of 1-jan-0001:00:00

DATA SET BASICS 39

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html#cal

and Ferret will apply the 2-day shift that was made historically when the Gregorian calendar
was introduced. The Udunits standard can be found at:

http://my.unidata.ucar.edu/content/software/udunits/udunits.txt

udunits_1998.dat (A local copy of the above link).

The netCDF conventions recommend that the calendar be specified by the attribute time:cal-
endar which is assigned to the time coordinate variable when there is a non-Gregorian calendar
associated with a data set, i.e.

time:calendar=noleap

Ferret reads this attribute when it is present in a netCDF file and assigns the appropriate calen-
dar identifer to the variable. When a variable has a non-Gregorian calendar, the attribute is
written to a netCDF file when the variable is output to a netCDF file.

Ch2 Sec3. TMAP-FORMATTED DATA

As of Ferret version 2.30, netCDF is the suggested format for data storage (see the chapter,
"Converting to netCDFE," p. 259). This section describing TMAP information is included only
for users who already work with data in TMAP format.

To access TMAP-formatted data sets use

SET DATA SET TMAP_ setl, TMAP_ set2,

TMAP_setn must be the name of a descriptor file for a data set that is in TMAP "GT"
(grids-at-timesteps) or "TS" (time series) format. ("Ferret" format and "TMAP" format are
synonyms.)

If the directory portion of the filename is omitted the environment variable FER _DESCR will
be used to provide a list of directories to search. The order of directories in FER_ DESCR deter-
mines the order of directory searches. If the extension is omitted a default of ".des" will be as-
sumed (if the filename has more than one period, the extension must be given explicitly).

Descriptors
For every TMAP-formatted data set there is a descriptor file containing summary information
about the contents of the data set. This includes variable names, units, grids, and coordinates.

When the command SET DATA_SET is given to Ferret pointing to a GT-formatted or TS-for-
matted data set, it is the name of the descriptor file that must be specified.

40 CHAPTER2

http://my.unidata.ucar.edu/content/software/udunits/udunits.txt
../udunits_1998.dat

Ch2 Sec4. BINARY DATA

Ferret can read binary data files that are formatted with and without FORTRAN record length

headers (binary files without FORTRAN record length formatting are also known as "stream"
files).

Ch2 Sec4.1. FORTRAN-structured binary files

Files containing record length information are created by FORTRAN programs using the
ACCESS="SEQUENTIAL" (the FORTRAN default) mode of file creation and also by Ferret
using LIST/FORMAT=unf. Files that contain FORTRAN record length headers must have all
data aligned on a 4-byte boundary. Suppose "rrrr" represents 4 bytes of record length informa-
tion and "dddd" represents a 4-byte data value. Then FORTRAN-structured files are organized
in one of the following two ways:

Ch2 Sec4.1.1. Records of uniform length

A FORTRAN:-structured file with records of uniform length (3 single-precision floating point
data values per record in this figure) looks like this:

rrrr dddd dddd dddd rrrr ...

FORTRAN code that creates a data file of this type might look something like this (sequential
access is the default and need not be specified in the OPEN statement):

REAL VARI (10), VAR2(10), VAR3(10)
OPEN (UNIT=20 , FORMAT="'UNFORMATTED ' , ACCESS="'SEQUENTIAL' , FILE='MYFILE.DAT')
DO 10 I=1,10

WRITE (20) VAR1(I), VAR2(I), VAR3(I)
10 CONTINUE

To access data from this file, use

yes? SET DATA/EZ/FORMAT=UNF/VAR=varl,var2,var3/COL=3 myfile.dat or,
yes? FILE/FORMAT=UNF/VAR=varl,var2,var3/COLUMNS=3 myfile.dat

This is very similar to accessing ASCII data with the addition of the /FORMAT=unf qualifier.
The /COLUMNS= qualifier tells Ferret the number of data values per record. Although op-
tional in the above example, this qualifier is required if the number of data values per record is
greater than the number of variables being read (examples follow in section "ASCII Data").

DATA SET BASICS 41

Ch2 Sec4.1.2. Records of non-uniform length

A FORTRAN:-structured file with variable-length records might look like this:

rrrr dddd dddd rrrr

rrrr dddd rrrr

rrrr dddd dddd dddd dddd rrrr
etc.

With care, it is possible to read a data file containing variable-length records which was created
using the simplest unformatted FORTRAN OPEN statement and a single WRITE statement for
each variable. Use /FORMAT=stream to read such files. Note that sequential access is the
FORTRAN default and does not need to be specified in the OPEN statement:

REAL VAR1 (1000), VAR2(500)
6éﬁN (UNIT=20, FORMAT="UNFORMATTED", FILE="MYFILE.DAT")

WRITE (20) VARIL
WRITE (20) VAR2

Use the qualifier /SKIP to skip past the record length information (/SKIP arguments are in units
of words), and define a grid which will not read past the data values. The /COLUMNS= quali-
fier can be used when reading multiple variables to specify the number of words separating the
start of each variable:

yes? DEFINE AXIS/X=1:500:1 xaxis
yes? DEFINE GRID/X=XAXIS mygrid
yes? FILE/FORMAT=stream/SKIP=1003/GRID=mygrid/VAR=var2 myfile.dat

The argument 1003 is the sum of the 1000 data words in record 1, plus 2 words of record length
information surrounding the data values in record 1 (variable varl), plus 1 word of record in-
formation preceding the data in record 2.

Ch2 Sec4.1.3. Fortran binary files, variables on different grids.

Some FORTRAN-structured files have multiple variables per record which do not share a
common grid. An example would be one year of a global monthly field stored as twelve re-
cords like this:

rrrr year month field(360x180) rrrr

The data file size is (1+1+1+360*180+1)*12*4 = 3110592 bytes. Such a file cannot be read
with the /FORMAT=unf qualifier but can be read with the /[FORMAT=stream qualifier de-
scribed in the next section. By including the /SWAP qualifier, this technique can be used to
read files created on a machine with a different byte ordering.

42 CHAPTER2

The following commands will read this file and assign the data to the appropriate grid:

yes? ! Create an X axis for an entire record.
yes? DEFINE AXIS/X=1: 3+360*180+1 :1 binary x
yes? DEFINE AXIS/T=1:12:1 binary t

yes? DEFINE GRID/X=binary x/T=binary t binary g

yes? ! Read in everything.
yes? FILE/FORMAT=stream/G=binary g/VAR=val binary file

! Create the grid for the data field.

yes? DEFINE AXIS/MODULO/X=0.5:359.5:1 ldeg x

yes? DEFINE AXIS/Y=-89.5:89.5:1 ldeg

yes? DEFINE AXIS/T=15-jan-1999:15-dec-1999:1/UNITS=month month 1999 t
yes? DEFINE GRID/X=ldeg x/Y=ldeg y/T=month_ 1999 t ldeg 1999 g

yes? ! Create a variable that uses this grid.
yes? LET dummy = x[GX=R ldeg 1999 g] + y[GY=R ldeg 1999 g] +
t[GT=R_1ldeg_1999 g]

yes? ! Reshape the data portion of val onto the data grid.
yes? LET field = RESHAPE (val[i=4:"3+360*180"], dummy)

Ch2 Sec4.2. Stream binary files

Files without embedded record length information are created by FORTRAN programs using
ACCESS="DIRECT" in OPEN statements and by C programs using the C studio library.
These files can contain a mix of integer and real numbers. The following types can be read
from an unstructured file:

FORTRAN C Size in bytes
INTEGER*1 char 1
INTEGER*2 short 2
INTEGER*4 int 4
REAL*4 float 4
REAL*8 double 8

Ch2 Sec4.2.1. Simple stream files

Suppose "dddd" represents a 4-byte data value. Then a stream (or "direct access") binary file of
FORTRAN REAL*4 or C floats is:

dddd dddd dddd dddd dddd dddd ...

The structure of the records is implied by the program accessing the data. FORTRAN code
which generates a direct access binary file might look like this:

DATA SET BASICS 43

REAL*4 MYVAR(10,5)
C Use RECL=40 for machines that specify in bytes
OPEN (UNIT=20, FILE="myfile.dat", ACCESS="DIRECT", RECL=10)

DO 100 j = 1, 5
100 WRITE (20,REC=j) (MYVAR(i,j),i=1,10)
Use the following Ferret commands to read variable "myvar" from this file:

yes? DEFINE AXIS/X=1:10:1 x10

yes? DEFINE AXIS/Y=1:5:1 y5

yes? DEFINE GRID/X=x10/Y=y5 gl0x5

yes? FILE/VAR=MYVAR/GRID=glOx5/FORMAT=stream myfile.dat

Ifthe file consisted of a set of FORTRAN REAL*8 or C doubles, then the data would look like:

dddddddd dddddddd dddddddd ...

and the following Ferret commands would read the data into "myvar":

yes? DEFINE AXIS/X=1:10:1 x10

yes? DEFINE AXIS/Y=1:5:1 y5

yes? DEFINE GRID/X=x10/Y=y5 gl0x5

yes? FILE/VAR=MYVAR/GRID=gl0x5/FORMAT=stream/type=r8 myfile.dat

Note the addition of the "type" qualifier. See the FILE command (p. 347) for more details.

Since Ferret represents all variables as REAL*4, some precision is lost when reading in
REAL*8 or INTEGER*4 values. Also, some REAL*8 numbers cannot be represented as
REAL*4 numbers; the internal Ferret value of such a number is system dependent.

Ch2 Sec4.2.2. Mixed stream files

Ferret can read binary files that contain a mix of numbers of different type. However, a given
Ferret variable can only be one type. Say you have a file containing a mix of REAL*8 and
REAL*4 numbers:

dddddddd dddd dddddddd dddd dddddddd ...

The following would successfully read the file:

yes? FILE/VAR=MYDOUBLE,MYFLOAT/GRID=somegrid/FORMAT=stream/type=r8,r4
myfile.dat

while:

yes? FILE/VAR=MYDOUBLE/GRID=someothergrid/FORMAT=stream/type=r8,r4
myfile.dat

44 CHAPTER2

would fail.

Ch2 Sec4.2.3. Byte-swapped stream files

Stream files with byte-swapped numbers can be read with the /SWAP qualifier. Note that the
/ORDER and /SKIP qualifiers are also available (see chapter "Data Set Basics", section "Read-
ing ASCII files," p. 45, for more details on /ORDER and /SKIP).

Ch2 Sec5. ASCII DATA

To access ASCII data file sets use

yes? SET DATA/EZ ASCII_file name or equivalently
yes? FILE ASCII_ file name

The following are qualifiers to SET DATA/EZ or FILE:

Qualifier Description

/VARIABLES names the variables in the file

/TITLE associates a title with the data set

/GRID indicates multi-dimensional data and units
/COLUMNS tells how many data values are in each record
/FORMAT specifies the format of the records

/SKIP skips initial records of the file

/ORDER specifies order of axes (which varies fastest)

Use command SET VARIABLE to individually customize the variables.

Ch2 Sec5.1. Reading ASCII files

Below are several examples of reading ASCII data properly. (Uniform record length, FOR-
TRAN-structured binary data are read similarly with the addition of the qualifier FORMAT=
"unf". Seethe chapter on "Data Set Basics", section "Binary Data," p. 41, for other binary
types). First, we look briefly at the relationship between Ferret and standard matrix notation.

Linear algebra uses established conventions in matrix notation. In a matrix A(i,j), the first in-
dex denotes a (horizontal) row and the second denotes a (vertical) column.

All Al2 Al3 Aln
A2l A22 A23 A2n Matrix A(i,j)

DATA SET BASICS 45

Aml Am?2 Am3 Amn

X-Y graphs follow established conventions as well, which are that X is the horizontal axis (and
in a geographical context, the longitude axis) and increases to the right, and Y is the vertical
axis (latitude) and increases upward (Ferret provides the /DEPTH qualifier to explicitly desig-
nate axes where the vertical axis convention is reversed).

In Ferret, the first index of a matrix, 1, is associated with the first index of an (x,y) pair, x. Like-
wise, j corresponds to y. Element Am2, for example, corresponds graphically to x=m and y=2.

By default, Ferret stores data in the same manner as FORTRAN—the first index varies fastest.
Use the qualifier /ORDER to alter this behavior. The following examples demonstrate how
Ferret handles matrices.

Example 1—1 variable, 1 dimension

la) Consider a data set containing the height of a plant at regular time intervals, listed in a sin-
gle column:

I dWN
OO W

To access, name, and plot this variable properly, use the commands

yes? FILE/VAR=height plant.dat
yes? PLOT height

1b) Now consider the same data, except listed in four columns:

2.3 1 .5
5.7 9 1

4 5.6
6. 7.2

3.
5.

Because there are more values per record (4) than variables (1), use:

yes? FILE/VAR=height/COLUMNS=4 plant4.dat
yes? PLOT height

Example 2—1 variable, 1 dimension, with a large number of data points.

The simple FILE command:

yes? FILE/VAR=height plant.dat

uses an abstract axis of fixed length, 20480 points. If your data is larger than that, you can read
the data by defining an axis of appropriate length. Set the length to a number equal to or larger

46 CHAPTER2

than the dimension of your data. The plot command will plot the actual number of points in the
file.

yes? DEFINE AXIS/X/X=1:50000:1 longax

yes? DEFINE GRID/X=longax biggrid

yes? FILE/VAR=height/GRID=biggrid plant.dat
yes? PLOT height

Example 3—2 variables, 1 dimension

3a) Consider a data set containing the height of a plant and the amount of water given to the
plant, measured at regular time intervals:

2.3 20.4
3.1 31.2
4.5 15.7
5.6 17.3

To read and plot this data use

yes? FILE/VAR="height,water" plant wat.dat
yes? PLOT height,water

3b) The number of columns need be specified only if the number of columns exceeds the num-
ber of variables. If the data are in six columns

2.3 20.4 3.1 31.2 4.5 15.7
5.6 17.3 ...

use

yes? FILE/VAR="height,water"/COLUMNS=6 plant wat6.dat
yes? PLOT height,water

Example 4—1 variable, 2 dimensions
4a) Consider a different situation: a greenhouse with three rows of four plants and a file with a

single column of data representing the height of each plant at a single time (successive values
represent plants in a row of the greenhouse):

coOoWwbhUOIbDW
s PO OR

If we want to produce a contour plot of height as a function of position in the greenhouse, axes
will have to be defined:

DATA SET BASICS 47

yes? DEFINE AXIS/X=1:4:1 xplants

yes? DEFINE AXIS/Y=1:3:1 yplants

yes? DEFINE GRID/X=xplants/Y=yplants gplants

yes? FILE/VAR=height/GRID=gplants greenhouse_ plants.dat
yes? CONTOUR height

When reading data the first index, x, varies fastest. Schematically, the data will be assigned as

follows:
x=1 x=2 x=3 x=4
y=1 3.1 2.6 5.4 4.6
y=2 3.5 6.1 .
y=3

4b) If the file in the above example has, instead, 4 values per record:

3.1 2.6 5.4 4.6
3.5 6.1 . . .

then add /COLUMNS=4 to the FILE command:
yes? FILE/VAR=height/COLUMNS=4/GRID=gplants greenhouse_plants.dat
Example 5—2 variables, 2 dimensions

Like Example 3, consider a greenhouse with three rows of four plants each and a data set with
the height of each plant and the length of its longest leaf:

3.1 0.54
2.6 0.37
5.4 0.66
4.6 0.71
3.5 0.14
6.1 0.95

Again, axes and a grid must be defined:

yes? DEFINE AXIS/X=1:4:1 xht leaf

yes? DEFINE AXIS/Y=1:3:1 Yht:leaf

yes? DEFINE GRID/X=xht leaf/Y=yht leaf ght_leaf

yes? FILE/VAR="height,Ieaf"/GRID=ght leaf greenhouse ht 1f.dat
yes? SHADE height

yes? CONTOUR/OVER leaf

The above commands create a color-shaded plot of height in the greenhouse, and overlay a
contour plot of leaf length. Schematically, the data will be assigned as follows:

x=1 x=2 x=3 x=4
ht , 1f ht , 1f
y=1 3.1, 0.54 2.6, 0.37 5.4, 0.66 4.6, 0.71

48 CHAPTER2

y=2 3.5, 0.14 6.1, 0.95 .
y=3 Coe .

Example 6—2 variables, 3 dimensions (time series)

Consider the same greenhouse with height and leaf length data taken at twelve different times.
The following commands will create a three-dimensional grid and a plot of the height and leaf
length versus time for a specific plant.

yes? DEFINE AXIS/X=1:4:1 xplnt_tm

yes? DEFINE AXIS/Y=1:3:1 yplnt tm

yes? DEFINE AXIS/T=1:12:1 tplnt tm

yes? DEFINE GRID/X=xplnt tm/Y=yplnt tm/T=tplnt_tm gplant2
yes? FILE/VAR="height,leaf"/GRID=gplant2 green_time.dat
yes? PLOT/X=3/Y=2 height, leaf

Example 7—1 variable, 3 dimensions, permuted order (vertical profile)

Consider a collection of oceanographic measurements made to a depth of 1000 meters. Sup-
pose that the data file contains only a single variable, salt. Each record contains a vertical pro-
file (11 values) of a particular x,y (long,lat) position. Supposing that successive records are
successive longitudes, the data file would look as follows (assume the equivalencies are not in
the file):

z=0 z=1l0 z=20 . . .
x=30W,y=5S 35.89 35.90 35.93 35.97 36.02 36.05 35.96 35.40 35.13 34.89
34.72
x=29W,y=58 35.89 35.91 35.94 35.97 36.01 36.04 35.94 35.39 35.13 34.90
34.72

Use the qualifier /DEPTH= when defining the Z axis to indicate positive downward, and
/ORDER when setting the data set to properly read in the permuted data:

yes? DEFINE AXIS/X=30W:25W:1/UNIT=degrees salx

yes? DEFINE AXIS/Y=5S:5N:1/UNIT=degrees saly

yes? DEFINE AXIS/Z=0:1000:100/UNIT=meters/DEPTH salz
yes? DEFINE GRID/X=salx/Y=saly/Z=salz salgrid

yes? FILE/ORDER=zxy/GRID=salgrid/VAR=sal/COL=11 sal.dat

Ch2 Sec5.2. Reading "DELIMITED" data files
SET DATA/FORMAT=DELIMITED[/DELIMITERS=][/TYPE=][/VAR=] filename
For "delimited" files, such as output of spreadsheets, SET DATA/FORMAT=DELIMITED ini-

tializes files of mixed numerical, string, and date fields. If the data types are not specified the
file is analyzed automatically to determine data types.

DATA SET BASICS 49

The alias COLUMNS stands for "SET DATA/FORMAT=DELIMITED". (See p.390 for the

full syntax.)

Example 1: Strings, latitudes, longitudes, and numeric data.

This file is delimited by commas. Some entries are null; they are indicated by two commas
with no space between. File delimited read 1.dat contains:

coll, col2 col3 cold col5 col6 col7
one oy 1.1, 24s, 130 ,, lel
two oy 2.2, 24N, 130w, 2S

three ,, 3.3, 24, 130, 3N, 3e-2
five oy 4.4, -24, -130, 91, -4e2

extra line

If there is no /TYPE qualifier, the data type is automatically determined. If all entries in the
column match a data type they are assigned that type. First let's try the file as is, using auto-
matic analysis. Record 1 contains 5 column headings (text) so V1 through V5 are analyzed as

text variables.

yes? FILE/FORMAT=delim delimited read 1l.dat

yes? LIST vl1,v2,v3,v4,v5,v6,v7,v8

Column
Column
Column
Column
Column
Column
Column

SJouoibdhWwWNR
NN
SJoouoibdWwWNR

DATA SET: ./delimited read 1.dat

X: 0.5 to 7.5
1: vl
2: V2
3: V3
4: V4
5: V5
6: V6
7: V17

vl v2 V3 va v5 V6

" coll" " colzll " c°l3" " c°14 " " colsll " "
"one" n " "1 . 1" "24s" "130E" " "
" twol' " " "2 . 2" "24N" "130W" "2s"
" three" " " ll3 . 3" "24" "130" II3N"
"five" " " "4'4" "_24" "_130" "91"

"extra line" " " non non "o won

v7
10.0
0.0

~400.0

Now skip the first record to do a better "analysis" of the file fields. Explicitly name the vari-
ables. Note that v3 is correctly analyzed as numeric, A4 is latitude and A5 longitude. A6 is an-
alyzed as string data, because the value 91 in record 5 does not fall in the range for latitudes,
and records 2 and 3 contain mixed numbers and letters.

yes? FILE/FORMAT=DELIM/SKIP=1/VAR="al,a2,a3,ad4,a5,a6,a7,a8,a9"
delimited read 1.dat
yes? LIST al,a2,a3,a4,a5,a6,a7

Column
Column
Column
Column
Column

50 CHAPTER2

b WwWNRE

DATA SET: ./delimited read 1.dat
X: 0.5 to 6.5

: Al
: A2
: A3
: Ad
: A5

is A2 (all values missing)

is A4 (degrees_north) (Latitude)
is A5 (degrees_east) (Longitude)

Column 6: A6
Column 7: A7

Al A2 A3 A4 A5 A6 A7
1 / 1: "one" ... 1.100 -24.00 130.0 "™ ™ 10.0
2 / 2: "two" ... 2.200 24.00 -130.0 "28" e
3 / 3: "three" ... 3.300 24.00 130.0 "3N" 0.0
4 / 4: " " - e e LeL.mn e
5 / 5: "five" ... 4.400 -24.00 -130.0 "91" -400.0
6 / 6: "extra line"... e e ce..o e

Now use the /TYPE qualifier to specify that all columns be treated as numeric.

yes? FILE/FORMAT=delim/SKIP=1/TYPE=numeric delimited read 1l.dat
yes? LIST vl,v2,v3,v4,v5,v6,v7,v8

DATA SET: ./delimited read 1.dat

X: 0.5 to 6.5

Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7

vl v2 V3 v4 V5 V6 v7
1 / 1:...... 1.100 e e e 10.0
2 / 2:...... 2.200 e e e e
3 / 3:...... 3.300 24.00 130.0 e 0.0
4 / 4:...... e e e e e
5 / 5:...... 4.400 -24.00 -130.0 91.00 -400.0
6 / 6:...... e .. e e e

Here is how to read only the first line of the file. If the variables are not specified, 7 variables
are generated because auto-analysis of file doesn't stop at the first record. Use the command
COLUMNS, the alias for FILE/FORMAT=delimited

yes? DEFINE AXIS/X=1:1:1 xlyes? DEFINE GRID/X=x1 gl
yes? COLUMNS/GRID=gl delimited read 1l.dat
LIST vl1l,v2,v3,v4,v5,v6,v7

DATA SET: ./delimited read 1.dat

X: 1
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
vl v2 V3 v4 v5 Ve V7
I / * : "colll' "c012 " "col3ll "col4 " "c015" " " .. " "

Define the variables to read.

yes? COLUMNS/GRID=gl/VAR="cl,c2,c3,c4,c5" delimited read 1l.dat
yes? LIST cl,c2,c3,c4,c5
DATA SET: ./delimited read 1.dat

X: 1
Column 1: Cl
Column 2: C2
Column 3: C3
Column 4: C4

DATA SET BASICS 51

Column

I/ *:

5: C5
C1l c2 C3 c4 C5
"coll" "col2" "col3" "col4d" "col5"

Example 2: File using blank as a delimiter.

Ferret recognizes the file as containing date and time variables, further explored in Example 3
below. Here is the file delimited read 2.dat. There is a record of many blanks in record 2.

1981/12/03

12:35:00

1895/2/6 13:45:05

Read the file using /DELIMITER=""

yes? FILE/FORM=delimited/DELIMITER=" " delimited read 2.dat
yes? LIST vl,v2

Column
Column

WN R

/ 1:
/ 2:
/ 3:

DATA SET: ./delimited read 2.dat

X: 0.5 to 3.5
1: V1 is V1 (days) (Julian days since 1-Jan-1900)
2: V2 is V2 (hours) (Time of day)

vl V2
37965. 12.58

39051. 13.75

Example 3: dates and times

Note that record 3 has syntax errors in the first 4 fields. Here is delimited read 3.dat:

12/1/99, 12:00, 12/1/99, 1999-03-01, 12:00, 13:45:36.5
12/2/99, 01:00:13.5, 12/2/99, 1999-03-02, 01:00:13.5, 14:45:36.5
12/3/99x, 2:00x, 12/3/99, 1999-03-03, 2:00, 15:45

12/4/99, 03:00, 12/4/99, 1999-03-04, 03:00, 16:45:36.5

Read with auto-analysis. The records with syntax errors cause variables 1 and 2 to be read as
string variables.

yes? COLUMNS delimited read 3.dat
yes? LIST vl,v2,v3,v4,v5,v6

Column
Column
Column
Column
Column
Column

B wbhR
NN
S wdhR

52 CHAPTER 2

DATA SET: ./delimited read 3.dat
X: 0.5 to 4.5

1: vl

2: V2

3: V3 is V3 (days) (Julian days since 1-Jan-1900)
4: V4 is V4 (days) (Julian days since 1-Jan-1900)
5: V5 is V5 (hours) (Time of day)

6: V6 is V6 (hours) (Time of day)

V1 v2 V3 v4 V5 V6
"12/1/99" "12:00" 36493. 36218. 12.00 13.76
"12/2/99" "01:00:13.5" 36494. 36219. 1.00 14.76
"12/3/99x" "2:00x" 36495. 36220. 2.00 15.75
"12/4/99" "03:00" 36496. 36221. 3.00 16.76

Use the date variables in v3 and v4 to define time axes. The date encodings are as expected.

yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-1900 tax
yes? SHOW AXIS tax
name

0

T

TAX
0:00

axis

TIME

0 = 1-JAN-1900

pts

r

start
01-DEC-1999 00:00

yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-1900 tax
yes? SHOW AXIS tax

0

name
TAX
0:00

axi
TIME

TO = 1-JAN-1900

S

pts

r

start
01-MAR-1999 00:00

= v3
end
04-DEC-1999
= v4
end
04-MAR-1999

Next we'll specify each column's type. Only the first two characters of the type are needed.
Now we can read those columns which had errors, except for the record with the errors.

yes? COLUMNS/TYPE="da,ti,date, date, time, time"
yes? LIST vl1,v2,v3,v4,v5,v6
./delimited read 3.dat

S wWwhR

Column
Column
Column
Column
Column

oudWNR

DATA
X: 0.

. Vi
V2
: V3

is
is
is
is
is
is

SET:

5 to 4.5
V1l (days) (Julian days since
V2 (hours) (Time of day)

V3 (days) (Julian days since

V4 (days) (Julian days since 1-

V5 (hours) (Time of day)
V6 (hours) (Time of day)

V2
12.00
1.00

3.00

V3

364093.
36494.
364095.
36496.

v4

36218.
36219.
36220.
36221.

delimited read 3.dat

1-Jan-1900)
1-Jan-1900)
Jan-1900)
V5 V6
12.00 13.76
1.00 14.76
2.00 15.75
3.00 16.76

Delimiters can be used to break up individual fields. Use both the slash and a comma (indi-
cated by backslash and comma \,)

FILE/FORM=delim/DELIM="/,\," delimited read 3.dat
LIST V1,V2,V3,V4,v5,v6

_whe-

Column
Column
Column
Column
Column
Column

NN
S whE-

oaubdwWNRE

DATA SET:

X: 0.5 to
vl
V2
V3
. V4
: V5
: V6

vl V2

12.00 1.000
12.00 2.000
12.00 3.000
12.00 4.000

./delimited read 3.dat

4.5
v3

"99" "12:00"

"99" "01:00:13.5"

"99x" "2:00x"

"99" "03:00"

V5
12.00
12.00
12.00
12.00

vé
1.000
2.000
3.000
4.000

DATA SET BASICS 53

Ch2 Sec6. TRICKS TO READING BINARY AND ASCII FILES

Since binary and ASCII files are found in a bewildering variety of non-standardized formats a
few tricks may help with reading difficult cases.

» Sometimes variables are interleaved with data axes in unstructured (stream) binary files. A
simple trick is to read them all as a single variable, say, "Vall," in which the sequence of
variables in the file V1, V2, V3, ... is regarded as an axis of the grid. Then extract the
variables by defining V1 = Vall[I=1] (if the I axis was used, else J=1, K=1, or L=1) as
needed.

* In some ASCII files the variables are presented as blocks—a full grid of variable 1, then a
full grid of variable 2, etc. These files may be read using Unix soft links so that the same file
can be opened as several Ferret data sets. Then use the FILE command to point separately to
each soft link using the /SKIP qualifier to locate the correct starting point in the file for each
variable. For example,

Unix commands:

ln -s my data my dat.vl
ln -s my data my dat.v2
ln -s my data my dat.v3

Ferret commands:

yes? FILE/SKIP=0/VAR=vl my dat.vl
yes? FILE/SKIP=100/VAR=v2 my dat.v2
yes? FILE/SKIP=200/VAR=v3 my dat.v3

» Ifan ASCII file contains a repeating sequence of records try describing the entire sequence
using a single FORTRAN FORMAT statement. An example of such a statement would be
(3F8.4,2(/5F6.2)). The slash character and the nested parentheses allow multi-record groups
to appear as a single format. Note that the /COLUMNS qualifier should reflect the total
number of columns in the repeating group of records.

» If an ASCII or binary file contains gridded data in which the order of axes is not X-Y-Z-T
read the data in (which results in the wrong axis ordering) and use the LIST/ORDER= to
permute the order on output. The resulting file will have the desired axis ordering.

» If the times and geographical coordinate locations of the grid are inter-mixed with the
dependent variables in the file then 1) issue a FILE command to read the coordinates only; 2)
use DEFINE AXIS/FROM_DATA to define axes and DEFINE GRID to define the grid; 3)
use FILE/GRID=mygrid to read the file again.

54 CHAPTER2

Ch2 Sec7. ACCESS TO REMOTE DATA SETS WITH DODS

Ch2 Sec7.1. What is DODS?

DODS is now called OPeNDAP; we continue to refer to it as DODS in this manual for now.
DODS, the Distributed Oceanographic Data System, allows users to access data anywhere
from the Internet using a variety of client/server methods, including Ferret. Employing tech-
nology similar to that used by the World Wide Web, DODS and Ferret create a powerful tool
for the retrieval, sampling, analyzing and displaying of datasets; regardless of size or data for-
mat (though there are data format limitations).

For more information, please see the OPeNDAPhome page at

http://www.opendap.org/

Similar to the WWW, DODS is an emerging technology and is under development. As a result,
it is likely that the details with which things are accomplished will be changing.

Ch2 Sec7.2. Accessing Remote Data Sets

Datasets are accessed through Ferret using their raw Universal Resource Locator (URL) ad-
dress. For example, to access the COADS climatology, hosted at PMEL:

yes? use
"http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc"

Once the dataset has been initialized, it is used just like any other local dataset.

yes? list/x=140w/y=2n/t="16-Feb" sst
SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 141W
LATITUDE: 1IN
TIME: 15-FEB 16:29

DATA SET:
http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc
26.39

To locate DODS data, you can search the NVODS /DODS List of DODS datasets at
http://www.opendap.org/data/datasets.cgi?&exfunction=none&xmlfilename=datasets.xml or
the Global Change Master Directory at http://gecmd.gsfc.nasa.gov/

For the time being, netCDF and HDF files can be read via DODS by Ferret. As DODS
(OPeNDAP) netCDF libraries become available, other data types will be made available.

DATA SET BASICS 55

http://www.opendap.org/
http://www.unidata.ucar.edu/cgi-bin/dods/datasets/datasets.cgi?xmlfilename=datasets.xml
http://www.opendap.org/data/datasets.cgi?&exfunction=none&xmlfilename=datasets.xml
http://gcmd.gsfc.nasa.gov/

Note that HDF files can be read by Ferret only via DODS, that is the HDF file must first be put
on a DODS server and then Ferret can access it by giving its DODS URL. Even by this means,
Ferret will be successful in reading the file only if the HDF file is similar in its structure to a
COARDS or CF netCDF file. Often, you will need to apply the USE/ORDER= qualifier to
change the ordering of the coordinate axes.

If a file is on a DODS server, you can look at the DAS in your browser (the URL that ends in
.das). When you look at the attribute data check to see if there are dimension variables with at-
tributes that look like a Latitude or Longitude as in the COARDS conventions.

Ch2 Sec7.3. Debugging Access to Remote DODS Data Sets

To find out more information about a particular dataset, or to debug problems, there are three
elements of the dataset which may be accessed via a web browser. To access this information,
merely append a dds, das, or info to the dataset name. For example:

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.dds

DDS stands for Data Description Structure and this will return a text description of the data sets
structure.

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.das

DAS stands for Dataset Attribute Structure and this will return a text description of attributes
assigned to the variables in the data set.

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.info

This will return a text description of the variables in the dataset.

Ch2 Sec7.4. Security

Some DODS data providers will choose to control access to some or all of their data. When you
request data from one of these servers, the DODS client will prompt you for a username and
password. If you want to avoid the prompt, you can embed a username and password in it, like
this:

http://user:password@www.dods.org/nph-dods/etc. ..

56 CHAPTER 2

Ch2 Sec7.5. Sharing Data Sets via DODS

One of the most powerful aspect of DODS is the ease with which it allows for the sharing of
data. With just a few simple steps, anyone running a web server can also be a DODS data
server, thereby allowing data set access to anyone with an Internet connection.

Simply copying a few precompiled binaries into the cgi-bin directory of an already configure
httpd server is all it takes to become a DODS server. Once the server is configured, adding or
removing data sets is as simple as copying them to the server data directory or deleting them
from that directory.

This ability has such immense potential that it bears extra emphasis. Imagine that within sec-
onds of finishing a model run, a remote colleague is able to look at your dataset with whatever
DODS client he/she desires, be it Ferret, or Matlab, etc. No need for you to package up the data
or for your colleague to download and/or reformat it, it is ready to be analyzed right away.

Ch2 Sec7.6. DODS caching

This feature allows caching of frequently accessed DODS served datasets to produce a quicker
response when requesting remote data. The first time you access a DODS data set, a file in the
users home directory will be created called .dodsrc. This file is the DODS client initialization
file. Please see the DODS Users Guide;
http://www.opendap.org/user/guide-html/guide.html/guide_72.html for details of the
paramaters that this file contains.

Initially, DODS caching will be turned off. In order to turn caching on, change the line in the
newly created ~/.dodsrc file from

USE CACHE=0
to

USE CACHE=I

The next time Ferret is run, and a DODS-served dataset is accessed, a file called .dods cache
will be created, typically in the users home directory. The location of the DODS cache direc-
tory can be controlled by the line

CACHE ROOT=/home/twaits/.dods cache/

in the user's .dodsrc file. This directory is where all the cached information is stored. To clear
the DODS cache, simply delete the .dods_cache directory and all of it's contents (for example,
rm -rf ~/.dods_cache). This directory will be recreated and repopulated with caching informa-
tion the next time data is accessed via DODS, if caching is turned on. All of the paramater val-
ues in the .dodsrc file can be modified to better suit individual needs, and will be incorporated
the next time Ferret is run and DODS served data is accessed. Again, see the DODS User guide

DATA SET BASICS 57

http://www.opendap.org/user/guide-html/guide.html/guide_72.html

at see the section "The OPeNDAP Client Initialization File (.dodsrc)" in the DODS Users
Guide (http://www.opendap.org/user/guide-html/guide.html) for more detailed information

It is often a useful diagnostic exercise to turn caching off and/or clear out the cache directory
when attempts to access datasets in Ferret appear inconsistent. For example, if Ferret at-
tempted to access a DODS-served dataset that was unavailable because the DODS server was
down, that information may get cached and adversely effect the next attempt at retrieving the
data.

For more detailed information on using DODS, and on setting up a DODS server, see the
DODS home page (http://unidata.ucar.edu/packages/dods).

Ch2 Sec7.7. Proxy servers
A DODS client can negotiate proxy servers, with help from directions in its configuration file.

The parameters that control proxy behavior are fully documented in the DODS Users Guide,
see the link above.

58 CHAPTER 2

http://www.opendap.org/user/guide-html/guide.html
http://unidata.ucar.edu/packages/dods

Chapter 3: VARIABLES AND EXPRESSIONS

Ch3 Secl. VARIABLES

Variables are of 2 kinds:

1) file variables (read from disk files)
2) user-defined variables (defined by the user with LET command)

Both types may be accessed identically in all commands and expressions.
Variables, regardless of kind, possess the following associated information:
1) grid—the underlying coordinate structure
2) units
3) title
4) title modifier (additional explanation of variable)

5) flag value for missing data points

Use the commands SHOW DATA and SHOW VARIABLES to examine file variables and
user-defined variables, respectively.

The pseudo-variables I, J, K, L, X, Y, Z, T and others may be used to refer to the underlying grid
locations and characteristics and to create abstract variables.

For a description of string variables and arrays, see the chapter on "Handling String Data", p.
221.

Ch3 Secl1.1. Variable syntax

Variables in Ferret are referred to by names with optional qualifying information appended in
square brackets. See DEFINE VARIABLE (p. 340) for a discussion of legal variable names.

The information that may be included in the square brackets includes

D=data_set_name_or number ! indicate the data set
G=grid or_variable name ! request a regridding
X=,Y¥=,2=,T=,I=,J=,K=,L= ! specify region and transformation

e.g. LIST V[x=1:50:5,1=1:30Qave]

See the chapter "Grids and Regions", section "Regions" (p. 154) for more discussion of the
syntax of region qualifiers and transformations.

Some examples of valid variable syntax are

VARIABLES AND EXPRESSIONS 59

Myvar

myvar [D=2]

myvar [D=a_dset]
myvar [D=myfile. txt]
myvar [G=gridname]
myvar [G=var2]

data set and region as per current context

myvar from data set number 2 (see SHOW DATA)

myvar from data set a_dset.cdf or a_dset.des

myvar from file myfile. txt

myvar regridded to grid gridname

myvar regridded to the grid of var2

which is in the same data set as myvar

myvar regridded to the grid of var2

which is in data set number 2

myvar regridded to a dynamic grid which

has X axis axisname

myvar regridded to a dynamic grid which

has the X axis of variable var2

myvar subsampled at every 5th point
(regridded to a subsampled axis)

myvar subsampled at every 5 degrees
(regridded to a 5-deg axis by linear
interpolation)

myvar [G=var2 [D=2]]
myvar [GX=axisname]
myvar [GX=var2]
myvar[I=1:31:5]

myvar [X=20E:50E:5]

Ch3 Sec1.2. File variables

File variables are stored in disk files. Input data files can be ASCII, binary, netCDF, or
TMAP-formatted (see the chapter "Data Set Basics", p. 33). File variables are made available
with the SET DATA (alias USE) command.

In some netCDF files the variable names are not consistent with Ferret's rules for variable nam-
ing. They may be case-sensitive (for example, variables "v" and "V" defined in the same file),
may be restricted names such as the Ferret pseudo-variable names [, J, K, L, X, Y, Z, T, XBOX,
YBOX, ZBOX, or TBOX, or they may include "illegal" characters such as "+", "-", "%",
blanks, etc. To access such variable names in Ferret, simply enclose the name in single quotes.
For example,

yes? PLOT 'x'
yes? CONTOUR 'SST from MP/RF measurements'

By the same token when using Ferret to output into netCDF files that Ferret did not itself cre-
ate, the results may not be entirely as expected. Case-sensitivity of names is one aspect of this.

Since Ferret is (by default) case insensitive and netCDF files are case-sensitive writing into a
"foreign" file may result in duplicated entities in the file which differ only in case.

Ch3 Sec1.3. Pseudo-variables

Pseudo-variables are variables whose values are coordinates or coordinate information from a
grid. Valid pseudo-variables are

60 CHAPTER 3

X —x axis coordinates ~ XBOX — size of x grid box XBOXLO-grid cell lower bound
Y —y axis coordinates ~ YBOX —size of y grid box XBOXHI-grid cell upper bound
Z — 7 axis coordinates ZBOX —size of z grid box YBOXLO-grid cell lower bound
T — t axis coordinates TBOX —size of t grid box YBOXHI-grid cell upper bound

I — x axis subscripts ZBOXLO-grid cell lower bound
J —y axis subscripts ZBOXHI-grid cell upper bound
K — z axis subscripts TBOXLO-grid cell lower bound
L — t axis subscripts TBOXHI-grid cell upper bound

A grid box is a concept needed for some transformations along an axis; it is the length along an
axis that belongs to a single grid point and functions as a weighting factor during integrations
and averaging transformations.

The pseudo-variables I, J, K, and L are subscripts; that is, they are a coordinate system for re-
ferring to grid locations in which the points along an axis are regarded as integers from 1 to the
number of points on the axis. This is clear if you look at one of the sample data sets:

yes? USE levitus_climatology
yes? SHOW DATA
1> /home/el/tmap/fer dsets/descr/levitus_climatology.des (default)
Levitus annual climatology (1x1 degree)
diagnostic variables: NOT available

name title I J K L
TEMP TEMPERATURE 1:360 1:180 1:20

... on grid GLEVITR1 X=20E:20E (380) Y=90S:90N Z=0m:5000m
SALT SALINITY 1:360 1:180 1:20

. on grid GLEVITRL X=20E:20E (380) Y=90S:90N Z=0m:5000m

We see that there are 20 points along the z-axis (1:20 under K), for example, and that the z-axis
coordinate values range from 0 meters to 5000 meters. Pseudo-variables depend only on the
underlying grid, and not on the variables (in this case, temperature and salt).

Examples: Pseudo-variables

1) yes? LIST/I=1:10 I
2) yes? LET xflux = u * xbox[G=u]

Ch3 Sec1.3.1. Grids and axes of pseudo-variables
The name of a pseudo-variable (p. 60), alone, ("I","T", "ZBOX", etc.) is not sufficient to deter-

mine the underlying axis of the pseudo-variable. The underlying axis may be specified explic-
itly, may be inherited from other variables used in the same expression, may be generated

VARIABLES AND EXPRESSIONS 61

dynamically, or may be inherited from the current default grid. The following examples illus-
trate the possibilities:

TEMP + Y ! pseudo-variable Y inherits the y axis of variable TEMP
Y [G=TEMP] ! explicit: Y refers to the y axis of variable TEMP
Y[GY=axis name] ! explicit: Y refers to axis axis_name
Y[Y=0:90:2] ! yv axis is dynamically generated (See "dynamic axes">,

1

p- 140)

In the expression

LET A =X+ Y

in which the definition provides no explicit coaching, nor are there other variables from which
Y can inherit an axis, the axis of Y will be inherited from the current default grid. The current
default grid is specified by the SET GRID command and may be queried at any time with the
SHOW GRID command. SHOW GRID will respond with "Default grid for DEFINE
VARIABLE is grid".

Note that when pseudo-variables are buried within a user variable definition they do not inherit
from variables used in conjunction with the user variable. For example, contrast these expres-
sions involving pseudo-variable Y

USE coads climatology ! has variable SST

LET A =Y ! Y buried inside variable A (axis indeterminate)
LIST SST + A ! y axis inherited from current default grid
LIST SST + Y ! v axis inherited from grid of SST

LIST SST + A[G=SST] ! yv axis inherited from grid of SST

Ch3 Sec1.4. User-defined variables

New variables can be defined from existing variables and from abstract mathematical quanti-
ties (such as COS(latitude)) with command DEFINE VARIABLE (alias LET). The section
later in this chapter, Defining New Variable (p. 134) expands on this capability.

See command DEFINE VARIABLE (p. 340) and command LET (p. 353) in the Commands
Reference. Example 3 shows the use of masking, a useful concept in constructing variables.

Examples: User-defined variables

1) yes? LET/TITLE="Surface Relief x1000 (meters)" rl000=rose/1000
2) yes? LET/TITLE="Temperature Deviation" tdev=temp - temp[Z=Q@ave]
3) yes? LET a = IF (sst GT 20. AND sst LT 30.) THEN sst ELSE 20.

62 CHAPTER 3

Ch3 Secl.5. Abstract variables

Ferret can be used to manipulate abstract mathematical quantities such as SIN(x) or
EXP(k*t)—quantities that are independent of file variable values. Such quantities are referred
to as abstract expressions.

Example: Abstract variables

Contour the function
COS (a*Y) /EXP (b*T) where a=0.25 and b=-0.02

over the range
Y=0:45 (degrees) and T=1:100 (hours)

with a resolution of
0.5 degree on the Y axis and 2 hours on the T axis.

Quick and dirty solution:
yes? CONTOUR COS(0.25*Y[Y=0:45:0.5]) /EXP(-0.2*T[T=1:100:2])

Nicer (Figure 3_1); plot is documented with correct units and titles):

sssss

zzzzz

LATITUDE
| /\ Qh/“

50
T (HOURS)

COS(A*Y)/EXP(B*T)

Figure 3 1

yes? DEFINE AXIS/Y=0:45:0.5/UNIT=DEGREES yax
yes? DEFINE AXIS/T=1:100:2/UNIT=HOURS tax
yes? DEFINE GRID/T=tax/Y=yax my_grid

yes? SET GRID my grid

yes? LET a=0.25

yes? LET b=-0.02

yes? CONTOUR COS (a*Y) /EXP (b*T)

See the chapter "Grids and Regions", section "Grids" (p. 137), for more information on grids.

VARIABLES AND EXPRESSIONS 63

Ch3 Secl.6. Missing value flags

Data values that are absent or undefined for mathematical reasons (e.g., 1/0) will be repre-
sented in Ferret with a missing value flag. In SHADE outputs a missing value flag embedded at
some point in a variable will result in a transparent rectangular hole equal to the size of the grid
cell of the missing value. Ina CONTOUR or FILL plot it will result in a larger hole—extending
past the grid box edge to the coordinate location of the next adjacent non-missing point—since
contour lines cannot be interpolated between a missing value and its neighboring points. In the
output of the LIST command for cases where the /FORMAT qualifier is not used the missing
value will be represented by 4 dots ("...."). For cases where LIST/FORMAT=FORTRAN-for-
mat is used the numerical value of the missing value flag will be printed using the format pro-
vided.

Ch3 Sec1.6.1. Missing values in input files

Ferret does not impose a standard for missing value flags in input data sets; each variable in
each data set may have its own distinct missing value flag(s). The flag(s) actually in use by a
data set may be viewed with the SHOW DATA/VARIABLES command. If no missing value
flag is specified for a data set Ferret will assume a default value of —1.E+34.

For EZ input data sets, either binary or ASCII, the missing data flag may be specified with the
SET VARIABLE/BAD= command. A different value may be specified for each variable in the
data set.

For netCDF input data sets the missing value flag(s) is indicated by the values of the attributes
"missing_value" and " FillValue." If both attributes are defined to have different values both
will be recognized and used by Ferret as missing value indicators, however the occurrences of
_FillValue will be replaced with the value of missing_value as the data are read into Ferret's
memory cache so that only a single missing value flag is apparent inside of Ferret. The com-
mand SET VARIABLE/BAD= can also be applied to netCDF variables, thereby temporarily
setting a user-imposed value for FillValue. If there are values of NaN in the file, then NaN
must be listed in either the as either the "missing value" OR " FillValue" attribute and then
NaN is the missing value. Or, the user may specify SET VARIABLE/BAD=NAN (case insen-
sitive) to designate the Fortran value NaN (not a number) as the bad value flag for a given vari-
able in a netCDF dataset.

Ch3 Sec1.6.2. Missing values in user-defined variables

User-defined variables may in general be defined as expressions involving multiple variables.
The component variables need not in general agree in their choice of missing value flags. The
result variable will inherit the bad value flag of the first variable in the expression. If the first
component in the expression is a constant or a pseudo-variable, then Ferret imposes its default
missing value flag of —1.E+34.

64 CHAPTER 3

The function MISSING(variable,replacement) provides a limited control over the choice of
missing values in user-defined variables. Note, however, that while the MISSING function
will replace the missing values with other values it will not change the missing value flag. In
other words, the replacement values will no longer be regarded as missing.

Ch3 Sec1.6.3. Missingvalues in output NetCDF files

Values flagged as missing inside Ferret will be faithfully transferred to output files—no substi-
tution will occur as the data are written. In the case of netCDF output files both of the attributes
missing value, and _FillValue will be set equal to the missing value flag.

Under some circumstances it is desirable to save a user-defined variable in a netCDF file and
then to redefine that variable and to append further output. (An example of this is the process of
consolidating several files of input, say, moored measurements, into a gridded output.) The
process of appending will not change any of the netCDF attributes—neither long name (title),
units, nor missing_value or _FillValue. If the subsequent variable definitions do not agree in
their choice of missing value flags the resulting output may contain multiple missing value
flags that will not be properly documented.

An easy "trick" that avoids this situation is to begin all of the variable definitions with an addi-
tion of zero, "LET var=0+...." The addition of zero will not affect the value of the output but it

will guarantee that a missing value flag of —1.E+34 will be consistently used. Of course, you
will want to use the SET VARIABLE/TITLE= command in conjunction with this approach.

Ch3 Sec1.6.4. Displaying the missing value flag

If the LIST command is used, missing values are, by default, displayed as "...." To examine the
flag as a numerical value, use LIST/FORMAT=(E) (or some other suitable format).

Ch3 Secl.7. Returning properties of variables

The keyword RETURN= can reveal the size and shape, title, bad flag, units, and other proper-
ties of a variable or expression. See p. 130 for a description of this useful construct.

Ch3 Sec1.8. Variable and dataset attributes

Beginning with Ferret V6.0, Ferret has access to attributes of all variables, including netCDF
variables, netCDF coordinate variables, user-defined variables and variables from
non-netCDF datasets.. When a netCDF dataset is opened, its variables and attributes are
stored. For other file variables and user variables, a basic set of attributes is created, including

VARIABLES AND EXPRESSIONS 65

66

at least the missing_value flag, FillValue, and a long-name attribute with the variable's defini-
tion. If a variable is defined with /UNITS or /TITLE then those are also included among the at-
tributes.

The power of this feature is in its access to attribute information as strings or numeric data. The
text or values can be examined, edited, and used in any computation. The attributes of a vari-
able can be changed, removed, and new attributes defined, and when writing netCDF files, we
can control which attributes that are written to the file.

The general syntax for this access is

varname.attname

For example,

yes? USE coads_climatology
yes? LIST sst.units
VARIABLE : SST.UNITS
FILENAME : coads climatology.cdf
FILEPATH : /home/porter/tmap/ferret/linux/fer_ dsets/data/
"Deg c "

To refer to a coordinate variable, put the name of the coordinate variable in parentheses. The
RETURN= keyword is helpful for getting the names of coordinate axes.

yes? LIST (coadsx) .point spacing
VARIABILE : TCOADSX).POINT_SPACING
FILENAME : coads climatology.cdf
FILEPATH : /home/porter/tmap/ferret/linux/fer_dsets/data/
" even "
yes? LIST (sst,return=taxis’).time origin
1-> 1list (TIME).time origin -
VARIABLE : (TIME) .TIME ORIGIN
FILENAME : coads climatology.cdf
FILEPATH : /home/porter/tmap/ferret/linux/fer_dsets/data/
"1-JAN-0000 00:00:00"

The dataset itself can have attributes; the global attributes. To refer to the dataset, use a dot.
The history attribute of the current dataset can be referred to by

..history

For example,

yes? LET a = 1; save/clobber/file=new.nc a
LISTing to file new.nc

yes? USE new.nc

yes? LIST ..history

VARIABLE : ..HISTORY
FILENAME : new.nc
"FERRET V6 5-Jul-06"

CHAPTER 3

When there is more than one dataset open, the dataset specifier [d=1] or [d=datasetname] co-
mes at the end of the varname.attname string:

yes? use dataset 1
yes? use dataset 2
yes? list var.units[d=1]

Ch3 Sec1.8.1. SHOW ATTRIBUTE commands

SHOW DATA/ATRIBUTE Expands the SHOW DATA output, listing
dataset attributes and variable attributes
SHOW ATTRIBUTE varname.attname Lists the value(s) of an attribute. It gives the
same information as LIST varname.attname
SHOW ATRIBUTE/ALL varname Lists all of the attributes for the variable
‘varname.attname,RETURN=size’ Returns the length of a string attribute, or the

number of values in a numeric attribute

Example:

yes? USE etopo60
yes? SHOW DATA/ATT
currently SET data sets:
1> /home/porter/tmap/ferret/linux/fer dsets/data/etopo60.cdf

(default)
VARIABLE ATTRIBUTE NAME TYPE SIZE OUTFLAG VALUE
. history CHAR 28 T FERRET
V4.45 (GUI) 22-May-97
(ETOPO60X) units CHAR 12 T
degrees east
- modulo CHAR 1 T
point_spacing CHAR 4 T even
(ETOPO60Y) units CHAR 13 T
degrees_north
point_ spacing CHAR 4 T even
ROSE missing value FLOAT 1 T
-1.000000E+34
_Fillvalue FLOAT 1 T
-1.000000E+34
long name CHAR 34 T RELIEF OF
THE SURFACE OF THE EARTH -
history CHAR 12 T From
etopo60
units CHAR 6 T METERS

yes? SHOW ATT rose.missing value

attributes for dataset:
/home/porter/tmap/ferret/linux/fer dsets/data/etopo60.cdf
ROSE.missing value = -1.000000E+34

VARIABLES AND EXPRESSIONS 67

yes? SHOW ATT/ALL rose

attributes for dataset:
/home/porter/tmap/ferret/linux/fer dsets/data/etopo60.cdf
ROSE.missing value = -1.000000E+34
ROSE._FillValue = -1.000000E+34
ROSE.long name = RELIEF OF THE SURFACE OF THE EARTH
ROSE.history = From etopo60
ROSE.units = METERS

yes? SAY ‘rose.missing_value,RETURN=SIZE"
!'-> MESSAGE/CONTINUE 1

1

yes? say rose.long name,return=size’
!'-> MESSAGE/CONTINUE 34

34

Ch3 Sec1.8.2. Attribute keywords

In addition to the attributes of variables we can also learn about the number and names of vari-
ables in a dataset, the dimensions and number of attributes for each variable, and the same in-
formation about the dimensions (coordinate variables). New keywords are introduced:

DATASET
..nvars number of variables (excluding coordinate variables
..varnames variable names
..ndims number of dimensions (coordinate variables)
..dimnames dimension names
..nattrs number of global attributes
..attnames global attribute names
VARIABLE
var.ndims number of dimsnsions for variable
var.dimnames names of variable's dimensions
var.nattrs number of attributes for variable
var.attnames attribute names for variable

Examples:

yes? use mydata.nc

yes? let names = ..varnames
yes? list names
yes? let anames = "names[i=2] .attname

yes? list ..ndims
yes? list myvar.dimhnames

68 CHAPTER 3

Ch3 Sec1.8.3. Programmatic access to attributes

To form a variable from attribute information simply use a LET command:

yes? let a
yes? let b
yes? let h

varname.missing value
(axisname) .units
..history

Or, use attribute keywords

! The number of variables (not including coordinate variables)
yes? let nv = ..nvars

! The number of coordinate variables
yes? let nc = ..ndims

! A variable with a list of all coordinate variables
! from data set 1
yes? let lnames = ..dimnames[d=1]

! If two datasets have a variable TEMP, list the units
! of the variable in each dataset

yes? let uu = temp.units

yes? list/d=1 uu

yes? list/d=2 uu

Ch3 Sec1.8.4. Editing attributes

We can change an existing attribute for a variable, add new attributes, and control which are
written to output netCDF files. We can define attributes to be of type STRING or FLOAT. (on
ouput we will be able to request type conversions to other numeric types). Numeric attributes
may be lists of values. If the type is note specified by the /TYPE qualifier, the type is inferred
from the value of the attribute. The outupt flag is set with the /OUTPUT qualifier: SET
ATTRIBUTE/OUTPUT varname.attname marks the attribute for output to netCDF files, and
CANCEL ATTRIBUTE/OUTPUT causes that attribute to be hidden on output.

Example: add new attributes with DEFINE ATTRIBUTE

yes? USE etopo60

yes? DEFINE ATT/TYPE=float rose.floatval = 22

yes? DEFINE ATT rose.pp = {1.5, 1.9}

yes? DEFINE ATT/TYPE=string rose.strval = 2

yes? DEFINE ATT rose.some_text = "some text about ROSE "

yes? SHOW ATT/ALL rose

attributes for dataset:
/home/porter/tmap/ferret/linux/fer dsets/data/etopo60.cdf
ROSE.missing value = -1.000000E+34
ROSE. FillValue = -1.000000E+34
ROSE.long name = RELIEF OF THE SURFACE OF THE EARTH
ROSE.history = From etopo60
ROSE.units = METERS

VARIABLES AND EXPRESSIONS 69

70

ROSE. floatval = 22

ROSE.pp = 1.5, 1.9

ROSE.strval = 2

ROSE.some_text = some text about the ROSE variable

! /D= specifies the dataset if needed
yes? DEFINE ATT/D=1 rose.another_ attribute = 6

! /OUTPUT sets the output flag: this attribute will be
! written to output files with the variable.
yes? DEFINE ATT/OUTPUT rose.more_text = "Another notation"

We can also change an existing attribute. As in the commands DEFINE VARIABLE; SET
VARIABLE; CANCEL VARIABLE we can use DEFINE ATTRIBUTE to redefine an existing
attribute or SET ATTRIBUTE and CANCEL ATTRIBUTE to change settings or values of an
attribute.

Examples: continuing the above example

! Change the text in long_name
yes? DEFINE ATT rose.long name = "Relief of the Surface of the Earth"

! The rose.history attribute will NOT be written to output files
yes? CANCEL ATT/OUTPUT rose.history

! The new attribute rose.pp we defined above WILL be written
yes? SET ATT/OUTPUT rose.pp

For a coordinate variable, SET AXIS and SET ATTRIBUTE commands do the same thing:

yes? USE levitus_climatology

! These commands are equivalent
yes? SET AXIS/POSITIVE="up" temp,return=zaxis’

yes? SET ATT (temp,return=zaxis’) .positive = "up"

Another way to edit attributes is to inherit them from another variable. Use the qualifer SET
ATTRIBUTE/LIKE=

Example (note the long name and units)

yes? use levitus_climatology
yes? SET ATT/LIKE=salt temp
yes? SHOW ATTRIBUTE/ALL temp
attributes for dataset:
/home/porter/tmap/ferret/linux/fer dsets/data/levitus_climatology.cdf
TEMP.missing value = -1.E+10
TEMP. FillValue = -1.E+10
TEMP. long name = SALINITY
TEMP.history = From levitus climatology
TEMP.units = PPT -

CHAPTER 3

As noted at the start of this section, the attribute commands can be applied to any variable, not
just those in netCDF datsets. A user variable has a few default attributes when it is defined; a
missing value, FillValue, and a long name, and units if they are included in the definition.
Here a user variable inherits all of the attributes from a file variable. Here salt2 initially has
only a long-name, missing_value, and _FillValue. We can inherit the units and a more descrip-
tive long_name from the dataset variable.

yes? USE levitus_climatology
yes? LET salt2 = 2* salt

yes? SHOW ATT/ALL salt2
attributes for user-defined variables
SALT2.long_name = 2* SALT
SALT2 .missing value = -1.000000E+34

yes? SET ATT/LIKE=salt salt2
yes? SHOW ATT/ALL salt2
attributes for user-defined variables
SALT2 .missing value = -1.E+10
SALT2. FillValue = -1.E+10
SALT2.long name = SALINITY
SALT2.history = From levitus climatology
SALT2.units = PPT -

Finally, fix the long_name of our new variable

"2 * “salt.long name "

yes? set att salt2.long name =
'-> set att salt2.long name = "2 * SALINITY"
*** NOTE: Changing the value of attribute

Ch3 Sec1.8.5. Output attributes to NetCDF fies

As noted in the previous section, the value of the attribute output flag, set by the commands
DEFINE ATTRIBUTE/OUTPUT, SET ATTRIBUTE/OUTPUT and CANCEL
ATTRIBUTE/OUTPUT controls whether an attribute is written to a netCDF file when the vari-
able is written. The SET ATTRIBUTE/OUTPUT= allows more precise control over the writ-
ing of attributes.

SET ATT/OUTPUT varname.attname Sets an individual attribute to be written when
the variable is written

SET ATT/OUTPUT=all varname Output all attributes that have been defined for
a variable

SET ATT/OUTPUT=default varname Write only the outputs that Ferret typically

writes by default (see p. 267)

SET ATT/OUTPUT=none varname Output no attributes for the variable

CANCEL ATT/OUTPUT varname.attname Suppresses output of the attribute when the

variable is written.

VARIABLES AND EXPRESSIONS 71

Example:

12.
{3,4.5,6,7,4}

yes? LET aa
yes? LET bb

yes? DEFINE ATT/OUTPUT att bb.my title = "This is my new variable bb"
yes? DEFINE ATT bb.another_ attr = 6

! Output just bb.mytitle, along with the default
! ones, missing value, _FillValue, and long_name.

yes? SAVE/CLOBBER/FILE=ab.nc aa,bb
! Output all attributes

yes? SET ATT/OUTPUT=all bb
yes? SAVE/CLOBBER/FILE=ab.nc aa,bb

! Output default attributes

yes? SET ATT/OUTPUT=default bb
yes? SAVE/CLOBBER/FILE=ab.nc aa,bb

We can suppress output of an attribute that Ferret would otherwise add, the "axis" attribute for
coordinate axes.

yes? USE levitus_climatology
yes? CANCEL ATT/OUT (temp,return=xaxis’).axis

Ch3 Sec1.8.6. Output Variables to NetCDF files

The attribute-handling structure gives us flexibility in writing variables to netCDF files. We
can specify that the upper- or lower-case spelling of variables and attributes from an input
netCDF file be preserved on output, or that these should be upper-cased as has been done previ-
ously in Ferret. By default, Ferret still upcases variable names when it writes variables to
netCDF files. If we want to keep the case of the names that they had on input, use

CANCEL MODE upcase_ output

We can also control the data type of variables written to output netCDF files, with SET
VAR/OUTTYPE=]. The netCDF library is used to convert the data type of a Ferret FLOAT
value to the requested output type. The types allowed are FLOAT, INT, SHORT, and BYTE, or
INPUT to preserve the type the data had on input. To write integers, for instance,

yes? SET DATA etopo60
yes? SET VAR/OUTTYPE=int4 rose
yes? SAVE/X=180/FILE=r_int.nc rose

LISTing to file a.nc

*** NOTE: Converting data type of missing value NC_FLOAT to match
output type of variable NC_INT

** netCDF error:

data in attribute missing_value not representable in output type NC_INT

72 CHAPTER 3

Here, the missing_value of the variable cannot be represented as an integer, and the file was not
written. Correct for this by assigning a new missing_value to the variable before writing:

yes?
yes?
yes?

SET DATA etopo60
SET VAR/OUTTYPE=int4/BAD=200000 rose
SAVE/X=180/FILE=r_int.nc rose

LISTing to file a.nc

* k%

NOTE: Converting data type of missing value NC_FLOAT to match

output type of variable NC_INT

Note that not all data can be represented in all types. When data is written to DOUBLE, it is al-
ways converted from the Ferret internal representation of single precision FLOAT data, even if
the original data was double precision.

This mechanism lets us pack data when writing it to a netCDF file by using the add offset and
scale factor attributes. Say a dataset has a variable called elev which is packed using these at-
tributes. By default Ferret scales this data when it is read, and writes it in scaled (unpacked)
form. To pack it, we turn on output of the scale factor and add_offset attributes. Then Ferret
will apply this scaling to data and its missing_value and _FillValue are rescaled on output.

yes?
yes?
yes?
yes?
yes?

USE my scaled dset.nc

SET ATT/OUTPUT elev.scale factor

SET ATT/OUTPUT elev.add offset

SET ATT/OUTTYPE=input elev
SAVE/CLOBBER/FILE=scaled.nc/J=1 elev

We can use this technique to apply new scale factors to a variable or define scale and offset at-
tributes when writing any variable.

Ch3 Sec2.

EXPRESSIONS

Throughout this manual, Ferret commands that require and manipulate data are informally
called "action" commands. These commands are:

PLOT

CONTOUR

FILL

(alias for CONTOUR/FILL)

SHADE
VECTOR
POLYGON
WIRE

LIST
STAT

LOAD

Action commands may use any valid algebraic expression involving constants, operators
(+,—%*,...), functions (SIN, MIN, INT,...), pseudo-variables (X, TBOX, ...) and other variables.

VARIABLES AND EXPRESSIONS 73

A variable name may optionally be followed by square brackets containing region, transforma-

n.n

tion, data set, and regridding qualifiers. For example, "temp", "salt{D=2]", "u[G=temp"],
"u[Z=0:200@AVE]", "v[k=1:50:5]

The expressions may also contain a syntax of:
IF condition THEN expression 1 ELSE expression 2
Examples: Expressions

1) temp * 2
temperature squared

il) temp - temp[Z=@AVE]
for the range of Z in the current context, the temperature deviations from the vertical aver-
age

iil) COS (Y)
the cosine of the Y coordinate of the underlying grid (by default, the y-axis is implied by the
other variables in the expression)

1v) IF (vwnd GT vwnd[D=monthly navy winds]) THEN vwnd ELSE 0

use the meridional velocity from the current data set wherever it exceeds the value in data
set monthly navy winds, zero elsewhere.

Ch3 Sec2.1. Operators

Valid operators are

+

> ™~ % |

(exponentiate)
AND

OR

GT

GE

LT

LE

EQ

NE

74 CHAPTER 3

For instance the exponentiate operator can compute the square root of a variable as var*0.5

Ch3 Sec2.2. Multi-dimensional expressions

Operators and functions (discussed in the next section, Functions) may combine variables of
like dimensions or differing dimensions.

If the variables are of like dimension then the result of the combination is of the same
dimensionality as inputs. For example, suppose there are two time series that have data on the
same time axis; the result of a combination will be a time series on the same time axis.

If the variables are of unlike dimensionality, then the following rules apply:

1) To combine variables together in an expression they must be "conformable" along each
axis.

2) Two variables are conformable along an axis if the number of points along the axis is the
same, or if one of the variables has only a single point along the axis (or, equivalently, is nor-
mal to the axis).

3) When a variable of size 1 (a single point) is combined with a variable of larger size, the vari-
able of size 1 is "promoted" by replicating its value to the size of the other variable.

4) If variables are the same size but have different coordinates, they are conformable, but Fer-
ret will issue a message that the coordinates on the axis are ambiguous. The result of the
combination inherits the coordinates of the FIRST variable encountered that has more than
a single point on the axis.

Examples:

Assume a region J=50/K=1/L=1 for examples 1 and 2. Further assume that variables v1 and v2
share the same x-axis.

1) yes? LET newv = v1[I=1:10] + v2[I=1:10] !same dimension (10)
2) yes? LET newv = v1[I=1:10] + v2[I=5] !'newv has length of vl
(10)

3) We want to compare the salt values during the first half of the year with the values for the sec-
ond half. Salt_diff will be placed on the time coordinates of the first variable—L=1:6. Ferret
will issue a warning about ambiguous coordinates.

yes? LET salt diff = salt[L=1:6] - salt[L=7:12]

4) In this example the variable zero will be promoted along each axis.

VARIABLES AND EXPRESSIONS 75

yes? LET zero = 0 * (i+j)
yes? LIST/I=1:5/J=1:5 zero '5X5 matrix of 0's

5) Here we calculate density; salt and temp are on the same grid. This expression is an XYZ
volume of points (100x100x10) of density at 10 depths based on temperature and salinity
values at the top layer (K=1).

yes? SET REGION/I=1:100/J=1:100
yes? LET dens = rho_un (salt[K=1], temp[K=1], Z[G=temp,K=1:10]

Ch3 Sec2.3. Functions

Functions are utilized with standard mathematical notation in Ferret. The arguments to func-
tions are constants, constant arrays, pseudo-variables, and variables, possibly with associated
qualifiers in square brackets, and expressions. Thus, all of these are valid function references:

e EXP(-1)

* MAX(a,b)

* TAN(a/b)

* SIN(Y[g=my sst])

e DAYS1900(1989,({3,6,9},1)

A few functions also take strings as arguments. String arguments must be enclosed in double
quotes. For example, a function to write variable "u" into a file named "my_output.v5d", for-
matted for the Vis5D program might be implemented as

* LOAD WRITE VIS5D("my_ output.v5d"”, a)

You can list function names and argument lists with:

yes? SHOW FUNCTIONS ! List all functions
Yes? SHOW FUNCTIONS *TAN! List all functions containing string

Valid functions are described in the sections below. They are:

MAX ATAN XSEQUENCE SAMPLEXY
MIN ATAN2 YSEQUENCE SCAT2GRIDGAUSS XY
INT MOD ZSEQUENCE SCAT2GRIDGAUSS XZ
ABS DAY S1900 TSEQUENCE SCAT2GRIDGAUSS YZ
EXP MISSING FFTA SCAT2GRIDLAPLACE XY
LN IGNOREO FFTP SCAT2GRIDLAPLACE XZ
LOG RANDU SAMPLEI SCAT2GRIDLAPLACE YZ
SIN RANDN SAMPLEJ SORTI

76 CHAPTER 3

COS RHO UN SAMPLEK SORTJ

TAN THETA_FO SAMPLEL SORTK
ASIN RESHAPE SAMPLEIJ SORTL
ACOS ZAXREPLACE SAMPLET DATE TAUTO_COR

See also the section on string functions (p. 222).
Grid-changing functions

It is generally advisable to include explicit limits when working with functions that replace
axes. For example, consider the function SORTL(v). The expression

LIST/L=6:10 SORTL (v)

is not equivalent to

LIST SORTL(v[L=6:10])

The former will list the 6th through 10th sorted indices from the entire | range of variable v. The
latter will list all of the indices that result from sorting v[1=6:10].

These functions in Ferret, including XSEQUENCE, SAMPLXY, and so on, are "grid-chang-
ing" functions. This means that the axes of the result may differ from the axes of the arguments.
In the case of XSEQUENCE(sst), for example, the input grid for SST is

lon

lat
normal
time

whereas the output grid is

abstract
normal
normal
normal

so all axes of the input are replaced.
Grid-changing functions create a potential ambiguity about region specifications. Suppose that

the result of XSEQUENCE(sst[L=1]) is a list of 50 points along the ABSTRACT X axis. Then
it is natural that

LIST/I=10:20 XSEQUENCE (sst[L=1])

VARIABLES AND EXPRESSIONS 77

should give elements 10 through 20 taken from that list of 50 points (and it does.) However,
one might think that "[=10:20" referred to a subset of the longitude axis of SST. Therein lies
the ambiguity: one region was specified, but there are 2 axes to which the region might apply.

It gets a degree more complicated if the grid-changing function takes more than one argument.
Since the input arguments need not be on identical grids, a result axis (X,Y,Z, or T) may be re-
placed with respect to one argument, but actually taken from another (consider
ZAXREPLACE, for example.) Ferret resolves the ambiguities thusly:

If in the result of a grid-changing function, an axis (X, Y, Z, or T) has been replaced relative to
some argument, then region information which applies to the result of the function on that axis
will NOT be passed to that argument.

So, when you issue commands like

SET REGION/X=20E:30E/Y=0N:20N/L=1
LIST XSEQUENCE (sst)

the X axis region ("20E:30E") applies to the result ABSTRACT axis -- it is not passed along to

the argument, SST. The Y axis region is, in fact, ignored altogether, since it is not relevant to
the result of XSEQUENCE, and is not passed along to the argument.

Ch3 Sec2.3.1. MAX

MAX(A, B) Compares two fields and selects the point by point maximum.
MAX(temp[K=1], temp[K=2]) returnsthe maximum temperature comparing the first 2
z-axis levels.

Ch3 Sec2.3.2. MIN

MIN(A, B) Compares two fields and selects the point by point minimum.
MIN(airt[L=10], airt[L=9]) gives the minimum air temperature comparing two
timesteps.

Ch3 Sec2.3.3. INT

INT (X) Truncates values to integers.
INT(salt) returnsthe integer portion of variable "salt" for all values in the current region.

78 CHAPTER 3

Ch3 Sec2.3.4. ABS

ABS(X) absolute value.
ABS(U) takes the absolute value of U for all points within the current region

Ch3 Sec2.3.5. EXP

EXP(X) exponential ¢'; argument is real.
EXP(X) raises e to the power X for all points within the current region

Ch3 Sec2.3.6. LN

LN(X) Natural logarithm log X; argument is real.
LN(x) takes the natural logarithm of X for all points within the current region

Ch3 Sec2.3.7. LOG

LOG(X) Common logarithm log X; argument is real.
LOG(X) takes the common logarithm of X for all points within the current region

Ch3 Sec2.3.8. SIN

SIN(THETA) Trigonometric sine; argument is in radians and is treated modulo 2*pi.
SIN(X) computes the sine of X for all points within the current region.

Ch3 Sec2.3.9. COS

COS(THETA) Trigonometric cosine; argument is in radians and is treated modulo 2*pi.
cos(Y) computes the cosine of Y for all points within the current region

Ch3 Sec2.3.10. TAN

TAN(THETA) Trigonometric tangent; argument is in radians and is treated modulo 2*pi.
TAN(theta) computes the tangent of theta for all points within the current region

VARIABLES AND EXPRESSIONS 79

Ch3 Sec2.3.11. ASIN

ASIN(X) Trigonometric arcsine (-pi/2,pi/2) of X in radians.The result will be flagged as miss-
ing if the absolute value of the argument is greater than 1; result is in radians.
ASIN(value) computes the arcsine of "value" for all points within the current region

Ch3 Sec2.3.12. ACOS

COS(X) Trigonometric arccosine (0,pi), in radians. The result will be flagged as missing of the
absolute value of the argument greater than 1; result is in radians.
ACOS (value) computes the arccosine of "value" for all points within the current region

Ch3 Sec2.3.13. ATAN

ATAN(X) Trigonometric arctangent (-pi/2,pi/2); result is in radians.
ATAN(value) computes the arctangent of "value" for all points within the current region

Ch3 Sec2.3.14. ATAN2

ATAN2(X,Y) 2-argument trigonometric arctangent of X/Y (-pi,pi); discontinuous at Y=0.
ATAN2 (X,Y) computes the 2-argument arctangent of X/Y for all points within the current
region

Ch3 Sec2.3.15. MOD

MOD(A,B) Modulo operation (argl —arg2*[argl/arg2]). Returns the remainder when the first
argument is divided by the second.
MoD(X,2) computes the remainder of X/2 for all points within the current region

Ch3 Sec2.3.16. DAYS1900

DAY S1900(year,month,day) computes the number of days since 1 Jan 1900. This function is
useful in converting dates to Julian days on the standard Gregorian calendar. If the year is
prior to 1900 a negative number is returned. This means that it is possible to compute Julian
days relative to, say, 1800 with the expression

LET jdayl800 = DAYS1900 (year, month, day) - DAYS1900(1800,1,1)

80 CHAPTER 3

Ch3 Sec2.3.17. MISSING

MISSING(A,B) Replaces missing values in the first argument (multi-dimensional variable)
with the second argument; the second argument may be any conformable variable.
MISSING(temp, -999) replaces missing values in temp with —999

MISSING(sst, temp[D=coads climatology]) replaces missing sst values with tem-
perature from the COADS climatology

Ch3 Sec2.3.18. IGNOREO

IGNOREO(VAR) Replaces zeros in a variable with the missing value flag for that variable.
IGNOREO (salt) replaces zeros in salt with the missing value flag

Ch3 Sec2.3.19. RANDU

RANDU(A) Generates a grid of uniformly distributed [0,1] pseudo-random values. The first
valid value in the field is used as the random number seed. Values that are flagged as bad re-
main flagged as bad in the random number field.

RANDU(temp[I=105:135,K=1:5]) generates a field of uniformly distributed random
values of the same size and shape as the field "temp[[=105:135,K=1:5]" using
temp[I=105,k=1] as the pseudo-random number seed.

Ch3 Sec2.3.20. RANDN

RANDN(A) Generates a grid of normally distributed pseudo-random values. As above, but
normally distributed rather than uniformly distributed.

Ch3 Sec2.3.21. RHO_UN

RHO_UN(SALT, TEMP, P) Calculates the mass density rho (kg/m”"3) of seawater from salin-
ity SALT(salt, psu), temperature TEMP(deg C) and pressure P(dbar) using the 1980 UNESCO
International Equation of State (IES80). Either in-situ or potential density may be computed
depending upon whether the user supplies in-situ or potential temperature.

Note that to maintain accuracy, temperature must be converted to the [PTS-68 standard before
applying these algorithms. For typical seawater values, the IPTS-68 and ITS-90 temperature
scales are related by T 68 =1.00024 T 90 (P. M. Saunders, 1990, WOCE Newsletter 10). The
routine uses the high pressure equation of state from Millero et al. (1980) and the one-atmo-

VARIABLES AND EXPRESSIONS 81

sphere equation of state from Millero and Poisson (1981) as reported in Gill (1982). The nota-
tion follows Millero et al. (1980) and Millero and Poisson (1981).

RHO UN(salt, temp, Z)

Ch3 Sec2.3.22. THETA_FO

THETA FO(SALT, TEMP, Z, REF) Calculates the potential temperature of a seawater parcel
at a given salinity SALT(psu), temperature TEMP(deg. C) and pressure P(dbar), moved adia-
batically to a reference pressure REF(dbar).

This calculation uses Bryden (1973) polynomial for adiabatic lapse rate and Runge-Kutta 4th
order integration algorithm. References: Bryden, H., 1973, Deep-Sea Res., 20, 401-408;
Fofonoff, N.M, 1977, Deep-Sea Res., 24, 489-491.

THETA FO(salt, temp, Z, Z reference)

Ch3 Sec2.3.23. RESHAPE

RESHAPE(A, B) The result of the RESHAPE function will be argument A "wrapped" on the
grid of argument B. The limits given on argument 2 are used to specify subregions within the
grid into which values should be reshaped.

RESHAPE (Tseries,MonthYear)

Two common uses of this function are to view multi-year time series data as a 2-dimensional
field of 12-months vs. year and to map ABSTRACT axes onto real world coordinates. An ex-
ample of the former is

DEFINE AXIS/t=15-JAN-1982:15-DEC-1985/NPOINTS=48/UNITS=DAYS tcal
LET my time series = SIN(T[gt=tcal]/100)
! reshape 48 months into a 12 months by 4 year matrix
DEFINE AXIS/t=1982:1986:1 tyear
DEFINE AXIS/Z=1:12:1 zmonth
LET out_grid = Z[GZ=zmonth]+T[GT=tyear]
LET my_ reshaped = RESHAPE (my time_ series, out_grid)
SHOW GRID my reshaped
GRID (G001)

name axis # pts start end
normal X

normal Y

ZMONTH Z 12 r 1 12
TYEAR T 5«r 1982 1986

For any axis X,Y,Z, or T if the axis differs between the input output grids, then limits placed
upon the region of the axis in argument two (the output grid) can be used to restrict the geome-
try into which the RESHAPE is performed. Continuing with the preceding example:

82 CHAPTER 3

! Now restrict the output region to obtain a 6 month by 8 year matrix

LIST RESHAPE (my_ time series,out_grid[k=1:6])
RESHAPE(MY_IIME_SERIES,OUT_GRID[K=1:6])
5

1 2 3 4 6

1 2 3 4 5 6
1982 / 1: 0.5144 0.7477 0.9123 0.9931 0.9827 0.8820
1983 / 2: 0.7003 0.4542 0.1665 -0.1366 -0.4271 -0.6783
1984 / 3: -0.8673 -0.9766 -0.9962 -0.9243 -0.7674 -0.5401
1985 / 4: -0.2632 0.0380 0.3356 0.6024 0.8138 0.9505
1986 / 5: 0.9999 0.9575 0.8270 0.6207 0.3573 0.0610

For any axis X,Y,Z, or T if the axis is the same in the input and output grids then the region from
argument 1 will be preserved in the output. This implies that when the above technique is used
on multi-dimensional input, only the axes which differ between the input and output grids are
affected by the RESHAPE operation. However RESHAPE can only be applied if the reshape
operation preserves the ordering of data on the axes in four dimensions. The RESHAPE func-
tion only "wraps" the variable to the new grid, keeping the data ordered as it exists in memory,
that is, ordered by X (varying fastest) then -Y-Z-T (slowest index). It is an operation like
@ANSN regridding. Subsetting is done if requested by region specifiers, but the function does
not reorder the data as it is put on the new axes. For instance, if your data is in Z and T:

SHOW GRID GOO1
GRID (G001)

name axis # pts start end
normal X

normal Y

ZMONTH Z 12 r 1 12
T ABSTR T 5r 1 5

and you wish to put it on a new grid, GRIDYZ

SHOW GRID gridyz
GRID (GRIDYZ)

name axis # pts start end
normal X

YAX LATITUDE 5r 15N 19N
ZMONTH Z 12 r 1 12
normal T

then the RESHAPE function would NOT correctly wrap the data from G001 to GRIDYZ, be-
cause the data is ordered with its Z coordinates changing faster than its T coordinates, and on
output the data would need to be reordered with the Y coordinates changing faster then the Z
coordinates.

The following filled contour plot of longitude by year number illustrates the use of RESHAPE
in multiple dimensions by expanding on the previous example: (Figure 3_2)

! The year-by-year progression January winds for a longitudinal patch
! averaged from 5s to 5n across the eastern Pacific Ocean. Note that
! k=1 specifies January, since the Z axis is month

VARIABLES AND EXPRESSIONS 83

USE coads
LET out_grid = Z[GZ=zmonth]+T [GT=tyear]+X[GX=uwnd]+Y[GY=uwnd]
LET uwnd mnth ty = RESHAPE (uwnd, out_grid)
FILL uwnd mnth ty[X=130W:80W,Y=5S:5N@AVE, K=1]
LATITUDE : 5S to 5N (averaged)
Z:1

DATA SET: coads

1986.0 -

| | 1
1985.0 —
— 1984.0 — ' W

&

&

L

1983.0

COADS 2x2 Degree Monthly Average Surface Marine Observations
125°w 115°w 105°w

{ I H Z

! 1

0
-5
-6

T T T -

95°W 85°W
LONGITUDE

RESHAPE(UWND, OUT GRID)
Figure 3 2

1 |
1982.0 T T T T T

In the second usage mentioned, to map ABSTRACT axes onto real world coordinates, suppose
xpts and ypts contain time series of length NT points representing longitude and latitude points

along an oceanographic ship track and the variable global sst contains global sea surface tem-
perature data. Then the result of

LET sampled sst = SAMPLEXY (global _sst, xpts, ypts)

will be a 1-dimensional grid: NT points along the XABSTRACT axis. The RESHAPE func-
tion can be used to remap this data to the original time axis using RESHAPE(sampled_sst,
Xpts)

LET sampled sst = SAMPLEXY (global sst,\
xpts[t=1-Jan-1980:15-jan-1980],\
ypts[t=1-jan-1980:15-jan-1980])

LIST RESHAPE (sampled sst, xpts[t=1-jan-1980:15-jan-1980])

When the input and output grids share any of the same axes, then the specified sub-region
along those axes will be preserved in the RESHAPE operation. In the example
"RESHAPE(myTseries,myMonthYearGrid)" this means that if myTseries and

myMonthYearGrid were each multidimensional variables with the same latitude and longitude
grids then

RESHAPE (myTseries [X=130E:80W,Y¥=5S:5N] ,myMonthYearGrid)

84 CHAPTER3

would map onto the X=130E:80W,Y=5S:5N sub-region of the grid of myMonthYearGrid.
When the input and output axes differ the sub-region of the output that is utilized may be con-
trolled by inserting explicit limit qualifiers on the second argument

Ch3 Sec2.3.24. ZAXREPLACE

ZAXREPLACE(V,ZVALS,ZAX) Convert between alternative monotonic Zaxes, where the
mapping between the source and destination Z axes is a function of X, Y, and or T. The function
regrids between the Z axes using linear interpolation between values of V. See also the related
functions ZAXREPLACE BIN (p. 469) and ZAXREPLACE AVG (p. 468) which use
binning and averaging to interpolate the values.

Typical applications in the field of oceanography include converting from a Z axis of layer
number to a Z axis in units of depth (e.g., for sigma coordinate fields) and converting from a Z
axes of depth to one of density (for a stably stratified fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis, say, layer
number. The second argument, ZVALS, contains values in units of the desired destination Z
axis (ZAX) on the same Z axis as V — for example, depth values associated with each vertical
layer. The third argument, ZAX, is any variable defined on the destination Z axis, often
"Z[gz=zaxis_name]" is used.

The ZAXREPLACE function takes three arguments. The first argument, V, is the field of data
values, say temperature or salinity. This variable is available on what we will refer to as the
"source" Z-axis -- say in terms of layer number. The second argument, ZVALS, contains the
values of the desired destination Z axis defined on the source Z axis -- for example, it may con-
tain the depth values associated with each vertical layer. It should always share the Z axis from
the first argument. The third argument, ZAX, is defined on the destination Z axis. Only the Z
axis of this variable is relevant -- the values of the variable, itself, and its structure in X, Y, and
T are ignored. Often "Z[gz=zaxis_name]" is used for the third argument.

Note:

ZAXREPLACE is a "grid-changing" function; its output grid is different from the input argu-
ments. Therefore it is best to use explicit limits on the arguments rather than a SET REGION
command. (See p. 69)

An example of the use of ZAXREPLACE for sigma coordinates is outlined in the FAQ on
Using Sigma Coordinates.

VARIABLES AND EXPRESSIONS 85

http://www.ferret.noaa.gov/Ferret/FAQ/data_management/sigma_coordinate_demo.html

Another example:

Contour salt as a function of density:

yes? set dat levitus climatology

! Define density sigma, then density axis axden
yes? let sigma=rho un(salt,temp,0)-1000

yes? define axis/z=21:28:.05 axden

! Regrid to density
yes? let saltonsigma= ZAXREPLACE(salt, sigma, z[gz=axden])

! Make Pacific plot
yes? £ill/y=0/x=120e:75w/v1imits=28:21:-1 saltonsigma

Note that one could regrid the variable in the third argument to the destination Z axis using which-
ever of the regridding transformations that is best for the analysis, e.g. z[gz=axdens@AVE]

Ch3 Sec2.3.25. XSEQUENCE, YSEQUENCE, ZSEQUENCE,
TSEQUENCE

XSEQUENCE(A), YSEQUENCE(A), ZSEQUENCE(A), TSEQUENCE(A) Unravels the
data from the argument into a 1-dimensional line of data on an ABSTRACT axis.

Note:
This family of functions are "grid-changing" functions; the output grid is different from the in-

put arguments. Therefore it is best to use explicit limits on the argument rather than a SET
REGION command. (See p. 69)

Ch3 Sec2.3.26. FFTA

FFTA(A) Computes Fast Fourier Transform amplitude spectra, normalized by 1/N

Arguments: A Variable with regular time axis.
Result Axes: X Inherited from A
Y Inherited from A
Z Inherited from A
T Generated by the function: frequency in cyc/(time

units from A)

86 CHAPTER 3

See the demonstration script ef fft demo.jnl for an example using this function. Also see the
external functions fft re, fft im, and fft inverse for more options using FFT's

FFTA returns a(j) in

£(8) = 2, o wo[01(G) cOSoot + D())]

where [] means "integer part of", =2 pi/T is the fundamental frequency, and T=N*At is the
time span of the data input to FFTA. @ is the phase (returned by FFTP, see next section)

The units of the returned time axis are "cycles/At" where At is the time unit of the input axis.
The Nyquist frequency is yquist = 1./(2.*¥boxsize), and the frequency axis runs from freql =
yquist/ float(nfreq) to freqn = yquist

Even and odd N's are allowed. N need not be a power of 2. FFTA and FFTP assume
f(1)=f(N+1), and the user gives the routines the first N pts.

Specifying the context of the input variable explicitly e.g.

LIST FFTA (A[1=1:58])

will prevent any confusion about the region. See the note in chapter 3 (p. 77)on the context of
variables passed to functions.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org. For further discussion of the FFTPACK code, please see the document,
Notes on FFTPACK - A Package of Fast Fourier Transform Programs at http://fer-
ret.pmel.noaa.gov/Ferret/Documentation/FFTpack notes/FFTPACK notes.html

Ch3 Sec2.3.27. FFTP

FFTP(A) Computes Fast Fourier Transform phase

Arguments: A Variable with regular time axis.
Result Axes: X Inherited from A
Y Inherited from A
Z Inherited from A
T Generated by the function: frequency in cyc/(time

units from A)

See the demonstration script ef fft demo.jnl for an example using this function.

VARIABLES AND EXPRESSIONS 87

http://www.ferret.noaa.gov/Ferret/Demos/ef_fft_demo/ef_fft_demo.html
http://www.netlib.org
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_fft_demo/ef_fft_demo.html

FFTP returns @(j) in

f(8) = 2y, o wo[01(G) cOS(o0t + D(G))]

where [| means "integer part of", ®=2 pi/T is the fundamental frequency, and T=N*At is the
time span of the data input to FFTA.

The units of the returned time axis are "cycles/At" where At is the time increment. The Nyquist
frequency is yquist = 1./(2.*¥boxsize), and the frequency axis runs from freql = yquist/
float(nfreq) to freqn = yquist

Even and odd N's are allowed. Power of 2 not required. FFTA and FFTP assume f(1)=f(N+1),
and the user gives the routines the first N pts.

Specifying the context of the input variable explicitly e.g.

LIST FFTA(A[1=1:58])

will prevent any confusion about the region. See the note in chapter 3 (p. 77)on the context of
variables passed to functions.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org. See the section on FFTA for more discussion (p. 86). For further discussion
of the FFTPACK code, please see the document, Notes on FFTPACK - A Package of Fast
Fourier Transform Programs at http://ferret.pmel.noaa.gov/Ferret/Documenta-
tion/FFTpack notes/FFTPACK notes.html

Ch3 Sec2.3.28. SAMPLEI

SAMPLEI(TO_BE SAMPLED,X INDICES) samples a field at a list of X indices, which are
a subset of its X axis

Arguments: TO _BE SAMPLED Data to sample

X _INDICES list of indices of the variable
TO_BE SAMPLED
Result Axes: X ABSTRACT; length same as X INDICES
Y Inherited from TO_ BE SAMPLED
Z Inherited from TO_ BE_ SAMPLED
T

Inherited from TO_ BE SAMPLED

88 CHAPTER 3

http://www.netlib.org
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

See the demonstration ef sort demo.jnl for a common useage of this function. As with other
functions which change axes (see p. 69), specify any region information for the variable
TO BE SAMPLED explicitly in the function call, e.g.

yes? LET sampled data = samplei(airt[X=160E:180E], xindices)

Ch3 Sec2.3.29. SAMPLE]

SAMPLEJ(TO BE SAMPLED,Y INDICES) samples a field at a list of Y indices, which are
a subset of its Y axis

Arguments: TO_BE SAMPLED Data to be sample

Y INDICES list of indices of the variable
TO BE SAMPLED

Result Axes: X Inherited from TO_BE SAMPLED
Y ABSTRACT; length same as Y INDICES
Z Inherited from TO_ BE_ SAMPLED
T

Inherited from TO_BE _SAMPLED

See the demonstration ef sort demo.jnl for a common useage of this function. As with other
functions which change axes(see p. 69), specify any region information for the variable
TO BE SAMPLED explicitly in the function call.

Ch3 Sec2.3.30. SAMPLEK

SAMPLEK(TO_BE SAMPLED, Z INDICES) samples a field at a list of Z indices, which are
a subset of its Z axis

Arguments: TO BE SAMPLED Data to sample

Z INDICES list of indices of the variable
TO BE SAMPLED

Result Axes: X Inherited from TO_BE SAMPLED
Y Inherited from TO_ BE SAMPLED
Z ABSTRACT; length same as Z INDICES
T

Inherited from TO_BE _SAMPLED

See the demonstration ef sort demo.jnl for a common useage of this function. As with other
functions which change axes(see p. 69), specify any region information for the variable
TO BE SAMPLED explicitly in the function call.

VARIABLES AND EXPRESSIONS 89

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

Ch3 Sec2.3.31. SAMPLEL

SAMPLEL(TO_BE SAMPLED, T INDICES) samples a field at a list of T indices, a subset
of its T axis

Arguments: TO BE SAMPLED Data to sample

T INDICES list of indices of the variable
TO BE SAMPLED

Result Axes: X Inherited from TO_BE SAMPLED
Y Inherited from TO_BE SAMPLED
Z Inherited from TO BE SAMPLED
T

ABSTRACT; length same as X INDICES

See thedemonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes (see p. 69), specify any region information for the variable
TO_BE SAMPLED explicitly in the function call.

Ch3 Sec2.3.32. SAMPLEIJ

SAMPLEIJ(DAT TO SAMPLE,XPTS,YPTS) Returns data sampled at a subset of its grid
points, defined by (XPTS, YPTS)

Arguments: DAT TO SAMPLE Datatosample, field ofx, y, and perhaps zand t

XPTS X coordinates of grid points to sample

YPTS Y coordinates of grid points to sample
Result Axes: X ABSTRACT, length of list (xpts,ypts)

Y NORMAL (no axis)

Z Inherited from DAT TO SAMPLE

T Inherited from DAT TO SAMPLE

This is a discrete version of SAMPLEXY. The points defined in arguments 2 and 3 are
coordinaets, but a result is returned only if those arguements are a match with coordinates of
the grid of the variable.

As with other functions which change axes (see p. 69), specify any region information for the
variable TO_ BE SAMPLED explicitly in the function call.

90 CHAPTER 3

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

Ch3 Sec2.3.33. SAMPLET_DATE

SAMPLET DATE (DAT TO _SAMPLE, YR, MO, DAY, HR, MIN, SEC) Returns data sam-
pled by interpolating to one or more times

Arguments: DAT TO SAMPLE Data to sample, field of x, y, z and t

YR Year(s), integer YYYY
MO Month(s), integer month number MM
DAY Day(s) of month, integer DD
HR Hour(s) integer HH
MIN Minute(s), integer MM
SEC Second(s), integer SS
Result Axes: X Inherited from DAT TO SAMPLE
Y Inherited from DAT TO SAMPLE
Z Inherited from DAT TO SAMPLE
T ABSTRACT; length is # times sampled. The

length is determined from the length of argu-
ment 2.

As with other functions which change axes (see p. 69), specify any region information for the
variable DAT TO SAMPLE explicitly in the function call.

Example:

List wind speed at a subset of points from the monthly navy winds data set. To choose times all
in the single year 1985, we can define a variable year = constant + 0*month, the same length as
month but with all 1985 data.

yes? use monthly navy winds

yes? set reg/x=131:139/y=29
yes? let month = {1,5,11}

yes? let day = {20,20,20}

yes? let year 1985 + O*month
yes? let zero O*month

yes? list samplet_date(uwnd, year, month, day, zero, zero, zero)
VARIABLE : SAMPLET DATE (UWND, YEAR, MONTH, DAY, ZERO, ZERO,

ZERO)
FILENAME : monthly navy winds.cdf
FILEPATH : /home/ja9/tmap/fer dsets/data/
SUBSET : 5 by 3 points (LONGITUDE-T)
LATITUDE : 30N
130E 132.5E 135E 137.5E 140E
45 46 47 48 49
1 / 1: -0.771 -0.201 1.017 2.282 3.192
2 / 2: -2.643 -2.670 -2.409 -2.052 -1.503
3 / 3: 1.082 1.280 1.722 2.133 2.417

VARIABLES AND EXPRESSIONS 91

Ch3 Sec2.3.34. SAMPLEXY

SAMPLEXY(DAT TO SAMPLE,XPTS,YPTS) Returns data sampled at a set of (X,Y)
points, using linear interpolation.

Arguments: DAT TO SAMPLE Data to sample

XPTS X values of sample points
YPTS Y values of sample points
Result Axes: X ABSTRACT; length same as XPTSand YPTS
Y NORMAL (no axis)
Z Inherited from DAT TO SAMPLE
T Inherited from DAT TO_SAMPLE

Note:

SAMPLEXY is a "grid-changing" function; its output grid is different from the input argu-
ments. Therefore it is best to use explicit limits on the first argument rather than a SET
REGION command. (See p. 69)

Examples:

1) See the the script vertical section.jnl to create a section along a line between two (lon,lat)
locations; this script calls SAMPLEXY.

2) Use SAMPLEXY to extract a section of data taken along a slanted line in the Pacific.

First we generate the locations xlon, ylat (Figure3 3a). One could use a ship track, specifying
its coordinates as xlon, ylat.

yes? USE levitus_climatology

! define the slant line through (234.5,24.5)
! and with slope -24./49

yes? LET xlon = 234.5 + (I[I=1:50]-1)
yes? LET slope = -1*24./49
yes? LET ylat = 24.5 + slope*(i[i=1:50] -1)

yes? PLOT/VS/LINE/SYM=27 xlon,ylat ! line off Central America
yes? GO land

Now sample the field "salt" along this track and make a filled contour plot. The horizontal axis
is abstract; it is a count of the number of points along the track. To speed the calculation, or if
we otherwise want to restrict the region used on the variable salt, put that information in ex-
plicit limits on the first argument. (Figure3 3b)

92 CHAPTER 3

yes? LET slantsalt = samplexy(salt[x=200:300,y=0:30],xlon,ylat)
yes? FILL/LEVELS=(33.2,35.2,0.1) /VLIMITS=0:4000 slantsalt

oaypu, Tite by -yt

X : 0.5 to 50.5 DATA SET: ocean_otlas_annual
ear

24.5 — DELY+I[I=1:50] + DELY

;;;;;

T T T T T T x
s aicrse] - SAMPLEXY (SALT,XLON, YLAT)

Figure3 3a Figure3 3b

Ch3 Sec2.3.35. SAMPLEXY_CLOSEST

SAMPLEXY CLOSEST(DAT TO _SAMPLE,XPTS,YPTS) Returns data sampled at a set
of (X,Y) points, using nearest grid intersection.

Arguments: DAT TO SAMPLE Data to sample

XPTS X values of sample points
YPTS Y values of sample points
Result Axes: X ABSTRACT; length same as XPTSand YPTS
Y NORMAL (no axis)
Z Inherited from DAT TO SAMPLE
T Inherited from DAT TO SAMPLE

Note:SAMPLEXY CLOSEST is a "grid-changing" function; its output grid is different from
the input arguments. Therefore it is best to use explicit limits on the first argument rather than a
SET REGION command. (See p. 69)

This function is a quick-and-dirty substitute for the SAMPLEXY function. It runs much faster
than SAMPLEXY, since it does no interpolation. It returns the function value at the grid point
closest to each point in XPTS, YPTS. It is less accurate than SAMPLEXY, but may give ade-
quate results in a much shorter time for large samples.

Example: compare with SAMPLEXY output

yes? USE levitus climatology

yes? LET xlon = 234.5 + I[I=1:20]

yes? LET dely 24./19

yes? LET ylat = 24.5 - dely*i[i=1:20] + dely

yes? LET a = samplexy(salt[X=200:300,Y=0:30,K=1], xlon, ylat)
yes? LET b = samplexy closest(salt[X=200:300,Y=0:30,K=1], xlon, ylat)

VARIABLES AND EXPRESSIONS 93

yes? LIST a, b
DATA SET:"./fer dsets/descr/levitus_climatology.cdf
Levitus annual climatology (1xl degree)
X: 0.5 to 20.5
DEPTH (m): O
TIME: 02-JUL 14:54
Column 1: A is SAMPLEXY (SALT[X=200:300,Y=0:30,K=1],XLON, YLAT)
Column 2: B is SAMPLEXY CLOSEST (SALT[X=200:300,Y=0:30,K=1],XLON, YLAT)

1 / 1: 34.22 34.22
2 / 2: 34.28 34.26
3 / 3: 34.35 34.39
4 / 4: 34.41 34.43
5 / 5: 34.44 34.44
6 / 6: 34.38 34.40
7 / 7: 34.26 34.22
8 / 8: 34.09 34.07
9 / 9: 33.90 33.92
10 / 10: 33.74 33.78
11 / 11 33.64 33.62
12 / 12 33.63 33.62
13 / 13 33.69 33.67
14 / 14 33.81 33.75
15 / 15 33.95 34.00
16 / 16 34.11 34.11
17 / 17 34.25 34.22
18 / 18 34.39 34.33
19 / 19 34.53 34.56
20 / 20 34.65 34.65

Ch3 Sec2.3.36. SAMPLEXY_CURYV

SAMPLEXY CURV Returns data which is on a curvilinear grid, sampled at a set of (X,Y)
points, using interpolation.

Arguments: DAT TO SAMPLE Data to sample

DAT LON Longitude coordinates of the curvilinear grid
DAT LAT Latitude coordinates of the curvilinear grid
XPTS X values of sample points
YPTS Y values of sample points

Result Axes: X ABSTRACT; length same as XPTSand YPTS
Y NORMAL (no axis)
V4 Inherited from DAT TO SAMPLE
T Inherited from DAT TO SAMPLE

94 CHAPTER 3

Note:SAMPLEXY CURV is a "grid-changing" function; its output grid is different from the
input arguments. Therefore it is best to use explicit limits on the first argument rather than a
SET REGION command. (See p. 69)

Ch3 Sec2.3.37. SCAT2GRIDGAUSS_XY

SCAT2GRIDGAUSS XY (XPTS, YPTS, F, XCOORD, YCOORD, XSCALE, YSCALE,
CUTOFF, 0) Use Gaussian weighting to grid scattered data to an XY grid

Arguments: XPTS x-coordinates of scattered input triples, listed along

an abstract X or Y axis. May be fcn of Z or time

YPTS y-coordinates of scattered input triples, listed along
an abstract X or Y axis. May be fcn of Z or time

F F(X,Y) 3rd component of scattered input triples,
listed along an abstract X or Y axis. May be fcn of Z
or time

XAXPTS coordinates of X-axis of output grid. Must be regu-
larly spaced.

YAXPTS coordinates of Y-axis of output grid. Must be regu-
larly spaced.

XSCALE Mapping scale for Gaussian weights in Y direction, in
data units (e.g. lon or m). See the discussion below.

YSCALE Mapping scale for Gaussian weights in Y direction, in
data units (e.g. lat or m)

CUTOFF Cutoff for weight function. Only scattered points

within CUTOFF*XSCALE and CUTOFF*YSCALE
of the grid box center are included in the sum for the
grid box.

0 An unused argument: previously there had been a
second "cutoff" argument but it was redundant. There
is only one cutoff in the algorithm once the XSCALE
and YSCALE mapping is applied. In future versions
of Ferret this argument will be removed.

Result Axes: X Inherited from XAXPTS
Y Inherited from YAXPTS
V4 Inherited from F
T Inherited from F

Note:

The SCAT2GRIDGAUSS functions are "grid-changing" functions; the output grid is different
from the input arguments. Therefore it is best to use explicit limits on any of the arguments
rather than a SET REGION command. (See p. 69)

VARIABLES AND EXPRESSIONS 95

Quick example:

yes? DEFINE AXIS/X=180:221:1 xax

yes? DEFINE AXIS/Y=-30:10:1 yax

yes? ! read some data

yes? SET DATA/EZ/VARIABLES="times,lats,lons,var" myfile.dat
yes? LET my out = SCAT2GRIDGAUSS_XY(lons, lats, var, x[gx=xax],

ylgy=yax], 2, 2, 2, 0)

If the output X axis is a modulo longitude axis, then the scattered X values should lie within the
range of the actual coordinates of the axis. That is, if the scattered X values are xpts={355,
358, 2, 1, 352, 12} and the coordinates of the X axis you wish to grid to are longitudes of
x=20,23,25,...,379 then you should apply a shift to your scattered points:

yes? USE levitus climatology ! output will be on the grid of SALT
yes? LET xx = x[gx=salt]

yes? LET x1 = if lons 1lt "xx[x=@min] then lons+360

yes? LET xnew = if x1 gt "xx[x=@max] then x1-360 else x1

yes? LET my out = SCAT2GRIDGAUSS_XY (xnew, ypts, var, x[gx=xax],
ylgy=yax], 2, 2, 2, 0)

The SCAT2GRIDGAUSS* functions use la Gaussian interpolation method to map irregular
locations (x,, y,) to a regular grid (x,, y,). The output grid must have equally-spaced gridpoints
in both the x and y directions. For examples of the gridding functions, run the script objec-
tive_analysis _demo, or sec the on-line demonstration

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_dem
o.html

Parameters for a square grid and a fairly dense distribution of scattered points relative to the
grid might be XSCALE=YSCALE = 0.5, and CUTOFF = 2. To get better coverage, use a
coarser grid or increase XSCALE, YSCALE and/or CUTOFF.

The value of the gridded function F at each grid point (x,, y,) is computed by:

F(XOaYO) = z:(n:l to Np)F(Xn:Yn)W(XnaYn) / z:(n:l to Np)W(Xn:Yn)
Where Np is the total number of irregular points within the "influence region" of a particular

grid point, (determined by the CUTOFF parameter, defined below). The Gaussian weight
fucntion W_is given by

Wo(Xn,¥n) = exp{—[(xn—xo)z/ (X)2 + (Yn'YO)z/ (Y)z]}

X and Y in the denominators on the right hand side are the mapping scales, arguments
XSCALE and YSCALE.

The weight function has a nonzero value everywhere, so all of the scattered points in theory
could be part of the sum for each grid point. To cut computation, the parameter CUTOFF is
employed. Ifa cutoff of 2 isused (e.g. CUTOFF* XSCALE=2), then the weight function is set

96 CHAPTER 3

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

to zerowhen W <e™. This occurs where distances from the grid point are less than 2 times the

mapping scales X or Y.

(Reference for this method: Kessler and McCreary, 1993: The Annual Wind-driven Rossby
Wave in the Subthermocline Equatorial Pacific, Journal of Physical Oceanography 23, 1192

-1207)

Ch3 Sec2.3.38. SCAT2GRIDGAUSS_XZ

SCAT2GRIDGAUSS XZ(XPTS, ZPTS, F, XAXPTS, ZAXPTS, XSCALE, ZSCALE,
CUTOFF, 0) Use Gaussian weighting to grid scattered data to an XZ grid

Arguments: XPTS

ZPTS

XAXPTS

ZAXPTS

XSCALE

ZSCALE

CUTOFF

Result Axes: X

x-coordinates of scattered input triples, listed along
an abstract X or Z axis. May be fcn of Y or time

z-coordinates of scattered input triples, listed along
an abstract X or Z axis. May be fcn of Y or time

F(X,Z) 3rd component of scattered input triples,
listed along an abstract X or Z axis. May be fcn of Y
or time

coordinates of X-axis of output grid. Must be regu-
larly spaced.

coordinates of Z-axis of output grid. Must be regu-
larly spaced.

Mapping scale for Gaussian weights in Y direction, in
data units (e.g. lon or m). See the discussion under
SCAT2GRIDGAUSS XY.

Radius of influence in the Z direction, in data units
(e.g. m or km)

Cutoff for weight function in the X direction. Only
scattered points within CUTOFF*XSCALE and
CUTOFF*ZSCALE of the grid box center are in-
cluded in the sum for the grid box.

An unused argument: previously there had been a
second "cutoff" argument but it was redundant. There
is only one cutoff in the algorithm once the XSCALE
and ZSCALE mapping is applied. In future versions
of Ferret this argument will be removed.

Inherited from XAXPTS
Inherited from F
Inherited from ZAXPTS

VARIABLES AND EXPRESSIONS 97

T Inherited from F

See the description under SCAT2GRIDGAUSS XY (p. 95). Note that The output grid must
have equally-spaced gridpoints in both the x and z directions. For examples of the gridding
functions, run the script objective analysis_demo, or see the on-line demonstration

http://www.ferret.noaa.gov/Ferret/Demos/objective _analysis_demo/objective_analysis_dem
o.html

Ch3 Sec2.3.39. SCAT2GRIDGAUSS_YZ

SCAT2GRIDGAUSS YZ(YPTS, zPTS, F, YAXPTS, ZAXPTS, YSCALE, ZSCALE,
CUTOFF, 0) Use Gaussian weighting to grid scattered data to a YZ grid

Arguments: YPTS y-coordinates of scattered input triples, listed along
an abstract Y or Z axis. May be function of X or time.
ZPTS z-coordinates of scattered input triples, listed along
an abstract Y or Z axis. May be function of X or time.
F F(Y,Z) 3rd component of scattered input triples,
listed along an abstract Y or Z axis. May be function
of X or time.
YAXPTS coordinates of Y-axis of output grid. Must be regu-
larly spaced.
ZAXPTS coordinates of Z-axis of output grid. Must be regu-
larly spaced.
YSCALE Mapping scale for Gaussian weights in Y direction, in

data units (e.g. lat or m). See the discussion under
SCAT2GRIDGAUSS XY.

ZSCALE Radius of influence in the Z direction, in data units
(e.g. m or km)

CUTOFF Cutoff for weight function in the Y direction. Only
scattered points within CUTOFF*YSCALE and
CUTOFF*ZSCALE of the grid box center are in-
cluded in the sum for the grid box.

0 An unused argument: previously there had been a
second "cutoff" argument but it was redundant. There
is only one cutoff in the algorithm once the YSCALE
and ZSCALE mapping is applied. In future versions
of Ferret this argument will be removed.

98 CHAPTER 3

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Result Axes:

X
Y
Z
T

Inherited from F
Inherited from YAXPTS
Inherited from ZAXPTS

Inherited from F

See the description under SCAT2GRIDGAUSS XY (p. 95). Note that the output grid must
have equally-spaced gridpoints in both the y and z directions. For examples of the gridding
functions, run the script objective analysis_demo, or see the on-line demonstration

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_dem

o.html

Ch3 Sec2.3.40. SCAT2GRIDLAPLACE_XY

SCAT2GRIDLAPLACE XY(XPTS, YPTS, F, XAXPTS, YAXPTS, CAY, NRNG)
Laplace/ Spline interpolation to grid scattered data to an XY grid.

Arguments:

Result Axes:

XPTS

YPTS

XAXPTS

YAXPTS

CAY

x-coordinates of scattered input triples, listed along
an abstract X or Y axis. May be fcn of Z or time.

y-coordinates of scattered input triples, listed along
an abstract X or Y axis. May be fcn of Z or time.

F(X,Y) 3rd component of scattered input triples,
listed along an abstract X or Y axis. May be fcn of Z
or time.

coordinates of X-axis of output grid. Must be regu-
larly spaced.

coordinates of Y-axis of output grid. Must be regu-
larly spaced.

Amount of spline eqation (between 0 and inf.) vs
Laplace interpolation

Grid points more than NRNG grid spaces from the
nearest data point are set to undefined.

Inherited from XAXPTS
Inherited from YAXPTS
Inherited from F

Inherited from F

VARIABLES AND EXPRESSIONS

Use

99

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Note:

The SCAT2GRIDLAPLACE functions are "grid-changing" functions; the output grid is differ-
ent from the input arguments. Therefore it is best to use explicit limits on any of the arguments
rather than a SET REGION command. (See p. 69)

Quick example:

yes? DEFINE AXIS/X=180:221:1 xax

yes? DEFINE AXIS/Y=-30:10:1 yax

yes? ! read some data

yes? SET DATA/EZ/VARIABLES="times, lats,lons,var" myfile.dat

yes? LET my out = SCAT2GRIDLAPLACE XY (lons, lats, var, x[gx=xax],

ylgy=yax], 2., 5)
yes? SHADE my out

If the output X axis is a modulo longitude axis, then the scattered X values should lie within the
range of the actual coordinates of the axis. That is, if the scattered X values are xpts={355,
358, 2, 1, 352, 12} and the coordinates of the X axis you wish to grid to are longitudes of
x=20,23,25,...,379 then you should apply a shift to your scattered points:

yes? USE levitus_climatology ! output will be on the grid of SALT
yes? LET xx = x[gx=salt]

yes? LET x1 = if lons 1lt "xx[x=@min] then lons+360

yes? LET xnew = if x1 gt “xx[x=@max] then x1-360 else x1

yes? LET my out = SCAT2GRIDLAPLACE XY (xnew, lats, var, x[gx=xax],
ylgy=yax], 2., 5)

For examples of the gridding functions, run the script objective analysis demo, or see
the on-line demonstration

http://www.ferret.noaa.gov/Ferret/Demos/objective analysis demo/objective analysis dem
0.html

The SCAT2GRIDLAPLACE* functions employ the same interpolation method as is used by
PPLUS, and appears elsewhere in Ferret, e.g. in contouring. The parameters are used as fol-
lows (quoted from the PPLUS Users Guide. A reference for this is "Plot Plus, a Scientific
Graphics System", written by Donald W. Denbo, April 8, 1987.):

CAY

If CAY=0.0, Laplacian interpolation is used. The resulting surface tends to have rather sharp
peaks and dips at the data points (like a tent with poles pushed up into it). There is no chance of
spurious peaks appearing. As CAY is increased, Spline interpolation predominates over the
Laplacian, and the surface passes through the data points more smoothly. The possibility of
spurious peaks increases with CAY. CAY= infinity is pure Spline interpolation. An over relax-
ation process in used to perform the interpolation. A value of CAY=5 often gives a good sur-
face.

100 CHAPTER 3

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

NRNG

Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
The default used by PPLUS is NRNG = 5

Ch3 Sec2.3.41. SCAT2GRIDLAPLACE_XZ

SCAT2GRIDLAPLACE XZ(XPTS, ZPTS, F, XAXPTS, ZAXPTS, CAY, NRNG)
Laplace/ Spline interpolation to grid scattered data to an XZ grid.

Arguments: XPTS
ZPTS

F

XAXPTS
ZAXPTS
CAY
NRNG

Result Axes: X
Y
4
T

x-coordinates of scattered input triples, listed along
an abstract X or Z axis. May be function of Y or time.

z-coordinates of scattered input triples, listed along
an abstract X or Z axis. May be function of Y or time.

F(X,Z) 3rd component of scattered input triples,
listed along an abstract X or Z axis. May be function
of Y or time.

coordinates of X-axis of output grid. Must be regu-
larly spaced.

coordinates of Z-axis of output grid. Must be regu-
larly spaced.

Amount of spline eqation (between 0 and inf.) vs
Laplace interpolation

Grid points more than NRNG grid spaces from the
nearest data point are set to undefined.

Inherited from XAXPTS
Inherited from F
Inherited from ZAXPTS
Inherited from F

Use

The gridding algorithm is discussed under SCAT2GRIDLAPLACE XY (p. 101). For exam-
ples of the gridding functions, run the script objective analysis_demo, or see the

on-line demonstration

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_dem

0.html

Ch3 Sec2.3.42. SCAT2GRIDLAPLACE_YZ

SCAT2GRIDLAPLACE YZ(YPTS, ZPTS, F, YAXPTS, ZAXPTS, CAY, NRNG)
Laplace/ Spline interpolation to grid scattered data to an YZ grid.

VARIABLES AND EXPRESSIONS

Use

101

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Arguments: YPTS y-coordinates of scattered input triples, listed along
an abstract Y or Z axis. May be fcn of X or time.

ZPTS z-coordinates of scattered input triples, listed along
an abstract Y or Z axis. May be fcn of X or time.

F F(Y,Z) 3rd component of scattered input triples,
listed along an abstract Y or Z axis. May be fcn of X
or time.

YAXPTS coordinates of Y-axis of output grid. Must be regu-
larly spaced.

ZAXPTS coordinates of Z-axis of output grid. Must be regu-
larly spaced.

CAY Amount of spline eqation (between 0 and inf.) vs
Laplace interpolation

NRNG Grid points more than NRNG grid spaces from the
nearest data point are set to undefined.

Result Axes: X Inherited from F

Y Inherited from YAXPTS

Z Inherited from ZAXPTS

T Inherited from F

The gridding algorithm is discussed under SCAT2GRIDLAPLACE XY (p. 102). For exam-
ples of the gridding functions, run the script objective analysis demo, or see the
on-line demonstration

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_dem
o.html

Ch3 Sec2.3.43. SORTI

SORTI(DAT): Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X ABSTRACT, same length as DAT x-axis
Y Inherited from DAT
V4 Inherited from DAT
T Inherited from DAT

SORTI, SORTJ, SORTK, and SORTL return the indices of the data after it has been sorted.
These functions are used in conjunction with functions such as the SAMPLE functions to do
sorting and sampling. See the demonstration ef sort demo.jnl for common useage of these
functions.

102 CHAPTER 3

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

As with other functions which change axes (see p. 69), specify any region information for the

variable DAT explicitly in the function call.

Ch3 Sec2.3.44. SORT]

SORTJ(DAT) Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort
Result Axes: X Inherited from DAT
Y ABSTRACT, same length as DAT y-axisInherited
from DAT
Z Inherited from DAT
T Inherited from DAT

See discussion under SORTI

Ch3 Sec2.3.45. SORTK

SORTK(DAT) Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT
Y Inherited from DAT
Z ABSTRACT, same length as DAT x-axis
T Inherited from DAT

See the discussion under SORTI

Ch3 Sec2.3.46. SORTL

SORTL(DAT) Returns indices of data, sorted on the L axis in increasing order

Arguments: DAT DAT: variable to sort
Result Axes: X Inherited from DAT
Y Inherited from DAT
Z Inherited from DAT
T ABSTRACT, same length as DAT x-axis

VARIABLES AND EXPRESSIONS

103

See the discussion under SORTI

Ch3 Sec2.3.47. TAUTO_COR

TAUTO_COR(A): Compute autocorrelation function (ACF) of time series, lags of 0,...,N-1,
where N is the length of the time axis.

Arguments: A A function of time, and perhaps x,y,z
Result Axes: X Inherited from A
Y Inherited from A
Z Inherited from A
T ABSTRACT, same length as A time axis (lags)

Note:
TAUTO_COR is a "grid-changing" function; its output grid is different from the input argu-

ments. Therefore it is best to use explicit limits on the first argument rather than a SET
REGION command. (See p. 69)

Ch3 Sec2.3.48. XAUTO_COR

XAUTO _COR(A): Compute autocorrelation function (ACF) of a series in X, lags of
0,...,N-1, where N is the length of the x axis.

Arguments: A A function of x, and perhaps y,z,t

Result Axes: X ABSTRACT, same length as X axis of A (lags)
Y Inherited from A
Z Inherited from A
T Inherited from A

Note:

XAUTO_COR is a "grid-changing" function; its output grid is different from the input argu-
ments. Therefore it is best to use explicit limits on the first argument rather than a SET
REGION command. (See p. 69)

104 CHAPTER 3

Ch3 Sec2.4. Transformations
Transformations (e.g., averaging, integrating, etc.) may be specified along the axes of a vari-
able. Some transformations (e.g., averaging) reduce a range of data to a point; others (e.g., dif-

ferentiating) retain the range.

When transformations are specified along more than one axis of a single variable the order of
execution is X axis first, then Y then Z then T.

The regridding transformations are described in the chapter "Grids and Regions" (p. 137).
Example syntax: TEMP[Z=0:100@LOC:20] (depth at which temp has value 20)

Valid transformations are

Default
Transform Argument Description
@DIN definite integral (weighted sum)
@IIN indefinite integral (weighted running sum)
@AVE average
@VAR unweighted variance
@MIN minimum
@MAX maximum
@SHF 1 pt shift
@SBX 3 pt boxcar smoothed
@SBN 3pt binomial smoothed
@SHN 3 pt Hanning smoothed
@SPZ 3 pt Parzen smoothed
@SWL 3pt Welch smoothed
@DDC centered derivative
@DDF forward derivative
@DDB backward derivative
@NGD number of valid points
@NBD number of bad (invalid) points flagged
@SUM unweighted sum
@RSUM running unweighted sum
@FAV 3 pt fill missing values with average
@FLN 1 pt fill missing values by linear interpolation
@FNR 1 pt fill missing values with nearest point
@LOC 0 coordinate of ... (e.g., depth of 20 degrees)
@WEQ "weighted equal" (integrating kernel)
@CDA closest distance above
@CDB closest distance below
@CIA closest index above
@CIB closest index below

VARIABLES AND EXPRESSIONS 105

The command SHOW TRANSFORM will produce a list of currently available transforma-
tions.

Examples: Transformations

U[Z=0:100@AVE] — average of u between 0 and 100 in Z
sst[T=@SBX:10] — box-car smooths sst with a 10 time point filter
tau[L=1:25@DDC] — centered time derivative of tau

v[L=@IIN]
gflux [X=@AVE, Y=GAVE]

indefinite (accumulated) integral of v
XY area-averaged qflux

Ch3 Sec2.4.1. General information about transformations

Transformations are normally computed axis by axis; if multiple axes have transformations
specified simultaneously (e.g., U[Z=@AVE, L=@SBX: 10]) the transformations will be applied
sequentially in the order X then Y then Z then T. There are two exceptions to this: if @DIN is
applied simultaneously to both the X and Y axes (in units of degrees of longitude and latitude,
respectively) the calculation will be carried out on a per-unit-area basis (as a true double inte-
gral) instead of a per-unit-length basis, sequentially. This ensures that the COSINE(latitude)
factors will be applied correctly. The same applies to @AVE simultaneously on X and Y.

Data that are flagged as invalid are excluded from calculations.

When calculating integrals and derivatives (@IIN, @DIN, @DDC, @DDF, and @DDB) Fer-
ret attempts to use standardized units for the grid coordinates. If the underlying axis is in a
known unit of length Ferret converts grid box lengths to meters. If the underlying axis is in a
known unit of time Ferret converts grid box lengths to seconds. If the underlying axis is de-
grees of longitude a factor of COSINE (latitude) is applied to the grid box lengths in meters.

If the underlying axis units are unknown Ferret uses those unknown units for the grid box
lengths. (If Ferret does not recognize the units of an axis it displays a message to that effect
when the DEFINE AXIS or SET DATA command defines the axis.) See command DEFINE
AXIS/UNITS (p. 335) in the Commands Reference in this manual for a list of recognized units.

All integrations and averaging are accomplished by multiplying the width of each grid box by
the value of the variable in that grid box—then summing and dividing as appropriate for the
particular transformation.

If integration or averaging limits are given as world coordinates, the grid boxes at the edges of
the region specified are weighted according to the fraction of grid box that actually lies within
the specified region. If the transformation limits are given as subscripts, the full box size of
each grid point along the axis is used—including the first and last subscript given. The region
information that is listed with the output reflects this.

106 CHAPTER 3

Some transformations (derivatives, shifts, smoothers) require data points from beyond the
edges of the indicated region in order to perform the calculation. Ferret automatically accesses
this data as needed. It flags edge points as missing values if the required beyond-edge points
are unavailable (e.g., @DDC applied on the X axis at [=1).

Ch3 Sec2.4.2. Transformations applied to irregular regions

Since transformations are applied along the orthogonal axes of a grid they lend themselves nat-
urally to application over "rectangular" regions (possibly in 3 or 4 dimensions). Ferret has suf-
ficient flexibility, however, to perform transformations over irregular regions.

Suppose, for example, that we wish to determine the average wind speed within an irregularly
shaped region of the globe defined by a threshold sea surface temperature value. We can do this
through the creation of a mask, as in this example:

yes? SET DATA coads climatology

yes? SET REGION/1=17/Qt ! January in the Tropical Pacific
yes? LET sst28 mask = IF sst GT 28 THEN 1

yes? LET masked wind speed = wspd * sst28 mask

yes? LIST masked wind_speed[X=Q@AVE, Y=QAVE]

The variable sst28 mask is a collection of 1's and missing values. Using it as a multiplier on the
wind speed field produces a new result that is undefined except in the domain of interest.

When using masking be aware of these considerations:

» Use undefined values rather than zeros to avoid contaminating the calculation with zero
values.

* The masked region is composed of rectangles at the level of resolution of the gridded
variables; the mask does NOT follow smooth contour lines. To obtain a smoother mask it
may be desirable to regrid the calculation to a finer grid.

» Variables from different data sets can be used to mask one another. For example, the
ETOPOG60 bathymetry data set can be used to mask regions of land and sea.

Ch3 Sec2.4.3. General information about smoothing
transformations

Ferret provides several transformations for smoothing variables (removing high frequency
variability). These transformations replace each value on the grid to which they are applied
with a weighted average of the surrounding data values along the axis specified. For example,
the expression u[T=@SPZ:3] replaces the value at each (I,J,K,L) grid point of the variable "u"
with the weighted average

VARIABLES AND EXPRESSIONS 107

u at t = 0.25%(u at t-1) + 0.5*%(u at t) + 0.25*%(u at t+1)

The various choices of smoothing transformations (@SBX, @SBN, @SPZ, @SHN, @SWL)
represent different shapes of weighting functions or "windows" with which the original vari-
able is convolved. New window functions can be obtained by nesting the simple ones pro-
vided. For example, using the definitions

yes? LET ubox = u[L=@SBX:15]
yes? LET utaper = ubox[L=@SHN:7]

produces a 21-point window whose shape is a boxcar (constant weight) with COSINE
(Hanning) tapers at each end.

Ferret may be used to directly examine the shape of any smoothing window: Mathematically,
the shape of the smoothing window can be recovered as a variable by convolving it with a delta
function. In the example below we examine (PLOT) the shape of a 15-point Welch window
(Figure 3_4).

00
X
IF X EQ 0 THEN 1 ELSE 0 (Welch smoothed by 15 pts on X)

Figure 3 4

! define X axis as [-1,1] by 0.2
yes? GO unit_square
yes? SET REGION/X=-1:1
yes? LET delta =

IF X EQ O THEN 1 ELSE O
! convolve delta with Welch window
yes? PLOT delta[I=Q@SWL:15]

Ch3 Sec2.4.4. @DIN — definite integral

The transformation @DIN computes the definite integral—a single value that is the integral
between two points along an axis (compare with @IIN). It is obtained as the sum of the
grid_box*variable product at each grid point. Grid points at the ends of the indicated range are
weighted by the fraction of the grid box that falls within the integration interval.

If @DIN is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this

108 CHAPTER 3

fact by indicating a transformation of "@IN4" or "XY integ." See General Information (p 106)
for important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50Q@DIN]

In a latitude/longitude coordinate system X=@DIN is sensitive to the COS(latitude) correc-
tion.

Integration over complex regions in space may be achieved by masking the multi-dimensional
variable in question and using the multi-dimensional form of @DIN. For example

yes? LET salinity where temp gt 15 = IF temp GT 15 THEN salt
yes? LIST salinity where temp gt 15[X=@DIN,Y=@DIN,Z=@DIN]

Ch3 Sec2.4.5. @IIN —indefinite integral

The transformation @IIN computes the indefinite integral—at each subscript of the result it is
the value of the integral from the start value to the upper edge of that grid box. It is obtained as a
running sum of the grid _box*variable product at each grid point. Grid points at the ends of the
indicated range are weighted by the fraction of the grid box that falls within the integration in-
terval. See General Information (p 106) for important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Z=0 u[Y=5S:5NQIIN]

Note 1: The indefinite integral is always computed in the increasing coordinate direction. To
compute the indefinite integral in the reverse direction use

LET reverse_integral = my var[X=1lo:hi@DIN] - my var[X=1lo:hi@IIN]

Note 2: In a latitude/longitude coordinate system X=@]IIN is sensitive to the COS(latitude)
correction.

Note 3: The result of the indefinite integral is shifted by 1/2 of a grid cell from its "proper" loca-
tion. This is because the result at each grid cell includes the integral computed to the upper end
ofthat cell. (This was necessary in order that var[I=lo:hi@DIN] and var[I=lo:hi@IIN] produce
consistent results.)

To illustrate, consider these commands

yes? LET one = x-x+1
yes? LIST/I=1:3 one[I=@din]
X-X+1

VARIABLES AND EXPRESSIONS 109

X: 0.5 to 3.5 (integrated)

3.000
yes? LIST/I=1:3 one[I=@iin]
X-X+1
indef. integ. on X
1 / 1: 1.000
2 / 2: 2.000
3 / 3: 3.000

The grid cell at [=1 extends from 0.5 to 1.5. The value of the integral at 1.5 is 1.000 as reported
but the coordinate listed for this value is 1 rather than 1.5. Two methods are available to correct
for this 1/2 grid cell shift.

Method 1: correct the result by subtracting the 1/2 grid cell error

yes? LIST/I=1:3 one[I=@iin] - one/2
ONE[I=QIIN] - ONE/2
1 / 1: 0.500
2 / 2: 1.500
3 / 3: 2.500

Method 2: correct the coordinates by shifting the axis 1/2 of a grid cell

yes? DEFINE AXIS/X=1.5:3.5:1 xshift
yes? LET SHIFTED_ INTEGRAL = one [I=RIIN]
yes? LET corrected_integral = shifted integral [GX=xshift@ASN]
yes? LIST/I=1:3 corrected integral
SHIFTED INTEGRAL [GX=XSHIFT QASN]

1.5/ 1: 1.000
2.5/ 2: 2.000
3.5/ 3: 3.000

Ch3 Sec2.4.6. @AVE —average

The transformation @AVE computes the average weighted by grid box size—a single number
representing the average of the variable between two endpoints.

If @AVE is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by showing @AV4 or "XY ave" as the transformation. See General Information (p 106)
for important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50QAVE]

Note that the unweighted mean can be calculated using the @SUM and @NGD transforma-
tions.

Averaging over complex regions in space may be achieved by masking the multi-dimensional
variable in question and using the multi-dimensional form of @AVE. For example

110 CHAPTER 3

yes? LET salinity where temp gt 15 = IF temp GT 15 THEN salt
yes? LIST salinity where temp gt 15[X=@AVE, Y=@AVE,6 Z=(@AVE]

When we use var[x=@AVE] Ferret averages over the grid points of the variable along the X
axis, using any region in X that is in place. IF a specified range is given X=x1:x2@ave, then
Ferret uses portions of grid cells to average over that exact region.

yes? USE coads_climatology
yes? LIST/L=1/Y=45 sst[x=301:305@AVE]
VARIABLE : SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 59W to 55W (averaged)
LATITUDE : 45N
TIME : 16-JAN 06:00
2.6557

yes? LET var = sst[x=301:305]
yes? LIST/L=1/Y=45 var
VARIABLE : SST[X=301:305]

SUBSET : 3 points (LONGITUDE)

LATITUDE : 45N

TIME : 16-JAN 06:00
45N

59W / 141: 2.231
57W / 142: 2.604
55W / 143: 3.183

yes? LIST/L=1/Y=45 var[x=QAVE]
VARIABLE : SST[X=301:305]
LONGITUDE: 60W to 54W (averaged)
LATITUDE : 45N
TIME : 16-JAN 06:00
2.6730

The last average is taken not from a specific X to another specific X, but over all grid cells in
the range where the variable var is defined. Note in each listing the LONGITUDE range of the
average.

Ch3 Sec2.4.7. VAR —weighted variance

The transformation @ VAR computes the weighted variance of the variable with respect to the
indicated region (ref. Numerical Recipes, The Art of Scientific Computing, by William H.
Press et al., 1986).

As with @AVE, if @ VAR is applied simultaneously to multiple axes the calculation is per-
formed as the variance of a block of data rather than as nested 1-dimensional variances. See
General Information (p 106) for important details about this transformation.

VARIABLES AND EXPRESSIONS 111

Ch3 Sec2.4.8. MIN —minimum

The transformation @MIN finds the minimum value of the variable within the specified axis
range. See General Information (p 106) for important details about this transformation.

Example:

For fixed Zand Y

yes? PLOT/T="1-JAN-1982":"1-JAN-1983" temp [X=160E:160WQMIN]

plots a time series of the minimum temperature found between longitudes 160 east and 160
west.

Ch3 Sec2.4.9. @M AX —maximum

The transformation @MAX finds the maximum value of the variable within the specified axis
range. See also @MIN. See General Information (p 106) for important details about this trans-
formation.

Ch3 Sec2.4.10. @SHF:n — shift

The transformation @SHF shifts the data up or down in subscript by the number of points
given as the argument. The default is to shift by 1 point. See General Information (p 106) for
important details about this transformation.

Examples:

U[L=@SHF:2]
associates the value of U[L=3] with the subscript L=1.

U[L=@SHF:1]-U
gives the forward difference of the variable U along the L axis.

Ch3 Sec2.4.11. @SBX:n —boxcar smoother

The transformation @SBX applies a boxcar window (running mean) to smooth the variable
along the indicated axis. The width of the boxcar is the number of points given as an argument
to the transformation. The default width is 3 points. All points are weighted equally, regardless
of the sizes of the grid boxes, making this transformation best suited to axes with equally
spaced points. If the number of points specified is even, however, @SBX weights the end

112 CHAPTER 3

points of the boxcar smoother as '5.. See General Information (p 106) for important details
about this transformation.

Example:

yes? PLOT/X=160W/Y=0 u[L=1:120@SBX:5]

The transformation @SBX does not reduce the number of points along the axis; it replaces
each of the original values with the average of its surrounding points. Regridding can be used
to reduce the number of points.

Ch3 Sec2.4.12. @SBN:n—binomial smoother

The transformation @SBN applies a binomial window to smooth the variable along the indi-
cated axis. The width of the smoother is the number of points given as an argument to the trans-
formation. The default width is 3 points. The weights are applied without regard to the widths
of the grid boxes, making this transformation best suited to axes with equally spaced points.
See General Information (p 106) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/2=0 u[L=1:120@SBN:15]

The transformation @SBN does not reduce the number of points along the axis; it replaces
each of the original values with a weighted sum of its surrounding points. Regridding can be
used to reduce the number of points. The argument specified with @SBN, the number of points
in the smoothing window, must be an odd value; an even value would result in an effective shift
of the data along its axis.

Ch3 Sec2.4.13. @SHN:n—Hanning smoother

Transformation @SHN applies a Hanning window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation. Note that the
Hanning window used by Ferret contains only non-zero weight values with the window
width. The default width is 3 points. Some interpretations of this window function include zero
weights at the end points. Use an argument of N-2 to achieve this effect (e.g., @SBX:5 is
equivalent to a 7-point Hanning window which has zeros as its first and last weights). See
General Information (p 106) for important details about this transformation.

VARIABLES AND EXPRESSIONS 113

Ch3 Sec2.4.14. @SPZ:n —Parzen smoother

Transformation @SPZ applies a Parzen window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation. The default
window width is 3 points. See General Information (p 106) for important details about this
transformation.

Ch3 Sec2.4.15. @SWL:n—Welch smoother

Transformation @SWL applies a Welch window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation. The default
window width is 3 points. SSee General Information (p 106) for important details about this
transformation.

Ch3 Sec2.4.16. @DDC —centered derivative

The transformation @DDC computes the derivative with respect to the indicated axis using a
centered differencing scheme. The units of the underlying axis are treated as they are with inte-
grations. If the points of the axis are unequally spaced, note that the calculation used is still
(F.,,—F.)/ (X, —X.)).See General Information (p 106) for important details about this trans-

il i+l

formation.

Example:

yes? PLOT/X=160W/Y=0/2=0 u[L=1:120@DDC]

Ch3 Sec2.4.17. @DDF —forward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A for-
ward differencing scheme is used. The units of the underlying axis are treated as they are with
integrations. See General Information (p 106) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/2=0 u[L=1:120QDDF]

114 CHAPTER 3

Ch3 Sec2.4.18. @DDB — backward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A back-
ward differencing scheme is used. The units of the underlying axis are treated as they are with
integrations. See General Information (p 106) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDB]

Ch3 Sec2.4.19. @NGD —number of good points

The transformation @NGD computes the number of good (valid) points of the variable with
respect to the indicated axis. Use @NGD in combination with @SUM to determine the number
of good points in a multi-dimensional region.

Note that, as with @ VAR, when @NGD is applied simultaneously to multiple axes the calcula-
tion is applied to the entire block of values rather than to the individual axes. See General In-
formation (p 106) for important details about this transformation.

Ch3 Sec2.4.20. @NBD —number of bad points

The transformation @NBD computes the number of bad (invalid) points of the variable with
respect to the indicated axis. Use @NBD in combination with @SUM to determine the number
of bad points in a multi-dimensional region.

Note that, as with @ VAR, when @NBD is applied simultaneously to multiple axes the calcula-
tion is applied to the entire block of values rather than to the individual axes. See General In-
formation (p 106) for important details about this transformation.

Ch3 Sec2.4.21. @SUM —unweighted sum

The transformation @SUM computes the unweighted sum (arithmetic sum) of the variable
with respect to the indicated axis. This transformation is most appropriate for regions specified
by subscript. If the region is specified in world coordinates, the edge points are not
weighted—they are wholly included in or excluded from the calculation, depending on the lo-
cation of the grid points with respect to the specified limits. See General Information (p 106)
for important details about this transformation.

VARIABLES AND EXPRESSIONS 115

Ch3 Sec2.4.22. @RSUM —running unweighted sum

The transformation @RSUM computes the running unweighted sum of the variable with re-
spect to the indicated axis. @RSUM is to @IIN as @SUM is to @DIN. The treatment of edge
points is identical to @SUM. See General Information (p 106) for important details about this
transformation.

Ch3 Sec2.4.23. @FAV:n—averaging filler

The transformation @FAV fills holes (values flagged as invalid) in variables with the average
value of the surrounding grid points along the indicated axis. The width of the averaging win-
dow is the number of points given as an argument to the transformation. The default is n=3. If
an even value of n is specified, Ferret uses n+1 so that the average is centered. All of the sur-
rounding points are weighted equally, regardless of the sizes of the grid boxes, making this
transformation best suited to axes with equally spaced points. If any of the surrounding points
are invalid they are omitted from the calculation. If all of the surrounding points are invalid the
hole is not filled. See General Information (p 106) for important details about this transforma-
tion.

Example:

yes? CONTOUR/X=160W:160E/Y=5S:0 u[X=@FAV:5]

Ch3 Sec2.4.24. @FLN:n —linear interpolation filler

The transformation @FLN:n fills holes in variables with a linear interpolation from the nearest
non-missing surrounding point. n specifies the number of points beyond the edge of the indi-
cated axis limits to include in the search for interpolants (default n = 1). Unlike @FAV, @FLN
is sensitive to unevenly spaced points and computes its linear interpolation based on the world
coordinate locations of grid points.

Any gap of missing values that has a valid data point on each end will be filled, regardless of
the length of the gap. However, when a sub-region from the full span of the data is requested
sometimes a fillable gap crosses the border of the requested region. In this case the valid data
point from which interpolation should be computed is not available. The parameter n tells Fer-
ret how far beyond the border of the requested region to look for a valid data point. See General
Information (p 106) for important details about this transformation.

Example: To allow data to be filled only when gaps in i are less than 15 points, use the @CIA
and @CIB transformations which return the distance from the nearest valid point.

yes? USE my data
yes? LET allowed gap = 15
yes? LET gap size = my var[i=Qcia] + my_ var[i=Qcib]

116 CHAPTER 3

yes? LET gap mask = IF gap size LE gap_allowed THEN 1

yes? LET my_ answer = my var[i=@fln) * gap mask

Ch3 Sec2.4.25. @FNR —nearest neighbor filler

The transformation @FNR 1is similar to @FLN, except that it replicates the nearest point to the
missing value. In the case of points being equally spaced around the missing point, the mean
value is used. See General Information (p 106) for important details about this transformation.

Ch3 Sec2.4.26. @LOC —location of

The transformation @LOC accepts an argument value—the default value is zero if no argu-
ment 1s specified. The transformation @LOC finds the single location at which the variable
first assumes the value of the argument. The result is in units of the underlying axis. Linear in-
terpolation is used to compute locations between grid points. If the variable does not assume
the value of the argument within the specified region the @LOC transformation returns an in-
valid data flag. See also the discussion of @EVNT, the "event mask" transformation, (p. 124)

For example, temp[Z=0:200@LOC:18] finds the location along the Z axis (often depth in me-
ters) at which the variable "temp" (often temperature) first assumes the value 18, starting at
7=0 and searching to Z=200. See General Information (p 106) for important details about this
transformation.

yes? CONTOUR/X=160E:160W/Y=10S:10N temp[Z2=0:200QLOC:18]

produces a map of the depth of the 18-degree isotherm. See also the General Information about
transformations section in this chapter (p. 106).

Note that the transformation @LOC can be used to locate non-constant values, too, as the fol-
lowing example illustrates:

Example: locating non-constant values

Determine the depth of maximum salinity.

yes? LET max_salt = salt[Z=Q@MAX]
yes? LET zero_at max = salt - max_ salt
yes? LET depth of max = zero_at max[Z=QLOC:0]

Ch3 Sec2.4.27. @WEQ —weighted equal; integration kernel

The @WEQ ("weighted equal") transformation is the subtlest and arguably the most powerful
transformation within Ferret. It is a generalized version of @LOC; @LOC always determines

VARIABLES AND EXPRESSIONS 117

the value of the axis coordinate (the variable X, Y, Z, or T) at the points where the gridded field
has a particular value. More generally, @WEQ can be used to determine the value of any vari-
able at those points. See also the discussion of @EVNT, the "event mask" transformation (p.
124). See General Information (p 106) for important details about this transformation.

Like @LOC, the transformation @WEQ finds the location along a given axis at which the vari-
able is equal to the given (or default) argument. For example, V1[Z=@WEQ:5] finds the Z lo-
cations at which V1 equals "5". But whereas @LOC returns a single value (the linearly
interpolated axis coordinate values at the locations of equality) @WEQ returns instead a field
of the same size as the original variable. For those two grid points that immediately bracket the
location of the argument, @WEQ returns interpolation coefficients. For all other points it re-
turns missing value flags. If the value is found to lie identically on top of a grid point an inter-
polation coefficient of 1 is returned for that point alone. The default argument value is 0.0 if no
argument is specified.

Example 1

yes? LET vl = X/4
yes? LIST/X=1:6 vl, v1[X=QWEQ:1], v1[X=QWEQ:1.2]

X vl QWEQ:1 (@QWEQ:1.2

.250
.500
.750 cee e
.000 1.000 0.2000
.250 cee 0.8000
.500 cee e

cculbdWwWNE
RPRRROOO

The resulting field can be used as an "integrating kernel," a weighting function that when mul-
tiplied by another field and summed will give the value of that new field at the desired location.

Example 2

Using variable v1 from the previous example, suppose we wish to know the value of the func-
tion X2 (X squared) at the location where variable v1 has the value 1.2. We can determine it as
follows:

yes? LET x_squared = X*2
yes? LET integrand = x_squared * v1[X=QWEQ:1.2]
yes? LIST/X=1:6 integrand[X=@SUM] !Ferret output below
X _SQUARED * V1[X=QWEQ:1.2]
X: 1 to 6 (summed)
23.20

Notice that 23.20 = 0.8 * (572) + 0.2 * (4"2)
Below are two "real world" examples that produce fully labeled plots.

Example 3: salinity on an isotherm

118 CHAPTER 3

Use the Levitus climatology to contour the salinity of the Pacific Ocean along the 20-degree
isotherm (Figure 3_5).

i

S

g

DEPTH (m) : 0 to 5000 (summe o)
TME : 02-JUL 14:54 DATA SET: levitus_climatology

Levitus annual climatology (1x1 degree)

LATITUDE

LONGITUDE

Salinity on the 20 degree isotherm

Figure 3 5
yes? SET DATA levitus_climatology ! annual sub-surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? LET isotherm 20 = temp[Z=@WEQ:20] ! depth kernel for 20 degrees
yes? LET integrand 20 = salt * isotherm 20
yes? SET VARIABLE/TITLE="Salinity on the 20 degree isotherm"
integrand 20
yes? PPL CONSET .12 !contour label size (def. .08)
yes? CONTOUR/LEV=(33,37,.2) integrand 20[Z=@SUM]
yes? GO fland 'continental fill

Example 4: month with warmest sea surface temperatures

Use the COADS data set to determine the month in which the SST is warmest across the Pacific
Ocean. In this example we use the same principles as above to create an integrating kernel on
the time axis. Using this kernel we determine the value of the time step index (which is also the
month number, 1-12) at the time of maximum SST (Figure 3_6).

TIME : JAN to DEC (summed) DATA SET: coads_climatology
COADS Monthly Climatology (1946-1989)

LATITUDE

T T T T T T T T T
100° 140° 180° 140w 100°w 60°W
LONGITUDE

Month of warmest SST

Figure 3 6

VARIABLES AND EXPRESSIONS 119

yes? SET DATA coads_climatology ! monthly surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean

yes? SET MODE CAL:MONTH

yes? LET zero_at warmest = sst - sst[l=@max]

yes? LET integrand = L[G=sst] * zero_at_warmest[L=QWEQ] ' "L" is 1 to
12

yes? SET VARIABLE/TITLE="Month of warmest SST" integrand

yes? SHADE/L=1:12/PAL=inverse_grayscale integrand[L=@SUM]

Example 5: values of variable at depths of a second variable:

Suppose I have V1(x,y,z) and MY ZEES(x,y), and I want to find the values of V1 at depths
MY ZEES. The following will do that using @WEQ:

yes? LET zero_at my zees = Z[g=vl]-my_ zees
yes? LET kernel = zero_at my zees[Z=QWEQ:0]
yes? LET integrand = kernel*vl

yes? LET vl _on_my zees = integrand[Z=Q@SUM]

Ch3 Sec2.4.28. @ITP —interpolate

120

The @ITP transformation provides the same linear interpolation calculation that is turned on
modally with SET MODE INTERPOLATE but with a higher level of control, as @ITP can be
applied selectively to each axis. @ITP may be applied only to point locations along an axis.
The result is the linear interpolation based on the adjoining values. Interpolation can be ap-
plied on an axis by axis and variable by variable basis like any other transformation. To apply
interpolation use the transformation "@ITP" in the same way as, say, @SBX, specifying the
desired location to which to interpolate. For example, on a Z axis with grid points at Z=10and
7=20 the syntax my_var[Z=14@]ITP] would interpolate to Z=14 with the computation

0.6*my_var[Z=10]+0.4*my_var[Z=20].

The example which follows illustrates the interpolation control that is possible using @ITP:

SET DATA coads climatology

! with modal interpolation

SET MODE INTERPOLATE

LIST/L=1/X=180/Y=0 sst ! interpolates both lat and long
SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 180E (interpolated)
LATITUDE: 0 (interpolated)

TIME: 16-JAN 06:00
DATA SET:
/home/ja9/tmap/fer_dsets/descr/coads_climatology.des
28.36

! with no interpolation

CHAPTER 3

CANCEL MODE INTERPOLATE

LIST/L=1/X=180/Y=0 sst ! gives value at 179E, 1S
SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 179E
LATITUDE: 1S

TIME: 16-JAN 06:00
DATA SET:
/home/ja9/tmap/fer dsets/descr/coads_climatology.des
28.20
! using QITP to interpolate in longitude, only
LIST/L=1/Y=0 sst[X=180QITP] ! latitude remains 1S

SEA SURFACE TEMPERATURE (Deg C)
LONGITUDE: 180E (interpolated)
LATITUDE: 1S

TIME: 16-JAN 06:00
DATA SET:
/home/ja9/tmap/fer_ dsets/descr/coads_climatology.des
28.53

See General Information (p 106) for important details about this transformation.

Ch3 Sec2.4.29. @CDA —closest distance above

Syntax options:

@CDA Distance to closest valid point above each point along
the indicated axis
@CDA:n Closest distance to a valid point above the indicated

points, searching only within n points

The transformation @CDA will compute at each grid point how far it is to the closest valid
point above this coordinate position on the indicated axis. The optional argument n gives a
maximum distance to search for valid data. N is in integer units: how far to search forward in
index space. The distance will be reported in the units of the axis. If a given grid point is valid
(not missing) then the result of @CDA for that point will be 0.0. See the example for @CDB
below. The result's units are now axis units, e.g., degrees of longitude to the next valid point
above. See General Information (p 106) for important details about this transformation, and
see the example under @CDB below (p 122).

Ch3 Sec2.4.30. @CDB —closest distance below

Syntax options:

@CDB Distance to closest valid point below each point along
the indicated axis
@CDB:n Closest distance to a valid point below the indicated

points, searching only within n points

VARIABLES AND EXPRESSIONS 121

The transformation @CDB will compute at each grid point how far it is to the closest valid
point below this coordinate position on the indicated axis. The optional argument n gives a
maximum distance to search for valid data. N is in integer units: how far to search backward in
index space. The distance will be reported in the units of the axis. The distance will be reported
in the units of the axis. If a given grid point is valid (not missing) then the result of @CDB for
that point will be 0.0. The result's units are now axis units, e.g., degrees of longitude to the next
valid point below. See General Information (p 106) for important details about this transfor-
mation.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/1=1
yes? LIST sst, sst[x=Qcda], sst[x=@cdb] ! results below

Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
Column 2: SST[X=QCDA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest

dist above on X ...)
Column 3: SST[X=@CDB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest

dist below on X ...)

SST SST SST
125W / 108: 6.700 0.000 0.000
123w / 109: e 8.000 2.000
121w / 110: 6.000 4.000
119W / 111: 4.000 6.000
117w / 112: e 2.000 8.000
115w / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111w / 115: e 2.000 2.000
109w / 116: 8.300 0.000 0.000

yes? list sst[x=121w], sst[x=121w@cda:2], sst[x=121wlRcda:5], \
sst[x=121wRcdb:5]
DATA SET:
/home/ja9/tmap/fer dsets/data/coads climatology.cdf
LONGITUDE: 121W -
LATITUDE: 55S
TIME: 16-JAN 06:00

Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)

Column 2: SST[X=QCDA:2] is SEA SURFACE TEMPERATURE (Deg C)

Column 3: SST[X=@CDA:5] is SEA SURFACE TEMPERATURE (Deg C)

Column 4: SST[X=@CDB:5] is SEA SURFACE TEMPERATURE (Deg C)
SST SST SST SST

I/ *: vee+ 6.000 4.000

Ch3 Sec2.4.31. @CIA —closest index above
Syntax options:

@CIA Index of closest valid point above each point along the
indicated axis

122 CHAPTER 3

@CIA:n Closest distance in index space to a valid point above the
point at index or coordinate m, searching only within n
points

The transformation (@CIA will compute at each grid point how far it is to the closest valid point
above this coordinate position on the indicated axis. The optional argument n gives a maxi-
mum distance to search from the index or coordinate location m for valid data. N is in integer
units: how far to search forward in index space. The distance will be reported in terms of the
number of points (distance in index space). If a given grid point is valid (not missing) then the
result of @CIA for that point will be 0.0. See the example for @CIB below. The units of the re-
sult are grid indices; integer number of grid units to the next valid point above. See General In-
formation (p 106) for important details about this transformation, and see the example under
@CIB below (p 123).

Ch3 Sec2.4.32. @CIB —closest index below

Syntax options:

@CIB Index of closest valid point below each point along the
indicated axis

@CIB:n Closest distance in index space to a valid point below the
indicated points, searching only within n points

The transformation @CIB will compute at each grid point how far it is to the closest valid point
below this coordinate position on the indicated axis. The optional argument n gives a maxi-
mum distance to search for valid data. N is in integer units: how far to search backward in index
space. The distance will be reported in terms of the number of points (distance in index space).
If a given grid point is valid (not missing) then the result of @CIB for that point will be 0.0. The
units of the result are grid indices, integer number of grid units to the next valid point below.
See General Information (p 106) for important details about this transformation.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/1=1
yes? LIST sst, sst[x=@cia], sst[x=Qcib] ! results below

Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
Column 2: SST[X=@CIA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest

dist above on X ...)
Column 3: SST[X=@CIB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest
dist below on X ...)
SST SST SST
125W / 108: 6.700 0.000 0.000
123w / 109: e 4.000 1.000

VARIABLES AND EXPRESSIONS 123

121w / 110: 3.000 2.000
119w / 111: 2.000 3.000
117w / 112: cee 1.000 4.000
115w / 113: 7.800 0.000 0.000
113w / 114: 7.800 0.000 0.000
111w / 115: cee 1.000 1.000
109w / 116: 8.300 0.000 0.000

yes? list sst[x=121w], sst[x=121w@cia:2], sst[x=121w@cia:5], \
sst[x=121w@cib:5]
DATA SET:
/home/ja9/tmap/fer dsets/data/coads_climatology.cdf
LONGITUDE: 121W
LATITUDE: 55S
TIME: 16-JAN 06:00
Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
Column 2: SST[X=@CIA:2] is SEA SURFACE TEMPERATURE (Deg C)
Column 3: SST[X=@CIA:5] is SEA SURFACE TEMPERATURE (Deg C)
Column 4: SST[X=QCIB:5] is SEA SURFACE TEMPERATURE (Deg C)
SST SST SST SST
I/ *: veee 3.000 2.00

@EVNT--event mask

This transformation locates "events" in data. An event is the occurrence of a particular value.
The output steps up by a value of 1 for each event, starting from a value of zero. (If the variable
takes on exactly the value of the event trigger the +1 step occurs on that point. If it crosses the
value, either ascending or descending, the step occurs on the first point after the crossing.)

For example, if you wanted to know the maximum value of the second wave, where (say) rising
above a magnitude of 0.1 in variable "ht" represented the onset of a wave, then

yes? LET wave2 mask = IF ht[T=@evnt:0.1] EQ 2 THEN 1

is a mask for the second wave, only. The maximum waveheight may be found with

yes? LET wave2 ht = wave2 mask * ht
yes? LET wave2 max ht = wave2_ ht[T=@max]

Note that @EVNT can be used together with @LOC and @WEQ to determine the location
when an event occurs and the value of other variables as the event occurs, respectively. Since
there may be missing values in the data, and since the instant at which the event occurs may lie
immediately before the step in value for the event mask, the following expression is a general
solution.

yes? LET event mask = my var[t=@evnt:<value>]
yes? LET event n = IF ABS (MISSING(event mask[L=@SBX],event mask)-n) LE
0.67 THEN my var

So that

event n[t=@LOC:<value>]

1s the time at which event "n" occurs, and

124 CHAPTER 3

event n[t=QWEQ:<value>]

is the integrating kernel (see @WEQ)

Ch3 Sec2.5. IF-THEN logic ("masking")

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the IF-THEN
logic is simply (by example)

LET a = IF al GT b THEN al ELSE a2
(read as "if al is greater than b then al else a2").

This syntax is especially useful in creating masks that can be used to perform calculations over
regions of arbitrary shape. For example, we can compute the average air-sea temperature dif-
ference in regions of high wind speed using this logic:

SET DATA coads_climatology

SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst

LET fast tdiff = tdiff * fast wind

We can also make compound IF-THEN statements. The parentheses are included here for
clarity, but are not necessary.

LET a = IF (b GT c AND b LT d) THEN e
LET a = IF (b GT ¢ OR b LT d) THEN e
LET a = IF (b GT c AND b LT d) THEN e ELSE g

The user may find it clearer to think of this logic as WHERE-THEN-ELSE to aviod confusion
with the IF used to control conditional execution of commands. Compound and multi-line
IF-THEN-ELSE constructs are not allowed in embedded logic.

Ch3 Sec2.6. Lists of constants ("constant arrays")

The syntax {vall, val2, val3} is a quick way to enter a list of constants. For example

yes? LIST {1,3,5}, {1,,5}
X: 0.5 to 3.5
Column 1: {1,3,5}
Column 2: {1,,5}
{1,3,5} {1,,5}
/ 1: 1.000 1.000
/ 2: 3.000 e
/ 3: 5.000 5.000

wWN -

VARIABLES AND EXPRESSIONS 125

Note that a constant variable is always an array oriented in the X direction To create a constant
aray oriented in, say, the Y direction use YSEQUENCE

yes? STAT/BRIEF YSEQUENCE ({1,3,5})

Total # of data points: 3 (1*3*1*1)

flagged as bad data: 0

Minimum value: 1

Maximum value: 5

Mean value: 3 (unweighted average)

Below are two examples illustrating uses of constant arrays. (See the constant array demo
journal file)

Ex. 1) plot a triangle (Figure 3 7)

e,
L T AR T
.|_t{I L L L L I\ 1 'l 'l L
B 4 A =
00 - =
&
- B
&
sl = -
[__:'f L
Gro T T T T T T T T T
nitr i [+~ 6B 166
o511
Figure 3 7

LET xtriangle {0,.5,1}
LET ytriangle {0,1,0}
POLYGON/LINE=8 xtriangle, ytriangle, 0

126 CHAPTER 3

Or multiple triangles (Figure 3_8) See polymark.jnl regarding this figure

5to 3.5
20.5

I I I I | I 20

YPTS+YTRIANGLE
]

1.0 3.0 5.0 7.0 9.0
XPTS+XTRIANGLE

10* J[J=1:20]
Figure 3 8

Ex. 2) Sample Jan, June, and December from sst in coads_climatology

yes? USE coads_climatology
yes? LET my sst months = SAMPLEL(sst, {1,6,12})
yes? STAT/BRIEF my sst months

Total # of data points: 48600 (180*90*1*3)
flagged as bad data: 21831

Minimum value: -2.6

Maximum value: 31.637

Mean value: 17.571 (unweighted average)

Ch3 Sec3. EMBEDDED EXPRESSIONS

Ferret supports "immediate mode" mathematical expressions—that is, numerical expressions
that may be embedded anywhere within a command line. These expressions are evaluated im-
mediately by Ferret—Dbefore the command itself is parsed and executed. Immediate mode ex-
pressions are enclosed in grave accents, the same syntax used by the Unix C shell. Prior to
parsing and executing the command Ferret will replace the full grave accent expression, in-
cluding the accent marks, with an ASCII string representing the numerical value. For example,
if the given command is

CONTOUR/Z="temp [X=180,Y¥=0,Z=@QLOC:15] ° salt

Ferret will evaluate the expression "temp[X=180,Y=0,Z=@LOC:15]" (the depth of the 15-de-
gree isotherm at the equator/dateline—say, it is 234.5 meters). Ferret will generate and execute
the command

VARIABLES AND EXPRESSIONS 127

CONTOUR/Z=234.5 salt
Embedded expressions:

Embedded expressions: the expression must evaluate to a single number, a scalar, or Ferret will
respond that the command contains an error. Ifthe result is invalid the numerical string will be
"bad" (see BAD= in following section, p. 129). Region qualifiers that begin a command con-
taining an embedded expression will be used in the evaluation of the expression. If multiple
embedded expressions are used in a single command they will be evaluated from left to right
within the command. This means that embedded expressions used to specify region informa-
tion (e.g., the above example) may influence the evaluation of other embedded expressions to
the right. When embedded expressions are used within commands that are arguments of a
REPEAT command their evaluation is deferred until the commands are actually executed.
Thus the embedded expressions are re-evaluated at each loop index of the REPEAT command.
Grave accents have a higher priority than any other syntax character. Thus grave accent expres-
sions will be evaluated even if they are enclosed within quotation marks, parentheses, square
brackets, etc. Substitutions based on dollar-signs (command script arguments and symbols)
will be made before embedded expressions are evaluated. A double grave accent will be trans-
lated to a single grave accent and not actually evaluated. Thus double grave accents provide a
mechanism to defer evaluation so that grave accent expressions may be passed to the Unix
command line with the SPAWN command or may be passed as arguments to GO scripts (to be
evaluated INSIDE the script). The state of MODE VERIFY will determine if the evaluation of
the embedded expression is echoed at the command line—similar to REPEAT loops.

The grave accent syntax may also be used to force immediate evaluation and substitution of a
string variable in a command. Note that since region qualifiers that begin a command contain-
ing an embedded expression are used in the evaluation of the expression, the string variable
may not contain a region qualifier.

Ch3 Sec3.1. Special calculations using embedded expressions

By default Ferret formats the results of embedded expressions using 5 significant digits. If the
result of the expression is invalid (e.g., 1/0) the result by default is the string "bad". Controls al-
low you to specify the formatting of embedded expression results in both valid and invalid
cases and to query the size and shape of the result.

The syntax to achieve this control is KEY WORD=VALUE pairs inside the grave accents, fol-
lowing the expression and set off by commas. The recognized keywords are "BAD=",
"PRECISION=", and "RETURN=". Only the first character of the keyword is significant, so
they may be abbreviated as "B=", "P=", and "R=".

PRECISION=, BAD=, and RETURN= may be specified simultaneously, in any order, sepa-
rated by commas. If RETURN= is included, however, the other keywords will be ignored.

PRECISION=#digits

128 CHAPTER 3

can be used to control the number of significant digits displayed, up to a maximum of 10 (actu-
ally at most 7 digits are significant since Ferret calculations are performed in single precision).
Ferret will, however, truncate terminating zeros following the decimal place. Thus

SAY "3/10,PRECISION=7"

will result in

0.3
mstead of 0.3000000.

If the value specified for #digits is negative Ferret will interpret this as the desired number of
decimal places rather than the number of significant digits. Thus

SAY °"35501/100,P=-2"
will result in
355.01

instead of 355.

In the case of a negative precision value, Ferret will again drop terminating zeros to the right of
the decimal point.

Note that the precision of the embedded expression is used as the command is parsed, and any
precision controls in the rest of the command are applied later. So

LIST/PRECISION=10 100000000 + 12345"
will result in
W= ZW= set width and set zero-filled width.

Formatting immediate mode expressions may be done by specifying the width or zero-filled
width:

yes? SAY Answer: 5.3,w=8"
Answer: 5.3
yes? SAY Answer: 5.3,zw=8"
Answer: 000005.3

BAD-=string

can be used to control the text which is produced when the result of the immediate mode ex-
pression is invalid. Thus

VARIABLES AND EXPRESSIONS 129

SAY "1/0,BAD=missing’
will result in

missing
or

SAY "1/0,B=-999°

will result in

-999
RETURN=

The keyword RETURN= can reveal the size and shape of the result. RETURN=may take argu-
ments

 SHAPE

« ISTART, JSTART, KSTART, or LSTART

« IEND, JEND, KEND, or LEND

« XSTART, YSTART, ZSTART, or TSTART
« XEND, YEND, ZEND, or TEND

. SIZE

« ISIZE, JSIZE, KSIZE, LSIZE

- BAD

« CALENDAR

.« TO

« UNITS

« TUNITS, JUNITS, KUNITS, LUNITS

« XUNITS, YUNITS, ZUNITS, TUNITS

« TITLE

« GRID

. TAXIS, JAXIS, KAXIS, or LAXIS

« XAXIS, YAXIS, ZAXIS, or TAXIS

« DSET, DSETNUM, DSETPATH, DSETTITLE
« NC_SCALE, NC_OFF

- USER SCALE, USER OFF

The RETURN= option in immediate mode expressions does not actually compute the result
unless it must. For example, the expression

"sst, RETURN=TEND"

130 CHAPTER 3

will return the formatted coordinate for the last point on the T axis of variable sst without actu-
ally reading or computing the values of sst. This allows Ferret scripts to be constructed so that
they can anticipate the size of variables and act accordingly.

Note that this does not apply to variable definitions which involve grid-changing variables that
return results on ABSTRACT axes. For those variables the size and shape of the result may de-
pend on data values, so the entire result must be computed in order to determine many of the re-
turn= results

RETURN=SHAPE

Returns the 4-dimensional shape of the result—i.e., a list of those axes along which the result
comprises more than a single point. For example, a global sea surface temperature field at a
single point in time:

SAY “SST[T=1-JAN-1983],RETURN=SHAPE"
will result in

XY

See Symbol Substitutions in the chapter "Handling String Data" (p. 230) for examples showing
the special utility of this feature.

RETURN=SIZE

Returns the total number of points in the variable -- Nx*Ny*Nz*Nt

RETURN=ISTART (and similarly JSTART, KSTART, and LSTART)

Returns the starting index of the result along the indicated axis: I, J, K, or L. For example, if

CAST is a vertical profile with points every 10 meters of depth starting at 10 meters then
7Z=100 is the 10th vertical point, so

SAY ‘CAST[Z=100:200] ,RETURN=KSTART

will result in

10
RETURN=IEND (and similarly JEND, KEND, and LEND)

Returns the ending index of the result along the indicated axis: I, J, K, or L. In the example
above

SAY ‘CAST[Z=100:200] ,RETURN=KEND"

VARIABLES AND EXPRESSIONS 131

will result in

20
The size and shape information revealed by RESULT= is useful in creating sophisticated

scripts. For example, these lines could be used to verify that the user has passed a 1-dimen-
sional field as the first argument to a script

LET my expr = $1
DEFINE SYMBOL SHAPE ° my_ expr, RESULT=SHAPE "
QUERY/IGNORE ($SHAPE%|X|Y|Z|T|<Expression must be l-dimensional$)

RETURN=XSTART (and similarly YSTART, ZSTART, and TSTART)

Returns the first grid point in the current region, in world coordinates. Note that the format of
the result can be controlled by setting or cancelling MODE LONG_LABEL for the X axis,
MODE LAT LABEL for the Y axis, or MODE CALENDAR for a time axis.
RETURN=XEND (and similarly YEND, ZEND, and TEND)

Returns the last grid point of specified world coordinate region, in world units.
RETURN=ISIZE (and similarly JSIZE, KSIZE, LSIZE

Returns the number of points along one axis, within the currently defined region.
RETURN=BAD

Returns the missing value flag from the expression

RETURN=TO

Returns the TO string from the time axis of the variable

RETURN=CALENDAR

Returns the calendar name from the time axis of the variable

RETURN=UNITS

Returns the units string from the variable

RETURN=XUNITS (and similarly YUNIT, ZUNIT, and TUNIT)

Returns the units string from the axis

RETURN=IUNITS (and similarly JUNIT, KUNIT, and LUNIT)

132 CHAPTER 3

Returns the units string from the axis

Example:

yes? say sst, RETURN=UNIT"
!'-> MESSAGE/CONTINUE Deg C

yes? say sst, RETURN=TUNIT"
!-> MESSAGE/CONTINUE DAYS

RETURN=TITLE

Returns the title of a variable

RETURN=GRID

Returns the grid name of a variable

RETURN=IAXIS (and similarly JAXIS, KAXIS, and LAXIS)

Returns the name of an axis on which the variable is defined.
RETURN=XAXIS (and similarly YAXIS, ZAXIS, and TAXIS)

Returns the name of an axis on which the variable is defined.
RETURN=DSET

Returns data set name. This is the data set name without the file pathname.

Example:

yes? USE "/home/rmb_dat/testfile.nc"
yes? SAY “sst,RETURN=dset’

!'-> MESSAGE/CONTINUE testfile
testfile

RETURN=DSETNUM

Returns data set number from the expression.

yes? SAY “sst,RETURN=dsetnum’
!'-> MESSAGE/CONTINUE 1
1

RETURN=DSETPATH

VARIABLES AND EXPRESSIONS 133

Returns the path of the data set information from the expression. A leading slash on the
pathname can cause trouble when the result is parsed by Ferret. Putting the result in a string
variable is one way to deal with this.

yes? LET a = " sst,RETURN=dsetpath™"
'-> DEFINE VARIABLE a = "/home/rmb_dat/testfile.nc"

RETURN=DSETTITLE

Returns data set title from the expression, if it exists. This returns the title in a netCDF file
which is specified as a global attribute :title= "Title text";

yes? LET a = " sst,RETURN=dsettitle ™"
!'-> DEFINE VARIABLE a = "MERCATOR SECTION ATL Gulf Cadiz"

RETURN=NC_SCALE, NC_OFF

Returns the scale and offset that were defined by a netCDF attribute for the variable. If the
stepfiles of a multi-file netCDF file have different scale and offset values (see p. 281), these
commands return the latest values that were applied.

RETURN=USER SCALE, USER_OFF

Returns the scale and offset that were set using a SET VARIABLE command with the
/SCALE= or /OFFSET qualifiers. (see p. 412)

Ch3 Sec4. DEFINING NEW VARIABLES

The ability to define new variables lies at the heart of the computational power that Ferret pro-
vides. Complex analyses in Ferret generally proceed as hierarchies of simple variable defini-
tions. As a simple example, suppose we wish to calculate the root mean squared value of
variable, V, over 100 time steps. We could achieve this with the simple hierarchy of definitions:

LET v_rms = v_mean sq * 0.5
LET v_mean_sq = Vv_squared[L=QAVE]
LET v_squared = v * v

SET VARIABLE/TITLE="RMS V" v_rms

LIST/L=1:100 v_rms

(listed output not included)

As the example shows, the variables can be defined in any order and without knowledge in ad-
vance of the domain over which they will be evaluated. As variable definitions are given to
Ferret with the LET (alias for DEFINE VARIABLE) command the expressions are parsed but
not evaluated. Evaluation occurs only when an actual request for data is made. In the preceding
example this is the point at which the LIST command is given. At that point Ferret uses the cur-
rent context (SET REGION and SET DATA SET) and the command qualifiers (e.g.,

134 CHAPTER 3

"L=1:100") to determine the domain for evaluation. Ferret achieves great efficiency by evalu-
ating only the minimum subset of data required to satisfy the request.

One consequence of this approach is that definitions such as

LET a =a + 1 ! nonsense

are nonsense within Ferret. The value(s) of variable "a" come into existence only as they are
called for, thus it is nonsense for them to appear simultaneously on the left and right of an equal
sign.

Variable names can be 1 to 24 characters in length and begin with a letter. See the command
reference DEFINE VARIABLE (p. 340) for the available qualifiers.

Ch3 Sec4.1. Global, local, and default variable definitions

All of the above definitions are examples of "global variable definitions." A global variable
definition applies to all data sets. In the above example the expression "v_rms[D=dset 1]"
would be based on the values and domain of the variable V from data set dset 1 and
"v_rms[D=dset 2]" would similarly be drawn from data set dset 2. The domain of v_rms, its
size, shape, and resolution, will depend on the particular data set in which it is evaluated.

Although global variables are simple to use they can lead to ambiguities. Suppose, for exam-
ple, that data sets dset 1 and dset 2 contain the following variables:

Dset_1 dset 2

speed u, v

If we would like to compare speeds from the two data sets we might be tempted to define a new
variable, speed, as

LET speed = (u*u + v*v)~0.5

In doing so, however, we create an ambiguity of interpretation for the expression
"speed[d=dset 1]".

To avoid this ambiguity we need to create a variable definition, "speed," that is local to data set
dset 2. The qualifier /D= used as follows

LET/D=dset_2 speed = (u*u + v*v)”*0.5 ! in dset_2, only

provides this capability. The use of /D=dset 2 indicates that this new definition of "speed" ap-
plies only to data set dset 2.

VARIABLES AND EXPRESSIONS 135

A convenient shortcut is often to define a "default variable." A default variable is defined using
the /D qualifier with no argument

LET/D speed = (u*u + v*v)”*0.5 ! where "speed" doesn't already exist

As a default variable "speed" is a definition that applies only to data sets that would otherwise
not posses a variable named speed. In this sense it is a fallback default.

Ch3 Sec5. DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

A complex analysis generally proceeds within Ferret as a complex hierarchy of expressions:
variables defined in terms of other variables defined in terms of other variables, etc., often con-
taining many levels of transformation. When an error message such as "can only contour or
vector a 2D region" occurs it may appear difficult to locate the reason for this message.

A simple strategy to locate the source of such problems is to use the command STAT which
shows the size and shape of variables and expressions (simply edit the offending command
line, replacing the PLOT, CONTOUR, VECTOR, etc. command with STAT and eliminating
qualifiers if necessary) and use SHOW VARIABLE to see the variable definitions. By repeat-
edly using STAT to examine the component variables of definitions one can quickly locate the
source of the problem.

136 CHAPTER 3

Chapter 4: GRIDS AND REGIONS

Ch4 Secl. OVERVIEW

Information describing a region in space/time, a data set, and a grid is collectively referred to as
the "context." The current context may be examined with the commands SHOW DATA_ SET,
SHOW REGION, and SHOW GRID. The context may be set explicitly with the commands
SET DATA_SET, SET REGION, and SET GRID.

The context may be modified for the duration of a single command with qualifiers to the com-
mand name (separated by slashes). The same qualifiers in square brackets may also modify
single variables, changing the context only of that variable:

yes? PLOT/D=levitus_climatology temp, salt

yes? CONTOUR rose[D=etopo20]

yes? FILL/Z=0 temp[L=2] - temp[L=1]

Ch4 Sec2. GRIDS

Every variable has an underlying grid which defines a coordinate space. All grids are in a sense
4 dimensional (X, Y, Z, and T) but axes normal to the data are represented as "normal" (such as
the Z axis of the surface wind stress).

Grids can be viewed, specified and created using SHOW GRID, SET GRID, DEFINE AXIS,
and DEFINE GRID. These commands are all in the Commands Reference section of this man-
ual. Data can be regridded by the G=modifier. (See this chapter, section "Regridding," p. 145)

Ch4 Sec2.1. Defining grids

Axes and grids can be explicitly created by DEFINE AXIS and DEFINE GRID. NetCDF and
TMAP-formatted data set variables have all of the necessary grid and axis definitions embed-
ded in the data set files, but if you are reading data from an ASCII or binary file, you must tell
Ferret about the underlying grid of your data.

If you are creating abstract expressions entirely from pseudo-variables, you may want to define
a grid in order to define the coordinate space of your calculation. This will also help produce a
nicely labeled plot. (See the chapter "Variables and Expressions", "Grids and axes of
pseudo-variables" (p. 60) and the example in the section on "Abstract Variables," p. 63.)

GRIDS AND REGIONS 137

Example
This example is taken from the demonstration script "file reading demo.jnl". An ASCII file

contains a grid of numbers, 50 rows by 6 columns. Suppose the data are on a 2D grid of 6 longi-
tudes by 50 latitudes (Figure 4 1).

I
0N %

§
:E

a0
LONGITUDE

MY_2D_VAR

Figure 4 1

yes? DEFINE AXIS/X=10E:60E:10/UNIT=DEGREE xlong

yes? DEFINE AXIS/Y=0:49N:1/UNIT=DEGREE ylat

yes? DEFINE GRID/X=xlong/Y=ylat gsnoopy2d

! By default only 1 column is read, /COLUMNS= specifies 6 columns
yes? FILE/VAR=my 2D var/COL=6/GRID=gsnoopy2d snoopy.dat

yes? CONTOUR my 2D_var

Ch4 Sec2.2. Time axes and calendars

Data, particularly outputs from models, may be defined with time axes that are not on the stan-
dard Gregorian calendar. The netCDF conventions document discusses and defines usage for
different calendars. These conventions for calendars are implemented in Ferret version 5.3
See:

http://www.ced.ucar.edu/cms/eaton/cf-metadata/CF-current.html

NetCDF conforms to the conventions in the UDUNITS software package

http://www.unidata.ucar.edu/packages/udunits/

The concept of time units and formatted time needs some thought and explanation. The possi-
bility of using different calendar definitions also compilcates the question. Time coordinates
(seconds, days, years, etc) are used by the software for computation and comparison. Format-
ted time (30-DEC-2003 00:00:00) is for the convenience of the human user.

Time coordinates, given as so many units (seconds, days, years, etc) since a reference time is
generally impossible to comprehend at a glance. There has to be internal code to convert to for-

138 CHAPTER 4

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html
http://www.unidata.ucar.edu/packages/udunits/

matted time. Conversion between the time-since-reference form and formatted time requires
that we know the calendar. The calendar says how many days there are in each month, and
hence also implies the length of the year, which therefore depends on the calendar.

The units second, minute, hour and day (24 hours) are always the same in all calendars we use
for Earth and so the utilities can assume this. Models would expect to use these units when
they write out times in timesteps.

Conversion to units of time (year month day hour minute second) is also needed when process-
ing data to calculate means over months or other calendar-related intervals and climatological
statistics. For computation, comparisons, plotting and regridding, Ferret makes the choice to
adopt a common length of year for all calendars.

TThe default calendar in Ferret is the Gregorian calendar. This is implemented as a "proleptic"
calendar, where the definition of a year is consistent throughout time and does not have an off-
set in the 1500's as the historical calendars did. However, files written using the NOAA/CDC
standard for the "blended" Julian/Gregorian calendar are read correctly by Ferret: If a time axis
has a time origin of 1-1-1 00:00:00, and uses the default calendar, and if the coordinates of axis
lie entirely after the year 1582, then the historical 2-day shift is applied.

Other calendars may be defined using DEFINE AXIS/CALENDAR= or by reading a variable
with a calendar attribute from a netCDF file (see p. 39). You can set the calendar type in a
descriptor file, with the D CALTYPE attribute.

Example:

$BACKGROUND RECORD

D TITLE = 'Model Output, Daily Averages',
D TOTIME ="'30-DEC-0000 00:00:00',

D TIME UNIT =3600.,

D CALTYPE ='NOLEAP',

$END

The calendars that are defined for use in Ferret are

calendar name number of days/year notes

GREGORIAN or STANDARD 365.2425 default calendar (proleptic
gregorian)

JULIAN 365.25 with leap years

NOLEAPor COMMON_YEAR 365 no leap years

360 DAY 360 each month is 30 days

Calendar names are matched using the first three characters.

GRIDS AND REGIONS 139

Example:

Define a calendar axis and regrid an existing variable to this axis:

yes? DEFINE
AXIS/CALENDAR=JULIAN/T="15-JAN-1982":"15-DEC-1985":30/UNITS=days tmodel
yes? LET twind = uwnd[GT=tmodel@NRST]

Regridding between different calendars is allowed using the transformations @LIN (the de-
fault), @ASN, or @NRST. When regridding with @LIN from one calendar axis to another the
length of a year is assumed to be constant, therefore the regridding calculates a scale factor
based on the length of a second in each calendar, computed from the number of seconds per
year for the calendars.

The analysis of multi-year daily data is often awkward, because the length of the year changes
for leap years. The analysis can often be made simpler by regridding the data to a NOLEAP
calendar.

Ch4 Sec2.3. Dynamic grids and axes

The commands DEFINE AXIS and DEFINE GRID, described in the preceding section, should
be used when the grid or axis will be referenced more than once and/or shared among several
variables. In many cases it is more convenient to use dynamic (a.k.a. "implicit") grids and axes.
Two quick examples:

PLOT SIN(X[X=0:3.14:.1])
— dynamically creates an axis from 0 to 3.14 by 0.1

SHADE SST[X=140E:160W:5, D=coads_climatology]

— dynamically creates a longitude axis extending from 140E to 160W by 5 degrees,
dynamically creates a grid which is like the grid upon which the variable SST is
defined but with the X axis replaced by the new dynamic axis, and automatically
regrids to this new grid.

Ch4 Sec2.3.1. Dynamic grids
It is often possible to avoid explicitly defining grids. This is useful in two common situations:
* Situation 1
Regridding to specified axes without the need for defining the destination grid.

Syntax: G*=name@transform, where

140 CHAPTER 4

* — The orientation of the axis to be regridded: "X," "Y," "Z," or "T"
name — The name of an axis or of another variable defined on the desired axis
@transform — The (optional) name of a regridding transform

Example:

sst[GX=x10degqg]

Suppose the variable SST is defined on a 2x2 degree grid in latitude/longitude (e.g., SET
DATA coads_climatology). If we wish to regrid to 10-degree spacing in longitude over a
range from 175W to 75W we could use the commands

DEFINE AXIS/X=175w:75w:10/UNITS=degrees x10deg
LET sstl0 = sst[GX=x10deg]

Several axes can be specified together when they are to be regridded similarly. For exam-
ple, instead of sst[GX=x10deg, GY=ylOdeg] one can use the more concise
sst[GXY=x10deg]

Similarly, av_sst [GZ=@AVE, GT=@AVE] can be condensed to av_sst[GZT=@AVE]

Ferret will dynamically create a grid equivalent to new_grid in

DEFINE GRID/LIKE=sst/X=x10deg new_grid.

Figure 4 2 shows the effects of regridding the 2x2 degree COADS data to a 10-degree spac-
ing in longitude using (default) linear interpolation.

Regridded to 10 degree spacing in X

Figure 4 2

The command SHOW GRID SST10 will show the dynamically created grid. The names of
dynamic grids and axes will always be displayed in parentheses.

Note that the transformation method to be used for regridding may also be specified, so LET
SST10=SST[GX=x10deg@ave] would create a 10-degree spaced result in which each grid

GRIDS AND REGIONS 141

point was computed as the weighted sum of the source points that fell within its grid
box. The default method for regridding is linear interpolation.

142 CHAPTER 4

 Situation 2
Automatic reconciliation of incompatible grid shapes

Syntax: G=name@transform

where

name — The name of a grid or of another variable defined on the desired grid
@transform — The (optional) name of a regridding transform

Example:

VAR1 [g=VAR2]

If two variables are defined on grids that are mutually non-conformable because axes exist
in one grid but do not exist (are NORMAL) in another, Ferret will now create a dynamic
grid to resolve the non-conformabilities. This means that an expression of the form
VAR1[G=VARZ2] will be meaningful as long as the grid domains overlap.

For example, TEMP[d=levitus_climatology] is defined on an XYZ (time-independent) grid
whereas SST[d=coads_climatology] is defined on an XYT grid. So to evaluate the expres-
sion SST[d=coads_climatology, G=TEMP[d=levitus climatology]] Ferret will create a dy-
namic intermediate grid equivalent to

DEFINE GRID/LIKE=sst[D=coads_climatology]/X=temp/Y=temp

so that regridding occurs on the X and Y axes but the original grid structure is maintained
with respect to depth and time.

The command SHOW GRID will reveal the resulting dynamically created grid structure.

Ch4 Sec2.3.2. Dynamic axes

The syntax "GX=lo:hi:delta" can be used in square brackets modifying a variable name to indi-
cate the dynamic creation of an axis with the indicated range and spacing and the immediate
regridding of the wvariable to a grid containing that axis. For example,
SST[GX=175W:75W:10] will create a dynamic axis of 10-degree regular point spacing, will
create a dynamic grid incorporating this axis (see previous section), and will regrid the variable
SST to this grid.

Similarly, by referring to the grid indices rather than their world coordinates, the expression
SST[GX=1:100:5] will create a dynamic axis that subsamples every 5th longitude point from

GRIDS AND REGIONS 143

SST. In this case the points of the resulting axis may be irregularly spaced if the points of the
original axis were also irregular.

As with the dynamic regridding described above, transformations can be specified to indicate
the regridding technique. Thus SST[GX=1:100:5@AVE] will use averaging instead of the de-
fault linear interpolation to perform the regridding.

As a notational convenience the "G" may be dropped when referring to dynamic axes. Thus
SST[X=175W:75W:10] is equivalent to SST[GX=175W:75W:10] and SST[I=1:100:5@AVE]
is equivalent to SST[GX=1:100:5@AVE]. When using this notational convenience keep in
mind that a regridding is taking place, so the transformation applied (if any) must be a
regridding transformation (see SHOW TRANSFORMS in the command reference section, p.
429).

The lower plot of Figure 4 2 illustrates the effect of dynamic axes in the command

SHADE SST[GX=175W:75W:10]

Ch4 Sec2.3.3. Dynamic pseudo-variables

The same notation used for dynamic axes may also be applied to pseudo-variables providing a
simple means for creating arrays of values. For example, X[GX=0.2:1:0.2] is a vector of 5
points from 0.2 to 1 at aregular spacing of 0.2 units. The vector is oriented in the X direction.

An example of using such a vector is (Figure 4 3)

PLOT SIN(X[GX=0:3.14:.1])

SIN(X[GX=0:3.14:0.1])

Figure 4 3

Note that when the lo:high:delta notation is applied to T or L expressed as calendar dates the
units of the delta value will be hours. For example, L[GT=1-jan-1980:1-feb-1980:24] is the in-
tegers 1 to 32 defined on an axis of 32 days, 24 hours apart.

As a notational convenience the "G" may be dropped when referring to dynamic pseudo-vari-
ables. Thus X[X=0.2:1:0.2] is equivalent to X[GX=0.2:1:0.2].

144 CHAPTER 4

See also the discussion of grids for pseudo-variables in section 3.1.3, p. 60.

Ch4 Sec2.4. Regridding

Syntax:

var[G=name] for (default) linear interpolation to new grid
or
var[G=name@trn] toregrid all axes using transform "trn" (see below)
or
var [G=name, GX=@TRN,GY=@TRN, ...] to control regridding transformations along
each axis separately

where
var is the name of the variable to be regridded (e.g., temp, u, tau, ...)
name is the name of a variable (e.g., temp[G=u]) or the name of a grid (e.g.,
temp[G=gu01])
trn is the name of a special transformation (e.g., @AVE, @ASN, @LIN)

The syntax var [G=name, GX=@TRN,GY=@TRN, . ..] can be compressed when specifying
that several axes are to be regridded similarly. For example, instead of

var [GX=sst, GY=SST]
one can now use the more concise

var [GXY=sst]

Similarly, if using a regridding transformation,
var [GZ=@AVE, GT=@AVE]

can be condensed to
var [GZT=@AVE]

Note that in Ferret Version 5 and after when the limits of a variable are unspecified v2[g=v1]
will default to the full extent of the v1 grid. Previously, it would become the size of whatever
region of the v2 native grid overlapped with the v1 grid.

The Ferret distribution provides a demonstration of many regridding techniques:

yes? GO regridding demo

Regridding is essential for algebraic operations that combine variables on incompatible grids.
Ferret provides the commands DEFINE AXIS and DEFINE GRID to assist with the creation of
arbitrary grids.

The result grid of a regridding operation does not necessarily match exactly the destination
grid requested. For example, suppose the native grid of variable TEMP3D (Ocean Tempera-
ture) is 1 degree resolution in X and Y and 50 meter spacing in Z. If the syntax "[G=sst]" is used
to request regridding to the grid of variable SST (Sea Surface Temperature), which is 2 degree

GRIDS AND REGIONS 145

resolution in X and Y, but normal to Z, then the resulting grid will be generated dynamically—
inheriting X and Y axes from SST as requested, but retaining the Z axis of TEMP3D.

Examples

1) Suppose the variables u and temp are on staggered X, Y, and Z axes but share the same T
axis. Then the two variables can be multiplied together on the axes (grid) of the u variable as
follows:

yes? CONTOUR u * temp|[G=u]

This will regrid temp onto the u grid by multi-axis linear interpolation before performing
the multiplication.

2) Two variables, vl and v2, are defined on distinct 4-dimensional grids (X, Y, Z, and T axes).
The T axes of the two grids are identical but the X, Y, and Z axes all differ between the two
variables. (This is often the case in numerical model outputs.)

To obtain the variable v1 on its original Z (depth) locations but regridded in the XY plane to
the grid locations of the variable v2, define a new grid (say, named "new_grid") that has the
X and Y axes of v2 but the Z axis of v1.

yes? DEFINE GRID/LIKE=v2/Z=vl new_grid 'define new grid
yes? LIST/X=160E:140W/Y=5S:5N vl[G=new_grid] !'request regridding

3) In this example we look at temperature data from two data sets. levitus_climatology, an an-
nual climatology, has the variable "temp" on an XYZ grid which is 1x1 degree in XY, and
coads_climatology, a monthly climatology, has the variable "sst" on an XYT grid which is
2x2 degrees in XY. Suppose we wish to look at the sea surface temperatures in January at
the higher XY resolution of the Levitus data.

yes? SET DATA levitus_climatology

yes? SET DATA coads climatology

yes? SET REGION/L=172Z=0

yes? !get the name of the grid on which temp is defined

yes? SHOW GRID temp[D=levitus_climatology] ! —> "Glevitrl"
yes? DEFINE GRID/X=glevitrl/Y=glevitrl/Z=sst/L=sst glevitus xy
yes? LIST/X=150E:155E/Y=0:5N sst[G=glevitus_xy]

Ch4 Sec2.4.1. Regridding transformations
Ferret supports several regridding transformations. Use the SHOW TRANSFORMATIONS
command to obtain a list of the supported transformations from Ferret. The choice of

regridding transformation determines the computation by which data from the source grid de-
termine the values on the destination grid.

146 CHAPTER 4

Regridding transformations provide a means to perform a given calculation over a limited span
of coordinates and repeat that calculation for a series of contiguous spans. For example, if we
wish to compute the variance of the variable SST over 10-degree longitude range from 180 to
170W we could use the syntax sst[X=180:170w@VAR]. Now, if we wish to perform the
same operation 10 times in 10-degree wide bands from 180 to 80W we could instead use
G=@VARregridding as in (see Dynamic Grids, p. 140, for an explanation of the "GX=" syntax):

DEFINE AXIS/X=175w:85w:10/UNITS=degrees x10deg
LET sstl0 = sst[GX=x10deg@VAR]

The regridding transformations are:

@LIN—Ilinear interpolation (the default if no transform is specified)
Performs regridding by multi-axis linear interpolation.

@AVE—averaging
Computes the length-weighted average of all points on the source grid that lie partly or com-
pletely within each grid cell of the destination grid. If any portion of a source grid cell con-
taining data overlaps a given destination grid cell, then data from that source cell
contributes to the destination cell, weighted by the fraction of the destination cell over-
lapped by the source cell. The source data are treated as continuous, extending to the edges
of the grid cells.

Note: When @AVE is applied simultaneously to the X and Y axes, where X and Y are longi-
tude and latitude, respectively, an area-weighted average (weighted by cos(latitude)) is
used. The @AVE transformation is unique in this respect. In multiple axis applications
other than X and Y @AVE will be applied sequentially to the axes, computing the "average
of the average." This may not be the desired weighting scheme in some cases. See @ VAR
below for an example.

@ASN—(blind) association
Associates by subscript (blindly) the points from the source grid onto destination coordi-
nates.

@VAR
Computes the variance of the points from the source grid that fall within each destination
grid cell. This is a length-weighted computation like the (@AVE transformation.

Note: This transformation is suitable for regridding only in a single axis. When applied si-
multaneously to two axes, for example, it will compute the variance of the variance. For ex-
ample, V[gx=130E:80W:10@VAR, gy=205:20W:10@VAR] is equivalent to
tmp[X=130E:80W:10@VAR] where tmp=V[y=20S:20N:10@VAR].

@NGD

Compute the number of points from the source grid that fall within each destination grid
cell. Note that the results of this calculation need not be integers—this is a length-weighted

GRIDS AND REGIONS 147

computation like the @AVE transformation. It is common for a grid cell on the source grid
to span the boundary between grid cells on the destination grid, thereby contributing a frac-
tion of its weight to multiple destination grid cells.

Note: This transformation is suitable only for regridding on a single axis. When applied si-
multaneously to two axes, for example, it will compute a constant. See @VAR for an exam-
ple.

@NRST

Nearest coordinate regridding VAR[GX=newaxis@NRST] chooses the value from the
source axis coordinate closest to the destination axis. If source coordinates above and below
are equally close to a destination coordinate the value at the lower coordinate will be cho-
sen. (This is most useful for regridding between axes whose coordinate values are very
close, though not exactly matched -- e.g. between equally and unequally spaced monthly
time axes.)

@SUM
Computes the length-weighted sum of the points from the source grid that fall within each
destination grid cell. This is a length-weighted computation like the @AVE transformation.

@MIN
Finds the minimum value of those points from the source grid that lie within each destina-
tion grid cell. Note that this is NOT a weighted calculation; the destination grid cell that
"owns" a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

(As of Ferret V5.1) If a point on the source axis lies exactly on the boundary between grid
cells on the destination axis it will be included in the calculations for the higher indexed cell
on the destination axis. If a point on the source axis lies exactly on the upper cell boundary
of the highest point on the destination axis, then it will be included in the calculations for
that highest destination grid cell.

If you have data on a single point axis and you wish to embed it in a larger axis range you
can achieve this by using either the G=@MIN or G=@MAX. For example,

yes? define axis/x=163e/npoints=1 xlpt
yes? let var 1lpt = randu(x[gx=xlpt]) ! a random value at a single
coordinate
yes? list var 1lpt
RANDU (X [GX=X1PT])
LONGITUDE: 163E
0.4914
yes? define axis/x=16le:165e:1 x5pt
yes? list var_ lpt[gx=x5pt@max] ! same value embedded within 5 point
axis
RANDU (X [GX=X1PT])
regrid: 1 deg on X@MAX
161E / 1: e
162E / 2:

148 CHAPTER 4

163E / 3 0.4914

164E / 4 e

165E / 5 ce
@MAX

Finds the maximum value of those points from the source grid that lie within each destina-
tion grid cell. Note that this is NOT a weighted calculation; the destination grid cell that
"owns" a source point is determined entirely from the coordinate location of the source

point, not from the limits of the source grid cell..

(As of Ferret V5.1) If a point on the source axis lies exactly on the boundary between grid
cells on the destination axis it will be included in the calculations for the higher indexed cell
on the destination axis. If a point on the source axis lies exactly on the upper cell boundary
of the highest point on the destination axis, then it will be included in the calculations for

that highest destination grid cell.

The @MAX transformation is useful as a mechanism to perform regridding between two
axes that do not quite match. A common example would be to regrid between two monthly
axes one of which has points located at the 15th of each month and the other having points
exactly at mid-month. These Ferret commands illustrate the example using a 5-month axis

in 1993:

! define axes for 15th of month and mid-month

yes? DEFINE AXIS/UNIT=DAYS/T0=1-JAN-1900 month 15 =

DAYS1900(1993,I[I1:5], 15)

yes? DEFINE AXIS/UNIT=DAYS/T0=1-JAN-1900/EDGES month mid =

DAYS1900(1993,I[I=1:6], 1)
yes? let my var = L[gt=month 15
yes? list my var

L[GT=MONTH_15]

15-JAN-1993 00 / 1: 1.000
15-FEB-1993 00 / 2: 2.000
15-MAR-1993 00 / 3: 3.000
15-APR-1993 00 / 4: 4.000
15-MAY-1993 00 / 5: 5.000

yes? list my var[gt=month mid]
L[GT=MONTH_15]

regrid: on T
16-JAN-1993 12 / 1: 1.048
15-FEB-1993 00 / 2: 2.000
16-MAR-1993 12 / 3: 3.048
16-APR-1993 00 / 4: 4.033
16-MAY-1993 12 / 5: ce
yes? list my var[gt=month mid@max]
- L[GT=MONTH 15]
regrid: on TEMAX

16-JAN-1993 12 / 1: 1.000
15-FEB-1993 00 / 2: 2.000
16-MAR-1993 12 / 3: 3.000
16-APR-1993 00 / 4: 4.000
16-MAY-1993 12 / 5: 5.000

! unable to interpolate

GRIDS AND REGIONS

149

150

@XACT

Regridding with G=@XACT (or GX=@XACT, etc.) is a request to transfer values from a
source grid to a destination grid only at those positions where there is an exact coordinate
match between the source and destination axis points on the axis in question. Other destina-
tion points will be set to "missing". This transformation is especially useful for taking multi-
ple in-situ data profiles, such as oceanographic cast data, and regridding them onto a regular
(sparse) grid. For example: grep

yes? LET xcoarse = sin(x[x=0:20:10])
yes? LIST xcoarse
SIN(X[X=0:20:10])
0 / 1: 0.0000
10 / 2: -0.5440
20 / 3: 0.9129
yes? DEFINE AXIS/X=0:20:5 xfine
yes? LIST xcoarse[gx=xfine@XACT]
SIN(X[X=0:20:10])
regrid: 5 delta on X@XACT

0 / 1: 0.0000
5 / 2: e
10 / 3: -0.5440
15 / 4: ..
20 / 5: 0.9129

@MOD

Creates climatologies from time series by regridding to a time series axis with a modulo
regridding transformation. See the section on Modulo Regridding (p. 151) for details.

Examples

1) Let variable temp be defined on a grid with points spaced regularly at 1-degree intervals in

both longitude and latitude (X and Y). Let grid "gl10" possess points spaced regularly at
10-degree intervals in both X and Y.

yes? PLOT temp[G=glO0] ! uses linear interpolation (@LIN)

yes? PLOT temp[G=gl0@AVE] ! area-averages 10x10 degrees of source\
points into each destination point.

yes? PLOT temp[G=gl0,GX=QAVE] ! averages 10 degrees of longitude but\

interpolates (QLIN) in Y.

CHAPTER 4

2) @ASN has the effect of bypassing Ferret's protections against misrepresenting data (Figure
4 4).

TEMPERATURE (DEG C)

Figure 4 4

yes? SET DATA levitus climatology

yes? SET REGION/X=1807Y=0 ! true profile

yes? PLOT/Z=0:5000 temp

yes? DEFINE AXIS/DEPTH /Z=100:2000:100 zfalse

yes? DEFINE GRID/LIKE=temp /Z=zfalse gfalse ! false profile
yes? PLOT/Z=0:5000/OVER temp|[G=gfalse@ASN]

Ch4 Sec2.5. Modulo regridding

Ferret can create climatologies from time series simply by regridding to a climatological axis
with a modulo regridding transformation. For example, if the axis named month reg is a
12-point monthly climatological (modulo) axis then the expression

LET sst_climatology = sst[D=coads,GT=month reg@MOD]

is a 12-month climatology computed by averaging the full time domain of the input variable
(576 points for coads) modulo fashion into the 12 points of the climatological axis.

Ferret has three pre-defined climatological axes: seasonal reg (Feb, May, Aug, Nov),
month reg (middle of every month), and month_irreg (15th of every month). In addition, there
is an FAQ that describes how to create a daily climatological series, How do I compute a daily
climatology for a time series? The analysis of multi-year daily data is often awkward, because
the length of the year changes for leap years. The analysis can often be made simpler by
regridding the data to a NOLEAP calendar.

yes? USE climatological_axes

*** NOTE: regarding ... climatological_ axes.cdf
*** NOTE: Climatological axes SEASONAL REG, MONTH_ REG, and MONTH_IRREG
defined

yes? CANCEL DATA climatological_ axes ! the axes are still defined

GRIDS AND REGIONS 151

http://ferret.pmel.noaa.gov/Ferret/FAQ/analysis/daily_climatology.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/analysis/daily_climatology.html

To generate a climatology based on a restricted range of input data simply define an intermedi-
ate variable with the desired points. For example, a monthly climatological time series based
on data from the 1960s could be computed using

LET sst_1960s = sst[D=coads,T=1-jan-1960:31-dec-1969]
PLOT sst_1960s[GT=month reg@MOD]

In a similar fashion intermediate variables can be defined that mask out certain input points.

This example shows the entire sequence necessary to generate a plot of climatological SST at
40N, 40W based on the January 1982 to December 1992 Fleet Numerical wind data set. (Fig-

ure 4 5).

UWND[GT=MONTH_REG@MOD]

DATA SET, mently_novy_wins
a Fit

Figure 4 5

! use the predefined climatological axes
USE climatological axes
CANCEL DATA climatological_axes

! use the Fleet Numerical winds
SET DATA monthly navy_ winds

! plot the raw data (top figure)
SET REGION/X=40w/Y=40n
plot uwnd

! plot the 12 month climatology (middle figure)
LET uwnd _clim = uwnd[GT=month reg@MOD]
PLOT uwnd _clim

! since uwnd clim is on a climatological axis

! Ferret can also plot it on the calendar axis with the raw data
PLOT/T=16-jan-1982:17-dec-1992 uwnd,uwnd clim

In many cases the volume of input data needed to perform climatological calculations is very
large. In the example above the command

CONTOUR/X=0:360/Y=90s:90n sst_climatology[L=1]
to plot January from the climatology would require Nx*Ny*Nt=72*72*576=3 Megawords of

data. Such calculations may be too large to fit into memory. However, if the region is fully
specified (as shown for the X and Y limits in the example) Ferret's internal memory manager

152 CHAPTER 4

will break up the calculation as needed to produce the result. (See Memory Use in the chapter
"Computing Environment", p. 251, for further details.)

Unlike other transformations and regridding, modulo regridding is performed as an unweight-
ed average: each non-missing source point contributes 100% of its weight to the destination
grid box within which it falls. If the source and destination axes are not properly aligned this
can lead to apparent shifts in the data. For example, if a monthly time series has data points at
the first of each month and a climatological axis is defined at midmonths, then unweighted
modulo averaging will lead to an apparent 1/2-month shift. To avoid situations of this type sim-
ply regrid to the climatological axis using linear interpolation prior to the modulo regridding.

Here is an example that illustrates the situation and the use of linear interpolation to repair it.
(Figure 4 6).

Loy
8 3 8 5 8
LT Tt

T T
JJJJJJJJJJJJJJJJJJJJJJJJJ

1971
TEST_VAR[gt=MONTH_REG®mod]

TEST_VAR

Loy
8 5 8 5 8
LT Tt

T
JJJJJJJJJJJJJJJJJJJJJJJJJ

1971
TEST_VAR_CENTERED[qt=NONTH_REG®mad]

Figure 4 6

! define test var, an illustrative variable with 1 year periodicity
! Note: test var points are at the **beginnings** of months

DEFINE AXIS/T=1-jan-1970:1-jan-1974:°365.25/12" /UNITS=days tlOyears
DEFINE GRID/T=tl0years gg

LET test var = SIN(L[G=gg]*2*3.14/12)

! plot 4 years of the cycle
PLOT test var

! define climatological axes at the midpoints of months
USE climatological_axes
CANC DATA climatological_axes

! notice that modulo regridding appears to shift the data
! (due to mis-aligned source and destination axes) (top figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test var[GT=month reg@MOD]

! to avoid the shift we can first regrid test_var to mid-month

! points using linear interpolation (the default regridding method)
! notice that the function test_var is largely unchanged by this
LET test var_ centered = test_var[GT=month_reg]
PLOT/OVER/T=1-jan-1970:1-jan-1974 test var_ centered

! finally perform a modulo regridding on well-aligned data

! notice that the shift is gone (bottom figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test var centered[GT=month_ reg]

GRIDS AND REGIONS 153

Ch4 Sec2.5.1. Modulo regridding statistics

In addition to the modulo averaging calculation performed by @MOD Ferret provides other
statistics of the regridding. All modulo regridding calculations are unweighted as discussed
under @MOD.

@MODVAR
the variance of source points within each destination grid box (SUM(var-varbar)”*2)/(n-1))

@MODSUM
the sum of the source points within each destination grid box

@MODNGD
the number of source points contributing to each destination grid box

@MODMIN
the minimum value of the source points contributing to each destination grid box

@MODMAX
the maximum value of the source points contributing to each destination grid box

Ch4 Sec3. REGIONS

The region in space and time where expressions are evaluated may be specified in 3 different
ways:

1) with the command SET REGION
2) with qualifiers to the command name (slash-delimited)
3) with qualifiers to variable names (in square brackets, comma-delimited)

If SET REGION is used, Ferret remembers the region as the default context for future com-
mands, whereas a qualifier to a command name specifies the region for that command only,
and a qualifier to a variable name specifies the region for that variable and command only.

Regions may be manipulated using DEFINE REGION, SET REGION, @ notation, and
CANCEL REGION. The Commands Reference section of this manual covers all of these top-
ics.

Region information is normally specified in the following form:
QUAL=val or
QUAL=lo val:hi val or

QUAL=val@transform (as a variable qualifier only) or
QUAL=lo _val:hi_val@transform (as a variable qualifier only)

154 CHAPTER 4

When the region for an axis is specified as a single value (instead of a range) Ferret, by default,
selects the grid point of the grid box containing this value. The Ferret mode "interpolate" can
control this behavior. See command SET MODE INTERPOLATE in Commands Reference, p.
402.

Examples: Regions
Examples of valid region specifications.

1) Fully specify the region in an XY plane with the first vertical (Z) level and time 27739.

yes? SET REGION/X=140E:160W/Y=10S:20N/K=1/T=27739

2) Contour vertical heat advection within whatever region is the current default (previously set
with SET REGION).

yes? CONTOUR gadz

3) Define, modify and set a named region and then modify with delta notation.

yes? DEFINE/REGION/Y=5S:5N YT 'define region YT to be 5S:5N
yes? DEFINE REGION/DY=-1:4+1 YT 'modify region YT to be 6S:6N
yes? SET REGION/QYT !'set current region to YT

yes? SET REGION/DY=-1:+1 'modify current region to 7S:7N

4) List meridional currents calculated by averaging values between the surface and a depth of
50 m.

yes? LIST v[Z=0:50QAVE]

5) Equivalentto v[2=10] - v[Z=0:100@AVE], the anomaly at z=10 between v and the 0 to
100 meter depth average of v.

yes? LIST/Z=10 v - v[Z2=0:100QAVE]

Ch4 Sec3.1. Latitude
Specify latitude or a latitude range with the qualifier Y or J. Specifications using J are integers
between 1 and the number of points on the Y axis. Specifications using Y are in the units of the

Y axis.

The units may be examined with SHOW GRID/Y. If the Y axis units are degrees of latitude
then the Y positions may be specified as numbers followed by the letters "N" or "S".

Examples

GRIDS AND REGIONS 155

yes? CONTOUR temp[Y=15S:10N]
yes? LIST/J=50 u

Ch4 Sec3.2. Longitude

Specify longitude or a longitude range with the qualifier X or I. Specifications using I are inte-
gers between 1 and the number of points on the X axis. Specifications using X are in the units
of the X axis.

The units may be examined with SHOW GRID/X. If the units are degrees, then X values may
be given as numbers followed by "W" or "E" (e.g., 160E, 110.5W) or as values between 0 and
360 with Greenwich at 0 increasing eastward. Note: If the X axis is "modulo" then it is some-
times desirable to use X greater than 360.

Examples

yes? CONTOUR temp[Y=160E:140W]
yes? LIST/I=100 u
yes? SHADE/X=100:460 temp 1360 degrees centered at 100W

See the chapter "Grids and Regins", section "Modulo Axes" (p. 159), for help with globe-en-
circling axes.

Ch4 Sec3.3. Depth

Specify depth or a depth range with the qualifier Z or K. Specifications using K are integers be-
tween 1 and the number of points on the Z axis. Specifications using Z are in the units of the Z
axis.

The units may be examined with SHOW GRID/Z.

Examples

yes? CONTOUR temp[Z=0:100]
yes? LIST/K=3 u

Ch4 Sec3.4. Time

Specify time or a time range with the qualifier T or L. Specifications using L are integers be-
tween | and the number of points on the T axis. Specifications using T may refer to calendar
dates or to the time step units in which the time axis of the data set is defined.

156 CHAPTER 4

Calendar date/time values are entered in the format dd-mmm-yyyy:hh:mm:ss, for example
14-FEB-1988:12:30:00. At a minimum the string must contain day, month, and year. If the
string contains any colons it must be enclosed in quotation marks to differentiate from colons
used to designate a range. If a time increment is specified with the repeat command given in
calendar format (e.g., REPEAT/T="1-JAN-1982":"15-JAN-1982":6) it is interpreted as hours
always. Calendar dates in the years 0000 and 0001 are regarded as year-independent dates
(suitable for climatological data). Ferret cannot work with years larger than year 9999.

SHOW GRID/T can be used to display time step values. (Units may vary between data sets.)
The commands SET MODE CALENDAR and CANCEL MODE CALENDAR can be used to

view date strings or time steps, respectively.

Examples

yes? LIST/T="1-JAN-1982:13:50":"15-FEB-1982" density
yes? CONTOUR temp[T=27740:30000]
yes? LIST/L=90 u

See the section in this chapter on "Modulo Axes" (p. 159) for help with climatological axes.

Ch4 Sec3.5. Delta

The notation g=lo:hi:delta (e.g., Y=20S:20N:5) specifies that the data in the requested range is
regularly subsampled at interval "delta."

This notation is valid only for the REPEAT, SHOW GRID, and DEFINE AXIS commands, and
the qualifiers /HLIMITS and /VLIMITS used in action commands with graphical output.

It can also be used in square brackets when specifying variable context:

yes? LIST temp[1=40:90:5]

(but this is NOT allowed: LIST/L=40:90:5 temp)

Ch4 Sec3.6. @ notation
Regions may be named and referred to using the syntax "@name". Some commonly used re-
gions are predefined. See commands SET REGION (p. 409) and DEFINE REGION (p. 338)

in the Commands Reference section for further information.

If aregion is specified using a combination of "@" notation and explicit axis limits the explicit
axis limits will be evaluated after the "@" specification, possibly superseding the "@" limits.

GRIDS AND REGIONS 157

Note: It is not advised to use the @notation inside of variable definitions, as redefinitions of the
named region can cause code errors that lead to wrong results.

Using the @ notation only sets/alters the axis limits specified in the named region. For exam-
ple, suppose that region "XY" is defined for the X and Y axes, but not for the Z and T axes.
Then

yes? SET REGION/@XY
modifies only X and Y limits. BUT,

yes? SET REGION XY

modifies all axes—X and Y to the limits specified by XY, and Z and T to unspecified (even if
they were previously specified).

Examples

1) Contour the 25th time step of temperature data at depth 10 within region T, the "Tropical Pa-
cific."

yes? CONTOUR/QT/z=10/1L=25 temp

2) Produce a contour plot over region W, the "Whole Pacific Ocean," in the XY plane (the vari-
able to be contoured as well as the depth and time will be inferred from the current context).

yes? CONTOUR/QW varl

3) Set the default region to "T", the Tropical Pacific Ocean (latitude 23.5S to 23.5N).

yes? SET REGION/Q@T

4) Define a region and then supersede with an axis limit specification.

yes? DEFINE REGION/X=180:140W/Y=2S:2N/Z=5 BOX1
yes? SET REGION/@BOX1/z=15 'replace Z

Pre-defined regions

As a convenience in the analysis of the Tropical Pacific Ocean the following regions are
pre-defined:

158 CHAPTER 4

Name Region Latitude Longitude

T Tropical Pacific 23.5S:23.5N 130E:70W
N Narrow Pacific 10.0S:10.0N 130E:70W
\\% Whole Pacific 30.0S:50.0N 130E:70W

These may be redefined by the user for the duration of a Ferret session or until the definitions
are canceled.

Ch4 Sec3.7. Modulo axes

Some axes are inherently "modulo," indicating that the axis wraps around—the first point im-
mediately following the last.

To determine if an axis is modulo use SHOW AXIS or SHOW GRID. A letter "m" following
the number of points in the axis indicates a modulo axis. The command SHOW GRID qualified
by the appropriate axis limits can be used to examine any part of the axis—including points be-
yond the nominal length of the axis. The commands SET AXIS/MODULO and CANCEL
AXIS/MODULO can be used to control this feature on an axis-by-axis basis. Starting with Fer-
ret versionS.5, longitude axes which span 360 degrees or less, and climatological time axes are

always detected as modulo, unless Ferret is specifically directed that the axis is NOT modulo,
e.g. by a CANCEL AXIS/MODULO command.

Example

yes? SET DATA coads_climatology
yes? SHOW GRID/I=180:183 sst !range request beyond last point
GRID COADS1

name axis # pts start end
COADSX LONGITUDE 180mr 21E 19E (379)
[text omitted]

I X BOX SIZ

180> 19E(379)
181> 21E(381)
182> 23E(383)
183> 25E(385)

NN NN

The most common uses of modulo axes are:
1) Aslongitude axes for globe-encircling data sets. This allows any starting and any ending

longitudes to be used, for example, X=140E:140E indicates the entire earth with data be-
ginning and ending at 140E.

GRIDS AND REGIONS 159

2) As time axes for climatological data. By this device the time axis appears to extend from
0 to infinity and the climatological data can be referred to at any point in time. This facili-
tates comparisons with data sets at fixed times.

Ch4 Sec3.7.1. Subspan Modulo Axes

Ferret V5.5 introduces the concept of a "sub-span modulo axis" -- an axis where the range is a
sub-range of a fullmodulo cycle. As of V5.5, longitude axes and climatological time axes are
always detected as modulo, or as sub-span modulo when appropriate, unless Ferret is specifi-
cally directed that the axis is NOT modulo, e.g. by a CANCEL AXIS/MODULO command. If
the user does not specify the modulo length, it is set to 360 degrees for a longitude axis, or a
year for a time axis. Time axes of lenght less than or equal to one year, and starting in year 0000
or 0001 are taken to be climatological axes.

The modulo length of an axis defined on the Ferret command line is set with an argument to the
MODULO qualifier, or with an argument to the netCDF modulo attribute. Here is an example
showing an axis defined explicitly as a modulo axis, and another which is modulo by default.

yes? DEFINE AXIS/MODULO=100/x=41:55:1 xax subspan
yes? DEFINE AXIS/X=100:300:10/UNITS=degrees_longitude xax lonspan

The output of SHOW AXIS includes the modulo length and span of the axis:

yes? show axis xax*

name axis # pts start end

XAX SUBSPAN émr 41 46
Axis span (to cell edges) = 6 (modulo length = 100)

XAX LONSPAN LONGITUDE 21lmr 100E 60W

Axis span (to cell edges) = 210 (modulo length = 360)

In netCDF output files you will now see the modulo attribute taking a value. Continuing the ex-
ample above, we write some variables using the axes to a file and use ncdump to show the
modulo attribute in these files.

yes? LET vl = X[GX=xax_subspan] +10
yes? LET v2 = SIN(X[GX=xax ._lonspan])
yes? SAVE/FILE=test subspan modulo.nc vl, v2
yes? SPAWN ncdump -c test subspan modulo.nc

netcdf test subspan modulo {
dimensions: -
XAX SUBSPAN
XAX LONSPAN
variables:
double XAX SUBSPAN (XAX SUBSPAN)
XAX SUBSPAN:modulo = 100.
XAX SUBSPAN: point_spacing
XAX SUBSPAN:AXIS = "X"
float V1 (XAX SUBSPAN) ;
V1l:missing value = -1.e+34f ;
V1l: FillValue = -1.e+34f ;
V1l:long name = "X[GX=XAX SUBSPAN] + 10" ;

15 ;
21 ;

I~ ~.

"even"

160 CHAPTER 4

double XAX LONSPAN (XAX LONSPAN) ;

XAX TONSPAN:units = "degrees_east"
XAX LONSPAN:modulo = 360. ;
XAX LONSPAN:point spacing = "even"
XAX LONSPAN:AXIS = "X"
float V2 (XAX LONSPAN) ;
V2:missing value = -1.e+34f ;
V2: Fillvalue = -1.e+34f ;
V2:Ibng_name = "SIN(X[GX=XAX LONSPAN])" ;

// global attributes:
:history = "FERRET V5.50 15-Jan-03"
data:

XAX SUBSPAN = 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55 ;

XAX LONSPAN = 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210,

220, 230, 240, 250, 260, 270, 280, 290, 300 ;
}

The importance of the sub-span modulo axes is to take the first of two steps that will make it
possible for users largely to ignore differences in encodings of longitude and climatological
time -- e.g. the blending of data in plots and analyses where the data come from data sets that
are encoded variously as -180:180, 0:360, etc. Thus, for example, in V5.5 you can refer to
my_subspan_var[g=another var] and get a meaningful answer as long as the grids occupy the
same region on the globe, regardless of longitude encoding. (The second step, for a future re-
lease, will address the longitude encoding of scattered data.)

Example:

Suppose we have data on an axis that was defined as follows

yes? DEFINE AXIS/X=520:550:1/UNITS=degrees xax

GRIDS AND REGIONS 161

and supposet we want to overlay it on a map showing the regional topography.

FERSET i) . 550

oA 1 iy

DaTA SET: stopoCS

LATITUOE

—to000

140°E 1807 140 100™
SHADE: s bre s A=PUEEmrtzsalE] | LOMGITUDE

Relief Of the Surface of the Earth (meters)

Figure 4 7
yes? USE etopo05
yes? SHOW GRID rose ! We will want the names of the axes
GRID GOZ1

name axis # pts start end
ETOPO05_X LONGITUDE 4320mr OE 0.079987wW
ETOPO05_Y LATITUDE 2161 r 90s 90N
normal 4

normal T
yes? SET REGION W
yes? SHADE/PAL=land sea rose[d=1] ! draw the shade plot
yes? USE my data.nc ! The dataset containing the x=520:550 data
yes? SHOW AXIS xsub

name axis # pts start end

XSUB LONGITUDE 3lmr 160E (520) 170W (550)

Axis span (to cell edges) = 31 (modulo length = 360)

yes? SHADE/OVER/PAL=greyscale a[GX=etopo05_ x,GY¥=etopo05_ y]

There is an implied void point in a sub-span modulo axis that fills the gap between the end of
the axis and the start of the next modulo cycle. The data value at this point will always be the
missing value flag (except for pseudo-variables such as "X[g=my subspan_axis]"). Transfor-
mations such as smoothers do not operate across the void point.

162 CHAPTER 4

In netCDF files, the modulo attribute is specified as follows:

1) Specify the modulo length of the axis with the attribute modulo = <value>, e.g.
var:modulo=100;

2) The modulo attribute from previous netCDF files remains unchanged: modulo="". To
set a modulo axis of standard length (360 degrees or one year). The modulo length is 360
degrees for a longitude axis, or one year for a climatological time axis.

3) The attribute value modulo ="FALSE", modulo ="NO", modulo="OFF" tells Ferret that
the axis is not to be treated as modulo

Ch4 Sec3.8. Region Conflicts

Conflicting region information can be given to Ferret in obvious ways such as

LIST/I=1:3 I[I=1:10]

in which it is not clear if the request is for 10 points or for 3, or in subtler, disguised ways such
as

LET A = I[I=1:10] LIST/I=1:3 A
In both examples Ferret would resolve the conflict by listing just the three values 1=1:3.

Internally, Ferret uses the region closest to the variable to perform the calculation. Thus, in
both of the examples above Ferret will perform the calculation on I=1:10, since the "[I=1:10]"
directly modifies the variable name. If Ferret sees conflicting regions it attempts to use the re-
gions further from the variable to clip the calculation. Thus 10 points are clipped to 3 in the
above examples.

Unresolvable conflicts such as

LIST/I=11:13 I[I=1:10]

will result in a warning message that invalid limits have been ignored.

Ch4 Sec4. FERRET PROGRAM LIMITS

There are a number of hard limits in the Ferret code: the number of variables that may be de-
fined, the number of datasets open at a time, the length of certain strings, etc. Some of these
limits have been relaxed with successive Ferret versions as computing resources have ex-
panded. Here are the limits as of Ferret version 5.41:

GRIDS AND REGIONS 163

Parameter Name

memsize

cmnd_buff len

Number of argu-
ments to go scripts

Length of argu-
ments to go scripts
maxvars
max_uvars

maxezvars

maxezfreefmtvars

maxdsets

maxstepfiles

s _filename
length of variable
names

length of label text

max_grids

max_dyn_grids

164 CHAPTER 4

Value
6.4

2048

511

2000

2000

100

20

100

5000

128

128

2048
500

1000

Description

Initial size of memory at startup, in Megawords. You can al-
ways change the memory at startup with the -memsize option
(p. 6), or during a Ferret session with the SET MEMORY com-
mand. SHOW MEMOR gives the current size of the memory
cache.

Length of the command buffer. You can make long commands
more readable using the continuation character backslash \ (p.
14)

Maximum number of arguments to a go script. Use the syntax
($nn) or $nn in the script. (p. 25)

Maximum length in characters of each argument to a go script.

Maximum number of all variables defined by SET DATA (in-
cluding aliases USE and FILE)

Maximum number of all user-defined variables (LET var =)

Maximum number of variables that can be read from a single
delimited ASCII file, using SET
DATA/FORMAT=DELIMITED (p. 390)

Maximum number of variables that can be read in free format
from a single ASCII file, e.g. in SET
DATA/EZ/VARIABLES="var1,var2" (p.393)

Maximum number of data sets simultaneously open (as seen
through SHOW DATA)

Maximum number of files with time step data. These are read
via descriptor files (p. 37). This is a limit on the cumulative
sum of all files in all open multi-file data sets.

Maximum length of the filenames listed within descriptor files
(p. 281).

Maximum length of all variable names.

Maximum length of labels.

Maximum number of static grids (grids defined by DEFINE
GRID).

Total number of grids that can be defined at any time, static and
dynamic. Dynamic grids are created by opening data sets and
by implicit regridding operations such as strides (e.g.
var[i=1:100:10]), regridding operations between grids of dif-
ferent dimensionality (e.g. temp4d[g=sst]), and external func-
tions that create new grids (e.g. EOF_SPACE(A, F)) .

Parameter Name

max_lines

max_dyn_lines

maxlinestore

abstract line dim

ef max_ args

ef max work ar-
rays

spec_size

pattern_num

year

Value
1000

1500

250000

20480

250

50

Description

Maximum number of static axes. Static axes are axes defined
by DEFINE AXIS

Total number of axes, static and dynamic, thatcan be defined.
Dynamic axes are defined by opening data sets and by implicit
regridding operations such as strides (e.g. var[i=1:100:10]),
regridding operations between grids or axes of different
dimensionality (e.g. temp4d[gx=sst]), and external functions
that create new grids (e.g. SAMPLEXY (sst, xpts, ypts))

Maximum number of coordinates in all irregular axes. This is
the sum of all the coordinates of irregular axes currently de-
fined via opening files and DEFINE AXIS, and includes stor-
age for the edges of the grid cells defined by these axes.
Coordinate storage may be recovered with the CANCEL AXIS
command.

Dimension of the default abstract axis for reading ASCII data
(p. 46). To read larger amounts of data, explicitly define an axis
or grid.

Maximum number of arguments that may be passed to an ex-
ternal function.

Maximum number of work arrays defined by an external func-
tion for use by that function.

Maximum number of levels in a spectrum, or palette file
(.SPK) (p. 194)

Maximum number of patterns defined in a pattern file (.PAT)
(p. 362)

Years in dates may take values from 0000 to 9999

GRIDS AND REGIONS 165

Chapter 5: ANIMATIONS AND GIF IMAGES

Ch5 Secl. OVERVIEW

There are two modes for animating in Ferret. One can animate "on the fly" in an interactive
sesion, or a sequence of Ferret plots can be stored and then animated. For stored sequences of
plots, each plot is stored as one frame in a movie file. Ferret stores movie frames in Hierarchi-
cal Data Format (HDF), a format designed by the National Center for Supercomputing Appli-
cations (NCSA). A movie file can then be displayed as an animated sequence of frames with
NCSA's xds—X Data Slice (not distributed with Ferret; see the section in this chapter "Dis-
playing an HDF movie" (p. 169), for details). A series of gif images can also be animated, see
Ch5 Secl.2 below.

Ch5 Secl.1. Animating on the fly

In a Ferret session, display an animation with the command,

yes? REPEAT/ANIMATE [/LOOP=n]

to start an animation sequence. Given LOOP=n, the entire animation sequence will repeat n
times.

Example:

yes? set data coads_climatology
yes? repeat/l=1:12/animate/loop=5 (shade sst; go fland)

NOTE: In order to properly display, it is necessary to have backing store enabled for the
Xserver.

Ch5 Sec1.2. Note on using whirlgif to make a movie
The following sections detail making movies with HDF, but another method has been brought
to our attention. An easy way to make movies from gif files generated by Ferret is a public do-
main utility called whirlgif. The documentation for whirlgif indicates that it is available for a
variety of systems.

Whirlgif is extremely easy to use:

1. Make your gif files with a Ferret command like:

yes? REPEAT/J=1:36 (GO scriptfile 'j°; FRAME/FILE=whirl-"j .gif)

ANIMATIONS AND GIF IMAGES 167

where the scriptfile uses the argument j to determine the plot characteristics. See sections
later in this chapter for more on the REPEAT command (p. 169) and creating GIF files (p. 172).

2. Make a file (for example call it whirlgif-infile) that consists of a list of the gif files (including
repeats if you want):

> more whirlgif-infile
whirl-1.gif
whirl-2.gif

This file can be as long as you want and may specify files more than once to repeat any of
the images if you wish.
3. From the unix command line use whirlgif to make the movie:
> whirlgif -o movie_ filename.gif -i whirlgif-infile
That's it. Whirlgif simply concatenates the gif files with some connecting information needed
to do the animation. The resulting movie gif file is just about as large as the sum of the input
frames.

These show nicely on the web, or you can use xanim (under unix) to view locally.

Download whirlgif from http://www.msg.net/utility/whirlgit/
or the mirror site: http://www.danbbs.dk/~dino/whirlgif/index.html

which has extensive documentation. But we have found that it is a simple program that works
without much study.

Ch5 Sec2. CREATING AN HDF MOVIE

Creating a movie requires two steps:

1) designate an output file with SET MOVIE
2) generate a sequence of frames with REPEAT and FRAME

See commands SET MOVIE (p. 408), CANCEL MOVIE (p. 320), SHOW MOVIE (p. 428),
FRAME (p. 348), and REPEAT (p. 377) in the Commands Reference section of this manual.

Example: basic movie

yes? SET DATA coads_climatology !specify data set
yes? SET REGION/QW !'specify Pacific Ocean
yes? LET/TITLE="SST Anomaly" SST _ANOM = SST - SST[L=1:12QAVE]
yes? REPEAT/L=1:12 (FILL sst_anom; FRAME/FILE=my movie.mgm)
'filled contour of sea surface\

168 CHAPTERS5

http://www.msg.net/utility/whirlgif/

http://www.danbbs.dk/~dino/whirlgif/index.html

temp anomaly captured and\
written to HDF file

Optionally, ".mgm" will be assigned to the movie file.
REPEAT executes its argument (in the above example, FILL) successively for each timestep
specified. REPEAT can have multiple arguments separated by semi-colons and enclosed in pa-

rentheses.

FRAME is a stand-alone command, but also a qualifier for the graphical output commands
PLOT, CONTOUR, FILL (alias for CONTOUR/FILL), SHADE, VECTOR and WIRE.

The saved animation frames are exactly the size and shape of the window from which they are
created. Thus a large window results in a larger, slower animation that demands more disk
space and memory to play back. The SET WINDOW/SIZE= command is generally used to
specify minimally acceptable frame size.

See section "Advanced Movie-making" (p. 169), for more examples.

Note that when making an HDF movie you should not start Ferret with the -unmapped option.

Ch5 Sec3. DISPLAYING AN HDF MOVIE

Viewing a movie requires software which is not included with the Ferret distribution (although
in some cases we have made the binary available in Ferret's anonymous ftp area). NCSA's X
Data Slice reads HDF files and is available via anonymous ftp from NCSA. It requires about
1.7Mb of disk space. NCSA's ftp server is

ftp.ncsa.uiuc.edu login id is "anonymous", give your e-mail address as the password

Consult the README files you will find there for instructions on obtaining X Data Slice.
Other utilities from NCSA can also be used for animations.

Ch5 Sec4. ADVANCED MOVIE-MAKING

Ch5 Sec4.1. REPEAT command
The REPEAT command is quite flexible. It allows you to repeat a sequence of commands, not
just a single command as in the basic example above. You can give the GO command as an ar-

gument to REPEAT. The following examples demonstrate these techniques.

Note: MODE VERIFY must be SET (this is the default state) for loop counting to work.

ANIMATIONS AND GIF IMAGES 169

Example 1

Note the method at the start of this chapter for making movies from a sequence of GIF files and
the whirlgif utility. (p.167)

Example 2

Here we give multiple arguments to REPEAT; note the semi-colon separation and the paren-
theses. Note that FRAME, in this example, is used as a stand-alone command.

yes? REPEAT/L=1:12 (FILL SST; GO fland; FRAME/file=my movie.mgm)
Example 3

In this example we use the REPEAT command to pan and zoom over a sea surface temperature
field.

SET DATA coads climatology

SET REGION/L=1

SET REGION/X=120E:60W/Y=45S:45N
SHADE sst; GO fland

! ZOOM
REPEAT/K=1:5 (SET REGION/DX=+8:-8/DY=+8:-8; SHADE sst; GO fland; FRAME)

! PAN
REPEAT/K=1:5 (SET REGION/DX=+5; SHADE/LEV=(20,30,.5) sst; FRAME)

Example 4

In this example the user calls setup_movie.jnl (text included below), title.jnl, which creates a
title frame, then repeats main_movie.jnl (text included below) for each time step desired.
Finally, the user adds a frame of credits at the end of the movie. Each of the scripts would end
with the FRAME command (except setup_movie). Using GO scripts as arguments to REPEAT
allows you to customize the plot with many commands before finally issuing FRAME, as the
text of main_movie.jnl below demonstrates.

yes? ! make the movie

yes? GO setup movie

yes? GO title

yes? REPEAT/L=1:12 GO main movie
yes? GO credits

! Setup movie.jnl

SET WINDOW/SIZE=.45/ASPECT=0.7
SET MOVIE/file=my movie.mgm
SET DATA coads climatology

SET REGION/X=130E:75W/Y=8S:8N
SET MODE CALENDAR:months

GO bold

PPL SHAKEY ,,.15,.2

PPL AXLEN 8.8,4.8

! Main movie.jnl

170 CHAPTERS5

FILL/SET UP/LEVELS=(16,31,1) sst

PPL LABS; PPL TITLE

PPL FILL

LABEL 210,9.5,0,0,.22 QTRCOADS MONTHLY CLIMATOLOGY (1946-1989)
LABEL 210,-12,0,0,.22 QTRSEA SURFACE TEMPERATURE (DEG C)
LABEL 130,11,-1,0,.22 QTR'LAB4'

FRAME

Note: If you use the FILL command, we suggest that you use SHADE while customizing and
fine-tuning your movie, then use FILL for the final run. SHADE is much faster.

Ch5 Sec4.1.1. Initializing the color table

If you create a movie with a title frame, or a first frame which otherwise uses different colors
than the rest of the movie, you should be aware of an HDF peculiarity: all the colors that you
plan to use in your movie must be in the first frame, or else color behavior will be unpredictable
when you animate.

To "reserve" the colors you need, use overlapping full-window viewports. Make a representa-
tive plot in the title frame, then cover over it with either a black or white rectangle and finally
write the title text. Here is a script which initializes the color table while creating a title frame.

! define 3 identical full-frame viewports
DEFINE VIEW fulll; DEFINE VIEW full2; DEFINE VIEW full3

! draw frame one of the movie in full color

SET VIEW fulll

SET DATA coads_climatology

SHADE/LEVELS=(16,31,1) /L=1 sst ! dummy frame

! white-out over the picture

SET VIEW full2

GO setup_text

SHADE /PALETTE=white/NOLAB/NOKEY/i=1:2/j=1:2 (i+3) *0

'put on title frame labels (using [0,1] coordinate space)
SET VIEW full3

GO setup_text

PPL PLOT

LABEL .5,.7,0,0,.3 QTRMy Title

PPL ALINE 1,.2,.55,.8,.55

PPL ALINE 1,.2,.53,.8,.53

LABEL .5,.4,0,0,.2 QCRBy me

!capture the title frame and clean up
FRAME
GO cleanup_text

Ch5 Sec4.1.2. Making movies in batch mode

Ferret, like other Unix applications, can be run in "batch" mode by redirecting standard input
and output. Thus

ANIMATIONS AND GIF IMAGES 171

ferret -unmapped <movie commands.jnl >&movie.logé&

will make a movie running in background mode based on the commands in file movie com-
mands.jnl logging standard output and standard error in file movie.log.

Note, however, that when used in this mode to make a movie Ferret will still require access to
an X windows display (as in "setenv DISPLAY node:0"). To eliminate this requirement we rec-
ommend the use of the X11R6 "virtual frame buffer" (Xvtb). This application permits the
movie frames to be generated in the absence of any physical display device. Consult your sys-
tem manager for the availability of X11R6 for your system.

Ch5 Sec5. CREATING GIF IMAGES

GIF is a highly compressed format suitable for single images. (Ferret will not directly create
GIF89 animations.) The procedure for creating a GIF image is nearly identical to the creation
of a single frame of an HDF file. The modification is generally just to select a file name with the
" gif" extension; Ferret will automatically sense this as a request to create a GIF-formatted im-
age file. Alternatively, any file name can be used if the GIF format is specified explicitly using

FRAME /FORMAT=GIF

If a number of GIF images are created using the same file name Ferret will automatically re-
name subsequent versions with a version number. Thus a repeat loop can be used to generate
many GIF images.

Example:

REPEAT/L=1:12 (FILL sst; GO fland; FRAME/file=myimage.gif)

Note: In this mode of grabbing an image, Ferret creates a GIF file by requesting the image back
from your screen (your X server). In order for Ferret to correctly grab the image, the X server
should be configured to be running either in 8-bit PseudoColor mode (i.e. direct color) or
24-bit TrueColor mode (i.e. indexed color) with X server backing store enabled. Ifthe X server
is configured in 16-bit TrueColor (also indexed color) mode, Ferret will be unable to grab the
GIF image from the X server.

An alternative approach to creating GIF's (which does not share this restriction) is to invoke
Ferret with the -gif command line switch "ferret -gif" (p. 6).

Ch5 Sec6. CREATING MPEG ANIMATIONS

MPEG animations can be created from the outputs of the FRAME command—either HDF ani-
mation files or a sequence of GIF images. Various public domain utilities are available to per-
form the conversion from Ferret's output formats into MPEG animations. The routine

172 CHAPTERS5

hdf2mpeg (available in 2002 from
ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/NCSA/HDF2MPEG/) can be used to convert HDF
files into MPEG animations; mpeg_encode (available from mm-ftp.CS.Berkeley. EDU in
/pub/multimedia/mpeg/encode) can be used to convert sequences of GIF files. New and im-
proved routines may have become available since the time of this writing. See further docu-
mentation on this topic in the FAQ file from the Ferret home page.

ANIMATIONS AND GIF IMAGES 173

ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/NCSA/HDF2MPEG/
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/animations/making_mpegs.html

Chapter 6: CUSTOMIZING PLOTS

Ché6 Secl. OVERVIEW

Detailed control is possible over most aspects of Ferret graphical outputs. A custom modifica-
tion will require the user to either add a qualifier to a Ferret command or communicate directly
with the graphical package PPLUS, which is contained inside of Ferret. The most commonly
used PPLUS commands are listed in the following sections of this chapter. Consult the PLOT
PLUS for Ferret manual for complete command lists and the specifics of command syntax.

Ferret communicates with PPLUS by sending a sequence of commands to PPLUS (the com-
mand PPL ECHO ON causes the sequence of commands that Ferret sends to PPLUS to be
logged in the file fort.41.). The user can give further commands to PPLUS directly using the
Ferret command PPL (e.g., yes? PPL AXLEN 10, 7). Some results can be attained in two
ways—with either Ferret or PPLUS commands. However, the interaction of the two is com-
plex and the inexperienced user may get unexpected results, so when possible, use only Ferret
commands.'

PPLUS uses a deferred mode of output—various commands are given to PPLUS which de-
scribe the plot state but produce no immediate output; the entire plot is then rendered by a sin-
gle command. Some plot states (e.g., axis labels) are set by Ferret with every plotted output; to
customize these states it is necessary to use the /SET UP qualifier (which sets up the plot in-
side of PPLUS) and then modify the state with direct PPL commands. Other plot states are
never set by Ferret and, if modified at any time, remain in their specified state for all subse-
quent plots. Still other states are modified by Ferret only under special circumstances. Here is a
very simple customization (Figure 6 _1):

My SIN Plot

Figure 6 1

' Note that throughout this discussion a distinction has been made between Ferret commands and
PPLUS commands. In reality, the user issues Ferret commands only. "PPLUS commands" in this context
refers to PPLUS commands issued via the Ferret command PPL.

DATA SET BASICS 175

yes? PLOT/X=1:100/TITLE="My SIN Plot"/SET UP sin(x/6) 'use /SET_UP
yes? PPL YLAB "SIN value"
yes? PPL PLOT

The examples throughout this chapter show how the /SET UP qualifier on graphics commands
can be used to delay rendering of a plot while the user modifies plot appearance with PPLUS
commands.

Below is a list of PPLUS commands which are reset by Ferret. Please see the the PPLUS Users
Guide for details of PPLUS syntax. (p. 471)

PPLUS command when reset by Ferret

XFOR, YFOR reset for every plot

XLAB, YLAB reset for every plot

XAXIS, YAXIS reset for every plot

LABS reset for every plot

ALINE reset for every plot

TAXIS OFF reset for every plot

TITLE reset for every plot

TICS reset for every plot (small tic size, only)

WINDOW ON reset for every plot

PEN 1,n reset for every plot

LIMITS reset for every plot

ORIGIN reset by SET WINDOW/ASPECT and SET VIEWPORT; Y origin
may be shifted to accommodate many line style keys

AXLEN modified by SET WINDOW/ASPECT and SET VIEWPORT

VIEWPORT modified by WIRE/VIEW

LEV modified by CONTOUR and SHADE unless /LEVELS SAME
given

VECSET modified by VECTOR unless /[LENGTH_SAME given

WINDOW modified for "fresh" plots but not for overlay plots

Ché6 Sec2. GRAPHICAL OUTPUT

Ch6 Sec2.1. Ferret graphical output controls

Ferret command Function

CONTOUR produces a contour plot of a single field

FILL alias for CONTOUR/FILL; produces color-filled contour plot
PLOT produces a line or symbol plot of one or more arrays

SHADE produces a shaded representation (rectangular cells)

176 CHAPTER 6

Ferret command Function

VECTOR produces a vector arrow plot
WIRE produces a 3D wire frame plot
SET WINDOW manipulates graphics windows

SET VIEWPORT places graphics output into a sub-window (pane)

Ch6 Sec2.2. PPLUS graphical output commands

The plot commands, in the table below, can be customized using /SET_UP to delay display.
The PLOT/SET _UP is followed by PPLUS commands which customize the settings for axes,
labels, plot layout, and so on. Then the plot will ultimately be rendered using a PPLUS graphi-
cal output command (not the Ferret counterpart). A customized contour or filled-contour plot is
rendered with PPL CONTOUR, a wire frame plot with PPL VIEW and so on. Please see the
overview of this chapter (p. 175) and also the discussion in the Commands Reference section
about PPLUS (p. 376).

In the following sections, there is a "PPLUS commands" subsection detailing which PPLUS
commands are used for each type of customization. See the examples in those sections, and
cross-references to the PPLUS command syntax in the PPLUS manual (Appendix B).

Command Function

CONTOUR makes a contour plot

PLOT plots x-y pairs for all lines of data
PLOTUV makes a stick plot of vector data
SHADE makes a shaded representation
VIEW makes a wire frame plot
VECTOR makes a plot of a vector field

The graphical output command PLOTUYV can be used to make stick plots easily, as the follow-
ing time series example shows.

yes? SET DATA coads; SET REGION/X=180/Y=0/L=400:500
yes? PLOT/SET uwnd, vwnd
yes? PPL PLOTUV

Ch6 Sec3. AXES

By default, Ferret displays X- and Y-axes with tics and numeric labels at reasonable intervals
and a label for each axis. Time axes are also automatically formatted and used as needed. These

CUSTOMIZING PLOTS 177

axis features can be modified or suppressed using the following Ferret direct controls and
PPLUS commands.

Ch6 Sec3.1. Ferret axis controls

The following qualifiers are used with graphical output commands PLOT, VECTOR, SHADE,
and CONTOUR to specify axis limits, tic spacing, and possible axis reversal:

Ferret qualifers
/HLIMITS, /VLIMITS, /NOAXIS

The /HLIMITS and /VLIMITS qualifiers use the syntax /HLIMITS=lo:hi:delta. Tic marks are
placed every "delta" units, starting at "lo" and ending at "hi". Every other tic mark is labeled.
"delta" may be negative, in which case the axis is reversed.

The /NOAXIS qualifier removes both X and Y axes from the plot. This is particularly useful
for plots using curvilinear coordinates (map projections) where the final axis values represent

transformed axis values rather than world coordinates.

The following arguments to SET MODE and CANCEL MODE determine axis style (e.g., SET
MODE CALENDAR:days) :

Ferret arguments
CALENDAR
LATIT LABEL
LONG _LABEL

See the Commands Reference section of this manual (p. 315) for more information.

Ch6 Sec3.2. PPLUS axis commands
PPLUS commands can be used to customize axis settings. Note that Ferret makes settings for
all of these automatically; you will only need to make PPLUS calls to change the axis proper-
ties. See the examples below, and the section on PPLUS graphical commands (p. 177) for
more on the syntax to make PPLUS calls.

Command Function

XAXIS* controls numeric labeling and tics on the X axis (redundant with /HLIMITS)
(p. 538)

178 CHAPTER 6

Command

YAXIS*

AXATIC
AXLABP
AXLEN**
AXLINT
AXLSZE
AXNMTC
AXNSIG
AXSET
AXTYPE

TICS
XFOR*
YFOR*
XLAB*
YLAB*
TXLABP
TXTYPE*
TXLINT*
TXLSZE
TXNMTC

Function

controls numeric labeling and tics on the Y axis (redundant with /VLIMITS)
(p. 538)

sets number of large tics automatically for X and Y (p. 511)

locates or omits axis labels at top/bottom or left/right of plot (p. 511)

sets axis lengths (p. 511)

sets numeric label interval for axes every nth large tic (p. 511)

sets axis label heights (p. 511)

sets number of small tics between large tics on axes (p. 511)

sets number of significant digits in numeric axis labels (p. 511)

allows omission of plotting of any axis (redundant with /AXES=) (p. 512)

sets axis type (linear, log, inv. log) for x- and y-axis (p. 512) (See also
/HLOG,/VLOG qualifiers on plot commands)

sets axis tic size and placement inside or outside axes (p. 532)
sets format of x-axis numeric labels (p. 538)

sets format of y-axis numeric labels (p. 539)

sets label of x-axis (p. 539)

sets label of y-axis (p. 539)

establishes time axis label position (or absence) (p. 533)

sets the style of the time axis (p. 534)

specifies which time axis tics will be labeled (p. 533)

sets height of time axis labels (p. 534)

sets number of small tics between large tics on time axis (p. 534)

* 1ssued by Ferret with every relevant plot
** issued by Ferret upon SET WINDOW/ASPECT or SET VIEWPORT

CUSTOMIZING PLOTS 179

Examples

1) Plot with no axis labels (character or numeric) and no tics (Figure 6_2). (Equivalent to

Figure 6 2

yes? GO box plot PLOT/I=1:10/NOLABEL 1/1)

yes? PLOT/i=1:30/NOLABEL/SET 1/i

yes? PPL AXLABP 0,0 'turn off numeric labels

yes? PPL TICS 0,0,0,0 !'suppress small and large tics
yes? PPL PLOT !'render plot

yes? PPL TICS .125,.25,.125,.25 'reset tics to default

yes? PPL AXLABP -1,-1 !reset numeric labels

2) customize x-axis label (Figure6 3); XLAB always reset by Ferret)

yes? PLOT/SET/i=1:100 sin(x/6)
yes? PPL XLAB My Custom Axis Label
yes? PPL PLOT

3]
B¢
&8

£ B
My Custom Axis Lobel

SIN(X/6)

Figure 6 3

3) specify tic frequency for y axis

yes? PLOT/i=1:30/YLIM=0:1:.2 1/i

4) Specify the size and location of tic marks on the axes. The PPLUS tics command is

180 CHAPTER 6

ppl tics,smx,lgx,smy,lgy, IX,IY

IX and I'Y are 1 for tics inside the plot box, 0 to straddle the axis line, and -1 for tics outside the
axis with -1 as default. These commands put large tics inside the axes.

yes? SHADE/SET/i=1:100/j=1:15 sin(x/6)*10./j
yes? PPL TICS .0,.35,.0,.35,1,1
yes? PPL SHADE

See also the /GRATICULE qualifer available on all plotting commands (PLOT/GRATICULE,
CONTOUR/GRATICULE, etc.)

Ch6 Sec3.3. Overlaying symbols on a time axis
To overlay symbols or mark-up on a plot which has a formatted time axis (dates and times) it is
necessary to specify positions using the internal time encoding of that axis. Typically, the easi-

est way to achieve this is to define a variable, say TT, which is the time encoding. This example
illustrates.

Example:

demonstrate PLOT/VS and POLYGON over time axes (Figure 6 _4)

N
=y

ot
-
J

o T—
—_—

AP E

Figure 6 4
USE coads_climatology
LET xsqr = {-1,1,1,-1} ! coordinates of a unit square
LET ysqr = {-1,-1,1,1}
LET xcircle = COS(6.3*i[i=1:42]/40) ! coordinates of unit circle

LET ycircle = SIN(6.3*i[i=1:42]/40) ! Notice the units of the time axis
SHOW GRID/L=1:3 sst

PLOT/X=180/Y=0 sst ! draw a time series plot

LET tt = T[GT=sst] ! tt is the coordinates along the T axis
! place an "X" at the value exactly at 7-aug

! "QITP" causes interpolation to exact location

LET t0 = tt[T="7-aug-0000"@itp]

LET val0 = sst[X=180,Y=0,T="7-aug-0000"Ritp]
PLOT/VS/OVER/NOLAB/SYM=2/LINE=8 t0,val0

CUSTOMIZING PLOTS 181

! put a box around the "X"
POLYGON/OVER/LINE=8/TITLE="Special region" t0+500*xsqr, 0.05*ysqr+val0

Figure 6 5

! place an "X" on the data point nearest to 15-may

! Note that QRITP is absent, so behavior is set by MODE INTERPOLATE
LET tl = tt[t="15-may-0000"]

LET vall = sst[x=180,y=0,t="15-may-0000"]
PLOT/VS/OVER/NOLAB/SYM=2/LINE=10 tl,vall

! put a circle around the "X"
PLOT/VS/OVER/LINE=10/nolab t1+500*xcircle,0.05*ycircle+vall

Example (continued):

mark-up over a Hofmuller diagram (Figure 6_5)

el] bt L s
! A e gy e

Figure 6 5

SHADE/X=180 sst ! latitude vs time plot

LET tlo = tt[T="1-jul-0000"QRitp]

LET thi = tt[T="1-aug-0000"Qitp]
POLYGON/OVER/LINE=7/PAL=gray/PAT=lite up left to _right { tlo’, “thi’,°
thi', “tlo’}, {20, 20, 40, 40}

182 CHAPTER 6

Ché6 Sec4. LABELS

Ferret, by default, produces labeled axes, a plot title, documentation about the data set, the plot
axes normal to the plot, nd a signature (current date and Ferret version number) when a plot is
rendered. The /NOLABELS qualifier suppresses the plot title, the documentation and signa-
ture, and the axis labels of independent axes. Note that you can use the LABEL command to
add any labels that you need..

Ché6 Sec4.1. Adding labels

The Ferret command LABEL adds a label to a plot and takes the following arguments:

yes? LABEL xpos,ypos,center,angle,size text

where xpos and ypos are in user (axis) units, size is in inches, angle is in degrees (0 at 3 o'clock)
and center is -1, 0, or +1 for left, center, or right justification. There is an example in the section
below on PPLUS label commands (p. 188). The label position will adjust itself automatically
when the plot aspect ratio or the viewport is changed.

If you prefer to locate labels using inches rather than using data units issue the command

yes? LABEL/NOUSER xpos,ypos, ...

Note, however, that the layout of a plot in inches—Iengths of axes, label positions, etc.—shifts
with changes in window aspect ratio (SET WINDOW/ASPECT) and with the use of
viewports. Labels specified using LABEL/NOUSER will need to be adjusted if the aspect ratio
or viewport is changed.

Beginning with Ferret v5.53, long labels may be specified, up to 2048 characters long. This
applies to all kinds of labels: titles, axis labels, and moveable labels. To create multiple-line la-
bels, use the separator <NL> to locate the line-breaks. If centered labels are requested, each
line is centered separately. See examples on pages 188 and 189. Also try the demo script
multi_line demo.jnl for examples of this usage.

Notes:

1) If you use the command PPL LABS instead of LABEL, be aware that when defining a new
movable label, all lower-numbered labels must already be defined.

2) The Ferret command LABEL is an alias for PPL %LABEL. PPLUS does NOT consider a la
bel created with %LABEL to be a movable label. Consequently, no label number is assigned

and the label cannot be manipulated as a movable label.

3) %LABEL is an unusual command in that the label appears on the plot immediately after the
command is given, rather than being deferred. This has ramifications for the user who has

CUSTOMIZING PLOTS 183

multiple plot windows open and is in MODE METAFILE, since a metafile is not closed un-
til a new plot is begun. If the user produces a plot in window B, and then returns to a previ-
ous window A and adds a label with LABEL, that label will appear on the screen correctly,
but will be in the metafile corresponding to window B.

4) The LABWID function (Ferret version 5.81 and higher) returns the width in plot inches of a
label in a given font and size. This can be used to position other plot elements relative to a la-
bel.

LABEL/NOUSER “xpos’, "ypos, -1, 0, 0.15, "my label"
LET wid = LABWID ("my label", 0.15)
IF "next label GT 0° THEN\
LABEL/NOUSER “xpos+wid+0.15", "ypos’, -1, 0, 0.15, "second label"

Example

yes? PLOT/I=1:100 sin(i/6)
yes? LABEL 50, 1.2, 0, 0, .2 @P2MY SIN PLOT

Ch6 Sec4.2. Listing labels

The PPLUS command PPL LIST LABELS can be used to list the currently defined labels. For
example,

yes? PPL LIST LABELS
@ACSEA SURFACE TEMPERATURE (Deg C)

@ASLONGITUDE
@ASLATITUDE
XPOS YPOS HGT ROT UNITS

ILAB 1 8.000E+00 7.200E+00 0.060 0 SYSTEM (QASFERRET Ver. 4.40
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 2 8.000E+00 7.100E+00 0.060 0 SYSTEM @ASNOAA/PMEL TMAP
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 3 8.000E+00 7.000E+00 0.060 0 SYSTEM (QASOct 22 1996 09:24
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 4 O0.000E+00 6.600E+00 0.120 0 SYSTEM (@ASTIME : 16-JAN
LINE PT: 0.000E+00 0.000E+00 NO LINE LEFT JUSTIFY LABEL

The first three lines of output show the plot title, the X axis label, and the Y axis label. These la-
bels are controlled by the PPL TITLE, PPL XLAB, and PPL YLAB commands, respectively.
The three characters "@AS" indicate the font of the label—in this case "ASCII Simplex" (see
the section in this chapter, "Fonts," p. 198).

184 CHAPTER 6

Next is a table of "movable labels"—labels that were defined using the PPL LABS command.
Labels are generally simpler to control with the GO unlabel and LABEL commands described
in the following sections, rather than with the PPL LABS command.

Each label is described with two lines. The column headers refer to the first of the two. The co-
ordinates of each label, (XPOS,YPOS), may be in units of "inches" or may be in the units of the
axes. This is reflected in the UNITS field of the output, which will contain "SYSTEM" if the
coordinates are in inches or "USER" if the coordinates are axis units. (The /NOUSER qualifier
on the PPL LABS command is used to indicate that coordinates are being given in inches.) Co-
ordinates are calculated relative to the axis origins. The PPL HLABS and PPL RLABS com-
mands control label height and rotations, respectively.

The second line of the label description contains information about an optional line on the plot
which can be used to point to the label (refer to the PPLUS command LLABS or see the section
in this chapter, "Positioning labels using the mouse pointer," p. 189). At the end of this line is
the text of the movable label.

In addition to PPLUS LIST LABELS, you can also issue a SHOW SYMBOLS command; the
labels that are automatically generated are available as symbols,

yes? SHOW SYMBOLS ! lists all symbols that have been defined
yes? SHOW SYMBOLS LAB* ! lists symbols starting with LAB

Ch6 Sec4.3. Removing movable labels

Removing a movable label is a two step process: identifying the label number and then deleting
the label. PPLUS internally refers to all movable labels with label reference numbers. The
PPLUS command LIST LABELS will list the PPLUS labels and the text strings they contain.
Then the user can use "GO unlabel n", where n is the reference number, to delete a label.

Example

In this example we plot the same figure in two viewports, one plot with the default "signature,"
and one plot with the signature removed (Figure 6 _6). The SHOW SYMBOLS command lists
all the Ferret symbols that are defined for the plot; LAB1, LAB2, and LAB3 are always the
three lines of the signature. (Alternatively, PPL LIST LABELS will list all currently defined
labels, or PPL LISTSYM will list all symbols.)

'upper viewport has a "signature"
yes? PPL BOX on

yes? SET VIEW upper

yes? PLOT/I=1:100 sin(i/6)

yes? SHOW SYM

LAél "FERRET Ver. 5.70"

LAB2 = "NOAA/PMEL TMAP"
LAB3 = "Jan 5 2005 08:54:22 "

CUSTOMIZING PLOTS 185

'in the lower viewport
'the signature is removed as follows

yes? SET VIEW lower
yes? GO unlabel 1
yes? GO unlabel 2
yes? GO unlabel 3
yes? PPL PLOT

FEBESR
AR ARk

i T T
= ES

SIN(1/8)

EEEEE
LT

T T
EY ES

SIN(L/8)

Figure 6 6

Ch6 Sec4.4. Axis labels and title

Special commands and special logic govern the labels of axes and titles. Use the PLOT+ com-
mands XLAB, YLAB, and TITLE in conjunction with the Ferret plotting qualifier/SET UP to
modify the labeling choices that Ferret makes. These are discussed in the section below,
PPLUS label commands (see p. 187).

For two-dimensional plots (CONTOUR, FILL) Ferret will label the plot axes with the titles
and units from the appropriate axes of the grid. The command SHOW GRID can be used to see
the labels that will be used. The title will be the title of the variable (see SHOW VARIABLE, p.
430, and SHOW DATA/VARIABLE, p. 423) modified by the units and comments about trans-
formations in parentheses.

For one-dimensional plots (PLOT) other than PLOT/VS the independent axis will be labeled
using the title and units from the appropriate axis of the grid. The dependent axis will be la-
beled with the units of the variable being plotted. The title will be labeled as for two-dimen-
sional plots.

For output of the PLOT/VS command the axes will be labeled with the titles of the variables
(see SHOW VARIABLE, p. 430, and SHOW DATA/VARIABLE, p. 423) each modified by its
units and comments about transformations in parentheses.

186 CHAPTER 6

Ch6 Sec4.5. Ferret label controls
In addition to LABEL (discussed above, page 183), Ferret controls include the /NOLABELS
qualifier, which suppresses default plot title, documentation and signature, axis labels, and
/TITLE qualifier to graphical output commands PLOT, SHADE, CONTOUR, VECTOR, and
WIRE:

Ferret qualifiers

/NOLABELS
/TITLE=

and arguments to SET MODE (p. 398) and CANCEL MODE (p. 319):
Ferret arguments
SET MODE ASCII_FONT
SET MODE CALENDAR

SET MODE LATIT LABEL
SET MODE LONG_LABEL

Ch6 Sec4.6. PPLUS label commands

Ferret stores the text strings of the following labels in PPLUS symbols. The symbol names are:

symbol name label

LABTIT title label

LABX X axis label
LABY Y axis label
LABn nth movable label

PPLUS commands can be used to customize labels. See the example below, and the section on
PPLUS graphical commands (p. 177) for more on the syntax to make PPLUS calls. As stated
above, PPLUS commands regarding movable labels are largely superceded by the Ferret com-
mand LABEL and "GO unlabel n". However the /SETUP qualifier on a plot command in
conjuction with PPLUS commands LABSET, TITLE, XLAB, and YLAB are used to modify
the labels that Ferret automatically puts on plots. See the section on PPLUS graphical com-
mands for more on calling PPLUS plot commands (p. 177)

Command Function

LIST LABELS shows the currently defined labels (p. 523)
LABSET sets character heights for labels (p. 520)

CUSTOMIZING PLOTS 187

Command Function

TITLE* sets and clears main plot label (p. 532)

XLAB* sets label of X axis (p. 539)

YLAB* sets label of Y axis (p. 539)

LABS* makes, removes, or alters a movable label (p. 519) (redundant with
LABEL command)

HLABS sets height of each movable labe (p. 518)1

RLABS sets angle for each movable label (p. 529)

LLABS sets start position for and draws a line to a movable label (p. 524)

* issued by Ferret with every relevant plot

Example

This example customizes a plot using PPLUS label controls. The LABSET command (See p.
520) is used here to control the size of the main label, x-label, and y-label. The Ferret LABEL
command is used to add a label.

yes?
yes?
yes?
yes?
yes?
yes?

PLOT/I=1:100/SET_UP i * sin(i/6)
PPL LABSET 0.3, 0.08, 0.3

PPL TITLE

PPL YLAB "Modiified SIN function"

PPL PLOT

LABEL 10.,20,-1,30,0.2 "Angled label"

Beginning with Ferret v5.53, long labels may be specified, up to 2048 characters long. To cre-
ate multiple-line labels, use the separator <NL> to locate the line-breaks. If centered labels are
requested, each line is centered separately. See the demo script multi_line_demo.jnl for exam-
ples of this usage.

Example

Use of long axis labels. Use the backslash continuation character for better readability.

yes?
yes?

PLOT/I=1:100/TITLE=" "/SET i*cos(i/8)
PPL YLAB "A four-line y label.<nl>second line\

<nl>third line<nl>fourth line"

yes?
yes?

PPL XLAB "a two-line X label. <nl>COSINE function"
PPL PLOT

Ch6 Sec4.7. Positioning labels relative to other plot elements

Once a plot has been made, we can use the location and size of plot elements such as axis
lengths to position any labels we would like to add. A number of global symbols are defined
when a plot is drawn. See the section on "special symbols" for a compete list of these. (p. 210)

188 CHAPTER 6

Use the LABEL command to position a label. To position a label using page inches, use
LABEL/NOUSER which takes the units to be inches from the origin. When plotting in a
viewport, plot inches are measured from the origin of the viewport.

Example:

yes? plot/i=1:100 (i/2)*sin(i/6)

! Put a label in the lower right, use user units
yes? label/user " ($xaxis max) ", " ($yaxis_min)', 1, 0, .2, "@P2lower
right"

'-> PPL 3%LABEL/user 100, -50, 1, 0, .2, "Q@P2lower right"

! Use plot inches. Put a label just inside the plot area
yes? label/nouser ° (pplxlen)/2°, " (pplylen) - 0.4°, 0, O, 0.2,
"@P2center top"

!'-> PPL $%LABEL/nouser 4, 5.6, 0, 0, 0.2, "@P2center top"

! Put a label in the lower left, making sure it's not off the page.
yes? let xpl = -1*MIN(1, (pplxorg) °)
yes? let ypl = -1*MIN(1, " (pplyorg) °)
yes? label/nouser ‘xpl°, ‘ypl’, -1, 0, 0.2, "@P2lower left"
!'-> PPL $%LABEL/nouser -1, -1, -1, 0, 0.2, "@P2lower left"

Beginning with Ferret v5.53, long labels may be specified, up to 2048 characters long. To cre-
ate multiple-line labels, use the separator <NL> to locate the line-breaks. If centered labels are
requested, each line is centered separately. See the demo script multi_line_demo.jnl for exam-
ples of this usage.

Example:

This is one LABEL command, used to put a block of text on the page. Use the backslash con-
tinuation character for better readability.

yes? LABEL 3,95,-1,0,0.14,\

"@CRFerret is an interactive computer visualization and analysis<NL>\
environment designed to meet the needs of oceanographers and<NL>\
meteorologists analyzing large and complex gridded data sets. It<NL>\
runs on most Unix systems, and on Windows NT/9x using X<NL>\

windows for display. It can be installed to run from a Web<NL>\
browser (WebFerret) for use while away from your desk or<NL>\

from a system lacking X windows software. It can transparently<NL>\
access extensive remote Internet data bases using OPeNDAP,<NL>\
formerly known as DODS."

Ch6 Sec4.8. Positioning labels using the mouse pointer

Often it is awkward precisely to position plot labels. Using the mouse pointer can simplify this
as mouse clicks can be used to place labels and other annotations on plots. This command op-

tion works only in Window 1. It does not function in other windows that have been opened with
SET WINDOW/NEW.

CUSTOMIZING PLOTS 189

The full syntax of the LABEL command is
LABEL xpos, ypos, justify, rotate, height "text"

xpos,ypos are the (X,y) position of the label

justify = -1, 0, 1 for left, center, right justification — default = left

rotate is given in degrees counter-clockwise — default =0

height is in "inches"

text to be plotted. This argument may include font and color specifications

Note that the LABEL /NOUSER qualifier is not relevant for mouse input.

If either of the first two arguments (label position) are omitted it is a signal that mouse input is
desired. For example

yes? GO ptest
yes? LABEL "this is a test"

will wait for mouse input, using the indicated point as the lower left corner of the text string.
Equivalent to this is

yes? LABEL ,,-1,0,.12 "this is a test"
Note that left justification will always be used in this mode, regardless of the value specified.

For mouse control over justification and/or to draw a line or arrow associating a label with a
feature on the plot, explicitly omit the justification argument. Ferret will put up a menu re-
questing a selection of "Arrow", "Line", "Right", "Center", "Left". If Arrow or Line is selected
two mouse inputs are required — the first indicating the feature to be marked, the second indi-
cating the lower left corner of the text area. If "Right", "Center" or "Left" is specified the text
will be justified accordingly.

Note that the mouse-driven LABEL command defines the symbols XMOUSE and YMOUSE
and writes comments regarding their definitions into the current journal file (if any) as de-
scribed under the WHERE alias.

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Comments
which include the digitized position are also written to the current journal file (if open). The
WHERE command can be embedded into scripts to allow interactive positioning of color keys,
boxes, lines, and other annotations.

190 CHAPTER 6

Cho6 Sec4.9. Labeling details with arrows and text

Using the technique described in section 4.7 it is also simple to create a label with a line or ar-
row indicating a detail of a plot. Follow the procedure outlined above but select "Line" or
"Fancy line" (arrow) from the menu that appears in the plot window. Then click on the detail
which is to be labeled. The menu will appear again—this time select the justification and click
on the label position.

To see the precise numerical coordinates of the arrow and label use the PPL ECHO ON com-
mand prior to the PPLUS command which redraws the plot. The endpoint coordinates of the
arrow will appear as a comment line which begins with "C LLABS" in the echo file, fort.41.
The coordinates of the label will appear as a comment line which begins with "C LABS".
(Easily viewed with "spawn tail -2 fort.41".)

Ché6 Sec5. COLOR

Ferret and PPLUS use colors stored by index. Storage indices 0 and 1 are used as window back-
ground and foreground colors. Indices 1-6 are reserved for lines. As the user makes SHADE
and FILL requests, each color is assigned to the next available storage index beginning at 7,
and that assignment is automatically "protected" when viewports or color overlays are added.

If your SHADE and FILL commands request more colors than there are storage indices (256),
you will be informed with an error message and the color behavior may become unpredictable.
For example, if you have multiple viewports defined within a window you may run out of color
storage indices. If you are using the same color palette(s) in each viewport, you can free up in-
dices by canceling the color protections with PPL SHASET RESET. See the examples later in
this section for details on removing color protection. Currently, there is no way to ask PPLUS
how many colors it is using in a plot.

The following discussion is divided into a treatment of text and line colors, and a discussion of
shade and fill color.

Ché6 Sec5.1. Text and line colors’

By default the background color is white and the text color is black. To reverse these, so the
background is black, call the script "black.jnl". And to restorethe white background, call
"white.jnl". Black and white are the only colors that can be used for the background.

* In the following discussion, "line color/thickness" is used as equivalent to "line style" for the sake of
simplicity. However, if you are using a black and white printer, then the metafile translator will substitute a
dash pattern for each line color. See Plotplus Plus: Enhancements to Plotplus to see monochrome line
styles.

CUSTOMIZING PLOTS 191

yes? go black

yes? ! ...plot commands...
yes? go white
yes? ! ...more plot commands..

Line type and color for plot commands are most easliy controlled by the command qualifiers
PLOT/COLOR=, PLOT/THICKNESS=, and PLOT/DASH in the Command Reference sec-
tion (p. 365)

For text, and optionally for plot lines, line type text colors are regulated by use of storage indi-
ces 1-6, each index associated with a default color. These are listed in the table in the section
"PPLUS text and line color commands" below (p. 191) It is possible to change the six available
line colors with the PPLUS enhancements command COLOR. (See Plotplus Plus: Enhance-
ments to Plotplus.) When you create a plot with multiple data lines, Ferret automatically draws
each line in a different color. By default, axes, labels, and the first data line are all drawn in the
same color. You can modify this behavior with the following Ferret and PPLUS commands.

Ché6 Sec5.1.1. Ferret color controls for lines

Plotted line colors can be set using the /COLOR= qualifier on PLOT, CONTOUR, VECTOR,
or POLYGON commands. The available colors are black, red, green, blue, lightblue, purple,
and white. In addition, starting with Ferret version 5.4, the user has direct control over dashed
lines, and can combine them with choices of colors and thickness.

Plotted colors and line type may also be set with the older syntax

yes? PLOT/LINE=n
yes? VECTOR/PEN=n
yes? CONTOUR/PEN=n

where "n" is an integer between 1 and 18.

More direct control over line color and thickness is available with the qualifiers /COLOR and
/THICKNESS and the line type is controlled with /DASH, /SYMBOL=, and /SIZE=

Examples

1) Overlay three lines

yes? PLOT/i=1:10 1/i
yes? PLOT/OVER/COLOR=green/i=1:10 1/ (i+3)
yes? PLOT/OVER/i=1:10/COLOR=purple/THICK=3 1/i+1/(10-1i)

2) dashed lines with color and thickness settings

yes? PLOT/DASH/I=1:100 sin(i/5)
yes? PLOT/OVER/DASH=(0.3,0.1,0.3,0.1)/COLOR=RED/THICK/I=1:100 sin(i/7)
yes? PLOT/OVER/DASH=(0.6,0.2,0.1,0.2)/COLOR=RED/THICK/I=1:100 sin(i/9)

192 CHAPTER 6

3) Symbols with color and thickness settings

yes? PLOT/THICK=2/I=1:100 sin(i/5)
yes? PLOT/OVER/COLOR=red/THICK=3/SYM=4/SI1Z=0.10/i=1:100 sin(i/7)
yes? PLOT/OVER/COLOR=green/LINE/SYM=20/SIZ=0.15/i=1:100 sin(i/9)

Ché6 Sec5.1.2. PPLUS text and line color commands

Older syntax uses the PPLUS command PEN (p. 526) to assign a color and thickness index to a
specified pen. The pen colors are also used to set pen colors for labels (see p. 198). The PPL
PEN command takes the form:

yes? PLOT/SETUP var
yes? PPL PEN pen #, color_ thickness
yes? PPL PLOT

where pen # is the PPLUS pen number and color_thickness is a color and thickness index.
PPLUS uses different pens for different tasks. By default, color thickness index 1 is assigned
to pen 0. The following chart may be helpful.

pen number default color thickness index drawing task
0 1 (black or white) axes and labels
1 1 (black or white) first data line
2 2 (red) second data line
3 3 (green) third data line
4 4 (blue) fourth data line
5 5 (cyan) fifth data line
6 6 (magenta) sixth data line

Note: Whether you plot several data lines simultaneously, or use the /OVERLAY qualifier on
your Ferret commands, the color/thickness result will be the same. But the Ferret/PPLUS inter-
action is different. When Ferret plots multiple data lines simultaneously, PPLUS automatically
cycles through pen numbers 1 through 6 combined with symbols. Type GO line samplesin
Ferret to see the 36 different line styles. However, if you are using /OVERLAY for additional
data lines, Ferret controls the color thickness assigned to pen 1 and PPLUS draws each over-
lay line with pen 1.

Pen numbers range from 0 to 6, and color_thickness indices range from 0 to 18. The values 1 to
18 follow the formula:

color_thickness = 6 * (thickness - 1) + color
where thickness ranges from 1 to 3 and color from 1 to 6. Type "GO line_thickness" in Ferret to

see actual colors and thicknesses. Further information is in the appendix, "Ferret Enhance-
ments to PlotPlus, (p. 549)

CUSTOMIZING PLOTS 193

The special color thickness index 0 refers to the background color, which produces "invisible"
lines that can be used as "white-out" for special purposes. Pen 19 is a thin, white line which can
be used to draw in white over a colored area. Thicker white lines are not available.

The following PPLUS commands use the color_thickness index.

Command Function

@Cnnn uses color_thickness index "nnn" when embedded in a label (@c019 will
draw in white)

PEN sets color_thickness index for each data line (see chart above) (p. 526)

LEV sets color_thickness index for contour plot lines (p. 520) (redundant with
CONTOUR/LEVELS)

Examples

1) Ferret's default behavior—these two plots will look identical

yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-1i) '3 curves with 3 pens

yes? PLOT/i=1:10 1/i 'first curve with pen 1
yes? PLOT/OVER/i=1:10 1/ (i+3) 'overlay with pen 1 (next index)
yes? PLOT/OVER/i=1:10 1/i+1/(10-1i) 'overlay with pen 1 (next index)

2) select different colors for pens 0 and 1

yes? PLOT/i=1:10/SET 1/i

yes? PPL PEN 1 4 'assign color_thickness 4 to pen 1 (plot curve)
yes? PPL PEN 0 3 'assign color_thickness 3 to pen 0 (axes &
labels)

yes? PPL PLOT 'render the plot

yes? PPL PEN 0 1 'reset pen 0 to default color_ thickness (not\

reset by Ferret as is pen 1)

3) better way to do above plot:

yes? PLOT/i=1:10/LINE=4/SET 1/i 'include line style with qualifer /LINE
yes? PPL PEN 0 3 ; PPL PLOT
yes? PPL PEN 0 1

4) To make a white label

yes? SHADE/L=1 sst
yes? LABEL/NOUSER 4,4,0,0,0.14 "QCO19White Text"l

Ch6 Sec5.2. Shade and fill colors

Colors specified with the PPLUS SHASET command or in pallette files (also called spectrum
files) contain pre-defined color palettes. With Ferret 5.0 there are now three ways to specify

194 CHAPTER 6

how colors are set in SHADE, FILL, and POLYGON plots: the earlier Percent RGB mapping,
and also By value and By _level.

For examples of these palettes, try the demo script,

yes? go palette_demo
There is also an FAQ about choosing palettes,

How can I choose a good color palette for my plot? at http://www.ferret.noaa.gov/Fer-
ret/FAQ/graphics/colorpalettes.html

The Percent method defines points along an abstract path in RGB color space that runs from 0
to 100 percent. The pallette file bluescale.spk, for example, contains these lines.

0 0 0 95
100 95 95 95

The first number on each line is the percentage distance along the path in color space, and the
following numbers are the percents of red, green, and blue, respectively. In this simple two-line
file, the percentage runs from 0 to 100 % and the colors represent a range of blues from dark to
light. The percents in the first column must be in ascending order. The actual colors used by
SHADE or FILL are determined by dividing this abstract color scale into N equal increments,
where N is the number of colors, and linearly interpolating between the red, green, and blue
values from the neighboring SHASET percentage points.

For compatibility with older palette files, the Percent RGB mapping method is the default, and
pre-5.0 palette files will be interpreted correctly. Palette files using Percent RGB mapping
written out with Ferret 5.0 will have a slightly different format. A starting line is optional, spec-
ifying "RGB_Mapping Percent". Any line starting with a ! will be ignored as a comment line.
Blank lines are ignored. for example the bluescale palette saved with Ferret 5.0 will look like
this:

RGB_mapping Percent

! Level Red Green Blue
0 0 0 95
100 95 95 95

The first line informs Ferret that the RGB mapping method is Percent. Lines beginning with an
exclamation point are comments and ignored when read in—palette files created or modified
using a text editor can contain comment lines as documentation. Note that palette files need to
be unix-formatted files; values separated by tabs may not be read correctly.

The RGB mapping method By value uses color interpolation similar to the Percent method,

with the significant difference that colors are based on the values of the variable being plotted
rather than an abstract zero to 100 percent axis. When you use the same By value palette in

CUSTOMIZING PLOTS 195

http://www.ferret.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

several plots, identical values of one variable will be represented by the same color in each
plot. Specify "RGB_Mapping_ By value" as the first line in the palette file. A line starting with
a ! will be ignored as a comment line. Blank lines are ignored. The values in column 1 must be

in ascending order. For example with the following palette, ocean temp.spk:

RGB Mapping By value

!SetPt Red Green Blue
-2.0 80.0 0.0 100.0
0.0 30.0 20.0 100.0
10.0 0.0 60.0 30.0
20.0 100.0 100.0 0.0
30.0 100.0 0.0 0.0
35.0 60.0 0.0 0.0

a particular temperature, say 25 degrees, will have the same color on a SHADE or FILL plot
with levels ranging from 0 to 30, and on a plot with levels between 20 and 30 degrees.

The third RGB mapping method By level allows the user to select the precise color to be used
at each level in SHADE and FILL plots. Unlike the other methods, no interpolation of RGB
values is done. Colors specified in the palette will be used exactly as defined. If there are more
SHADE or FILL levels than colors specified, the color palette will repeat. Specify
"RGB_Mapping By level" as the first line in the palette file. A line starting with a ! will be ig-
nored as a comment line. Blank lines are ignored. The levels listedin column 1 must be in as-
cending order.In the following palette, by level rainbow.spk,

RGB Mapping By level

!'Level Red Green Blue
1 80.0 0.0 100.0
2 30.0 20.0 100.0
3 0.0 60.0 30.0
4 100.0 100.0 0.0
5 100.0 0.0 0.0
6 60.0 0.0 0.0

for example, with 6 colors defined and used in a plot with 10 levels, the colors used at each plot
level will be as follows:

Plot level Color
1 1
2 2
3 3
4 4
5 5
6 6
7 1
8 2

196 CHAPTER 6

Ché6 Sec5.2.1. Ferret shade and fill color controls

By default, Ferret will use the PPLUS spectrum file default.spk for shades and fills (normally
default.spk is a Unix soft link to rnb.spk). Ferret comes with many color palettes. The UNIX
command "Fenv" lists the environment variable SFER_PALETTE which is a list of paths to be
searched for palette files (the palette file names all end in .spk). The UNIX command
"Fpalette" allows you to find and examine these files (type "Fpalette -help" at the Unix
prompt). You can easily create your own palette files with a text editor.

Use the Ferret qualifier /PALETTE= with Ferret graphical output commands
CONTOUR/FILL and SHADE to specify a color palette. See the section in this chapter, "Con-
touring," p. 204, for details on the CONTOUR qualifier /LEV, which controls colors and dash
patterns, as well as sets contour levels.

Ferret qualifiers

/PALETTE= (alias for PPL SHASET SPECTRUM=)
/LEV=

PALETTE is also a stand-alone command alias; it sets a new default color palette.
Be aware that when you use /PALETTE= in conjunction with /SET UP, the color spectrum

you specify becomes the new default palette; to restore the default palette use command
PALETTE with no argument.

Ché6 Sec5.2.2. PPLUS shade color commands

Command Function
SHASET Sets colors used by SHADE (p. 547)
SHAKEY Customizes the shade key (p. 547)

SHASET is an enhancement of PPLUS designed for Ferret. You can specify a color spectrum,
save a spectrum, change an individual color in the spectrum, or remove the protection (PPL
SHASET RESET) for colors already on the screen. See Plotplus Plus: Enhancements to
Plotplus (p. 547) for more information.

If you need precise control over each individual RGB color on your plot, run "GO exact col-
ors", which contains instructions on modifying individual colors in a palette using SHASET.

CUSTOMIZING PLOTS 197

The SHAKEY command (see p. 547) allows you to customize the location, size and labelling
of the color key for SHADE and FILL plots.

Examples

1) look at the relief of the earth's surface

yes?
yes?
yes?
yes?
yes?
yes?

SET DATA etopol20
SHADE rose

'Ferret's default plot

! Emphasize land and sea with palette,customize the color key
SHADE/PALETTE=land sea/SET UP rose palette
PPL SHAKEY 1,0,0.1,2, , ,1.2,7.2,7.5,8.2

PPL SHADE

2) Perhaps you would like to compare two topography resolutions. To illustrate what happens
when you use more colors than are available, request an excessively large number of levels:

yes?
yes?
yes?
yes?
yes?
yes?
yes?

256!')

yes?

SET DATA etopol20

SET REGION/Y=-20:20

SET VIEWPORT UPPER
SHADE/LEV=(-8000,8000,100) rose
SET VIEWPORT LOWER

SET DATA etopo20

SHADE/LEV rose[d=etopo20]

CANCEL VIEWPORT

'upper half

1160 colors, default palette
!lower half

'high resolution

'another 160 colors (320 >

PPL+ error: You're attempting to use more colors than are available.
Using SHASET RESET to re-use protected colors may help.

If you reuse the same palette, as in this example, issue PPL SHASET RESET after the first plot.
Now the second picture is made without error:

yes?
yes?
yes?
yes?
yes?
yes?
yes?
yes?
yes?

Ch6 Secé.

SET DATA etopol20

SET REGION/Y=-20:20

SET VIEWPORT UPPER
SHADE/LEV=(-8000,8000,100) rose
SET VIEWPORT LOWER

PPL SHASET RESET

SET DATA etopo20

SHADE/LEV rose[d=etopo20]
CANCEL VIEWPORT

FONTS

Ch6 Sec6.1. Ferret font and text color

'reuse color storage indices

By default, Ferret produces all plot labels using the fonts ASCII Simplex (code AS) and ASCII
Complex (code AC). For upper and lower case letters these fonts are identical to the fonts Sim-
plex Roman (SR) and Complex Roman (CR), respectively. In addition, however, fonts AS and
AC include the complete set of ASCII punctuation characters and ignore the special PPLUS in-

198 CHAPTER 6

terpretations of the characters """ (superscript), " " (subscript), and "@" (change font or pen).
Using a text editor, the ESCAPE character (decimal 27) may be inserted before the special
characters to restore their special interpretation.

The Ferret command CANCEL MODE ASCII causes Ferret to generate PPLUS labels which
have the font unspecified. When the font is unspecified the PPLUS command DFLTFNT deter-
mines the default font and PPLUS responds to the special characters "*"," ", and "@". SET
MODE ASCII restores normal font behavior.

Ch6 Sec6.2. PPLUS font and text color commands

PPLUS commands can be used to customize the font settings. See the examples below, and the
section on PPLUS graphical commands (p. 177) for more on the syntax to make PPLUS calls.

Command Function

DFLTENT Sets default character font for all labeling.

@AB In a label string, selects the font for which AB is a two-letter abbrevi-
ation (i.e., @CI for complex italic—see PPLUS manual for fonts, p.
539).

@Pn Changes to pen color n (see p. 191 for corresponding colors)

@Cnnn Changes to pen color nnn when the pen number is greater than 9.

You must use exactly 3 digits.

Note that many ASCII punctuation characters are printable only in ASCII simplex and com-
plex fonts. In all other fonts these characters "@", """, and " " have special meanings: (@ = font
change; ™ = superscript; = subscript.

Examples

1) axis labels in custom fonts (Figure 6_7)

label
°

my y-axis
o

my z azis label

Figure 6 7

CUSTOMIZING PLOTS 199

yes? PLOT/SET/i=1:10/NOLAB 1/i
yes? PPL XLAB @CImy x-axis label
yes? PPL YLAB (@GEmy y-axis label
yes? PPL PLOT

2) set default font for all labeling (Figure 6 _8)

e

e
\/\ ‘ L)
T T T T T T T T T
10 30 50 7 %0
3
sin curve

Figure 6 8

yes? CANCEL MODE ASCII

yes? PPL DFLTFNT CS !'complex script

yes? PLOT/I=1:100/TITLE="sin curve" sin(i/6)

yes? SET MODE ASCII

yes? PPL DFLTFNT SR 'numeric axis labels unaffected by SET MODE
ASCII

Ché6 Sec7. PLOT LAYOUT

Ché6 Sec7.1. Ferret layout controls

Layout of plots can be controlled with commands which modify window size and aspect ratio,
and viewports.

Ferret command
SET WINDOW/SIZE=/NEW/ASPECT=
DEFINE VIEWPORT/XLIMITS=/YLIMITS=/TEXT= view_name

SET VIEWPORT view name
CANCEL VIEWPORT

Ché6 Sec7.1.1. Viewports

A viewport is a sub-rectangle of a full window. Viewports can be used to put multiple plots onto
a single window. Issuing the command SET VIEWPORT is best thought of as entering

200 CHAPTER 6

"viewport mode." While in viewport mode all previously drawn viewports remain on the
screen until explicitly cleared with either SET WINDOW/CLEAR or CANCEL VIEWPORT.
If multiple plots are drawn in a single viewport without the use of /OVERLAY the current plot
will erase and replace the previous one; the graphics in other viewports will be affected only if
the viewports overlap. If viewports overlap the most recently drawn graphics will always lie on
top, possibly obscuring what is underneath. By default, the state of "viewport mode" is can-
celed. A number of the most commonly desired viewports are pre-defined.

Ch6 Sec7.1.2. Pre-defined viewports

Name Description

FULL full window

LL lower left quadrant of window
LR lower right quadrant of window
UR upper right quadrant of window
UL upper left quadrant of window
RIGHT right half of window

LEFT left half of window

UPPER upper half of window

LOWER lower half of window

Example: Graphics Viewports

Plot four variables from coads_climatology into the four quadrants of a single window (Figure
6 9).

yes? SET DATA coads_climatology
yes? SET REGION/Q@W/L=8
yes? SET VIEWPORT LL

yes? CONTOUR sst !'sea surface temperature
yes? SET VIEWPORT LR
yes? CONTOUR airt lair temperature

CUSTOMIZING PLOTS 201

yes? SET VIEWPORT UL

yes? CONTOUR slp !'sea level pressure
yes? SET VIEWPORT UR
yes? VECTOR/XSKIP=4/YSKIP=4 uwnd,vwnd 'zonal wind, meridional wind

yes? CANCEL VIEWPORT

Ch6 Sec7.1.3. Advanced usage of viewports

For the purposes of defining viewports, a graphics window is considered to have length 1 and
height 1. All viewport commands refer to positions relative to the current aspect ratio of the
window. Thus,

yes? DEFINE VIEWPORT/XLIM=.5,1/YLIM=.5,1 V5

will locate the origin of viewport V5 in the upper right of the output window regardless of the
shape of the window.

yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM= 0,.3 V1
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.3,.6 V2
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.6,.9 V3

defines three viewports; each takes a third of the height of the page, and the entire width.

The qualifiers /XLIMITS=x1,x2 and /YLIMITS=y1,y2 allow the user to specify a portion of
the graphics window to be the defined viewport. The arguments must be values between [0,1]
(NOT world coordinates). x1 and x2 indicate the lower and upper bounds for the length of the
window to be defined as the viewport; y1 and y2 serve an analogous purpose for height.

The /TEXT=n qualifier allows the user control over the shrinkage or enlargement of text on the
plot. A value of /TEXT=1 indicates that the text size should be the same as it is on the full
screen output. If a value less than 1 is specified the text will shrink. If a value is not specified
Ferret chooses a value appropriate to the viewport size. Acceptable values are 0 <n < inf. but
only values up to about 2 yield useful results.

Ché6 Sec7.1.4. Viewport Symbols

When we "set viewport viewport name" a number of Ferret symbols are set, giving access to
the viewport size, scaling, the values given to XLIM and YLIM when defining the viewport,
and the margins. See the Ferret Special Symbols section (p. 212) for a list of these symbols.

202 CHAPTER 6

Ch6 Sec7.2. PPLUS layout commands

The following PPLUS commands can be called to customize the plot layout. See the section on
PPLUS graphical commands for how to call PPLUS plot commands (p. 177)

Command

ORIGIN
BOX
CROSS
ROTATE
AXLEN
SHAKEY
VECKEY

AXSET

SIZE

Example:

Function

sets distance of plot origin from lower left corner (p. 525)
controls drawing of a box around the plotting area (p. 512)
controls drawing of lines through (0, 0) on graph (p. 514)
rotates plot by 90 degrees on screen and plotter (p. 529)
sets axis lengths (p. 511)

locates the color key (p. 547)

locates the vector key (p. 535) (see also the VECTOR/NOKEY quali-
fier,p. 437)

includes/excludes particular axes (p. 512) (see also PLOT/AXES=,
CONTOUR/axes=, etc., p. 367)

sets the overall size of the graphics window (p. 530)

A small plot, rotated 90 degrees, positioned with its origin at (4,4) on the plot page. Use the
/AXES qualifier to plot just the left and bottom axes.

yes? PPL BOX ON

yes? PPL ORIGIN 4,4

yes? PPL CROSS ON

yes? PPL ROTATE ON

yes? PPL AXLEN 2,2

yes? PLOT/I=1:30/AXES=0,1,1,0 sin(i)

Ch6 Sec7.3. Controlling the white space around plots

The location and size of the axis rectangle within the viewport or window determines the
amount of white space surrounding a plot. Complete control over this is possible using low
level controls, DEFINE VIEWPORT/TEXT PROMINENCE, PPL ORIGIN, and PPL
AXLEN, but these commands are sometimes awkward to work with. A simpler strategy is to

use the GO tool

yes? GO margins

When given without arguments this command will report the amount of white space surround-
ing a plot. With arguments it will adjust the axis origins and lengths according to the requested
margins. Try the Unix command

> Fgo -more margins

CUSTOMIZING PLOTS 203

for further documentation.

Ché6 Sec8. CONTOURING

Ch6 Sec8.1. Ferret contour controls

The following qu